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Abstract

Accurate helicopter flight control is always a challenging problem due to the inherent insta-
bilities and nonlinearities of rotorcraft dynamics, its changing properties with flight condition
and the engineering difficulties to predict the aerodynamics of the rotors with high levels of fi-
delity. These characteristics justify the need for a control system that is able to efficiently cope
with the nonlinearities and cross-couplings of the helicopter model, assuring simultaneously
robustness in the presence of model inaccuracies and changes in configuration.

When compared to fixed-wing aircraft, helicopters present a distinct advantage in terms of
maneuverability, conferring to this type of vehicle the capability to perform a wide range of
tasks that are not possible with other aircraft. The achievement of enhanced performances
during rotorcraft operation clearly motivates the development of improved flight control laws.
The research performed in this area for the past few years normally concerns a controller ar-
chitecture based on an approximate model inversion, together with a robust control synthesis
or adaptive elements to compensate for the inversion error. Robust control results sometimes
in too conservative control laws. On the other hand, adaptive strategies are not only associ-
ated with complex control structures, they are also particularly problematic in terms of flight
certification.

In this master thesis, a novel approach for nonlinear flight control using an incremental model
inversion is adopted to stabilize and control a single main and tail rotor helicopter, with the
main objective of being insensitive to most of the uncertainties often found in helicopters.
This technique is generally known as Incremental Nonlinear Dynamic Inversion (INDI). Its
main advantage is that it employs the feedback of acceleration measurements to extract
the information relative to any aerodynamic change in the aircraft. As a consequence, the
control system does not need any model data that depends exclusively on the states of the
system, enhancing significatively the robustness of the control law to model uncertainties or
disturbances. Moreover, the fact that the INDI-based control loops require less information
about the model also contributes to a considerable simplification of the control laws, which
is very useful when the mathematical model of the system is rather complex, as in the case
of a helicopter.

This research can be seen as a feasibility study of the practical applicability of the control laws
derived to advanced helicopter flight control systems for a project between Delft University of
Technology and the Boeing Company. It starts with one chapter fully dedicated to nonlinear
rotorcraft modelling. After implementing the developed model, a three-loop architecture
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that relies on the existence of a time scale separation between loops is designed to provide
navigational control of the vehicle. The three referred loops are able to assure tracking of
commanded signals in terms of angular rate, attitude of the aircraft and ground velocities.
Furthermore, a technique known as Pseudo-Control Hedging (PCH) is also introduced in
order to alleviate the requirements associated with the multiple time scale separations and to
cope with saturation effects due to the dynamics of the actuators.

The overall flight control system is tested by performing several maneuvers with distinct
agility levels commonly used for rotorcraft flying qualities analysis: a bob-up and bob-down,
a slalom maneuver, a transient turn and also a pirouette. In addition, several simulations
are carried out in order to investigate the influence of certain non-idealities in the tracking
performance and control demands of the system. The factors analyzed are the existence of
rotor aerodynamic uncertainties, changes in the inertia of the vehicle, a malfunction of the
tail rotor, sensor dynamics, actuator delays, wind effect and different controller sampling
frequencies.

The results obtained show that the suggested control strategy is able to decouple the responses
associated with the different control channels and to directly enforce the desired handling
qualities in the evolution of the control variables. It allows then to achieve an efficient tracking
of the commanded ground velocities and heading angle of the helicopter with the overall
control system. Furthermore, it is verified that the controller is perfectly robust to model
uncertainties within the range of inaccuracies expected to find in reality and that, despite
being slightly noticeable, the effects of sensor dynamics and actuator delays are still admissible
for a potential practical implementation. In conclusion, due to the robustness properties of
this flight control system, only a simplified model of the helicopter as the one presented in
this thesis may be enough to assure an effective control of the vehicle.
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xii Contents
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6-2 Open-loop lateral eigenmotions of the Bö-105 for hovering flight at 1000 m. . . . 88
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Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



Chapter 1

Introduction

This chapter presents an introduction to the research work entitled ”Helicopter Nonlinear
Flight Control: An Acceleration Measurements-based Approach using Incremental Nonlinear
Dynamic Inversion”. This Master of Science thesis was developed at the Faculty of Aerospace
Engineering of the Delft University of Technology. It is integrated in a Double Degree Diploma
on Flight Dynamics, Control and Avionics between the referred university and Instituto
Superior Técnico, part of the Technical University of Lisbon.

1-1 Project Motivation

When compared to fixed-wing aircraft, helicopters present a distinct advantage in terms of
maneuverability: they can hover for extended periods of time, describe vertical flight trajec-
tories like Vertical Take-Off and Landing (VTOL), they are able to fly backwards, sideways
and perform extreme agile maneuvers at high and low airspeeds. These characteristics allow
helicopters to perform a wide range of tasks that were not previously possible with other
aircraft. These tasks include for example military missions, search and rescue, firefighting,
transportation and construction, often carried in urban environments.

Nevertheless, helicopters are highly nonlinear and complex systems, inherently unstable by
nature. This is mainly due to an extremely coupled rotor-body interaction, which gives rise
to a variety of inter-axis couplings in their response. This behavior makes helicopter pilot-
ing a very demanding job, with an incredible workload for the pilot, especially in situations
of rapid combat, high crosswinds or low light. For this reason, the implementation of Sta-
bility Augmentation Systems (SASs) (which can go from mechanical stabilization devices
to Automatic Flight Control Systems (AFCSs)) is crucial to assure safety and effectiveness
in helicopter operation. A chronological description of most of these systems is presented
in (Stiles, Mayo, Freisner, Landis, & Kothmann, 2004). The capabilities mentioned above
clearly justify the expenses needed to develop mathematical models and control strategies for
these highly complex systems.
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As every technology, helicopters do also have some disadvantages when compared to fixed-
wing aircraft. They are noisier, less safe, considerably more difficult to fly and extremely
vibrating systems. Probably because of these aspects, the aeronautical community is sub-
stantially more devoted to fixed-wing research rather than their rotary-wing counterparts.
In fact, while commercial airplanes and military fighters have been flying with Fly-By-Wire
(FBW) technology onboard for several years and even despite the extensive research done by
excellency institutes in this filed, it was only in 2008 that the first flight of the only fully FBW
rotary-wing aircraft currently in flight test development, the Sikorsky’s UH-60M Upgraded
Black Hawk, took place (Deagel, n.d.).

In a FBW system, the pilot’s stick movements, instead of being directly transmitted to the
actuators, are converted to electronic signals that are sent to computers featuring digital ad-
vanced flight control laws. The actions required to perform the pilot’s commands are then
electronically supplied to the helicopter actuators. Furthermore, the elimination of tradi-
tional mechanical linkages brings several technical advantages since it saves weight, reduces
maintenance costs, improves reliability and enhances performance.

The flight control systems mentioned above are of crucial relevance for the maneuverability
of the aircraft. The achievement of enhanced performances clearly motivates the aerospace
industry to develop more optimal flight control laws. They not only have to provide the
tracking of the references inputted by the pilot, they also have to assure the stabilization of
the helicopter and the effectiveness of the flight. Furthermore, inadequate control laws may
result in a necessary reduction of their flight envelope due to problems associated with the
saturation of actuators during aggressive maneuvers.

Having in mind the important role of helicopters nowadays and the continuous need for
advanced research and development in the area of rotorcraft dynamics and control, Delft
University of Technology is expanding their high-fidelity motion-based flight simulator, the
SImulation, MOtion and NAvigation (SIMONA) Research Simulator depicted in Figure 1-1,
from a fixed-wing platform to encompass a rotary-wing environment. With this improvement,
the Boeing Company is offering opportunities to SIMONA for future tests and scenarios in
order to create a collaborative project with the university. Comparison of the results of the
experiments will not only be used to develop the rotary-wing platform and improve its fidelity,
but also to correlate the SIMONA against Boeing’s AH-64 Apache fixed-based simulator for
specific flying and handling qualities evaluations.1

The work packages delivered by Boeing to the university consist basically in the following
tasks:

• Modification of the SIMONA flight deck to support helicopter controls, instruments and
outside visuals;

• Integration and validation of the flight simulation model of Boeing’s AH-64 Apache
advanced attack helicopter;

• Definition, implementation and execution of handling qualities experiments;

1Flying and handling qualities basically describe the ease and effectiveness with which an aircraft responds

to pilots commands.
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Figure 1-1: The SIMONA Research Simulator. [source: http://www.simona.tudelft.nl]

• Development of advanced helicopter control laws. In particular, it is desirable that these
laws yield significant improvements in terms of handling qualities and an increased flight
envelope for full-authority controllers.

This last point corresponds then to the main motivation behind this thesis. Its specific objec-
tives are established in Section 1-3, after a summarized background in Helicopter Nonlinear
Flight Control, presented in the next section.

1-2 Background

For further clarity, this section related to the state of the art in Helicopter Nonlinear Flight
Control is divided in two subsections, each one presenting the most relevant developments in
terms of nonlinear control strategies and helicopter flight control, respectively.

1-2-1 Nonlinear Control Strategies

Flight control systems have evolved dramatically over the past decades, starting as limited-
authority analogue systems to provide a bit of stability augmentation until full-authority
digital systems, critical to assure full envelope performance (Enns, Bugajski, Hendrick, &
Stein, 1994).

Linear controllers represent the simplest form to control a system. The beginning of the
formal analysis of these techniques dates back to the end of the nineteenth century and, since
then, linear controllers have been used for many different types of applications and several
powerful tools to project them have been developed. However, as the name indicates, linear
controllers are derived based on the feedback of a linear system or on a linearization of a
nonlinear system with respect to a certain solution. This linearization only works as a good
representation of the true nonlinear system near the referred solution and, as the condition
of the system deviates from it, the accuracy of the linear approximation decreases and the
performance of the controller is degraded.
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If the tasks of the control system involve a large range or high-speed motions, nonlinear effects
will become significant in the dynamics and the closed-loop system may become unstable. He-
licopters and other modern military aircraft are notable examples of highly nonlinear systems,
inherently unstable and designed for large operating envelopes.

As explained in (Slotine & Li, 1991), the main advantage of designing linear controllers
lies in the fact that the desired behavior of linear control systems can be systematically
specified, either in the time or frequency domain. Unfortunately, general methods do not
exist for designing nonlinear controllers, but several different approaches can be adopted. For
nonlinear systems, concepts like impulsive response or transfer function do not exist and one
looks instead for some qualitative specifications like accuracy and speed of response in the
operating region of interest.

Gain-scheduling

To overcome the shortcoming associated with the limited validity of a single linear con-
troller for a nonlinear system, a technique known as gain-scheduling was intuitively devel-
oped (Slotine & Li, 1991). It consists of selecting multiple operating (equilibrium) points
which cover the whole range of the system operation and, for each one, make a linear approx-
imation of the nonlinear system and design a linear feedback control law. Each of these laws is
applicable in the neighborhood of a specific point. Between operating points, the parameters
of the different controllers are interpolated (scheduled), originating a global control system.

The main limitations associated with this technique are the complexity in deriving a formal
proof of stability for this kind of control and the fact that its design is fixed and inflexible.
Any mismatch between the model and the true system will cause performance degradation.
Besides that, the choice of the operating points and the individual controller design is a
tedious and time consuming process. Furthermore, the resulting controller has still to be
verified with extensive nonlinear simulations to assure that the global control law possesses
the desired local properties introduced for its operating points.

Gain-scheduling is a conceptually simple and well-established approach, with successful ap-
plication to many complex systems, like military aircraft (Stevens & Lewis, 2003). It is still
the prevailing strategy to control most of the aircraft. Nevertheless, the desire for enhanced
agility of modern aircraft demands that they perform over an increased range of operation
conditions, even sacrificing their own static stability. As stated in (Goman & Kolesnikov,
1998), this expansion involves not only radical changes in their configuration but also the re-
placement of conventional control strategies by more advanced alternate methodologies based
on pure nonlinear controllers. Above all, these techniques have the ability to cope with a
much higher range of conditions of intrinsic nonlinear systems.

Nonlinear Dynamic Inversion

The basic idea behind the Nonlinear Dynamic Inversion (NDI), also referred to as feed-
back linearization, is to first transform a nonlinear system into an equivalent linear system
and then use the well-known classical linear methods like Proportional-Integrative-Derivative
(PID) controllers or Linear-Quadratic Regulators (LQRs) to complete the design. The re-
ferred transformation is obtained through a combination of a state feedback and a coordinate
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transformation that reduces the dynamics of the controlled variables to simple integrators.
Since after this transformation the system is linearized, a single linear controller suffices to
assure control over the entire envelope and therefore no gain-scheduling is needed.

Mainly because of this benefit, the NDI is one of the most powerful and common techniques on
nonlinear control. After some years of experience with this type of design, control engineers
now believe that the NDI will eventually replace the gain-scheduling as the prevailing flight
control technique. This statement is supported by the example of the Lockheed Martin F-35
Lightning II, a multirole fighter that started flying in 2006 with a set of flight control laws
based on NDI (Wedershoven, 2010).

The application of the NDI to aerospace systems is especially useful because it allows to
enforce the desired flying qualities directly in the closed-loop response, as shown in (Brinker
& Wise, 1996). This control methodology has a wide range of successful applications that
encompass, among many others, fighter jets (Enns et al., 1994) and reentry vehicles (Costa,
Chu, & Mulder, 2003).

The major drawback of the NDI is associated with the fact that it relies on the exact cancel-
lation of the nonlinearities of the system. Nevertheless, in complicated systems like aircraft,
model uncertainties2 or changes on its parameters often occur (Sonneveldt, Oort, Chu, &
Mulder, 2009). Due to these inaccuracies (differences between the mathematical model and
the actual physical system), the exact cancellation of the nonlinearities becomes impossible
and the performance of the controller is degraded. Furthermore, the NDI method is only ap-
plicable to systems that can be transformed into the linearizable form. This class of systems
is known as feedback linearizable.

Backstepping

For systems that are not feedback linearizable or as a mean to acquire more flexibility in
the controller design, a technique known as backstepping can be applied instead of the NDI.
This technique is very well explained in (Oort, 2011). The name backstepping indicates the
existence of a recursive method which starts with the differential equations of the nonlinear
system and steps back towards the control inputs that are separated from them by the largest
number of integrators.

The design procedure is similar to that of the NDI but, instead of first transforming the
nonlinear system into an equivalent linear one directly, a stabilizing feedback is constructed
for each step of the recursive method mentioned above. This feedback is achieved through
a change of coordinates to an error system, in which the control law is established using a
control Lyapunov function. According to Lyapunov’s theory, this type of function works as
a measure of the energy in the error system. As it represents a quantification of energy, the
control Lyapunov function can never be negative definite and can only be zero in the zero
state. The control input shall thus render the derivative of the control Lyapunov function
negative semidefinite, dissipating the energy of the error and stabilizing the system.

A very interesting application of backstepping to flight control can be found in (Farrell,
Sharma, & Polycarpou, 2005).

2Model uncertainties can result from parametric uncertainties, which limit the operational envelope of the

vehicle, or unmodeled dynamics, which limit the achievable bandwidth of the system.
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Robust Control

As mentioned in (Slotine & Li, 1991), pure model-based nonlinear controllers like NDI or
backstepping are designed based on a nominal model of the physical system, guaranteeing
stability for that model. In order to assure robustness of the controller in the presence of effects
which are not considered in the design such as relatively small disturbances, measurement
noise or unmodeled dynamics, the so-called robust controllers can be designed by considering
both the nominal model and some characterization of the model uncertainties.

The referred improvement can be combined with a nonlinear controller, for example, by using
a robust control law (of which the H∞ and µ synthesis are the most common ones) to design
the additional linear controller. One example of this kind of approach to flight control is given
in (Goman & Kolesnikov, 1998).

When the model uncertainties mentioned above become larger or if their characterization is
unknown, a robust control strategy may result in a too conservative approach or it may not
suffice to provide an adequate response of the system (Calise & Rysdyk, 1998). In this case,
in order not to sacrifice the achievable performance of the system, a more complex control
strategy is required.

Adaptive Control

To overcome the limitations of robust control, adaptive control architectures were developed
as alternative approaches to deal with uncertain or time-varying systems. They can be in-
terpreted as dynamic feedback laws which, by increasing the order of the controller, allow its
adaptation to changes in the controlled system. Artificial Neural Networks (NNs) are nor-
mally used in this process since they have the ability to mimic continuous nonlinear functions
within the desired accuracy. In general, two types of adaptive control exist.

In direct adaptive control the system itself is not identified, but an adaptation mechanism is
designed to update the parameters of some controller that will stabilize the system and assure
the desired closed-loop response. The referred controller is normally composed of a nonlinear
control law and an online NN or disturbance observers to compensate for the error associated
with its inaccuracies. The nonlinear controller can also be composed of a single NN or it can
be used in parallel with another control law.

On the other hand, indirect adaptive control makes use of an adaptive element (normally a
NN) to identify the unknown system dynamics online by estimating some model parameters
and a controller to provide control assuming that model is correct. When the NN is trained
properly, it will correspond to a perfect copy of the model. The controller is tuned until the
output of the NN is the same as the references commanded to the system.

Two very recent works in which adaptive control is used in flight control systems
are (Lombaerts, 2010) and (Oort, 2011). The first one applies adaptive elements to im-
prove a NDI-based controller, while the latter uses them in combination with a backstepping
scheme.

Adaptive controllers are however particularly troublesome when it comes to the issue of flight
certification. Firstly, it is inherently difficult to prove that the adaptive element will rarely
”learn” incorrectly and thus causing harm to the vehicle. In addition, it is also very hard to
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show formally that, in case of a failure in adaptation to an extreme level, the adaptive element
is still able to recover, assure stability and control of the system. Civil and military appli-
cations have also proven the benefits of the ability to accommodate changing dynamics and
payload configurations without having to rely on substantial adaption efforts (E. N. Johnson
& Kannan, 2005).

Incremental Control

Over the past decade, the literature concerning practical implementations of the NDI (or
backstepping) in critical flight conditions is typically based on augmentations of the standard
versions of these methodologies with robust or adaptive control (Chen & Zhang, 2008). This
yields therefore complex control structures or high degree controllers.

A more intuitive, yet innovative, approach consists of modifying the architecture of a nonlinear
controller in such a way that acceleration feedback is employed to extract the information
relative to any aerodynamic change in the aircraft. Furthermore, in this approach, instead
of computing the total control inputs to obtain the desired response, only the incremental
changes with respect to the previous conditions are calculated. In fact, this type of action is
much more similar to the one provided by a human pilot.

This strategy can be applied for both NDI and backstepping methodologies. In the first case, it
acquires the designation of incremental, modified or simplified NDI. The main advantage of the
Incremental Nonlinear Dynamic Inversion (INDI) lies in the fact that, due to its incremental
derivation, the controller does not need any model data that depends exclusively on the states
of the system. This allows to enhance significatively the robustness of the control law to model
uncertainties or disturbances.

Incremental control has also been a relevant object of study in the division of Control and
Simulation of the Delft University of Technology, with two master thesis in the last two
years. The first one (Sieberling, 2009) considers a prototype Unmanned Air Vehicle (UAV)
model and develops a robust control law to further increase the robustness of the INDI design
methodology. The second one (Wedershoven, 2010) regards the model of a F-16 jet fighter
and performs detailed analysis and simulations to investigate the differences between the NDI
and the INDI approaches, as well as the particular factors on which they depend.

1-2-2 Helicopter Flight Control

Two of the first most relevant designs of nonlinear controllers for helicopters are presented
in (Prasad & Lipp, 1993) and (Njaka, Menon, & Cheng, 1994), both of them using some
kind of feedback linearization. It was not properly a nonlinear dynamic inversion since, due
to the extreme nonlinearities and couplings of helicopters, a direct inversion of its dynamics
is not possible. The feedback linearization was only made assuming an affine model con-
structed with the stability and control derivatives associated with linearizations of the model
at pre-specified trim conditions. Hence, the dynamic inversion achieved is not exact, but an
approximate inverse of the helicopter system instead. This fact contributed therefore to a
limited performance of the control systems obtained. Nevertheless, very important strategies
were already introduced in the designs proposed: the first reference derives an approximate
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model inversion to provide navigational control of the helicopter and the second one uses an
approach based on time scale separation to simplify the implementation of the controller.

In order to reduce the effects of an inaccurate feedback linearization, several works were carried
out with increased successful results in the following years (Leitner, Calise, & Prasad, 1998;
Calise & Rysdyk, 1998; Hovakimyan, Kim, Calise, Prasad, & Corban, 2001; Lee, Ha, & Kim,
2005). In all these references, online NNs are employed to approximate the inversion error
and provide an additional adaptive control to compensate for it. The adaptation mechanism
of the NNs is normally based on the dynamics of the tracking error of the model states.
This type of control architecture became quite common in helicopter flight control and it is
known as Adaptive Nonlinear Dynamic Inversion (ANDI). In general, further developments
considered also this type of architecture, but added some improvements in the structure of the
dynamic inversion itself or in the design of the adaptive element. (E. N. Johnson & Kannan,
2005) is a good example of the first case, in which the author developed a time scale separated
dynamic inversion for an autonomous UAV helicopter and included a method to protect the
adaptation process from actuator limits and dynamics. Regarding the second case, in (Zeng
& Zhu, 2006) an interesting adaptive compensator is presented as an effective alternative to
NNs, more intuitive and less complex.

The application of an exact feedback linearization to rotorcraft flight control can be found
in (Howitt, 2005). In this case, the incremental version of the NDI was implemented and
thus no adaptive element was needed. The control strategy includes the concept of rotor
state feedback to counter air resonance and to allow for intrinsic carefree handling protection
of hub moment limits. Nevertheless, the theoretical development and practical simulations
were performed for a rig rotor. Consequently, since no tail rotor or yaw control exists, this
approach is still too simplified for real helicopters application. This article was then referred
in (Bradley & Thomson, 2005) as a promising method to implement helicopter and tilt-rotor
inverse simulation.3

With respect to the research carried out in the division of Control and Simulation of the
Delft University of Technology, four master thesis were developed in helicopter flight control
for the past few years. (Bijnens, 2005) and (Klamer, 2007) attempted to design helicopter
autopilots for 2-D models, both of them with only limited success. The first one adopted
an adaptive backstepping approach while the other one implemented a controller based on
adaptive nonlinear dynamic inversion, both using NNs as adaptive element. The development
of autopilots for 3-D helicopter models was tackled by (Jong, 2004) and (Moelans, 2008). The
control system designed by the former was based on gain-scheduling and thus it was only valid
in a limited region of the flight envelope. The second one was already able to provide proper
tracking of the desired reference trajectories for a wider range of conditions since it used, once
again, an approach based on adaptive nonlinear dynamic inversion.

1-3 Objectives

It is now possible to define very clearly the research objectives behind this master thesis. The
main goal is to develop alternative advanced flight control laws for a 3-D helicopter model
that allow improvements in terms of:

3In this context, inverse simulation is defined as the prediction of the control actions needed to pilot a

vehicle through a given maneuver.
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1-3 Objectives 9

• Flight envelope, increasing the operational range of rotorcraft by coping more efficiently
with their nonlinear effects and inter-axis couplings;

• Practical applicability, avoiding the complex structures and the flight certification prob-
lems associated with adaptive controllers;

• Robustness, providing an adequate behavior in the presence of model inaccuracies,
changes in configuration and external disturbances.

According to this, the basis nonlinear control strategy selected to fulfil these requirements is
the INDI. This choice is also strongly motivated by the innovative character associated with
it. To the author’s knowledge, an approach based on INDI for helicopter flight control has
never been presented. This research can then be seen as a feasibility study to analyze the
application of INDI to helicopter control and identify the improvements it brings, as well as
its drawbacks.

In the end, it is desirable to have an autopilot for a generic helicopter that not only assures
the complete stabilization of the vehicle, but that also tracks efficiently velocity references
commanded to the system. To analyze the performance of the overall controller, several
trials based on real handling qualities assessment for rotorcraft will have to be carried out.
In addition to these trials, a series of tests will also have to be performed to investigate
carefully if the robustness properties of the controller are adequate for a potential practical
implementation.

Unfortunately, in the beginning of this research, the AH-64 Apache flight simulation model
had not been delivered by the Boeing Company yet. Because of this, a mathematical nonlinear
helicopter model with an adequate fidelity had to be developed for the derivation of the flight
control system and for the subsequent tests and simulations. This task turned out to be a
very important part of the research project.

Due to the public availability of its specific data, the rotorcraft model analyzed throughout
the present work is the Bölkow Bö-105, shown in Figure 1-2.

Figure 1-2: An aerobatic Bölkow Bö-105. [source: http://profefeito.blogspot.com]

The Bö-105 was the first light helicopter to enter commercial service. Its production began
in 1971 under Messerschmitt-Bölkow-Blohm (MBB) and presented an innovative rotor with
reinforced blades made of composite materials. This vehicle displays an excellent maneuver-
ability, reason why it serves in the civil and military sectors for all the tasks that a helicopter
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can perform (Eurocopter, n.d.). Nearly 1,500 Bö-105’s were built in 25 different versions. In
1991, MBB became a part of Eurocopter and, ten years later, the Bö-105 was replaced by the
Eurocopter EC-135.

1-4 Thesis Outline

The scientific research reported here begins with one chapter (Chapter 2) fully dedicated to
helicopter modelling. In this chapter, the working principle and configuration of a general
helicopter is described, followed by the derivation of a mathematical system to model it and
by the respective open-loop analysis.

Afterwards, throughout Chapters 3 and 4, all the control theory necessary for the development
of the helicopter advanced control laws analyzed in this thesis is presented. The former chapter
deals with the formal theory behind the Nonlinear Dynamic Inversion and the later one is
relative to the Pseudo-Control Hedging technique.

Once all the required control theory is presented, the following chapters describe the design
methodology adopted for the three control loops developed in this thesis: an angular rate
controller in Chapter 5, an attitude angles controller in Chapter 6 and a navigational controller
in Chapter 7. In each one of these chapters, the corresponding control architecture is shown
and the results obtained from its application to the helicopter nonlinear model are discussed.

Chapter 8 presents the results obtained from tests made to the overall flight control system
when different uncertainties and disturbances are introduced. Finally, Chapter 9 includes a
brief discussion on the practical applicability of the control system implemented and on the
advantages and shortcomings of applying Incremental Nonlinear Dynamic Inversion to both
fixed-wing and rotary-wing aircraft.

The thesis ends with the most relevant conclusions and recommendations of this work in
Chapter 10. In addition, a set of five appendices is also available as a complement to some
particular subjects analyzed during the research.
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Chapter 2

Helicopter Modelling

”The helicopter is an aircraft that uses rotating wings to provide lift, propulsion and con-

trol.” (W. Johnson, 1980). In opposition to a fixed-wing aircraft, in which the lift, propulsion
and control forces and moments are produced by separate aerodynamic surfaces, in an heli-
copter, all these contributions are generated by its rotor. The conventional helicopter rotor
consists of two or more identical blades attached to a central hub. A shaft torque from the
engine provides a uniform rotational motion to these blades with respect to the air and the
aerodynamic forces generated from this interaction produces the torque, thrust and other
forces and moments of the rotor.

As already mentioned, the main characteristic of the helicopter is that it can produce all the
referred forces even when its translational velocity is zero, allowing this vehicle to perform
vertical flight. When compared to fixed-wing aircraft, the price for vertical flight includes
however a higher power requirement and a more complex mechanical system, factors that are
directly translated in operational and maintenance costs. Furthermore, the rotor is a source
of vibration and the stability characteristics of the vehicle are often marginal, meaning that
piloting a helicopter is a very demanding task and thus the development of AFCSs is crucial.

The first step to design and test a control system is to develop a model of the system to be
controlled. With this in mind, this chapter deals with the derivation of a nonlinear model
that allows to simulate the dynamics and kinematics of a helicopter with a satisfactory fidelity
to the real vehicle. Firstly, the configuration of a conventional helicopter is presented in
Section 2-1, together with a description of its control systems. Then, the parameters and
systems of reference necessary to carry out the mathematical derivation of the model are
introduced and the sign conventions established in Section 2-2. In Section 2-3, the model
adopted for the helicopter is presented, highlighting the modular structure that composes it.
Finally, in Section 2-4, the results of a test to the model in open-loop are shown, proving that
the model is highly unstable, even around hover conditions.
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12 Helicopter Modelling

2-1 Helicopter Configuration

The first rotary-wing aircraft to reach substantial forward velocities was the Cierva auto-
gyro (Prouty & Curtiss, 2003). It was built in 1923 and consisted of an airplane modified
with rotating wings that would not stall. Being an autogyro, no power was needed to rotate
its blades and, since the pilot had no control over them, the aircraft was piloted with the
conventional airplane surfaces.

One of the main problems encountered by rotary wing inventors was the asymmetrical velocity
field in the rotor during forward flight. This phenomenon is illustrated for a rotor with an
anticlockwise rotation in Figure 2-1.

Ω

ΩR

ΩR

Ψ = 0◦

Ψ = 90◦

Ψ = 180◦

Ψ = 270◦

(a) Hovering flight.

Ω

V

ΩR + V

ΩR − V

Ψ = 0◦

Ψ = 90◦
Ψ = 270◦

(b) Forward flight.

Figure 2-1: Profile of the velocity normal to the leading edge in hover and forward flight.

In this figure, Ω is the angular velocity (or Rotations Per Minute (RPM)) of the rotor, R
is its radius, V is the forward velocity of the vehicle and Ψ is called the azimuth of one
blade. In hovering flight, the distribution of the incident velocities is always symmetrical
with respect to the rotor hub. However, during forward flight, while for the advancing side
(0◦ < Ψ < 180◦) the normal velocities are higher than in the hover situation, in the retreating
side (180◦ < Ψ < 360◦) the referred velocities are smaller and even a reverse flow region
exists near the hub. This dissymmetry of velocities generates a lift gradient that yields a roll
moment in the rotorcraft. The introduction of hinges in the blade roots allowed Cierva to
overcome this problem, since they enabled a flapping motion of the blades such that the local
angles of attack are changed to compensate for the asymmetrical lift distribution.

Due to Coriolis effects, when the rotor blades flap, a corresponding in-plane vibration appears
at the blade root, usually known as lag (or lead-lag) motion. To cope with this vibration, also
lag hinges have to be introduced in the connection with the rotor hub. This motion is also
responsible for the so-called ground (or air) resonance, one of the main dynamic problems of
rotorcraft. Because of this, dampers for the lag motion have normally to be introduced in
order to attenuate the frequency of this vibration.

Besides the flapping and the lag motion, the blades can also be feathered about an axis parallel
to the blade span. As it will be seen later on, this rotation is very useful to provide control of
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2-1 Helicopter Configuration 13

the whole helicopter, since it allows to change the pitch of the blades. The three fundamental
blade motions and the hinge associated with each one are illustrated in Figure 2-2.

Figure 2-2: Fundamental blade motions. [source: (Bramwell et al., 2001)]

These motions produce high stresses in the blades and thus large moments are transmitted
through the hub to the helicopter. The mechanical arrangement of these parts must be
carefully designed to accommodate the blade motions and to keep the referred loads low. The
choice made for the connection of the blades to the shaft provides a fundamental classification
of the rotor. In (Hohenemser, 1974) the different types of hinge arrangements are described,
of which the most common ones are:

• The articulated rotor which, as already mentioned, uses feathering, flap and lag hinges
to attach the blades to the hub. As mentioned above, these hinges operate under very
high loads and therefore they require frequent maintenance. Additionally, a hinged hub
has also the disadvantage of becoming considerably bulky for a large number of blades,
increasing its contribution to the total drag of the helicopter;

• The semi-hingeless rotor, in which the use of lag hinges was replaced by an attachment
made with cantilever root restraint, allowing blade lagging through bending at the rotor;

• The hingeless (or rigid) rotor, containing only feathering hinges since the flap hinges
were removed by providing the blades with a larger bending flexibility (soft flapwise)
and by using tension-torsion straps to carry the centrifugal load. The main advantages
of hingeless rotors are reduced maintenance, fewer hub parts and improved control
response;

• The bearingless rotor, which is truly hingeless since all the hinges are omitted in the
attachment. As is it based on composite materials with elastomeric elements, the de-
velopment of this type of rotor started more recently;

• The teetering rotor, a special arrangement in which a pair of blades is mounted as a
single unit, attached to the rotor shaft as in a semi-hingeless rotor.

For more details with respect to this classification, the reader is referred to (W. Johnson,
1980) or (Bramwell et al., 2001).
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14 Helicopter Modelling

Returning to the history, soon after the development of the Cierva autogyro, it became clear
that the effectiveness of the airplane control surfaces was less than desirable, especially when
flying at low airspeeds. Inspired by the way people tilt their umbrellas to protect themselves
during a windy rainstorm, he came out with the idea of the so-called ”direct control” system.
With this system, the rotor is mounted on a gimbal that can be tilted longitudinally and
laterally by a control stick. As the rotor thrust vector is always practically perpendicular to
its tip-path plane (the plane described by the tips of the rotation blades), the rotorcraft is
accelerated in the direction of the tilt, generating roll and pitch moments around its Center
of Gravity (CG).

However, in opposition to autogyros, helicopters do need torque provided by the engine and
it was found that direct control is not practical for this type of vehicle. The system adopted
to provide roll and pitch control for a helicopter while accounting for the unequal aerody-
namics on the rotor is known as cyclic pitch and it was spontaneously proposed in 1906 by
Crocco (Prouty & Curtiss, 2003). As the name indicates, it makes use of the pitch motion of
the blades and is currently one of the main control systems of a helicopter.

2-1-1 Cyclic Pitch

The key to cyclic pitch is the swashplate, the assembly that allows to control the pitch angle
of the blades. An example of this system is given in Figure 2-3, where the generic control
system of a helicopter is shown.

Figure 2-3: Generic helicopter control system. [source: (Prouty & Curtiss, 2003)]

As it can be seen in the figure, the swashplate assembly consists of a rotating and a nonrotating
plate. The rotating plate rotates with the drive shaft and with the blades due to link that
connects them. The angle and position of the fixed plate is changed by control rods that
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are controlled by the pilot. This angle is transmitted to the rotating plate (and thus to the
blades), which rotates on top of the fixed plate because of the spherical bearings between
them.

The cyclic pitch control allows to tilt the swashplate and, consequently, the rotor tip-path
plane, by introducing a cyclic change in the pitch of the blades. As already explained, since the
thrust vector is almost perpendicular to this plane, the desired displacement of the helicopter
can be achieved by tilting this vector into the desired direction. This tilt is controlled by the
pilot with a stick, as shown in Figure 2-3.

When the stick is moved forward or backward, the tip-path plane tilts longitudinally and the
helicopter pitches the nose down or up, respectively. Similarly, when the stick is moved to
the right or to the left, the tip-path plane tilts laterally and the helicopter rolls to the right
or to the left. Obviously, a combined movement can always be decomposed into longitudinal
and lateral contributions. In addition, the cyclic stick has normally a trim switch that can
be used to neutralize the stick forces. When activated, it controls the tension on a spring
in order to hold the stick in a desired position, reducing the workload of the pilot when the
helicopter is flying in steady conditions (Moelans, 2008).

2-1-2 Collective Pitch

While the cyclic control changes the pitch of the blades cyclicly, a collective control also exists
that allows to vary the pitch of all the blades with the same amount. This is possible due to
the vertical movement of the swashplate with a sliding surface around the rotor shaft which,
as indicated in Figure 2-3, is controlled by a lever located on the left side of the pilot. When
the pilot pulls this lever up, the pitch of the blades increases, more lift is generated and thus
the thrust produced by the rotor will also increase (if the blades do not stall). Similarly, the
thrust produced decreases when the collective lever is lowered. This type of control is therefore
used for climbing and descending, but also to accelerate and decelerate the horizontal motion
when the helicopter.

