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I. Introduction

Generative Artificial Intelligence (AI) and Natural Language Processing (NLP) have been

ever-growing topics, especially since the success of ChatGPT in 2022. Now, ChatGPT and

other generative AI chatbots, like Gemini, Claude and DeepSeek are being used by many

people in their daily lives, from answering general questions to writing code.

While the use of AI in education is still a hotly debated topic, there are areas where

students can benefit from the use of AI. One of these situations is automatic hint generation.

If a student is stuck on an assignment or a piece of theory, a student might not be able to

get the help they need due to challenges such as a growing student-to-teacher ratio (10), the

need to ask questions outside of regular working hours, or not feeling comfortable seeking help

from the staff (11). However, if we reinforce the staff with an AI tutor that can help students

24/7, by giving them hints to guide them, this problem could be alleviated (7; 8; 9; 12).

Therefore, numerous such systems have been developed that make use of LLMs like ChatGPT

to generate hints and guide students when they need help.

When using AI for anything, there are always concerns that must be taken into account.

Because of the probabilistic nature of AI, there will always be a lack of control over the

output (1), which is magnified if the AI used is a top-of-the-line model like ChatGPT, which

is controlled and hosted by a commercial company, and not by the organisation using it. It

also creates privacy concerns, as the questions, prompts and data you send to the AI can be

used for other purposes by the company that hosts the AI. Lastly, computationally intensive

AI models cause environmental and financial concerns, as they are usually run on powerful,

energy-draining hardware and cost money to use (4; 5). These problems can be mitigated if

we swap the Large Language Model (LLM) for a Small Language Model (SLM) instead: a

scaled-down model, which massively reduces its size, while keeping the output quality as high

as possible. This allows the smaller model to be run on commercially available hardware, and

even provides the possibility to fine-tune and tweak the model to fit the purpose for which

it will be used.

However, smaller models are not without drawbacks, as the output quality does drop when

the model’s size is reduced (6). There are, however, ways to minimise the drop in output
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quality, such as giving the SLM access to an external knowledgebase by using Retrieval

Augmented Generation (RAG). The question then becomes whether SLMs are good enough

to function in an AI hint-generation system, which is what this research focuses on. Our

research questions are:

• How does replacing an LLM with an SLM as part of an AI hint-generation system

affect the hint quality, as determined by experts?

• How does replacing an LLM with an SLM as part of an AI hint-generation system

affect student satisfaction and trust in the system?

The novelty of this research lies firstly in the niche domain in which the SLM-system will

be tested: the Kotlin programming language. Kotlin is a much less prominent programming

language than something like Python, and would thus be less prevalent in the SLM’s training

data. We also combine an expert experiment with a student experiment to have a broader

overview of how certain criteria for hint quality relate to student satisfaction and trust in

the system. Lastly, in the use case for this research, the SLM is part of a larger system that

includes static analysis and static processing of the generated hints, possibly further reducing

drawbacks that might be caused by replacing an LLM with an SLM.

This thesis includes preliminary materials, presented in section II, which explain the

concepts important to this research, such as LLMs, SLMs and RAG and the theory behind

them. Following this is section III, which presents the scientific article, containing only the

core of the research. The material in section II thus aims to give the reader all the necessary

knowledge to fully understand the article in section III.

II. Preliminary materials

II.1. Natural Language Processing

Natural Language Processing (NLP) is a subfield of Artificial Intelligence that focuses on

allowing machines to understand, interpret, and generate natural language. This includes a

wide range of tasks, such as text classification or sentiment analysis, machine translation,

question answering, summarisation, and even generating more complex outputs like code or

mathematical proofs.
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Figure I: A 2D example of animal examples.
While a pig is completely different from a dog,
and a wild boar is completely different from a
wolf, the difference between a wild boar and
a pig, is the same as the difference between a
wolf and a dog.

A fundamental aspect of NLP is how

words are understood internally by the ma-

chine. First, text is split into tokens, which

can be words, subwords or characters. For

example, "unbelievable" might be split up

into "un", "believe" and "able", each with a

different contribution to the definition of the

entire word. The model will then try to un-

derstand each token individually in such a

way that it will also understand that the "un"

in "unforgettable" has the same meaning as

in "unbelievable". It does this by creating

embeddings for each token, which are vec-

tors of floating-point numbers, representing

the meaning of a (sub-)word. The vectors

are learned during training and capture both

syntactic information (verb/noun) and semantic meaning (e.g. "apple" is close to "pear").

Each element of the vector represents a characteristic of the word. If we take the domain

of animals as an example, an embedding vector could correspond to a list of characteristics

such as size, hairiness, speed, strength, and danger. The model is then trained to learn the

characteristics of all animals and can make inferences based on them. For example, if it is

given the word "dog", and tasked with finding a more dangerous version of a dog, it would

simply find the "dog" vector in the vector space, and move in the direction of increasing

danger, where it would find words like "wolf". Thus, it can generate the word "wolf" based

on the two pieces of information that it is looking for a dog, but more dangerous. See figure

I for a visualisation of such embeddings.

Once a model understands the words in its vocabulary, generating text is simply an

estimation of which token is likely to be next, based on the prompt it received and the tokens

it has already generated. The next token is then sampled from a probability distribution, in

one of many different ways, such as greedy (always pick the most likely token), top-k (sample
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from the k most likely tokens) or using a threshold (sample from all words with a probability

more than p). This process then repeats for the next token. Thus, text generation will always

be probabilistic, and asking the model the exact same thing multiple times might result in

completely different responses.

