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Abstract

This work determines whether the amount of frequency components present in the data can be reduced,
whilst still retaining image quality, whereas most efforts in seismological research are done in reducing
spatial sampling. It is shown using a PCA on the frequency spectra of several data sets that indeed a
large redundancy in frequency content is present in onshore seismic data, and an attempt is made to
generate a distribution of frequencies in order of importance.

Given this redundancy in the frequency spectrum of onshore seismic data, it has been attempted
to reconstruct the missing frequencies by applying the Fourier transformation iteratively to the data.
However, this transform does not take spatial sampling into account, which is aimed at to compensate
for the missing frequencies. Therefore it has been elected to use a linear Radon transformation instead,
which keeps components which are connected in space-time connected in the transform domain. A
CGNE scheme has been set up to reconstruct the data, which performs very well along the almost
linear asymptots in the shot records, up to a reduction of 70% of frequency components. This scheme
iteratively applies the linear Radon transform to a shot record, weighing the data in the transform
domain with an amplitude based norm. The energy that was spread out due to aliasing because of the
missing frequencies is refocused to the main reflectors, especially along the asymptots of the reflection
hyperbola. Missing frequencies are reconstructed, up to a scaling factor, and band gaps of up to 6Hz
get filled in very well.

Next, it is attempted in this work to give quantitative quality metrics, to make comparison between
seismic images easier and based on data, rather than subjective visual inspection. Treating migration
as a black box, several quality metrics have been devised for the migrated sections: correlation to the
ground truth, contrast within an image, average length of found lines, and local SNR. Contrast is not
a very good metric to compare between images as its average across an image is almost constant with
reduction percentage. The other parameters are good metrics and show a clear trend that the fewer
frequency components present in the shot records, the worse the quality of the final image. An increase
in deterioration of image quality is observed around 70% reduction, which is in correspondence with
the earlier found value for the shot records.
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Chapter 1

Introduction

The current standard of onshore seismic acquisitions for characterisation of oil and gas fields, as well
as geothermal reservoirs, is to plant tens of thousands of geophones in the ground, which are usually
analog devices that measure ground motion (Tellier and Lainé [2017]). This motion is induced by
a sound wave, generated by either exploding a piece of dynamite or vibrating a heavy truck, where
such an experiment is called a ‘shot’. Reflections of these waves on geological layer boundaries in the
Earth reflect in all directions, and the part reaching the surface is measured by the geophones. Usually
multiple shooting crews are used, so that when one group shoots the other(s) can move into position
for the next shot, minimising downtime (Vermeer [1998]). Shooting is done at many positions, in order
to optimise the areal coverage of the data (Meunier [2011]). The average area which is being explored
in a 3D onshore survey is 1137km2 (Visser [2017]), see table 1.1 for source and receiver parameters.
This acquisition method is very labour intensive and generates a very large amount of data. If the
same knowledge can be inferred from less data, the cost of a survey could go down, as well as increasing
safety by requiring less people in the field.

Whilst geophones themselves are analog devices, the limited time sampling rate and record length
restrict the number of available frequencies. The maximum frequency that can be measured is (2∆t)−1,
where ∆t is the time sampling of the signal and the factor of 2 arises from the Nyquist criterion. A
2ms sampling results in a maximum measurable frequency of 250Hz, which extends well beyond the
seismic bandwidth, which is approximately 5 to 100Hz (Society of Exploration Geophysicists [2018]).
Given a 6s signal length, this would contain 6/(0.002) = 3000 unique frequencies. Half of these are
positive and half are negative, and the value at a certain positive frequency is the complex conjugate
of its negative counterpart, ωk = ω∗−k, such that the amount of independent frequencies is half the
total.

Seismic data in a 3D world is measured in five dimensions, (xs, ys, xr, yr, t), i.e. source/receiver
location and time. Dense sampling in 3.5 of those dimensions is most commonly used (Dr Verschuur,
pers. comm.). Usually these are time and either (xr, ys), or (yr, xs), as in the cross-spread format
(fig. 1.1)(Vermeer [2002]), with the other source and receiver dimension being sparsely sampled, making
up the last half dimension. This format has a high inline density, and a low crossline density, with
the lines of sources and receivers perpendicular to one another. The three dense dimensions are thus

Table 1.1: Average acquisition sizes as found by Visser [2017]

Average [m]
Inline receiver separation 39

Crossline receiver separation 223
Inline source separation 41

Crossline source separation 145
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Figure 1.1: Red dots denote shot locations, blue ones show receiver position. From this figure it is clear
that each shot has an (x, y) location, as well as each receiver. Measurement is amplitude during the time on
each receiver location, thus the total amount of dimensions in an onshore acquisition is 5. Figure copied from
Schulte and Manthei [2014].

inline source direction, inline receiver direction and time. The other two dimensions, crossline source
and receiver direction, are sampled less dense (tab. 1.1). Efforts are made to reduce spatial sampling
in a smart way, through (semi-) random positioning of sources and receivers. If it is possible to
increase spatial coverage of receivers tremendously without increasing cost, the three densely sampled
dimensions would be 2D receiver location and time, thus the amount of shots could possibly go down.

Attempts to reduce the amount of required data have been made using compressive sensing methods
(Romberg [2009]), where the shots and receivers are randomly placed, in order to suppress aliasing
of the signal with respect to using a regular grid. Processing data acquired in this manner uses
a mathematical technique called ‘sparse inversion’. Data reduction is usually done for one of two
reasons: faster processing due to redundancy in the data, or a trade-off with quality due to sparse
sampling. In this thesis the latter will be looked at; it is attempted to retain image quality with less
data.

Sparse inversion techniques have been around since at least the 1980’s (e.g. Scales et al. [1988]).
These focus on sparsity in a transform domain to get high quality images with very few data available;
this thesis will focus on sparseness in the frequency domain, i.e. reduction in Fourier transformed time.
This sparseness can be enforced by changing the acquisition method, for example by emitting a single
frequency at the source instead of a sweep over a range of frequencies, or in processing by removing
frequencies to reduce calculation time. Sparse inversion can be employed in the data domain or on the
final image. Reconstruction in the image domain is possibly faster, since only a single image needs to
be processed. However, performing reconstruction already in the data domain will likely restore more
of the missing information, resulting in a better final image.

Emitting single-frequency signals can possibly use lower instantaneous energy than in conventional
seismology, since signals do not have to be pulsed and can thus be emitted at low energy, but over a
long time, keeping total energy constant. This would make it safer to do in e.g. built-up areas, where
high instantaneous energy can be detrimental to the structural integrity of buildings. The low-intensity
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Figure 1.2: Flowchart of the seismic processing chain. Adapted from de Lucena Rêgo et al. [2017]. The
discussed sparse inversion would enter the chain after the Processing step, before either Procedure.

signal would need to be emitted for a longer time than the usual 15s upsweep of a vibrating truck to
reach the required signal-to-noise ratio (SNR). Instead of measuring the range of discrete frequencies
as given by a geophone, it is proposed to reduce the number of frequency components present. This
opens up possibilities for new acquisition methods that can handle only a few frequency components
at the same time, but are cheap in deployment and usage, requiring less manual handling in the field,
and have dense areal coverage.

The seismic processing chain starts with pre-processing of the raw data as obtained from the geo-
phones, such that all meta-data like shot and receiver locations, trace numbers etc are correct (fig. 1.2).
Then initial filtering is done to e.g. equalise amplitudes and remove ground roll and multiple reflections.
Then the data can be filtered further using Normal Move Out (NMO) or Dip Move Out (DMO), and
either stacked and then migrated, or migrated and subsequently stacked. Stacking is done by adding
traces in a so-called common midpoint (CMP) gather, which is a data format where each trace has
the same midpoint between source and receiver. Migration is an imaging technique which attempts to
migrate all the reflections as obtained in a shot record to their correct reflection location in the subsur-
face image, i.e. this step is the one that builds the final image of the subsurface. Finally some image
processing filters such as gain manipulation can be performed, but those are skipped in this thesis.
The sparse inversion would enter this chain after the initial filtering, before stacking or migration.

Finally, quantification of image quality is required for a non-subjective comparison between methods.
In practice a qualitative comparison is often used by placing two images side-by-side, one using the
old processing methods and one using the discussed technique, or calculate the relative error between
the obtained and desired result. Qualitative statements such as ‘the reflector at depth x has a clear
higher contrast using the new method’ are of commonly used (e.g. (Kumar [2015]) paragraph 2.9). A
more quantitative measure of image quality is thus needed.

1.1 Research question
The main question of this thesis is:
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Is it possible to reduce the number of required frequencies in onshore seismology by
increasing the spatial density of the measurements?

The reason for this question is the potential of new acquisition methods based on sparse frequency
collection, which has not yet been researched in-depth for seismic purposes.

In order to know whether it is possible to reduce the amount of required frequencies, it is necessary
to know whether there is redundancy in the frequency spectrum of onshore seismological data. If there
is, knowing which frequencies carry the main load of information can help in selecting the optimal
frequencies to retain.

If indeed redundancy can be found in the data, and frequencies are removed from a shot, the full
frequency spectrum of the data needs to be reconstructed in order to use the present seismic processing
chain, see figure 1.2, or Verschuur [2006] for a full treaty.

Reconstruction is usually done in a transform domain, therefore it has to be investigated which
transformation will be best to use for the given case. Using the best transform we would like to know
how well the data can be reconstructed.

To answer this the following subquestions are posed:

1. Is there redundancy in the frequency domain of the data? Thus, can less frequencies be used
whilst still obtaining a ‘good’ result?

