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AbstrAct
Autonomous flight for UAVs relies on visual 

information for avoiding obstacles and ensur-
ing safe collision-free flight. In addition to visual 
clues, safe UAVs often need connectivity with 
the ground station. In this article, we study the 
synergies between vision and communications 
for edge-computing-enabled UAV flight. By pro-
posing a framework of edge computing assist-
ed autonomous flight (ECAAF), we illustrate that 
vision and communications can interact with and 
assist each other with the aid of edge computing 
and offloading, and further speed up UAV mission 
completion. ECAAF consists of three functional-
ities that are discussed in detail: edge computing 
for 3D map acquisition, radio map construction 
from the 3D map, and online trajectory planning. 
During ECAAF, the interactions of communica-
tion capacity, video offloading, 3D map quality, 
and channel state of the trajectory form a positive 
feedback loop. Simulation results verify that the 
proposed method can improve mission perfor-
mance by enhancing connectivity. Finally, we con-
clude with some future research directions. 

IntroductIon
With the advantages of high mobility, flexible 
deployment, and low cost, unmanned aerial vehi-
cles (UAVs), or drones, have drawn great atten-
tion in the commercial, civil, and military fields. 
Generally, UAVs are expected to quickly com-
plete their mission while guaranteeing autonomy 
and safety. Autonomy and safety require good 
environmental awareness on one hand, but also 
reliable wireless connectivity for remote control, 
cooperation, and aerial deconfliction on the other 
hand [1]. As both visual mapping and wireless 
connectivity are a given, the main question we 
answer is how they could strengthen each other 
synergistically with the aid of edge computing.

Current UAV-ground communications mostly 
adopt short-range local network techniques such 
as WiFi [2]. Although easy to use, they have some 
limitations in operating range and co-channel inter-
ference management [3]. Recently, with the rapid 
development of cellular networks (LTE and 5G), 
cellular-connected UAV has become a promising 
solution where the UAV connects with cellular base 
stations (BSs) as an aerial user along with ground 

users [4]. Cellular networks allow the UAV to main-
tain connectivity over a large range. The 5G ultra-re-
liable low-latency communications (URLLC) service 
also meets the demands of low latency, real-time 
communication, and robust security.

In some visual UAV applications (e.g., surveil-
lance, monitoring), the onboard camera is the 
primary payload to perform the task. It also plays 
a key role in supporting subsystems and is widely 
adopted by UAVs for autonomous navigation and 
obstacle avoidance. From the captured video, it 
is possible to extract auxiliary information such 
as the UAV position and 3D map features of the 
explored areas [5]. With this information, the UAV 
is able to obtain awareness of the environment 
around it and autonomously adjust its trajectory. 
Furthermore, the UAV movement is also affected 
by the information update rate: a higher flying 
speed requires a faster update rate, which poses 
a challenge for the onboard processing capability. 
However, in the upcoming 5G era, mobile edge 
computing (MEC) enables powerful computing 
capability at the edge of cellular networks [4]. 
Similar to autonomous driving, the onboard com-
putational tasks can be offloaded to the ground 
and processed remotely, which speeds up the 
information acquisition for UAVs [6].

On the other hand, the explored environ-
mental information can be exploited to improve 
communication performance. Specifically, the 3D 
map enables the UAV to be aware of the obsta-
cles between the BS and UAV that influence the 
signal propagation. The 3D map can be generat-
ed from the captured video by vision processing 
algorithms such as simultaneous localization and 
mapping (SLAM) [5]. The key idea in this article 
is to leverage the captured video to incrementally 
construct a 3D map of the environment for the 
UAV and predict the wireless link states around 
it; then the UAV adaptively designs its real-time 
trajectory, trying to maintain a line-of-sight (LoS) 
link with the BS. The UAV can offload its comput-
ing tasks to the edge computing server for fast-
er video processing and map acquisition. Since 
typically the speed of a vision-navigated UAV is 
limited by the map update rate, edge computing 
also enhances UAV mobility and makes the tra-
jectory more flexible. Moreover, edge computing 
relies on the offloading link capacity. Thus, in turn, 
a good link guarantees high-quality mapping and 
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UAV mobility. By the positive interaction of visual 
information and communications, both of them 
can be enhanced. 

Inspired by the above idea, in this article, we 
propose a framework of edge computing assist-
ed autonomous flight (ECAAF) for UAVs flying 
in urban areas. The contributions can be summa-
rized as follows:
• Focusing on the synergies between vision 

and communications, we propose a solution 
to realize real-time path planning for UAVs 
in urban areas without known maps.