As an example for prompt completion, take the prompt "I am hungry so I". The most

likely tokens to appear next might be "ate" or "ordered". Say it samples the word "ate", the

model then continues by completing the prompt "I am hungry so I ate", where the most likely

next tokens might be "spaghetti", "pancakes", or the token that signifies the end of a sentence

or prompt. However, if it sampled "ordered", the most likely next token might be "Domino’s"

or "McDonalds", already resulting in a completely different probability distribution for the

next token.

II.2. Transformers

What makes the complex calculations in NLP possible is the transformer architecture. The

key principle in the transformer architecture is attention. Every time the transformer looks

at a certain token, it also looks at the entire text around this token and extracts the other

relevant parts from that text. For example, in the sentence "The chicken crossed the road,

because it wanted to get to the other side.", when the transformer is looking at the token "it",

it will consider the "chicken" token relevant, but "road" and "side" less relevant. After the

attention layer, the result for each token is passed through a neural network, transforming it

into another intermediate result.

The attention calculation, followed by a small neural network can be seen as one layer of

the transformer. The transformer consists of many layers, where each layer uses the output

of the previous layer as its input. Thus, the transformer can look at an entire piece of text,

instead of just small parts of it. Lower layers might detect basic grammar, but higher layers

will detect topics, tone or structure in the entire text.

In essence, a layer is just a sequence of complex matrix multiplications, which means the

matrices that are multiplied with the input to generate the output are the parameters of the

model.

4



II.2.1. Large Language Models

At a high level, Large Language Models (LLMs) like ChatGPT are deep neural networks

based on the transformer architecture. They consist of an embedding layer to map tokens

to embeddings, transformer layers to model dependencies within the text, and an output

layer that predicts the next token. The models are trained on massive datasets, and can be

made up of hundreds of billions, even trillions of parameters. To simply store an LLM like

ChatGPT you would need hundreds of gigabytes, possibly terabytes of storage, let alone the

computational power required to run the model.

II.2.2. Small Language Models

To make it feasible to run a model on commercially available hardware, LLMs can be shrunk

down to Small Language Models (SLMs). There are several techniques to accomplish this,

such as training a "student" SLM model to mimic the outputs of a larger "teacher" LLM

model. Alternatively, an LLM model can be pruned, removing redundant or less important

weights/parameters from the network. It can even be as simple as reducing the numerical

precision of parameters, changing them from 32-bit floats to 8-bit floats. A smart combination

of techniques, followed by fine-tuning the model, can bring the model size down to a range

between a billion to a hundred billion parameters. The smaller SLMs can even be run on

somewhat powerful consumer laptops. However, the loss of parameters and precision also

results in a decrease in the output quality. The model has less internal knowledge and

reasoning capabilities, thus resulting in knowledge gaps or hallucinations. This is a trade-off

that must be considered, though it can be diminished by enhancing the SLM with techniques

such as Retrieval Augmented Generation.

II.3. Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a technique to augment a model with an external

knowledgebase, to cover gaps in the model’s internal knowledge. It can be divided into two

parts: the knowledgebase, and the retriever.

The knowledgebase can be any collection of documents, from code documentation to med-
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ical files. To make the knowledgebase usable for the retriever, it must first be vectorised. This

means we will divide the documents into chunks and convert each chunk into embeddings.

The vectors are then stored in a special vector storage database, designed to be efficient in

storing and retrieving vectors. The vectorised database will be where the retriever can search

through all documents.

Once a request to the model is made, the retriever will find documents from the knowl-

edgebase that might be relevant for the request, before it is sent to the model. It does so by

first converting the request into embeddings. Now, it can compare the embeddings obtained

from the request with the embeddings in the vector storage. It will find all documents that

have content similar to the request, by using a similarity metric such as cosine distance. Since

we are working with embeddings, it goes beyond simply searching all documents for words

that are also used in the request, and instead finds all documents where any information is

similar in meaning to information from the request. The retriever will generate a score for

every document, and then returns a set of documents based on a method like top-k (return

the k highest-scoring documents), or a threshold (return all documents with a score higher

than the threshold). The retrieved documents will then be combined with the original re-

quest, which is then passed to the model. Thus, until that point, the model itself has done

nothing with the request.

RAG is especially beneficial in smaller models, where the model’s smaller size means

it can memorise less information, contrary to massive LLMs, which can easily store a lot

of information in its internal (parametric) memory. RAG can thus be used to reduce the

knowledge gap between SLMs and LLMs. Other benefits of RAG are that you can completely

design the knowledgebase to match the purpose of the model, giving the model access to the

right information, even if the domain is niche. Additionally, the knowledgebase can easily be

replaced and updated, in contrast to a model’s parametric memory. Thus, augmenting your

model with RAG makes it more flexible and future-proof.

II.4. Prompt engineering

The bridge between the user and the AI, is the prompt the user sends to the AI. Therefore,

the prompt must be as clear as possible and communicate clearly what the user expects from
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the model’s response. Designing the optimal prompt for a user’s purpose is called prompt

engineering. This section explains common prompt engineering techniques.

II.4.1. Few-shot learning

For simple tasks, asking the AI a simple question will be enough to get a satisfactory response.

However, some tasks might have more specific requirements for the response, such as what

is included in the response or how the response is structured. In this case, you can teach

the AI to respond in this way within your prompt by applying few-shot learning. Few-shot

learning entails extending your prompt with examples of how you want the AI to respond.

For example, when asking for a hint on a programming exercise, you could include other

exercises, and examples of how you would want the AI to respond in those contexts. Thus,

the model has a clear template, which allows for more personalised responses.

II.4.2. Chain-of-thought

Another technique to improve the quality of the AI’s output is to force it to reason about

its answer step by step. By asking the AI to provide step-by-step reasoning for its response,

it is forced to support every step in its response with logical reasoning, thus reducing the

chance of hallucinations or misinformation. Chain-of-thought prompting is especially useful

for more complex or multi-step problems.

