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a0 1.2 · 10−10m/s2 Milgrom’s constant
Mpc 3.09 · 1022m Megaparsec
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Variable Meaning Formula
ρ Visible mass distribution

ρAM
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Abstract
In this thesis Modified Newtonian Dynamics (MOND) is explored in galaxy clusters similar to
the Virgo cluster. MOND is a theory proposed to explain the flat rotation curves of galaxies
and the velocities of galaxies within galaxy clusters, as an alternative to the Dark Matter (DM)
model. MOND states that Newton’s law of gravitation is incorrect at accelerations of the order
of and smaller than Milgrom’s constant a0 = 1.2 · 10−10m/s2 [1].

The MOND potential φM created by a certain mass distribution ρ satisfies the MOND equation,
a non-linear partial differential equation. For accelerations much smaller than a0 this equation
gives a quadratic relation between the gradient of the potential (∇φM) and the mass distribution
ρ, this is called deep MOND. This is much different from the Poisson equation, that infers a
linear relation between ∇φM and the mass sources, and which still holds for accelerations
much larger than a0 [1], referred to as Newtonian Dynamics (ND). For accelerations around a0

an interpolation of deep MOND and ND is used. It appears that the potential and acceleration
in Virgo-like clusters is according to ND at the center, and approaches deep MOND at the edge.
Therefore an interpolation function µ is necessary to model such clusters accurately.

When the MOND potential φM is substituted into the Poisson equation, a new mass distribution
is found, the apparent mass distribution ρAM, which would need to match the actual mass
distribution in DM models, which use the Poisson equation. This apparent mass distribution
ρAM is the sum of the actual mass distribution ρ extracted from optical observations and the
apparent dark mass distribution ρADM, a distribution that is interpreted as a theoretical DM halo.
This allows us to compare MOND and DM. With our method, realistic mass configurations
of galaxy clusters that are Virgo-like, generate apparent mass distributions ρAM with regions
containing negative mass. The existence, shapes and locations of these regions are in agreement
with what Milgrom found [2]. The total mass of the actual mass distribution is M = 1015M�,
while the sum of the negative mass is M− ≈ −0.09 · 1015M� = −0.09M is approximately 9%
of the total mass. Since negative mass is not acceptable, this gives us the opportunity to create
conditions to falsify either the MOND model or the DM model.
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1. Introduction
In 1933 F. Zwicky determined the speed at which galaxies were moving in galaxy clusters. He
found that the galaxies were moving much faster than what could be explained by the visible
matter in the cluster according to Newtonian Dynamics (ND). He offered dark matter as a
solution, and claimed that the amount of dark matter in the Universe had to be greater than the
amount of visible matter. In particular, Zwicky noticed odd behavior of the Coma Cluster. His
observations suggested that the dark matter mass in the Coma Cluster needed to be about 400
to 500 times larger than the visible mass to explain the fast motion of the galaxies in the Coma
Cluster [3] [4]. According to current much more accurate observations, a dark matter mass that
is about 10 times the observed mass would be required.

In the 1970s V. Rubin observed the rotation velocities of stars in the Andromeda Galaxy. She
noticed that what happened in the galaxy clusters, also happened in the galaxies themselves.
The stars at the outside of the galaxy moved much too fast to be explained by the visible mass
in the galaxy. She also proposed that a great amount of dark matter was needed to solve this
issue [5].

Around that time people also started to determine rotation curves for disc galaxies from exper-
imental observations. These are curves that plot the orbital speed of stars or gas in that galaxy,
against their distance from the galaxy’s centre. Assuming ND, we would expect this orbital
speed to decrease fastly when the distance to the centre becomes bigger, approximately accord-
ing to a r−1/2 dependence for large r. However, the rotation curves that were created showed
that the velocity became constant for larger radii. Figure 3 shows such a rotation curve.

Figure 1: Rotation curve for NGC 6503 [6]. The top line is the observed rotation curve. The
other lines show the disk and gas contribution, and halo is the contribution of dark matter to
match the data. The total velocity obeys vc =

√
v2

disk + v2
gas + v2

halo.

Figure 1 makes it clear that a large part of observed velocity could be explained by a dark
matter halo, and thus the rotation curves supported the idea that ND in combination with the
observed mass distributions was not sufficient to explain the behaviour of galaxies and galaxy
clusters. Within dark matter models, the mass distributions of these dark matter halos can be
reconstructed from weak gravitational lensing observations. In Figure 2 an example of strong
gravitational lensing is given for illustrative purposes.
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Figure 2: In the Figure we see an example of strong gravitational lensing. A red galaxy has
bent the light from a blue galaxy that is located much farther away. The blue galaxy is distorted
into a nearly complete ring [7].

A gravitational lens is a large mass, inbetween an observer and a light source. The mass is
large enough to bend the light as it travels to the observer. Specifically, weak gravitational
lensing is used to find the distribution of the dark matter halos. The difference between weak
and strong lensing is based on how much the light is bent by the mass. We will not discuss how
the distortion caused by lensing can be measured, and how a distribution of a dark matter halo
can be derived from it.

In 1982 M. Milgrom proposed another solution to the problem, Modified Newtonian Dynamics
(MOND). The idea was to modify the Newtonian laws, such that dark matter was no longer
necessary to explain the observations. At the basis of MOND is the fact that the accelerations
in galaxies and galaxy clusters is much lower than the accelerations in solar system, and the
assumption that ND is no longer valid at low acceleratoins [1]. Before explaining more about
MOND, the next figure is given to illustrate that MOND can explain the observed rotation
curves of, in this case, low mass galaxies.

Figure 3: Rotation curve for KK98 250, NGC 3741, KK98 251, DDO 210. The solid curve
is the rotation curve according to MOND, the circles show the observed rotation curve. The
dotted line represents the ND rotation curve of the disk, and the dashed line of the gas. The
crosses in the plot of KK98 250 show the rotation curve obtained with another technique [8].
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Both in Figure 1 and Figure 3 the velocities in the rotation curves seem to approach some stable
velocity. This is what Milgrom based his theory on. The theory introduces the constant a0, an
acceleration, with an empirical value of 1.2 × 10−10 m/s2. It proposes that only when accel-
erations are much larger than a0, ND is a good approximation. Some background information
on the gravitational potential in ND will be given in Section 2. When the acceleration is much
smaller than a0, deep MOND is a good approximation. When the acceleration is about a0,
some kind of interpolation between ND and MOND is nessecary [1]. These scenarios will be
explained in Section 3.

One can interpret MOND as a modification of gravity, and as a modification of inertia. When
interpreted as modified inertia, there arise some problems, for example conservation of momen-
tum and energy would no longer be valid [9]. This argument has often been used to disregard
a new theory, thus therefore we will only consider the interpretation as modified gravity in this
thesis. In Section 3 we will discuss what this means.