• With ECAAF, we illustrate that vision and 
communications can interact with and assist 
each other with the aid of edge computing 
and task offloading. The framework architec-
ture and trade-offs are thoroughly discussed.

• We offer a detailed implementation of the 
ECAAF solution and verify it by a case study.

communIcAtIons And VIsIon for uAV
This section presents the communication and 
vision related approaches to improve UAV flight 
performance. We discuss two specific techniques 
that are typically considered in isolation: com-
munication-aware and vision-assisted trajectory 
planning. For autonomous flight, communication 
awareness requires the UAV to sense or predict 
its link states and keep the connectivity reliable. 
Vision awareness obtained from SLAM enables 
the UAV to construct and update the 3D map of 
its environment using its onboard sensors so that 
it can adaptively adjust its trajectory.

communIcAtIon-AwAre flIght
In order to maintain a good connection with the 
BS, the UAV trajectory or placement can be delib-
erately designed with communication awareness. 
There are several approaches to enhance com-
munication awareness, such as LoS-based channel 
modeling, channel measurement-based estima-
tion, and map-assisted channel estimation [4].

For the channel modeling, unexpected obsta-
cles are the primary cause of the degradation and 
uncertainty of the air-to-ground link, especially in 
urban areas. Due to the obstacles, the link state 
can be either LoS or non-LoS (NLoS). The lat-
ter results in much lower received signal quality. 
To estimate the channel gain, a widely adopted 
method is to approximate link path loss (i.e., sig-
nal attenuation in the channel) by estimating the 
LoS occurrence probability, which depends on 
the UAV-ground elevation angle [7] Some studies 
adopt this model to define the UAV altitude for 
maximal coverage [8], and to optimize the UAV 
trajectory for maximal data collection in a UAV-en-
abled wireless sensor network (WSN) application 
[7]. The statistical channel models are general 
and provide good insights to network designers. 
However, the LoS-probability-based method does 
not apply to real-time flights in obstacle-dense 
regions. One improved method is to combine the 
offline LoS modeling and online channel-measure-
ment-based schemes [9]: first, an offline path is 
optimized using the probabilistic LoS model; next, 
the UAV adaptively adjusts its speed and commu-
nication scheduling along the offline path based 
on the instantaneous channel state information 
(CSI). Although the leaning-based CSI approach 
can infer the LoS state from the variation pattern 

of CSI over time, this approach is mainly effective 
at the measured moments and locations, which 
limits its application in large and unexplored 
regions. If the learning approach is further adopt-
ed to predict the CSI map of unexplored regions, 
it requires massive offline training data and a ded-
icated training model [9], which might be unavail-
able in a new environment.

Another way to estimate the channel gain is by 
exploiting the real 3D map instead of the above 
two approaches. The map-based LoS/NLoS clas-
sification works for larger regions than the CSI 
approach, and it is more reliable for locations 
where the UAV has never been. Once the 3D 
map is given, the link state (LoS or NLoS) between 
any two locations can be accurately inferred [4]. 
This map-aided method has been implemented 
in several UAV applications. For example, in [10], 
by combining the 3D map and a path loss model 
to generate the coverage map, the shortest trajec-
tory is designed under cellular connectivity con-
straints. Note that the premise of this method is 
to obtain a 3D map of the flight-related regions, 
which may be not available or reliable in practice.

VIsIon-AssIsted flIght
Vision is another type of important supporting 
information for UAV flight that can be captured 
by onboard vision sensors (e.g., depth camera). 
To extract valid information from the captured 
video, SLAM is a widely adopted technique where 
the UAV is capable of online map building, while 
simultaneously utilizing the generated map to esti-
mate and correct errors in the navigation solution 
obtained [11]. When video frames are captured, 
they are first pre-processed (e.g., pose feature 
extraction, pose estimation, and keyframe selec-
tion). Then, based on the keyframes, visual track-
ing and dense map fusion are executed. Finally, 
the updated 3D map can be obtained after a 
loop correction [12]. With the map information, 
the UAV can not only recognize the obstacles 
but also plan its trajectory to avoid them. There-
fore, SLAM enables the UAV to autonomously 
and safely fly in map-unavailable areas and even 
GPS-denied areas [5].