An alternative way of approaching chain-of-thought reasoning would be to split up the

prompt into multiple prompts. For example, when stuck on a coding task, before providing

the code to the AI, you could first prompt it to generate a list of subgoals for the assignment,

giving a step-by-step overview of how to solve the assignment. Then, you could provide

your code, together with the generated list of subgoals and ask which subgoals have been

completed and what needs to be done to complete the next subgoal on the list. By making

the model use its own subgoals, you are forcing it to reason methodically about the problem.

II.4.3. Clear and concise prompts

Another important factor in creating an effective prompt is not to include redundant infor-

mation. Doing so could cause the AI to focus on the wrong thing, and for smaller models,
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especially, could prevent the model from seeing dependencies in the text, because it has a

smaller context window, meaning it can only see dependencies that are closer together in the

prompt. Prompt clarity and conciceness is even more important when using a system that

has been enhanced with RAG, as the RAG retriever will use the information from the prompt

to find relevant documents. Thus, if there is irrelevant data in the prompt, it will retrieve

irrelevant documents, which might make the AI focus on the wrong thing in its response.

Lastly, the structure of the prompt also plays an important role. As mentioned above,

all models have a certain context window, and while it might be large in big LLMs, it can be

a problem for smaller models if related information is separated and spread out far over the

prompt. Thus, dependent information should be kept close together.

II.5. Our use case: JetBrains Academy extension

JetBrains has developed their own AI hint-generation system, integrated into their JetBrains

Acadamy plugin (JBA) (2). The system allows students to click a ’Get Hint’ button whenever

they check their solutions and have failing tests. The system then uses the context inside

the IDE (Integrated Development Environment, for example, IntelliJ) to ask the AI model

for a next-step hint. The hint will be one single step towards a solution, guiding the student

without giving the solution straightaway. The student is first presented with the hint in text

form, describing what change needs to be made. If the text hint is not enough, the student

can view the hint in their code, being presented with a code suggestion that the student can

choose to accept or implement themselves.

Under the hood, the system is a lot more complicated than simply prompting an AI model.

The system collects an extensive context from the IDE, including the student’s progress and

assignment information. The system has undergone extensive prompt engineering testing to

create the most effective prompt. Lastly, the system applies static analysis to the generated

hint to further improve its quality and have more control over the hint that is finally shown

to the student. Currently, the model used is an LLM, more specifically ChatGPT-4o.
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Figure II: Overview of the system flow for generating a code and text hint through the
JetBrains AI hint generation system.

II.5.1. Flow of the system

When students follow a course through JBA, they can check their solution to a task through

tests designed by the course author. If one or more tests fail, the student will receive feedback

on the test that fails, and with the hint-generation system, will also get the option to press

the ’Get Hint’ button.

Once the ’Get Hint’ button is pressed, the IDE will gather information from the student’s

solution and the assignment, format it as a prompt, and send the prompt to the AI model,

which asks for a code hint to implement the next step towards a solution. Once the system

receives the code hint, it applies static analysis to improve the quality of the hint.

With the final version of the code hint, the system sends a new prompt to the AI model,

with the student’s current code and the improved code from the code hint, and asks the

model to describe the implemented changes textually. When the model responds with the

text hint, the system first shows the text hint to students, only showing the code hint when

the text hint is not enough for the student. See figure II for a visual overview of how the

system generates both hints. Once it has generated both hints, it shows the text hint to the

student and gives them the option to view the code hint. See figures A1 and A2 in appendix

B for an in-IDE view of the system.
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II.5.2. IDE Context

When the student asks for a hint, the system’s first step is to gather an extensive context

from the IDE. It gathers the student’s code changes which they have made in the task

to the assignment code, the signatures of already implemented functions in their code

that may have been implemented in previous tasks, and lastly, it gathers their test failure

message(s). It also collects information from the assignment: the task description and

the used programming language, static hints created by the course author, a list of

theory topics relevant to the task, like "loops", signatures of helper functions that are

used in the author’s solution and the String literals used in the author’s solution. The

author’s solution is not provided in its entirety to the model, to avoid bias towards one

specific approach.

II.5.3. Static analysis

When the model generates the code hint, the system performs static analysis on the code

hint to improve the quality and control what is shown to the student. The static analysis

consists of multiple parts. First, irrelevant changes to the code are removed, such as when the

model tries to improve the code quality of a function implemented in a previous task. This is

achieved by comparing the student’s solution to the author’s solution and determining what

functions should be changed or added, and which functions should not be.

Secondly, if a hint is generated for a function that is "short" in the author’s solution,

the author’s complete implementation is used instead of the generated code hint. "Short" is

defined as having at most 3 lines of function body, which is already considered an appropriate

size for a next-step hint, and thus does not require any changes.

A crucial aspect of the hint quality is the code quality itself. To ensure proper code

quality, the system uses the same code quality checks already part of JetBrains’ IDEs to

inspect and optimise the code generated by the model, thus fixing common mistakes and

style issues.

Lastly, the biggest part of the static analysis is controlling the hint size. The model does

not always understand that we are looking for a hint that only implements one step towards
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the solution, and will sometimes generate code hints that implement large chunks of code at

once. The code hint should correspond to one logical action, like creating a function without

a body, or using a for loop, without a condition or body yet. To mitigate this, three heuristics

are applied to the generated hint.

Firstly, if the first difference in the code is an addition to the code, only the first statement

is retained. For example, if the change is creating a new function, including its body, only

creating the function is kept, and the body is replaced with TODO("Not yet implemented").

If the change is a while-loop with a body, only the while loop is retained, with an empty

body.