We will relate MOND and CDM to each other, and with that try to find arguments for or against
them. For this we will generate mass distributions of the visible mass in galaxy clusters that are
similar to the Virgo cluster. The Virgo cluster is chosen because a lot is known about it from
astrophisical observations, and the results can be compared to this knowledge.

To relate MOND and CDM to each other, we will first apply MOND to the modelled mass
distribution to find a gravitational potential. We can then find a new mass distribution that
would cause this potential according to ND. The difference between this new mass distribution,
and the original one, can be treated as a distribution of apparent dark matter. Figure 4 gives an
illustration of the steps described.

Figure 4: An illustration of the steps taken to find the apparent dark matter mass distribution,
and how it relates to the dark matter mass distribution found from gravitational lensing obser-
vations.

We are interested in this distribution of apparent mass, since we can compare it to the sum
of the visible mass and the dark matter halos that are computed from observations using dark
matter models. Since dark matter halos are fitted to observations, if the distribution of apparent
mass is similar to this sum, then the MOND potential is similar to the actual potential in galaxy
clusters. Thus, we could conclude that MOND is a good model. If the MOND potential gives
an apparent mass distribution that is different from the sum of the visible matter and a precisely
computed dark matter halo, then MOND is falsified.
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When computing the MOND potential, we can either apply deep MOND to the entire region,
or an interpolation between ND and MOND that is dependent on the acceleration. In Section 4
we will discuss the mathematical background we will use. Then in Section 5 we will discuss
the results of appying deep MOND to a simulated cluster of galaxies with overall properties
that are similar to the Virgo cluster, and in Section 6 the application of the interpolation. In
Appendix A the code that is used in the thesis is given. The code was based on the code by W.
Hajer (to be published on the TU Delft repository).
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2. Gravitational potential in Newtonian Dynamics
In this section a derivation of the Newtonian gravitational potential of multiple mass distri-
butions will be given. We will look at a single point mass, a system with an arbitrary mass
distribution, and a system with a spherically-symmetric mass distribution.

2.1. Gravitational potential for a system of point masses
In Newtonian dynamics the gravitational force between any two point masses of mass m and
M is given by [10]:

Fg = −GmM
r2

r̂. (1)

With G the gravitational constant, and r the distance between the point masses. As we have
F = ma, we can write:

a = −GM
r2

r̂. (2)

It can be shown that the curl of the gravitational acceleration is zero: ∇ × a = 0. Thus a can
be written as the gradient of a function, a = ∇φ. This will now be derived.

By Stokes’ theorem we know
∮
a · dl = 0, and thus line integrals of a from x to y are the same

for all paths. Therefore we can define a function φ as follows:

φ(r) ≡ −
∫ r

O
a · dl, (3)

where O is a reference point, the point where the potential field is zero, which can be chosen
arbitrarily. We call φ the gravitational potential. We now write the potential difference between
points x and y.

φ(y)− φ(x) = −
∫ y

O
a · dl +

∫ x

O
a · dl = −

∫ y

O
a · dl−

∫ O
x

a · dl = −
∫ y

x

a · dl. (4)

By the fundamental theorem of line integrals we have the following:

φ(y)− φ(x) =

∫ y

x

(∇φ) · dl, (5)

which gives us

∫ y

x

(∇φ) · dl = −
∫ y

x

a · dl. (6)
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As this is true for all x and y, we need:

a = −∇φ, (7)

and thus indeed, a can be written as the gradient of the scalar φ.

We will now find an expression for φ for the point mass by substitution of (2) into (3), which
gives us:

φ(r) = GM

∫ r

O

r̂′

r′2
· dl. (8)

We choose the reference point O to be at infinity, resulting in the following expression for the
gravitational potential of a point mass M at a distance r:

φ(r) = GM

∫ r

∞

dr′

r′2
= −GM

r′

∣∣∣r
∞

= −GM
r
. (9)

The potential of multiple point masses can be calculated by summing the potentials of the
singular point masses. For point masses m1,m2, ...,mn, at locations x1,x2, ...,xn, we get the
following potential at location r;

φ(r) = − Gm1

‖r− x1‖
− Gm2

‖r− x2‖
− ...− Gmn

‖r− xn‖
= −G

n∑
i=1

mi

‖r− xi‖
. (10)

2.2. Gravitational potential of a system with an arbitrary mass density

We will now derive the potential of a system with a mass density ρ(x) on a region E in R3. For
this we will first approximate the potential by dividing region E into l×m× n regions. These
regions now have a volume ∆v = ∆x∆y∆z, and a mass ρ(xijk)∆v = ∆mijk, where xijk is the
center of the box. We now take equation (10), sum over i, j and k, and fill in the previously
defined variables. This gives us:

φ(r) ≈ −G
l∑

i=1

m∑
j=1

n∑
k=1

∆mijk∥∥r− xijk
∥∥ = −G

l∑
i=1

m∑
j=1

n∑
k=1

ρ(xijk)∆v∥∥r− xijk
∥∥ (11)

When we take the following limit on the right hand side of equation (11): l,m, n −→ ∞, it
becomes equal to φ(r). In this limit the triple sum

∑l
i=1

∑m
j=1

∑n
k=1 becomes a triple integral∫∫∫

E
, xijk becomes x and ∆v becomes dv(x) = dxdydz. This results in:

φ(r) = −G
∫
E

ρ(x)

‖r− x‖
dv(x). (12)

This integral equation is equivalent to the differential equation:
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∇ · ∇φ(x) = 4πGρ(x). (13)

This equation is called the Poison equation.

2.3. Newton’s Shell theorem and a spherically symmetric mass density
We now consider a system that has a spherically symmetric mass density ρ(r). For this we first
consider Newton’s Shell theorem.

2.3.1. Newton’s Shell theorem

Newton’s Shell theorem says that when considering gravity, a spherically symmetric mass dis-
tribution affects external objects as if all of its mass is concentrated at the centre of the system.
When an object is inside the spherically symmetric system, say at radius r from the centre of
the system, the object is only gravitationally affected by the mass inside the ball of radius r
around the centre of the system. The mass outside of this ball has no effect on the object.