2. What frequency sampling is best if only a limited number of frequencies are to be measured?

3. Which transformation yields the best results for data with missing frequency components?

4. How well can we reconstruct the dense, complete data set from the sparse frequency data to
allow usage of the currently available processing chain?

5. What metrics can be used to determine image quality? Thus what is a ‘good’ result in quantit-
ative measures to be used under question 1.

1.2 Thesis outline
Before an attempt is made at reconstructing data with missing frequencies, it is necessary to determine
whether there is redundancy in the data (chapter 2). After this has been established, frequencies are
removed from shot records and an attempt is made to use the Fourier transformation to reconstruct
the missing frequencies (chapter 3). The Fourier transform does not take spatial continuity of reflection
events into account, thus instead the linear Radon transformation is used to reconstruct the aliased
shot records (chapter 4). The reconstructed shot records are migrated to a depth section, for which
several quality descriptors are presented (chapter 5). Finally the research subquestions as posed above
are answered and recommendations for further research are made (chapter 6).
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Chapter 2

Determination of redundancy in the
frequency spectrum

Before starting to remove frequencies from existing data and attempting reconstructing those missing
frequencies, it is useful to know whether there is any redundancy in the frequency spectrum of seismic
data. There are various techniques to determine whether a data set has redundancy, such as singular
value decomposition or wavelet analysis. The choice has been made to use Principle Component
Analysis (PCA), since that is a well-known general mathematical tool for dimensionality reduction of
a data set. It is implemented in most programming languages, and is it fast to use. In a set consisting
of N dimensions it finds the direction of maximum variance, and assigns that to the first principal
component (PC). The second largest variance, which has to be orthogonal to the first one, is assigned
as the second PC and so on until as many PCs are found as there are dimensions, explaining the total
variance in the data (Lay et al. [2016]).

If only a few PCs explain most of the total variance in the data, there is redundancy in the data, and
performing sparse reconstruction can possibly help reduce the amount of required data to represent
the same knowledge. If onshore seismic data has redundancy in its frequency domain it is likely that
choosing frequencies based on those components will give a good representation of the data with only
few frequencies.

In the book of Yilmaz et al. [1987], 40 shot records are presented, which have been collected by
various companies all around the world, both on- and offshore (see table A.1). This is considered to
be a standard, open data set in seismological research; hence it has been elected to use here as well.

First the data set will be discussed (sec. 2.1) and the methodology for data preparation is presented
(sec. 2.2). Then the results of PCA will be presented (sec. 2.3), finally the results are compared to a
real world data set, as well as a synthetic one (sec. 2.4).

2.1 Data description
All shot records from the Yilmaz data have been Fourier transformed to the (f, x) domain, and each
panel has been averaged over all traces to obtain a single-sided Fourier spectrum. Since all shot records
have a different number of time samples, rate of temporal sampling, amplitude scaling and amount
of traces the vertical axis label, amplitude, has no relevant meaning other than showing the relative
weight of frequencies with respect to one another per shot record (fig. 2.2).

In some panels, for instance 2 and 4 (fig. 2.1), it can be observed that above a certain frequency the
data looks very much like that of a smooth filter (fig. 2.2). In others, such as 5, nodes reminiscent of a
filter are present, but less obvious. Overall it can be said that the signals are band limited and usually
have a high frequency cut-off somewhere between 60 and 100Hz. Shots 2 and 4 appear to be shot with
a vibrating source, which is operated in a limited frequency range in the sweep, whereas shot 5 looks
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Figure 2.1: Unclipped shot records for the data from Yilmaz et al. [1987], the number on top of each panel
corresponds to the one in Yilmaz’ book. Since all shot records have a different number of time samples, rate
of temporal sampling, amplitude scaling and amount of traces, the colour scale is not the same for all panels.

to have been shot with an airgun, which is characterised by a natural decline of energy in the high
frequencies.

Some shots show a sharp notch at 60Hz, which is an indication that the data has already undergone
some processing, as this is a tell-tale sign that resonance of the electrical grid at 60Hz has been removed.
In others a large peak is visible around 180Hz, which can be a higher harmonic of the said electrical
grid resonance, which possibly was not removed because it lies far outside the bandwidth of interest
(c.f. fig. 2.3).
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Figure 2.2: Logarithmic single-sided Fourier spectra of the shot records given in fig. 2.1. The spectra were
obtained by horizontally averaging the Fourier transform of each panel. Note that the frequency spacing is
different for each panel, and the maximum frequency in set 5 is 250Hz, as opposed to 125Hz found in sets 2,
3, and 4, since this shot has been sampled at 2ms instead of 4ms. One can clearly see the band limitation of
onshore data shot using a vibroseis (2 and 4), and the slowly decaying amplitude of airgun data (3 and 5).
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Figure 2.3: Logarithmic single-sided Fourier spectra of several shot records. A sharp dip in amplitude can
be observed at 60Hz in sets 9 and 26, which is probably due to removal of the electrical grid resonance. In sets
21 and 35 a peak can be observed at 180Hz, which is likely a higher harmonic of the electrical grid resistance,
which has not been removed since it is far outside the bandwidth of interest.
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2.2 Data preparation
Since this thesis is concerned with onshore seismology, only the shots which have been made on land
are included in this section. Each shot has a time sampling of either 2 or 4ms, and a different total
measurement time, number of traces and amplitude scaling; so, first they are normalised. Each shot
is bandpass filtered to a range of 0-90Hz, and subsampled to 4ms, meaning that in shots having 2ms
sampling every second sample is thrown away, and subsequently zero-padded to the maximum time
extent found in the data (about 8s). The shots then have their amplitudes normalised to [−0.5, 0.5],
centring the data around 0 so as to remove the DC component. Each shot record is Fourier transformed
from (x, t) to (x, f). Since each shot has been normalised, all shots will now contain samples on the
same frequency components.

The full data contains 2175 frequency components, thus (2175 − 1)/2 = 1089 positive frequencies,
and there are 1893 traces in total. The data matrix of 1893× 1089 is ill-conditioned, therefore it has
been decided to perform an interpolation in the frequency domain to half-Hz. Because 4ms sampling
has been used in the data, thus recorded at 250Hz, it has a Nyquist frequency of 125Hz. This results
in a 1893 × 251 matrix, since there are 251 frequency components in [0, 0.5, 1, . . . , 124.5, 125]Hz This
matrix is not ill-conditioned and PCA can be performed on it.

Each principal component found in the PCA is an N dimensional vector, where N is the number of
frequencies used, 251 in this case. It is thus difficult to tell which frequency component is actually the
most important one. A method has been devised to decide which are the most important components:

• Each Pricipal Component (PC) has a given explained variance (see the first percentage on the
right of e.g. fig. 2.4). This serves as input to the algorithm, together with N , the number of
desired frequencies as output. Given these two inputs, each 1

N 100% of explained variance will
determine one frequency to output.

• If N = 100, each 1% of explained variance will give 1 frequency to keep. Looking at the top 5
PCs of the Yilmaz data set, we see that the first PC will determine 56 frequencies to keep, the
second 11, the third 7 etc., until a 100 frequencies will be determined.

• The first PC now gives the required amount of frequencies, based on absolute amplitude of each
frequency component within the PC.

• Every next PC has the required amount of frequencies selected based on amplitude again, after
which that list will be checked for duplicates with those already present in the output. E.g. if 5Hz
is the top component of PC2, but is already given by PC1, it is discarded, and the next highest
frequency in amplitude is selected. This continues until the required number of frequencies per
PC has been selected.

• At the end, a list of N unique frequencies will be obtained; these are considered to be the most
important ones.

2.3 Results
Figure 2.4 shows the first five principal components, which together explain almost 80% of the total
variance in the data. The 5-15Hz component can be explained by ground roll. Some 90% of the shot
energy goes into ground roll, which propagates at a low velocity and frequency (Schlumberger Oilfield
Glossary [2018]). Furthermore, this shows that at least 80% of the energy is contained in frequencies
below 60Hz, which is just halfway the seismic bandwidth. This is supported by looking at the second
panel of figure 2.8, where it is clear that most energy is concentrated between 5 and 60Hz. Given that
so much of the total variance is explained by so few components, redundancy can be assumed for this
data set. Since the used set is widely considered as an open standard, this conclusion will be extended
to onshore seismic data in general.
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Figure 2.4: Top five principal components of the frequencies contained in the Yilmaz dataset. Each line
is normalised to [−1, 1]. The components are plotted in decreasing order of importance, the first percentage
mentioned is the percentage of data explained by that component, the second percentage is the cumulative
sum of explained percentages by that component and all above.

2.4 Discussion
The results given in figure 2.4 are compared to an onshore data set from Poland shot with a vibrating
source (Geofizyka Torun S.A, Poland [2005]), containing 251 shots with 284 traces each (fig. 2.5).
Receiver separation is 25m, time sampling is 500Hz, with a total record length of 3s. The differences
between the results of PCA on the Yilmaz data and this set show immediately the characteristics of
dynamite and vibroseis as a source (fig. 2.6). Some of the shots in the Yilmaz data have been made
with a dynamite source, localising a lot of energy at low frequencies, whereas the data from Poland
have been shot with a vibroseis, equally spreading the energy over the full bandwidth.

The same has been done for the synthetic data, which will be introduced in section 4.4. It can be
seen that the PCA of this synthetic data, fig. 2.7 is very clean and are very smooth. The data from
Poland also has this same structure, albeit less smooth and with more noise, but this is as expected
since the noise component of the data has not yet been removed. Even the principal components of
the Yilmaz data are somewhat reminiscent of having the same shape, but even worse than those of the
Poland set. Presumably this is because some shots have used dynamite instead of a vibrating source,
as well as each shot being done by a different company in a different location. Since the shots are old,
equipement was probably less sensitive than nowadays and more prone to noise.