An important remark has also to be made with respect to the use of the collective pitch.
When the pitch of the blades is increased, not only more lift, but also more drag will be
generated, causing the RPM of the engine to drop. In this situation, to keep the RPM
constant, more power has to be applied to the engine. This is done by twisting the handle
of the collective lever simultaneously with the application of the collective pitch. In most of
the modern helicopters, this compensation is automatically achieved with a device called ”the
governor” (Moelans, 2008).

2-1-3 Anti-torque Pedals

Another major problem that helicopter designers had to solve was the counteraction of the
torque produced by the engine. As the rotor is mounted on the fuselage, according to the
principle of conservation of the angular momentum, its torque moment generates an equal
and opposite moment on the fuselage, making it spin. In a conventional single main rotor
helicopter, this moment is counteracted by the force (thrust) generated by a small auxiliary
rotor, located on a tail boom at the rear of the fuselage. The thrust produced by this rotor
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is again controlled by varying the collective pitch of its blades, which is done by means of
the application of two pedals, as depicted in Figure 2-3. The left pedal increases the yaw
moment of the helicopter to the left and the other one is used to turn to the right. This
moment can therefore be used not only to balance the main rotor torque, but also to provide
directional control of the vehicle by changing its heading. The tail rotor has no cyclic pith
system, adjusting itself by flapping, as Cierva’s original rotor did (Prouty & Curtiss, 2003).
Due to its high rotational speed and small radius, this flapping motion is often neglected.

Besides this classic single main rotor and tail rotor configuration, alternative strategies also
exist to provide the torque balance. These are normally based on a twin main rotor config-
uration that uses two contrarotating rotors of equal size and loading, so that their torques
are equal and opposing. The fact that they do not require a power-absorbing auxiliary rotor
represents an advantage of this configuration but, on the other hand, the aerodynamic in-
terferences between the two rotors may result in the loss of approximately the same amount
of power. Some examples of twin rotor arrangements are presented in Figure 2-4. From
the left to the right, these correspond respectively to a tandem configuration, a side-by-side
placement and a coaxial arrangement of the two rotors.

(a) CH-47 Chinook. (b) V-22 Osprey. (c) Ka-50 Kamov.

Figure 2-4: Examples of twin rotors arrangements. [source: Google Images]

Due to its wide adoption, only the single main rotor and tail rotor configuration is analyzed
in this research thesis. As it was seen, the three control inputs described throughout this
section are associated with four angular deflections: the collective pitch, often represented by
θ0, the longitudinal and lateral cyclic pitch, θ1s and θ1c, respectively, and the collective pitch
of the tail rotor θ0tr.

2-1-4 From Mechanical Stabilization to Automatic Control Systems

The intense instabilities associated with helicopters and the consequent need for being con-
stantly acting on the different controls at the same time represent the main reasons for an
intensive workload of the pilot, making helicopter control a very challenging task. In the early
years, mechanical stabilizing systems were implemented in rotary-wing aircraft to help with
this task (Prouty & Curtiss, 2003). These systems, of which the Bell Stabilizing Bar and the
Hiller Servo Rotor are important examples, are mainly based on external gyros.

In addition, on the first small helicopters, all of the control forces were modest and the pilot
could act directly on the control mechanisms as depicted is Figure 2-3. Nevertheless, as
helicopters got bigger, so did the forces and hydraulic boosted actuators had to be installed
to help the pilot handling the helicopter by providing extra strength in the control deflections.
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With the development of electronics, the hydraulic control actuators began to incorporate
an electrohydraulic servovalve that can be operated by electric signals coming from a com-
puter. With this configuration, the integration of automatic control laws became possible and
Stability Augmentation Systems (SASs) with limited authorities around 10% of the actuator
travel started being implemented to enhance the flying qualities of rotorcraft.

Once this system is incorporated and with the further development of flight control laws, full
authority flight controllers became possible and the first helicopter autopilots were imple-
mented. In this case, instead of controlling directly the control deflections, the pilot simply
sends his intentions to the flight computer on board, which computes the required actions of
the actuators to perform the desired maneuvers. The references commanded to the computer
are normally supplied in terms of angular rates or attitude angles that correspond to the
displacement of the conventional control interfaces in the cockpit which, in alternative, can
be replaced by simple side-arm sticks. This type of configuration is the basis for Fly-By-Wire
(FBW) systems and it is schematized in Figure 2-5.

Figure 2-5: Fly-by-wire configuration in a helicopter. [source: (Prouty & Curtiss, 2003)]

As it can be seen, besides receiving the signals commanded from the pilot, the control comput-
ers also receive information from the helicopter sensors and monitors to provide an improved
interface may also be included. Furthermore, to make these systems safe, they must be triply
or even quadruply redundant (Prouty & Curtiss, 2003). By eliminating the mechanical link-
ages between the cockpit and the actuators, a reduction in the weight of the vehicle and in
the complexity of its mechanical systems is achieved.

The behavior of the helicopter depends strongly on the performance of the flight control
systems implemented in the computers. The work presented in the following chapters aims
to develop a new approach to these laws and to assess the main advantages and drawbacks it
brings when compared to the current technology. From now on, the dynamics of the actuators
associated with the control inputs of the helicopter is assumed to be constrained by saturation
and rate limits only.
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2-2 Rotor Parameters and Systems of Reference

In the previous section, some concepts such as flapping motion and tip-path plane were
introduced. In order to further clarify these concepts and to introduce all the definitions
required to understand the development of the model adopted for the rotor, this section
presents the necessary systems of reference and sign conventions. It in mainly based on (Pavel,
1996).

Appendix A contains information about the most common and well-known reference frames
used in aircraft simulation. To study the rotor motion, it is however useful to define three
more planes of reference as follows:

• The shaft (or hub) plane. As the name indicates, it is always perpendicular to the rotor
shaft and it is therefore more simple and convenient to deduce the forces equilibrium
with respect to it;

• The disc (or tip-path) plane. Again, as the name indicates, it is defined by the path
described by the tip of the blades during their rotation. The thrust produced by the
rotor is practically perpendicular to this plane;

• The control (or no-feathering) plane is actually a fictive plane. It would correspond to
the disc plane if no rotor flapping motion existed and, for this reason, it is useful to
measure the flapping angles relatively to it.

While in hovering flight these three planes coincide, in a more generic situation their relative
positions are shown in Figure 2-6.
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Figure 2-6: Rotor systems of reference and tilt angles.

Two orthogonal axes x and y can be defined coplanar with each plane, both with the origin
at the center of the rotor hub. These axes are also depicted with different colors in the
mentioned figure where the subscripts sp, dp and cp stand for shaft, disc and control plane,
respectively. Additionally, with each plane there is an axis defined perpendicularly to it:
Shaft Axis (SA), Disc Axis (DA) and Control Axis (CA). With them, a third coordinate z

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



2-2 Rotor Parameters and Systems of Reference 19

can be associated in such a way that the 3-D frames are right-handed reference systems. For
clarity of the figure under analysis, these are not represented. It is important to note that the
three reference frames defined here do not rotate with the rotor blades. Also in this figure,
some very important angles are presented, together with the arrows that indicate the sense in
which they are defined positive. The physical meaning of these angles is now to be explained.

Despite the considerable flexibility of rotor blades, much of the helicopter theory can be
derived regarding them as rigid bodies. With this assumption, in steady-state operation,
blade motion is periodic around the azimuth Ψ. Hence, in these conditions, the flapping
motion can be expanded as a Fourier series:

β(Ψ) = a0 − a1 cos Ψ − b1 sinΨ − a2 cos 2Ψ − b2 sin 2Ψ − ... (2-1)

where β is the flapping angle, defined positive for upward deflections. For performance analysis
and helicopter control, only its mean (a0) and first harmonics (a1 and b1) are of primary
importance for the rotor motion. In fact, it is demonstrated that the remaining harmonics
have the same order as the elastic deflections of the blades and, for consistency with the
rigid body assumption, they can be neglected. a0 is known as the coning angle, a1 is the
longitudinal disc-tilt angle and b1 is the lateral disc-tilt angle. Recalling the physical meaning
of the flapping angles and taking into account that these are measured with respect to the
control plane, the validity of expression (2-1) can also be checked from the analysis of Figure 2-
6. For example, for Ψ = 0◦ : β ≈ a0 − a1, for Ψ = 90◦ : β ≈ a0 − b1, etc.

It is now possible to define the rotation to transform the reference system associated with
the control plane into the disc plane T cp

dp. Using the rotor disc-tilt angles and the rotation
matrices defined in Appendix A, it is easy to visualize that:

T cp
dp = Ry(a1)Rx(b1) =





cos a1 sin a1 sin b1 − sin a1 cos b1

0 cos b1 sin b1

sin a1 − cos a1 sin b1 cos a1 cos b1



 (2-2)

Similarly to the flapping motion, also the pitch motion can be described by a Fourier series in
steady-state conditions. Assuming that the blades present a linear twist θtw, the pitch angle
is given by:

θ(Ψ) = θ0 + θtwr̄bl − θ1c cos Ψ − θ1s sinΨ − θ2c cos 2Ψ − θ2s sin 2Ψ − ... (2-3)

where r̄bl = rbl/R is the normalized value of the radial position of a blade element rbl. Once
again, the harmonics of second and higher order can be neglected and the angles θ0, θ1c and
θ1s are already known as collective pitch, lateral cyclic pitch and longitudinal cyclic pitch,
respectively. For simplicity, the effect of the blade twist is not represented in Figure 2-6.

As depicted in the figure, it is also possible to define the flapping angles relatively to the shaft
axis by making use of the cyclic pitch angles: a1R = a1 − θ1s and b1R = b1 + θ1c. These are
very useful to transform the forces generated by the rotor into the body-fixed reference frame
of the helicopter. The only difference between the orientation of this system of reference and
the shaft plane is a small forward tilt angle γs. Once again, applying the matrices presented
in Appendix A, the transformation from the frame associated with the disc plane to the body
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axes T dp
b is defined by the rotation:

T dp
b = Ry(−a1R − γs)Rx(−b1R) =

=





cos (a1R + γs) sin (a1R + γs) sin b1R sin (a1R + γs) cos b1R

0 cos b1R − sin b1R

− sin (a1R + γs) cos (a1R + γs) sin b1R cos (a1R + γs) cos b1R





(2-4)

The lag motion in steady-state operation of the rotor may also be expanded as a Fourier
series. Nevertheless, it will not be considered in the model to be developed since this is out
of the scope of this thesis. Furthermore, the remaining blade motions can be analyzed with
sufficient accuracy by treating them separately.

Also represented in Figure 2-6 are several angles of attack α between the different planes
and the velocity of the airspeed of the helicopter in forward flight. The shaft plane angle
of attack αsp can be determined directly from the longitudinal and vertical components of
the helicopter airspeed. The angle of attack relative to the control plane is then given by
αcp = αsp + θ1s and the disc plane angle of attack is αdp = αcp + a1.

The resultant velocity seen by the rotor can therefore be resolved into components parallel
and normal to the control plane and made dimensionless with the rotor tip speed ΩR. The
parallel component corresponds simply to V cos αcp, being quantified by the rotor advance
ratio:

µx =
V cos αcp

ΩR
(2-5)

The normal component depends on the velocity of the vehicle and on the induced velocity ν0

of the airflow that passes through the disc due to the production of lift. It is given by the
rotor permeability:

λ = µz − λ0 =
V sin αcp

ΩR
−

ν0

ΩR
(2-6)

The calculation of the induced inflow ratio λ0 is therefore of great importance and will be pre-
sented when the mathematical model of the helicopter rotor is deduced. For the aerodynamic
calculations concerning the main rotor, the lateral inflow (due to the lateral component of
the velocity) and thus the sideslip angle can normally be neglected. The effect of the lateral
velocity is however contained in the absolute value of V .

Besides the parameters presented above, there are others very useful to characterize a rotor.
The first one is the rotor disc area, given intuitively by:

A = πR2 (2-7)

Another one is the rotor solidity, defined as the ratio between the total blade area and the
rotor disc area. If the rotor is composed by N blades with an equivalent chord ce, this
parameter is given by:

σ =
Nce

πR
(2-8)
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The equivalent chord corresponds to the chord of a rectangular blade that presents the same
aerodynamic properties of the real (non-rectangular) blade. The last important parameter
is the Lock number, which represents the ratio of the aerodynamic and inertial forces on a
blade:

γ =
ρCLαceR

4

Iβ
(2-9)

where ρ is the air density, CLα is the blade lift curve slope and Iβ is the moment of inertia of
the blade about its flapping hinge.

These parameters will be very useful throughout the next section. They can also be defined
for the tail rotor, being identified by the subscript tr in this case.

2-3 The 8 Degrees of Freedom Nonlinear Model

One of the most important issues in helicopter modelling is the choice of how much detail
is required in terms of the number of mechanical Degrees Of Freedom (DOF) and the detail
level of aerodynamic models. While accounting for a large number of DOF associated with
the rotor dynamics results in a highly complex system, incorrect simplifications of the model
may lead to the existence of important unmodeled dynamics. The key is to keep the essential
effects and discard insignificant contributions of the system dynamics in the operating range
of interest. Examples of simple helicopter modelling for small UAVs can be found in (Cunha
& Silvestre, 2003) or (Vilchis, Brogliato, Dzul, & Lozano, 2003).

In (Pavel, 2001), a literature survey on helicopter simulation and modelling is presented and
shows that, depending on the specific application, the number of DOF considered in the
development of 3-D mathematical models varies typically from the most simple 6-DOF of the
body only to a 16-DOF model that includes complex descriptions of the rotor dynamics and
nonlinear aerodynamics. In a typical 6-DOF model, the motion of the rigid body in space is
represented by three degrees of translation (u, v, w) and three degrees of rotation (p, q, r).

Furthermore, the required accuracy of the model also depends on the helicopter characteris-
tics. For example, while a 6-DOF model usually suffices to determine natural aircraft behavior
of an articulated helicopter, this approximation in no longer applicable to hingeless rotorcraft.
This was explained in (Curtiss, 1986) as follows: ”the dynamics of the fuselage and rotor of an

articulated helicopter can usually be seen as a cascade problem, a rapid rotor response followed

by a slower fuselage response. For hingeless configurations, the body motion speeds up and the

rotor dynamics enter into the body dynamics”. This type of influence is also strongly affected
by the stiffness of the blades flapwise. According to (Hohenemser, 1974), the stiffer they are,
the more the attitude of the rotor is ”frozen” with respect to the fuselage and the larger are
the fuselage attitude changes between hovering and cruising flight. From these examples, it
can be seen that helicopter modelling is indeed a very complex process.

Also in the referred literature survey, it is concluded that, for the purpose of designing AFCSs
to hingeless helicopters without using rotor feedback, the models adopted more often consist
of the 6-DOF body simulation plus 2-DOF to account for the quasi-dynamic inflow of the
main and tail rotors plus a quasi-steady or a first-order description of the rotor disc-tilt
dynamics. For simplicity, in this research thesis only the steady-state rotor disc-tilt angles
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are considered, but quite some effort is put on the determination of the disc-tilt angles (a0,
a1, b1) as accurately as possible, as it will be seen in the next subsection.

Extended models are normally used for handling qualities analysis and result from the ex-
pansion of the 8-DOF model in the following areas:

• Rotor disc-tilt dynamics. Second-order dynamics are included in the model instead of
the first-order description or the simple steady-state angles;

• Rotor lag dynamics. As already mentioned, these dynamics are not considered in the
8-DOF model. They are mostly of primary importance for aeroelastic stability purposes
and only during the 1980’s more attention was paid to the study of their influence on
flying qualities and controller design;

• Inflow dynamics. Instead of the quasi-dynamic description of the inflow induced by
the rotors, a dynamic formulation that considers longitudinal and lateral variations of
the inflow allows to obtain even more realistic results. These descriptions are based
on different sets of coefficients and several methods exist to determine them. The one
developed in (Pitt & Peters, 1981) is normally found to give the best representation of
the inflow gradient;

• Engine dynamics. As explained in (Rohlfs, 1998), the helicopter yaw response, when
considered as coupling response, is influenced by the dynamic engine and drive train
torque. This means that, instead of assuming the rotor RPM constant (Ω̇ = 0), a first-
order differential equation can be used for the rotor speed of rotation. This consideration
is often made when the scenario of the engine loss is simulated.

In this research thesis, the helicopter is modeled by subdividing it into its main components
(main rotor, tail rotor, fuselage, horizontal and vertical tails) and adding the contribution of
each part to the general system of forces and moments. The model adopted is mainly based
on (Pavel, 2001). The flow is assumed incompressible, no reverse flow regions are considered
and the tails and the fuselage are modeled with linear aerodynamics. The angular velocity of
the main rotor is assumed constant and anticlockwise and, according to this assumption, the
senses in which the control deflections and the disc-tilt angles are defined positive correspond
to those indicated in Figure 2-6. Further assumptions associated with the rotor aerodynamics
will be presented in more detail throughout the next subsection.

As mentioned in Chapter 1, the rotorcraft model analyzed throughout the present work is the
Bölkow Bö-105, a light, multi-purpose utility helicopter. It is characterized by its hingeless
rotor (Hohenemser, 1974) and all the parameters needed to simulate its dynamics are listed in
Appendix B. To calculate the air density ρ, an atmospheric model had also to be implemented
and its mathematical formulation is available in Appendix C. Figure 2-7 allows to more clearly
understand the mathematical development carried out in the next subsections.

2-3-1 Main Rotor

The standard approach for the main rotor description is the blade element formulation in
which each blade is discretisized into several sections and the local aerodynamic and inertia
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Figure 2-7: Helicopter model.
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forces are then summed up to determine the total rotor forces and moments. Each section
acts as a two-dimensional airfoil. The validity of the blade element theory only holds for
blades with high aspect ratio, which is normally true for rotary wings.

As it can be seen in Figure 2-8, the velocity of the air relative to the blade can be divided
into a tangential uT and a radial uR component.

Ω

µx

Ψ = 0◦

Ψ = 90◦Ψ = 270◦

uT

uR

Figure 2-8: In-plane components of the air velocity relative to the blade.

At this point, the angular velocities of the helicopter are assumed to be null, meaning that the
mentioned components have only to account for its forward speed and for the rotor rotation.
They can be made dimensionless by dividing them by ΩR, yielding:

uT = r̄bl + µx sinΨ (2-10)

uR = µx cos Ψ (2-11)

Furthermore, as depicted in Figure 2-9, there is also a component of the velocity perpendicular
to the control plane, which depends on the permeability of the rotor, on the angular velocity
of the blade due to the flapping motion β̇ and on the influence of uR when the blade is flapped
up by the angle β.

The components associated with the flapping motion are schematized in Figure 2-10, in which
the small angle assumption was made (cos β ≈ 1, sin β ≈ β). For hingeless helicopters, the
substantial effect of blade bending flexibility in the rotorcraft flight dynamics can be taken
into account by assuming rigid blades with root flexures at an equivalent hinge offset. This
offset has a length eβ = εβR, where εβ is the flapping hinge offset ratio, and it is also depicted
in the referred figure.

According to this, the dimensionless perpendicular velocity in the blade is then given by:

uP = −λ − (r̄bl − εβ)β̇ − βµx cosΨ (2-12)

The resultant velocity U in each section of the blade is therefore influenced by the tangential
and perpendicular components of the velocity. It defines an angle of attack α with the chord
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Figure 2-9: Aerodynamics of the rotor blade section.
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Figure 2-10: Air velocity and forces on a rotor blade for small flapping angles.

of the airfoil and an inflow angle φ with the control plane. If this angle is assumed small:
φ ≈ uP /uT and U ≈ uT . The pitch of the blade section is also related with these two angles:
θ = α − φ.

The aerodynamic elementary lift dL and drag dD forces are respectively normal and parallel
to the velocity U and they can be expressed as:

dL =
1

2
ρ (ΩRuT )2 CLcedrbl (2-13)

dD =
1

2
ρ (ΩRuT )2 CDcedrbl (2-14)

and, when stall and compressibility effects are neglected, the two coefficients can be given
by (W. Johnson, 1980):

CL = CLαα (2-15)

CD = 0.0087 − 0.0216αef + 0.4α2
ef (2-16)

In the expressions above CLα is the blade lift curve slope and αef is an effective angle of
attack which, according to (Pavel, 1996), can be determined from a medium lift coefficient
defined as:

CLm = CLααef =
6

1 + µ2
x/18

CT

σ
(2-17)
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The equation to compute the thrust coefficient CT will be derived later on this subsection.

Furthermore, the aerodynamic forces can be resolved into a normal and an in-plane force,
respectively, dT1 and dD1. Once again, making the small angles assumption and for CL ≫ CD:

dT1 = dL cos φ + dD sinφ ≈ dL (2-18)

dD1 = −dL sinφ + dD cos φ ≈ −dLφ + dD (2-19)

where dT1 is the contribution of each blade element to the rotor thrust, the first component
of dD1 is the induced drag and the second component is the profile drag. If the expressions
obtained so far are used for these forces, the following results are obtained:

dT1 =
1

2
ρ (ΩR)2 ceCLα

(

θu2
T + uT uP

)

(2-20)

dD1 =
1

2
ρ (ΩR)2 ce

[

u2
T CD − CLα

(

θuT uP + u2
P

)]

(2-21)

Flapping Motion

Now consider the equilibrium of the inertial and aerodynamic moments about the equivalent
flapping hinge acting on a mass element ρbldrbl, where ρbl is the blade mass per unit length
(assuming a uniform distribution along the blade) and drbl is the infinitesimal blade element,
as shown in Figure 2-10. Here it is again assumed that the flapping angles are small and
that the gravitational forces are also small when compared to the remaining ones. The
aerodynamic force dT1 with moment arm (rbl − eβ) has therefore to be balanced by the
inertial force ρbl(rbl − eβ)β̈ with moment arm (rbl − eβ) and by the centrifugal force ρblΩ

2rbl

with moment arm (rbl−eβ)β. To account for the total moments on the blade, the infinitesimal
elements have to be integrated over its span, yielding:

∫ R

eβ

dT1(rbl − eβ) drbl =

∫ R

eβ

ρbl(rbl − eβ)2β̈ drbl +

∫ R

eβ

ρblΩ
2rbl(rbl − eβ)β drbl (2-22)

The left-hand side of the expression corresponds to the aerodynamic moment MA and the
equation can be rearranged as follows:

MA = β̈

∫ R

eβ

ρbl(rbl − eβ)2 drbl + Ω2β

(

∫ R

eβ

ρblr
2
bl drbl −

∫ R

eβ

ρblrbleβ drbl

)

=

= β̈

∫ R

eβ

ρbl(rbl − eβ)2 drbl + Ω2β

(

∫ R

eβ

ρbl(rbl − eβ)2 drbl +

∫ R

eβ

ρbleβ(rbl − eβ) drbl

)

=

= β̈

∫ R−eβ

0
ρblr

2
bl drbl + Ω2β

(∫ R−eβ

0
ρblr

2
bl drbl + eβ

∫ R−eβ

0
ρblrbl drbl

)

(2-23)

The integral
∫ R−eβ

0 ρblr
2
bl drbl was already introduced as the blade flapping moment of inertia

Iβ . If the expression above is divided by this parameter, the following equation is obtained
for the blade flapping motion:

β̈ + Ω2ν2
ββ =

MA

Iβ
(2-24)
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where, for blades with a uniform mass distribution and recalling that eβ = εβR:

ν2
β = 1 + eβ

∫ R−eβ

0 ρblrbl drbl
∫ R−eβ

0 ρblr
2
bl drbl

= 1 +
3

2

eβ

R − eβ
= 1 +

3

2

εβ

1 − εβ
(2-25)

It can be concluded that the left-hand side of equation (2-24) describes a mass-spring system
with flapping natural frequency Ωνβ . When there is no hinge offset (εβ = 0), the later
frequency matches the rotational speed of the rotor, which produces the centrifugal force that
acts as a spring, opposing the blade flap motion. The primary effect of the existence of an
equivalent hinge offset is primarily a small increase in the natural frequency of the flapping
motion. The equivalent hinge offset ratio is then defined so that the theoretical natural
frequency of the flapping motion matches its actual value. For the Bö-105, the physical
flapping natural frequency is 1.12Ω (Hohenemser, 1974) and hence, from (2-25), εβ = 0.14.

According to (2-22) and by making use of (2-20), it is possible to write the flapping aerody-
namic moment as a function of the components of the velocity in a blade element:

MA =

∫ R

eβ

dT1(rbl − eβ) drbl =
1

2
ρ (ΩR)2 ceCLα

∫ R

eβ

(θu2
T + uT uP )(rbl − eβ) drbl (2-26)

At this point, some important remarks have to be made:

• Even without a hinge spring, the flapping motion is aerodynamically damped because
of the presence of β̇ in uP (see (2-12));

• The computation of the integral above is quite complex (recall the expressions for uT ,
uP and θ, in the previous section);

• The fidelity of the equation (and its complexity) increases when more contributions (for
example, the angular velocities of the helicopter) are accounted in uT and uP .

According to (Pavel, 2001), the flapping motion, as seen from a frame of reference rotating
with the blades, can be divided into three time scales:

• Fast motions, corresponding to transients associated with the eigenfrequency of the
blades;

• Intermediate fast motions, corresponding to the steady-state response of the blades to
control inputs and body rotations;

• Slow motions, corresponding to the steady-state response of the blade to variations of
the helicopter speed.

For simulation modelling, only the steady-state flapping motions of the blades are normally
considered, meaning that the fast time scales are neglected. This can be intuitively explained
from the fact that, for this type of application, one is not interested in the free motion
of the blades, but on how their motion is transmitted to the airframe. Furthermore, the
blades are assumed to respond instantaneously to control inputs, pitch motion and helicopter
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velocity, resulting in an asymptotic approximation of the complete flapping behavior. This
assumption is coherent with the truncation of the Fourier series (2-1) so that only the mean
and first harmonics are of relevance.

One possible method to obtain these disc-tilt angles is explained in (W. Johnson, 1980). It in-
volves the application of the operators 1

2π

∫ 2π

0 (...) dΨ, 1
π

∫ 2π

0 (...) cos Ψ dΨ and 1
π

∫ 2π

0 (...) sinΨ dΨ
to (2-24) and the definitions of the harmonics to replace the integrals of the blade motion
by the Fourier coefficients. With this, the linear differential equations are reduced to linear
algebraic equations for the harmonics. As stated in (Aalst & Pavel, 2002), one of the most
simple and used solutions to express the disc-tilt angles from the referred equation is given
by the so-called ”Bramwell flapping angles”:

a0 =
γ

8

[

θ0(1 + µ2
x) +

4

3
λ +

2

3
µxp̄

]

(2-27)

a1 =

8
3µxθ0 + 2µxλ + p̄ − 16

γ
q̄

1 − 1
2µ2

x

(2-28)

b1 =

4
3µxa0 + q̄ − 16

γ
p̄

1 + 1
2µ2

x

(2-29)

where p̄ = p/Ω and q̄ = q/Ω are the dimensionless roll and pitch rates of the helicopter.

These expressions still do not account for some very important influences such as the blade
twist or the hinge offset. To overcome this shortcoming, in (Pavel, 2001) the following ex-
pressions are suggested:

a0 =
γ

8ν2
β

[

θ0(1 + µ2
x) +

4

3
λ +

2

3
µxp̄ + θtw

(

4

5
+

2

3
µ2

x

)

−
4

3
µxθ1s

]

(2-30)

a1 =
8

γ

ν2
β − 1

1 − 1
2µ2

x

b1 +

8
3µxθ0 + 2µxλ + p̄ − 16

γ
q̄ + 2θtwµx −

(

1 + 3
2µ2

x

)

θ1s

1 − 1
2µ2

x

(2-31)

b1 = −
8

γ

ν2
β − 1

1 + 1
2µ2

x

a1 +

4
3µxa0 + q̄ − 16

γ
p̄ +

(

1 + 1
2µ2

x

)

θ1c

1 + 1
2µ2

x

(2-32)

In (Voskuijl, Pavel, Walker, Gubbels, & Manimala, 2009), another set of equations for the
flapping blade is derived, including many higher-order coupling terms that are usually ne-
glected in the classical formulations. Nevertheless, the effect of those terms is often quite
small when compared to the classical formulations.

The expressions shown so far are derived assuming that the distribution of the induced velocity
is uniform along the rotor disc. According to (Pavel, 1996), in order to account for non-
uniformity effects, a correction factor:

Kcorr =
1.33µx/|λ|

1.2 + µx/|λ|
(2-33)

is usually included in the formula of the lateral disc-tilt angle, yielding:

b1 = −
8

γ

ν2
β − 1

1 + 1
2µ2

x

a1 +

4
3µxa0 + q̄ − 16

γ
p̄ +

(

1 + 1
2µ2

x

)

θ1c + Kcorrλ0

1 + 1
2µ2

x

(2-34)
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Also in (Voskuijl et al., 2009), the influence of a sweep correction factor in the disc-tilt angles
to account for the effects of non-steady flow around the airfoil is analyzed. This correction is
given by:

δ =
4

6

µxπσ

N
ln

(

4

3

µxπσ

N

)

(2-35)

It was concluded that, with respect to trim calculations of the Bö-105, this sweep effect
provides an increased accuracy in the prediction of the lateral tilt of the rotor at low flight
velocities, but a considerable degradation of the prediction at higher velocities. For this
reason, it was decided not to use this correction factor in the model adopted and the rotor
disc-tilt angles are therefore obtained with (2-30), (2-31) and (2-34).

Rotor Forces and Torque Moment

As depicted in Figure 2-11, due to the flapping angle β, the elementary aerodynamic force
dT1 (see Figure 2-9) decomposes in an elementary force dT2 parallel to the control plane and
in the elementary thrust of the rotor dT , perpendicular to the referred plane.

Ω

β

blade

ρbldr

dTdT1

dT2

Figure 2-11: Out-of-plane forces acting on the rotor.

Assuming the small angle approximation for β and making use of (2-18):

dT2 = dT1 sinβ ≈ βdL (2-36)

dT = dT1 cos β ≈ dL (2-37)

Together with dD1 (see Figure 2-9), due to the flapping angle, dT2 also acts on the rotor as
an in-plane force, as indicated in Figure 2-12. Depending on the azimuth angle, the resultant
of these two forces can be decomposed in an elementary longitudinal drag force dH (opposing
to the movement of the helicopter) and a lateral force dS (oriented from the regressing to the
advancing side of the rotor).

Repeating the same procedure as before:

dH = dD1 sin Ψ − dT2 cos Ψ ≈ dD sinΨ − dL(φ sin Ψ + β cos Ψ) (2-38)

dS = −dD1 cos Ψ − dT2 sinΨ ≈ −dD cos Ψ + dL(φ cos Ψ − β sinΨ) (2-39)
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dT2
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Figure 2-12: In-plane forces acting on the rotor.

Additionally, the torque moment Q of the rotor is simply due to the force D1 times the arm
rbl, meaning that:

dQ = rbldD1 ≈ rbl(dD − φdL) (2-40)

The steady-state forces and moment acting on the rotor (T , H, S and Q) are then obtained
from the integration of equations (2-37), (2-38), (2-39) and (2-40) over the blade span, av-
eraging them over the azimuth and multiplying by the number of blades N . They can also
be defined dimensionless with T = ρA (ΩR)2 CT , H = ρA (ΩR)2 CH , S = ρA (ΩR)2 CS and
Q = ρA (ΩR)2 RCQ , where:

CT =
N

2πρA (ΩR)2

∫ 2π

0

∫ R

0
dLdΨ =

σ

4π

∫ 2π

0

∫ 1

0
u2

T CL dr̄bldΨ (2-41)

CH =
N

2πρA (ΩR)2

∫ 2π

0

∫ R

0
[dD sinΨ − dL(φ sin Ψ + β cos Ψ)] dΨ =

=
σ

4π

∫ 2π

0

∫ 1

0
u2

T [CD sinΨ − CL(φ sinΨ + β cos Ψ)] dr̄bldΨ (2-42)

CS =
N

2πρA (ΩR)2

∫ 2π

0

∫ R

0
[−dD cos Ψ + dL(φ cos Ψ − β sinΨ)] dΨ =

=
σ

4π

∫ 2π

0

∫ 1

0
u2

T [−CD cos Ψ + CL(φ cos Ψ − β sinΨ)] dr̄bldΨ (2-43)

CQ =
N

2πρA (ΩR)2 R

∫ 2π

0

∫ R

0
[rbl(dD − φdL)] dΨ =

=
σ

4π

∫ 2π

0

∫ 1

0

[

r̄blu
2
T (CD − φCL)

]

dr̄bldΨ (2-44)
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As already mentioned, these coefficients are related to forces and moments represented in the
control plane. Recalling the direction of these forces and the orientation of the axes associated
with the latter plane, the force vector f generated by the main rotor is written in the system

of reference associated with the control plane as f
mr,cp

= [−H S − T ]T , but it can also be

defined in the frame related to the disc plane f
mr,dp

= [−Hdp Sdp − Tdp]
T . Moreover, the

transformation between these two systems of reference was introduced in Section 2-2 and,
from its application results:

f
mr,dp

= T cp
dpfmr,cp

⇔





−Hdp

Sdp

−Tdp



 =





cos a1 sin a1 sin b1 − sin a1 cos b1

0 cos b1 sin b1

sin a1 − cos a1 sin b1 cos a1 cos b1









−H
S
−T



 (2-45)

Using this equation, it is possible to obtain the coefficients of the forces in the disc plane from
the ones in the control plane. Once again, using the small angle assumption for the rotor
disc-tilt and, for the normal case in which T ≫ H, S:

CTdp
≈ CT (2-46)

CHdp
≈ CH − CT a1 (2-47)

CSdp
≈ CS − CT b1 (2-48)

Similarly, it can be concluded that the rotor torque moment in the control axis corresponds
approximately to the torque about the disc axis and that the remaining components that are
originated in this reference frame are null. Hence:

CQdp
≈ CQ (2-49)

These coefficients can therefore be determined once the integrals (2-41) to (2-44) are solved.
Nevertheless, it is important to have in mind that:

• As explained for the flapping equation of motion, the integrals are extremely complex
to compute since they depend directly on uT , but also on uP through the influence of
the angle of attack α on dCL and dCD. Furthermore, α also depends on the pitch of
the blades θ which, as already seen, is described by a truncated Fourier series on Ψ;

• As it was already mentioned, the expressions for the dimensionless velocities can be-
come rather complex when more influences (for example, the angular velocities of the
helicopter) are considered;

• The effects of root cutout and tip loss can be simply introduced by changing the lower
and upper limits of integration, respectively.

The equations adopted for the coefficients in this research thesis correspond to a simplified
version of the formulae available in (Pavel, 2001):

CTdp
=

σCLα

2

[(

1

3
+

µ2
x

2

)

θ0 +
1 + µ2

x

8
θtw +

µxp̄

4
+

λ

2

]

(2-50)
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CHdp
= σCD

µx

4
+

σCLα

4

[(

a1
µ2

x

2
+ µxλ

)

θ0 +
µxλ

2
θtw+

+q̄

(

b1µx

4
−

a0

3

)

−
a0b1

3
+ (a2

0 + a2
1)

µx

2
+

p̄λ

2

]

(2-51)

CSdp
=

σCLα

4

[

−
1

2
µxa0θ0 +

(

−a0
µx

3
+ b1

µ2
x

4
−

q̄

4

)

θtw−

−3a0µx (µxa1 − λ) + b1
µxa1 − λ

2
+ a0a1

µ2
x + 1

3

]

(2-52)

According to (Pavel, 1996), the torque coefficient can be approximated as a function of the
remaining ones:

CQdp
= σ

[

CD

8

(

1 + 4.7µ2
x

)

− CTdp
λdp − CHdp

µx

]

(2-53)

in which λdp = V
ΩR

sinαdp − λ0 is the rotor permeability relative to the disc plane.