2.3.2. Solution for gravitational potential

Let us define a function M(r) as the mass of a spherically symmetric system that is found in
the ball of radius r around the centre of the system. We get the following:

M(r) =

∫∫∫
Br

ρ(r̃)dV =

∫ 2π

0

∫ π

0

∫ r

0

ρ(r̃)r̃2 sin(θ)dr̃dθdϕ = 4π

∫ r

0

r̃2ρ(r̃)dr̃, (14)

where Br is the sphere with radius r around the centre of the system. By Newton’s Shell
theorem we can now say:

φ(r) ≡ −
∫ r

O
a · dl = G

∫ r

O

M(r′)

r′2
r̂′ · dl = G

∫ r

O

M(r′)

r′2
dr′. (15)

Substitution of equation (14) into equation (15) gives us:

φ(r) = 4πG

∫ r

O

∫ r′
0
r̃2ρ(r̃)dr̃

r′2
dr′. (16)

When the reference point is set at infinity, and ρ(r) = 0 when r > R, then for r > R we
have M(r) = M . Here M is the total mass of the system. This gives us the following expres-
sion:

φ(r) = G

∫ r

∞

M

r′2
dr′ = −GM

r′

∣∣∣r
∞

= −GM
r
. (17)
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3. MOND
This Section will explain what MOND is. As already stated in the introduction, MOND is
based on scales of acceleration. A summary of the theory is that when a� a0 the acceleration
a of a particle at distance r from a mass M is given by:

a =
MG

r2
, (18)

as according to Newton. When a� a0 the acceleration is given by:

a2

a0

=
MG

r2
. (19)

This regime we call deep MOND. These two equations can be combined to find an expression
that describes the transition from ND to deep MOND:

µ
( a
a0

)
a =

MG

r2
. (20)

Here µ is taken such that:

µ(x) =

{
1, if x� 1,

x, if x� 1.
(21)

As stated in the introduction, MOND can be interpreted as modified gravity and as modified
intertia, but we will only consider the modified gravity interpretation. In Newtons theory the
acceleration is the gradient of a potential, a = −∇φ, and the potential is a solution of the
Poisson equation, which we have already shown in Section 2.2:

∇ · ∇φ = 4πGρ. (13 revisited)

In MOND as modified gravity, we still have that a = −∇φ, and the Poisson equation still
holds for a � a0. However for a � a0 Milgrom proposed the following as replacement for
the Poisson equation:

∇ ·
( |∇φ|
a0

∇φ
)

= 4πGρ. (22)

Combining these two equations gives the MOND equation [1]:

∇ ·
(
µ
( |∇φ|
a0

)
∇φ
)

= 4πGρ. (23)

Here µ satisfies equation (21).
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3.1. Deep MOND and full MOND
In this thesis, we first take µ(x) = x for simplicity. This is the same as assuming that all
accelerations a are much smaller than a0, so we assume that the entire region is in the deep
MOND regime. By the assumption µ(a/a0) = a/a0 the deep MOND potential φMdeep and the
mass distribution ρ satisfy the following equation:

∇ ·
( |∇φMdeep|

a0

∇φMdeep

)
= 4πGρ. (24)

We call this the deep MOND equation. In Section 5 we study the behaviour of this simpler
model for MOND.

In Section 6 we study what we will call full MOND. The full MOND potential φMfull and the
mass distribution ρ satisfy equation (20), and thus we write the following for the full MOND
equation:

∇ ·
(
µ
( |∇φMfull|

a0

)
∇φMfull

)
= 4πGρ. (25)

Here µ satisfies equation 21.

9



4. Mathematical implementation of the model

4.1. Randomizing galaxy clusters
When creating randomized galaxies or galaxy clusters we use a spherically symmetric mass
distribution function. We need to randomize a radial coordinate, and two spherical coordinates
θ and ϕ1. The radial coordinate is dependent on the radial mass distribution function that is
chosen for that model. The θ and ϕ coordinates are always taken from a uniform distribution
over a sphere. This Section will adress both of these aspects.

4.1.1. Randomize radial coordinates

To randomize radial coordinates the following theorem by Devroye [11] is used:

Theorem 4.1 ‘Let F be a continuous distribution function on R with inverse F−1 defined by:

F−1(u) = inf{x : F (x) = u, 0 < u < 1}. (26)

If U is a uniform [0, 1] random variable, then F−1(U) has distribution function F.’

With this theorem, random points can be generated according to any mass distribution function
ρ(r). Now let F (r) be as follows:

F (r) =
1

M

∫∫∫
Br

ρ(r′)dV =
4π

M

∫ r

0

r′2ρ(r′)dr′, (27)

where Br is the sphere with radius r, and M is the total mass of the system that can be found
using equation (14). Now let u be a random number from the standard uniform distribution
on the interval [0, 1], and find r such that F (r) = u or r = F−1(u). Now this r is a random
number from the distribution function f(r) = ρ(r)

M
.

4.1.2. Randomize spherical coordinates

It is important to consider that selecting spherical coordinates θ and ϕ from a uniform distri-
bution is incorrect. This would give a uniform distribution of points in the ’θ-ϕ’ plane, but on
a sphere this creates a higher concentration of points at the poles, and a lower concentration at
the equator. This is the case since dA = r2 sin(ϕ)dϕdθ is a function of ϕ.

This issue can be solved by finding distribution functions fΘ(θ) and fΦ(ϕ), that generate a
uniform distribution on the unit sphere.

Finding distributions fΘ(θ), fΦ(ϕ)

Let v be a point on the unit sphere B1, and let f be a uniform distribution on the unit sphere,
then f(v) is constant. Now

∫∫
B1
f(v)dA = f(v)

∫∫
B1
dA = 4πf(v) = 1, so f(v) = 1

4π
.

Now the probability of finding a point in area dA is expressed in two ways. f(v)dA and
fΘ,Φ(θ, ϕ)dθdϕ. These two probabilities need to be equal to each other, and since dA =
sin(ϕ)dϕdθ and f(v) = 1

4π
this gives:

1We use mathematical notation. So θ is the azimuthal angle, and ϕ is the polar angle.
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fΘ,Φ(θ, ϕ) =
1

4π
sin(ϕ). (28)

Grimmett and Welsh [12] state the following property: "Whenever the pair X, Y has a joint
density function fX,Y , the ordinary density function of X and Y may be retrieved immediately
since

fX(x) =

∫ ∞
−∞

fX,Y (x, v)dv, (29)

and similarly,

fY (y) =

∫ ∞
−∞

fX,Y (u, y)du.” (30)

Using this property, gives the following expressions for fΘ(θ) and fΦ(ϕ):

fΘ(θ) =

∫ π

0

fΘ,Φ(θ, ϕ)dϕ =
1

2π
, (31)

fΦ(ϕ) =

∫ 2π

0

fΘ,Φ(θ, ϕ)dθ =
sin(ϕ)

2
. (32)

To randomize the spherical coordinates θ and ϕ theorem 4.1 is used. First the distribution
functions of θ and ϕ need to be found, which is done by integration:

FΘ(θ) =

∫ θ

0

f(θ′)dθ′ =
θ

2π
, (33)

and similarly:

FΦ(ϕ) =

∫ ϕ

0

f(ϕ′)dϕ′ = −cos(ϕ′)

2

∣∣∣ϕ
0

=
1− cos(ϕ)

2
. (34)

Taking U, V as standard uniform distributions on [0, 1], then by theorem 4.1 Θ = F−1
Θ (U),

and Φ = F−1
Φ (V ) have the right distributions to give a uniform distribution on the unit sphere.

Where for two random numbers u and v, θ and ϕ are defined as follows:

θ = F−1
Θ (u) = 2πu, (35)

ϕ = F−1
Φ (v) = arccos(2v − 1). (36)
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4.2. The Fourier transform
To save computing time, a big part of the integration and differentiation that happens in this
thesis is done in the Fourier domain. In this section we will first show how to use the Fourier
transform to find the solution to the Poisson equation for a point mass for illustrative purposes.
Then we will introduce the fast Fourier transform (FFT), and how we will apply it.