However, real-time SLAM requires a huge 
amount of computations, especially when the 
vehicle is moving at high speed, which requires a 
high SLAM update rate. This requirement quickly 
exceeds the limited onboard computing power of 
a UAV and limits its flying speed and flexibility. A 
potential solution is to offload the computational 
task to the ground server and send the obtained 
SLAM results back to the UAV. This mode is 
known as cloud SLAM, which has been studied 
in some practical applications [12]. Robo-Earth, as 
a representative project, has successfully demon-
strated some cloud SLAM cases [13] in practice. 
Note that here the “cloud” concept only refers to 
non-local processing, which is not identical to that 
in “cloud computing.” In cellular networks, cloud 
SLAM requires extra computing capability at the 
BS side, which just matches the typical scenario of 
the upcoming 5G with MEC [4].

ecAAf frAmework
According to the above introduction, both aware-
ness of communication and vision can promote 
UAV mission performance. In this section, by 

In order to maintain a good 
connection with the BS, the 
UAV trajectory or placement 
can be deliberately designed 
with communication aware-

ness. There are several 
approaches to enhance 

communication awareness, 
such as LoS-based channel 

modeling, channel mea-
surement-based estimation, 
and map-assisted channel 

estimation.
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combining the two approaches and enabling 
SLAM offloading, we propose a framework 
of edge computing assisted autonomous flight 
(ECAAF) to interactively improve SLAM and com-
munication performance. 

feAtures of ecAAf: VIsIon And communIcAtIon sYnergIes
As illustrated in Fig. 1, a cellular-connected UAV 
maintains communication with a cellular BS 
during the whole flight. The UAV captures real-
time video and can offload it to the BS. The BS 
is connected with an edge server (ES) where 
the off loaded SLAM task is processed. Next, the 
obtained SLAM results are sent back to the UAV 
for map construction and online trajectory plan-
ning. The goal is to design a real-time trajectory 
from starting point to destination with:
• Minimum duration
• Less time and distance where the UAV-BS 

link is NLoS (i.e., unreliable channel)
During the ECAAF, visual perception and com-

munications interact and promote each other, as 
shown in Fig. 2. A higher-capacity link allows high-
speed video transmission between UAV and BS, 
which improves the 3D map quality and update 
rate. Then the UAV obtains better awareness 
of its wireless environment. It can also fly faster 
with a higher update rate of mapping and local-
ization. Accordingly, the UAV can more accu-

rately plan its real-time trajectory with better LoS 
states, which in turn promotes the communica-
tion capacity and reliability. Therefore, a positive 
interactive loop is formed where better commu-
nication improves environment perception, which 
meanwhile boosts communication performance.

ArchItecture of ecAAf
Figure 3 shows the architecture of ECAAF, con-
sisting of three parts:
• Video transmission and processing: When 

the raw video is captured, it is compressed 
and off loaded to the UAV-serving BS through 
uplink. Then the map features are extracted 
at the ES side by the SLAM algorithm.

• Map construction: The obtained map features 
and localization results are sent back to the 
UAV via downlink. Then the UAV merges 
new map features into the existing local 3D 
map and transforms it into a radio map (a dis-
tribution of uplink channel gain) by classifying 
the link state of neighboring locations. 

• Trajectory planning: From the map, the UAV 
knows which directions are promising to 
achieve higher link capacity. It accordingly 
plans its following trajectory as well as the 
off loading decisions (i.e., whether the video 
is processed locally or remotely). When the 
UAV moves to a new position, the incoming 
video is processed using the same process.
From the communication aspect, the 3D map 

acquisition relies on both downlink and uplink. The 
raw video off loading is through uplink and the gen-
erated map features transmission is through down-
link. The uplink determines the off loading rate and 
thus aff ects the remote processing rate, while the 
requirements for downlink are lower because the 
returned map features are much less data. The 
downlink also transmits command and control sig-
nals from the ground mission control station for 
mission control and necessary intervention.

The ECAAF implementation has the following 
requirements, which have been separately real-
ized in practical cases [11–13]:
• Cellular network connectivity
• An onboard visual sensor (monocular or ste-

reo camera) to capture video
• An ES and onboard computer with SLAM 

solving capability

ImPlementAtIon of ecAAf
This section concentrates on the specifi c technical 
details of the ECAAF solution: radio map construc-
tion, fl ying speed adjustment, and online trajecto-
ry planning. The details of SLAM algorithms can 
be found in [11] and are not described here. 

rAdIo mAP constructIon
Upon receiving the new 3D map features from 
the ES, the UAV merges them into the local map 
and updates its stored map, which contains the 
building height data of the explored areas. Then 
the UAV classifi es the link state of its neighboring 
locations and then transforms the obstacle map 
into a radio map.