For the synthetic model data have been reduced to contain only the 20% most important frequencies
as given by its corresponding PCA (fig. 2.7). As can be seen in figure 2.8 more than half of the frequency
bandwidth of the model, 60 to 125Hz, already contains little to no data, so it is easily understood that
the central part of the 5-60Hz data lobe is retained, 14 to 37Hz with half-integer sampling in this case.
The shot record after removing frequencies is slightly aliased, as can be seen around zero-offset in the
rightmost panel near the apices of the hyperbola.
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Figure 2.5: Brute stack of line 001 by Geofizyka Torun S.A, Poland [2005]. Image obtained from the SEG
Wiki.
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Figure 2.6: Top five principal components of the frequencies contained in a collection of 251 onshore shots
in Poland. Each line is normalised to [−1, 1]. The components are plotted in decreasing order of importance,
the first percentage mentioned is the percentage of data explained by that component, the second percentage
is the cumulative sum of explained percentages by that component and all above.
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Figure 2.7: Top five principal components of the frequencies contained in a collection of 361 synthetic shots
of the model presented in the next section. Each line is normalised to [−1, 1]. The components are plotted
in decreasing order of importance, the first percentage mentioned is the percentage of data explained by that
component, the second percentage is the cumulative sum of explained percentages by that component and all
above. An example shot record of this set is presented in figure 4.2, left panel.
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Figure 2.8: Shot record (left panel) with its associated Fourier transform (second panel). Only 20% of the
frequencies have been kept, with the chosen frequencies given by the PCA (third panel), which shows a slightly
aliased shot record (right panel).
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Figure 2.9: Migrated model when only the top 20% of frequencies as given by fig. 2.8 are retained. The
synthetic model will be introduced in section 4.4; for now it suffices to say that all important features are still
visible.
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Chapter 3

Fourier reconstruction of missing
spatial samples

Given the results in the previous chapter, it has been established that there is redundancy in the
frequency spectrum of seismic data. Sparse reconstruction may thus help to retrieve information on
the missing frequencies. Real-world data will always have defects, such as a broken receiver, missing
data due to the need to go around buildings or natural obstacles etc. (fig. 3.1). Reconstruction can
help to fill in these gaps or mistakes in the data.

There are three main groups of reconstruction techniques: based on transformation, filtering or
wavefield operators (Zwartjes [2005]).

• Transformation based reconstruction uses the sparseness in the transform domain and finds
the parameters which best fit the data under given constrains. Usually these constraints are
concerned with noise reduction, energy focussing and making the output grid uniformly sampled.
The parameters in the transform domain are iteratively obtained via least-squares inversion or
a solver like Conjugate Gradients.

• Filter based methods try to interpolate over the missing or wrong data using an interpolating
filter. Prediction-error filters can fill gaps in uniformly sampled data sets (Fomel [2000]).

• Wavefield operator based reconstruction use the Kirchhoff integral operator. In numerical imple-
mentation the integrals are replaced by summation, which relies on constructive and destructive
interference. These integrals are flexible and allow for any sampling geometry, but artefacts are
introduced when sampling is coarse or non-uniform, due to incomplete destructive interference.

This thesis will be restricted to transformation based methods. Transformations are easily im-
plemented numerically, and can carry a wider range of constraints than a filter interpolation could
encompass. Due to the redundancy being in the frequency domain, the first transformation which
will be investigated is the Fourier transform. Zwartjes [2005] wrote a dissertation on this subject,
which will be followed here. After introducing the Fourier transform and conjugate gradient scheme
an attempt will be made to recover the results of Zwartjes.

Fourier reconstruction is geared towards reconstructing non-uniform spatial sampling, whereas the
present case is non-uniform sampling in the frequency domain. After reproducing results from Zwartjes
[2005], it will be attempted to alter the reconstruction to work in the frequency domain instead.

In this chapter the following mathematical notation will be used: non-bold letters denote scalars,
e.g. α, β, bold lowercase letters denote vectors, e.g. p,d, and bold uppercase letters denote matrices,
e.g. A,S�.

First the mathematics of the Fourier transform will be discussed, as well as the conjugate gradient
method (sec. 3.1), followed by results (sec. 3.2) and a discussion (sec. 3.3).
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Figure 3.1: Illustration of the spatial sampling problem. The tree on the left blocks a receiver (triangles)
from being properly aligned on the grid. Fourier reconstruction virtually moves the receiver in processing to
the correctly aligned position, see right panel.

3.1 Reconstruction in the Fourier domain
Missing and irregular data can be reconstructed using an interpolation method in the Fourier domain.
In this section first the general outline of the algorithm is given for the simple case: one dimension on
a regular grid, which is subsequently extended to irregular grids and finally to two dimensions.

3.1.1 One dimension, regular grid
A discrete one dimensional signal is represented by p[xn], which may be an amplitude, given in Volt,
Pascal or any other unit, measured at locations xn. First a regular grid is considered, i.e. the locations
n ∈ [0 . . . N − 1] are located on n∆x, where ∆x is a constant.

We define a number of desired Fourier components, M , where M = N for a regularly sampled
case without missing samples. The wave number is given by k, thus the Fourier transformed signal
is given by p̃[km], where in this case we use again a regular grid, thus ∆k = 2π/(N∆x) and m ∈
[−M/2 . . .M/2− 1] for M even and m ∈ [−(M − 1)/2 . . . (M − 1)/2] for M odd.

We define two inverse Fourier transform matrices, F and A. A transforms the data from Fourier
domain to the measurement grid xn; F transforms the found frequency components back to a regular
grid. In the case where N = M and both the input and output grid are equal, these two are equal
matrices are equal.

Fnm = e−im∆k n∆x (3.1)

Anm = ∆k
2π e

−im∆k xn . (3.2)

For minimisation purposes we then define a weighting matrix W, whose use will become apparent
when the measurement grid is non-regular and/or samples are missing:

Wnn = N∆xn , (3.3)
where ∆xn in this case is constant.

When solving ill=posed problems, or to prevent overfitting of a solution, a mathematical problem
is often constrained with a damping parameter. This is called regularisation. To regularise the CG
scheme we introduce a regularisation parameter λ = c2/σ2(p̃0), where c is a constant which can be set
manually to control the amount of regularisation. σ2(p̃0) is the variance of the Fourier transform of
the initial signal:

p̃0 = AHp , (3.4)
where H denotes the Hermitian conjugate.
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3.1.2 Conjugate gradient scheme
We now present a CG scheme based on Zwartjes [2005], which is modified according to Shewchuk
[1994]. CG schemes are used to iteratively approximate an inverse solution, in case the inverse model
itself is too large to be handled easily (Shewchuk [1994]). Another benefit of CG over direct inversion is
that that would need to account for every little detail in the data, including all the noise, whereas CG
minimises an objective function under some constraint. This thus allows for a ‘good enough’ solution,
as opposed to the exact one. Noise can be discarded under the constraint, leaving a much cleaner
model as opposed to what would be retreived using direct inversion. Non-linear constraints cannot be
inverted exactly, since their matrix representation is based on the data, thus changing the model each
calculation step. The objective function we strive to solve is:

J = 1
c2
‖W1/2(p−Ap̃)‖22, (3.5)

which is equation 2.3.14 from Zwartjes [2005]. c is some scalar which damps the function.
We initialise the scheme with the initial residual, and set the initial search direction equal to this:

r0 = AHp− (AHWA− λI)p̃0

d0 = r0;
i = 1;

where I is the identity matrix, ri the residual at iteration i and di the search direction at iteration i.
The

Finally we need a maximum number of iterations and a threshold for the residual below which the
algorithm stops.

The CG scheme iteratively steps towards solution with a step size α, then the new, reduced, residual
is calculated. The next search direction must be orthogonal to the previous ones by definition; the
new change of direction is given by β.

while i < imax & ‖rk‖
‖r0‖

> rthreshold

α = rHk rk
dHk (AHWA + λI)dk

p̃k+1 = p̃k + αdk
rk+1 = rk − α(AHWA + λI)dk

β =
rHk+1rk+1

rHk rk
dk+1 = rk+1 + βdk
i = i+ 1 .

This scheme is iterated over until either the residual, ‖rk‖
‖r0‖ , is below our pre-set threshold. This

means the solution is good enough for our purposes. Or the scheme stops because the maximum
number of allowed iterations has been reached.

3.1.3 Irregular grid
When the sampling grid is non-uniform, for example because of missing samples or varying positions,
we can use different grids in the measurement and output domains with proper windowing of the
Fourier coefficients. The final solution should be obtained on a regular grid, thus that is different from
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the initial input grid. The same CG scheme as outlined in section 3.1.2 can then be used then to
reconstruct the signal.

Let p[xn] be our sampling vector, this time with xn − xn+1 not being constant. We also define a
regular grid with constant ∆xr, with positions xn,r, on which we want to have our interpolated result.
Furthermore the number of Fourier coefficients, M , will not be equal to the number of measurement
locations, N , but rather equal to fNr, with Nr the number of points on the regular grid and f an
oversampling factor. ∆k is as given for the regular case, provided we use ∆xr; m is equal to the
definition above. A is equal to the earlier use, F uses the regular grid ∆xr. This makes sense as AH

transforms our irregular grid measurement to the regular Fourier domain grid, and F transforms from
the Fourier domain to the regular output grid xn,r. This means as well that A and F will no longer
be square matrices. The weight matrix W changes:

Wnn = N ∗ Nr∆xr∑
n ∆xn

∆xn (3.6)

where ∆xn is given by (xn+1 − xn−1)/2. The division is to normalise the weights.
We use an oversampling factor f = 2, which is optimal according to Duijndam and Schonewille

[1999]. We might end up aliasing our Fourier transformed vector p̃[km]; hence, we use a window
on that to suppress this. The current implementation allows for the following window functions:
Hamming, Blackman, Tukey, Exponential, Gaussian with σ = 0.3, and rectangular with edges Nr/2.
The CG algorithm can then be used in the same way to solve for the Fourier transformed solution
vector p̃[km], which can be transformed to the regular output domain via F:

p[xn,r] = Fp̃[km] (3.7)

3.1.4 2D Fourier transform
The above algorithm can be extended from one dimension to multiple dimensions; the 2D case will be
discussed here.