The Fourier transform of a function h : R3 → R in three dimensions is definded as follows
[13]:

F{h}(k) ≡ (2π)−3/2

∫∫∫
R3

h(x)e−ik·xdx, (37)

h(x) ≡ (2π)−3/2

∫∫∫
R3

F{h}(k)eik·xdk. (38)

4.2.1. Fourier transform of the Poisson equation for a point mass

We will derive the Fourier transform of the following equations, to illustrate how the Fourier
transform can be used to solve differential equations. We can also use the Fourier transform of
the mass distribution and gravitational potential of a point mass, to check whether our Python
code for finding solutions to the Poisson equation is working well.

Given are the mass distribution of a point mass, the gravitational potential of a point mass and
the Poisson equation.

ρ(r) = Mδ(0,0,0)(r), φ(r) = −GM
r
, (?? revisited)

∇ · ∇φ = 4πGρ. (13 revisited)

Since the Fourier transform is continuous, if a function hε −→ h, then F{hε} −→ F{h} [13].
This fact will be used derive F

{
− GM

r

}
is. We define a function φλ = −GM

r
e−λr, since

limλ→0−GM
r
e−λr = −GM

r
. We will now derive F{hλ}.

F{φλ}(k) = (2π)−3/2

∫∫∫
R3

−GM
r
e−λre−ik·rdr (39)

Rewriting the integral in spherical coördinates gives:

F{φλ}(k) = −GM(2π)−3/2

∫ 2π

0

∫ π

0

∫ ∞
0

e−λr

r
eikr cos(θ)r2 sin(θ)drdθdϕ. (40)

Here k = |k|. Integrating over ϕ, r and θ gives:
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F{φ}(k) = −GM(2π)−1/2

∫ π

0

∫ ∞
0

rer(ik cos(θ)−λ) sin(θ)drdθ

= −GM(2π)−1/2

∫ π

0

∫ ∞
0

rer(ik cos(θ)−λ) sin(θ)drdθ

= −GM(2π)−1/2

∫ π

0

sin(θ)

(ik cos(θ)− λ)2
dθ

F{φ}(k) = −GM(2π)−1/2

k2 + λ2
(41)

Taking the limit λ→ 0 gives:

F{φ}(k) = −GM(2π)−1/2k−2. (42)

The Fourier transform of the mass distribution of a point mass (?? revisited) is:

F{ρ}(k) = M(2π)−3/2 (43)

Now by the differentiation identity of the Fourier transform we have [13]:

F{∇ · ∇φ} = −k2F{φ} = GM(2π)−1/2

= 4πGF{ρ} = F{4πGρ} (44)

And thus, the Poisson equation is satisfied.

4.2.2. The fast Fourier transform

The fast Fourier transform (FFT) is a numerical approximation of the Fourier transform. For
values xn with, the FFT is defined as follows [13]:

Xk ≡
1

N3

N−1∑
n=0

xne
−2πik·n/N, (45)

xn ≡
N−1∑
k=0

Xke
2πik·n/N. (46)

Here N = (N,N,N), and the sum
∑N−1

n=0 means summing over all n = (nx, ny, nz) sucht that
0 ≤ nx, ny, nz ≤ N− 1. The sum

∑N−1
k=0 is defined in the same way.

As already stated, the FFT is an approximation of the Fourier transform. When the FFT is
generated on a region E = L × L × L ⊂ R3 with 0 < L < ∞, it acts as if the values on
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R3 are periodic with a period of L in all directions. In the neighbourhood of discontinuities,
the Gibbs phenomenon can occur [13]. This means that there occur large oscillations near
the discontinuity, and thus, the FFT is no good approximation of the Fourier transform at the
borders. To ignore the erroreous behaviour in the results of this thesis, if we want to investigate
a region E = L × L × L, then we do all calculations on a region of size 2L × 2L × 2L, with
the center of E in the center of this new region.

4.3. Examples of potentials in Newtonian Dynamics
In this section the Newtonian gravitational potential of some systems with a particular mass
distribution ρ will be derived. With some of these mass distributions random galaxy clusters
will be generated using the techniques discussed in Section 4.1. The radial coördinates of these
clusters will be compared with the original mass distributions to check whether the code to
generate random clusters works correctly.

The following radially symmetric mass distributions will be discussed. A ball with a constant
mass distribution, for illustrative purposes only. The Isothermal sphere profile, a profile based
on the ideal gas law and the hydrostatic equilibrium, and the Navarro-Frenk-White profile, a
profile used to describe dark matter halos. These distributions are options for generating the
random galaxy clusters. Lastly a Gaussian mass distribution will be discussed, since we will
use this distribution to model the mass density of the galaxies within the galaxy clusters.

4.3.1. Constant mass distribution

For the derivation of the gravitational potential of a ball with constant mass we use equation
(16), set the reference point at infinity, and take ρ(r) as follows:

ρ(r) =

{
ρ0, if r < R,

0, if r > R.
(47)

The exact value of ρ0 is not so important for the derivation, however it is taken such that the
total mass of the system is M = 4

3
πρ0R

3. First only the region where r > R is considered,
here we have:

φ(r) = −GM
r
. (17 revisited)

Now the region where r < R is considered. For this the integral is broken into two pieces,
inside and outside of the ball. When inside the ball, the mass behaves as follows by equation
(14):

M(r′) = 4π

∫ r′

0

r̃2ρ0dr̃ =
4

3
πρ0r

′3 =
M

R3
r′3. (48)

Filling this into equation (16) and splitting the integral into two gives:
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φ(r) = G

∫ r

∞

M(r′)

r′2
dr′ = G

∫ R

∞

M

r′2
dr′ +G

∫ r

R

Mr′3

R3r′2
dr′. (49)

Integrating gives:

φ(r) = −GM
R

+
GMr′2

2R3

∣∣∣r
R
, (50)

which gives:

φ(r) = −GM
R

+
GMr2

2R3
− GM

2R
= −GM

R

(3

2
− 1

2

r2

R2

)
. (51)

Combining equation (51) and (48) gives the gravitational potential:

φ(r) =


−GM

R

(
3
2
− 1

2

r2

R2

)
, if r < R,

−GM
r
, if r > R.

(52)

Plotting equations (47) and (52) in one graph gives Figure 5. Also a tangent line is added at
r = 2Mpc. The slope of the tangent line is the maximum acceleration for this mass distribution
according to ND. Here we take R = 2 Mpc, and M = 1015M�, where M� is the Solar mass.
These values have been based on the Virgo cluster, which has a virial radiusRvir = 1.7 Mpc and
a virial mass Mvir = 5.4 × 1014M�. [14] (The virial mass is the mass within the virial radius
of the system, this is the radius within which the system satisfies the virial theorem. A theorem
that relates the average over time of the total kinetic energy to the average over time of the total
potential energy, following 2

〈
Ukin

〉
= −

〈
Upot

〉
for Newtonian gravitational systems.)