Secondly, if the first difference is a modification to the code that changes both the condi-

tion and the body of an expression, only the change to the condition is retained. For example,

changing the function parameters as well as the body will result in only the changed function

parameters being retained. Changing the range and body of a for-loop means only the change

to the range will be kept.

Lastly, if there are several changes to the body of an expression, only the first one is

retained. For the full description of the heuristics, see appendix A, which shows JetBrains’

description of the heuristics, as described in their supplementary materials (3) to their paper

introducing the system (2).

III. Scientific article
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Abstract

The rapid advancement of Large Language Models (LLMs)
in recent years is not without concerns, such as a lack of pri-
vacy, environmental impact, and financial concerns. It might
therefore be beneficial to use Small Language Models (SLMs)
instead, which are more accessible to be run by individuals or
organisations, thus resulting in more control over the model.
This research investigates whether we can replace an LLM
with an SLM inside an AI hint-generation system, and achieve
comparable hint quality, by conducting an expert study to val-
idate generated hints based on a set of criteria and by con-
ducting a student experiment, investigating student satisfaction
and trust in the system. The expert results show that the hints
generated by the SLM-powered system are slightly less per-
sonalised to the situation, are noticeably more misleading and
more often suggest the wrong approach. The student experi-
ment shows similar results for these criteria, and shows a slight
decrease in the overall perceived helpfulness of the hints, trust
in the system and willingness to continue using the system.
The most prevalent complaint for the SLM-powered system
was its inconsistency in the hint quality, as it generated good
and useful hints in some contexts, but also suggested wrong
and unusable hints too often. Thus, while replacing the LLM
with an SLM has potential, as it is capable of generating useful
hints, current SLMs are still too inconsistent.

Introduction
In education, it is vital that students stay engaged with the
material when learning anything new [1]. To accomplish this,
we must help students overcome obstacles that would demo-
tivate them from continuing and finishing courses, such as
being stuck on an assignment, or wanting further clarification
on some material. More specifically, in programming edu-
cation, students could face problems such as being unable to
find a bug in their code, or not knowing what approach to take
to solve a coding problem. [2]–[4]

The biggest problem in helping students with their issues is
the need for enough teaching staff to be available for students
to have the most effective learning environment [5]. This is
an increasingly difficult challenge, given the growing ratio of
students to teaching staff [6]. However, complementing the
teaching staff with an AI tutor or hint system can help solve
the shortage of staff [7]–[10], providing students with 24/7
access to help.

Additionally, having access to an AI tutor solves the prob-
lem where students might be uncomfortable seeking help
from course staff [11], as the barrier is much lower to ask
a non-human AI for help. Thus, we have a strong motivation
to implement and optimise AI hint-generation systems such
as CodeAid [9], the LLM Hint Factory [12], and the Help
Tutor system [13]. JetBrains has also developed an AI hint
system [14], which is the use case for this research. It is in-
tegrated into the IDE in their JetBrains Academy plugin. The
system can give students hints based on their current imple-
mentation, guiding them to a solution to the problem without
plainly giving them the answer.

Many AI hint-generation systems currently use an LLM
like OpenAI’s GPT-4 to generate code and text hints. How-
ever, this raises several concerns, especially in education,
where large groups of students would use the system. Pri-
marily, data privacy might be important for universities if

they were to use the system. Not having full transparency
and control over the students’ data could discourage the use
of AI hint-generation systems by universities. Additionally,
financial and environmental concerns also play a role in the
decision to use the system. Thus, it could be beneficial to
replace the Large Language Model (LLM) with a Small Lan-
guage Model (SLM), which a university or organisation could
run locally and have full control over. This research will fo-
cus on whether an SLM, enhanced with Retrieval Augmented
Generation (RAG), can generate hints of comparable quality
to hints generated by an LLM.

Contributions and Research Questions
In this research, we investigate how the findings that SLMs
can perform comparably to LLMs extend into a more niche
domain: the Kotlin programming language. Being a much
less prominent programming language, it will not be as preva-
lent in the training dataset used for an SLM as a programming
language like Python would be. We investigate the difference
in quality of the generated hints by conducting an expert study
and determine student satisfaction with the system through a
student experiment.

We balance the possible knowledge gap of an SLM by pro-
viding the model with a RAG module, and researching the
difference RAG makes in the students’ satisfaction with the
system.

In this research, the SLM is part of a larger system that in-
cludes static analysis and processing of the generated hints
[14], possibly further reducing any drawbacks that might
arise from using an SLM instead of an LLM and potentially
bringing the quality of hints generated by SLMs even closer
to that of an LLM.

Thus, our contributions can be summarised as follows:

• Augmenting an SLM with RAG and evaluating it as part of
a larger system that includes static analysis and processing
of the generated hints.

• Evaluating the SLM-powered AI hint generation on a niche
domain: the Kotlin programming language.

• Combining insights from an expert study with insights
from a student experiment.

These contributions are encapsulated by answering the fol-
lowing research questions:

• How does replacing an LLM with an SLM as part of an AI
hint-generation system affect the hint quality as determined
by experts?

• How does replacing an LLM with an SLM as part of an AI
hint-generation system affect student satifaction and trust
in the system?

Related work
Incorporating AI tutors into a course to complement the
teaching staff can help the students increase their learning and



task performance [6]. Multiple implementations of such an
AI tutoring system have been developed, tested and deployed
around the world in courses both in and outside the field of
computer science. Since this research focuses on program-
ming courses, this section does too, but a few examples of
AI in education outside of computer science are still shown.
We also discuss some concerns about integrating AI tutors
into education. Lastly, this section also discusses Small Lan-
guage Models (SLMs) and Retrieval Augmented Generation
(RAG), a technique commonly used to enhance SLMs by pro-
viding them with access to more knowledge.