Link state classifi cation: Knowing the BS loca-
tion and UAV current location, the UAV-BS direct 
line can be calculated. The UAV judges whether 
the line intersects with obstacles in its explored 
map and classifi es the link state as LoS (no inter-

FIGURE 1. Edge computing assisted autonomous flight (ECAAF). The UAV off loads its captured video to the edge server 
and receives the processed 3D map. The awareness of the local environment helps the UAV maintain an LoS link 
with the BS by online trajectory planning.
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FIGURE 2. Positive interaction loop of vision and communications in ECAAF. 
Better communication improves environment perception, which in turn 
boosts communication performance.
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section) or NLoS (intersection occurs), which is 
marked by a state indicator.

On the other hand, the BS can infer the LoS/
NLoS states of the UAV position by analyzing the 
variation pattern of the measured CSI. Then the 
obtained LoS/NLoS information is sent to the UAV 
and helps the UAV to correct the map-based link 
state classification. Because the complete map is 
unknown to the UAV, there may be unexplored 
regions lacking map information along the UAV-BS 
line. In this case, those map-missing parts are fi rst 
assumed to be LoS and then corrected by the CSI-
based classifi cation. If the link states of some direc-
tions have been marked as NLoS earlier, they keep 
the NLoS state without further estimation.

Map transformation: After obtaining the link 
state of current location and surroundings, the UAV 
calculates the path loss and channel gain at each 
estimated location and saves it to a radio map. The 
radio map is represented by a 3D table, which saves 
the channel gain corresponding to each location. 
The locations are defi ned in a BS-centered coordi-
nate system. When the UAV explores new space, 
the channel gain is calculated and added to the 
table. In this way, the 3D vision map is transformed 
into a 3D radio map. Figure 4 gives a diagram of the 
map transformation where a horizontal 2D slice of 
radio map is given for simplicity.

flYIng sPeed AdJustment
Because of the requirements of control accuracy 
and fl ight safety, UAV speed should be kept within 
a safe range, which depends on the off loading link 
capacity. In a simplified model, let the maximum 
speed be proportional to the mapping and localiza-
tion update rate, which can be viewed as the frame 
rate of SLAM processing and is limited by off loading 
transmission (remote processing time is ignored). 
The achievable frame rate is determined by link 
capacity and average data size per frame. Thus, 
the speed limit also depends on these two values. 
For example, assume the required SLAM informa-
tion for safe movement is 2 frames/m and the file 
size of each frame is 1 Mbit. When the offloading 
link capacity is 10 Mb/s; if the transmission delay is 
solely considered, the achievable frame update rate 
is 10 frames/s, and the UAV speed can achieve a 
maximum 5 m/s. Thus, the UAV should adaptively 
adjust its speed of the following trajectory based on 
the link capacity and safe fl ight requirements. Note 
that the remote processing mode also causes addi-
tional delay for the results feedback loop and local 
action decision, which will lower the map update 
rate. The additional delay includes processing delay 
and uplink/downlink data transmission delay. If a 
certain downlink message is missing, it also lowers 
the map update rate as well as the speed limitation. 
When the link state is bad and the UAV switches to 
local processing mode, the speed limitation depends 
on the local computing performance. 

onlIne trAJectorY PlAnnIng
At each moment, with the incrementally con-
structed environment map and the corresponding 
transformed radio map, a local LoS-aware and col-
lision-free trajectory is planned online for the UAV 
using model predictive control (MPC) [14]. MPC has 
been widely used for online trajectory generation of 
aerial vehicles [15]. It formulates a constrained opti-
mization problem with a local short planning hori-

zon, in which the LoS-dependent speed constraints 
and the environment-dependent obstacle avoidance 
constraints are imposed. The optimal local trajectory 
is then obtained by minimizing the fl ying time of the 
trajectory while satisfying the imposed constraints. 
The above formulated constrained optimization 
problem is solved at each moment in real time, with 
updated environment map and radio map, until the 
UAV reaches its destination. 

cAse studY
In this section, for comparison, we give a rep-
resentative case to illustrate the performance 
improvement of the proposed ECAAF approach, 
then present the statistical results of multiple tests.

scenArIo settIngs
We consider a 400 m   400 m city map with 
dense Manhattan-like building distribution. The 
building height follows the Rayleigh distribution 
[8] with a scale parameter of 35 m. The distance 
between the start and end points is 320 m. The 
maximum flying speed and altitude of the UAV 
are 15 m/s and 50 m, respectively. Three BSs are 
deployed in the scenario and the UAV maintains 
connection with one BS, as shown in Fig. 5.