Figure 5: The mass distribution and gravitational potential of a ball with a constant mass distri-
bution, plotted against the distance r from the center. At r = 2Mpc the tangent line is plotted,
which gives a maximum acceleration of approximately 0.3 × 10−10m/s2. For the plot R = 2
Mpc and M = 1015M�.
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From Figure 5 we find a maximum acceleration of approximately 0.3 × 10−10m/s2 at r =
2Mpc, as extracted from the slope of the tangent line. This value is of the order of a0 =
1.2× 10−10m/s2. What this means exactly is hard to say, since the maximum acceleration was
found with ND and for a galaxy cluster of homogeneous mass distribution. However, the mass
distribution was based on the Virgo cluster, and thus it is probable that in later calculations for
other Virgo-like galaxy clusters (with similar parameters M and R) there are areas in which
deep MOND could be applied, while there are also areas in which an interpolation towards ND
is necessary.

4.3.2. Isothermal sphere profile

We investigate the isothermal sphere profile since it is a well-known theoretical profile for an
idealized model of a galaxy cluster. In the isothermal sphere profile, both the ideal gas law and
the hydrostatic equilibrium are satified, they are given in equations (54) and (55).

ρ =mn, (53)
p =nkBT, (54)
∇p =− nm∇φ. (55)

Here p is the pressure, n is the number of particles per unit volume, kB the Boltzmann constant,
T the temperature and m the mass of one particle. In our case the particles are the galaxies,
and m the mass of a galaxy in the cluster.

If we fill equation (54) into equation (55), we get the following relation:

kBT∇n = −nm∇φ. (56)

This gives us the following expression for the particle density n:

n = ce−mφ/kBT . (57)

The corresponding mass density is:

ρ = mn = mce−mφ/kBT . (58)

We will try the following mass distribution as a solution to equation (58):

ρ(r) =

{
σ2
V

6πG
1
r2
, if r < R,

0, if r > R.
(59)

Here σV is the velocity dispersion of the galaxy cluster. That ρ(r) = 0 for r > R is necessary
as otherwise lim

r→∞M(r) =∞.

First, we find φ by applying equation (16). Considering r > R we have:
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φ(r) = −GM
r
. (17 revisited)

Here M is the total mass. For r < R we use equation (14) and write:

M(r) = 4π

∫ r

0

r′2ρ(r′)dr′ =
4πσ2

V

6πG

∫ r

0

dr′ =
2σ2

V

3G
r. (60)

The total mass of the system is M = M(R) =
2σ2

V

3G
R, and thus:

M(r) =
M

R
r. (61)

From the total mass M =
2σ2

V

3G
R an expression for σV can be derived:

σV =

√
3GM

2R
. (62)

Substituting equation (61) into equation (16) gives:

φ(r) = −GM
R

+
GM

R

∫ r

R

dr′

r′

= −GM
R

+
GM

R
ln(r′)

∣∣∣r
R

= −GM
R

(
1− ln

( r
R

))
.

(63)

This results in the following gravitational potential for the Isothermal sphere profile:

φ(r) =

−GM
R

(
1− ln

(
r
R

))
, if r < R,

−GM
r
, if r > R.

(64)

Now we will check whether equations (59) and (64) satisfy equation (58).

Substituting equations (64) and (59) for r < R into equation (58), and taking the logarithm
gives:

ln
( σ2

V

6πGm

1

r2

)
= ln(c) +

m

kBT

GM

R

(
1− ln(

r

R
)
)
. (65)

Focussing on the r dependent terms gives us:

−2 ln(r) = −GMm

kBTR
ln r. (66)
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This gives us the following expression for the temperature T associated with a galaxy cluster
of mass M and radius R:

T =
GMm

2kBR
. (67)

Substituting M =
2σ2

V

3G
R back in gives us what is predicted by the equipartition theorem:

3kBT = mσ2
V . (68)

We plot equations (59) and (64) in one graph to get the following figure. Again we take R =
2Mpc, and M = 1015M�.

Figure 6: The mass distribution and gravitational potential of the Isothermal sphere profile,
plotted against the distance r from the center. The values of M and R are taken the same as in
Figure 5.

Next we generate a random galaxy cluster, using the Isothermal sphere profile and the same
values for M and R. The cluster consists of N = 1500 galaxies, similar to the Virgo cluster
[14].
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Figure 7: A normalized barplot of the radial coördinates r of the galaxies in a random galaxy
cluster that was generated using the Isothermal sphere profile’s mass distribution ρ(r). The
orange line shows the expected behaviour of the barplot and is given by 4πr2ρ(r)/M . The
values of M and R are taken the same as in Figure 6.

4.3.3. Navarro-Frenk-White profile

The Navarro-Frenk-White (NFW) profile gives a mass distribution for dark matter halos. It has
the following distribution ρ(r):

ρ(r) =


cρhaloR

3
vir

3ANFW

1

r(1 + r)2
, if r < Rvir,

0, if r > Rvir.
(69)

Here Rvir is the virial radius, ρhalo ≡ 3Mvir

4πR3
vir

the mean density of the halo, c the concentration
parameter, and ANFW = ln(1 + c) − c

1+c
some constant. For simplicity we take Rvir = R =

2Mpc, Mvir = M = 1015M�. Furthermore we take c = 3.8, based on the Virgo Cluster [15].
Plotting equation (69) and its numerically derived gravitational potential in one graph gives
Figure 8:

19



Figure 8: The mass distribution given in equation (69), and the gravitational potential plotted
against the distance r from the centre. R and M are taken as in Figure 5 and c = 3.8.

We generate a random galaxy cluster using the NFW profile with the same values for M , R,
and N , giving the following figure.

Figure 9: A normalized barplot of the radial coördinates r of the galaxies in a random galaxy
cluster that was generated using the NFW profile given in equation (69). The orange line shows
the expected behaviour of the barplot and is given by 4πr2ρ(r)/M . In this plot R, M and c are
taken as in Figure 8.

4.3.4. Gaussian mass distribution

We will use the Gaussian mass distribution to model the mass density inside the galaxies within
the galaxy clusters. ρ(r) is defined as follows:

ρ(r) =


M

(2πσ2)3/2
exp

(−r2
2σ2

)
, if r < R,

0, if r > R.
(70)
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Where σ is the standard deviation. This standard deviation is a measure of the radius of a
galaxy. Plotting equation (70) and a numerically derived gravitational potential in one graph
gives the following figure. We take R = 2 Mpc, M = 1015M�, and σ = 0.4 Mpc.

Figure 10: The mass distribution given in equation (70), and the gravitational potential plotted
against the distance r from the center. For the plot R = 2 Mpc, M = 1015M� and σ = 0.4
Mpc are used.