LLM tutoring systems in general education
A chatbot tutoring system powered by a RAG augmented
LLM, developed and tested in collaboration with the Transil-
vania University of Brasov has shown promising preliminary
results in their Virtual Instrumentation course [15]. It shows
a potential to improve the students’ learning experience by
providing contextually accurate responses to their questions.

In [10], the authors compare the use of a custom RAG-
augmented LLM tutor, a ChatGPT4 Turbo tutor, and not us-
ing any AI tutor in an introductory psychology course to see
how they affect the students’ learning. The students com-
pleted a writing assignment using either the RAG tutor, Chat-
GPT tutor, or no tutor and took a multiple-choice exam about
the content of the assignment afterwards. The results show
that students who had access to either of the two AI tutors
scored significantly higher on the exam than students who did
not have access to an AI tutor. In this study, there was no sig-
nificant difference between the two AI tutors, but that might
be due to the introductory nature of the course, diminishing
the need for an external knowledge base. However, it clearly
shows that AI tutors can be a valuable tool within education.

LLM tutoring systems in CS education
The latest LLM breakthroughs have been used to develop a
system that provides students of an introductory computer
science course with real-time feedback on their code style
[16]. It is found that students who receive their feedback im-
mediately are five times more likely to view it than students
who receive the feedback with a delay. It is also found that
students who viewed their feedback were more likely to apply
it and make significant style changes to their code. However,
there are also limitations to the system. There are still cases
where the model responds with an inaccurate response or with
a hallucination. Additionally, the model used a non-public
and non-adjustable dataset, so it is quite rigid in its behaviour.
Lastly, the model cannot provide high-quality feedback for
some areas, such as indentation or major restructuring.

CodeAid is an LLM-powered programming assistant that
was deployed in a programming course with 700 students,
with the aim to give students helpful and technically correct
responses without revealing solutions [9]. Students appreci-
ated the constant availability of the assistant and its ability to
clearly explain code or complex topics and assist in identi-
fying errors. Students could ask the assistant lots of diverse

questions without ”having to talk to a human who will judge”
them. They also appreciated the AI assistant over simply us-
ing a search engine because the AI assistant has more con-
textual knowledge, as it is hard to provide code to a search
engine. Additionally, students could ask questions in the way
they wanted to, instead of trying to match the title of the most
relevant StackOverflow post. There were, however, also some
drawbacks. The responses were often too brief and lacked
depth, requiring students to ask follow-up questions to get a
satisfactory answer. There were also concerns about the cor-
rectness of the responses, sometimes giving students mislead-
ing suggestions for fixing their code.

In [8], the authors also show that students reacted posi-
tively to an AI assistant, as they felt they had a personal tutor
available at all times. The AI assistant also had built-in peda-
gogical guardrails and could be used to explain code snippets,
improve code style and respond to questions on the course’s
discussion forum. The responses on the forum are not meant
to replace human involvement, but rather complement it, as
they are all subject to endorsement, amendment or deletion
by staff members.

Dangers of using LLM tutors in education
While AI tutors can help students learn, there are also dangers
and negative aspects we should be aware of [17]. There is an
inherent distrust of the answers given by an AI tutor, and there
are concerns about the quality of education and the value of a
diploma. Since LLMs are at a point where they can solve any
exercise from introductory programming courses [9], we need
to implement guardrails ensuring the AI tutor will help the
students solve the assignment themselves, instead of solving
it for them. AI-generated hints can also cause frustration for
students if the hint repeats things they already know and state
the obvious [12].

Small Language Models (SLMs)
Small Language Models are compact versions of Large Lan-
guage Models, designed to be more efficient at the same tasks.
The models use fewer parameters and are trained on less data,
making them more flexible and customisable. Additionally,
the models are smaller, making it easier to run them locally,
giving full control and improving the cost-efficiency, data pri-
vacy and environmental effects compared to an LLM that is
run on a large supercomputer by a corporation [18]. How-
ever, the benefits of a smaller model are not without a cost,
as the model’s smaller size and reduced training set impact
the quality of its output. Nevertheless, SLMs can still achieve
comparable results to LLMs [19]–[23], especially when aug-
mented with techniques like Retrieval Augmented Generation
[18], [24] to cover gaps in the SLM’s knowledge caused by
the reduced training set, making SLMs a viable alternative to
LLMs in certain contexts.

Retrieval Augmented Generation (RAG)
Retrieval Augmented Generation is a technique that allows a
model to access additional information which was not nec-



Figure 1: An overview of the AI hint-generation system.

essarily part of its training data. This means the model can
generate responses based on more than just its parametric
memory. Augmenting a model with RAG will change the
way a prompt is handled. Instead of going straight to the
model, the prompt is first processed by the RAG component.
This component has access to a knowledgebase and will re-
trieve chunks of information from it based on their relevance
to the request. The gathered information is then passed to
the model, together with the original query, to generate a re-
sponse that can use the relevant information from the knowl-
edgebase. Additionally, the knowledgebase can easily be up-
dated or replaced, resulting in much more flexibility [25].
Thus, the model can have access to the most up-to-date infor-
mation without the need for constant fine-tuning or retraining
[26]. RAG is thus especially useful in an educational context,
since we can easily supply the model with a different knowl-
edgebase for each course.

Using the benefits of RAG, it is possible to outperform
state-of-the-art models on question-answering tasks by com-
bining the strengths of ”closed-book” (purely parametric)
and ”open-book” (retrieval-based) approaches [25]. It also
achieves impressive results in other tasks such as Jeopardy
question generation and fact verification. In general, the au-
thors find the responses generated using RAG to be more fac-
tual, specific, and even more diverse. However, the authors
also note that we should pay special attention to the knowl-
edgebase we provide to a RAG model, as it can be a new
source of bias or even incorrect information if the knowledge-
base is not properly vetted.