Consider a two dimensional signal p[xn, yn] sampled at n locations on an [x, y] grid. The locations
are not necessarily equally spaced in both directions, i.e. ∆xn 6= ∆yn 6= constant. The signal p is
stored in a 2D manner, whereas an array is required for further processing. This can be realised by
storing the matrix in lexicographic, i.e. column major, order. This means a matrix A will be stored
as follows:

A =
[
a b
c d

]
→


a
c
b
d


This enables us to use an array for p, which defines a 2D function given accompanying arrays for the

x, y coordinates. Additionally we create a regular grid in the Fourier space with components [mx,my],
which is also stored in lexicographic order, labelled with index m for the both of them, where the
Fourier domain again is oversampled by a factor of f : Mx = fNx, and My = fNy.

The equations for F and A (eqs. 3.1, 3.2) can then be written for the two dimensional case:

Fnm = e(−i[mx ∆kx n∆xr+my ∆ky n∆yr]) (3.8)

Anm = ∆kx∆ky
4π2 e(−i[mx ∆kx xn+my ∆ky yn]) (3.9)

where each unique x, y pair is denoted by a single n and each unique mx,my pair by a single m.
The CG algorithm as described above can now be used with the multi-dimensional definitions.
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Figure 3.2: Top figure: original signal (blue), reconstructed signal (red) using the Fourier-reconstruction
method with a rectangular window in the frequency domain. Bottom row left: unwindowed Fourier spectrum
of the original signal, middle: rectangular window, right: the windowed Fourier spectrum.

3.2 Results
The algorithm presented in section 3.1 is tested by using a signal defined by:

p[xn] = sin xn7 + sin xn13 + sin xn23 ,

where xn has been created as ∆x ∗ n + rand, where ∆x is 1 initially, n runs from 0 to N − 1 where
N = 600 and rand is a random number between 0 and 0.5, so as to make the location random. Next,
10 percent of the points have been randomly removed from the signal to create gaps. This means
that N will be changed to 540 after removing the points. The output grid is desired to be regular, so
Nr = 600.

The rectangular window as proposed by Zwartjes [2005] in paragraph 2.2.3, see figure 3.2, converges
in 26 iterations and does a good job when there are no missing samples. When gaps in the initial
data occur, however, the overshoot is quite large, and this cannot be suppressed by increasing the
regularisation parameter λ. When looking at the Fourier spectrum it can be seen that there are still
quite a few high frequency components in the data which constitute noise and aliasing, even after
windowing.

Using an exponential window, see figure 3.3, the CG scheme also converges in 26 iterations, and does
a better job than the rectangular window in the gaps, at the cost of under-estimating the local minima
and maxima of the signal. Again the same Fourier spectrum can be observed on the lower left of the
figure, with its central peak consisting of the three frequencies of the input signal, in the middle and
aliasing at the far ends of the spectrum. Using a sharply peaked exponential window, high frequencies
are strongly suppressed, generating a much smoother signal than when using the rectangular window.
This performs well for the signal at hand, since only very low frequencies are present.

Other windows, such as the Tukey, Blackman, Hamming and Gaussian windows have also been
implemented and show behaviour somewhere between these two extreme cases. The optimal window
to be used for a given data set will depend on the frequency content of the original signal.
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Figure 3.3: Top figure: original signal (blue), reconstructed signal (red) using the Fourier-reconstruction
method with an exponential window in the frequency domain. Bottom row left: unwindowed Fourier spectrum
of the original signal, middle: exponential window, right: the windowed Fourier spectrum.

3.3 Discussion
The changes between Zwartjes’ original algorithm and the one presented here are the definitions of
rk+1 = rk − α(AHWA + λI)p̃k and dk+1 = −rk+1 + βdk. Zwartjes’ algorithm returns a fit of
comparable quality to the one used here, but for N = 450 and M = 1199 the algorithm presented
here terminates after 7 iterations, and does not converge when using Zwartjes’ algorithm, all other
parameters being equal. A variability of 1

2∆x has been used for all points, an amplitude variation of
30% of the maximum amplitude in the data and 25% of the points have been removed for both cases.

Besides these changes, Zwartjes [2005] appears to be wrong in their definition of α, since they divide
an l2-norm by a squared H norm. This means that α now has a dimension of 1/[d], where [d] is the
dimension of d, which is 1/Fourier. Subsequently the calculations of zk and rk are physically incorrect,
since they both have dimensions of the Fourier domain, thus adding a dimensionless quantity to one
with a dimension.

Whilst Zwartjes’ algorithm does give a reasonable result, see figure 3.5, it ran for the maximally
allotted 1, 000 iterations, and tests have been conducted with a larger number of iterations and the
algorithm keeps on iterating. This means that even though the CG scheme produces correct output,
the iterations themselves do not converge. It has been noted that the result is comparable with the
implementation according to Shewchuck after the number of iterations Shewchuck’s version needs. The
stopping criterion seems to go wrong due to the minus sign in the definition of dk+1, since this reverses
the search direction each time. Subsequently updating rk+1 using pk instead of dk makes the residue
flip between positive and negative.

Matrices A and F grow very large, very fast in a multidimensional case. For instance, consider
an x, y grid containing 100 points in both directions. This results in N = 102 ∗ 102 = 104, M =
2 · 102 ∗ 2 · 102 = 4 · 104 and thus A and F having 104 ∗ 4 · 104 = 4 · 108 elements already. A single
shot record can consist of several hundred to thousand traces, each with 2,000 time samples. This
would result in the matrices having up to 4 · 1012 elements. Storing these as complex double precision
values would require 58TB of RAM. Therefore they should be implemented as functions as opposed
to matrices.Having them as evaluable functions, such as a non-uniform FFT, can solve for the Fourier
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Figure 3.4: Top figure: original signal (blue), reconstructed signal (red) using the algorithm presented in
section 3.1.2. Bottom row left: unwindowed Fourier spectrum of the original signal, middle: rectangular
window, right: the windowed Fourier spectrum.

transform from a non-uniformly sampled input p to a regularly sampled frequency vector p̃ directly.
This can improve the calculation efficiency from O(n2) to O(n logn), due to better implementation of
FFT compared to the naive implementation, which is used here for A and F. As well as a function
requiring almost no memory to store, thus RAM requirements go down considerably.

This reconstruction allows for 2D non-uniform grids to be aligned (fig. 3.1), thus (x,y, t), per scalar
time and thus it operates independently on each time step. It is imperative that continuity across all
three dimensions is taken into account. Also it does not keep reflection events which are connected in
the space-time domain connected in the Fourier domain. This connection is of paramount importance
to this work, since the reduced number of frequencies present in the data should be compensated by
a much denser sampling in the spatial domain. Measuring the wavefield using a different acquisition
method than the current ones, as explained in chapter 1, would increase spatial coverage tremendously.
It is hoped that by increasing sampling density in both receiver coordinates, sampling density in the
frequency domain can go down. Another transformation, which does take spatial continuity into
account, is thus required. One of the transformations which does that is the Radon transform (Radon
[1917]).
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Figure 3.5: Top figure: original signal (blue), reconstructed signal (red) using the algorithm by Zwartjes
(2005). Bottom row left: unwindowed Fourier spectrum of the original signal, middle: exponential window,
right: the windowed Fourier spectrum.
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Chapter 4

Radon reconstruction of missing
frequencies

In order to reconstruct data with missing frequency components, the Fourier transformation was found
to be insufficient in taking spatial connectivity into account (ch. 3). A linear Radon transform will thus
be used (Radon [1917]). The Radon transform keeps connected points in time-space connected in the
transform domain, i.e. a continuous reflection event in a seismic record will show up as a continuous
event when transformed to the Radon domain as well. This means that spatial continuity factors into
the transform, providing information on the image beyond what a Fourier transform would do.

The linear Radon transform will be iteratively applied to the data, in a Conjugate Gradient (CG)
scheme. CG schemes are used to approximate an inverse solution iteratively, in case the model itself
is too large to be inverted easily (Shewchuk [1994]). Another benefit of CG over direct inversion
is that direct inversion would need to account for every little detail in the data, including all the
noise, whereas CG minimises an objective function under some constraint. This thus allows for a
‘good enough’ solution, as opposed to the exact one. Noise can be discarded under the constraint,
leaving a much cleaner model as opposed to what would be retrieved using direct inversion. Non-linear
constraints cannot be inverted exactly, since their matrix representation is based on the data, thus
changing the model in each calculation step.

First the Radon transform is presented (sec. 4.1), then the problem is posed in mathematical form
(sec. 4.2), followed by introduction of the iterative solver techniques (sec. 4.3). The model used for
testing is introduced (sec. 4.4) and finally results of the procedure are presented and discussed (sec. 4.5
and 4.6). The same notation convention as in chapter 3 will be used.