Global Contribution

After the calculation of the forces and torque moment generated by the main rotor from the
coefficients above, the computation of their contribution to the motion on the helicopter is
very easy to obtain. The contribution of the forces corresponds simply to the transformation
of the vector relative to the disc plane f

mr,dp
into the body axes using (2-4):

f
mr

=





Xmr

Ymr

Zmr



 = T dp
b f

mr,dp
=

=





cos (a1R + γs) sin (a1R + γs) sin b1R sin (a1R + γs) cos b1R

0 cos b1R − sin b1R

− sin (a1R + γs) cos (a1R + γs) sin b1R cos (a1R + γs) cos b1R









−Hdp

Sdp

−Tdp



 (2-54)

In addition, the contribution of the moments m corresponds not only to the torque generated
by the rotor Qdp, acting practically along the z-axis, but also to supplementary roll Le and
pitch Me moments due to the blade hinge offset and to the effect of the arm between the
point of application of the forces and the helicopter CG. The coordinates of the referred point
in the body-fixed reference system are, as indicated in Figure 2-7, [−l − l1 − h]T and the
contribution of the moments is therefore:

mmr =





Lmr

Mmr

Nmr



 =





Le

Me

Qdp



 +





−l
−l1
−h



 × f
mr

=





Le + hYmr − l1Zmr

Me − hXmr + lZmr

Qdp + l1Xmr − lYmr



 (2-55)
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The moments Le and Me result from the centrifugal forces introduced by the eccentricity due
to the blade hinge offset. These supplementary roll and pitch moments are derived in (Pavel,
2001) and given respectively by:

Le = (ΩR)2εβmbl sin b1r (2-56)

Me = (ΩR)2εβmbl sin(a1r + γs) (2-57)

Quasi-dynamic Inflow

In the blade element theory, it is assumed that the induced velocity is uniform over the
rotor disc. While this is a good assumption at high forward speeds, at low speeds the order
of magnitude of this inflow velocity approaches the other velocity components at the rotor
blade. On the other hand, a different type of analysis was proposed by Glauert and it is based
on the momentum theory. This approach regards the rotor as an actuator disc. An actuator
disc is simply a circular surface of zero thickness that can support a pressure difference and
thus accelerate the air through it. The loading is assumed to be steady, but in general it
may vary over its surface. It is important to note that this model represents simply an
ideal approximation of the actual rotor, which would be equivalent to considering an infinite
number of blades. Obviously, since this imposes a limitation in the applicability of this theory,
it is mainly used to obtain a first estimate of the wake-induced flow (W. Johnson, 1980).

Consider first an actuator disc of area A and total thrust T in hover, as the one depicted
in Figure 2-13. Let ν0 be the induced velocity at the rotor disc and ν∞ the wake-induced
velocity infinitely far downstream, where the pressure is at the ambient level p0. Assume also
that the rotational energy in the wake due to the rotor torque is neglected and that the fluid
is incompressible and inviscid.

Actuator disc

T

ν0

ν∞

station 0

station 1
station 2

station 3

(far upstream)

(far downstream)

Figure 2-13: Momentum theory flow model for hover.

By conservation of mass, the mass flux is constant all along the wake, corresponding to
ṁ = ρAν0. Momentum conservation states that the thrust of the rotor imposes a rate of
change of the flow momentum. Since the flow far upstream is at rest for the hovering rotor,
this results in:

T = ṁν∞ = ρAν0ν∞ (2-58)

Applying Bernoulli’s equation between stations 0 and 1 and stations 2 and 3 yields:

p0 = p1 +
1

2
ρν2

0 (2-59)
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p2 +
1

2
ρν2

0 = p0 +
1

2
ρν2

∞
(2-60)

and, combining these equations:

p2 − p1 =
1

2
ρν2

∞
(2-61)

The increase in total pressure from stations 1 to 2 is due to the disc loading T/A, hence:

p2 − p1 =
T

A
⇔

1

2
ρν2

∞
= ρν0ν∞ ⇔ ν∞ = 2ν0 (2-62)

confirming that the wake is indeed contracting, as shown in the figure. If this result is applied
in (2-58), the following expression for the rotor thrust is obtained:

T = 2ρAν2
0 (2-63)

Now consider the actuator disc is operating at a velocity V with an angle of attack αdp. This
situation is illustrated in Figure 2-14.

Actuator disc

T

ν0

ν∞

V
V sin αdp

V cos αdp

αdp

Figure 2-14: Momentum theory flow model for forward flight.

The velocity of the flow in the wake far downstream is still ν∞ = 2ν0, since it is assumed
to be parallel to the rotor thrust vector, but the velocity of the flow that passes through
the disc is now

√

(V cos αdp)2 + (V sinαdp + ν0)2 instead of simply ν0. Applying the same
considerations as before, the thrust force is given by:

T = ṁν∞ = 2ρAν0

√

(V cos αdp)2 + (V sin αdp + ν0)2 (2-64)

and using the dimensionless quantities µ = V/ΩR and λ0 = ν0/ΩR, the thrust coefficient
CT = T/ρA (ΩR)2 obtained from the Glauert theory is:

CGl
T = 2λ0

√

(µ cos αdp)2 + (µ sin αdp + λ0)2 (2-65)

The dynamic inflow of the main rotor λ0 is included in the model as a state variable and
can be described by a quasi-dynamic inflow by means of the time constant τλ0

. Its time
derivative is proportional to the difference between the thrust coefficients calculated with the
blade element method CT and with Glauert theory CGl

T . Note that, in steady operation, both
thrust coefficients shall coincide. The differential equation that describes the quasi-dynamic
inflow of the main rotor in then given by:

τλ0
λ̇0 = CT − CGl

T (2-66)
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2-3-2 Tail Rotor

The modelling of the tail rotor is similar to the main rotor, but it results in a much simpler
description since it has no cyclic pitch and, as already mentioned, its flapping motion can
be neglected. In this case, the three rotor planes coincide. Additionally, the torque moment
produced by the tail rotor can also normally be neglected. This means that this rotor only
contributes to the global system with the thrust force it generates. It is also assumed that
the blades of this rotor do not present any twist angle. For the following derivation and as it
was done for the main rotor in Section 2-2, it is convenient to define dimensionless quantities
associated with the airspeed at the tail rotor. Hence, the advance ratio and the permeability
of this rotor are respectively given by:

µxtr =

√

u2 + (w + KtrΩRλ0 + qltr)2

ΩtrRtr
(2-67)

λtr = −
v − rltr + phtr

ΩtrRtr
− λ0tr (2-68)

where Ktr is the main rotor downwash factor at the tail rotor and λ0tr is the tail rotor inflow
ratio. The dimensions ltr and htr are depicted in Figure 2-7.

Rotor Force

Using the dimensionless parameters introduced, the thrust coefficient of the tail rotor based
on the blade element method is simply given by:

CTtr =
σtrCLα,tr

2

[(

1

3
+

µ2
xtr

2

)

θ0tr +
λtr

2

]

(2-69)

Note the similarity of this expression with (2-50). The tail rotor thrust force is then defined
as Ttr = ρAtr(ΩtrRtr)

2CTtr .

Global Contribution

The force calculated above only contributes to the y component of the global force acting
on the helicopter. Furthermore, the aerodynamic interference caused by the vertical tail is
accounted by a fin blockage factor suggested in (Padfield, 1996): Ftr = 1−3Svt/(4πR2

tr). The
total force is therefore given by:

f
tr

=





Xtr

Ytr

Ztr



 =





0
TtrFtr

0



 (2-70)

In addition, this force also generates two moments with arms htr and ltr that have to be
accounted for:

mtr =





Ltr

Mtr

Ntr



 =





htrYtr

0
−ltrYtr



 (2-71)
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Quasi-dynamic Inflow

As for the main rotor, the dynamic inflow of the tail rotor λ0tr is included in the model as a
state variable, being described by a quasi-dynamic inflow with a time constant τλ0,tr

:

τλ0,tr
λ̇0tr = CTtr − CGl

Ttr
(2-72)

The expression for the thrust coefficient obtained with Glauert theory for this case is simply:

CGl
Ttr

= 2λ0tr

√

µ2
xtr

+ λ2
tr (2-73)

2-3-3 Fuselage

The main influence of the fuselage can be represented by the production of a drag force Rfus,
aligned with the velocity vector and given approximately by:

Rfus =
1

2
ρV 2F0 (2-74)

where the parasite drag area F0 corresponds to the area of a flat-plate plane that would
generate a drag force equivalent to the fuselage. Note that this force can be represented in
the velocity reference frame simply as [−Rfus 0 0]T . In addition, due to the aerodynamic
angles between the velocity and the body-fixed reference frame, a pitch and a yaw moment
will also appear.

The pitch moment is associated with the coefficient:

CMfus
=

(

V

ΩR

)2 1

AR
KfusVfusM

(αfus − αfusM=0
− ǫ0) (2-75)

In this equation, Kfus is a correction coefficient that depends on the dimensions of the fuse-
lage, VfusM

is the volume of a body equivalent to the fuselage with the same view in the
horizontal plane but having circular sections, αfus = − arctan (w/u) is the fuselage incidence
(see Figure 2-7), αfusM=0

is the value of the latter angle for which Mfus = 0 and ǫ0 is the
average downwash angle. In this research thesis, the effect of this angle will not be considered
but, for high velocities, it could be approximated as ǫ0 = ν0/V .

For the yaw moment, the following coefficient can be defined as:

CNfus
=

(

V

ΩR

)2 1

AR
KfusVfusN

βfus (2-76)

where VfusN
is the volume of a body equivalent to the fuselage with the same lateral view

but having circular sections and βfus = arcsin (v/V ) is the sideslip angle.

The contribution of the forces to the overall system has to be expressed in the body-fixed
reference frame, which can be achieved with two rotation matrices (see Appendix A):

f
fus

=





Xfus

Yfus

Zfus



 = Ry(αfus)Rz(−βfus)





−Rfus

0
0



 = −Rfus





cos βfus cos αfus

sinβfus

cos βfus sin αfus



 (2-77)
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The moments are simply given by:

mfus =





Lfus

Mfus

Nfus



 = ρA(ΩR)2R





0
CMfus

CNfus



 (2-78)

2-3-4 Horizontal Tail

The horizontal tail is used to increase flight efficiency and acts as a wing in forward flight.
Its influence can be considered only by the lift force it produces, since its drag can normally
be neglected when compared to the latter. The lift force is then given by:

Lht =
1

2
ρV 2

htShtCLα,ht
αht (2-79)

where Sht is the area of this surface and CLα,ht
is the lift curve slope of its airfoil. The air

velocity at this tail Vht depends on the longitudinal and vertical velocity of the helicopter,
but also on its pitch rate:

Vht =
√

u2 + (w + qlht)2 (2-80)

The most important contributions to the incidence of the horizontal tail αht are the angle
of attack between the velocity above and the surface under analysis, the built-in horizontal
tail incidence αht0 and the average downwash angle at this tail Khtǫ0. Regarding the later,
Kht is a correction coefficient that depends mainly on the location of the tail and ǫ0 can
again be approximated by ν0/V . As for the fuselage, this angle will not be considered in the
simulation. Combining all the influences, the incidence of the horizontal tail is then given by:

αht = arctan

(

w + qlht

u

)

+ αht0 − Khtǫ0 (2-81)

Assuming a small angle of attack αht, the contribution of this surface to the global forces
acting on the helicopter is simply:

f
ht

=





Xht

Yht

Zht



 =





0
0

−Lht



 (2-82)

Due to the distance lht between the horizontal tail and the helicopter CG (see Figure 2-7),
also a pitch moment is generated, yielding:

mht =





Lht

Mht

Nht



 =





0
lhtZht

0



 (2-83)
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2-3-5 Vertical Tail

Similarly to the previous case, the vertical tail is also considered by the lift force generated
by the two surfaces when a sideslip angle exists (see Figure 2-7). The referred force is then
given by:

Lvt =
1

2
ρV 2

vtSvtCLα,vtβvt (2-84)

where again Sht is the total area of the two surfaces and CLα,vt is the lift curve slope of their
airfoil. The air velocity at this tail Vvt depends on the longitudinal and lateral velocities of
the helicopter, but also on its roll and yaw rates:

Vvt =
√

u2 + (v + phvt − rlvt)2 (2-85)

The most important contributions to the incidence of the vertical tail βvt are the angle of
attack between this velocity and the surfaces under analysis and the built-in vertical tail
incidence βvt0 . Combining these influences, the incidence of the vertical tail is then given by:

βvt = arctan

(

v + phvt − rlvt

u

)

+ βvt0 (2-86)

For small sideslip angles βvt, the contribution of this surfaces to the global forces acting on
the helicopter is approximated by:

f
vt

=





Xvt

Yvt

Zvt



 =





0
−Lvt

0



 (2-87)

Due to the distance between the vertical tail and the helicopter CG, also a roll and a yaw
moment are also produced, yielding:

mvt =





Lvt

Mvt

Nvt



 =





hvtYvt

0
−lvtYvt



 (2-88)

2-3-6 Equations of Motion

The Equations Of Motion (EOM) that describe the movement of the helicopter are exactly
the same used for the motion of a fixed-wing aircraft. They are therefore very well-known
and widely used in the field of Aerospace Engineering, so their derivation is not shown in
this research thesis. It can be found, for example, in (Etkin, 1972). Appendix A contains
the definition of the reference frames adopted for their application and the transformation
matrices between them. To express these equations, the following vectors shall be defined:

• The body-fixed linear velocity vector: v = [u v w]T ;

• The position of the helicopter CG expressed in the North-East-Down (NED) reference
frame: p = [x y z]T ;
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• The body-fixed angular velocity vector: ω = [p q r]T ;

• The Euler angles that parametrize the orientation of the helicopter relative to the NED
reference frame: θ = [φ θ ψ]T ;

• The vector containing the inflow ratios of both rotors: λ = [λ0 λ0tr ]
T ;

• The total force vector, containing the contributions of all the components presented in
the previous subsections: f = f

mr
+ f

tr
+ f

fus
+ f

ht
+ f

vt
;

• The total moment vector, again with the contributions of all the components of the
helicopter: m = mmr + mtr + mfus + mht + mvt.

For the following equations, it is assumed that the helicopter is a rigid body with constant
mass and inertia over the duration of the motion, as well as a flat and non-rotating Earth.
Furthermore, the gravity field of the planet is assumed to be uniform and thus the helicopter
CG coincides with its center of mass.

The first EOM corresponds to the dynamics of the translational motion and it is given by:

v̇ =
1

m
f + T o

b





0
0
g



 − ω × v =
1

m
f + g





− sin θ
sinφ cos θ
cos φ cos θ



 −





qw − rv
ru − pw
pv − qu



 (2-89)

where m and g are, respectively, the total mass of the helicopter and the gravitational accel-
eration, both assumed constant during the simulation.

The second EOM describes the kinematics of the translational motion of the vehicle:

ṗ = T b
ov =

=





cos ψ cos θ cos ψ sin θ sin φ − sin ψ cos φ cos ψ sin θ cos φ + sin ψ sinφ
sinψ cos θ sin ψ sin θ sinφ + cos ψ cos φ sinψ sin θ cos φ − cos ψ sinφ
− sin θ cos θ sinφ cos θ cos φ



 v
(2-90)

Analogously, there is an equation related to the dynamics of the rotational motion:

ω̇ = J−1 [m − ω × Jω] (2-91)

in which J is the inertia matrix of the helicopter, assumed constant during the simulation.

Another equation is also needed to describe the kinematics of the rotational motion, corre-
sponding to:

θ̇ = Ωb
oω =





1 sinφ tan θ cos φ tan θ
0 cos φ − sinφ
0 sinφ/ cos θ cos φ/ cos θ



ω (2-92)

Finally, the differential equations (2-66) and (2-72) are used to simulate the quasi-dynamic
inflow of the helicopter rotors:

τλ0
λ̇0 = CT − CGl

T

τλ0,tr
λ̇0tr = CTtr − CGl

Ttr

(2-93)
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Vectors v, p, ω, θ and λ constitute the state vector x used to simulate the helicopter model
presented. The number of variables it gathers indicates that this nonlinear system is of order
fourteen. In addition, the control deflections of the helicopter can also be gathered into a
vector form, originating the control input u = [θ0 θ1s θ1c θ0tr]

T .

Figure 2-15 shows schematically how the motion of the helicopter is computed and the de-
pendences that exist between its components. All the mathematical equations necessary
to simulate each block were presented in the current section. For clarity, the Main Rotor
(MR) and the Tail Rotor (TR) were divided into several blocks to compute the flapping mo-
tion, the forces and moments coefficients and their transformation into the body frame of
the helicopter. Furthermore, the computations also involve specific data from the helicopter
adopted (Appendix B) and the determination of the air density as a function of the altitude
(Appendix C). The modular structure implemented to simulate the helicopter model allows
to design and test each block (and hence each subsystem) independently from the others.
Moreover, this model can be easily adapted to different helicopters by simply changing its
parameters.

θ0,θ1s,θ1c

θ0tr

Flapping
Motion

MR

Aerodyn.

Aerodyn.

TR

Main

Rotor

Rotor

Fuselage

Horiz.

Vertical
Tail

Tail

Tail Induced
Inflow

EOM

f

m

CT

CGl
T

CTtr

CGl
Ttr

∫ x

λ̇

v̇

ṗ

ω̇

θ̇

a0,a1,b1

T ,H,S,Q

Ttr

Figure 2-15: Modular structure of the helicopter model.

2-4 Open-loop System

Now that the adopted helicopter model has been developed, it is important to test whether its
open-loop behavior (without the action of a control system) corresponds to what is physically
expected. This can be seen as a very simple task of model validation.

The helicopter is an unstable system in open-loop. For example, the hovering flight corre-
sponds to an unstable equilibrium point of its motion, since even a slight disturbance leads
to the complete instability of the vehicle. This phenomenon is known as hover instability
and it will be used in this section to analyze the open-loop response of the helicopter model.
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To do so, the helicopter is trimmed in hover conditions (using the routine presented in Ap-
pendix D) and, after one second of simulation, the longitudinal cyclic is perturbed with a
positive deflection of 0.5◦ for half a second. The result obtained is presented in Figure 2-16.
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Figure 2-16: Hover instability.

Before analyzing the hover instability itself, it is important to make a remark on the values
of the control inputs necessary to trim the helicopter in hover and the main dependences
that influence them. Basically, the collective pitch of the main rotor θ0 is such that the
thrust produced balances the weight of the vehicle. On the other hand, the collective pitch
of the tail rotor θ0tr is such that the thrust generated times the distance to the helicopter
CG compensates the moment torque of the main rotor. The longitudinal cyclic θ1s presents
a slight forward deflection, mainly to compensate the longitudinal displacement of the rotor
hub with respect to the helicopter CG. Finally, since the thrust of the tail rotor acts as a
lateral force pointing to the right, the thrust vector of the main rotor has to be tilted to the
left, which is accomplished by a negative deflection of the lateral cyclic θ1c.

Regarding now the response of the helicopter to the disturbance introduced in the longitudinal
cyclic, the hover instability phenomenon occurs as follows. Due to the referred disturbance,
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the main rotor tilts forward, the helicopter pitches down and a forward acceleration is pro-
duced. As the helicopter is moving forward, the rotor flaps back and generates a nose-up
pitching moment about the CG. This moment damps the flapping motion, which is there-
fore reduced and the helicopter starts pitching down again. This originates on oscillatory
movement of the helicopter with an amplitude that increases over time. Due to the complex
couplings that characterize the system, this instability is also transmitted to the remaining
components of the velocity vector and attitude angles, which diverge from the equilibrium
point quite quickly. In conclusion, the helicopter hover instability is mainly due to the rotor’s
tendency to flap back when its forward velocity is increased.
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Chapter 3

Nonlinear Dynamic Inversion (NDI)

The NDI control methodology was developed in the late 1970’s (Brockett, 1978). In this
research thesis, it is applied to the helicopter model under analysis. This chapter begins with
the explanation of the main idea behind the NDI in Section 3-1, followed by the description
of its working principle to generic Single Input Single Output (SISO) and Multiple Input
Multiple Output (MIMO) systems in Section 3-2 and 3-3, respectively. In Section 3-4 an
approach used to simplify the design of a control system is suggested and in Section 3-5, after
identifying the main limitations of the NDI, its incremental form is introduced.

The theoretical development presented in this chapter is mainly based on (Enns et al., 1994;
Chu, 2010; Sieberling, Chu, & Mulder, 2010; Wedershoven, 2010). For further information on
the NDI technique or on another nonlinear control strategy, the reader is referred to (Slotine
& Li, 1991; Isidori, 1995; Hedrick & Girard, 2010).

3-1 Fundamentals

The intuitive concept behind the NDI is quite simple. Basically, the dynamic inversion allows
to generate a virtual control input ν via nonlinear feedback control and state transformation
such that, when it is applied to the nonlinear system, the relation between this input and the
output of the system becomes linear. Afterwards, a linear control law can be designed for ν,
employing the well-known tools from the classical control theory and no gain-scheduling is
needed to adapt the controller to different situations. To understand mathematically what
happens, consider a n-th order nonlinear SISO system defined as:

dnx1

dtn
= a(x) + b(x)u

y = h(x) = x1

(3-1)

where x is the state vector in R
n, u is a scalar input, y a scalar output and a, b and h are scalar

functions from R
n to R. Let also the i-th component of vector x be denoted by xi. In this
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case, for the sake of simplicity, a linear dependence on the control input u was assumed but,
as it will be seen later on, this is not a necessary condition, nor is it valid when the helicopter
model is regarded. The system above can be directly recast as a space-state representation
in the so-called companion form:

d

dt











x1
...

xn−1

xn











=











x2
...

xn

a(x) + b(x)u











(3-2)

or, alternatively,

dx1

dt
=

dy

dt
= x2

...

dxn−1

dt
=

dn−1y

dtn−1
= xn

dxn

dt
=

dny

dtn
= a(x) + b(x)u

(3-3)

The dependence on the control input appears explicitly and, if the virtual control input is
defined as:

ν =
dxn

dt
=

dny

dtn
= a(x) + b(x)u (3-4)

it is possible to solve for the physical control input when b(x) 6= 0 as follows:

u = b(x)−1 (ν − a(x)) (3-5)

By introducing this expression for u into the system in the companion form, a closed-loop
linear relation is obtained:

d

dt











x1
...

xn−1

xn











=











x2
...

xn

ν











(3-6)

where all the nonlinearities have been cancelled and the system can be simply represented
by a cascade of n integrators. As already mentioned, the control law for ν is obtained from
a linear controller using state feedback and with the gains chosen so that the closed-loop
response presents the desired characteristics. Namely, they must assure that the poles are
located in the open left half-plane for exponential stability. For stabilization problems, the
virtual input is given by:
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ν = −[k0 k1 . . . kn−1]











y
ẏ
...

y(n−1)











(3-7)

where k0, ..., kn−1 are simple proportional gains. With this control law, the closed loop systems
becomes:

y(n) + kn−1y
(n−1) + · · · + k1ẏ + k0y = 0 (3-8)

For tracking applications, the virtual control input depends on the state error e = y − ycom:

ν − y(n)
com = −[k0 k1 . . . kn−1]











e
ė
...

e(n−1)











(3-9)

and, similarly to the previous case,

e(n) + kn−1e
(n−1) + · · · + k1ė + k0e = 0 (3-10)

Note that tracking problems are more difficult to solve than stabilization problems since they
shall not only keep the whole state stabilized, but also drive the system output to the desired
value. Moreover, stabilization problems can be regarded as a special case of tracking problems
in which the desired trajectory is constant.

The component y
(n)
com in (3-9) corresponds to a feedforward term that can be used to increase

the speed and tracking accuracy of the response. The structure of the overall system for
a tracking problem is depicted in Figure 3-1. As it can be seen, it includes an inner loop
to perform the dynamic inversion (3-5) and an outer loop corresponding to the linear con-
troller (3-9). This controller can be easily designed since the response from ν to y behaves like
a cascade of n integrators. As long as the model of the system is accurately known and b(x) is
invertible, the gains of the outer loop assure the desired performance for a much wider range
that it would be possible to obtain with a linear controller. In addition, it is important to
notice that all the states that are fed back have to be known. If it is not possible to measure
them directly with a sensing system, a nonlinear observer or a state estimator will have to be
used for deterministic or stochastic variables, respectively.

3-2 Input-output Linearization

In the previous section, the application of the NDI was derived for systems that can be
directly represented in the companion form. However, for the general case in which a system
is not written in the companion form or in which the output function h(x) has a nonlinear
dependence on the states (and, as a consequence, is indirectly related to the controls), it is
necessary to perform a state local coordinate transformation that allows to find the explicit
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ycom −e Linear
Controller

y
(n)
com

ν

NDI

1/sn

b(x)−1

a(x)

u Nonlinear
System

x y
h(x)

Figure 3-1: Schematic of an overall control system based on NDI.

relation between the control inputs and the outputs. This transformation is known as input-
output linearization. After that, the dynamic inversion is carried out as presented before.
In this section, a generic SISO system with a linear dependence on the controls is analyzed.
This is represented by:

ẋ = f(x) + g(x)u

y = h(x)
(3-11)

where x is again the n-dimensional state vector, u and y are the scalar input and output,
respectively, f and g are nonlinear vector fields in R

n and h is a nonlinear scalar function
from R

n to R. Since it models the effect of the control input in the response of the system,
g is often referred to as control effectiveness function. To proceed with the input-output
linearization, it is useful to introduce the concept of Lie derivative (Slotine & Li, 1991).

Lie derivative

Let h(x) : R
n → R be a smooth scalar function and f(x) : R

n → R
n be a smooth vector

field, the Lie derivative of h with respect to f is a scalar function defined by:

Lfh(x) = ∇hf(x) (3-12)

where ∇ is the gradient operator. This means that the Lie derivative is simply the
directional derivative of h along the direction of vector f . Repeated Lie derivatives are
defined recursively:

L0
fh(x) = ∇h(x) (3-13)

Li
fh(x) = Lf

(

Li−1
f h(x)

)

= ∇
(

Li−1
f h(x)

)

f(x) (3-14)

and similarly for another vector field g in R
n:

LgLfh(x) = ∇ (Lfh(x)) g(x) (3-15)

The procedure to obtain a linear input-output relation involves successive time-differentiations
of the output, attributing each derivative to a new state variable. It stops when an explicit
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dependence on the control input appears in the next time-derivative. More formally, the first
order derivative of y is given by:

ẏ = ∇hẋ = ∇h
(

f(x) + g(x)u
)

= Lfh(x) + Lgh(x)u (3-16)

and, if Lgh(x) 6= 0:

u =
1

Lgh(x)
(ν − Lfh(x)) (3-17)

where again a linear dependence exists for the virtual control: ν = ẏ.

If Lgh(x) = 0, an explicit relation between u and y cannot be obtained and further differen-
tiation of the output is needed:

ÿ = ∇ẏẋ = ∇Lfh(x)
(

f(x) + g(x)u
)

= L2
fh(x) + LgLfh(x)u (3-18)

Once again, if LgLfh(x) 6= 0, the control input can be directly determined from:

u =
1

LgLfh(x)

(

ν − L2
fh(x)

)

(3-19)

where the virtual control is now ν = ÿ.

If LgLfh(x) = 0, the procedure is repeated until an integer number r is found such that
LgL

r−1
f h(x) 6= 0. Hence, the generalized methodology yields:

u =
1

LgL
r−1
f h(x)

(

ν − Lr
fh(x)

)

(3-20)

where:

r = min i ∈ Z : LgL
i−1
f h(x) 6= 0 (3-21)

and the relation between the virtual control and the output of the system is linearized,
corresponding to r integrators in cascade: ν = y(r). The number r is simply the number of
times that the output equation has to be differentiated until an explicit dependence on the
control appears. It is known as the relative degree of the system. If the referred dependence
never appears, the system is not feedback linearizable and the NDI cannot be applied to
control it (Marino, 1986).

Internal and zero dynamics

For any feedback linearizable system of order n, it can be stated that r ≤ n always and, if
r < n, part of the system is rendered unobservable. This part cannot be assessed from the
input-output linearization and it is thus known as internal dynamics. It is also important
to note that r can never be larger than n since if more differentiations of the output
function were needed to appear the control influence, the order of the system would be
higher than n. On the other hand, if infinite differentiations of y would never allow to
obtain the control dependence, the system could not be defined as feedback linearizable.
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Conceptually, internal dynamics are simply the remaining motions allowed to the system
when the inverted outputs are being constrained by the NDI controller. In order to assure
the effectiveness of the controller when r < n, the internal dynamics have to be stable
(bounded) in the region of interest. Unfortunately, due to the nonlinearities and potential
couplings of the whole system, the stability of internal dynamics is in general very difficult
to evaluate.

Nevertheless, if the system is linear, the eigenvalues of the internal dynamics correspond
to the zeros of the transfer functions of the control variables and, for that reason, they are
known as zero dynamics (Enns et al., 1994). In this case, the relative degree is the excess
of poles over zeros and, if there are any zeros (r < n), the zero dynamics are stable and
well-behaved if all the zeros are located in the left half-plane (meaning that the system
is minimum-phase) and have reasonable damping ratios (between 0.6 and 1.0). Internal
dynamics correspond to a generalization of the same ideas, resulting in the conclusion
that this behavior has to be taken into account when choosing the control variables of a
system.

It is now possible to define a coordinate transformation to convert a feedback linearizable
system into the companion form, characterized by the state vector z. This transformation
is given by the nonlinear transformation Φ, which can be classified as a diffeomorphism: a
smooth bijective mapping with a smooth inverse. In this particular case, it is given by:

z = Φ(x) =

























φ1(x)
φ2(x)

...
φr(x)

φr+1(x)
...

φn(x)

























(3-22)

where the first r components correspond to:

φi(x) = Li−1
f h(x) (3-23)

Furthermore, it is also verified that:

φ̇i(x) = ∇φiẋ = ∇Li−1
f h(x)

(

f(x) + g(x)u
)

= Li
fh(x) + LgL

i−1
f h(x)u (3-24)

and, according to the definition of relative degree, the second term is only different than
zero for i = r. After this transformation, the system is expressed in the companion form
presented in the previous section and, considering the inverse mapping x = Φ−1(z), the
following relations are derived by analogy:

drz1

dtr
= a(z) + b(z)u (3-25)
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d

dt











z1
...

zr−1

zr











=











z2
...
zr

a(z) + b(z)u











(3-26)

ν =
dzr

dt
=

drz1

dtr
= a(z) + b(z)u (3-27)

u = b(z)−1 (ν − a(z)) (3-28)

where:

a(z) = Lr
fh(x) (3-29)

b(z) = LgL
r−1
f h(x) (3-30)

It is always possible to find n − r more functions φi(x), for r + 1 ≤ i ≤ n, such that
∇φig(x) = Lgφi(x) = 0 is verified for all the x in the region of interest. These components of
the diffeomorphism Φ(x) correspond to the internal dynamics of the systems and show that
the unobservable states zr+1, ..., zn do not depend explicitly on the control input u and cannot
be controlled. The internal dynamics are not observable because the first r components of z
do not depend on them at all.

Once again, by setting x = Φ−1(z), the state-space description of the internal dynamics of
the system is given by:

d

dt







zr+1
...

zn






=







Lr+1
f h(x)

...
Ln

f h(x)






(3-31)

After the application of this transformation, the first r equations are linearized and it is
possible to design a control law for ν based on the tracking error e = y − ycom using linear
control techniques, as mentioned for (3-9). It is also important to note that this control law is
of order r and if it is smaller than the order n of the system, it does not account for the internal
dynamics, which are unobservable to the input-output linearization. As a consequence, the
effectiveness of the controller depends strongly on the stability of the internal dynamics.

3-3 Extension to MIMO Systems

The input-output linearization procedure presented in the previous section for a SISO system
can be easily extended to the MIMO case. Again, it is assumed that the states are affine with
respect to the controls and, at this point, the input-output linearization concerns a system
with the same number m of outputs and inputs. This type of system can be represented by:

ẋ = f(x) + G(x)u = f(x) + g
1
(x)u1 + ... + g

m
(x)um

y = h(x) = [h1(x) ... hm(x)]T
(3-32)

Helicopter Nonlinear Flight Control Pedro V. M. Simpĺıcio
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Comparing with the previous case, the input u and the output y of the system are now
vectors in R

m, h is the nonlinear output vector function in R
m and G is a n×m input matrix.

Once again, each component yj of the output vector is differentiated with respect to time
until an explicit dependence on one of the control inputs appears. The smallest number of
differentiations needed for this to happen is rj and, by analogy with the previous section, the
result is:

y
(rj)
j = L

rj

f hj(x) +
[

Lg1
L

rj−1
f hj(x) ... LgmL

rj−1
f hj(x)

]







u1
...

um






(3-33)

Once again, rj is the relative degree associated with the j-th component of the output vector
and the total relative degree of the system is given by:

r =
m

∑

j=1

rj (3-34)

Similarly to the SISO case, if the total relative degree of the system is inferior to its order, there
are some degrees of internal dynamics that must be bounded to assure control effectiveness.
Considering the influence of the m output variables, the total input-output linearization can
be written in a compact form using the nonlinear vector field a and the input dependency
matrix B:

ν = a(x) + B(x)u (3-35)

with:






ν1
...

νm






=







y
(r1)
1
...

y
(rm)
m






(3-36)

a(x) =







Lr1

f h1(x)
...

Lrm

f hm(x)






(3-37)

B(x) =







Lg1
Lr1−1

f h1(x) ... LgmLr1−1
f h1(x)

...
...

...

Lg1
Lrm−1

f hm(x) ... LgmLrm−1
f hm(x)






(3-38)

From this it can be understood why it was assumed that the number of outputs and inputs are
the same: if they were not, matrix B would not be square and some sort of control allocation
would be needed to invert the system. This issue will be further discussed in Chapter 5. If B
is invertible for all x in the region of interest, the relation between the physical and virtual
controls is given by:

u = B−1(x)(ν − a(x)) (3-39)

and again a linear multiple integrator relation between the output y and the virtual control
ν is achieved from (3-36). From this equation it is also possible to verify that each yj is only
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affected by νj , meaning that the dynamics of each control channel j is completely independent
and decoupled from the remaining system, as long as its model is accurately known. There-
fore, all the channels can be controlled separately and the outer linear controller associated
with each one can be designed based only on the desired performance for the corresponding
response. This aspect is very useful for the development of flight control system since it
enables a direct mapping of the desired flying qualities in the control laws. Moreover, since
the system is linearized when all the nonlinearities are cancelled, the single linear controllers
can be used for the complete flight envelope. For each control channel, the aspect of the
closed-loop system is therefore similar to the one presented in Figure 3-1 for the SISO case.

For tracking problems, the outputs of the system are often selected to be the control variables.
These control variables shall also be chosen such that the remaining internal dynamics are
stable. Furthermore, when some control variables are physically related (for example, three
attitude angles), the dynamic inversion can be performed using the complete control vector
instead of individual variables. This is due to the fact that they are expected to have the
same relative degree.

3-4 Time Scale Separation

Flight dynamics problems are nonlinear by nature, particularly in realistic representations
that are appropriate for the development of guidance and control strategies. The existence of
different time scales in a dynamical system can be used to greatly simplify its complexity by
separating the fast and slow dynamics. This type of time scale separation exists naturally in
many fields of applied mathematics, engineering and biological sciences and it is originated
by the presence of some parasitic parameters. Time scales in dynamical systems are studied
by the singular perturbations theory, of which (Naidu & Calise, 2001) is an important survey
reference.

To more clearly understand the concept of singular perturbation, consider the nonlinear sys-
tem:

ẋs = f
s
(xs, xf , u, ǫ)

ǫẋf = f
f
(xs, xf , u, ǫ)

(3-40)

where x =
[

xT
s xT

f

]T

is the state vector, u is the control inputs vector, f =
[

fT
s

fT
f

]T

is

a nonlinear vector field and the small parameter ǫ is known as singular perturbation. This
system is labeled as singularly perturbed since the suppression of the perturbation (ǫ = 0)
results in the reduction of its order. When this happens, the fast dynamics are so rapid
that the fast states xf have reached a quasi-steady situation in the slow timescale. In this
case, the evolution of the states is only described by the slow dynamics xs, subjected to
f

f
(xs, xf , u, 0) = 0. From this result, it can be concluded that the singular perturbation

theory allows to represent a mathematical formulation of intuitive approaches in order to
simplify the models via order reduction. This type of analysis can also be extended to systems
with multiple time scales.