The authors of [26] also implemented a framework to cre-
ate RAG-enhanced AI tutors. They allow the user to upload
their own knowledgebase, which will then be used to pro-
vide extra information to queries before they are passed to
the LLM. The authors show that the system performs well on
accuracy, relevance, and citation, meaning the responses were
factually correct, aligned with the question and supported by
citations from the relevant sources.

RAG can be used to reduce hallucinations in the responses
provided by a model, resulting in high accuracy when the

questions were within the intended scope [7]. Thus, RAG
can be a key technique to enhance the factual correctness and
reliability of the model [24].

Methodology
This section describes the methodology for implementing our
SLM and RAG system, and describes the expert study and
student experiment.

Implementing the SLM and RAG API
The current implementation of JetBrains’ system uses their
custom backend designed to communicate with several
LLMs, like OpenAI’s ChatGPT-4o. It does not support com-
munication with any SLMs, so for this research, we imple-
mented our own API using Ollama1, allowing us to easily
experiment with different SLMs. For the RAG component,
we implemented the API using LlamaIndex2. An overview
of the flow of our system when the student requests a hint can
be seen in Figure 1

To find the optimal SLM and RAG configuration, we per-
formed individual testing by comparing the quality of the
hints and RAG outputs generated by the different systems for
the same contexts. To account for the probabilistic behaviour
of the models, we generated multiple hints per context for ev-
ery model. The optimal configuration we found can be seen
in Table 1

Generating expert study dataset
To test the quality of the SLM-generated hints compared to
the LLM-generated hints for the same context, we need a di-
verse dataset of hint situations. To obtain this dataset, we

1Ollama. Retrieved from https://ollama.com
2LlamaIndex. Retrieved from https://docs.llamaindex.ai/

en/stable/
3Ollama: Qwen2.5-Coder:7b, a version of the Qwen2.5 model

fine-tuned for code generation, code reasoning, and code fixing. Re-
trieved from https://ollama.com/library/qwen2.5-coder:7b

4ChromaDB. Retrieved from https://docs.trychroma.com/
docs/overview/introduction

5BAAI/bge-base-en-v1.5. Retrieved from https://
huggingface.co/BAAI/bge-base-en-v1.5
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SLM Model Qwen2.5-Coder:7b3

RAG knowledgebase Kotlin documentation
RAG vector storage Chroma Database4

RAG embedding model the Beijing Academy of
Artificial Intelligence’s
bge-base-en-v1.55

RAG similarity measure Cosine distance

Table 1: The optimal configuration of the SLM-RAG used for the
AI Hint Generation system, as found from individual testing.

use the Kotlin Onboarding: Introduction course from the Jet-
Brains Academy plugin. The course consists of projects, such
as implementing games like Hangman or Mastermind. Each
project is divided into small tasks, guiding the student in im-
plementing the project.

From the course, we use 5 projects and choose 2 tasks
for each project. We select the tasks in such a way that we
have a varied set of tasks; a balance of simple and more
complex tasks, and different types of tasks, such as user in-
put/output, full game logic and implementing helper func-
tions. Within the tasks, we also generate multiple contexts per
task, corresponding to multiple stages of a student’s imple-
mentation, such as a student not knowing how to start, being
stuck halfway through their implementation, or being almost
finished but having a bug in their code. Lastly, to account for
probabilistic outputs, we also generate multiple hints for both
the SLM and LLM for every context. If the generations are
significantly different, either in the text hint or the code hint,
we include all of them in our dataset. In total, the dataset
consists of 59 generated hints.

Expert validation criteria
To assess the quality of the generated hints, we ask experts
to rate each generated hint using a set of validation criteria
adapted from [14] and [27]. Specifically, the criteria used are
as follows.

• Personalised - Does the hint refer to the student’s code,
and is it a logical extension of the student’s code?

• Appropriate - Is the hint a suitable next step to solve the
task, given the current state of the student’s code and de-
sired outcome?

• Misleading information - Does the hint contain any mis-
leading information or hallucinations? e.g. using incorrect
functions or non-existent variables.

• Intersection - Is the hint already fully or partially imple-
mented in the student’s code? i.e. does the hint repeat steps
the student has already done?

• Code quality - is the code compilable, does it not have
common code quality violations, such as incorrect brackets
and does it conform to code conventions?

• Level of detail - is the hint a high-level description or a
specific bottom-out hint?

All of the criteria are binary criteria, with all criteria except
for the level of detail being yes/no criteria. The set of crite-
ria was chosen because they cover the essential elements that
define a good hint, and thus the most important areas where
the SLM should perform similarly to the LLM. Additionally,
criteria like length of the code hint, as used in [14] are cov-
ered by the static analysis component of the system, and thus



can be excluded from our research, as this is not the part of
the system we are evaluating.

Expert study setup
To qualify as an expert for the study, both programming
knowledge and teaching experience is required. Specifically,
our group of experts is a mix of computer science professors
and teaching assistants from the Delft University of Technol-
ogy. We executed the study with 6 professors and 10 teaching
assistants, dividing the dataset into three subsets for the pro-
fessors and two subsets for the teaching assistants and having
each expert evaluate one subset. Thus, every data point was
evaluated by 2 professors and 5 teaching assistants.

The experts filled in a survey, where for each scenario, the
student context is first shown and explained: what task the
student is trying to implement and what mistake the student
made or what the student is struggling with. Then, experts
are shown all the hints generated for that context by both sys-
tems, with the text and code hint of each generation grouped
together. The hints are rated blindly, meaning the expert has
no bias induced by knowing what system they are evaluating.