4.1 Radon Transform
The Radon transform is a transformation of a data panel where one sums the energy along a specified
trajectory through the panel. The generic Radon transform U(q, τ) is given by (Cao et al. [2003]):

U(q, τ) =
∫ ∞
−∞

D(x, t = τ + qφ(x)) dx , (4.1)

where D(x, t) is the initial shot record in space-time, τ the intercept time in seconds, q the slope or
curvature and φ(x) the path to integrate the energy over. In seismology most often the slant-stack,
or τ, p transform is used on CMP gathers (Verschuur [2006], chapter 2). This uses a linear path, i.e.
φ(x) = x, thus equation 4.1 results in:

U(p, τ) =
∫ ∞
−∞

D(x, t = τ + px) dx , (4.2)
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Figure 4.1: Mock-up of the linear Radon transformation. The hyperbola in (t, x) spanned by points 1 to 5 is
mapped along tangent lines to an ellipse in (τ, Sx), with τ the intercept time of the line and Sx the slowness.
Image courtesy of Dr Verschuur (Verschuur [2006]).

where p is the slowness in s/m, and can be seen as the angle along which the summation takes place,
see fig. 4.1 for an illustration.

When calculating this transform directly from the (x, t) domain to the (τ, p) domain, calculations
are slow and imprecise, since interpolation is necessary. Both problems can be solved by going through
the space-frequency, (x, ω), domain by using the Fourier transformation F :

F{U(τ, p)} = U(p, ω) =
∞x

−∞
D(x, τ + px)e−iωτ dxdτ , (4.3)

or
∞x

−∞
D(x, τ ′)e−iω(τ ′−px) dxdτ ′ =

∫ ∞
−∞

D(x, ω)eiωpx dx , (4.4)

where the substitution τ ′ = τ + px has been made from the first to the second line.
Seismic data is discretised by nature, even though geophones are analog devices, due to the storage

on disks. This means that eq. (4.4) will have to be discretised as well; resulting in the following discrete
transform relations:

U(pm, ω) ≈
N∑
n=1

D(xn, ω)eiωxnpm (4.5)

D(xn, ω) ≈
M∑
m=1

U(pm, ω)e−iωxnpm . (4.6)

Equations (4.5) and (4.6) can be evaluated very quickly through usage of FFT packages, and a simple
loop over all desired values of p and summing over x gives the Fourier transformed linear Radon
Transform, which can be inverse-FFTed to obtain the τ, p transform itself (fig. 4.2).
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Figure 4.2: The linear Radon transform of a shot record (left panel). The second panel shows the temporal
Fourier transform of the initial data, the third panel shows the Fourier transformed Radon transformation; the
fourth panel shows the Radon transform in the τ, p domain. Amplitudes of the various plots are irrelevant,
the shape and axes labels are what matters for this showcase example, hence it has been elected not to show
a colour bar.

4.2 Mathematical problem statement
A two dimensional shot record P(x, t) is usually presented in a 2D manner, such as an image, whereas
an array is required for further processing. This can be realised by storing the data in lexicographic,
i.e. column major, order. Thus the data in matrix P will be stored as follows:

P =
[
a b
c d

]
→


a
c
b
d

 = p .

This enables us to use an array for the vector p. The same column major storage is used for all
vectors in this section.

The problem we strive to solve can now be posed as:

Ap̃ = p , (4.7)
where p is our measured data, i.e. the shot record in the (x, t) domain, A is the conjugate Linear
Radon transform (eq. 4.6), i.e. it transforms the shot from the (τ, p) domain back to (x, t), and finally
p̃ contains the desired Radon coefficients of the shot under certain conditions, such as minimal energy
spread, reflector continuity etc. The usual way of solving this would be to simply invert A:

p̃ = A−1p , (4.8)
but this is seldom possible since A is rarely a square matrix, and usually poorly conditioned. The
textbook way of solving this, is to left-multiply eq. 4.7 with the Hermitian conjugate of A. Since AHA
is square and invertible, we have:

AHAp̃ = AHp, (4.9)
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Finally a preconditioner, M, is applied to make computation of the final solution easier and more
robust, as well as to contain more stringent conditions on the model space:

M−1AHAp̃ = M−1AHp . (4.10)

M must be self-adjoint and the closer M2 is to AHA, the faster convergence will be. To make
calculation easier one additional step is taken:

M−1AHAM−1z = M−1AHp (4.11)
z = Mp̃ , (4.12)

since the M−1AHAM−1 is sparse and symmetric and can thus be evaluated very fast, at the cost of
having to perform p̃ = M−1z once at the end. Various preconditioners based on norms are given in
table 4.1, where C−1/2

x = M−1.

Table 4.1: Several penalty functions, ρ(x), with corresponding influence function ϕ(x) = ∂ρ(x)
∂x

and model
weight C−1

x = ϕ(x)
x

. We see that a determines the type of norm used. Based on Zwartjes [2005].

Norm type ρ(x) ϕ(x) = ∂ρ(x)
∂x C−1

x = ϕ(x)
x

l1,2
√

1 + x2 x(1 + x2)−1/2 (1 + x2)−1/2

Cauchy 1
2 ln(1 + x2) x(1 + x2)−1 (1 + x2)−1

Geman-McClure q
2

x2

1+x2 x(1 + x2)−2 (1 + x2)−2

Generalised function 1
2(1−a) (x2 + 1)1−a x(1 + x2)−a (1 + x2)−a

4.3 Iterative solvers
Inversion of M−1AHAM−1 is, even though possible, difficult since it is usually a large matrix, and
often poorly conditioned. This is circumvented by using a CG scheme. Since CG requires a positive-
definite A, the scheme has to be changed to CGNE: Conjugate Gradient for the Normal Equations,
also called CGLS: Conjugate Gradient for Least Squares (Kaipio and Somersalo [2005]). We strive to
minimise the following objective function:

J = ‖p−Ap̃‖22 +
∥∥∥Cp

−1/2p̃
∥∥∥2

2
(4.13)

Cpjj =
((

AHpj
)∗AHpj + σ2

AH p

)a
, (4.14)

where the preconditioner is given as M−1 = C
−1/2
p̃i,jj

; the subscript jj denotes that this is a diagonal
matrix which is calculated for each entry j of the vector p̃ (Zwartjes [2005]). σ2

AH p is the variance of
the Radon transformed input, and a controls the type of norm as presented in table 4.1. The CGNE
scheme to solve equation (4.13) can be implemented as follows:
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k = 0
z0 = 0
r0 = C−1/2

pjj
AHp

d0 = r0

t0 = p

while rHk rk
rH0 r0

> ε, k ≤ kmax

α = rHk rk
dHk C−1/2

pjj AHF−1S�FAC−1/2
pjj dk + dHk λIdk

zk+1 = zk + αdk
tk+1 = tk − αF−1S�FAC−1/2

pjj
dk

rk+1 = C−1/2
pjj

AHtk+1 + αλIdk

β =
rHk+1rk+1

rHk rk
dk+1 = rk+1 + βdk
k = k + 1

p̃ = C−1/2
pjj

zk

where α is the step size to take in the direction prescribed by d and β gives the change of direction.
F (−1) is the forward (inverse) Fourier transform, which lets the sampling operator S� select the
frequencies that are present in the data. λ, is the regularisation parameter, I the identity matrix. The
scheme should end based on the squared norm, rHk rk being sufficiently small, i.e. the residual will be
small and thus z will be very close to the true solution.
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Figure 4.3: Flowchart of the CGNE algorithm as presented in sec. 4.3.
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4.4 Model
In this section a synthetic data example is discussed. The model was kindly provided by Dr Ir Ver-
schuur, and is presented in figure 4.4.

The model is a grid of 5400 by 1250m, (x, z), using a grid size of 5 × 5m, containing velocity and
density at each grid point. Using an acoustic finite difference modelling, second order in time, fourth
order in space, staggered grid, 361 shots into 361 receivers have been modelled along the profile, with
source and receiver separation both at 15m. Shot numbers run from 1 to 361, are shot from left to right
through the model. Shot 1 thus has offsets 0 to 5400m, shot 181 -2700 to 2700m, and shot 361 -5400
to 0m. The model contains eleven layers, their P-wave velocities and densities are given in table 4.2.
The layer with 3500m/s is considered a “salt layer”, which is the thick, black layer in the middle of
the model. The layer underneath that is the reservoir proper.
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Figure 4.4: Velocity model used in the rest of the thesis. Colour denotes the velocity; white is 1500m/s up
to black, 3500m/s.
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Table 4.2: P-wave velocities and densities of the synthetic model. Layers are from top to bottom in the model

P-wave velocity [m/s] Density [kg/m3]
1500 1000
2000 1800
2300 2000
2600 2300
3500 2500
3150 2600
3250 2420
2700 2800
3400 3200
2900 2900
3200 3000

4.5 Results
As can be seen in figure 4.6 the reconstruction removes most of the aliasing. Figure 4.5 clearly shows
that reconstruction is rather good along the asymptots of the main reflectors, but the region around zero
offset gets reconstructed quite badly, which is not surprising given that a linear Radon transformation
has been used. The problem with a linear transformation on a hyperbolic shape is that the apex of
the hyperbola is mapped to a large ellipsoid in the Radon domain (fig. 4.1). The asymptots, on the
other hand, are almost straight lines, so they map to nearly a point in the Radon domain, making
reconstruction easier. This is reinforced by looking at traces along the asymptot (fig. 4.8a) and at
zero offset (fig. 4.8b). The trace along the asymptot shows lower amplitudes of the aliasing, especially
along 0.6-1.2s TWT, whereas for the zero offset the trace is almost untouched by the reconstruction.

Reconstruction fills in the missing frequencies, albeit with a lower amplitude (fig. 4.9), and increases
amplitudes at high frequencies, which is undesired. A bandpass filter to cut out frequencies above
some 70Hz might be of help to reduce this effect.