In general, a system with separated time scales does not need to be in the singularly perturbed
structure since singularly perturbed systems are only a special representation of the general
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class of time scale systems. Often, the small parameter ǫ does not appear in the desirable form
or it may not be identifiable at all. It is also possible to know whether a system possesses slow
and fast modes by physical insight and past experience. Several formal alternatives to select
time scales are presented in (Naidu & Calise, 2001), complemented with examples regarding
different aerospace systems.

The time scale separation principle can also be applied to simplify the design and analysis of
control systems. In this case, fast dynamics are associated with variables with a higher control
effectiveness, while slow dynamics correspond to the states that are more weakly affected by
the control inputs. Typically, this principle is used for attitude control of an aircraft by
separating the rotational dynamics (angular rates) from the slow dynamics, associated with
the evolution of its orientation angles. This follows the assumption that the control effectors
are primarily moment producing devices.

A very simple way to verify the existence of a difference in the time scale between attitude
angles and angular rates is simply to introduce unit step signals in the control inputs of the
helicopter in open loop and measure the time derivative of the responses in the transient
instant. The results obtained when the referred step inputs are applied to the helicopter in
hover are presented in Table 3-1.

Table 3-1: Verification of the time scale separation between attitude angles and rates.

Step in the lateral cyclic pitch dφ
dt

= 5.7 deg/s dp
dt

= 145.8 deg/s2

Step in the longitudinal cyclic pitch dθ
dt

= −2.5 deg/s dq
dt

= −60.1 deg/s2

Step in the collective of the tail rotor dψ
dt

= −0.7 deg/s dr
dt

= −16.5 deg/s2

From this table, it is possible to see that there is a substantial difference between the deriva-
tives associated with the attitude angles and rates, showing that dynamics of the latter ones
evolve considerably faster. Intuitively, it can also be understood that the dynamics of the an-
gles are in fact slower than their rates, since the relation between these two types of variables
involves an integration.

When the time scale separation principle is applied, the original differential equations are
separated into two subsystems, each one controlled using a NDI approach. The dynamics
of the angular rates correspond to an inner loop, where the physical control inputs are used
to track references in terms of roll, pitch and yaw rates. Then, an outer loop is introduced
to generate the latter references in order to control the desired angular orientation of the
aircraft. This means that the fast variables are used as control inputs to the slow dynamics.

The application of the time scale separation principle to attitude control will be further
developed later in this thesis. As already mentioned, the main advantage of this configuration
is the simplification achieved in the development of a NDI-based control system. In this case,
instead of inverting a system of sixth order directly, the control architecture is separated into
two third order systems. The scale separation principle will also be used to separate the
translational dynamics of the helicopter from its rotational motion. In this line of reasoning,
it will be assumed that the evolution of the angular rates of the body is substantially faster
than the attitude angles, which also evolve faster than the linear velocities of the helicopter.
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When the time scale separation principle is applied, parameters associated with the slow
dynamics are treated as constants in the inner loop (fast dynamics), since they evolve more
slowly. Furthermore, the dynamic inversion of the outer loop (slow dynamics) is performed
assuming that the states of the fast dynamics achieve their commanded values instantaneously,
which is only valid if the time scales of the two loops are separated enough. Otherwise, if there
is a weak separation between the different time scales, the performance of the overall controller
may become severely degraded. It was however proven in (Schumacher, Khargonekar, &
McClamroch, 1998) using Lyapunov theory that any system is exponentially stable about
constant commanded values of the outer loop states if the inner loop gains are sufficiently
large. This property was applied in practice for a missile control system in (Schumacher
& Khargonekar, 1998). It can also be intuitively understood thar higher inner loop gains
will impose faster responses in the corresponding states and thus improving the time scale
separation with respect to those controller by the outer loop.

3-5 Model Uncertainties and Incremental NDI (INDI)

After deriving the NDI control theory, it is important to assess whether this kind of controller
is robust to uncertainties and inaccuracies in the model of the system (Sieberling et al., 2010).
For the sake of simplicity, this section concerns a generic MIMO system of m-th order, with
y = x and all the components of this vector have a unitary relative degree. As it was shown
in Section 3-3, the extension to more complex systems is quite straightforward. Furthermore,
it is still assumed that the system is affine in the control vector and that no internal dynamics
exist after the dynamic inversion. Let (3-32) be reformulated such that the functions that
describe the model are composed of a nominal part which is known (f

n
and Gn) plus an

uncertain term (∆f and ∆G):

ẋ = f
n
(x) + ∆f(x) + (Gn(x) + ∆G(x)) u (3-41)

In spite of the fact that this is the equation that describes the real system, the uncertain parts
are not known when the dynamic inversion is performed, unless some kind of identification
is applied onboard. As a consequence, the relation between the virtual and physical control
inputs only accounts for the nominal part of the system. This yields:

u = Gn(x)−1(ν − f
n
(x)) (3-42)

where ν = ẋ. However, when this input is applied to the system:

ẋ = f
n
(x) + ∆f(x) + (Gn(x) + ∆G(x))Gn(x)−1(ν − f

n
(x)) =

= ∆f(x) − ∆G(x)Gn(x)−1f
n
(x) +

(

In×n + ∆G(x)Gn(x)−1
)

ν
(3-43)

where In×n is the n × n identity matrix. As it can be seen, the linear relation ẋ = ν
expected from Section 3-3 is only valid for ∆f(x) = ∆G(x) = 0. Otherwise, in the presence
of uncertainties, the closed-loop system is not linearized anymore, causing the degradation of
the performance of the overall controller and compromising the stability of the system. This
high sensitivity of the NDI to model uncertainties is the main shortcoming of the standard
version of this approach and the main motivation to develop a more robust version called
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Incremental Nonlinear Dynamic Inversion (INDI), also known in the literature as Simplified
or Modified NDI.

As the name indicates, the concept of the INDI is based on the incremental form of the
dynamics of the system (Chen & Zhang, 2008). Instead of using the virtual input to compute
the complete control vector, it is possible to determine only the required variation with
respect to the previous input. To achieve this, consider the linearization of (3-32) in the same
conditions as before, obtained from the first-order terms of its Taylor series expansion around
the current solution of the system, denoted by (x0, u0):

ẋ ≈ ẋ0 +
∂

∂x

[

f(x) + G(x)u
]

x
0
,u

0

(x − x0) +
∂

∂u

[

f(x) + G(x)u
]

x
0
,u

0

(u − u0) =

= ẋ0 +
∂

∂x

[

f(x) + G(x)u
]

x
0
,u

0

(x − x0) + G(x0)(u − u0)

(3-44)

Note that this equation implies that ẋ0 is known, either by direct measurement or state
estimation. Similarly, the current control vector u0 has also to be accurately known. Fur-
thermore, for very small time increments, the variation x − x0 can in principle be neglected,
yielding:

ν = ẋ ≈ ẋ0 + G(x0)(u − u0) (3-45)

The virtual control input is then directly related to the incremental command. As already
mentioned, instead of computing the total control input directly, only the required increment
relative to the previous input is necessary. Assuming that a demanded control input is
achieved instantaneously (either by neglecting the actuator dynamics or by considering a
difference in the time scales) and with no error, the corresponding control law is given by:

u = G(x0)
−1(ν − ẋ0) + u0 (3-46)

As for the regular NDI, the virtual input ν is generated by a linear control law, since its
relation with the output of the system is linearized. At this point, a major advantage of the
INDI can be identified: the linearization law does not depend on f anymore. This means
that, in opposition to the regular NDI, it is not necessary to know this part of the model.
Instead, this information is replaced by onboard measurements of ẋ0. This is why the INDI
is sometimes referred to as a sensor-based approach while the NDI is mentioned as model-
based. Nevertheless, both methods do require the description of the influence of the controls,
contained in G.

The insensitivity of the INDI to modelling errors that might be incorporated in f allows
the implementation of simple and effective reconfigurable flight controllers, able to cope with
structural damages or system failures without the need to perform real-time identification of
the model. One example can be found in (Bacon, Ostroff, & Joshi, 2001), where the author
also implements the technique known as Failure Detection and Isolation (FDI) to the inertial
sensors.

The robustness of the linearizing control law for the INDI can also be evaluated following the
same procedure used for the NDI. In this case, assuming ideal sensors, all the uncertainties
will lie in G = Gn + ∆G. Note that this does not imply that changes and uncertainties in f
are neglected, since they are still indirectly reflected in the construction of ẋ0. From (3-45):

ẋ = ẋ0 + (Gn(x0) + ∆G(x0)) (u − u0) (3-47)

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



3-5 Model Uncertainties and Incremental NDI (INDI) 55

and again, only the nominal part is known by the controller:

u = Gn(x0)
−1(ν − ẋ0) + u0 (3-48)

Replacing this control law in (3-47) yields:

ẋ = ẋ0 + (Gn(x0) + ∆G(x0)) (G(x0)
−1(ν − ẋ0) + u0 − u0) =

= −∆G(x0)Gn(x0)
−1ẋ0 +

(

In×n + ∆G(x0)Gn(x0)
−1

)

ν =

= −Cẋ0 + (In×n + C)ν

(3-49)

where C = ∆G(x0)Gn(x0)
−1. Also in this case, the relation ẋ = ν is only obtained when no

model uncertainties exist (∆G(x0) = 0). However, even in the presence of uncertainties, this
equation is still linear and its components remain decoupled.

In addition, when a linear controller with a diagonal transfer matrix K(s) is applied to
design the virtual control from the tracking error (in this case, ν = −K(s)(x−xcom)), taking
into account that, as assumed before, x0 ≈ x and, in the Laplace domain with zero initial
conditions, ẋ = sx, it follows that:

sx = −sCx + (In×n + C)K(s)(xcom − x) (3-50)

and the output of the closed-loop system is given by:

x =
K(s)

sIn×n + K(s)
xcom (3-51)

and, as it can be seen, the influence of the model uncertainties ∆G(x0) contained in C have
also disappeared. This means that, when closing the INDI-based feedback linearization loop,
the applied control input eliminates the influence of the uncertainties that affect the model
and the system can be linearized and decoupled as if no model uncertainties existed. The
only limitation in this statement is associated with the dependence of the control laws on the
sign of the control effectiveness matrix G, as explained below.

Relative to both NDI and INDI, experience showed that an unknown reversal in the sign
of the control effectiveness matrix leads to an unstable response (Kim, 2003). This can be
intuitively understood since, if the sign of a component of the control effectiveness matrix
is not correct (sign (G(x0)) 6= sign (Gn(x0) + ∆G(x0))), instead of compensate for errors, the
controller will tend to increase them. The effect of this uncertainty in the stability of the
system can also be visualized by the sign of the entries of C in (3-49), for the INDI case.
Note that the diagonal components of this matrix are equal to one when there are no model
uncertainties, larger than the unity when there are uncertainties but the sign of the control
effectiveness is correct and smaller than one when also the sign is wrong.

In summary, after this analysis, the following conclusions can be drawn:

• The implementation of the basic version of the NDI requires an accurate knowledge
of the model of the system, which may not be possible in practice. Nevertheless, the
incremental version allows to reduce significantly the dependence of the controller on
the model available. In fact, with this type of approach, only the information about the
influence of the controls is needed;
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• With the application of INDI, even when there are uncertainties, the closed-loop sys-
tem is still linearized and decoupled. Furthermore, as it was seen, the effect of those
uncertainties is cancelled when the outer linear controller is applied to the linearized
system. Hence, theoretically, the only information needed by an INDI-based controller
to effectively control a nonlinear system is the sign of the control effectiveness matrix;

• The referred reduction of the model dependence is achieved by making use of information
about the derivatives of the states and thus the efficiency of the controller depends on
the accuracy of their measurements. It can also be the case that the required variables
cannot be measured and thus they have to be estimated. This represents the main
drawback of this type of controller. The measurements will not only contain biases,
noise and delay, but also numeric errors may arise from the estimation processes. It is
thus very important to minimize these influences in order not to degrade the control
efficiency. Uncertainties in the form of biases can be compensated by outer loops. The
remaining issues will be addressed in Chapter 8.
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Chapter 4

Pseudo-Control Hedging (PCH)

In the previous chapter, the NDI theory was derived without any consideration of the dy-
namics of the actuators and therefore assuming them ideal. In fact, this type of controller
is normally designed without making use of any information about the actuator limitations.
As it will be seen, helicopter flight control easily involves inputs to the system with high
values of magnitude and rate. If the referred limitations are not taken into account when
developing the controller, the performance of the overall system may be severely degraded
and its stability may even be put at risk.

Flight control saturation elements normally exist due to the physical limitations of the actu-
ators or due to control limit implementation used to monitor the bound of a signal. These
saturations can be related to the position and rate limits of the control actuators, as in the
case of this thesis, but they can also involve dynamics of high orders. The overall system
stability is dictated by the inputs of the control paths that contain these saturation elements.
Saturation limits can normally be avoided by reducing the gains of the controller, but this
option introduces conservatism into the system and its performance may become far from the
desirable. On the other hand, saturation also implies controllability and invertibility issues,
which may violate necessary conditions for the dynamic inversion.

The approaches adopted to avoid actuator saturations are normally developed based on adap-
tive control compensation. For adaptive control in general, modified adaptive laws have been
proposed to modify the error signal in Model Reference Adaptive Control (MRAC) when
some kind of saturation occurs (Wang & Sun, 1992). Nevertheless, as already mentioned,
when it comes to flight certification, adaptive controllers are particularly troublesome in two
aspects: it is not only difficult to show that the controller will never ”learn” incorrectly and
consequently cause harm to the vehicle, but it is also hard to prove that the adaptive element
is able to recover from a failure in adaptation. These shortcomings were the main motivations
for the development of an adaptive technique to deal with actuators dynamics while not in
direct control of the plant: the Pseudo-Control Hedging (PCH). The present chapter starts
with a description of the PCH technique in Section 4-1, followed by the derivation of NDI
control loops with PCH in Section 4-2 and ends with a brief analysis of the tracking error
dynamics in Section 4-3.
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4-1 Description

The PCH design concept was firstly introduced in (E. N. Johnson & Calise, 2000), being
further developed in (Lam, Hindman, Shell, & Ridgely, 2005). Successful applications of this
technique can be found, for example, in (Lombaerts, 2010) to the model of a Boeing 747-
100/200 aircraft and in (E. N. Johnson & Kannan, 2005) to a UAV helicopter. The purpose
of the PCH is to prevent the overall control system from attempting to track a commanded
reference when the effects of actuator saturation are present. This method also relies on
modifying the error signal, but this modification is introduced in a reference model in such
a way that the over-demanding control inputs are removed, rather than an adaptive law
directly. This means that a pre-adaptation of the signal is made before handing it over to the
control system.

A conventional controller computes the values of the commanded control deflections required
to obtain the desired response of the system. PCH uses a model of the actuators with position
and rate saturations to estimate their responses to the referred commands. The difference
between the achievable and the commanded controls is used to adjust a Reference Model
(RM), which will automatically reduce the saturation intensity and allow stabilization when
it senses a command is too aggressive for the actuators.

The RM is used to impose the desired dynamics to the commanded variable handed to
the remainder control system yrm. Furthermore, this model is also very useful to provide
the derivative of the command input, which can be used by the controller as a feedforward
term νrm. Finally, this model can also include a saturation filter that keeps the desired
references ycom from being physically unfeasible. The RM configuration with this element is
also presented in the literature as a command filter. The desired references may be introduced
directly by the pilot into the system or may be originated in an outer control loop. Figure 4-1
shows the aspect of a first-order RM where, for simplicity, the state to be controlled is a
scalar.

ycom ysat
yrm

ẏrme
K

νh

νrm

1
s

Figure 4-1: First-order reference model with saturation filter.

When no saturation of the actuators occurs, the pseudo-control hedge νh is zero and the
RM behaves exactly like a Low-Pass Filter (LPF) with cutoff-frequency K. This value shall
match the one imposed by the remainder control system so that the evolution of yrm is not
too aggressive for the actuators nor slower than the response capabilities of the controller.
The existence of this filter is very important because, due to its action, the pilot does not have
to be concerned on whether his commands are too demanding for the control system. The
RM model will filter this commands so that they are as smooth as necessary to be tracked
by the controller.
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The magnitude of the pseudo-control hedge indicates how much less authority the controller
system is getting due to saturations that what it desires. As soon as the system experiences
saturations, the value of νh will no longer be zero and the RM starts attenuating the command
such that saturations are no longer occurring. Note that this signal affects the derivative of
yrm and thus it only affects the RM state directly after a few instants.

In other words, as explained in (E. N. Johnson & Kannan, 2005), PCH moves (hedges) the
RM in the opposite direction by an estimate of the amount the plant did not move due to
the limitations of the actuators, preventing the continued demand to track the commanded
references in this situation. The next section deals with the calculation of the pseudo-control
hedge.

4-2 Architecture in a NDI Loop

Again considering a SISO system (which is coherent with the fact that the channel associated
with each variable can be designed separately since the NDI decouples the responses), the NDI
is used to determine a commanded input ucom from the inversion of the desired virtual control
signal ν. However, due to the actuator dynamics, ucom may not be equal to the actual control
u, which is assumed to be known based on a model or measurement. Using information of
the system, it is also possible to estimate the value of a virtual control ν̂ corresponding to the
physical control u. Recalling expression (3-4), deduced for the virtual control in the previous
chapter, the pseudo-control hedge can then be defined as:

νh = ν − ν̂ =

= [a(x) + b(x)ucom] − [a(x) + b(x)u] =

= b(x)(ucom − u)

(4-1)

The application of PCH to a NDI-based control loop is schematized in Figure 4-2, where the
RM block corresponds to the one presented in the previous section, ”Act.” represents the
dynamics of the actuators and the NDI was already discussed in Chapter 3.

ycom yrm x

y

e
K

h(x)

RM NDI SystemAct.

PCH

ν

νh

νrm

b(x)

uucom

Figure 4-2: NDI controller with PCH compensation.
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In this case, the linear controller of the NDI is assumed to be simply a proportional gain
K plus the influence of the feedforward term from the RM. Recall that b(x) is the scalar
field that relates the physical input of the system with its state and h(x) is the output
function. In summary, from the analysis of the figure it is possible to conclude that the
PCH subsystem monitors the control commands and scales (hedges) the RM such that the
commanded references are within the system capabilities.

For the cases in which the incremental version of the NDI is chosen, the implementation of
the PCH strategy comes straightforward from the previous situation. Applying (3-45) to a
SISO system, the following relation is obtained for the pseudo-control hedge:

νh = ν − ν̂ =

= [ẋ0 + g(x0)(ucom − u0)] − [ẋ0 + g(x0)(u − u0)] =

= g(x0)(ucom − u)

(4-2)

Moreover, if the control system presents a multi-loop design where the time scale separation
principle (Section 3-4) was applied, it was assumed that the outer-loop bandwidth is much
lower than that of the inner loop. As it will be seen in the next chapters, this assumption is
alleviated with the adoption of PCH for the different loops, allowing to adjust the behavior of
the outer loop when the bandwidth of the response of the inner loop is not separated enough.
Note that the outer-loop ”sees” the commanded references of the inner-loop as control inputs
which, like real actuators, are characterized by practical limits and speed of response.

4-3 Error Dynamics

Finally, it is important to analyze what happens to the tracking error dynamics e = yrm − y
when the PCH is introduced in the control system. From Figure 4-1, it can be seen that:

ẏrm = νrm − νh (4-3)

where
νh = ν − ν̂ (4-4)

Furthermore, from the NDI theory it is known that:

ẏ = ν (4-5)

and, from Figure 4-2,
ν = Ke + νrm (4-6)

The tracking error and its time derivative can hence be expressed as:

e = yrm − y ⇒ ė = ẏrm − ẏ = [νrm − (ν − ν̂)] − [Ke + νrm] (4-7)

or
ė = −Ke − (ν − ν̂) (4-8)

From the analysis of (4-8), some conclusions can be drawn. The first term of the right-hand
side indicates that this dynamics is always stable as long as the proportional gain is positive

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



4-3 Error Dynamics 61

(K > 0). The second term confirms that, as for ideal actuators the actual and commanded
deflections are equal and thus ν = ν̂, the addition of PCH has no effect on the system in this
case. When they differ, the system response is as close to the commanded as permitted by
the actuator model.

In the literature, PCH is often found associated with a controller based on an approximate
dynamic inversion together with an adaptive element (normally a NN) to compensate for the
approximation error. In this case, the knowledge of the tracking error dynamics is crucial to
define the adaptation laws. As shown in (E. N. Johnson & Calise, 2000), some interactions
may exist in this case that degrade the stability and tracking performance of the overall
controller. In this thesis however, a more robust dynamic inversion, the INDI, was adopted,
eliminating the need for the adaptive element. According to the explanation above, this is
thus beneficial for the application of the PCH.
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Chapter 5

Rate Controller

As the name indicates, the main objective of a rate controller is to automatically make the
system’s angular rates ω track the desired values ωcom commanded by a pilot or by an external
control system while keeping the whole state vector x bounded. In a helicopter, this type of
controller is used in the Rate Command/Attitude Hold (RCAH) mode.

As explained in Subsection 2-1-4, in a real helicopter, the controller developed in this chapter
and in the next two is implemented in the flight computers onboard (recall Figure 2-5).
These computers receive electric signals corresponding to the actions desired by the pilot
and compute the required control inputs to perform those actions. These inputs are then
sent to the control actuators, which are subjected to position saturations and rate limits.
Mathematically, they are gathered in a vector u that contains the deflections of the collective
pitch of the main rotor θ0, the longitudinal θ1s and lateral θ1c cyclic pitches and the collective
pitch of the tail rotor θ0tr.

Recall also from Subsection 2-3-6 that the state vector is composed by the body-fixed linear
velocities of the helicopter v, the position of its CG relative to the Earth p, the body-fixed
angular rates ω, the angular attitude of the helicopter θ and the inflow ratios of the rotors λ.

The main theory necessary to design this control system has already been developed in the last
two chapters, but the specific application to the rate control of a helicopter requires certain
aspects to be considered more closely. This chapter presents then in detail the sequential
development of the controller under analysis, showing simultaneously the results obtained
from its simulation.

5-1 INDI Control Law

Firstly, a INDI-based control system is implemented to track the desired angular rates of the
helicopter. The advantages brought by this kind of controller are especially a reduction in the
required knowledge of the model to be controlled and an increased robustness to uncertainties
existing in that model.
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64 Rate Controller

For this case, the output vector of the system contains the control variables, the three com-
ponents of the angular rate of the helicopter:

y
rot

= hrot(x) = ω = [p q r]T (5-1)

Since they are physically related, as mentioned in Section 3-3, the angular rates are expected
to have the same relative degree and the dynamic inversion can be performed using the
complete control vector instead of individual variables. To do so, following the procedure
introduced in Chapter 3, the output of the system has to be differentiated until a dependence
on the control inputs of the system appears. The first time derivative is given by (2-91), the
EOM for the rotational dynamics of the helicopter:

ẏ
rot

= ω̇ = J−1 [m − ω × Jω] (5-2)

where J is the inertia matrix of the helicopter and m is the moment vector that results from
the sum of the contributions of all its parts. Note that some of these components depend
directly on the control deflections u of the actuators of the helicopter while others simply
depend on the state vector x. Figure 2-15 is very useful to identify these dependencies. It
is now possible to divide the equation above into two terms, depending on whether they are
influenced by the control inputs. This yields:

ω̇ = f(x) + g(x, u) (5-3)

in which:

f(x) = J−1
[

mfus(x) + mht(x) + mvt(x) − ω × Jω
]

(5-4)

g(x, u) = J−1 [mmr(x, u) + mtr(x, u)] (5-5)

It can be noticed that a dependence on the control inputs has already appeared through the
moments produced by the main and the tail rotors. This means that the relative degree
of each component is one and the total relative degree of the output vector is three. The
derivative of the angular rates corresponds then to the virtual control:

νrot = ω̇ (5-6)

The desired dynamics for νrot can be selected based on flying qualities requirements (Brinker
& Wise, 1996). The procedure followed to deduce the INDI in Section 3-5 can now be applied
to design the controller for the case under analysis. Nevertheless, some additional changes
have to be made to overcome particular difficulties imposed by this system. The first one is
related to the fact that, contrary to the assumption made in Chapter 3, the output of the
system is not affine in the controls. In fact, these variables are related through the nonlinear
functions used to compute the moments generated by the rotors. When the output vector
is approximated by the first-order terms of its Taylor series expansion around the current
solution of the system (x0, u0), the influence of g(x, u) is only taken into account with the
information contained on its first derivative. More precisely:

ω̇ ≈ ω̇0 +
∂

∂x

[

f(x) + g(x, u)
]

x
0
,u

0

(x − x0) +
∂

∂u

[

f(x) + g(x, u)
]

x
0
,u

0

(u − u0) (5-7)

and, as already explained, x ≈ x0 for an incremental time step, yielding:
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νrot = ω̇ =

= ω̇0 +
∂g(x, u)

∂u

∣

∣

∣

∣

x
0
,u

0

(u − u0) =

= ω̇0 + J−1 ∂

∂u
[mmr(x, u) + mtr(x, u)]x

0
,u

0

(u − u0) (5-8)

where the angular acceleration of the helicopter ω̇0, the control deflections u0 and the state
vector x0 have to be known or estimated. The issues associated with the measurements of ω̇0

will be addressed is Section 5-5. The position of the control actuators can also be obtained in
reality, as well as the major part of the state vector. The exception lies in the inflow ratios λ
(the dimensionless velocities induced by the rotors), which cannot be directly sensed in flight
are therefore have to be estimated.

The simplest way to estimate the inflow ratios is by applying the same theoretical equations
used to model the helicopter behavior in this thesis. Note however that these equations
are simplifications of the reality in which, for example, they assume a uniform distribution
of the flow over the rotor disc. In alternative, more complex descriptions of the wake can
obviously be adopted, but they involve measurements of different types of parameters. One
possible approach was recently developed in (Houston & Thomson, 2009). In this reference,
the required coefficients to define the induced velocity models are calculated based on online
measurements of the blade flapping angles.

For the current inversion loop, it can be concluded that the only information needed about the
helicopter model is its inertia property and the influence of the control inputs on the moments
produced by the two rotors. The dependence on the model of the remaining components of the
vehicle has been completely eliminated. More precisely, this dependence has been replaced
by measurements or estimations of the angular accelerations and the performance of the
controller is strongly depending on the accuracy of these measurements.

Comparing (5-8) to (3-45), it is possible to verify that, in the case of a system that is not
affine in the controls, the information of matrix G(x) is simply replaced by the derivative of
the control effectiveness g(x, u) with respect to the different control inputs.

As it can be seen, the Jacobian D(x0, u0) = ∂
∂u

[mmr(x, u) + mtr(x, u)]x
0
,u

0

is composed by a
component that depends on the dynamics of the main rotor and by another one that concerns
the tail rotor. The second term can be obtained very easily from (2-69) to (2-71), especially
because it is only influenced by the last component of the input vector:

∂mtr(x, u)

∂u

∣

∣

∣

∣

x
0
,u

0

= ρAtr(ΩtrRtr)
2Ftr

σtrCLα,tr

2

(

1

3
+

µ2
xtr

2

)





0 0 0 htr

0 0 0 0
0 0 0 −ltr



 (5-9)

However, the derivation of an analytical expression for the term concerning the main rotor is
rather work intensive. As depicted in Figure 2-15, the influence of the first three control inputs
on the moment generated is very complex. Not only do they influence the transformation
of the forces generated by the rotor into the body frame of the helicopter but they are also
crucial for these forces and for the determination of the blade flapping motion, which influences
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directly the behavior of the rotor. These relations are described by complex equations, often
involving trigonometric functions, as derived throughout Subsection 2-3-1. Therefore, central
finite differences were used to compute the first term of the Jacobian, yielding:

∂mmr(x, u)

∂u

∣

∣

∣

∣

x
0
,u

0

=

















mT
mr(x

0
,u

0
+[τθ0

0 0 0]T )−mT
mr(x

0
,u

0
−[τθ0

0 0 0]T )
2τθ0

mT
mr(x

0
,u

0
+[0 τθ1s

0 0]T )−mT
mr(x

0
,u

0
−[0 τθ1s

0 0]T )
2τθ1s

mT
mr(x

0
,u

0
+[0 0 τθ1c

0]T )−mT
mr(x

0
,u

0
−[0 0 τθ1c

0]T )
2τθ1c

01×3

















T

(5-10)

where 01×3 is a 1×3 zero matrix. The value of the three perturbations (τθ0
, τθ1s

, τθ1c
) is chosen

to be a small percentage of the absolute value of each variable or to a fixed infinitesimal
quantity, if the unperturbed value is already too small.

In order to obtain the control law for the INDI loop, equation (5-8) has to be solved with
respect to the input vector u. However, since there are four actuators and only three rates to
be controlled, a redundancy exists and the system is over-determined. As a consequence, the
Jacobian matrix has more columns than rows and thus it cannot be inverted directly. This
means that a control allocation strategy has to be used to solve this problem.

Control Allocation

Several algorithms exist to deal with the control allocation problem and the description
of the ones that are most often adopted can be found, for example, in (Bodson, 2002)
or (Bordignon & Bessolo, 2002). The simplest form of the referred allocation is by using
the pseudo-inverse matrix. Given the Jacobian matrix D, with more columns than rows,
its pseudo-inverse corresponds to:

D+ = DT
(

DDT
)−1

(5-11)

Control allocation using the pseudo-inverse method corresponds to the unconstrained
minimization of the error between the desired effort produced by the actuators and its
actual value. Since multiple solutions exist for an over-determined system, the calculation
of the pseudo-inverse can also be affected by a diagonal weighting matrix W to prioritize
the usage of the different actuators, yielding:

D+ = W−1DT
(

DW−1DT
)−1

(5-12)

This method is very convenient, for example, to prevent the saturation of the actuators
or to exclude a malfunctioning actuator by a proper choice of the weighting matrix. This
matrix consists normally of a combination of the actuators rate and position limits (Bacon
et al., 2001).

More optimal control allocations can be obtained when, besides the error between the
desired and actual effort produced by the actuators, the demanded control actuation is
also minimized. The methods used to achieve these objectives are normally based on
linear, quadratic or nonlinear programming, as summarized in (Poonamallee & Doman,
2004).
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At this point, only the pseudo-inverse method (5-11) was used to perform the dynamic in-
version. According to this, at a given time instant (corresponding to the subscript 0), the
required input vector for the next iteration to linearize and decouple the responses associated
with the angular rates of the helicopter is given by:

u = D(x0, u0)
T

(

D(x0, u0)D(x0, u0)
T
)−1

J(νrot − ω̇0) + u0 (5-13)

In the end of Chapter 3 it was shown that the loop based on INDI control laws assures the
complete linearization and decoupling of the responses even in the presence of model uncer-
tainties. However, in the derivation of the rate controller under analysis, two approximations
were made: the control function g(x, u) was only considered through its first derivative and
some of its components were not obtained analytically, but using numerical differentiation
instead. The consequences of these approximations in the accuracy of the control system
obtained will be assessed in the next section.

At this point, assuming the relation νrot = ω̇ holds when (5-13) is applied to the system, the
channel i associated with each component of the angular rate of the helicopter becomes a single
integrator and the three channels are completely decoupled and can be designed separately.
Therefore, a simple linear control law (3-9) can be implemented to close the loop and allow
the tracking of the desired references. The linear gains in this equation are determined using
classical SISO control theory. To do so, it is convenient to analyze the open-loop response in
the Laplace domain, by mean of its transfer function:

Hiol
(s) =

ωi(s)

νroti(s)
=

1

s
(5-14)

If a linear controller Ki(s) is applied with a negative feedback of the control variable and
setting the feedforward term ω̇icom to zero for now, the closed-loop transfer function associated
with each channel is given by:

Hirot(s) =
ωi(s)

ωicom(s)
=

Ki(s)Hiol
(s)

1 + Ki(s)Hiol
(s)

=
Ki(s)

s + Ki(s)
(5-15)

where ωicom is the reference commanded to the angular rate of channel (axis) i. Note that the
dynamics of sensors and actuators is neglected at this stage. The linear controller Ki(s) to
control the single-integrator open-loop may assume the form of a conventional Proportional
(P) or Proportional-Integrative (PI) controller. In the first case, a first-order response is
obtained for the closed-loop system, while the second one yields a second-order evolution. The
decision made depends then on the desired flying qualities for the system. If a P controller
with gain K1i

is chosen to keep things simpler, the following transfer function is obtained:

Hirot(s) =
K1i

s + K1i

(5-16)

The value of K1i
corresponds to the bandwidth of channel i and to the inverse of the time

constant imposed to its response. From this transfer function, it can be concluded that the
closed-loop system is always stable for K1i

> 0, since its pole is negative. Nevertheless, a
higher gain implies a more demanding tracking and therefore more effort from the actuators.
Furthermore, the steady-state gain (s → 0) is unitary and thus the error for tracking the unit
step reference is expected to be null when no disturbances affect the system.
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The working principle of the controller developed so far is summarized in Figure 5-1. In this
figure, K1 is a diagonal matrix with the proportional gains K1i

and hrot(x) is the output
function to obtain the angular velocities from the state vector. Furthermore, recall that
x ≈ x0 since the loop regarded here concerns only fast dynamics. The unit delay operator
z−1 is used to access the current value of the control vector which, as already mentioned, is
assumed to be known. Finally, the angular accelerations ω̇0 are also assumed to be known
without any error. The result of the control system for a more realistic case in which this
vector is not accurately estimated is evaluated in detail in Section 5-5.

ωcom

ω

ω̇0

−e
K1

νrot

INDI

DT
(

DDT
)−1

J
u

u0 z−1

Helicopter
x

d
dt

hrot(x)

Figure 5-1: Schematic of the angular rate control system based on INDI.

5-2 Primary Tests

To test the control system developed so far, three simultaneous doublet inputs with an ampli-
tude of 10 deg/s and duration of 2 s were commanded to the three components of the angular
rate of the helicopter. The simulation was started with the helicopter in hovering flight at
1000 m of altitude. Both the model simulation and the controller calculations were sampled
at 100 Hz. Moreover, the linear gains were chosen such that the responses of the three axes
present a time constant of 0.09 s. The results obtained are depicted in Figure 5-2.

As it can be seen, the tracking of the references is achieved very efficiently, presenting the
shape of a first-order response, as expected. The steady-state errors, despite being very
small, are not exactly zero, as predicted theoretically. This can be explained from the fact
that νrot = ω̇ is not completely true due to the approximation x ≈ x0. Furthermore, the
responses of the three axes were expected to be exactly equal. The difference observed for
the z-axis is due to the different dynamics associated with the actuator that is mainly used
to control the angular rates around this axis (the collective pitch of the tail rotor).