4.3.5. Multiple spheres with constant mass distribution

In this section the potential of two and 20 galaxies of radius R = 0.02Mpc and total mass
M = 1015M� is derived. This is done to illustrate that the code for calculating the potential
with the Fourier transform works well. Figure 11 gives a one dimensional intersection of the
gravitational potential of two galaxies.

In Figure 11 no difference is visible between the exact potential and the potential derived with
the fast Fourier transform. Figure 12 shows a two dimensional intersection of the gravitational
potential of two galaxies.

In Figure 12 nothing is visible that could cause doubt in the method of deriving the gravitational
potential.

In Figure 13 a two dimensional intersection of the gravitational potential of 20 galaxies is given.
Their locations were generated with the NFW profile.
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Figure 11: A plot of the gravitational potential of two spherical galaxies along the x-axis with
a uniform mass distribution, radius R = 0.02 Mpc and total mass Mtot = 1015M�, placed
1 Mpc apart. The red curve gives the potential derived with the fast Fourier transform with
stepsize dx = 8/256 Mpc. The dashed blue curve gives the exact potential. The figure shows
that calculating the potential with the Fourier transform works well.

Figure 12: A plot of the gravitational potential of two spherical galaxies with a uniform mass
distribution, radius R = 0.02 Mpc and total mass Mtot = 1015M�. The intersection is taken at
z = 0 Mpc.
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Figure 13: A plot of the gravitational potential of 20 spherical galaxies with a uniform mass
distribution, radius R = 0.02 Mpc and total mass Mtot = 1015M�. The intersections are taken
at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.

Again, no remarkable observations can be made, and thus we conclude that there are no clear
issues with code for deriving the gravitational potential with the fast Fourier transform.

4.4. Helmholtz decomposition with the Fourier transform
In this section it will be explained how to apply the Helmholtz decomposition, a technique
that is necessary in the numerical method we will use solving equation (23). Any twice dif-
ferentiable vector field that decays faster than 1/r as r → ∞ has a Helmholtz decomposition,
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where one part is divergence free, and the other part is curl free, and can be written as follows
[16]:

F = F// + F⊥ (71)

We introduce the notation that the Fourier transform of any function can be written as follows:
F{F} = F̃. Taking the Fourier transform of the Helmholtz decomposition of F gives us:

F̃ = F̃// + F̃⊥ (72)

We can also take the Fourier transform of the properties of the curl- and divergence-free parts.
This gives us the following relations in the Fourier domain:

∇× F// = 0 ⇐⇒ −ik× F̃//=0 (73)

∇ · F⊥ = 0 ⇐⇒ ik · F̃⊥ = 0 (74)

To find F̃// and F̃⊥ we use projections. Here we have the following:

F̃// = k
k · F̃
k · k

(75)

F̃⊥ = F̃− k
k · F̃
k · k

(76)

4.5. Solving deep MOND numerically
In this section it will be described how the deep MOND differential equation will be solved
numerically. We will find the solution to the system, consisting of the Poisson equation for
Newtonian gravity, and the deep MOND equation:

∇ · ∇φND = 4πGρ, (13 revisited)

∇ ·
( |∇φMdeep|

a0

∇φMdeep

)
= 4πGρ. (24 revisited)

We will rewrite the system into a system that is easier to work with. For this we define acceler-
ation field f as follows:

f = −∇φMdeep (77)
(78)
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Then equations (13) and (24) are equivalent to the following system:

∇ · ∇φND = 4πGρ, (13 revisited)
−∇ · F = 4πGρ, (79)

F =
f

a0

f , (80)

∇× f = 0. (81)

If we now take the Helmholtz decomposition of F and write F// = g, and F⊥ = B, then the
following holds since∇ ·B = 0:

−∇ · F = −∇ · g −∇ ·B
= −∇ · g = 4πGρ. (82)

And since∇× g = 0, we know:

g = −∇φND. (83)

But then we can rewrite the system as follows:

−∇ · g = 4πGρ, (82 revisited)
F = g + B, (84)

F =
f

a0

f , (80 revisited)

g = −∇φND (83 revisited)
∇ ·B = 0, (85)
∇× f = 0. (81 revisited)

This is the system we will be using to apply the iterative method described in the next sec-
tion.

4.5.1. Defining zero’th order solution and iterative procedure

The system of equations described in the previous paragraph cannot be solved analytically, thus
we use an iterative approach that was proposed by Dr. P.M. Visser. We create a sequence fn with
n = 0, 1, 2, ... that converges to the solution of system described in the previous Section.

To iterate from the order n solution to order n + 2 we need equation (80) and its inverse:
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F =
f

a0

f (80 revisited)

f = F

√
a0

F
(86)

For the zero’th order solution we take B0 = 0, which gives us F0 = f0
a0
f0 = g. Applying

equation (86) gives us:

f0 = g

√
a0

g
(87)

Now, for even n, we have that fn will in general not be conservative. Thus we take fn+1 = fn//,
with fn// defined according to Helmholtz decomposition.

However for even n, we have that Bn+1 = Fn+1 − g is not curl free. Thus we define Bn+2 =
Bn+1⊥ according to Helmholtz decomposition. We then take Fn+2 = g + Bn+2, which gives
us an expression for fn+2.

This fn+2 is closer to the exact solution of the deep MOND equation (24) than fn, however it
is still not conservative. By itterating the steps in this section, fn will converge to the exact
solution.

4.6. Solving full MOND numerically
As explained in Section 3.1, an interpolation function is necessary to propperly satisfy MOND.
In this section the same numerical approach will be explained as in the previous Section, now
using the following interpolation function satisfying equation (21):

µ(x) =
x√

1 + x2
(88)

Substitution of this µ into equation (25) and adding the Poisson equation gives us the following
system:

∇ · ∇φND = 4πGρ (13 revisited)

∇ ·

(
|∇φMfull|√

a2
0 + |∇φMfull|2

∇φMfull

)
= 4πGρ (89)

We will rewrite the system into a system that is easier to work with. For this we define acceler-
ation field f as follows:

f = −∇φMfull (90)
(91)
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Then equations (13) and (25) are equivalent to the following system:

∇ · ∇φND = 4πGρ, (13 revisited)
−∇ · F = 4πGρ, (79 revisited)

F =
f√

a2
0 + f2

f , (92)

∇× f = 0. (81 revisited)

If we now take the Helmholtz decomposition of F and write F// = g, and F⊥ = B, then the
following holds since∇ ·B = 0:

−∇ · F = −∇ · g −∇ ·B
= −∇ · g = 4πGρ. (82 revisited)

And since∇× g = 0, we know:

g = −∇φND. (83 revisited)

But then we can rewrite the system as follows:

−∇ · g = 4πGρ, (82 revisited)
F = g + B, (84 revisited)

F =
f√

a2
0 + f2

f , (92 revisited)

g = −∇φND (83 revisited)
∇ ·B = 0, (85 revisited)
∇× f = 0. (81 revisited)

This is the system we will be using to apply the iterative method described in the next sec-
tion.