For each shot record a Q-factor has been calculated as the sum of the squared difference between
the original and reconstructed shot, normalised with the squared sum of the original shot record:

Q =
∑

(p− prec)2∑
p2 . (4.15)

For several reconstruction parameters this has been calculated. The mean and variance of the Q-
factors of each data set for all shots are presented in table 4.3, the accompanying plot can be found in
figure 4.7. It can be observed that up to 30% reduction the Q-factors are almost equal, with a clear
tendency to be lower for the central shot records. This means that the reconstruction of far offsets
is worse than that of near ones. As the reduction percentage goes up, so does the Q-factor, with
increasingly bigger steps after 70% reduction. Variance shows the same trend, see table 4.3, which
suggests that at high reduction percentages performance of the reconstruction is highly dependent on
the frequencies chosen. This confirms the findings of chapter 2 that indeed care has to be taken when
choosing frequencies.

Finally, a test has been done with a single band gap. Band gaps of 3, 6, 9, 12, 15, 18, and 21Hz width
centred around 30Hz have been created in the frequency domain, after which 25 iterations using the
Cauchy norm have been performed (fig. 4.10). It can be seen that small gaps, especially the one of
3Hz, show very good reconstruction in terms of shape, even at zero offset where the problems of the
linear Radon transform are largest due to the highly non-linear behaviour of hyperbolas near their
apex. The larger the gap, the worse the reconstruction performs the infill. Deterioration starts with
the zero offset, and then progresses from the far offset towards the near offset. The overall shape is
reconstructed rather well, but the amplitudes are decreased. The 3Hz gap already shows decreased
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Table 4.3: Q-factor mean and variance per data set as calculated from (4.15)

Reduction % Norm Iterations Mean Variance
10 Cauchy 10 0.1158 0.0009
20 Cauchy 10 0.1233 0.0009
30 Cauchy 10 0.1383 0.0012
40 Cauchy 10 0.1726 0.0019
50 Cauchy 10 0.2205 0.0034
60 Cauchy 10 0.2981 0.0059
70 Cauchy 10 0.4029 0.0074
80 Cauchy 10 0.5590 0.0109
90 Cauchy 10 0.7887 0.0097
50 Cauchy 25 0.2169 0.0040
50 l1,2 25 0.3624 0.0040

amplitude in the gap, and the deterioration is mainly an even greater lack of amplitude.
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Figure 4.5: The left panel shows the original, unaliased shot record. The second panel shows the shot record
after removing 30% of its frequencies at random. The third panel shows the result after reconstruction with
15 steps. Colour runs in [−12; 12] in all panels. a = 1, kmax = 15, λ = 0. This clearly shows that the energy
spread due to spectral leakage as present when selecting a subset of frequencies is moved back to the main
reflecting peaks as much as possible, although not all aliasing is surpressed, especially around x = 0.
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Difference with aliased input
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Figure 4.6: The left panel shows the difference between the reconstruction and unaliased original, i.e. panels
1 and 3 of figure 4.5. The right panel shows the difference between the reconstruction and aliased original,
i.e. panels 2 and 3 of figure 4.5. Colour scale is decreased tenfold to [−1.2; 1.2]. Reconstruction does remove
most of the aliasing, as evidenced by the right panel, but does leave a lot of spread out energy around the zero
offset.
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Figure 4.7: Each line contains the 25-point moving average of the Q factors per shot record for the given
reduction parameters of table 4.3. For low reduction percentages the Q factors are almost equal, and lower in
the centre, getting progressively higher with increasing reduction. The moving average has been used to reduce
visual variance of the lines due to each shot having different frequency components removed, whilst preserving
the general trend of each line.
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Figure 4.8: Cut-out of trace 30 (offset -2250m) and 180 (zero offset) out of figure 4.5. The left three panels
are trace 30 out of the unaliased input, aliased input and reconstructed result; the right three are the same
for trace 180. Between 0 and 1.2s TWT the amplitude on trace 30 goes down, which it should because this
is energy before the first arrival; amplitude on trace 180 is almost unchanged after reconstruction, confirming
poor reconstruction.
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Figure 4.9: The left panel shows the frequency spectrum of the original of figure 4.5. The middle panel shows
the frequency spectrum after removing frequencies, where frequencies have been removed. Horizontal stripes
are visible on the missing frequencies since they have been set to zero amplitude. The reconstruction, given in
the right panel, of missing frequencies is quite good, although some energy smearing is visible. Colour scale is
the same for all panels.
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Figure 4.10: Plots of the frequency spectra of the central shot reconstructed with the Cauchy norm and 25
iterations. The title of each subplot mentions the band gap size, which is symmetric around 30Hz; the top left
plot shows the original. Colour scale has been kept constant for each plot. Reconstruction gets progressively
worse the larger the band gap, starting at zero offset and then at large offset, growing inwards.
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4.6 Discussion
Aliases of the main reflectors are clearly visible in the central panel of fig. 4.11, which are removed
nicely in the reconstruction, albeit at a cost of removing the weak reflectors with apex around 0.8s
TWT. This shows that weighting based on signal amplitude can be problematic if spectral noise of
large peaks is stronger than the amplitude of weak reflectors, such as the reservoir below the salt dome.

Reconstruction using the l1.2 norm is rather slow, in the sense that a lot of iterations are necessary
to remove the aliases, especially around zero offset. A benefit of using this norm would be that almost
no artefacts get introduced in the data (fig. 4.12). The Cauchy norm is a lot faster compared to the
l1,2, but at the price of small artefacts around zero offset and small time. Geman-McClure, finally, is
far too aggressive. It removes the aliasing almost instantly, but also introduces strong artefacts at the
same time. Therefore all results given in this work have been made with the Cauchy norm.

Reconstruction in the presence of ground roll is very difficult, see the reconstruction of a shot from the
same data set from Poland as in section 2.4 (fig. 4.13). Ground roll propagates at low velocity, and thus
is centred around the zero-offset, with very high amplitude, up to 90% of shot energy (Schlumberger
Oilfield Glossary [2018]). This means that any type of SNR-based weighting, such as in equation
(4.14) will consider all the data noise. Ground roll filtering will thus have to be performed before
reconstruction, or incorporated in it.
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Figure 4.11: The left panel shows the linear Radon transform of the original unalisaed shot record as presented
in figure 4.5, the middle panel shows the linear Radon transform of the aliased shot record, the right panel
the linear Radon transform of the reconstructed shot. Aliasing is reduced, especially the aliased ellipses of the
strongest top one, between -0.4ms/m and 0.4ms/m. The ellipses going down to 0.8s TWT in the left panel are
almost invisible in the right panel though, they got lost in the reconstruction.
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Figure 4.12: Reconstruction results of the same shot record, with the same 25% missing frequencies, using
20 iterations each. The used norm differs per panel: left is the l1,2 norm, middle uses Cauchy and finally right
the Geman-McClure norm. Note the presence of strong aliasing around zero offset in the left panel, and strong
artefacts in the right.
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Figure 4.13: The left panel shows the original, unaliased shot record. The second panel shows the recon-
structed shot record after removing 50% of its frequencies, as given by the PCA on its dataset, on the right
is the reconstructed shot with 50% random frequencies removed. Both reconstructions have been performed
with 10 iterations and the Cauchy norm. A clip of 90% of the amplitude has been used to allow visualisation
of the areas outside the ground roll.
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Chapter 5

Quality description and results

In the previous chapter the reconstruction has been shown to reduce aliasing per shot record. The
quality of the migrated section will be discussed in this chapter. Migration will be considered as a
black-box algorithm here and will be applied the same for all different parameter selections.

The quality of a seismic image, usually presented in the form of a migrated depth section, after some
processing chain is often expressed qualitatively, but not quantitatively. Usually results are presented
by putting the image obtained by the previously used processing chain next to that of the proposed
new one, and explaining in words things as ‘the reflector at depth x has a better continuity using the
new method’, or ‘the new AVP method clearly covers more angles’ (e.g. Kumar [2015], chapter 2.9).
Therefore a more quantitative method is desired to make an objective comparison between images.
Alcalde et al. [2017] show that how an image is presented is very important for the interpretation.
They use two quality indicators: contrast in the image and continuity of reflectors. Line continuity
was also used as a quality indicator by Visser [2017], who additionally used the correlation with a
base image, as they had a synthetic set and thus a model without noise and maximum shot/receiver
coverage to compare other images against.

First the quality metrics used to describe the migrated sections will be introduced (sec. 5.1), then
the results will be presented (sec. 5.2).

5.1 Quality metrics
Alcalde et al. [2017] describe two main quality indicators on migrated seismic sections: contrast and
average line length. We define contrast as the interquartile range of pixel values:

C = Q75 −Q25 , (5.1)

where Q75 and Q25 are the third and first quantiles of pixel values for the area under consideration
respectively. The reasoning here is that a broader interquartile range means more variation in light and
dark colours, and thus a higher contrast. In the presence of noise this can be misleading, for instance
the top middle panel of figure 5.5 shows a much broader distribution than the reconstructed one, which
is again broader than the original image, but in this case the smaller the amplitude distribution is, the
better.

Amplitude variations between neighbouring pixels can be found using Canny’s edge detection al-
gorithm. This method finds edges by looking for local maxima in the gradient of the input image,
using the derivative of a Gaussian filter. Using two thresholds, a strong and weak one, both strong and
weak edges can be detected. For a full mathematical treatment the reader is referred to the original
article (Canny [1986]). After edge detection a binary image will be obtained. Within that binary image
connected areas of ones can be distinguished and labelled, giving the amount of pixels per connected
area (fig. 5.1). This value can be interpreted as length for mainly linear features, such as reflectors in
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Figure 5.1: Figure showing how components are connected in a binary image. Obtained from the official
MATLAB documentation The MathWorks [2018]

seismology. With a lot of noise, components can easily get connected though, such that the average
line length goes up with more noise, instead of going down due to broken lines, see the top right panel
in figure 5.7 at 20% reduction.