As already mentioned, the validity of the approximations made for the implementation of
the INDI (considering the control function only through its first-order derivative and using
numerical differentiation to determine some of its components) has still to be checked. To do
that, a nonlinear solver is used to compute the control inputs required to perform the feedback
linearization and assess the errors with respect to the previous simulation. In this case, no
approximation based on the first-order terms of a Taylor series is used, but a numerical
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Figure 5-2: Doublet response of the INDI rate controller with control allocation. The dashed
lines correspond to the references commanded while the solid lines represent the response of the
helicopter.

optimization algorithm is implemented to invert the system. More precisely, consider again
the EOM for the rotational dynamics of the helicopter, written as in (5-3):

ω̇ = f(x) + g(x, u)

At the current time instant (associated with the subscript 0), the same relation is expressed
as:

ω̇0 = f(x0) + g(x0, u0) (5-17)

Once again, assuming that x ≈ x0, the subtraction of the equations results in:

ω̇ − ω̇0 = g(x0, u) − g(x0, u0) (5-18)

where the angular acceleration corresponds to the virtual control νrot = ω̇ and function g(x, u)
is given by (5-5). The required physical input u to generate the desired virtual control input
is then obtained from the solution of:

g(x0, u) − g(x0, u0) − νrot + ω̇0 = 0 (5-19)

Note that this equation represents the error relative to the desired angular acceleration vector,
which has to be minimized. An analytical solution cannot be obtained, since u is ”hidden”
in the nonlinear function g(x, u) and thus a nonlinear solver has to be used. In this case, an
optimization method was adopted to minimize the energy of the error, being u the solution
of the problem:

min
u

∥

∥g(x0, u) − g(x0, u0) − νrot + ω̇0

∥

∥

2
(5-20)
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The most suitable method to solve this problem is based on nonlinear least squares. It
is part of MATLAB ’s Optimization Toolbox and makes use of the Levenberg-Marquardt
algorithm to minimize the cost function above (MathWorks, n.d.-a), with a chosen tolerance
of 10−6 rad2/s4. It is expected that this problem is convex so that it can be stated that when
a minimum value of the cost function is found, it corresponds to a global minimum.

While it is not trivial to validate the procedure globally, a single simulation may be enough
to identify potential problems. Under the same conditions as before, the evolution of the
absolute differences between the simulation using the INDI approach and using the nonlinear
solver is shown in Figure 5-3.
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Figure 5-3: Validation of the approximations made for the INDI with a nonlinear solver. The
dashed lines correspond to the references commanded while the solid lines represent the response
of the helicopter.

As it can be seen, the differences in terms of the controls demanded and the angular rates
obtained are always very small and only noticeable in the transient instances. These instances
are when the nonlinear characteristics of the model are more noticeable and thus a linearized
description of g(x, u) is less accurate. Nevertheless, the approximation made to avoid the
nonlinear solver is valid in general. Despite the verification made for this particular case, a
generic validation for every possible condition would still be desirable. Note that the option
of using the nonlinear solver to control the system is not feasible since it involves a more
demanding computational load when compared to the INDI. In fact, the time necessary to
simulate the same response was approximately eleven times higher with the nonlinear solver.

Finally, it was decided that the collective of the main rotor should not be used directly to
control the angular rates of the helicopter. The reason for this choice is that this input will
be needed to control the altitude (thus the vertical force) efficiently, as it will be seen in
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Chapter 7. In fact, while θ1s, θ1c, θ0tr are moment generators, the collective of the main rotor
is primarily a force effector.

The command signal for the main rotor collective will therefore be supplied by an outer loop
and, at this point, to control the angular rates, it is assumed constant and equal to its trim
value. This has also the advantage of avoiding control allocation, simplifying the controller
even further. After this change is applied, the performance of the control system was again
simulated, leading to the results of Figure 5-4.
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Figure 5-4: Doublet response of the INDI rate controller with the collective fixed. The dashed
lines correspond to the references commanded while the solid lines represent the response of the
helicopter.

From the analysis of this figure, it can be observed that even with the collective fixed, the
control system is able to track the commanded references with no problem. No significant
changes are observed when compared to Figure 5-2.

5-3 Controllability Analysis

As it was seen in Section 3-2, the performance of the controller is strongly dependent on the
relative degree of the system. It was stated that if its value is inferior to the order of the
system, internal dynamics still exist after the input-output linearization and, unless these
hidden dynamics are stable, the controllability of the system is compromised. The present
section aims to assess the effectiveness of the NDI-based control for the helicopter model
under analysis by examining separately the degrees of internal dynamics that remain after
the application of the INDI.
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First, it has to be checked whether or not are internal dynamics present in the closed-loop
system. As it was seen in Subsection 2-3-6, the helicopter system is of fourteenth order.
The rate controller developed so far performs the inversion of (2-91) and is characterized
by an input-output linearization with a total relative degree of three. This means therefore
that the linearization produced eleven degrees of unobservable internal dynamics that may
compromise the stability of the system. In fact, due to the existence of these dynamics, the
closed-loop system with the rates controller is slightly unstable (note that the control signals
are not steady when the angular rates of the helicopter are, in Figure 5-2, as well as the
increased oscillations in the last seconds of Figure 5-3). This instability can be easily avoided
by designing a simple control law (like a linear PID) for the collective of the main rotor that
allows the helicopter to keep or to track a certain altitude reference.

Nevertheless, as already mentioned, the overall control system will contain two more loops to
control the attitude angles of the helicopter and its velocity with respect to the Earth. The
former one will perform the inversion of (2-92), increasing in three units the total relative
degree of the controller. The last loop will carry out the linearization of the translational
motion (2-89) (expressed in the NED reference frame instead), adding three more relative
degrees to the system. Therefore the total relative degree of the closed-loop system is nine,
while the nonlinear system is of fourteenth order, meaning that there are still five degrees of
internal dynamics.

The stability of these dynamics has now to be evaluated. If they are stable (in the Bounded-
Input Bounded-Output (BIBO) sense), no instabilities due to internal dynamics will arise in
the complete control system. As mentioned above, this will be further facilitated when the
input to the collective is not constant, but provided by an outer loop instead.

As already explained, stability evaluation is normally very difficult to be performed for non-
linear systems. One way to investigate their stability is by using Lyapunov theory. However,
methods based on this theory are not generally applicable due to the difficulty of finding a
candidate Lyapunov function. In the current case, the stability of the internal dynamics can
be easily assessed by a simple interpretation of the physical phenomena they describe.

Three degrees of internal dynamics correspond to the kinematic relations of the translational
motion (2-90). The boundedness of these dynamics is however assured by the fact that they
are related to the translational dynamics inverted in the outer loop through a simple rotation
matrix, which is an orthonormal transformation. Therefore, only the dynamics relative to the
quasi-dynamic inflow of the rotors still have to be investigated. According to (2-93), these
are described by:

τλ0
λ̇0 = CT − CGl

T

τλ0,tr
λ̇0tr = CTtr − CGl

Ttr

As already explained, in steady operation, the thrust coefficient calculated by the blade
element method tends to the one calculated from Glauert theory. As a consequence, it follows
from the equations above that λ̇0 → 0 and, similarly, λ̇0tr → 0. This proves the stability of
the two remaining degrees of internal dynamics, corresponding to the behavior of λ0 and λ0tr .
It is also interesting to visualize the evolution of these two variables in the normal motion
of the helicopter. The results obtained during the simulation performed for Figure 5-4 are
depicted in Figure 5-5.
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Figure 5-5: Inflow ratios for the previous simulation.

As it is possible to see, in this case, the responses of both inflow ratios are indeed bounded.
It can also be verified that the inflow of the main rotor remained practically constant since
the collective command was fixed, meaning that this is the main influence to the inflow of
this rotor. Note also the fact that the signals are not completely steady by the end of the
simulation is again justified by the small instabilities due to internal dynamics. As mentioned
above, this situation will be automatically solved when the complete control law is designed
and no remaining unstable internal dynamics exist after the dynamic inversion.

5-4 Introduction of PCH

The advantages of PCH in a system with sensitive actuator dynamics were already shown
mathematically in Chapter 4. In order to protect the control system from degradations caused
by saturation effects of the actuators, this technique is now applied to the rate controller
of the helicopter developed so far. It makes use of a reference model exactly like the one
presented in Figure 4-1 to filter the commanded angular rate and provide a feedforward term
for each channel. The bandwidth of this filter corresponds to the one imposed by the INDI-
based control loop. The limits allowed for the commanded angular rates were imposed after
consulting (ADS-33E-PRF , 2000) and consist of 40 deg/s for the roll and pitch rates and
80 deg/s for the yaw rate.

The reference model is also adjusted by the pseudo-control hedge so that the demanded signal
is within the system’s capabilities. This value results from a constant monitoring of the system
and the generic procedure to calculate it for a INDI-based loop is shown in (4-2). According
to this and making use of (5-8) without considering θ0 for the reasons explained before, the
pseudo-control hedge is given by:

νhrot
= J−1 ∂

∂u′
[mmr(x, u) + mtr(x, u)]x

0
,u

0

(u′

com − u′) (5-21)

where u′ is the actual input vector without the collective of the main rotor and u′

com the corre-
sponding commanded vector (neglecting the dynamics of the actuators). After implementing
this, the overall control system is summarized in Figure 5-6.

In this figure, the block ”Act.” corresponds to the dynamics of the actuators and hrot(x) is
again used to obtain the angular velocities from the state vector. The block ”RM” consists
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ωcom ωrm

ω ω̇0

K1

νrot

νhrot

νrmrot

INDIRM

PCH

u

u0

u′

com

θ0com

z−1

Act. Helicopter
x

d
dt

hrot(x)

Rate controller

Figure 5-6: Schematic of the rate control system based on INDI and PCH.

of the subsystem represented in Figure 4-1 for each one of the three axes, ”INDI” performs
the dynamic inversion for the three control inputs used in this loop and ”PCH” basically
computes (5-21). As assumed, the collective of the main rotor θ0com is kept constant or
provided by an external loop.

Since the doublet signal analyzed in this chapter is not too demanding for the system, the
improvements brought by the PCH are still not identified at this moment. A detailed sim-
ulation presenting the benefits of the PCH to helicopter flight control will be carried out in
Section 7-3 instead.

5-5 Angular Accelerations

Until now, it was assumed that the angular accelerations can be accurately measured and
thus no error exists between the real acceleration of the helicopter and the value assumed by
the control system. Despite they already exist (Klein & Morelli, 2006), angular acceleration
sensors are still not common in practice and they are especially costly. This means that the
angular accelerations have to be estimated using data that can be acquired with the Inertial
Measurement Unit (IMU) onboard of the vehicle.

5-5-1 Finite differences

The most intuitive and simple method to estimate the angular accelerations is probably to
use backward finite differences. From the information about the angular velocities of the
helicopter, the accelerations at the time instant t are given by:

ω̇(t) =
ω(t) − ω(t − ∆t)

∆t
(5-22)

where ∆t is the sample time between two iterations, which should be as small as possible
to obtain higher accuracy. When this strategy is applied to the control system, the required
control deflections to perform the same maneuver as before are depicted in Figure 5-7.
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Figure 5-7: Control inputs when the angular accelerations are estimated by finite differentiation.

In this figure, it is possible to identify the appearance of oscillations with small amplitude
and high frequency in the controls that result of the INDI law. These oscillations not only
contribute to a degradation of the tracking performance of the controller, they affect especially
the adequate operation of the control actuators.

This problem has been previously identified in (Sieberling et al., 2010). In this reference, it is
explained that because in the INDI the demanded angular acceleration νrot = ω̇ is considered
to be one incremental time step from the measured angular acceleration ω̇0, any delay will
violate this assumption, hence the system is not completely linearized, which causes a loss of
performance. Because it is impossible to eliminate the time delay, the control system must
be adjusted to anticipate upon it, which can be done using a predictive filter.

5-5-2 Predictive filter

In opposition to the predictive filters often found in the literature, based on multiple neu-
ral networks or extensive Kalman filtering, in (Sieberling et al., 2010) a very simple linear
predictive filter is successfully implemented. This simplified filter only works in combination
with the INDI, since the latter technique decouples the dynamics of the controlled model.
This allows to use only information about one axis to estimate the angular acceleration of the
helicopter around that axis. The combination of the predictive filter with the INDI is known
as Predictive Incremental Nonlinear Dynamic Inversion (PINDI).

The current situation is however more complex than the one presented in the mentioned
reference, since there the actuators were assumed ideal (without dynamics) and no PCH
existed in the control loop. This means that the applicability of the filter in this case has still
to be assessed.

Besides its simplicity, the main advantage of using a linear filter is that stability in the BIBO
sense is guaranteed. To each axis i, a linear predictive filter is associated in order to predict
the angular accelerations of the closed-loop system about that axis. The angular accelerations
can then be represented by:

ω̇i(t) = [ωi(t) ... ωi(t − 5∆t) ωicom(t) ... ωicom(t − 5∆t)] ci + ǫi(t) (5-23)

where ci is a parameter vector with constant coefficients and ǫi(t) is the predictive error.
Note that the left-hand side of the equation corresponds to the real value of the angular
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acceleration. Vector ci is determined from the minimization of the energy of the error ǫi(t),
using least squares estimation.

To do so, the predictive filter has to be trained offline. Again, a doublet input with 10 deg/s
of amplitude and 2 s of duration is applied to the model of the helicopter in closed-loop, the
ideal angular accelerations are collected in a vector zi and the commanded and actual values
of angular rates are collected in the regressor function H i, yielding:

zi = H ici + ǫi (5-24)

In this case, H i represents a linear mapping, but it could also assume a nonlinear model
structure on the state and input variables of the system. For this kind of problem, it is
however necessary that the model output z is linear in the unknown vector c.

The cost function to be optimized is then selected as the sum of the squares of the predictive
error:

Ji = ‖ǫi‖
2 = (zi − H ici)

T (zi − H ici) (5-25)

This corresponds to a quadratic optimization problem, in which a unique minimum exits for:

∂Ji

∂ci

= HT
i (zi − H ici) = 0 (5-26)

from which follows:

ci = (HT
i H i)

−1HT
i zi (5-27)

Once the vectors with the optimal coefficients ci for i = 1, 2, 3 are determined, they can be
applied online to predict the angular accelerations during the simulation. The result obtained
from the training of the predictive filter to the roll axis (i = 1) is presented in Figure 5-8.
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Figure 5-8: Training of the predictive filter for the roll axis.

It is possible to see that the predictive filter can estimate quite accurately the angular ac-
celerations for this axis. Nevertheless, residual accelerations are verified for the remaining
axes during the maneuver the responses could not be completely decoupled by the INDI. The
conclusion on whether this is problematic for the application of the predictive filter will be
drawn in a few moments.
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5-5-3 Five points scheme

Finally, an intermediate estimation method was tested, based on a numerical scheme that
makes use of five points. This method is also presented in (Sieberling et al., 2010) and,
according to it, the angular accelerations are approximated by:

ω̇(t) =
1

12∆t
[25ω(t) − 48ω(t − ∆t) + 36ω(t − 2∆t) − 16ω(t − 3∆t) + 3ω(t − 4∆t)] (5-28)

When compared to the finite differences, this scheme is expected to be more accurate since it
uses a higher number of points, but also more sensitive to noise because of the larger value of
its coefficients. The comparative analysis between this method and the predictive filter (and
also the finite differencies) has now to be carried out.

5-5-4 Choice of the method

In order to compare the three methods described above in this section, the same maneu-
ver with which Figure 5-7 was obtained was repeated and the accelerations estimated were
registered. Figure 5-9 shows a close-up of the results obtained for the x-axis.
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Figure 5-9: Comparison of the three estimation methods for the angular acceleration.

As expected, the largest error is associated with the estimations obtained by finite differenti-
ation due to the delay that exists relatively to the real response. Furthermore, the predictive
filter is the approach that is able to estimate the angular acceleration of the helicopter with
the least error. Nevertheless, both the predictive filter and the five points scheme exhibit quite
oscillatory responses. This indicates that they are very sensitive to variations in the angular
rates, generating considerably noisy estimations that will not contribute to a reduction of the
control oscillations shown in Figure 5-7.

Furthermore, note that the simulations used to train the predictive filter and obtain the
optimal coefficients are started at a specific flight condition. The accuracy of the estimation
may therefore become degraded when the helicopter moves away from the referred condition.
This means that the predictive filter would have to be trained for several flight conditions,
which is a quite unpractical task (that reminds of gain scheduling).
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78 Rate Controller

From the three methods presented here, despite the fact that the predictive filter is the one
that estimates the angular accelerations more accurately, finite differentiation is expected to
be the most suitable one to adopt for control purposes, since it is less affected by numerical
noise (it shows less oscillations). It can be concluded that, in spite of the successful results
obtained with the predictive filter for an ideal case in (Sieberling et al., 2010), its application
is not worthy for real situations with actuator limitations and in which the closed-loop system
is not fully decoupled as a consequence.

In order to eliminate the control oscillations that appear when finite differentiation is adopted,
simple first-order low-pass filters (LPFs) with a bandwidth of 10 Hz were introduced before
the three actuators. Obviously, this value has to be sufficiently higher than the bandwidth of
the actuators in order not to degrade the performance of the system. The Bode diagram of
these filters is depicted in Figure 5-11. The LPFs are not the ideal choice for the controller
since they introduce a 90 deg phase delay around its cutoff frequency (the frequency for which
the filter provides an attenuation of 3 dB). Nevertheless, the potential development of a more
complex predictor for the angular accelerations is out of the scope of this thesis.

It is also very important to note that, in principle, for a potential practical implementation
of the suggested control system, the introduction of the LPFs is not needed since the real
actuators have already a dynamics normally modelled as a first or second order system,
providing themselves the required filtering action.

The control inputs obtained from the simulation with finite differences plus the referred LPFs
are illustrated in Figure 5-10.
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Figure 5-10: Control inputs when using finite differentiation and LPF before the actuators.

Comparing this figure with the ideal situation of Figure 5-4, it can be concluded that the
results obtained with finite differentiation plus LPFs are very satisfactory. Furthermore, the
tracking performance of the control system is roughly the same.

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



5-5 Angular Accelerations 79

M
ag

n
it

u
d
e

[d
B

]

Frequency [rad/s]

Cutoff frequency
at -3 dB

100 101 102 103 104

−40

−30

−20

−10

0

P
h
as

e
[d

eg
]

Frequency [rad/s]

Cutoff frequency
at -3 dB

100 101 102 103 104

−80

−60

−40

−20

0

Figure 5-11: Bode diagram of the LPFs used to filter the control inputs.
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Chapter 6

Attitude Controller

Now that the rate controller was implemented for the helicopter under analysis, the control
system can be expanded such that commands in terms of attitude angles θcom are automati-
cally tracked by the orientation of the rotorcraft θ. In a helicopter, this type of controller is
used in the Attitude Command/Attitude Hold (ACAH) mode.

The implementation of this controller is mainly based on the time scale separation principle
presented in Section 3-4. Since the evolution of the angular rates is assumed to be faster
than the corresponding attitude angles, a loop to control the referred angles can be designed
externally to the rate controller. In this line of reasoning, this loop (the slow dynamics) gen-
erates the commanded angular rates ωcom to be tracked by the inner loop (the fast dynamics)
in order to achieve the tracking of the desired attitude angles. This means that the angular
rates are used as control inputs for the slow time scale loop. This assumes that the angular
rates are always what they are commanded to be, just like the deflections of the actuators
are assumed to be instantaneously what they are commanded to be.

The present chapter shows sequentially the development of the attitude controller for the
helicopter, demonstrating also the improvement it brings when compared to simple linear
controllers.

6-1 NDI Control Law with PCH

In this loop, the basic (non-incremental) version of the NDI is used to control the attitude
angles of the helicopter. For this case, the output vector of the system contains the control
variables, the three attitude angles that describe the orientation of the vehicle with respect
to the Earth:

y
att

= hatt(x) = θ = [φ θ ψ]T (6-1)

Once again, as the three angles have the same physical meaning, they have the same rel-
ative degree and the dynamic inversion can be performed directly for the complete control
vector. Following the procedure presented in Chapter 3, when the output of the system is
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differentiated with respect to time, the differential equation for the rotational kinematics of
the body (2-92) is obtained:

ẏ
att

= θ̇ = Ωb
oω (6-2)

where matrix Ωb
o was derived in (A-9) and depends only on the attitude angles θ. Since

this loop sees the angular rates ω as control inputs and the direct dependence on them has
already appeared, each one of the three components have a unitary relative degree, yielding
the virtual control:

νatt = θ̇ = Ωb
oω (6-3)

At this point, it can be noticed that there is not a part of this system that does not depend
on the control inputs (the angular rates). This means that the application of INDI would not
bring any advantage in this case, since it would not result in the reduction of the required
knowledge of the model. Furthermore, this mathematical model has practically no uncertain-
ties associated with it since it corresponds to the well-known rotational kinematics of a rigid
body in space and all the parameters it depends on (the attitude angles) can be measured
very accurately by the helicopter’s IMU.

If the time scale separation principle was not applied to simplify the design of the controller,
the control inputs for the current loop would not be the angular rates of the helicopter,
but its physical controls instead. Hence, the output vector would have to be differentiated
twice until an explicit dependence on the these controls appears through ω̇ (recall (5-3)).
Mathematically:

ÿ
att

= θ̈ = Ω̇
b

oω + Ωb
oω̇ (6-4)

Comparing this equation with (6-2), it can be concluded that the term Ω̇
b

o is never considered
in the time scale separated approach. In fact, the time scale separation principle implies that

Ω̇
b

o is neglected, which is consistent with the assumption that parameters associated with
the slow dynamics (the attitude angles) are constant when seen by the inner loop (the fast
dynamics). Obviously, this assumption is only valid if the two loops are separated enough.

The system to be inverted in the current loop has also the major advantage of being affine in
the control inputs. Hence, the control law to generate the commanded angular rates comes
straightforward:

ωcom = Ωo
bνatt =





1 0 − sin θ
0 cos φ sin φ cos θ
0 − sinφ cos φ cos θ



 νatt (6-5)

where Ωo
b is determined from (A-8). Since it corresponds to the inverse transformation of Ωb

o,
the dynamic inversion can only be performed when det Ωb

o = cos θ 6= 0. The controllability of
this controller was already verified in Section 5-3.

Because of (6-3), this control loop is of first order and thus the linear control law for νatt

can be designed exactly as in the previous chapter. Nevertheless, in order to alleviate the
time scale separation requirements, allowing the bandwidths of the slow and fast dynamics
to be closer, a combined analysis is performed to select the gains of the inner and outer loops
appropriately. Assuming no PCH for now, when a linear controller K2(s) is used to generate
νatt, the closed loop to control the attitude angles is schematized in Figure 6-1.
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θcom θθ̇ωcom ω−e
K2(s)

νatt

NDI

Ωo
b Ωb

oHrot(s)
1
s

Figure 6-1: Time scale separated attitude controller based on NDI.

The transfer matrix associated with the full time scale separated system Hatt(s) is then
written as:

Hatt(s) =
θ(s)

θcom(s)
=

K2(s)Ω
o
bHrot(s)Ω

b
o

sI3×3 + K2(s)Ω
o
bHrot(s)Ω

b
o

(6-6)

where I3×3 is the 3 × 3 identity matrix.

Since after the NDI is applied the channels associated with the three attitude angles become
decoupled and again assuming a simple proportional gain for the linear controller, matrices
K2(s) and Hrot(s) are diagonal. Recalling that Ωb

o = Ωo−1

b and that the transfer function
associated with the inner loop is given by (5-16) for each channel, the equation above can be
further simplified into:

Hiatt(s) =
K2i

K1i

s+K1i

s + K2i

K1i

s+K1i

=
K1i

K2i

s2 + K1i
s + K1i

K2i

(6-7)

Once again, it can be concluded that the steady-state gain (s → 0) is unitary, meaning
that the error for tracking the unit step reference is expected to be null in the absence of
disturbances. Furthermore, according to the transfer function above, a second order evolution
is now imposed to the attitude angles. Comparing its denominator with a conventional second
order characteristic polynomial (s2+2ζωns+ω2

n = 0), the gains K1i
and K2i

can be determined
such that the corresponding poles result in a response with the desired natural frequency ωni

and damping ratio ζi for each axis:

K1i
= 2ζiωni

(6-8)

K2i
=

ω2
ni

K1i

=
ωni

2ζi
(6-9)

At this point, just like the INDI of the inner loop was performed assuming that the control
deflections are instantaneously what they are commanded to be (neglecting the dynamics of
the actuators), the time scale separated attitude controller based on NDI also assumes that
the angular rates are exactly what they are commanded to be (discarding the dynamics of the
inner loop). The validity of this assumption is reduced if these dynamics are not fast enough
when compared to the evolution of the attitude angles, resulting in a decreased performance
of the control system. To account for this limitation, another PCH layer can be introduced
in the current loop to adjust the angular references to the capabilities of the rate controller
in the inner loop. The current PCH layer prevents therefore undesired interactions between
the loops.
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The working principle of the PCH for the current loop is exactly the same as the one of the
inner loop. Since the evolution of the control variables presents now a second order response,
it would seem logical that the RM to be utilized was also of second order. Nevertheless, after
several tests, it was verified that the performance of the system was clearly preferable with a
first order RM, reason why this was the structure adopted. For further information on second
order RMs, the reader is referred to (Farrell et al., 2005), where a very illustrative description
is presented.

In this line of reasoning, the RM of Figure 4-1 was again implemented to perform a low-pass
filtering of the commanded attitude angles with the bandwidth set by the NDI control and
to provide a feedforward term to each control channel. The limits allowed for the attitude
angles were again imposed after consulting (ADS-33E-PRF , 2000) and consist of 60 deg for
the roll and pitch angles and 360 deg for the yaw.

The RM is adjusted by the pseudo-control hedge so that the demanded signal is within the
capabilities of the inner loop. The calculation of this parameter was exemplified for a generic
NDI-based control loop in (4-1) and, using (6-3) for this specific case, the pseudo-control
hedge is defined as:

νhatt
= Ωb

o (ωcom − ω) (6-10)

With this additional monitoring, the overall control system is depicted in Figure 6-2.

θcom

θ

θrm

ω

ωcom
K2

νatt

νhatt

νrmatt

NDIRM

PCH

uu′

com

θ0com

Act. Helicopter
Rate

Controller

Attitude controller

x

hrot(x)

hatt(x)

Figure 6-2: Schematic of the attitude control system based on NDI and PCH.

In this figure, the block ”Act.” corresponds again to the dynamics of the actuators and
hrot(x) and hatt(x) are the nonlinear functions that map respectively the angular rates and the
attitude angles from the state vector. The block ”RM” consists of the subsystem represented
in Figure 4-1 for each one of the three axes, ”NDI” performs simply the dynamic inversion (6-5)
and ”PCH” computes (6-10). The commanded angular rates ωcom are supplied to the rate
controller of Figure 5-6. At this point, the collective of the main rotor θ0com is still assumed
to be constant or provided by an external loop.

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



6-2 Primary Tests 85

6-2 Primary Tests

Once again, three simultaneous doublet inputs were used to test the control system developed
up until now. These signals have an amplitude of 5 deg and a duration of 4 s. The helicopter
has therefore to roll, pitch and yaw controllably and simultaneously in a very short time
interval. This indicates that this maneuver is already quite demanding.

The overall system was again sampled at 100 Hz and the simulation started with the helicopter
in hovering flight at 1000 m of altitude. The linear gains were chosen so that the responses
associated with the three channels present a damping ratio of 0.9 and a natural frequency of
5 rad/s. It is possible to verify from (6-8) and (6-9) that a higher damping ratio contributes
to a better separation between fast and slow dynamics since it simultaneously increases K1i

and decreases K2i
. According to this, the gain matrices K1 and K2 are, respectively:

K1 =





9.00 0 0
0 9.00 0
0 0 9.00



 s−1

K2 =





2.78 0 0
0 2.78 0
0 0 2.78



 s−1

The results of the simulation are depicted in Figure 6-3.

It can be seen that the tracking references are followed very efficiently, with a settling time
of approximately 1 s and practically with no steady-state error. As expected, the responses
of the different attitude angles are completely decoupled and the small differences between
their evolution is only due to different control limitations associated with each axis. The
last plot shows the response in terms of angular rates. Recall that the commands for these
rates are provided by the outer loop associated with the slow dynamics and tracked by the
control system developed and analyzed in the previous chapter. As it was seen, the tracking
performance of this loop is also quite satisfactory.

In this case, small instabilities also exist due to internal dynamics. As explained in Section 5-
3, these problems will be automatically solved when a new control loop is designed, allowing
to invert all the unstable dynamic degrees. Nevertheless, the signal for the collective input
will only be designed in the next chapter, as part of a controller for the translational motion
of the helicopter.

Once again, the action of the PCH prevents undesirable effects due to the fact that the fast
dynamics do not evolve instantaneously, as they would in the ideal situation. In the present
case, the system tracks perfectly the states of the reference models associated with both
control loops. To visualize the effects of the PCH layer in the rate controller, a close-up of
the last plot is presented in Figure 6-4.

In this case, as no actuators experience saturation, the PCH simply filters the commanded
references such that the system only tries to follow the response that is imposed by the NDI
control law. In other words, the bandwidth of the referred filtering corresponds to the one
demanded by the NDI. This means that the tracking of the state of the reference model has
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Figure 6-3: Doublet response of the time scale separated attitude controller based on NDI and
PCH. The dashed lines correspond to the references commanded, the dotted lines to the state of
the reference model and the solid lines to the actual response of the helicopter.
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Figure 6-4: Close-up of the angular rate response for the previous simulation. The dashed lines
correspond to the references commanded, the dotted lines to the state of the reference model
and the solid lines to the actual response of the helicopter.
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to be perfectly achieved by the system. This is indeed what happens, as it is indicated by
the small mismatch between the dotted and the solid lines of Figure 6-4.

6-3 Linear Control Law

In order to assess the benefits of the controller developed so far using NDI and PCH, this
section deals with the development of a linear control system to compare their performances
with. To do so, the following steps had to be taken:

System linearization

As the name indicates, linear controllers are always designed based on linear systems. Since
the system to be controlled in this case is highly nonlinear, it has to be firstly linearized around
a pre-defined trim condition, but the linearization obtained is only valid near this point. The
system is then described based on small deviations with respect to the trim solution. The
theory behind this procedure can be found, for example, in (Olsder & Woude, 2006).

In summary, the linearization around the solution (x0, u0) of a nonlinear system of the form:

ẋ = f(x, u) (6-11)

corresponds to:

ẋ = A(x − x0) + B(u − u0) (6-12)

where matrices A and B are obtained from:

A =
∂f(x, u)

∂x

∣

∣

∣

∣

x
0
,u

0

(6-13)

B =
∂f(x, u)

∂u

∣

∣

∣

∣

x
0
,u

0

(6-14)

In this specific case, x and u are, respectively, the state and control vectors introduced in
Subsection 2-3-6. To calculate the derivatives above, central finite differences were utilized.
According to this, column i of matrix A (the same holds for matrix B) is given by:

Ai =
f(x0 + τ i, u0) − f(x0 − τ i, u0)

2τi
(6-15)

where τ i is a vector that introduces an infinitesimal perturbation τi in the component i of
the state vector. Once again, the amplitude of this perturbation corresponds to a small
percentage of the absolute value of each variable or to a fixed infinitesimal quantity, if the
unperturbed value is already too small.

If the linear controller is to be applied to a wide range of flight conditions, several linearizations
of the system have to be performed and the most adequate gains for each one determined.
During flight, the gains are then selected according to the current flight condition of the
helicopter. This strategy was already introduced in Chapter 1 as gain scheduling.
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In the case presented here, the linear controller is however simplified to only one linearization
because, since the main objective of its design is to compare its performance with that of the
nonlinear control system developed so far, the flight conditions analyzed will be kept close
to the trimming point. One of the advantages of the NDI-based controller is already implied
in the latter statement: while several linear controllers have to be adopted for a wider flight
envelope, only one nonlinear control system may have to be applied.

Open-loop analysis

The behavior of a system in open-loop (without the action of a controller) can be assessed by
the eigenvalues of matrix A, which characterizes the different modes of the helicopter motion.
A detailed explanation of these eigenmotions is provided for general aircraft in (Etkin, 1972).
A specific analysis for the case of rotorcraft can be found in (Pavel & Holten, 1997).

Basically, one mode is stable if its corresponding eigenvalue has a negative real part. Its
position on the complex plane dictates the behavior of the response associated with it. If it is
a real value, the associated response is of first order and its bandwidth is the absolute value.
On the other hand, if it is associated with a complex conjugate pair, it yields a second order
response with a natural frequency and damping ratio that depend on its real and imaginary
parts.

The eigenmotions obtained for the linearization of the helicopter model for hovering flight at
1000 m are registered in Tables 6-1 and 6-2 together with the corresponding eigenvalues, for
the decoupled longitudinal and lateral motion, respectively.

Table 6-1: Open-loop longitudinal eigenmotions of the Bö-105 for hovering flight at 1000 m.

Eigenmotion
Eigenvalue

(rad/s)
Natural frequency/
/Bandwidth (rad/s)

Damping
ratio

Phugoid 0.036 ± 0.487i 0.488 −0.074

Short period
0.891
−2.828

0.891
2.828

−
−

Table 6-2: Open-loop lateral eigenmotions of the Bö-105 for hovering flight at 1000 m.

Eigenmotion
Eigenvalue

(rad/s)
Natural frequency/
/Bandwidth (rad/s)

Damping
ratio

Dutch roll 0.017 ± 0.208i 0.209 −0.083
Spiral −0.879 0.879 −
Aperiodic roll −11.62 11.62 −

Regarding the longitudinal case, it can be seen that the Phugoid mode is unstable and that
the conventional Short period mode has degenerated into two aperiodic motions, one of them
unstable. As for the lateral case, the only problematic eigenmotion is the Dutch roll, which
is slightly unstable.
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Control strategy

In order to stabilize the helicopter model and to provide the desired characteristics to its eigen-
motions so that the tracking of commanded angular references is performed correctly, linear
control laws have to be designed for its inputs, allowing to place the closed-loop eigenvalues in
the required positions. With this objective, PID controllers were intuitively implemented for
all the control inputs based on the attitude error associated with the axis that they control
more efficiently:

θ1s = θ1strim
+ KP2

eθ + KI2

∫ t

0
eθ dτ + KD2

deθ

dt
(6-16)

θ1c = θ1ctrim
+ KP3

eφ + KI3

∫ t

0
eφ dτ + KD3

deφ

dt
(6-17)

θ0tr = θ0trtrim
+ KP4

eψ + KI4

∫ t

0
eψ dτ + KD4

deψ

dt
(6-18)

In these equations, θ1strim
, θ1ctrim

and θ0trtrim
are the trim values for the longitudinal and

lateral cyclic and for the collective of the tail rotor and KP , KI and KD are respectively the
proportional, integrative and derivative gains. Furthermore, the attitude tracking errors are
defined as: eθ = θcom − θ, eφ = φcom − φ and eψ = ψcom − ψ.

Additionally, as it was already explained for the NDI case, to assure the complete stabilization
of the system, an altitude hold Proportional-Derivative (PD) controller had to be introduced
for the collective of the main rotor:

θ0 = θ0trim
+ KP1

ez + KD1

dez

dt
(6-19)

where ez = zcom−z. To keep the system causal, the required time derivatives were calculated
by approximate derivative filters with transfer function s

1+Ts
and T = 0.01 s. This value

is small when compared to the dynamics of the system (note that it corresponds to the
conventional sample time of the controller) but big enough to avoid numerical problems.

Gains selection

In order to get a first approximation of the most adequate gains for this linear attitude control
system, a SISO approach was adopted and the four relevant transfer functions (z/θ0, θ/θ1s,
φ/θ1c and ψ/θ0tr) were obtained from the linear state-space system. For each one, a PD
controller was designed using the root-locus tool. The derivative term is crucial to increase
the speed of convergence of the response by providing anticipative action.

The root-locus of a transfer function is a plot of its poles when the loop is closed with a
negative feedback of the tracking error affected with a proportional gain KP . To understand
how this tool can be used to define the position of the closed-loop poles when a PD controller
is implemented, note that the transfer function of this controller, instead of being simply KP ,
is given by:

KP + KDs = KP

(

1 +
KD

KP
s

)

(6-20)
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Hence, this controller can be viewed as a normal proportional control loop but, in the open-
loop, a transfer function with a zero placed at s = −KP /KD exists now in cascade with
the original system. Thus, the closed-loop poles are chosen by adjusting the position of the
referred zero and the root-locus gain, allowing to determine unambiguously the values of KP

and KD. Note here that the system will only be minimum-phase (with no unstable zeros) if
both KP and KD have the same sign.