The BS height is 25 m. The UAV antenna 
adopts a directional pattern as in [4], and the trans-
mit power is 30 dBm. Other detailed settings and 
parameters can be found in the simulation setup in 
[2]. The required SLAM update rate for safe move-
ment is 2 frames/m. The offloading model and 
SLAM processing settings refer to [6], and the cam-
era fi eld of view is set as 120°. In the online trajecto-
ry planning phase, the planning horizon is set as 10 
s, and the algorithm parameters refer to [15]. The 
objective is to minimize the flight duration as well 
as NLoS duration with the constraints stated earlier.

FIGURE 3. ECAAF architecture. The captured video is off loaded to the cellular BS and processed at the ES. Then the 
obtained SLAM results are sent back to the UAV and help it perceive its wireless environment and plan its real-
time trajectory. The data flow forms a closed loop.
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For comparison, a baseline trajectory without 
LoS awareness and an optimal trajectory (denoted 
as GlobeMap) with global environmental aware-
ness are solved. In the baseline, the link capacity 
is estimated using the probabilistic LoS model [8], 
and an extra obstacle avoidance mechanism [15] 
is added to the trajectory. The baseline only uses 
the local map to avoid obstacles but does not 
estimate LoS states. In the GlobeMap case, the 
trajectory is obtained under a known global map 
for both LoS awareness and obstacle avoidance. 
The baseline, ECAAF, and GlobeMap correspond 
to the without map, with self-explored local map, 
and with global map cases, respectively.

results
Figure 5 illustrates an ECAAF trajectory compared 
to the baseline where the LoS and NLoS parts are 
marked on the trajectories. The trajectory of Globe-
Map is very close to the ECAAF trajectory and thus 
not drawn. Compared to the baseline, with environ-
mental awareness, the ECAAF trajectory avoids many 
obstacles between the UAV and BS. Thus, a high-
er link capacity and faster speed are achieved. The 
flight distance of the baseline, ECAAF, and Globe-
Map is 373 m, 402 m, and 397 m, while the flight 
duration is 74.5 s, 48.3 s, and 46.8 s, respectively. 
Besides, the average uplink capacity of the three 
planned trajectories is 13.6 Mb/s, 16.7 Mb/s, and 
16.8 Mb/s, respectively. In this example, the per-
formance of the proposed ECAAF is much better 
compared to the conventional non-map-aware 
method and close to the global-map-aware meth-
od. With the local map and LoS awareness, the 
UAV manages to fly in good-channel regions and 
achieves higher link capacity. Although the detour 
causes some extra journeys, the UAV can fly fast-
er with the improved link capacity; thus, the total 
flight duration is significantly reduced. Because 
the locations of non-associated BSs are not known 
to the UAV, the UAV does not proactively predict 
the interference. When it flies toward the non-as-
sociated BS, the degraded downlink leads to extra 
delays and lower flying speed.

We also further repeat the simulation 20 times 
with different start and end points and with the 

straight-line distance ranging from 200 to 400 m. 
Before each test, a new map is initialized. Table 1 
lists the comparison results of the average perfor-
mance metrics of the 20 runs between the three 
types of trajectory. In the table, the NLoS distance 
ratio is the percentage of NLoS path length in 
the total flight path. When the UAV falls into the 
NLoS link, the interference shows more signifi-
cant impacts on the transmission delay, and the 
UAV tends to switch to local processing mode. 
It can be seen from the table that our proposed 
ECAAF can achieve faster flying and higher over-
all uplink capacity while keeping a lower NLoS 
distance radio compared to the baseline, where 
LoS information is not used in trajectory plan-
ning. Furthermore, although the environmental 
awareness is local, the performance of ECAAF is 
close to the GlobeMap approach. In some cases, 
when both ECAAF and GlobeMap maintain LoS 
with the associated BS, the trajectory in Globe-
Map deflects away from the non-associated BSs 
to mitigate the downlink interference. Note that 
in the randomly generated scenarios, sometimes 
the three approaches can obtain all-LoS trajecto-
ries, which causes little difference between their 
performance and lowers the averaged promotion. 