Before being sent to the experts, the survey was subjected
to an iterative feedback loop by first performing the study in
a testing scenario with peers. This ensures good quality and
makes it as easy and clear as possible, thus minimising any
noise in the data caused by misunderstanding the survey or
the criteria. The feedback resulted in improvements such as
better formatting and clearer explanations for certain parts of
the survey.

Student experiment setup
After experts have evaluated the quality of the hints generated
by the system, we perform a student experiment, emulating
the system’s real use case. Two groups of students implement
one of the projects from the Kotlin Onboarding: Introduction
course, while using the hint-generation system to ask for hints
if they are stuck. One group will only have access to the
original system, using an LLM, while the other group will
only have access to the RAG-augmented SLM system. After
the students have finished the project, they will complete a
satisfaction survey, where they will rate their experience with
the system and their trust in the hints.

Each group consists of 14 students, with a comparable dis-
tribution of English proficiency, study progress, general cod-
ing experience, Kotlin experience, and experience with using
AI systems.

The survey is adapted from [14], asking students about
their satisfaction with the system, such as whether they found
the hints helpful, what type of hints they preferred, and
whether they would continue using the system. Additionally,
the survey includes the same criteria from the expert study,
now as a 5-point Likert scale, where students rate all hints as
a whole, instead of rating each hint on its own. Lastly, the sur-
vey also gathers general information about the students to see
whether these characteristics influence the students’ satisfac-
tion and to ensure comparable demographics in each group.
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Figure 3: The average percentage of experts that classified each gen-
erated hint as a concrete, bottom-out hint, versus a more abstract,
high-level description. The error bars represent the average standard
error over the data.

The characteristics include their English proficiency, study
progress, experience with programming and Kotlin, and their
opinion on AI and its usefulness.

Again, the experiment is tested iteratively, by first perform-
ing it with peers and students to gather feedback, before per-
forming the experiment with the actual group of students. The
individual round showed that parts of the experiment instruc-
tions and task descriptions in the course needed rephrasing.
Additionally, it highlighted some problems that could occur
when setting up the environment. Thus, the commonly en-
countered problems and their solutions were also included in
the instructions.

Results
Expert study
The results from the expert study can be seen in Figures 2
and 3. We see from Figure 2 that the code quality of hints
generated by the SLM is of a similar standard as the hints
generated by the LLM. The SLM scores slightly worse on the
personalised and intersection criteria. Thus, on average, the
hints generated by the SLM are less of a logical extension of
the student’s code and more often repeat steps that the student
has already implemented. Lastly, on average, we see that the
SLM-generated hints are significantly less appropriate, and
more misleading. This means the hints more often suggest
a suboptimal next step, or possibly even contain an incorrect
next step, with functions being used incorrectly or containing
erroneous code.

From Figure 3, we see that the LLM generates hints that
are classified as 69% bottom-out hints, and 31% as high-level
descriptions on average, meaning the LLM more often gener-
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ates hints that plainly tell the student what to do. The SLM,
on the other hand, generates hint that are on average classified
as 50% high-level descriptions, and 50% as bottom-out hints.
Thus, on average, half of the hints generated by the SLM give
a more abstract push in the right direction, and the other half
are concrete bottom-out hints.

To assess the reliability of the results gathered from dif-
ferent experts, we computed Krippendorff’s Alpha [28]. We
obtained a Krippendorff’s Alpha of 0.705, suggesting moder-
ate agreement and consistency among the experts. While not
perfect, this level of agreement shows that the experts were
reasonably aligned in their ratings, but there is still room for
improvement in terms of consistency.

Student experiment
The results from the student experiment can be seen in Fig-
ures 4 and 5. Figure 4 shows the students’ opinion on the
same five criteria as used in the expert study, except as a 5-
point Likert scale instead of binary criteria. It also shows how
helpful the students found the hints, and how much trust they
have in the hints and the system.

We see that the SLM’s scores for the five criteria are be-
tween 10-20% worse than the LLM’s scores, except for the
code quality, where it is only 5% worse. Similar to the expert
study, we see the biggest performance drop in the appropri-
ateness of the hint and how often the hint contains misleading
information.

For the general helpfulness and trust in the hints, we also
see a slight decrease for the SLM, seeing a 10% drop in help-
fulness, and a 5% drop in trust.

In Figure 5, we see that 69% of the students who used the
LLM system would continue using hints, though just over

half of these students would only continue if certain changes
are made to the system. The two changes that students would
like to see are the ability to give some form of feedback or
ask a return question to the AI, giving the student the abil-
ity to give feedback on the hint and directly generate a new
hint using this feedback. Additionally, the hints would need
to generate faster and be more consistent, as even the LLM
occasionally generates hints that are not useful at all.

We see that 64% of the students who used the SLM sys-
tem would continue using hints. However, here, more than
three-quarters of these students would need certain changes
in the system. Here, the main concern is the consistency of
the correctness and usefulness of the hints. The system does
generate correct and usable hints, but it also generates too
many incorrect and unusable hints.

We also collected open feedback for the experiment, which
showed that, in general, the hints are very hit or miss. If the
AI can detect the mistake or problem in the code, the gener-
ated hint is generally of high quality and useful. However, if
it does not see the problem, the hint is often unusable, sug-
gesting something completely irrelevant, like removing a pre-
viously implemented function that has nothing to do with the
current task, or removing some newlines. This holds for both
the LLM and SLM systems, but was more prevalent in the
SLM system.