The initial gains obtained from this procedure were such that the complex poles of the closed-
loop transfer functions had a damping ratio around 0.9 and a natural frequency around 5 rad/s
(whenever as possible) and such that the real poles were faster than the complex conjugate
pairs.

Recall that the SISO approach followed up until now to determine the gains only works as an
approximation, since the overall system is highly coupled and described by a MIMO state-
space. Therefore, after this analytical initialization of the gains, their values were manually
adjusted so as to optimize the tracking performance of the response during the maneuver to
be analyzed. Furthermore, small integrative terms KI were introduced in order to minimize
the static error that affects the responses.

Closed-loop analysis

Finally, after applying the linear control laws to the helicopter, the decoupled eigenmotions
of the closed-loop system can now be evaluated. The referred eigenmotions for the same
flight condition are shown in Tables 6-3 and 6-4, again separated into the longitudinal and
the lateral motion.

Table 6-3: Closed-loop longitudinal eigenmotions of the Bö-105 for hovering flight at 1000 m.

Eigenmotion
Eigenvalue

(rad/s)
Natural frequency/
/Bandwidth (rad/s)

Damping
ratio

Phugoid −1.792 ± 2.135i 2.790 0.643
Short period −7.355 ± 3.117i 7.990 0.921

Table 6-4: Closed-loop lateral eigenmotions of the Bö-105 for hovering flight at 1000 m.

Eigenmotion
Eigenvalue

(rad/s)
Natural frequency/
/Bandwidth (rad/s)

Damping
ratio

Spiral −0.079 0.079 −
Aperiodic roll −1.704 1.704 −
Dutch roll −6.354 ± 2.121i 6.700 0.949

From the analysis of these tables, it can be seen that all the eigenmotions are now stable and
their characteristics assume typical values. The bandwidth of the modes is high enough and
the complex eigenmotions are well damped.
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6-4 Comparative Results

The same maneuver executed in Section 6-2 is now demanded to the system with the linear
attitude controller developed in the previous section in order to check if its behavior is too
degraded in this case. As it was already mentioned, while a nonlinear controller can be used
for a wide flight envelope, linear controllers have to be carefully adjusted according to the
flight condition for which they are designed to operate. This already represents one major
advantage of the NDI-based control system. Nevertheless, the gains of the linear controller in
this section were already selected to optimize the performance of the maneuver to be analyzed.
Using the notation introduced from (6-16) to (6-19), the gains adopted are:

KP1
= −0.02 KD1

= −0.02
KP2

= −0.1 KD2
= −0.01 KI2 = −0.001

KP3
= 0.2 KD3

= 0.01 KI3 = 0.01
KP4

= −2.5 KD4
= −0.6 KI4 = −0.1

and the results of the simulation when they are applied to the system are shown in Figure 6-5.

From this figure, it is clear that the tracking performance of the system is substantially
degraded when compared to the response with the time scale separated controller based on
NDI and PCH, in Figure 6-3, especially in terms of steady-state errors. Also, the responses
present a more oscillatory behavior than with the nonlinear controller. These problems are
mainly due to the fact that, in opposition to the NDI control laws, the linear controller is not
able to decouple the responses associated with the three attitude angles. In this case, when
one attitude angle is changed, the other two are also affected and their tracking response is
degraded.

The difficulties experienced by the linear control system can also be identified by comparing
the angular rate responses. In fact, the simulation with the nonlinear controller involves
smaller angular velocities and less oscillatory evolutions when compared to the linear controller
presented in this section.
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Figure 6-5: Doublet response of the linear attitude controller. The dashed lines correspond to
the references commanded and the solid lines to the actual response of the helicopter.
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Chapter 7

Navigational Controller

The control system developed so far is now able to follow commands in terms of attitude angles
by generating references for the angular rates of the helicopter, which are then tracked by an
inner loop. This type of architecture is based on the assumption that there is a considerable
difference between the time scales associated with the dynamics of the two loops. In order to
alleviate this assumption, to avoid problems associated with the saturation of the actuators
and to filter the command references that are not smooth enough to be properly followed by
the system, a PCH layer was also introduced in each loop.

It is however desirable to implement a control system that allows the helicopter to follow a
specified velocity relative to the Earth, in the NED reference frame. This can be done by
introducing an additional control loop such that the ground velocity vector of the helicopter
ṗ tracks the commanded reference ṗ

com
. In rotorcraft, this type of controller is used in the

Translational Rate Command/Position Hold (TRCPH) mode. For the sake of simplicity, from
now on, the notation of these two vectors is changed to vE and vEcom

, respectively.

Once again, the time scale separation principle is applied in the implementation of this control
loop. Basically, since the rotational dynamics of the helicopter evolve faster than its transla-
tional motion, this outer loop can be designed assuming that the components of the velocities
are constant when compared to the attitude angles and, consequently, that the rotational
kinematics occurs instantaneously when seen by the outer loop. This navigational control
uses then the commanded attitude angles θcom as control inputs, computing the required
values to be tracked in order to produce the desired ground velocities.

In this chapter, the navigational controller is developed for the helicopter and some inter-
mediate results are presented to justify some of the design choices. In the end, the results
obtained after performing three common rotorcraft maneuvers are also shown.

7-1 Approximate Dynamic Inversion

The dynamics associated with the translational motion of the vehicle are considerably less
nonlinear than the rotational loops. Therefore, in principle, less accurate inversions may
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be performed to control the corresponding variables, simplifying the design of this control
loop. The hypothesis of applying linear controllers was discarded because their optimal gains
depend strongly on the flight condition. The approach adopted here is the based on the
suggestion presented in (Prasad & Lipp, 1993), which makes use of an Approximate Dynamic
Inversion (ADI). The output vector of the system for this control loop is composed by the
three components of the ground velocity of the helicopter:

y
nav

= hnav(x) = vE = [Vx Vy Vz]
T (7-1)

In order to obtain the differential equations for vE , a small change has to be made in the
relation that describes the translational dynamics of the vehicle (2-89). For convenience, this
equation is written in the body-fixed reference frame. However, it can also be expressed in the
NED reference frame. In this case, the aerodynamic forces f produced by the helicopter have
now to be rotated from the body-fixed reference frame, where the gravity is already alined
with the vertical direction. The acceleration generated by these forces is then given by:

v̇E =
1

m
T b

of +





0
0
g



 (7-2)

where T b
o was derived in Appendix A. Denoting cosα and sinα to cα and sα, respectively,

the equation above can also be rearranged as:





V̇x

V̇y

V̇z − g



 =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ









fx/m
fy/m
fz/m



 (7-3)

Note that this equation contains the first time derivative of the output vector. As the depen-
dence on the inputs for this loop (the attitude angles) has already appeared, each one of the
three spatial components of the ground velocity has a relative degree of one and the virtual
control for this loop corresponds to:

νnav = [νx νy νz]
T = [V̇x V̇y V̇z]

T (7-4)

The objective of this control loop is now to solve (7-3) in order to determine the commanded
attitude angles θcom necessary to yield the required virtual control input νnav. Recall that,
from the NDI theory, the virtual control is given by a linear control law based on the tracking
error of the ground velocities. A nonlinear solver could be used for this purpose, but the
required calculations would demand a substantial computational load. Nevertheless, the
system can be inverted analytically if some approximations are taken in order to simplify it.
To perform these approximations, the following assumptions have to be made:

• The commanded yaw angle ψcom of the helicopter is already known, being directly
supplied by the pilot or computed from kinematic relations involving the commanded
ground velocities. Furthermore, from the time scale separation between translational
and rotational dynamics, this outer loop assumes that the actual attitude angles are
always exactly what they are commanded to be (θ = θcom);
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• The magnitude of the body Z force fz is much larger than the remaining force compo-
nents. It corresponds practically to the thrust produced by the main rotor, which has a
considerably higher magnitude when compared to the other contributions to the global
force vector acting on the helicopter. This indicates that, for the current inversion, fx

and fy can be neglected.

According to these assumptions and taken into account that T b
o is an orthonormal matrix,

the norm of the acceleration of the helicopter is then approximated by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





νx

νy

νz − g





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≈

(

fz

m

)2

⇒
fz

m
≈ ±

√

ν2
x + ν2

y + (νz − g)2 (7-5)

Note that only the negative sign makes physical sense since the thrust vector of the main
rotor points upwards, in the opposite direction of the body z-axis.

When the assumptions above are applied and multiplying both sides of (7-3) by T b
o

−1
= T o

b ,
the following result is obtained:





0
0

fz/m



 ≈





cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ









νx

νy

νz − g



 (7-6)

From the first equation of this system, it follows that:

(νx cos ψcom + νy sinψcom) cos θcom − (νz − g) sin θcom ≈ 0 (7-7)

and, solving (7-7) for the required pitch angle:

θcom ≈ arctan
νx cos ψcom + νy sinψcom

νz − g
(7-8)

Furthermore, from the linear combination of the second row of (7-6) multiplied by cosφcom

and the third row multiplied by − sinφcom:

−νx sinψcom + νy cos ψcom ≈ −
fz

m
sinφcom (7-9)

After substituting (7-5) in fz/m, this equation can be solved with respect to the required roll
angle:

φcom ≈ arcsin
−νx sinψcom + νy cos ψcom

√

ν2
x + ν2

y + (νz − g)2
(7-10)

Note that when all the components of the virtual control are zero (for example, when the
helicopter is maintaining hovering flight), the commanded attitude angles are also zero, but
they should correspond to the required angles to trim the system. For this reason, the attitude
angles obtained from the trim routine, θtrim and φtrim, have to be added to expressions (7-8)
and (7-10), respectively.
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Once again, assuming the dynamic inversion is accurate enough, the input-output relation
is represented by single integrators (7-4) and, as these correspond to linear systems, a linear
control law can be designed for νnav based on the tracking error of the ground velocities vE .
As it was done in the previous chapter, a combined analysis of the three loops is necessary to
determine the linear gains appropriately in control systems where the time scale separation
principle is adopted. At this point, no PCH layer is assumed and the procedure followed to
choose the referred gains is exactly the same as presented in Section 6-1.

For convenience, define T θ
v̇E

as the nonlinear mapping between the attitude angles of the
helicopter and its linear accelerations relative to the Earth, given by (7-3). Due to its tran-
scendental characteristics, the inverse mapping T v̇E

θ cannot be defined analytically. However,
if the yaw angle ψcom is known and applying (7-8) and (7-10) to determine the remaining two
angles, an approximate inverse transformation can be obtained, yielding T v̇E

θ T θ
v̇E

≈ I3×3.

Analogously to Section 6-1, the transfer function between the commanded and the actual
ground velocities when a linear controller K3(s) is applied to close the ADI loop can be
written as:

Hnav(s) =
vE(s)

vEcom
(s)

=
K3(s)T

v̇E

θ Hatt(s)T
θ
v̇E

sI3×3 + K3(s)T
v̇E

θ Hatt(s)T
θ
v̇E

(7-11)

where Hatt(s) is the diagonal transfer matrix given by (6-6). Again assuming the inversion
law from the ADI is perfect, the channels associated with the three components of the ground
velocity are decoupled and if the linear controller is composed by simple proportional gains,
the transfer function for each control channel i becomes:

Hinav(s) =
K3i

K1i
K2i

s2+K1i
s+K1i

K2i

s + K3i

K1i
K2i

s2+K1i
s+K1i

K2i

=
K1i

K2i
K3i

s3 + K1i
s2 + K1i

K2i
s + K1i

K2i
K3i

(7-12)

As it can be seen, assuming a perfect inversion, this transfer function presents a third order
response with no steady-state error, since the static gain (s → 0) is unitary. The gains
K1i

, K2i
and K3i

can be established in order to place the poles according to a characteristic
polynomial of third degree. This polynomial expression can be seen as a composition of a
first order system with time constant τi and a second order system with natural frequency
ωni

and damping ratio ζi. It is then given by:

(τis + 1)
(

s2 + 2ζiωni
s + ω2

ni

)

=

= s3 +

(

2ζiωni
+

1

τi

)

s2 +

(

ω2
ni

+
2ζiωni

τi

)

s +
ω2

ni

τi
= 0 (7-13)

and from its comparison with the denominator of (7-12), it follows immediately that:

K1i
= 2ζiωni

+
1

τi
(7-14)

K2i
=

1

K1i

(

ω2
ni

+
2ζiωni

τi

)

(7-15)

K3i
=

1

K1i
K2i

ω2
ni

τi
(7-16)
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Note that, since the reference for the yaw angle ψcom is not generated by the outer loop but
instead provided externally by the pilot, this variable is only associated with a second order
evolution and thus it does not make sense to account for the effect of the real pole in K23

.
Therefore, this component of the gain matrix of the middle loop is still determined by (6-9).
Substituting (7-14) in (7-15), the referred gain matrix is then given by:

K2 =















ωn1

2ζ1

1+
2ζ1

ωn1
τ1

1+ 1

2ζ1ωn1
τ1

0 0

0
ωn2

2ζ2

1+
2ζ2

ωn2
τ2

1+ 1

2ζ2ωn2
τ2

0

0 0
ωn3

2ζ3















(7-17)

Note also that this control system requires information about the ground velocity vector vE .
This measurement can be easily obtained with a Global Positioning System (GPS) receiver
onboard, which uses the Doppler shift principle. Common receivers dedicated to velocity
estimation operate at a maximum frequency considerably lower than that of the IMU. In the
present case, the sampling frequency of the IMU is assumed to be 100 Hz, while the GPS
operates five times slower, at 20 Hz.

With respect to this navigational controller, it is important to understand physically that
the commanded ground velocities are effectively achieved by changing the attitude of the
helicopter in such a way that the resultant z-axis force vector acting on the vehicle points
in the required direction. Nevertheless, when this control system is applied, the tracking
performance associated with the vertical velocity is far from the desirable. To overcome this
problem, a different approach to control Vz is developed in the next section. Intuitively, this
approach has to be based on the adjustment of the magnitude of the referred force vector
produced by the helicopter.

7-2 Control Law for the Collective

As it might have already been anticipated, the most efficient way to change the magnitude of
the force produced by the helicopter (which mainly depends on the thrust of the main rotor)
passes through the variation of the collective pitch of the main rotor. Recall that, in the first
control loop, the command signal for this control input was assumed to be provided by an
external loop and, at this point, it was still fixed to its trim value. It is now very useful to
allocate this input specifically to control the vertical velocity of the helicopter. In the present
section, two different ways of defining a control law for the collective of the main rotor are
explored, compared and, in the end, the most efficient one is selected.

7-2-1 Linearized force equation

The first strategy was suggested in (Lee et al., 2005) and makes use of a linearized equation
for the body Z force. In principle this strategy is feasible since, as it was already mentioned,
the navigational loop is associated with less intense nonlinearities. The linear equation allows
to estimate the deviation of the third component of the aerodynamic force with respect to its
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trim value based on the corresponding deviation of the states and control inputs, given the
so-called stability derivatives for the flight condition under analysis.

In this section, the Z force, previously denoted as fz, is simply denoted as Z, a more common
notation when using linearized EOM. The stability derivatives Z∗ are simply the derivatives
of Z with respect to a certain variable here denoted by ∗. If the cross-couplings effects are
neglected for the following development, the main contributions for the force on the body
z-axis come from the states and control inputs associated with the longitudinal motion of the
vehicle. If the remaining contributions are neglected and denoting x − xtrim as ∆x, the Z
force can be approximated around a given trim condition as:

Z ≈ Ztrim + Zu∆u + Zw∆w + Zq∆q + Zθ0
∆θ0 + Zθ1s

∆θ1s (7-18)

If the trim condition is chosen to be hovering flight, the Z force only has to balance the effects
of gravity on the helicopter and thus:

Ztrim = −mg cos θtrim cos φtrim (7-19)

Now consider the last equation of (7-3). If again fx and fy are assumed negligible when
compared to fz (here Z):

V̇z − g =
cos θ cos φ

m
Z (7-20)

Using (7-18) and (7-19) to define Z and recalling that V̇z = νz, the equation above can be
recast as:

m

cos θ cos φ
(νz − g) =

= −mg cos θtrim cos φtrim + Zu∆u + Zw∆w + Zq∆q + Zθ0
∆θ0 + Zθ1s

∆θ1s (7-21)

For the controller developed, the stability derivatives are determine before the simulation
starts with central finite differences. The equation above can be solved in order to determine
the required collective pitch:

θ0com =

=

m
cos θ cos φ

(νz − g) + mg cos θtrim cos φtrim − Zu∆u − Zw∆w − Zq∆q − Zθ1s
∆θ1s

Zθ0

+ θ0trim

(7-22)

The control law is not completely linear because of the trigonometric functions, but it is based
on the linear approximation of the force. This method presents two major shortcomings:

• Being a linear approximation of the real (nonlinear) system, the performance of this
control law may be severely degraded when the deviations relative to the trim conditions
increase. To overcome this problem, several trim conditions would have to be defined
and, for each one, the corresponding stability derivatives calculated;
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• It requires a comprehensive knowledge of the helicopter model to be controlled through
its stability derivatives. The amount of information needed was already reduced by
neglecting the contributions of the remaining force components (fx and fz) and the
cross-coupling terms (for example Zv and Zθ1c

). This strong dependence on the model
also makes the efficiency of the control system more vulnerable to modelling uncertain-
ties.

Despite these disadvantages, the adoption of this control law may be convenient because it
does not involve complex calculations nor the measurements from additional sensors. The
results obtained when it is applied have still to be assessed.

7-2-2 INDI

The first shortcoming of the previous approach motivates the use of an exclusively nonlinear
description to compute the control law for the collective. The second one suggests the adoption
of an incremental approach in order to reduce the dependence of the controller on the model
and to increase its robustness. For these reasons, a control law based on INDI is now derived.

To do so, the last equation of (7-3) can be recast as:

V̇z =
[

− sin θ cos θ sin φ cos θ cos φ
]





1

m
f + g





− sin θ
sinφ cos θ
cos φ cos θ







 (7-23)

The derivation of the control law based on INDI is made exactly as in Chapter 5. The equation
above expresses already the influence of θ0 on V̇z, since the force produced by the main rotor
f

mr
depends directly on it (as introduced in Subsection 2-3-6, f corresponds to the sum of

the contributions of all the components to the overall force).

Once again, assuming that x ≈ x0 for an incremental time step and recalling that V̇z = νz,
the virtual control associated with the vertical acceleration can be represented as:

νz = V̇z ≈ V̇z0
+

1

m

[

− sin θ cos θ sinφ cos θ cos φ
] ∂f

mr
(x, u)

∂θ0

∣

∣

∣

∣

x
0
,u

0

(θ0 − θ00
) (7-24)

where the current state vector x0, the control inputs u0 (including the collective pitch of the
main rotor θ00

) and the vertical acceleration V̇z0
are assumed to be known. The latter however

cannot be directly measured. One way to determine it would be with finite differences since
Vz0

is known, but numerical differentiation often leads to problems associated with noise.
Another hypothesis to compute the ground accelerations is by using information relative
to the linear accelerations and attitude angles measured by the IMU onboard. The linear
accelerations are sensed by the accelerometers and correspond to the specific force 1

m
f acting

on the body. The orientation of the helicopter has also to be considered in order to account
for the gravitational acceleration. Mathematically, according to the translational dynamics
of the vehicle (2-89), the acceleration vector in the body-fixed reference frame aB is given by:

aB = v̇ + ω × v =
1

m
f + g





− sin θ
sinφ cos θ
cos φ cos θ



 (7-25)

Helicopter Nonlinear Flight Control Pedro V. M. Simpĺıcio
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This vector has now to be converted into the NED reference frame with T b
o:

v̇E =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ



 aB (7-26)

Noise problems are not expected from this computation since the IMU can estimate the
translational accelerations and the attitude angles of the vehicle very accurately. Besides the
referred measurements, the control system only needs the information relative to the mass of
the helicopter and to the influence of the collective input on the forces generated by the main
rotor. The dependence on the model of the remaining components of the vehicle has been
replaced by the vertical acceleration measurement.

Due to the complex description of f
mr

, central finite differences were again used to determine
its derivative with respect to θ0. As in Chapter 5, the perturbation for this variable corre-
sponds to a small percentage of its absolute value or to a fixed infinitesimal quantity, if it is
too small. Finally, if (7-24) is invertible for a certain flight condition at a given instant, the
required collective pitch for the next iteration is obtained from:

θ0com = m

(

[

− sin θ cos θ sinφ cos θ cos φ
] ∂f

mr
(x, u)

∂θ0

∣

∣

∣

∣

x
0
,u

0

)

−1
(

νz − V̇z0

)

+ θ00
(7-27)

In the literature, the INDI is not normally found in the inversion of the translational dynamics
of aerospace vehicles but, as it will be seen in the following sections, it allows to obtain very
good results.

7-2-3 Choice of the method

Before starting with the experimental comparison between the strategies presented in the two
last subsections, an important remark has still to be made with respect to the linear gain
K3, deduced in (7-16). The third component of this gain K33

is used to generate the virtual
control νz, proportional to the error in the vertical velocity of the helicopter. This virtual
control is then mainly used to define a control law for the collective pitch θ0, either by using
a linear approximation or INDI. Therefore, in opposition to the control laws established by
νx and νy, which are applied to the internal control loops, the control law associated with νz

is directly applied to the actuator. Because of this, the third channel of the navigational loop
is of first order and thus K33

should only account for the desired time constant τ3 associated
with that response. Replacing (7-15) in (7-16), the gain matrix under analysis is given by:

K3 =











1
τ1

1

1+
2ζ1

ωn1
τ1

0 0

0 1
τ2

1

1+
2ζ2

ωn2
τ2

0

0 0 1
τ3











(7-28)

In order to compare the performances obtained with the two different approaches deduced
to control the vertical velocity of the helicopter, a doublet input with an amplitude of 2 m/s
and duration of 12 s was commanded in the corresponding control channel. The remaining
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part of the navigational controller was already activated in order to keep the helicopter fixed
horizontally and pointing North (ψcom = 0 deg). The same gains were used for the trial with
a linear approximation for the collective control law and with INDI. In particular, K33

was
defined so that the response associated with the vertical velocity presents a time constant
τ3 = 0.2 s in both cases. Starting the simulations in hovering fight at 1000 m, the results
obtained are shown in Figure 7-1.
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Figure 7-1: Comparison of vertical velocity responses with different control laws for the collective.

As it can be seen it this figure, the performance of the control law based on INDI is clearly the
most well-suitable, either in terms of steady-state error and settling time. Note that in the
first time instants the two evolutions coincide but, once the system moves away from the trim
condition, the linear approximation for the Z force looses validity and the performance of the
corresponding control law is degraded. The INDI-based approach is then the one selected to
be implemented in the overall navigational control system.

According to this, the working principle of the overall navigational loop is as follows. It
receives commands in terms of ground velocities vEcom

and yaw orientation ψcom. The error
relative to the first vector is used to generate the navigational virtual control νnav, multiplying
it by K3, defined as in (7-28). The yaw command is used in this control loop and it is also
sent to middle loop, to be tracked by the attitude controller. The virtual control νnav is used
by the current ADI loop to generate the required roll φcom and pitch θcom angles, as well as
the command signal for the collective of the main rotor θ0com . The equations behind these
processes were already derived and are summarized below:

φcom = arcsin
−νx sinψcom + νy cos ψcom

√

ν2
x + ν2

y + (νz − g)2
+ φtrim (7-29)

θcom = arctan
νx cos ψcom + νy sinψcom

νz − g
+ θtrim (7-30)

θ0com = m

(

[

− sin θ cos θ sinφ cos θ cos φ
] ∂f

mr
(x, u)

∂θ0

∣

∣

∣

∣

x
0
,u

0

)

−1
(

νz − V̇z0

)

+ θ00
(7-31)
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7-3 Introduction of PCH

The dynamic inversion developed in the last two sections is performed assuming that the
attitude angles of the helicopter and the collective pitch of its main rotor are instantaneously
what they are commanded to be. In other words, the dynamics of the middle loop (which
are assumed to be characterized by a faster time scale than the translational dynamics) and
the dynamics of the collective pitch actuator are neglected in the formulation of the ADI and
INDI, respectively.

Once again, a PCH layer can be introduced in the control system to account for the limitations
imposed by the non-ideal dynamics mentioned above and to adjust the commanded references
to the capabilities of the overall system. Exactly as in the two previous chapters, the current
PCH layer uses the reference model of Figure 4-1 for each channel i with gain K3i

and where
the maximum velocities allowed were set to 80 m/s for the horizontal components and 20 m/s
for the vertical speed.

With this improvement, the commanded references are subjected to an adaptive filtering,
which is adjusted by the pseudo-control hedge νhnav

. This vector is composed by one part
that monitors the capabilities of the middle loop and another one that accounts for the
limitations of the collective pitch actuator. The control law for the latter one is obtained
based on the INDI (see (7-24)), thus the equation for the third component of νhnav

for this
case comes directly from the generic expression (4-2):

νhz
=

1

m

[

− sin θ cos θ sin φ cos θ cos φ
] ∂f

mr
(x, u)

∂θ0

∣

∣

∣

∣

x
0
,u

0

(θ0com − θ0) (7-32)

For the two remaining components, a different strategy has to be adopted to estimate the
error associated with the virtual controls because their components are described by coupled
transcendental equations. Nevertheless, in opposition to the PCH layers applied in the inner
control loops, in the present case the actual virtual control is known. It corresponds simply
to the ground accelerations of the helicopter, which can be accurately estimated with (7-26).
Therefore, from the definition of pseudo-control hedge, the first two components of νhnav

are
given by:

νhx
= νx − ν̂x = νx − V̇x (7-33)

νhy
= νy − ν̂y = νy − V̇y (7-34)

A schematic of the complete control system developed for the helicopter model under analysis
is depicted in Figure 7-2.

Once again, ”Act.” represents the dynamics of the actuators and hnav(x) allows to obtain
the ground velocities from the state-vector. The block ”RM” is composed by the subsystem
of Figure 4-1 for each component of the velocity vector. The ADI basically implements
equations (7-29) and (7-30) and the INDI computes (7-31). Furthermore, the ”PCH” block
determines the pseudo-control hedges through (7-32) to (7-34). This control system makes
use of the controllers presented in Figures 5-6 and 6-2. Note that, as already explained, the
commanded yaw angle is needed in both the outer and middle control loops.
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Figure 7-2: Schematic of the navigational control system based on ADI, INDI and PCH.

Benefits of the PCH

In order to verify the benefits of the PCH, a doublet signal was again demanded to the
vertical velocity control channel using the INDI-based control law, with an amplitude of
2 m/s and a duration of 4 s. In order to visualize the effects of the PCH, the saturation of
the actuator was forced by selecting a time constant τ3 = 0.1 s to the desired response. Since
the referred control variable is directly controlled with the collective of the main rotor (MR),
only the evolution of the variables that influence this channel has to be analyzed. The results
obtained with and without PCH are presented in Figure 7-3.

As it can been seen, when there are no saturations (in this case in terms of rate), the response
of both systems is exactly equal. Nevertheless, in the presence of saturations, the system with
PCH is able to recover more quickly and without the overshoots that exist in the response
without PCH. The introduction of the PCH clearly represents a significant improvement since
only in this case it is possible to obtain the desired first order response for the vertical velocity
of the helicopter. It is also interesting to visualize what happens with the auxiliar variables
of the PCH architecture in this situation: the pseudo-control hedge νhz

and the feedforward
term νrmz , both shown in Figure 7-4.

The first one works like a detector of saturations. When this happens, its value is used to
adjust the reference model so that the saturation is avoided, assuring a satisfactory response
of the system. The second one is used to give the system an additional ”push” when the
derivative of the reference state is too large or, in other words, when a big variation in the
conditions of the system is expected. Due to this feedforward action, the settling times of the
response with PCH were even further reduced when compared to the baseline design.
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Figure 7-3: Benefits of the PCH in the control system.
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Figure 7-4: Pseudo-control hedge and feedforward term for the previous simulation.

7-4 Maneuvers Simulation

As stated in (Enns et al., 1994), the main job of a flight control system is to produce good
responses for pilot commands. These good responses are well known from years of stud-
ies, piloted experiments and flight experience and are well documented in military specifica-
tions (ADS-33E-PRF , 2000). These requirements basically describe the rotorcraft response
characteristics desired to complete various tasks. The main purpose of this section is to test
the performance of the helicopter when the overall navigational controller is applied to fly
three maneuvers commonly used to evaluate the referred flying qualities.

Before that, the gains associated with the three control loops have still to be defined. As
it was already seen, the control system developed is able to track references in terms of
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ground velocities (Vx, Vy, Vz) and yaw angle (ψ). To these variables, the desired response
characteristics are imposed by the successive ADI/NDI/INDI loops. The parameters chosen
for the remainder of this thesis are indicated in Table 7-1.

Table 7-1: Response characteristics selected for the overall control system.

Control
variable

Rotational natural
frequency (rad/s)

Rotational
damping ratio

Translational time
constant (s)

Vx ωn1
= 2.5 ζ1 = 0.8 τ1 = 0.2

Vy ωn2
= 2.5 ζ2 = 0.8 τ2 = 0.2

Vz − − τ3 = 0.4
ψ ωn3

= 4.0 ζ3 = 0.8 −

According to this table, the linear gains for the inner, middle and outer loop are obtained
respectively from (7-14), (7-17) and (7-28), corresponding to:

K1 =





9.00 0 0
0 9.00 0
0 0 8.90



 s−1

K2 =





2.92 0 0
0 2.92 0
0 0 2.50



 s−1

K3 =





1.19 0 0
0 1.19 0
0 0 2.50



 s−1

It is possible to verify that Vx and Vy are expected to present the same dynamics, with the
three time scales as separated as the ratio between the gains of the corresponding loops. The
yaw angle ψ has a second-order response with a weaker time scale separation, but with a
faster evolution since it can be controlled very efficiently with the tail rotor. Independently
of these variables, Vz presents a first-order response which is slower than Vx and Vy, due to
the fact that the vertical velocity of the helicopter has to be controlled more smoothly than
its horizontal components.

While the dynamics associated with ψ and Vz were inverted very accurately, the control of
the horizontal velocities is subjected to a small error from the ADI due to the approximations
made (see Section 7-1). To reduce this error, very small integrative terms were added to the
first two channels of the navigational loop. In order to further reduce the referred error, the
ideal strategy would be to adopt for the roll and pitch trim angles in (7-29) and (7-30) the
values corresponding to the current flight condition, instead of using simply the ones obtained
in the initial trim routine.

The integrative gains were adjusted manually based on step responses and correspond to
5×10−4 for both Vx and Vy. With this adjustment, the pole-zero plot of the transfer functions
associated with the responses of Vx and Vy is depicted in Figure 7-5.

The transfer function under analysis is now of fourth order, but it can be approximated as
a second order evolution, firstly because the natural frequency of the first order pole located
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Figure 7-5: Pole-zero plot of the transfer function associated with Vx and Vy.

at −5 rad/s is higher than that of the complex conjugate pair and secondly because the
remaining pole is practically cancelled by the real zero. The latter statement is only valid for
infinitesimal integrative gains. For higher gains, the characteristics imposed in Table 7-1 as
well as the stability of the system itself are compromised. On the other hand, the referred
cancellation only occurs when no integrative action is adopted, being the closed-loop system
of third order in this case. Note also that the real zero has always minimum-phase for positive
values of the integrative gain.

Obviously, the integrative gains had also to be introduced in the RM of the PCH, despite their
small influence. Furthermore, for this navigational layer, the proportional gain matrix of the
RM was set to 0.8K3, instead of simply K3, forcing the bandwidth of the filter to be 80% of
that imposed to the responses associated with this control loop. The reason for this is simply
to prevent high overshoots and intense efforts from the actuators and thus contributing to an
increased performance of the system.

At this point, in order to further reduce some occasional oscillations in the control inputs,
simple first order LPFs with a cutoff frequency of 10 Hz were also introduced to filter the
output of the GPS sensor (recall that it is working at a lower frequency than the controller
itself). The overall control system was then implemented in Simulink environment in order
to simplify the implementation of the tests carried throughout the remainder of this thesis.

7-4-1 Limited agility: the bob-up and bob-down

The first maneuver performed by the helicopter is known as bob-up and bob-down and consists
of a simple combination of horizontal and vertical flight path segments. This maneuver is very
common in the primary tests of a flight control system for helicopters and some examples can
be found in (Prasad & Lipp, 1993) and (Lee et al., 2005). The simulation setup is defined as
follows:
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The bob-up starts with the helicopter flying North at cruise, with a speed of 15 m/s
(approx. 30 kt) and the vehicle is commanded to decelerate to hover at 610 m (approx.
2000 ft). After that, the helicopter is commanded to climb for 5 s at a constant rate of
5 m/s (approx. 15 ft/s), followed by hover at a higher altitude. It is then accelerated
back to 15 m/s at constant altitude to prepare the bob-down maneuver.

Similarly, for the bob-down, the initial forward speed is of 15 m/s and the vehicle is
again commanded to decelerate to hover. It is then commanded to descend for 5 s at a
constant rate of 5 m/s and finish the maneuver in hovering flight approximately at the
initial altitude.

During the entire maneuver, the helicopter is commanded to keep flying North with no
sideslip angle by fixing Vycom and ψcom to zero.

The results obtained from the simulation of the bob-up and bob-down maneuver with the
overall navigational controller are presented in Figure 7-6.

As it can be seen, the commanded ground velocities are properly tracked, presenting fast
evolutions, without oscillations and with a negligible steady-state error. Furthermore, cou-
plings between the responses of the three components are practically inexistent. The most
noticeable exceptions occur after around 2 and 22 s when the helicopter looses some altitude
probably caused by the saturation of the collective pitch of the main rotor.

As expected, the response associated with the horizontal velocity Vx is controlled by directly
changing the pitch of the helicopter, since it does not involve changes in the direction. The
vehicle pitches down to accelerate and pitches up to loose speed. The collective of the main
rotor is adjusted to track the desired vertical velocity, providing a first order response for Vz.

The remaining control inputs are only used to compensate the control moments and balance
the rotorcraft. The yaw angle ψ is also tracked very efficiently with the collective of the
tail rotor, since this actuator is only used to compensate the changes in the yaw moment
introduced due to the adjustments of the collective pitch of the main rotor.

7-4-2 Moderate agility: the slalom maneuver

The slalom maneuver corresponds to a more demanding test since it involves a series of turns
at constant speed and altitude. The simulation procedure is described in detail in (ADS-

33E-PRF , 2000). The main objectives of this test are to check the ability to maneuver in
moderately aggressive forward flight, to check the turn coordination and to identify objec-
tionable inter-axis couplings during the maneuver. The simulation setup is as follows:

This maneuver is initiated with the helicopter flying North with no sideslip angle at a
constant altitude of 31 m (approx. 100 ft) and at a constant speed of 31 m/s (approx.
60 kt). After 5 s, two doublet inputs are commanded to the lateral velocity Vycom with
an amplitude of 8 m/s (approx. 15 kt) and a duration of 10 s.
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Figure 7-6: Results obtained from the simulation of the bob-up and bob-down. The dashed lines
correspond to the references commanded, the dotted lines to the state of the reference model
and the solid lines to the actual response of the helicopter.

Without sideslip, the yaw angle of the vehicle has also to be adjusted in order to cope with
this variation. It is thus commanded to match its heading: ψcom = arctan2 Vycom/Vxcom .
More information on this topic will be presented in the next section.

Finally, the commanded vertical velocity Vzcom is set to zero to keep the altitude constant
and, in the turns, Vxcom is reduced to 30 m/s (approx. 58 kt) in order to keep the total
airspeed constant.

The results obtained from the simulation of the slalom maneuver with the overall navigational
controller are presented in Figure 7-7. Another example of a moderate agility maneuver, the
pirouette, can be found in Appendix E.