Using a sliding window the contrast and average line length are calculated for each pixel (fig. 5.2).
Additionally, the Signal-to-Noise ratio (SNR), given by µ2/σ2, where µ is the mean and σ2 the variance
of an area, is calculated. This is done for pixel values, i.e. amplitudes, and presented in dB. In areas
having a mean of zero amplitude this will result in a very low SNR, even though it might be true that
there is no amplitude or variation there, such as the top left panel of figure 5.4.

The 2D correlation coefficient between images A and B is calculated as:

r =
∑
m,n

(
Amn −A

) (
Bmn −B

)√(∑
m,n

(
Amn −A

)2)(∑
m,n

(
Bmn −B

)2) , (5.2)

where A is the mean of all pixel values of image A, and the same for B.
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Figure 5.2: Figure showing the results of the quality metrics for a migrated section, all calculated with a
square sliding window of 15 × 15 pixels. The upper left plot shows the local contrast, the upper right the
average line length, the lower left the merger of the former two, i.e. contrast∗line length, and the lower right
finally shows the local SNR in dB. The data had 50% missing frequencies, and 25 reconstruction steps using
the Cauchy norm.
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5.2 Results
Looking at the final, migrated section (fig. 5.3) we see that choosing random frequencies for each
shot already gives a result in which all the reflectors are visible. This happens because the migration
algorithm, treated as a black box for this research, takes neighbouring shots into account when imaging,
thus reducing aliasing noise when the frequency components are randomly chosen per shot. Note that
no noise has been added to the model, all noise present is due to aliasing, which manifest as migration
smiles, best seen between reflectors. For instance above the first reflector, see the red box, the migration
using all frequencies shows a clean zero amplitude, whereas the non-reconstructed migrated section
shows a lot of aliasing noise (top row, figure 5.4). The reconstruction does reduce the amplitude of
noise in this area considerably. As can be seen in figure 5.5, the noise amplitude has a Gaussian profile
over this area, and the reconstruction narrows this distribution considerably.

Weaker reflectors are, as noted above, toned down during the reconstruction. Looking at a close-up
of the reservoir, the blue box in figure 5.3, we see that in the full model the reservoir has smooth edges
and a strong amplitude, albeit with some internal multiples of the salt flank superimposed (fig. 5.4).
The same narrowing of the amplitude spread as in the red box can be seen in the lower row of figure 5.5.
This illustrates that the weak reflector is indeed weakened even further, however its bimodal structure
is kept intact.

The metrics discussed previously have been calculated for reduction percentages of 10 to 90, in steps
of 10, reconstructed using the Cauchy norm and 10 iterations (fig.5.6). The quality control metrics are
plotted in figure 5.7. The left and middle columns are structured the same as figure 5.2, as averaged per
migrated section. Top left thus shows the average contrast, bottom left the average merge-calue, top
middle shows the average line length, bottom middle the average SNR. Additionally the 2D correlation
coefficient, top right, and total number of lines found by the edge detection, lower right, are plotted.

Contrast and the merger of contrast and line length are not very clear indicators, as the average con-
trast is almost constant between 10 and 80% reduction with a value of 0.085; the merger is normalised
within each panel separately, making it difficult to use for comparison between images. Average line
length goes down steadily, which is as expected, as the number of edges found as well as the number of
lines found increase. This means that a lot of small, connected features are found in the data, which
are small migration artefacts due to aliasing noise. SNR of the original data is rather low, since the
areas between reflectors are almost perfectly smooth around 0, resulting in a very low mean, see the
top left of fig. 5.4. Correlation shows that the reconstruction results in almost the same image, until
40% or more of the frequencies are removed, then the correlation drops drastically. Finally, the number
of lines found shows a behaviour opposite to the average line length, which is as expected since more
and more aliasing noise components are found to be connected.

A single reconstruction with 25 iterations and the Cauchy norm has been performed, as well as one
with the l1,2 norm and 25 iterations, see the red and black stars in figure 5.7. The correlation to the
original becomes better, suggesting improved reconstruction, but more edges are found, and the SNR
drops considerably below the corresponding value for 10 iterations.

Overall it can be observed that the trend across four of the six metrics shows a kink at 70 to 80%
reduction, leading to the conclusion that removing more than 70% of the frequencies speeds up image
deterioration considerably. This is in accordance with the number found earlier for the Q-factors
(fig. 4.7). It is therefor recommended to keep at least 30% of the frequencies. Contrast and the
merger of this with average line length show little trend over the range of reduction. Those metrics
have therefore to be used on an image to identify difference in quality within that image, but are not
suitable to use as a comparison metric between images.
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Figure 5.3: Results of the reconstruction after migration. A random 50% of frequencies has been removed for
each shot, which subsequently was reconstructed using the Cauchy norm, 25 iterations and no regularisation.
The left panel shows the migrated result of the full model, in the middle the migrated result after removing
50% of the frequencies without reconstructing, and on the right the migrated result after reconstruction. The
red, top, and blue, bottom, boxes are areas enlarged in fig. 5.4.
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Figure 5.4: Close up of the three panels shown in figure 5.3. The top row corresponds to the red square, the
bottom row to the blue square. Noise due to aliased shots in top-middle panel is clearly visible, but is reduced
after the reconstruction, top-right. The reservoir has very ragged edges in the non-reconstructed migration,
bottom-middle, which is corrected during the reconstruction, albeit with a loss of amplitude.

Figure 5.5: Same structure as figure 5.4, where a histogram of pixel values, thus amplitude, has been made.
The top row clearly shows that the model with all frequencies has almost no noise in the layer above the first
reflector, since most pixels have a value of close to 0. The aliased result shows a very broad distribution, which
becomes smaller after reconstruction. The bottom row shows the same broadening of amplitude spectrum after
aliasing the input, and likewise a narrowing of the distribution after reconstruction. However, as opposed to
the lower-right panel of figure A.3, the bimodal nature is more pronounced here, suggesting that doing more
iterations will restore the weak reflectors.
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Figure 5.6: Migrated result of the reconstructed shots; the title of each subplot shows the percentage of
missing frequencies. All features remain visible up to 80% reduction, but noise increases towards higher
reduction.
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Figure 5.7: Plot showing several quality indicators as a function of frequency reduction percentage. The left
and middle columns are the same as fig. 5.2, the right most column shows the correlation to the original on
top, and the number of lines as found in the edge detection below. All reconstructions have been made with
the Cauchy norm and 10 iterations, except for the red star, that has 25 iterations, and the black star which
uses the l1,2 norm and 25 iterations.
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Chapter 6

Conclusion, discussion and
recommendations

In order to reduce cost a lot of research in onshore seismology is conducted to reduce the amount of data
required to obtain good images. This work attempts to reduce the number of frequency components
present in the data, thereby reducing the total amount of data. First a PCA has been performed on a
general, open source data set as presented by Yilmaz et al. [1987], which showed that indeed a large
redundancy is present in seismic data, as confirmed by a different onshore data set from Poland, as
well as a synthetic example (chapter 2).

An attempt has been made at reconstruction of the data using the Fourier transform (chapter 3), but
the Fourier transform lacks connectivity in the spatial direction, so it has been disregarded. Instead, the
linear Radon transformation has been chosen (chapter 4). A conjugate gradient scheme has been set up
(sec. 4.3) to reconstruct iteratively the shots in an attempt to reduce aliasing. Various percentages of
reduction in the frequency domain, as well as a varying number of iterations and different norms have
been tested. As expected, a higher percentage of reduced frequencies results in a worse reconstruction
(tab. 4.3, fig. 4.7) of the shot records. Gaps of a band of frequencies can be well reconstructed up to
some 6Hz (fig. 4.10), and start deteriorating at larger gaps.

Contrast, line length, correlation to the original and SNR have been proposed as quality metrics
(chapter 5). It can be seen that the reconstruction reduces aliasing noise in the final migrated section,
although it also lowers the amplitude of weak reflectors (fig. 5.3). More research will have to be done in
parameter selection, so that noise is attenuated but weak reflectors are retained. When more than 70%
of the frequencies are removed, image deterioration accelerates (fig. 5.7). This is in accordance with
the result of the Q-factors (fig. 4.7), thus that is interpreted as a threshold for the current procedure.

Answers to the subquestion as posed in section 1.1 are given (sec. 6.1), after which the results of
the thesis will be discussed and recommendation for further research will be made (sec. 6.2).

6.1 Answers to research questions
1. Is there redundancy in the frequency domain of the data? Thus can less frequencies be used whilst

still obtaining a ‘good’ result?
Yes. Chapter 2 shows that 80 to 90% of the data is carried by only five principal components
(fig.2.4). Furthermore, results of reconstruction using fewer frequencies show a good result up to
75% reduction in the frequency domain (tab. 4.3 and fig. 5.7).

2. What frequency sampling is best if only few frequencies are to be measured?
No method has been implemented to randomly draw from a user-defined function based on
the PCA results. Looking at reconstructed shots only, there is no clear preference in the PCA
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frequencies or the random frequencies, but using different frequencies per shot definitely helps,
as the migration algorithm then further suppresses aliasing through connecting shots.

3. Which transformation yields the best results for data with missing frequency components?
The Fourier transform has shown to be lacking in spatial continuity. Since that is proposed to
compensate for the missing frequency components, this transform has been discarded. Instead,
the linear Radon transformation has been used, which shows a good spatial connectivity.

4. How well can we reconstruct the dense, complete data set from the sparse frequency data to allow
usage of the currently available processing chain?