4.6.1. Defining zero’th order solution and iterative procedure

This system of equations can also not be solved analytically, so we use a similar itterative
aproach, also proposed by Dr. P.M. Visser. To iterate from the order n solution to order n + 2
we need equation (92) and its inverse:
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F =
f√

a2
0 + f2

f , (92 revisited)

f = F

√
1

2
+

1

F

√
a2

0 +
F2

4
. (93)

Here F = |F|. For the zero’th order solution we take B0 = 0, which gives us F0 =
f0√
a20+f0

2
f0 = g. Applying equation (93) gives us:

f0 = g

√
1

2
+

1

g

√
a2

0 +
g2

4
(94)

Now again for n even, fn is not nescessarily conservative, and Bn+1 is not curl free. By iterating
in the same way as in Section 4.5.1, now with equations (92) and (93), fn will converge to the
exact solution as n→∞.

28



5. Study of deep MOND
In this section we will focus on multiple phenomena in the deep MOND regime. For some
initial mass distributions ρwe will first compare the ND potential and the deep MOND potential
φMdeep. Next we will discuss the acceleration f caused by the deep MOND potential. Which
is followed by a discussion of the apparent mass distribution ρAM that is found by applying the
poisson equation to the MOND potential.

Although the deep MOND regime is not accurate for the Virgo cluster, it can be useful to
analyse it. The behaviour in the deep MOND regime is a good representation for what happens
when accelerations are smaller than a0 = 1.2 × 10−10m/s, while the Newtonian regime is a
good representation for what happens when accelerations are higher.

In the following calculations we defined the visible mass density ρ as follows. We first generate
N random coördinates according to the NFW profile, using a virial radius of Rvir = 2 Mpc, a
virial mass of Mvir = 1015M� and a concentration parameter of c = 3.8. We choose the NFW
profile since it is a broadly used mass distribution. The visible mass density of each galaxy is a
Gaussian distribution for which we have some standard deviation Rsphere. The mass density is
cut off at a radius of 5Rsphere, to save some computing time.

5.1. Comparing the deep MOND and the ND potential
In this section we will compare the gravitational potential φND and the deep MOND poten-
tial φMdeep for certain mass distributions. We generated some random galaxy clusters accord-
ing to the previously described method, with N = 100, 500 and 1500 galaxies, Rsphere =
8/256Mpc = 3.125 · 10−2Mpc (8/256 Mpc is the stepsize dx in the used code), and the total
mass of the initial mass distribution M = 1015M�.
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N = 100

Figure 14: A plot of the ND potential. HereN = 100,Rsphere = 8/256Mpc andM = 1015M�.
The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.

30



Figure 15: A plot of the deep MOND potential computed with the same initial mass distribution
as in Figure 14. The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.

Compared with the ND potential in Figure 14, the deep MOND potential seems less steep at
the center, and steeper at the outside of the galaxy cluster.
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N = 500

Figure 16: A plot of the ND potential. HereN = 500,Rsphere = 8/256Mpc andM = 1015M�.
The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.
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Figure 17: A plot of the deep MOND potential computed with the same initial mass distribution
as in Figure 16. The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.

Compared with the ND potential in Figure 16, the deep MOND potential seems less steep at
the center, and steeper at the outside of the galaxy cluster.
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N = 1500

Figure 18: A plot of the ND potential. Here N = 1500, Rsphere = 8/256Mpc and M =

1015M�. The intersections are taken at z = 0 +
n

4
Mpc, with n = −7,−6, ..., 6, 7. The ND

potential is almost spherically symmetric.
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Figure 19: A plot of the deep MOND potential computed with the same initial mass distribution
as in Figure 18. The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7.

Compared with the ND potential in Figure 18, the deep MOND potential seems less steep at
the center, and steeper at the outside of the galaxy cluster. The deep MOND potential is almost
spherically symmetric.
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The biggest difference between φND and φMdeep for N = 100, 500, 1500 is the shape of the
potential. We will focus on the steepness of the potential. In ND the potential is quite flat at
the outside of the galaxy cluster, and very steep in the center. The deep MOND potential is not
as steep as the ND potential in the center of the galaxy cluster, but much steeper than the ND
potential at the outside of the galaxy cluster. This is what we expect, since MOND predicts that
the potential far from a mass is deeper than the potential that ND predicts.

The potentials also have similarities in their shape, in both the deep MOND as the ND potential
for N = 100 and N = 500 the effect of one galaxy on the total potential is clear. Also, for
high N both potentials become more spherically symmetric. The gravitational potential and
the deep MOND potential are almost spherically symmetric for N = 1500.

5.2. Acceleration
In this section we will discuss the accelerations f that are generated by the deep MOND po-
tential φMdeep for a certain mass distribution. We will argue that the deep MOND approach is
not a correct approach to model the behaviour of a galaxy cluster like Virgo. We found the
acceleration f by applying the Poisson equation to the deep MOND potential given in Figure
15.
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Figure 20: A plot of the size of the acceleration field f devided by a0, derived with deep
MOND from the same initial mass distribution as in Figure 14. The white curve corresponds
to |f|/a0 = 1. The intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7. There

are large regions where f > a0, but there are also large regions where f < a0.

37



In Figure 20 it is visible that the acceleration f in a galaxy cluster is both above and below
a0 in large regions. We already predicted this while discussing Figure 5 and the maximum
acceleration of the corresponding galaxy cluster according to ND.

For the calculation of the accaleration in Figure 20, we assumed that we could apply the deep
MOND regime in the entire galaxy cluster. If this assumption were correct, an acceleration
smaller than a0 would be expected in the entire cluster. Thus we can conclude that the deep
MOND regime is no good approximation for the behaviour of a cluster like Virgo.

5.3. Apparent matter
In this section we will discuss the apparent mass distribution ρAM needed to represent the results
of deep MOND in the framework of DM. Figure 21 gives the apparent mass distribution ρAM

belonging to the same mass distribution as used for Figure 14.
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In Figure 21 we can see some areas in which ρAM ≤ 0, however we cannot clearly see what
value the mass density has in those areas. Therefore, we will compute the total negative ap-
parent mass in the next Section. These negative apparent mass density give no reason to doubt
the code and mathematics used in this thesis, since Milgrom found negative apparent masses
aswell [2].

The regions where ρAM ≤ 0 seem to occur inbetween masses, which agrees with what Milgrom
found about the shape of regions with negative apparent matter [2]. Furthermore, if we compare
Figure 21 to Figure 20, we can see that the areas where ρAM ≤ 0 are mostly right outside of
the areas where f ≥ a0, however, there are also some regions where ρAM ≤ 0 and f ≥ a0 are
the case. Therefore it is hard to determine a clear relation between f and ρAM. At the outside of
the galaxy cluster, where f becomes even smaller, then there is no negative apparent dark mass.
This is in agreement with what Milgrom found.