From this figure, it can again be concluded that the commanded references are properly
tracked by the helicopter. As expected, the lateral velocity Vy shows a second order shaped
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Figure 7-7: Results obtained from the simulation of the slalom maneuver. The dashed lines
correspond to the references commanded, the dotted lines to the state of the reference model
and the solid lines to the actual response of the helicopter.

response, with practically no steady-state error. The vertical velocity Vz is perfectly kept to
zero, presenting only very slight oscillations around the transient instants of the horizontal
velocity. This coupling is however more intense in the remaining component of the velocity,
yielding overshoots of approximately 3 m/s around the referred moments.

The commanded velocities are now mainly tracked by changing the roll angle of the helicopter,
becoming positive to turn right and negative to turn left. The pitch angle is also used to adjust
the airspeed. Finally, the yaw angle is tracked very efficiently, presenting a quick response
with no steady-state error. Some undesirable oscillations can however be identified around the
second 26. These oscillations are certainly due to the saturation experienced by the collective
of the tail rotor at the moment, but from which the system is able to recover immediately.

Besides the intense actuation associated with the collective pitch of the tail rotor, the com-
mands to the remaining actuators throughout the maneuver are not too demanding.
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7-4-3 Aggressive agility: the transient turn

The transient turn is a common robustness test for full authority controllers, since a wide
range of sideslip angles and speed components are commanded during the maneuver. It is also
well described in (ADS-33E-PRF , 2000). The main goals of this maneuver are to ensure that
handling qualities do not degrade during aggressive maneuvering in all axes and to check for
undesirable couplings between the three attitude angles. The simulation setup is as follows:

The helicopter starts this test flying North with no sideslip angle at a constant altitude
of 61 m (approx. 200 ft) and at a constant speed of 62 m/s (approx. 120 kt). In the
next ten seconds, the vehicle is commanded to decelerate completely until hovering flight
while accomplishing a 180 deg rotation about its vertical axis. In the end, the helicopter
shall thus achieve wings-level attitude facing South.

During the whole maneuver, the helicopter shall maintain the same altitude and a straight
trajectory, hence Vycom = Vzcom = 0 m/s.

The results obtained from the simulation of the transient turn with the overall navigational
controller are presented in Figure 7-8.

As it can be seen, the commanded references are again followed but, due to the aggressivity
of the maneuver, substantial tracking errors are verified in the transient responses of both
Vx and ψ. The performance of these responses is also quite degraded in comparison to the
theoretical predictions. The referred velocity exhibits a small steady-state error, finishing
the maneuver with a residual forward speed. The yaw angle presents an overshoot of almost
20 deg before the settling of the response.

The altitude of the helicopter is perfectly kept by the controller, since its vertical velocity is
always approximately null. The lateral component of the velocity shows however the existence
of a substantial coupling, which is eliminated once the collective of the tail rotor becomes
desaturated. The referred actuator is in fact saturated for practically the whole turn due
to the required aggressivity. The actuation associated with the remaining control inputs is
however far from demanding.

7-5 Additional Aspects

As it was seen, the navigational control system implemented for the helicopter model devel-
oped receives as references the three components of the desired velocity with respect to the
Earth (Vx, Vy and Vz) and the commanded yaw angle of the vehicle (ψ). However, in practice,
this combination of commands may not be the most adequate for the pilot to select. This
section aims therefore to suggest three different sets of parameters that can be more conve-
niently chosen by the pilot and to introduce the required conversions between these types of
references and the ones supported by the controller.

The referred conversions are mainly based on mathematical expressions presented in Ap-
pendix A. It is known that the ground velocities are conveniently expressed in the NED
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Figure 7-8: Results obtained from the simulation of the transient turn. The dashed lines corre-
spond to the references commanded, the dotted lines to the state of the reference model and the
solid lines to the actual response of the helicopter.

reference frame Fo as [Vx Vy Vz]
T . In the appendix mentioned above, it was stated that the

velocity reference frame Fv is defined such that the velocity vector of helicopter is written in

this coordinate system as [V 0 0]T , where V =
√

V 2
x + V 2

y + V 2
z is the airspeed of the vehicle.

A relation between these two vectors can be established by means of the transformation from
Fo to Fv, defined by (A-5) as T o

v. Using the inverse transformation, the following result is
obtained:





Vx

Vy

Vz



 = T v
o





V
0
0



 = V





cos χ cos γ
sinχ cos γ
− sin γ



 (7-35)

where γ is the flight path angle and χ is the heading. The yaw angle is related to the latter
one through the sideslip β = χ−ψ, which represents the angle between the longitudinal axis
of the helicopter and the horizontal projection of its velocity vector (see Figure A-2).

From the desired ground velocities, the flight path angle can be directly determined using the
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last component of (7-35):

γ = − arcsin
Vz

V
(7-36)

The heading can also be easily determined by dividing the first two rows of (7-35):

χ = arctan2
Vy

Vx
(7-37)

In this case, the two-argument arctangent function is adopted in order to distinguish the cor-
rect quadrant of the angle by taking into account the signs of the numerator and denominator
of the fraction.

7-5-1 Autopilot

The first situation presented here concerns a conventional autopilot of an aircraft. This type
of controller is mainly used during cruise flight and normally allows the pilot to select directly
in the Mode Control Panel (MCP) the desired airspeed Vcom, heading χcom and climb rate
ḣcom of the vehicle.

Knowing that the vertical velocity Vz is symmetrical to the climb rate ḣ, the flight path angle
is given by:

γcom = arcsin
ḣcom

Vcom
(7-38)

and since the airspeed and heading are both selected by the pilot, (7-35) can now be applied
to determine the commanded ground velocities.

As in cruise flight it is desirable to fly with no sideslip for fuel efficiency and for passenger
comfort, the yaw angle commanded shall yield βcom = 0 and thus:

ψcom = χcom (7-39)

This automatic turn coordination is also useful to reduce the pilot workload.

7-5-2 Fly-by-wire

The concept of FBW refers to a flight control system in which the movement of flight controls,
instead of being directly transmitted to the actuators, is converted to electronic signals that
serve as commanded references to be tracked by the flight control computer. Despite being
normally used to give the references for a rate or attitude controller, this system could also
be used to generate the commands for the navigational controller under analysis very quickly,
making possible the use of this type of controller for precise maneuvering of the rotorcraft.

According to this, it would be useful that, when the three flight controls (the cyclic stick, the
collective lever and the anti-torque pedals) are left free, the helicopter achieved a stabilized
hover in the current orientation. This type of control provides an increased stability, but the
agility is reduced. A possible arrangement of control deflection/references commanded is:
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• The displacement and direction of the deflection of the stick would determine the hor-
izontal components of the desired velocity Vxcom and Vycom : the translational ground
speed would follow the stick;

• The position of the lever would control the climb rate ḣcom = −Vzcom : when the pilot
pulls it up or down, the helicopter would start climbing or descending, respectively.

When a helicopter is operating, it is useful to have the complete range of sideslip angles
available and thus the condition βcom = 0 should not be imposed. Instead, the pilot could
use the pedals to adjust the sideslip βcom of the rotorcraft: the left and right pedals would
increase the sideslip angle in the respective direction. Knowing then the sideslip angle and
using (7-37) to compute the desired heading, the commanded yaw angle is obtained directly
from:

ψcom = χcom − βcom = arctan2
Vycom

Vxcom

− βcom (7-40)

7-5-3 Position control

The final suggestion of this section is based on the development of a position controller for
the helicopter using the navigational controller already developed. This type of approach was
already followed in (Moelans, 2008). The reason why a position controller was not developed
in this thesis is simply because this kind of control system is normally implemented only for
autonomous UAV helicopters, of which (E. N. Johnson & Kannan, 2005) is a good example.

Since the current navigational controller tracks commanded references in terms of ground
velocities vEcom

, position control can be easily achieved by introducing another external loop
that generates these commands, proportionally to the errors in terms of position coordinates.
A small integrative action shall also be introduced in order to eliminate steady-state tracking
errors in the trajectory. Hence, the referred external loop consists simply of a PI controller
applied to the position error:

vEcom
= KP

(

p
com

− p
)

+ KI

∫ t

0

(

p
com

− p
)

dτ (7-41)

where p
com

is the desired position of the helicopter in NED coordinates at a given time
instant and p is its actual position. The proportional and integrative gains can be chosen
from the analysis of the closed-loop transfer function, similarly to what was done in the end
of Section 7-1.

Finally, the commanded yaw angle can again be defined such that the helicopter flies with
no sideslip, corresponding thus to its heading. According to (7-37) and since the commanded
ground velocities are generated by the PI controller, this yields:

ψcom = arctan2
Vycom

Vxcom

(7-42)
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Chapter 8

Robustness Tests

After implementing the complete control system designed throughout the previous chapters
and simulating the performance of some maneuvers with the helicopter model, it is now
important to assess whether the controller is robust to modifications on its nominal conditions.
Therefore, in this chapter, several changes are introduced and, for each one, the response of
the system is carefully analyzed. The referred changes considered in the following sections
are: rotor aerodynamic uncertainties, inertia matrix mismatch, tail rotor malfunction, sensors
noise and delay, actuator delays, wind effect and controller sampling frequency.

The nominal response of the system with which all the results will be compared corresponds
to the moderate agility maneuver of Subsection 7-4-2, but with only one doublet input com-
manded to Vy, instead of two. A simplified block diagram of the multi-loop structure of the
navigational controller is depicted in Figure 8-1. Figure 8-2 presents separately the nominal
responses of the control inputs and control variables for the maneuver mentioned above. A
detailed interpretation of these results was already carried out in Subsection 7-4-2.

Vxcom

Vycom

Vzcom
φcom

θcom

ψcom

ωcom

θ0com

u′

com u

x

Navigational

Attitude RateController

Controller Controller
Act. Helicopter

Figure 8-1: Simplified schematic of the overall flight control system.

Before proceeding with the robustness tests, it is important to mention that a comparison
with the results obtained when a non-incremental NDI is used to control the inner loop of
the overall controller and the control law for the collective of the main rotor would also be
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Figure 8-2: Nominal response of the system. The dashed lines correspond to the references
commanded, the dotted lines to the state of the reference model and the solid lines to the actual
response of the helicopter.

interesting. Nevertheless, the implementation of a NDI controller for a nonlinear helicopter
model is computationally complex due to the need to invert numerically the highly nonlinear
function g(x, u), in (5-3). This type of controllers are therefore not suitable to apply as
sole means to helicopter flight control. In fact, NDI-based helicopter controllers are normally
designed using linearized versions of the system and a reasonable performance is only achieved
when an adaptive approach is introduced to compensate for the inversion errors, as shown
in (Moelans, 2008).
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One of the main advantages of the INDI is that the function mentioned above is only consid-
ered through its first derivative with respect to u, which can be computed very easily using
finite differences. Furthermore, it is already globally accepted that controllers based on INDI
are substantially more robust to model uncertainties than the ones based on NDI since they
do not depend on the accuracy of the control-independent part of the model. The issues
associated with the differences between these two strategies were already analyzed in detail
in (Sieberling, 2009) and (Wedershoven, 2010).

8-1 Aerodynamic Uncertainties

As it was seen in Section 3-5, theoretically, the control loops based on INDI are not sensitive to
uncertainties in the control effectiveness function, as long as the signs of the derivatives of its
components with respect to the control inputs are correctly known. Furthermore, by making
use of angular or linear accelerations, they do not require any additional information about
the helicopter model and thus they are not affected by the configuration of the fuselage nor
the horizontal and vertical tails. This type of robustness is very important since it avoids the
need for an extremely accurate model, which is very difficult and costly to obtain in practice.
In addition, this property also allows the control system to cope with changes in configuration
during flight. The behavior of the system in the presence of model inaccuracies is analyzed in
this section, while the sensitivity to changes in the configuration will be assessed in the next
two.

One of the main difficulties in helicopter modelling is to describe accurately the very complex
processes in the rotor that generate the aerodynamic forces and moments. As shown in
Subsection 2-3-1, expressions for these coefficients as well as for other parameters like the
flapping angles or the rotor inflow always result from approximations to a certain extent.
These approximations originate therefore discrepancies with respect to the real model of
the helicopter and, when they are adopted in the control system, its performance may be
compromised.

As already mentioned, theoretically the performance of INDI-based controllers is not affected
by model uncertainties, as long as the sign of the derivatives of the control effectiveness is
correctly known. Nevertheless, this conclusion may not be completely true for the particular
case under analysis, since some additional approximations were made in the application of
the INDI theory to invert the complex model of the helicopter. Namely, the influence of the
control effectiveness function was only considered through its first order derivative and finite
differences were used to determine some of its components. The validity of these approx-
imations was already checked in Section 5-2 for the nominal condition of the system, but
now the potential consequences in the presence of uncertainties have also to be evaluated.
Besides the referred approximations, additional problems may also arise in the presence of
model uncertainties due to the limitations associated with the actuators. These problems are
however expected to be dealt by the PCH layers.

In this section, model uncertainties are simulated by introducing inaccuracies simultaneously
in the values of CTdp

, CHdp
, CSdp

and CQdp
, associated with the main rotor and determined

from equations (2-50) to (2-53). The coefficients adopted by the controller are thus given by:

Ĉ∗ = C∗ (1 + ε) (8-1)
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where C∗ is the real value of the aerodynamic coefficient, ∗ can assume each one of the rotor
forces or moment and the error ε is generated randomly according to a normal distribution
with zero mean and standard deviation σ. Its probability density function is represented by
the Gaussian curve depicted in Figure 8-3.

0.1% 0.1%
2.1% 2.1%13.6% 13.6%

34.1%34.1%

−3σ −2σ −σ 0 σ 2σ 3σ

Figure 8-3: Probability density function of a normal distribution with zero mean. [adapted from
Wikipedia]

From this figure, it can be understood that the value of ε has a probability of approximately
95.4% to be within the interval [−2σ, 2σ] and thus 2σ can be viewed as the maximum relative
uncertainty of the aerodynamic model known by the controller. Recall that the forces and
moments produced by the main rotor are given by (2-54) to (2-55). Note also that only
positive values make physical sense for the coefficients CT and CQ above, whereas the values
generated by (8-1) may be negative. This is only allowed to analyze the response of the
controller to substantial discrepancies in the aerodynamic model of the rotor.

The simulation of the nominal maneuver was then performed for different values of σ and,
since the forces and moment coefficients are now given by a stochastic process, more than
one trial shall be carried out for each magnitude of uncertainty. In this case, three different
trials (I, II and III) were made for each value of σ and the results obtained are presented in
Figure 8-4.

Several parameters can be used to compare the performance of a system when tracking a
certain reference signal. Among these parameters are, for instance, the overshoots of the
responses, the settling times or the steady-state errors. For simplicity, in the current chapter
only the tracking Root-Mean-Square Error (RMSE) is analyzed for the referred comparison.
The RMSE contains more information than a simple average of the error, since it also accounts
for its variance. Physically, it would correspond to a continuous deviation of the variables
with respect to their commanded reference. Defining the tracking error of a generic variable
x(t) as e(t) = xcom(t)−x(t), its average over time as 〈e(t)〉 and its variance as var {e(t)}, the
tracking RMSE of x(t) is given by:

RMSE {x(t)} =

√

〈e(t)〉2 + var {e(t)} =
√

〈e(t)2〉 (8-2)

It is important to note that, being a tracking error, it may happen in the following tests that
a response affected with uncertainties presents smaller RMSE values than the nominal one if,
by coincidence, it becomes closer to the commanded references. Table 8-1 shows the RMSE
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Figure 8-4: Response of the system with uncertainties in the aerodynamic model. The solid,
dashed and dashdot lines correspond respectively to trials I, II and III.

for the four control variables of the helicopter system obtained from the simulations depicted
in the previous figure. Besides the RMSE, a qualitative analysis of the control effort will also
be taken into account for comparing the responses presented in the next sections.

From the joint analysis of Figure 8-4 and Table 8-1, the following observations can be made:

Helicopter Nonlinear Flight Control Pedro V. M. Simpĺıcio
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Table 8-1: Tracking RMSE for the simulations with uncertainties in the aerodynamic model.

Robustness test Trial Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

Uncertainty with σ = 0.5
I
II
III

0.535
0.536
0.535

4.174
4.172
4.173

0.054
0.052
0.054

4.511
4.511
4.511

Uncertainty with σ = 1.0
I
II
III

0.534
0.535
0.527

4.181
4.217
4.187

0.062
0.122
0.082

4.511
4.511
4.511

Uncertainty with σ = 2.0
I
II
III

0.559

0.645

4.433
Helicopter

4.769

0.531
crashed
1.322

4.513

4.513

Nominal response − 0.536 4.173 0.054 4.511

• For a maximum model inaccuracy of 100% (σ = 0.5), the performance of the system
was not affected and all the trials were performed exactly as in the nominal conditions.
For this case, the probability of occurring a reversal in the sign of the aerodynamic
coefficients (ε < −1) is only of approximately 2.2%. Note however that a wrong sign of
the aerodynamic coefficients does not necessarily imply a wrong sign in the derivative
of the control effectiveness;

• For a maximum model inaccuracy of 200% (σ = 1.0), some very small alterations are
already obtained, especially in the components of the velocity. In the collective of
the main rotor, occasional oscillations can also be identified during the three trials,
indicating that at some instances the controller tends to increase the errors, instead of
compensating for them. This is clearly a result of an incorrect sign of the derivative of the
control effectiveness (the probability of having ε < −1 is now of 15.9%). Nevertheless,
if these extreme circumstances are not persistent, the controller is able to recover easily
its nominal evolution;

• For a maximum model inaccuracy of 400% (σ = 2.0), the probability of ε < −1 is al-
ready of 30.9% and the performance of the system becomes severely degraded. Both the
oscillations and the RMSE of the responses increased relatively to the nominal simula-
tion and trial II was already unsuccessful since it resulted in the crash of the helicopter.
As expected, control oscillations occur now more often and with higher amplitude. If
the control actuation at those instances is not too demanding, the controller is able to
recover from these disturbances very efficiently but, otherwise, the tracking performance
is degraded and the stability of the helicopter compromised.

From this section it is then possible to conclude that the theoretical insensitivity of the control
system to model inaccuracies holds for the design developed in this thesis, as long as the sign
of the derivatives of the control effectiveness is not persistently wrong. Satisfactory good
results were obtained for trials with relative uncertainties in the aerodynamic coefficients up
to 200%. It must be noted that, in practice, only values considerably smaller than these are
expectable.
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8-2 Inertia Mismatch

As it was mentioned in the previous section, it is desirable to have a control system that
shows some degree of insensitivity to changes in the model of the system during flight. In this
section, the response of the helicopter when there is a mismatch between the inertia matrix
known by the controller and the actual one is analyzed. Changes in the inertia property of a
model can occur simply due to fuel consumption during flight but also in situations in which
the load carried in the helicopter is rearranged.

Inaccuracies in the inertia property of the helicopter are introduced by adding a mismatch
matrix ∆J to the actual one J , according to:

Ĵ = J + ∆J (8-3)

The responses obtained from the simulation of the system with three different values of ∆J
are depicted in Figure 8-5 and the corresponding tracking RMSE are registered in Table 8-2.

From the analysis of the plots, it is possible to see that both the tracking performance and the
control actuation were affected by changes in the inertia matrix. Nevertheless, the tracking
of the commanded references was always achieved and the system did not become unstable.
Together with the RMSE of the responses, it is possible to conclude that, globally:

• The performance of the system is degraded when the components of the inertia matrix
assumed by the controller are underestimated. While for ∆J = −0.5J the results are
still quite reasonable, for ∆J = −0.8J the response is too oscillatory and the RMSE
increase. Note however that the latter mismatch is already quite pessimistic and it is
not likely that such discrepancies exist in reality;

• When the components of the matrix assumed by the controller are bigger than its actual
values, the response of the system changes slightly, but its performance is enhanced.
This can be explained from the fact that as the system ”thinks” the helicopter has
more inertia than it actually has, more intense control actuations are demanded and
more efficient responses are achieved. These higher control efforts can be identified,
for example, it the signal of the longitudinal cyclic. Obviously, this improvement is
only achieved as long as it is supported by the actuators and PCH. Nevertheless, the
successful simulation carried out here has already a mismatch of ∆J = J , representing
an inertia inaccuracy of 100%, which is not likely to find in reality.

From these results, it can be concluded that, despite being slightly sensitive to inertia mis-
matches, the performance of the controller is not severely degraded for the uncertainty values
expected to find in practice.

8-3 Tail Rotor Malfunction

As it was mentioned in Section 3-5, the insensitivity of the INDI to modelling errors allows to
use exactly the same controller developed in this thesis to control the helicopter in the presence
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122 Robustness Tests
θ 0

[d
eg

]

Time [s]
0 5 10 15 20 25 30

4

6

8

10

12

V
x

[m
/s

]

Time [s]
0 5 10 15 20 25 30

29

30

31

32

33

θ 1
s

[d
eg

]

Time [s]
0 5 10 15 20 25 30

0

1

2

3

4

5

V
y

[m
/s

]

Time [s]
0 5 10 15 20 25 30

−10

−5

0

5

10

θ 1
c

[d
eg

]

Time [s]
0 5 10 15 20 25 30

−4

−3

−2

−1

0

1

2

V
z

[m
/s

]

Time [s]
0 5 10 15 20 25 30

−0.5

0

0.5

θ 0
tr

[d
eg

]

Time [s]
0 5 10 15 20 25 30

−5

0

5

10

15

20

ψ
[d

eg
]

Time [s]
0 5 10 15 20 25 30

−15
−10
−5

0
5

10
15

Nominal response

Mismatch with ∆J = −0.8J

Mismatch with ∆J = −0.5J

Mismatch with ∆J = J

Figure 8-5: Response of the system with mismatches in the inertia matrix.

Table 8-2: Tracking RMSE for the simulations with mismatches in the inertia matrix.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

Mismatch with ∆J = −0.8J 0.624 4.382 0.057 4.669
Mismatch with ∆J = −0.5J 0.550 4.206 0.055 4.539
Mismatch with ∆J = J 0.530 4.160 0.054 4.501

Nominal response 0.536 4.173 0.054 4.511
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of structural damages or system failures without the need to perform real-time identification
of its model. As explained in (Bacon et al., 2001), in a failure scenario, aerodynamic changes
cause force and moment changes on the aircraft. The INDI approach exploits the fact that
these changes are measured by accelerometers to regain control of the damaged vehicle.

In this section, the performance of the control system is evaluated when a malfunction in the
tail rotor occurs. In order to simulate the referred malfunction, the collective pitch of the tail
rotor is kept constant during the simulation and thus it is not possible for the control system
to change this input. This would correspond to a situation in which the actuator got stuck at
a certain position. The response of the system was tested for three fixed pitch angles of the
collective of the tail rotor: −8 deg (lower limit), 0 deg and 20 deg (upper limit). The results
obtained and the corresponding tracking RMSE are once again presented in a figure and a
table, being in this case Figure 8-6 and Table 8-3.

It is possible to verify that the tracking of the velocities, despite being slightly degraded, can
still be achieved quite efficiently for all the malfunctions tested. The responses associated with
the yaw angle suffered however a more severe degradation, especially in terms of oscillations,
settling time and steady-state error. This is explained by the simple fact that the yaw rate
of the helicopter is directly influenced by the thrust produced by its tail rotor. Additionally,
as it can be understood intuitively, the performance degradation due to the malfunction of
the tail rotor is more intense when the difference between its fixed position and the values
assumed in the nominal condition is larger.

8-4 Sensor Dynamics

As it was seen in Section 3-5, by replacing the knowledge of part of the helicopter model needed
by the controller with linear or angular acceleration measurements, INDI-based control loops
become more dependent on the accuracy with which these quantities are obtained. This
problem is specially aggravated since a very simplistic process based on finite differentiation
was assumed for the estimation of the angular accelerations. As it was already seen, for ideal
sensors, it was possible to assure a very satisfactory response of the control system by low-pass
filtering the signals demanded to the actuators.

In reality, sensors are not ideal but present a certain dynamic instead. They normally intro-
duce noise, time delays and biases into the system. These uncertainties can be made very
small by integrating state estimation processes like Kalman filtering. The design of this type
of filter is however out of the scope of this thesis.

This section aims to analyze the changes introduced in the responses of the helicopter when
non-ideal angular rate measurements are considered. These measurements are obtained by
rate gyros in the IMU onboard of the aircraft. Since the sensor biases only yield steady-state
errors that are, in principle, eliminated by the outer loops, only the influence of noise and
time delays is discussed. The effect of noise is simulated by adding band-limited white noise,
characterized by a bandwidth of 10 Hz and by a predefined standard deviation. In reality,
time delays associated with sensors are very small and are especially noticeable if a filtering
process is used to estimate some variables.
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Figure 8-6: Response of the system with malfunctions in the tail rotor.

Table 8-3: Tracking RMSE for the simulations with malfunctions in the tail rotor.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

Malfunction with θ0tr = −8 deg 0.808 4.052 0.047 13.17
Malfunction with θ0tr = 0 deg 0.639 3.974 0.051 8.103
Malfunction with θ0tr = 20 deg 0.684 4.033 0.063 24.01

Nominal response 0.536 4.173 0.054 4.511
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Figure 8-7 shows the results obtained when noise, time delay and both effects are considered
in the angular rates measurements. The referred noise has a standard deviation of 0.1 deg/s
and the time delay is of 20 ms. Usual values for these parameters were taken from (Sieberling,
2009), where a similar analysis is carried for a fixed-wing aircraft. The tracking RMSE for
the distinct simulations are presented in Table 8-4.

As it can be seen, the responses of the system remain practically unchanged when noise
or delay are introduced in the sensors. The control inputs are however slightly affected
with additional undesired oscillations. In the case in which only noise was introduced, these
oscillations are obviously due the oscillations in the angular rates measurements. When there
exists a time delay, the oscillations are explained by the fact that the system is computing
the control inputs for a situation that is already in the past and the controller is trying to
compensate for an error that may have already been compensated. This effect is thus more
noticeable in transient periods of the helicopter conditions. Note however that even when
there are noise and time delay, the level of the referred oscillations is perfectly within an
admissible range.

8-5 Actuators Delay

Another important aspect to consider when designing flight controllers is the existence of
a time delay between the control system and the actuators of the aircraft. This delay is
mainly due to the transmission time of the signal generated by the controller to the actuators
themselves and, according to (Padfield, 1996), it assumes normally values around 100 ms. This
means that, if the control system is operating at a frequency of 100 Hz, with a sampling time
of 10 ms, there is a delay of ten samples between the computation of the demanded control
deflections and the actual action of the actuators. Together with the rate limitations of the
actuators, the overall delays can thus contribute severely to a degradation of the performance
of the control system.

In this section, the behavior of the system is analyzed for time delays of 50 ms, 100 ms
and 150 ms. The responses obtained are shown in Figure 8-8 and the tracking RMSE are
summarized in Table 8-5.

As expected, when the delay of the actuators increases, the tracking performance of the
system is degraded and the control effort required from the actuators also increases. With
the controller developed in this thesis, a time delay of 50 ms still results in a quite satisfactory
behavior of the helicopter, but the responses associated with delays of 100 ms and 150 ms
have already considerable large overshoots and tracking RMSE.

8-6 Wind Effect

This section aims to analyze the influence of wind in the performance of the helicopter when
describing the slalom maneuver. The wind was generated using a continuous turbulence model
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Figure 8-7: Response of the system with dynamics in the angular rates sensor.

Table 8-4: Tracking RMSE for the simulations with dynamics in the angular rates sensor.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

Angular rate sensor with noise 0.536 4.172 0.054 4.510
Angular rate sensor with delay 0.531 4.165 0.052 4.516
Angular rate sensor with noise and delay 0.531 4.165 0.052 4.494

Nominal response 0.536 4.173 0.054 4.511
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Figure 8-8: Response of the system with delay in the actuators.

Table 8-5: Tracking RMSE for the simulations with delay in the actuators.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

50 ms delay 0.556 4.275 0.089 4.765
100 ms delay 0.587 4.400 0.185 5.011
150 ms delay 0.646 4.586 0.347 5.270

Nominal response 0.536 4.173 0.054 4.511
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128 Robustness Tests

available in Simulink based on the Dryden Spectral representation (MathWorks, n.d.-b). This
type of model simulates the effect of continuous turbulence by passing a unit variance, band-
limited white noise through appropriate forming filters, defined in military specifications.

According to these specifications, turbulence is a stochastic process defined by the wind
velocity spectra. Its intensity and scale length are functions of altitude and introduce changes
in the linear and angular velocity of aircraft. This turbulence model is valid when the mean-
wind velocity is small relative to the aircraft ground speed since it assumes a frozen turbulence
field. Furthermore, it describes an average of all conditions for clear air turbulence because
factors like terrain roughness, wind shears and meteorological conditions are not considered.

The motion of the helicopter was simulated for three distinct turbulence intensities (light,
moderate and severe) and the wind was kept blowing from the North. The distinct turbulence
intensities are defined by a different probability of a gust that exceeds the high-altitude wind
intensity. In order to be able to visualize the effect of the wind more clearly, the altitude of
the simulation was also changed to 500 m. The results obtained are plotted in Figure 8-9 and
the corresponding tracking RMSE calculated in Table 8-6.

As it can be seen from the analysis of the figure, additional oscillations appear in the motion
of the helicopter when turbulence exists. The control system is however able to continue
tracking the commanded references, but in this process, a considerable amount of oscillations
also appear in the control inputs. As expected, the referred oscillations as well as the tracking
errors presented in the table increase with the intensity of the turbulence.

8-7 Controller Sampling Frequency

Finally, it is important to analyze what happens when the helicopter control system is dis-
cretized at a lower frequency than the nominal 100 Hz. Lower controller frequencies require
processing systems with less computational capabilities, which are therefore less costly. One
the other hand, the INDI assumption x ≈ x0 is only valid for time steps small enough.
Moreover, smaller time steps also contribute to more accurate estimations of the angular ac-
celerations (which are calculated using finite differences) and thus improving the performance
of the system. Note that, in this section, despite the sampling frequency of the controller is
reduced, the rate of the simulation of the helicopter motion is kept at 100 Hz.

It is also important to note that, according to Nyquist theorem, the sampling time of the
controller shall be at least two times smaller than the smallest time constant of the system in
order to avoid aliasing phenomena. The smaller time constant imposed by the control loops
is of 0.2 s, meaning that the controller shall always be sampled at a frequency higher than
10 Hz.

Additionally, it was also seen that the measurements of the ground velocities provided by
the GPS receiver are obtained at a considerably lower frequency than the controller itself.
Until now, it was assumed that the mentioned receiver is dedicated to the velocity estimation
based on Doppler effect and possess high computational capabilities. Nevertheless, the con-
sequences of using a cheaper receiver (operating at a lower frequency) to obtain the referred
measurements have also to be investigated.
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Figure 8-9: Response of the system in the presence of wind.

Table 8-6: Tracking RMSE for the simulations in the presence of wind.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

Light turbulence 0.566 4.152 0.165 4.526
Moderate turbulence 0.687 4.162 0.369 4.531
Severe turbulence 0.964 4.207 0.678 4.706

Nominal response 0.536 4.173 0.054 4.511
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In this section, the system is simulated for three different combinations of the controller
frequency fcontrol and GPS sampling rate fGPS . The results obtained and the tracking RMSE
are available in Figure 8-10 and Table 8-7, respectively.

As it can be seen, when the GPS frequency is lowered to half its nominal value, the per-
formance of the controller keeps practically unchanged. The corresponding responses match
each other and the RMSE are barely affected.

With respect to the controller frequency, as expected, decreasing its value results in a degrada-
tion of the performance of the system. Despite this degradation being only slightly noticeable
in the RMSE, some additional oscillations do exist in the responses of the helicopter, especially
in terms of vertical velocity and heading angle. Nevertheless, the negative effects of a small
processing frequency can be particularly identified in the control inputs, with the existence of
substantial oscillations, characterized by a high frequency. This can be explained simply from
the fact that, since the INDI is an incremental approach, higher frequencies allow to compute
the required command deflections more often and therefore the corrections to achieve the
desired tracking have a smaller magnitude, avoiding the introduction of oscillations. This
type of oscillations is undesirable for the mechanical actuators.

8-8 Discussion of Results

As a summary, it was concluded that the flight control system designed is perfectly robust to
model uncertainties due to aerodynamic inaccuracies and inertia mismatches for the range of
values expected to find in reality. More robustness tests are recommended to be carried out in
the future, namely to evaluate potential errors in the estimated flapping angles or rotor inflow,
but the theory shows that the only requirement in terms of aerodynamic model to effectively
control the helicopter is that the signs of the derivatives of the control effectiveness function
are correct. It was also concluded that the robustness assured by the INDI-based control
loops provide a very simple way to cope with system failures, namely with a malfunction in
the tail rotor.

Afterwards, the potential degradation in the performance of the system caused by non-
idealities in the sensors and actuators was also analyzed. It was concluded that, despite
having a noticeable influence on the system, the degradations caused by both sensor dynam-
ics and actuators delay still yield admissible results for the characteristics expected to find in
reality.

Among all the factors studied in this chapter, the wind effect turned out to be the one that
contributes more to the existence of oscillations in the control inputs and in the responses of
the system. The controller sampling frequency, showed also some influence on the performance
of the system, especially in terms of oscillatory control inputs.

Throughout this chapter, the effects of different factors in the performance of the system
were analyzed separately. Obviously, when they are simultaneously present, their influence is
summed up and the performance of the responses is further degraded. It is however expectable
that, for the ranges of uncertainties encountered in reality, the present control system is able
to assure asymptotic stability and tracking ability of the system.
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Figure 8-10: Response of the system with different controller frequencies.

Table 8-7: Tracking RMSE for the simulations with different controller frequencies.

Robustness test Vx (m/s) Vy (m/s) Vz (m/s) ψ (deg)

fcontrol = 100 Hz, fGPS = 10 Hz 0.544 4.166 0.057 4.511
fcontrol = 60 Hz, fGPS = 20 Hz 0.537 4.129 0.076 4.506
fcontrol = 60 Hz, fGPS = 10 Hz 0.544 4.121 0.082 4.511

Nominal response 0.536 4.173 0.054 4.511
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Chapter 9

Considerations on the Adopted
Control Strategy

This chapter aims to present a very brief discussion mainly on the practical applicability of
the overall navigational flight control system developed and on the differences regarding the
application of INDI-based control loops to rotorcraft and fixed-wing aircraft.

As it was seen throughout this thesis, controllers based on the NDI technique require aircraft
models stored onboard in order to invert the dynamics of the system. Nowadays, this does not
represent a practical limitation of the technique since modern computer systems are perfectly
capable of storing those amounts of data as well as computing the complex functions associated
with them. Besides that, the NDI control loops also require information of the complete state
vector of the system. Once again, this is not a prohibitive factor, because most modern aircraft
carry a full complement of sensors, fused with efficient mathematical algorithms to improve
the quality of the measurements and to estimate the necessary additional parameters (Enns
et al., 1994). These factors justify the practical applicability of this kind of controllers.

It was however shown that the standard version of the NDI is very sensitive to model un-
certainties, meaning that, if the model of the vehicle changes with respect to its nominal
condition either due to modelling inaccuracies or changes in its configuration, the dynamic
inversion will not be successfully attained and the system is not linearized nor its responses
decoupled. To overcome this problem, an incremental version of the NDI was developed.

The proposed control system is less dependent on the onboard model than the conventional
NDI, since only the control effectiveness (the influence of the control inputs in the states)
is required and hence the information that does not depend on the control inputs is not
needed for the implementation. Instead, the controller makes use of linear and angular accel-
eration measurements and actuator positions, meaning that it is more depending on sensor
measurements. It was thus expected that the overall system would be very robust to model
uncertainties but relatively affected by non-idealities (like delays and noise) associated with
the sensor measurements or state estimation processes. These expectations were in fact cor-
roborated by the results obtained in the previous chapter. As it was seen, the controller
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showed great robustness to model changes and uncertainties, but it was weakly influenced by
the sensor inaccuracies tested and likely to find in reality.