PotentIAl trAde-offs And future work
The performance of the ECAAF framework will be 
affected by many factors in practice. In this section, 
we list some potential trade-offs that can be explored 
in order to achieve even better performance than 
the current version of the ECAAF framework. We 
also present future research directions.

PotentIAl trAde-offs
Local processing vs. cloud processing: As 

an autonomous system, the UAV also has local 
computation capability [11]. Since a higher map 
update rate relaxes the UAV velocity limitation, in 
the proposed framework, the UAV always selects 
the processing mode with the higher achievable 
map update rate. If the UAV falls into a bad com-
munication state, offloading-constrained cloud 
processing may be even worse than local process-
ing. Then the UAV stops offloading and switches 
to local processing mode. Compared to cloud 
SLAM, the local SLAM algorithm is simpler and 
has inferior map quality, but it avoids the delay 
overhead of uplink/downlink transmission.

UAV altitude and map accuracy: UAVs may 
tend to fly higher for better LoS probability, but 
their altitude is constrained by path loss, regula-
tions, and map accuracy. A higher altitude means 
lower resolution of the explored map, and thus 
the radio map estimation accuracy and trajectory 
planning are also affected.

Multi-BS interference mitigation: In the multi-
BS scenario, interference from non-associated BSs 
also affects the UAV downlink channel quality. 
The UAV can change its trajectory to avoid the 
non-associated BSs. However, in some cases, 
the UAV needs to make a trade-off between an 
NLoS link and a link with strong interference. On 
the other hand, in the uplink communication, 
the UAV could also cause interference to those 
non-associated BSs. If the uplink capacity is suffi-
cient, the UAV can flexibly adjust transmit power 
to mitigate the interference. Moreover, UAVs 
can also exploit the obstacles as barriers to miti-

FIGURE 5. Trajectories of ECAAF (left solid line) and baseline without LoS awareness (right dashed line). Blue and 
red indicate LoS and NLoS parts, respectively. The BS with blue star represents the associated BS. Gray boxes are 
buildings.
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gate interference by dedicated trajectory design. 
When interference exists, the environment and 
ECAAF bring new challenges and opportunities 
for UAV communications.

Energy consumption: When LoS links are 
achieved, a trajectory with detour may consume 
extra flying energy. However, the good channel 
also improves the UAV motion flexibility, so the 
UAV can fly at an optimal energy-efficient speed for 
energy saving [4]. In an energy-constrained scenar-
io, the path and velocity should be jointly designed.

future reseArch dIrectIons
Multi-BS handover and cooperation: In a multi-

BS scenario, the UAV can switch its associated BS 
for optimal communication during its flight. Thus, 
when designing the trajectory, the UAV should 
also schedule the handover between different BSs 
to achieve better LoS channel and avoid interfer-
ence. On the other hand, the UAV can also benefit 
from multi-BS cooperation. The communication 
resources are jointly optimized across different BSs 
to avoid co-channel interference and improve link 
reliability. The multi-BS handover and cooperation 
lead to new issues such as BS selection, handover 
scheme, map sharing and migration, and trade-offs 
between performance and backhaul overhead.

Map reuse: In this work, we consider the UAV 
always flying over an unknown environment and 
therefore always relying on video processing. In 
some complex missions, the UAV is likely to fly 
by some explored areas. Then the obtained map 
can be reused so that video processing is avoided 
and the UAV mobility is not limited by the uplink. 
In these cases, the trajectory and offloading deci-
sions can be jointly planned.

conclusIon
In this article, a framework of edge computing 
assisted autonomous flight is proposed to achieve 
high-capacity and reliable UAV-ground communi-
cations. With an onboard camera and cloud SLAM, 
the UAV is able to explore and exploit the environ-
ment and adaptively plan its real-time trajectory for 
better channel states, which improves link reliabil-
ity. The interaction of vision and communications 
boosts both of them. Finally, the case study verifies 
the proposed approach. ECAAF is a complex mis-
sion in practice. A number of practical factors and 
trade-offs are worthy of further investigation.
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TABLE 1. Comparison results of ECAAF, baseline, and GlobeMap in 20 tests.

Total flight 
distance

Total flight 
duration

Average uplink 
capacity

NLoS distance 
ratio

Baseline 6.1 km 971 s 14.8 Mb/s 49.2%

ECAAF 6.5 km 755 s 16.3 Mb/s 27.3%

GlobeMap 6.4 km 742 s 16.4 Mb/s 26.8%
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