Another common improvement that students would like to
see is the possibility to communicate with the AI. Students
would like to be able to tell the model what they are struggling
with, ask it questions, or give feedback on the generated hints
and generate a new hint taking this feedback into account.
Even though this is not relevant to the research questions, this



feedback is mentioned because it occurred often.
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Figure 5: Percentage of students that would continue using the AI
Hint Generation system. The changes students would want, to con-
tinue using the system were given as open answers.

Discussion
From the expert study, we can see that the main quality de-
crease of the SLM-generated hints is the appropriateness and
correctness of the hints, meaning there is often a better next
step towards a solution than the one suggested in the hint.
Additionally, the hint might not always be correct and can
contain mistakes, such as calling a helper function that does
not exist or using the wrong library function.

The appropriateness of the LLM-generated hints was al-
ready relatively low, and the decrease for the SLM means that
more than half of the hints suggest a suboptimal next step, on
average. Together with the increase in misleading hints, this
becomes a concern for the use of an SLM inside the hint-
generation system, as the wrong next step can cause the stu-
dent to have more trouble with the assignment, and mislead-
ing information can teach the student incorrect information
or practices. One mistake that was seen often was suggesting
using a helper function implemented in the author’s solution,
without actually implementing it. The signature of the au-
thor’s helper functions are passed to the model to give an idea
of what helper functions could be implemented by the stu-
dent, but instead are sometimes interpreted by the model as
being implemented already.

Similar results are seen in the student experiment, where
the five criteria are also evaluated, and we see a similar drop in
ratings, with the appropriateness of the hints and the amount
of misleading information in the hints being responsible for
the biggest decrease in quality. For the general helpfulness of
the hints and trust in the system, the students rated both the
LLM and SLM systems around the range of a 2.5 to 3.0 score
on a 5-point Likert scale. With the margins of error, these are

quite close together, with the LLM system scoring slightly
better in both categories.

We also see that 69% of the students who used the LLM
system would continue using it, and 64% of the students who
used the SLM system would too. However, for the SLM sys-
tem, more than three quarters of the students who would con-
tinue using the system say this is only if certain changes were
implemented in the system, mostly focusing on more consis-
tent hints. For the LLM, almost half of the students would
continue using the system as it is.

Thus, we see that using an SLM shows promise, but it is
not good enough yet. Students express that they would like to
keep using the system, even when powered by an SLM, but
the consistency is still lacking compared to the LLM. With the
field constantly developing, this problem could be solved as
SLMs get better over time. Alternatively, using larger SLMs
could mitigate this problem, though this reduces the accessi-
bility of the system, as larger SLMs require more computa-
tional power to run.

Limitations
One limitation of this research is the reliability of the expert
study. We obtained a Krippendorff’s Alpha of 0.705, suggest-
ing moderate agreement and consistency between the experts.
Ideally, it should be 0.800 or higher to indicate the most reli-
able results.

Another limitation is the length of the student experiment.
The experiment was a short session where students completed
one small programming project with help from the AI hint-
generation system. However, we could gain more insights
from a study where students use the system for a prolonged
period of time, spanning multiple sessions and assignments.

Conclusions and Future Work
In this research, we see that replacing the LLM inside an AI
hint-generation system with an SLM results in a noticeable
drop in hint quality as determined by experts. The appropri-
ateness of the hints is responsible for the biggest decrease in
quality, together with an increase in misleading information
in the hints.

From the student experiment, we see that the students per-
ceive a similar drop in hint quality, with the appropriateness
and misleading information again resulting in the biggest de-
crease in quality. However, we see that the students’ rating of
the general helpfulness of the hints and trust in the system is
only slightly worse for the SLM, compared to the LLM. Ad-
ditionally, for both systems, we observe a similar percentage
of students who express that they would continue using this
system. However, for the SLM, a larger portion of these stu-
dents would only do so if certain improvements were made,
such as more consistent hints.

Thus, while there is potential in replacing the LLM inside
a hint-generation system with an SLM, the drop in hint qual-
ity is still noticeable, both by experts and students. The SLM
can generate high-quality, usable hints, but it is too inconsis-
tent in understanding the problem that the student is strug-



gling with. This may be mitigated by using newer SLMs that
are continuously being developed and improved, or by using
a larger SLM. This could be the focus of future research, to-
gether with a more extensive student experiment.
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Appendix

A. Heuristics for static analysis

Heuristic Description Application Examples

Additive If the first difference is an Function → Replace body with TODO("Not
Statement addition, only the state- yet implemented")
Isolation ment is retained While, For → Remove body

If → Remove body and else block
When → Remove entries

Return → Proceed to simplify the expression
following the return statement

Intrinsic If the first difference is Function → Change the function parameters
Structure a modification that in- While → Change the condition
Modifica- volves changes to the con- For → Change the loop range or the loop
tion Focus dition and the body of parameter

an expression, only the If → Change the condition or else block
change related to the con- When → Change the subject expression

dition remains.

Internal If there are several Function, While, For, If, When, Return →
Body changes to the body of Change the first difference in its body

Change an expression, we only
Detection retain the first one.

Table A1: Heuristics used in the static analysis step of the JetBrains AI Hint generation
system as described in (3)
. The heuristics control the size of the generated code-hint to ensure it corresponds to one

logical step.

B. IDE view of the hint generation system

i



Figure A1: What the student sees while using the JetBrains Academy plugin after pressing
the ’Get Hint’ button, highlighted in red at number 1. At number 2, the generated text hint
is shown, and at number 3, the relevant line inside the code is highlighted.

ii



Figure A2: What the student sees while using the JetBrains Academy plugin after pressing
the ’Show in code’ (highlighted in red at number 1) button after receiving the text hint. At
number 2, the generated code hint is shown compared to the student’s current code, and
at number 3, the student can press the ’Accept Hint’ button to incorporate the suggested
change into their code.
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