• Energy gets refocussed, especially along the asymptots of hyperbolas (fig. 4.5).
• Aliasing noise in the final image is not too broad, with weak reflectors being recovered at

80% reduction in frequencies, provided no noise is present in the shot records (fig. 5.6).
• Gaps in frequency get filled in completely up to a gap of 6Hz, for larger gaps the high-offsets

start deteriorating (fig. 4.10).

5. What metrics can be used to determine image quality? Thus what is a ‘good’ result in quantitative
measures to be used under question 1.
Currently the correlation to a ground truth, percentage of edges as found in the data, the average
number of pixels per connected component of edges, the total number of connected components
found and the average SNR are used to get quantitative information on the data (fig. 5.2 and
5.7). This list is certainly not exhaustive, and may benefit from image processing research in
general.

The main question of this thesis is:
Is it possible to reduce the number of required frequencies in onshore seismology by

increasing the spatial density of measurement?
Yes, this is possible, using the method proposed in this thesis about 70% of the frequencies can be

removed from a seismic data set whilst still obtaining a good image.

6.2 Recommendations
Instead of the linear Radon transform, using a hyperbolic Radon transform would likely increase
refocussing along the apices of hyperbolas. Nikitin et al. [2017] present a fast implementation of
the hyperbolic transform and its Hermitian conjugate, with the CUDA source publicly available.
Restructuring the algorithm given in section 4.3 to use this transform will likely improve reconstruction
of the shots themselves.

The migration algorithm, treated as a black box for this work, takes into account neighbouring shots
for each reconstruction point, thus reducing aliasing in the migrated section, provided the aliasing is
not the same per shot. Thus extending the algorithm from reconstructing shots to fully migrating the
data, taking into account neighbouring shots, for example based on a distance weighted correlation
function, will likely result in less aliasing noise leaking into the final migrated section.

CG schemes are well known and widely used in tomography, since they do not require an explicit
matrix form. For example, as shown in section 4.2, A denotes a conjugated Radon transform, which in
the numerical implementation is not expressed as a matrix, but as a function. It has been suggested that
CG optimisation of tomography problems might be problematic for certain cases since large systems
require a good preconditioner (Zang et al. [2018]). But precisely because in that case A becomes so
large, it is implemented as a function, limiting the choice of possible preconditioners. Another problem
is that AH is not the exact Hermitian conjugate of A, rather a function which does the conjugated
of what A does. Due to numerical noise and/or discrepancies in implementation between the forward
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and inverse operator they are not each others exact Hermitian conjugate, thus introducing errors in
each solver iteration. Zang et al. [2018] propose to use the Simultaneous Algebraic Reconstruction
Technique (SART) to circumvent these issues.

IRLS or Iteratively Reweighted Least Squares, can be used to stabilise the CG scheme when it is
prone to end in local minima instead of the global minimum, which is often the case when searching
for sparse solutions. This entails a reset of the r and d vectors every now and then to reset the search
for a minimum. It can also be used to reset the weighting function every few iterations, which in the
present case might result in a better recovery of weak reflectors by reducing aliasing using CG, then
recalculating the norm with the lowered noise level and running the CG again. An outline of a possible
implementation:

i = 0
p̃0 = 0

Cp0,jj
=
((

AHpj
)∗AHpj + σ2

AH p

)a
while i ≤ imax

k = 0

zk = p̃iC1/2
p̃i,jj

rk = C−1/2
pi,jj

AHp
dk = rk
tk = p

while rHk rk
rH0 r0

> ε, k ≤ kmax

α = rHk rk
dHk C−1/2

pi,jj AHF−1S�FAC−1/2
pi,jj dk + dHk λIdk

zk+1 = zk + αdk
tk+1 = tk − αF−1S�FAC−1/2

pi,jj
dk

rk+1 = C−1/2
pi,jj

AHtk+1 + αλIdk

β =
rHk+1rk+1

rHk rk
dk+1 = rk+1 + βdk
k = k + 1

p̃i+1 = C−1/2
pjj

zk
Cpi+1,jj = (p̃∗i+1,jp̃i+1,j + σ2

p̃)a

i = i+ 1

where the parameters are the same as in the CGNE algorithm presented in section 4.3.
Figures 6.1, 6.2, and 6.3 illustrate well the trade-off between the l1,2 norm on one hand and the

Cauchy norm on the other. Looking at the top rows of figures 6.2, and 6.3 one sees that noise is more
attenuated when using the more aggressive Cauchy norm, but this also reduces the amplitude for the
true reflecting layers, see the bottom row. A study varying the number of iterations and preferably
using IRLS could determine which norm is preferred for usage. Result may well be that using the
Cauchy norm for a quick result is optimal, and the l1,2 norm being preferred when accuracy is the
main focus, or even a couple of iterations with a more aggressive norm to quickly reduce a lot of noise
and then switching to a less aggressive norm to fine-tune the weak events.
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Quantifying the drop in amplitude in the band gap, see fig. 4.10, could help in the reconstruction, if
the amplitudes are multiplied with a pre-calculated constant such that it will be the same as outside
the band gap. It has to be investigated what this amplitude depends on; size of the band gap seems
irrelevant judging figure 4.10, but number of iterations and norm used might still influence it.
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Figure 6.1: Results of the reconstruction after migration. A random 50% of frequencies has been removed
for each shot, which subsequently was reconstructed using either the l1,2 or Cauchy norm, using 25 iterations
and no regularisation. The left panel shows the migrated result of the full model, in the middle with l1.2 norm,
and the right with Cauchy. The red, top, and blue, bottom, boxes are areas enlarged in fig. 6.2.
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Figure 6.2: Close up of the three panels shown in figure 6.1. The top row corresponds to the red square,
the bottom row to the blue square. Noise due to aliased shots in top-middle panel is clearly visible, and is
attenuated using the Cauchy norm, top-right. The reservoir is slightly more noisy in the l1,2 norm, bottom
middle, than in the original, bottom left, but at least stronger in amplitude than when using the Cauchy norm,
bottom right.

Figure 6.3: Same structure as figure 6.2, where a histogram of pixel values, thus amplitude, has been made.
The top row clearly shows that the model with all frequencies has almost no noise in the layer above the first
reflector, since most pixels have a value of close to 0. Both norms show a broad, Gaussian distribution of
amplitudes, albeit the Cauchy norm has the smaller variance. The bottom row shows that the Cauchy norm
also limits the spread in amplitude values, whereas the l1,2 norm is a better match in terms of width and height
of the two bimodal peaks.
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nigfaltigkeiten. Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wis-
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ontspannen. Bedankt voor alle fijne avonden, fiets- en wandeltochten en nog veel meer.

The cover depicts the correlation matrix of the frequency data which served as input for the PCA
in figure 2.4. The structure of the matrix was so appealing, that I decided to copy it four times, so all
quadrants would be symmetric, and attached a nonsensical colour map which at least looks pretty. If
science does not pan out, I can always go into carpet-designs.
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Appendix A

Additional tables and plots

A.1 Yilmaz data
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Table A.1: Shot records as given by Yilmaz et al. [1987]. Other information such as the survey location and
equipement numbers have been omitted as they are not used in this research. The only four shot records with
trace separation mentioned are: 1 (330ft), 10 (25m), 11 (220ft), and 12 (330ft).

Number of shot Traces Sampling [ms] Land/Marine
1 48 4 Land
2 120 4 Land
3 24 4 Marine
4 48 4 Land
5 48 2 Marine
6 48 4 Marine
7 48 2 Land
8 96 4 Marine
9 96 4 Land
10 120 4 Land
11 96 4 Land
12 49 4 Land
13 48 4 Marine
14 48 4 Land
15 48 2 Marine
16 48 4 Marine
17 48 4 Land
18 120 4 Marine
19 216 4 Land
20 120 4 Land
21 48 2 Land
22 48 2 Land
23 48 2 Marine
24 48 2 Land
25 96 2 Marine
26 48 2 Marine
27 92 4 Land
28 48 2 Marine
29 48 4 Land
30 96 4 Land
31 96 4 Land
32 96 4 Land
33 96 4 Marine
34 60 4 Land
35 52 2 Marine
36 48 4 Marine
37 48 4 Land
38 60 2 Marine
39 60 2 Land
40 96 2 Land
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A.2 Additional plots
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Figure A.1: Results of the reconstruction after migration. A random 25% of frequencies has been removed for
each shot, which subsequently was reconstructed using the Cauchy norm, 10 iterations and no regularisation.
The left panel shows the migrated result of the full model, in the middle the migrated result after removing
25% of the frequencies without reconstructing, and on the right the migrated result after reconstruction. The
red, top, and blue, bottom, boxes are areas enlarged in fig. A.2.
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Figure A.2: Close up of the three panels shown in figure A.1. The top row corresponds to the red square, the
bottom row to the blue square. Noise due to aliased shots in top-middle panel is clearly visible, but is reduced
after the reconstruction, top-right. The reservoir has very ragged edges in the non-reconstructed migration,
bottom-middle, which is corrected during the reconstruction, albeit with a loss of amplitude.

Figure A.3: Same structure as figure A.2, where a histogram of pixel values, thus amplitude, has been made.
The top row clearly shows that the model with all frequencies has almost no noise in the layer above the first
reflector, since most pixels have a value of close to 0. The aliased result shows a very broad distribution, which
becomes smaller after reconstruction. The bottom row shows the same broadening of amplitude spectrum after
aliasing the input, and likewise a narrowing of the distribution after reconstruction. This means that weak
reflectors are suppressed using the given parameters of reconstruction.
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Figure A.4: The squared norm of each CGNE iteration for the shot in figure 4.5. It is monotonically
decreasing.
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