It is also important to understand that the flight control system developed here is not adap-
tive since no methods as online system identification or compensating NNs are included to
adapt the controller in real-time. As already explained, this property is very useful when the
potential certification of the flight control system is regarded. The INDI architecture allows
to effectively replace the structure based on NDI plus an adaptive element to compensate for
the inversion error, often encountered in the literature.

Besides the enhanced robustness already mentioned, the fact that INDI control loops require
less information of the model also contributes to a considerable simplification of the control
laws. Obviously, this simplification can be very useful, especially when the mathematical
model of the system is rather complex, as in the case of a helicopter. Unfortunately, this issue
is not as straightforward as it may seem on the first sight. In fact, the benefits brought by the
INDI in terms of simplification depend on whether the most complexities and nonlinearities of
the model lie in the control dependent or control independent part of the model. To illustrate
this statement, consider the case of a fixed-wing aircraft, which is already well-know from
recent research projects (Sieberling, 2009; Wedershoven, 2010).

The equation relative to the rotational dynamics of aircraft was already written in (5-3) as:

ω̇ = f(x) + g(x, u)

where f(x) is the control independent part of the model and g(x, u) comprises moment terms
that depend on the control inputs directly. As it was seen, the INDI eliminates the sensitivity
of the control law to f(x), but the influence of g(x, u) remains in the virtual control as its
first order derivative with respect to u:

νrot = ω̇0 +
∂g(x, u)

∂u

∣

∣

∣

∣

x
0
,u

0

(u − u0) (9-1)

This means that this approach is particularly effective when all the information of g(x, u) can
be constructed from its first order derivative. This only happens if the system under analysis
is affine in the control inputs. Fixed-wing aircraft can normally be described by this type of
systems. If the conventional control surfaces (ailerons (δa), elevator (δe) and rudder (δr)) are
considered:

g(x, u) = g(u) = J−1
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and
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 (9-3)

where L∗, M∗ and N∗ are the control derivatives of the three components of the aircraft
moment with respect to the generic variables denoted by ∗. The relation between the aircraft
rotational dynamics and its control deflections is thus affine and the implementation of INDI
for this system is very beneficial since no information about the influence of the control inputs
is lost.
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For the helicopter case however, the situation is already quite different since the most complex
part of the model is contained in g(x, u). This is due to the fact that the inputs to the system
are not proportional to the forces nor torques, but represent displacements of mechanical
parts that enter in the rotor dynamics through complex aerodynamical phenomena. As it
was presented in (5-5), this dependence is given by:

g(x, u) = J−1 [mmr(x, u) + mtr(x, u)]

in which mmr(x, u) and mtr(x, u) are complex nonlinear functions given by (2-55) and (2-71),
respectively. This indicates that part of the information about the nonlinearities of g(x, u) is
lost when only its first order derivative with respect to u is used to invert the system. Fur-

thermore, due to its complexity, the Jacobian
∂mmr(x,u)

∂u
could not be calculated analytically

and thus finite differences were used to estimate this matrix.

Despite the fact that the results obtained with the numerical method were corroborated with
a nonlinear solver, the complex dependence on the controls that characterizes a helicopter
seemed to impose a limitation to the application of the INDI to control these vehicles. This
limitation was however not verified in practice due to the robustness that the INDI closed-loop
systems present even when there are uncertainties in g(x, u) (recall (3-51)).

In conclusion, the same properties investigated in the previous chapter that grant the overall
system robustness to aerodynamic uncertainties in the rotor model or changes in the inertia
of the vehicle, also provide very good results when the influence of g(x, u) is poorly described.
Consequently, neither an inaccurate description of g(x, u) nor the fact that the influence of
this nonlinear function is only considered through its (approximated) first order derivative
represent limitations to achieve an effective helicopter flight control. As already shown, the
only requirement is that the signs of all the components of the derivative of the control

effectiveness function
∂g(x,u)

∂u
are well determined.

This property is notably useful since the accurate identification of helicopter high-fidelity
models is extremely difficult and costly to obtain. If the control strategy developed in this
thesis is adopted, only a simplified model as the one presented here may be enough to compute
the signs of the derivative of the control effectiveness correctly and therefore assure an efficient
control of the vehicle.
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Chapter 10

Conclusions and Recommendations

This chapter concludes the research described in this thesis. The main conclusions drawn
throughout its development are presented in Section 10-1. Section 10-2 contains the recom-
mendations made for future work in the topic of Helicopter Nonlinear Flight Control.

10-1 Conclusions

This research thesis began with the development of a mathematical system to simulate the
motion of a helicopter, presenting the basic configuration and working principle of common
rotorcraft and modelling its dynamics by subdividing it into its main components and adding
the contribution of each part to the general system of forces and moments. It was verified that
rotorcraft dynamics are significantly nonlinear, cross-coupled, time varying and inherently
unstable. A brief discussion was also carried out with respect to the required fidelity of
the mathematical model, enforcing the idea that a trade-off has to be achieved between the
complexity of the resulting system and its degree of accuracy. In the end, a 6-DOF model
with two additional degrees to account for the quasi-dynamic inflow of the main and tail rotor
was obtained.

Afterwards, the nonlinear control strategy known as Nonlinear Dynamic Inversion (NDI)
was explored. Besides the theoretical formulation of this method, its robust version, the
Incremental Nonlinear Dynamic Inversion (INDI), was also introduced. This type of approach
is especially useful because, by using acceleration measurements and by computing a required
incremental control input instead of the absolute value of the control deflections, great part
of the model dependence is eliminated and the control system becomes much less sensitive to
model uncertainties. This advantage is deeply associated with the three main objectives for
this thesis listed in Section 1-3, since it is able to cope with the nonlinearities that characterize
rotorcraft, while providing robustness in the presence of model inaccuracies and without the
need for a complex control structure or an adaptive element.

It was seen that helicopter flight control can also be very problematic due to the limitations
of its actuators. Their position and rate saturation levels are easily reached and, once this
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happens, the performance of the helicopter is immediately degraded and its motion becomes
highly unstable. In order to attenuate these problems, a technique named Pseudo-Control
Hedging (PCH) was successfully applied to both NDI and INDI control loops. This technique
turned out to be crucial for the system since it provides a dynamical filtering of the com-
manded references such that the demanded signals are within the capabilities of the system.

The practical implementation of the nonlinear control tools to the helicopter model developed
started with the design of a system to provide tracking of the angular rates of the vehicle.
This objective was efficiently achieved, using finite differences to deal with the fact that the
model is not affine in the control inputs. It was also verified that, at this point, the system
was still slightly unstable due to the existence of internal dynamics in the system. This is
not problematic since those dynamics are eliminated with outer control loops. In addition, a
brief investigation was carried out to determine the most adequate method to estimate the
angular accelerations and, from the algorithms tested, finite differentiation turned out to be
the most suited one for this case.

Once the rate controller was working properly, a middle loop was introduced into the system,
allowing it to control the attitude angles of the helicopter. This task was again achieved very
efficiently. The controller gains were defined based on expressions for the poles of the combined
control loops, alleviating the bandwidth separation requirements imposed by the time scale
separation design and thus leading to a better overall tracking performance. In addition,
simple linear control laws were implemented to assess the benefits brought by the nonlinear
control system. It was possible to verify that the tracking performance is substantially inferior
for the linear controller, especially because it is not able to decouple the responses associated
with the different axes.

Finally, an outer loop was designed to provide the tracking of the desired ground velocities.
The horizontal components are controlled by changes in the attitude angles, calculated from
an Approximate Dynamic Inversion (ADI). The vertical speed is controlled directly with the
collective pitch of the main rotor, according to an appropriate INDI-based control law. To
analyze the performance of the overall navigational system, several maneuvers commonly
used for helicopter handling qualities analysis with different agility levels were simulated.
The results obtained showed that the controller developed is able to stabilize the system and
to track the commanded references as expected theoretically.

It was still necessary to evaluate whether or not the control system developed is robust to
model uncertainties (due to mathematical inaccuracies or changes in the configuration of the
vehicle), and external influences like sensor dynamics, actuator delay or wind effect. The
conclusions of these tests are summarized in the end of Section 8-8. The most relevant obser-
vation is related to the fact that the system is perfectly robust to model uncertainties within
the range of inaccuracies expected to find in reality. This seems to support the theoretical
prediction that only the correct sign of the derivatives of the control effectiveness with respect
to the control inputs is needed to control an INDI-based loop. With respect to the influence
of sensor dynamics and actuator delay, it was verified that, despite degrading slightly the
performance of the system, their effects are still admissible in reality.

Taking into account all the considerations made, the overall control system developed in
this thesis seems to be adequate for helicopter flight control. Some additional conclusions
concerning specifically the applicability of the adopted control strategy to rotorcraft flight
control are presented in Chapter 9.
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10-2 Recommendations

Being just the first step in the development of helicopter advanced control laws for the joint
project with the Boeing Company and the first attempt to apply INDI-based strategies to
helicopter flight control, several improvements/alternatives could not be developed in this
thesis. These topics are listed below as recommendations for future research in Helicopter
Nonlinear Flight Control:

• Since only a limited number of robustness tests was performed in this thesis, it is sug-
gested that an additional variety of scenarios is analyzed so as to prove more convincingly
that the INDI is in fact insensitive to almost all the uncertainties that may occur in
a real flight. It would be also interesting to relate those uncertainties with the sign of
the derivative of the control effectiveness and to prove that a correct sign is all that is
needed to provide incremental control of a system. Furthermore, the commanded refer-
ences used to test the control system were typically doublet signals which, even with the
action of the PCH, result in an inadequate response of the helicopter for substantially
high demands. It is therefore recommended to introduce additional command filters to
smooth aggressive signals, guaranteeing the versatility of the controller to all kinds of
inputs without compromising the agility of the system;

• It is also important to enhance the fidelity of the helicopter model developed to design
and test control systems. This can be done by increasing its DOF, expanding the current
model in the different areas suggested in Section 2-3. Besides this, several other expan-
sions can be introduced to enhance the fidelity of the simulation: implement changes of
the helicopter mass and inertia during flight (caused, for example, by fuel consumption),
use a Quaternion-based representation of the rotational kinematics (avoiding numerical
and singularity problems associated with Euler angles) and improve the accuracy of the
actuators dynamics (modelling them as first or second order systems, instead of simply
limiting them in terms of magnitude and rate);

• The linear gains associated with the nonlinear control loops in this thesis were set
based on the required pole placement to enforce the desired handling qualities of the
system. Nevertheless, the performance of the responses can be further improved if more
complex strategies such as Lyapunov theory or multi-objective optimization are applied
to design the referred gains. The first one can be used to provide a formal stability
analysis for the closed-loop system, whereas the second one is useful to impose certain
characteristics to the response of the system like maximum allowable values for the
overshoot, settling time, etc. On the other hand, techniques like optimal or robust
control seem not be adequate to apply within NDI control systems. These techniques
are especially based on the cost of the control efforts and on the sensitivity to pre-
defined plant disturbances. Regarding the NDI control loops, the control inputs seen by
the linear controller correspond actually to a virtual control (not the actuators efforts)
and the plant of the system corresponds to the cascade of integrators resulting from the
feedback linearization. For these reasons, the physical meaning of the disturbances and
the control inputs is lost;

• In this thesis, finite differences of the angular rates were used to compute the angular
accelerations. Despite the satisfactory results obtained with this approach even when
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sensor dynamics are considered, it was seen that the estimation of the angular accel-
erations were affected by a certain lack of accuracy and low-pass filters had also to be
introduced in order to cope with the numerical noise. In addition, the linear predictor
developed in Section 5-5 was not adequate for the case under analysis. It is therefore
recommended that more efficient methods are developed to estimate the angular ac-
celerations more accurately (based, for example, on Kalman filtering) or even that the
introduction of angular acceleration sensors in flight control systems is considered. Also
regarding the estimation of the parameters necessary to perform the dynamic inversion,
a deeper investigation is also recommended in order to implement realistic algorithms
to estimate the inflow ratios of the rotors as accurately as possible;

• In terms of flight control, the most interesting development in the area of helicopters
is probably the application of a different type of controller to the dynamical model in
order to check its benefits and shortcomings when compared to the INDI. The most
promising method for this task (and therefore the suggested one) is the Incremental
Backstepping. As mentioned in Section 1-2, despite being more complex, this approach
allows a more flexible design of the controller when compared to the NDI and may thus
contribute even further to the increase of the rotorcraft flight envelope. It is crucial
that its incremental version is considered in order to provide robustness in the presence
of model inaccuracies without using any kind of adaptive strategy.

Pedro V. M. Simpĺıcio Helicopter Nonlinear Flight Control



Bibliography

Aalst, R. van, & Pavel, M. D. (2002, September). On the Question of Adequate Modelling of
Steady-State Rotor Disc-Tilt for Helicopter Manoeuvring Flight. In The 28th European

Rotorcraft Forum. Bristol, UK.

ADS-33E-PRF. (2000, March). United States Army, Aviation and Missile Command. (Aero-
nautical Design Standard, Performance Specification and Handling Qualities Require-
ments for Military Rotorcraft)

Anderson, J. (2004). Introduction to Flight. McGraw-Hill.

Bacon, B. J., Ostroff, A. J., & Joshi, S. M. (2001). Reconfigurable NDI Controller using
Inertial Sensor Failure Detection & Isolation. IEEE Transactions on Aerospace and

Electronic Systems, 37 (4), 1373–1382.

Bijnens, B. (2005). Adaptive Feedback Linearization Flight Control for a Helicopter UAV.
Master thesis, Delft University of Technology.

Bodson, M. (2002). Evaluation of Optimization Methods for Control Allocation. Journal of

Guidance, Control and Dynamics, 25 (4), 703–711.

Bordignon, K., & Bessolo, J. (2002, November). Control Allocation for the X-35B. In
The 2002 Biennial International Powered Lift Conference and Exhibit. Williamsburg,
Virginia.

Bradley, R., & Thomson, D. G. (2005, September). Helicoter and Tilt-rotor Inverse Simula-
tion: Methods, Features, Problems and Cures. In The 31st European Rotorcraft Forum.

Florence, Italy.

Bramwell, A., Done, G., & Balmford, D. (2001). Bramwell’s Helicopter Dynamics.
Butterworth-Heinemann.

Brinker, J. S., & Wise, K. A. (1996). Stability and Flying Qualities Robustness of a Dynamic
Inversion Aircraft Control Law. Journal of Guidance, Control and Dynamics, 19 (6),
1270–1277.

Brockett, R. W. (1978, June). Feedback Invariants for Nonlinear Systems. In The 7th

Triennial World Congress. Helsinki, Finland.

Calise, A. J., & Rysdyk, R. T. (1998). Nonlinear Adaptive Flight Control using Neural
Networks. IEEE Control Systems Magazine, 18 (6), 14–25.

Chen, H. B., & Zhang, S. G. (2008, December). Robust Dynamic Inversion Flight Control

Helicopter Nonlinear Flight Control Pedro V. M. Simpĺıcio
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Appendix A

Reference Frames and Transformations

Besides the reference frames specific for the study of the rotor already presented in Chapter 2,
a more common set of coordinate axes is needed to describe the motion of the helicopter in
space. This appendix aims to present those reference frames as well as the transformations
used to convert the coordinates of a vector between them. It is mainly based on (Etkin, 1972)
and (Sieberling, 2009).

A-1 North-East-Down Reference Frame Fo

The origin of the North-East-Down (NED) reference frame is attached to the vehicle, usually
at its Cnter of Gravity (CG). The z-axis is directed vertically downward, pointing in the
direction of the local gravity vector. The x-axis points towards the North, as seen from the
vehicle CG, and the y-axis to the East, completing a right-handed coordinate axes system.
For many applications, more specifically, for small distances, the orientation of this reference
frame remains practically unchanged with the displacement of the vehicle and its rotation can
therefore be neglected. This corresponds to neglecting the curvature of the Earth during the
analysis of the motion. Furthermore, considering the Earth non-rotating, F o can be regarded
as an inertial reference frame. Again, this assumption is only valid when dealing with control
design and cannot be applied to guidance or navigation systems for flying over large distances.

A-2 Body-fixed Reference Frame Fb

As the name indicates, this frame is also fixed to the vehicle, with the origin placed at its
CG. It is common to find a plane of symmetry (to a good approximation) in flight vehicles.
In this plane are contained the x-axis and the z-axis, the first one pointing to the front and
aligned with the fuselage centerline and the latter pointing down, perpendicular to the other.
The y-axis is defined such that a right-handed reference system is obtained. This coordinate
system is very useful to express the linear (u, v, w) and angular velocities (p, q, r) of the
aircraft, respectively about its three axis.
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A-3 Velocity Reference Frame Fv

Once again, this reference frame has its origin fixed at the vehicle CG. The x-axis is now
aligned with the velocity vector, the y-axis is perpendicular to the x-axis and to the local
gravity vector and the z-axis completes the right-handed coordinate system. The velocity
vector expressed in this reference frame becomes simply [V 0 0]T , where V is the airspeed of
the vehicle.

A-4 Rotation Matrices

To proceed with the derivation of the transformations between the reference frames introduced
above, it is convenient to present the so-called rotation matrices R. These matrices allow to
convert the coordinates of a vector between coordinate systems that are related through the
rotation of a generic angle α around one of its axis. Depending on the axis around which the
referred rotation took place, the following matrices are obtained:

Rx(α) =





1 0 0
0 cos α sin α
0 − sinα cos α



 (A-1)

Ry(α) =





cos α 0 − sinα
0 1 0

sinα 0 cos α



 (A-2)

Rz(α) =





cos α sin α 0
− sinα cos α 0

0 0 1



 (A-3)

It is important to note that these matrices are orthogonal, meaning that R(α)−1 = R(α)T . It
can also be noticed that R(α)T = R(−α). Furthermore, all the transformations presented in
the following sections can be decomposed in the multiplication of these three basic matrices
and they also result in orthogonal matrices.

A-5 Transformation from Fo to Fb

The orientation of any reference frame relative to another one can be given by a sequence of
three angles that describes the required rotations so that one frame is transformed into the
other. These three angles are generally known as Euler angles and twelve different sequences
exist to describe the referred transformation unambiguously. In flight dynamics, one of the
most common sequences is defined as follows: first a rotation of the yaw angle ψ about the
z-axis, then a rotation of the pitch angle θ about the intermediate y-axis and finally a rotation
of the roll angle φ about the intermediate x-axis. According to this, the transformation from
the NED to the body-fixed reference frame T o

b corresponds to:

T o
b = Rx(φ)Ry(θ)Rz(ψ) =
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=





cos ψ cos θ sin ψ cos θ − sin θ
cos ψ sin θ sinφ − sinψ cos φ sinψ sin θ sin φ + cos ψ cos φ cos θ sin φ
cos ψ sin θ cos φ + sin ψ sinφ sinψ sin θ cos φ − cos ψ sinφ cos θ cos φ



 (A-4)

Furthermore, as already explained, the inverse transformation T b
o (from the body-fixed to the

NED reference frame) corresponds to T o−1

b = T oT

b . The relation between the two reference
frames is depicted in Figure A-1.

φ

φ θ

θ ψ
ψ

xo

yo

zo

xb

yb

zb

u,p

v,qw,r

Figure A-1: Rotations between the NED and the body-fixed reference frames.

A-6 Transformation from Fo to Fv

Similarly to the previous case, another sequence of rotations T o
v can be defined such that

NED coordinates are converted into the velocity reference frame. This can be achieved only
with two angles: the flight path angle γ and the heading χ. The first one is the angle between
the velocity vector and the local horizon (the plane perpendicular to the local gravity vector)
and the heading is the angle between the velocity and the North direction. The referred
transformation is then given by:

T o
v = Ry(γ)Rz(χ) =





cos χ cos γ sinχ cos γ − sin γ
− sinχ cos χ 0

cos χ sin γ sin χ sin γ cos γ



 (A-5)

and, once again, T v
o = T o−1

v = T oT

v . It is also possible to verify that when the fuselage
centerline is aligned with the velocity vector, the pitch of the aircraft matches the flight
path angle and the yaw angle corresponds to the heading. In a more general situation, two
additional angles can be defined between the body-fixed and the velocity reference frames:
the angle of attack α = θ − γ and the sideslip angle β = χ−ψ. All these relations are shown
for the x-axis in Figure A-2.
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θ

α

γ
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xb
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W

(a) Vertical plane.

N

ψ
β

χ

xo xb

xv

V

(b) Horizontal plane.

Figure A-2: Relations between the x-axes of the three coordinate systems analyzed.

A-7 Angular velocity of Fb

Finally, it is also useful to determine the angular velocity of the body ω = [p q r]T relative
to Fo due to the change of orientation between the corresponding reference system and the
NED reference frame θ̇ = [φ̇ θ̇ ψ̇]T . Firstly it is important to note that the rate of change
of each Euler angle is written in different coordinate axes, which result from the existence of
intermediate reference frames between the rotation from Fo to Fb (see Figure A-1). With this
in mind, it can be concluded that:

ω =





φ̇
0
0



 + Rx(φ)





0

θ̇
0



 + Rx(φ)Ry(θ)





0
0

ψ̇



 (A-6)

This equation can be arranged in a more compact form using matrix Ω:

ω = Ωo
b θ̇ (A-7)

where

Ωo
b =





1 0 − sin θ
0 cos φ sin φ cos θ
0 − sinφ cos φ cos θ



 (A-8)

and

Ωb
o = Ωo−1

b =





1 sinφ tan θ cos φ tan θ
0 cos φ − sinφ
0 sinφ/ cos θ cos φ/ cos θ



 (A-9)
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Appendix B

Helicopter Parameters

This appendix presents the specific data of the helicopter Bölkow Bö-105 for the baseline
configuration adopted for the simulations. These specifications are divided in several tables
associated with the different parts of the helicopter for more clarity and they are available
in (Pavel, 2001) and (Padfield, 1996). The last table shows the actuator limits of the Bö-105.
The saturation limits can be found in (Prouty, 1986), but no information was found with
respect to the rate limits. Therefore, in order to use values with physical meaning, the rate
limits of the Bell 412 helicopter, found in (Voskuijl, Padfield, Walker, Manimala, & Gubbels,
2010), were adopted.

Table B-1: Main rotor parameters of the Bö-105.

Description Symbol Value Unit

Rotational speed Ω 44.4 rad/s
Rotor radius R 4.91 m
Number of blades N 4 −
Equivalent blade chord ce 0.27 m
Blade lift curve slope CLα 6.11 rad−1

Linear blade twist θtw -0.1396 rad
Blade mass mbl 27.3 kg
Blade moment of inertia about its flapping hinge Iβ 231.7 kg.m2

Equivalent hinge offset ratio εβ 0.14 −
Rotor shaft tilt angle γs 0.0524 rad
Time constant of the induced inflow τλ0

0.1 s
Longitudinal position with respect to the helicopter CG l -0.00761 m
Lateral position with respect to the helicopter CG l1 0.02995 m
Vertical position with respect to the helicopter CG h 0.94468 m
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Table B-2: Tail rotor parameters of the Bö-105.

Description Symbol Value Unit

Rotational speed Ωtr 233.1 rad/s
Rotor radius Rtr 0.95 m
Number of blades Ntr 2 −
Equivalent blade chord cetr 0.18 m
Blade lift curve slope CLα,tr 5.70 rad−1

Main rotor downwash factor at the tail rotor Ktr 1 −
Time constant of the induced inflow τλ0,tr

0.1 s
Longitudinal position with respect to the helicopter CG ltr 6.00965 m
Vertical position with respect to the helicopter CG htr 1.05418 m

Table B-3: Fuselage parameters of the Bö-105.

Description Symbol Value Unit

Parasite drag area F0 1.3 m2

Eq. volume in the horizontal plane with only circular sections VfusM
6.126 m3

Eq. volume in the lateral plane with only circular sections VfusN
25.525 m3

Incidence angle for zero pitch moment αfusM=0
0 rad

Correction coefficient for moment calculation Kfus 0.83 −

Table B-4: Horizontal tail parameters of the Bö-105.

Description Symbol Value Unit

Surface area Sht 0.803 m2

Surface lift curve slope CLα,ht
4.0 rad−1

Built-in surface incidence αht0 0.0698 rad
Correction coefficient in the pitch moment Kht 1.5 −
Longitudinal position with respect to the helicopter CG lht 4.548 m
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Table B-5: Vertical tail parameters of the Bö-105.

Description Symbol Value Unit

Surface area Svt 0.805 m2

Surface lift curve slope CLα,vt 4.0 rad−1

Built-in surface incidence βvt0 -0.0812 rad
Longitudinal position with respect to the helicopter CG lvt 5.416 m
Vertical position with respect to the helicopter CG hvt 0.970 m

Table B-6: General properties of the Bö-105.

Description Symbol Value Unit

Total mass m 2200 kg

Inertia tensor J





1433 0 −660
0 4973 0

−660 0 4099



 kg.m2

Table B-7: Actuator limits of the Bö-105.

Description Symbol
Min. saturation

limit (deg)
Max. saturation

limit (deg)
Rate limit
(deg/s)

Collective pitch MR θ0 -0.2 15.0 16.0
Longitudinal cyclic θ1s -6.0 11.0 28.8
Lateral cyclic θ1c -5.7 4.2 16.0
Collective pitch TR θ0tr -8.0 20.0 32.0

Helicopter Nonlinear Flight Control Pedro V. M. Simpĺıcio
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Appendix C

Atmospheric Model

As for all vehicles that use the air as locomotive mean, the aerodynamics of rotorcraft is
strongly influenced by the properties of the atmosphere, which are constantly changing in
space and time. The International Standard Atmosphere (ISA) is an atmospheric model
suggested in 1925 that allows to determine average values of temperature, pressure, density
and other properties of the air as a function of the altitude. In this research thesis, the
referred model was only needed to calculate the density of the air during the simulations.
This appendix shows a summarized derivation of the evolution of this property with the
altitude. For more detailed information, the reader is referred, for example, to (Anderson,
2004).

Assuming the atmosphere is composed of a homogeneous mean with uniform composition
and that the air can be considered an ideal gas (in which the intermolecular forces can be
neglected), the following law is verified:

p = ρRT (C-1)

where p is the atmospheric pressure in Pa, ρ is the density of the air in kg/m3, R is a constant
specific of the gas (287.05 J/(kg.K) for the air) and T is the absolute temperature in K.

Furthermore, from the balance of forces acting on an elementary volume of fluid in rest it is
known that:

dp = −ρgdh (C-2)

in which g is the gravitational acceleration (normally assumed to have a constant value of
9.80665 m/s2) and h is the altitude in m. Combining the two equations above, is it easy to
obtain:

dp

p
= −

g

RT
dh (C-3)

The atmosphere is composed of several layers with different properties but, taking into account
the maximum altitudes achieved by helicopters, only the lowest one is of relevance to analyze
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their flight. It is known as troposphere and it holds up until an altitude of approximately
11 km. Experimentally, it was verified that the air temperature decreases linearly with the
altitude in this layer according to the relation:

T = T0 − ah (C-4)

with T0 = 288.15 K being the temperature at the sea level, a = 0.0065 K/m a constant and:

dh

dT
= −

1

a
(C-5)

Replacing this equation in (C-3) and integrating from the conditions at the sea level to a
generic point in altitude, it is possible to obtain:

∫ p

p0

1

p
dp =

g

aR

∫ T

T0

1

T
dT ⇔

p

p0
=

(

T

T0

)
g

aR

(C-6)

Moreover, from (C-1) it is possible to see that:

p

p0
=

ρ

ρ0

T

T0
(C-7)

and, applying this relation together with (C-4) and (C-6), the following expression for the
density of the air as a function of the altitude is obtained:

ρ = ρ0

(

T0 − ah

T0

)
g

aR
−1

(C-8)

This equation makes use of the density of the air at the sea level (ρ0 = 1.225 kg/m3) and,
as already mentioned, it is only valid below 11 km of altitude, where the linear dependence
between the altitude and the temperature is verified.
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Appendix D

Trim Routine

Before any simulation is started, it is desirable that the helicopter is steady at a desired
flight condition. This means that initially a combination of control inputs and state variables
must be chosen such that the forces and moments acting on the helicopter are in equilibrium
or, in other words, such that the translational v̇ and rotational ω̇ accelerations are null.
Furthermore, for a trimmed helicopter, the induced inflow of the rotors λ has also to be
steady (recall the notation introduced in the end of Chapter 2). It was with the purpose
of determining the referred combination of values that the trim routine discussed in this
appendix was implemented.

The routine adopted for this thesis allows to determine the trim conditions of the helicopter
given its airspeed V , flight path angle γ, heading χ and altitude h (the coordinates x and y
of its initial position can also be specified, but they do not influence the motion). As it was
already mentioned, in trim conditions: v̇ = ω̇ = λ̇ = 0. In addition, the ground velocity ṗ of
the helicopter must match the desired flight condition ṗ

des
. According to the transformations

presented in Appendix A, this corresponds to:

ṗ
des

= T v
o





V
0
0



 = V





cos χ cos γ
sinχ cos γ
− sin γ



 (D-1)

Taking into account that the system under analysis is nonlinear, a solution for the conditions
above cannot be found analytically, but it can be determined iteratively. To do that, the
following cost vector is defined and its components must be minimized:

f =









v̇
ṗ − ṗ

des

ω̇

λ̇









(D-2)

Ideally, the value of its components should be zero in trimmed flight, but the minimization
procedure only assures that their absolute value is inferior to a pre-established threshold that
dictates when the iterative process stops.
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The result of the trim routine is then the combination of control inputs utrim and state
variables that minimize the cost function above. Note that not all of the state variables are
allowed to vary during the iterative process: the position of the helicopter p is fixed, the
angular rates ω are set to zero and the yaw angle is defined equal to the vehicle’s heading
(ψ = χ), since it is assumed that it is flying with no sideslip angle. Thus, the vector that
contains the variables that are allowed to vary is x = [θ0 θ1s θ1c θ0tr u v w φ θ λ0 λ0tr ]

T .

The algorithm adopted to perform the minimization procedure is the Newton’s method, which
is known for its good commitment between complexity and quick convergence. Considering
the first-order terms of the Taylor series expansion of the cost function around the current
state variables:

f ≈ f
0
+

∂f

∂x

∣

∣

∣

∣

x=x
0

(x − x0) (D-3)

and having in mind that ideally the cost function is to be zero (f=0), the mentioned method
updates the vector x in each iteration k according to:

xk+1 = xk −
∂f

∂x

∣

∣

∣

∣

−1

x=xk

f
xk

(D-4)

To compute the Jacobian matrix of the cost function, forward finite differences were used.
This approach involves the perturbation of all the components of x individually with a small
quantity τi and the calculation of f for each case. The perturbation corresponds to a small
percentage of the absolute value of each variable or to a fixed infinitesimal quantity, if the
unperturbed value is already too small. The column of the Jacobian matrix corresponding to
the i-th component of x is then approximated by:

∂f

∂xi

∣

∣

∣

∣

x=xk

≈
f

xk+τ i

− f
xk

τi
(D-5)

where τ i is a vector that introduces the infinitesimal perturbation τi in the i-th component
while the remaining ones are zero. Every iterative process needs a set of values to initialize
the algorithm. These values correspond to initial guesses that shall be as close to the optimal
solution as possible in order to assure a fast convergence of the method. The variables θ0,
θ1s, θ1c, θ0tr, λ0 and λ0tr are initialized with physically meaningful values for a helicopter and
the roll angle φ is assumed to be zero.

The pitch angle θ results from a simplified equilibrium of forces in the vertical plane of the
rotorcraft: the thrust generated by the rotor T (assumed perpendicular to the xy plane of
the body-fixed reference frame) has to balance the weight of the vehicle W = mg (acting on
the vertical direction) and the drag force which in mainly due to the fuselage D = ρV 2F0/2
(aligned with the velocity vector). This situation corresponds to:

T sin θ = −D cos γ (D-6)

T cos θ = W + D sin γ (D-7)
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Combining these equations, the initial estimate for the pitch angle is given by:

θ = − arctan

(

D cos γ

W + D sin γ

)

(D-8)

where γ is the flight path angle.

Finally, the initial values of the body velocities can be determined using the transformation
of the desired ground velocities into the body-fixed reference frame, as presented in Annex A:
vtrim = T o

b ṗdes
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Appendix E

Additional Maneuver: The Pirouette

The pirouette is another example of a moderate aggressivity maneuver often used to evaluate
helicopter flight control systems. The purpose of this maneuver is to check the ability to
accomplish precision control of simultaneous pitch, roll, yaw and heave motion and accurate
control over a continuos heading change. The procedure to be followed is described in detail
in (ADS-33E-PRF , 2000). The simulation setup is then as follows:

This maneuver is initiated from a stabilized hover over a point on a circumference with
a 30 m (approx. 100 ft) radius, with the nose pointed at its center and at an altitude of
3 m (approx. 10 ft).

Then, a uniform lateral translation around the circumference has to be accomplished while
keeping the nose of the rotorcraft pointing towards the trajectory center until returning
to the starting position. If the complete circumference is to be flown in 40 s, a constant
lateral velocity of approximately V = 4.71 m/s has to be maintained.

To complete the pirouette maneuver, the same process described above is repeated in the
reverse direction.

For this maneuver, the commanded references are generated according to the equations pre-
sented below. The results obtained from the simulation of the pirouette with the overall
navigational controller are presented in Figure E-1.

Vxcom(t) = 4.71 sin

(

2π

40
t

)

m/s

Vycom(t) = ±4.71 cos

(

2π

40
t

)

m/s

Vzcom(t) = 0 m/s

ψcom(t) = ∓
360

40
t deg
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From this figure, it can be concluded that the commanded components of the velocity are
followed very efficiently. In fact, the tracking error is always very small and the responses
do not involve undesirable oscillations. Furthermore, it can be visualized that the vertical
velocity is practically unaffected by the motion of the helicopter, indicating that the evolutions
associated with the different axes are satisfactorily decoupled.

In terms of attitude angles, it is possible to see that the commanded yaw is perfectly tracked
and that the roll is used to control the lateral velocity of the helicopter. The demanded
responses of the three angles are very smooth, which allow the corresponding angular rates
to be perfectly followed, as shown in the last plot.

The control actuation required to perform the maneuver is also quite simple. Basically, the
yaw and the roll angles are controlled with the tail rotor and with the lateral cyclic pitch,
respectively, being the remaining control inputs only used for small compensations. It is also
interesting to note that the clockwise motion (second part of the maneuver) is slightly more
demanding than the other one, as it is proven by a more intense activity of the collective
and lateral cyclic of the main rotor. This part of the maneuver is also more risky since
the collective of the tail rotor is operating closer to its saturation limits (−8 and 20 deg, as
indicated in Appendix B). For a clearer view of the maneuver, the ideal and actual positions
of the helicopter during the simulation are depicted in Figure E-2.

Reference (ADS-33E-PRF , 2000) also provides the adequate and desired performance stan-
dards for this maneuver, indicating some requirements that shall be met throughout the test.
The referred criteria for a Good Visual Environment (GVE) (typically clear daylight) can be
found in Table E-1, together with the results obtained in this particular simulation.

From the analysis of this table, it can be seen that all the errors obtained are considerably
smaller than the limits allowed and that the maximum time to achieve a stabilized hover,
despite being slightly higher than its desired value, is still within the adequate requirements.
It is however important to note that the current simulation was performed under ideal condi-
tions, without additional disturbances (namely ground and wind effects) that would certainly
contribute to a performance degradation.
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Figure E-1: Results obtained from the simulation of the pirouette. The dashed lines correspond
to the references commanded, the dotted lines to the state of the reference model and the solid
lines to the actual response of the helicopter.
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Figure E-2: Evolution of the position during the pirouette maneuver.

Table E-1: Performance evaluation of the pirouette maneuver.

Requirement
Adequate

value
Desired
value

Measured
value

Max. absolute radial error 460 cm 300 cm 200 cm
Max. absolute altitude error 300 cm 90 cm 36 cm
Max. absolute angular error 15 deg 10 deg 4 deg
Max. time to achieve stabilized hover 10 s 5 s 7 s
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