In the figure we also see some dotted crosses that have values around ρ = 0. Since these lines
are all in the x and y direction, we suspect that they are caused by the fourier transform. A way
to lessen this effect is by taking a smaller step size in the fourier transform.

5.4. Negative apparent mass
In this section we will discuss how the smoothness of the initial mass distribution affects the
amount of negative apparent mass M− needed to represent the results of MOND in the frame-
work of DM. It can be shown that for a spherical mass distribution, negative ρAM cannot happen
[2]. To investigate this, we decompose the apparent mass density ρAM in a + and − compo-
nent:

ρAM = ρ+ + ρ−. (95)

Here ρ+ ≥ 0 and ρ− ≤ 0, furthermore they satisfy ρ+ · ρ− = 0 everywhere. We compute the
negative apparent mass as follows:

M− =

∫∫∫
B2Mpc

ρ−dv. (96)

Here B2Mpc is the sphere with center (0, 0, 0) and radius 2Mpc. We will vary the smoothness
of the initial mass distribution ρ in two ways. Firstly by taking some configuration of galaxies,
and increasing their radius Rsphere, and secondly by generating multiple galaxy clusters with
increasing number N of galaxies. Both increasing the radius, as increasing the number of
galaxies makes the visible mass distribution ρ smoother and more spherically symmetric. Thus
we expect that as Rsphere or N is increased, and the initial mass distribution becomes more
spherically symmetric, the negative apparent mass M− becomes smaller.

5.4.1. Changing the radius of galaxies

For the following plot we generated a galaxy cluster withN = 100, we generated ρ for different
Rsphere, and computed ρAM. The blue circles give the negative apparent mass M−.
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Figure 21: A plot of the apparent mass distribution derived with deep MOND computed with
the same initial mass distribution as in Figure 14. The white curve corresponds to ρ = 0. The
intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7. There are significant areas

where ρAM ≤ 0, and they all seem to be located inbetween galaxies. The dotted crosses are
artefacts of the Fourier transform that is used to derive the distribution.
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Figure 22: The negative apparent mass M−, plotted against the radius of the galaxies Rsphere

in a galaxy cluster with N = 100. The blue circles give the sum of the negative part of the
apparent mass distribution ρ−. M− is derived with deep MOND. There is a clear relation
between Rsphere and −.

We can clearly see that when Rsphere is increased, the negative apparent mass M− becomes
smaller.

5.4.2. Changing the number of galaxies

For the following plot we generated multiple galaxy clusters with Rsphere = 8/256Mpc for
different N , we then computed ρ−. The blue circles give the negative apparent mass M− of
each galaxy cluster.

Figure 23: The negative apparent mass M−, plotted against the number of galaxies N in a
galaxy cluster with Rsphere = 8/256 Mpc. The blue circles give the sum of the negative part of
the apparent mass distribution ρ−. M− is derived with deep MOND. There is no clear relation
between N and M−.

There is no clear relation between the number of galaxies N and the negative apparent mass
M−. This does not contradict with the result of Section 5.4.1 for the following reasons. Firstly,
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for each different N a new galaxy cluster is generated, and thus there is a random element
to M−, explaining why Figure 23 looks chaotic. Furthermore, when Rsphere is doubled, the
volume of the mass distribution ρ that contains mass is increases with a factor 23 = 8. However,
when N is doubled, this volume increases with a factor 2. Therefore, changing the radius
Rsphere has a much bigger effect on the smoothness of ρ, than changing N does.

We still expect that increasing N causes M− to decrease. In followup research M− could be
calculated multiple times for each N , such that an average negative apparent mass M− can
be computed. The contribution of the random element should decrease, and thus if there is a
relation between N and M−, this should become clearer.

5.4.3. Discussion of the negative apparent mass

In this section we have clearly seen that when ρ becomes smoother, the negative apparent mass
M− decreases. However, a galaxy cluster has no smooth visible mass density. In Figure 23 we
see that a cluster with N = 1500, and galaxies with Rsphere = 8/256Mpc still has a negative
apparent mass of the order M− ≈ −0.09M . Since the values for N , Rsphere are realistic, we
can conclude that, when assuming the deep MOND regime with ou method, we can generate
realistic mass configurations, that give a significant amount of negative apparent mass.
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6. Study of full MOND
In this section we will focus on some results of full MOND. We will use the same mass distri-
butions as in Section 5 for N = 100, 500, 1500. We will first discuss the full MOND potential
φMfull of these mass distributions and compare it to φND and φMdeep, then the accelerations f
will be discussed, followed by the apparent mass distributions ρapp. Lastly we will investi-
gate the dependency of the negative apparent mass M− on the smoothness of the visible mass
distribution ρ.

6.1. Comparing the full MOND and the ND and deep MOND poten-
tial

In this section we will compare the full MOND potential φMfull with the ND potential φND and
the deep MOND potential φMdeep from Section 5.1.
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N = 100
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Figure 24: A plot of the full MOND potential, derived from the same initial mass distribution
as Figure 14 with N = 100. The intersections are taken at z = 0 +

n

4
Mpc, with n =

−7,−6, ..., 6, 7. The full MOND potential seems to follow the shape of the ND potential of
Figure 14 at the center of the galaxy cluster, and of the deep MOND potential of Figure 15 at
the outside.
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N = 500
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Figure 25: A plot of the full MOND potential, derived from the same initial mass distribution
as Figure 16 with N = 500. The intersections are taken at z = 0 +

n

4
Mpc, with n =

−7,−6, ..., 6, 7. The full MOND potential seems to follow the shape of the ND potential of
Figure 16 at the center of the galaxy cluster, and of the deep MOND potential of Figure 17 at
the outside.
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N = 1500

Comparing Figures 24, 25 and 26 to those given in section 5.1 shows that the range of the
potential is larger for full MOND, than for deep MOND and ND. This can be explained as
follows. As already stated in Section 5.1 the ND potential is flat at the outsides, and very steep
at the center of the galaxy clusters. The deep MOND potential is less steep at the center, and
more steep at the outsides of the galaxy cluster. We see in Figures 24, 25 and 26 that the full
MOND potential is steeper than the ND potential at the outsides of the galaxy cluster. In this
region it seems to behave the same way as the deep MOND potential. We also see that the full
MOND potential is steeper than the deep MOND potential at the center of the galaxy cluster,
where it seems closer to the ND potential. So it makes sense that the full range of the full
MOND potential is larger than those of the deep MOND and the ND potential.

That the full MOND potential follows the shape of the deep MOND potential at the outside
of the cluster, and the ND potential at the center, suggests that the acceleration f is larger than
a0 in the center, and smaller than a0 at the outside. We also suspect this because Figure 20
confirms this for deep MOND. We compute and discuss acceleration field f for full MOND in
the next section.

6.2. Acceleration
In this section we will discuss the acceleration that is generated by the full MOND potential
φMfull of a certain mass distribution ρ. We found the acceleration by applying the Poisson
equation to the full MOND potential given in Figure 24.
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Figure 26: A plot of the full MOND potential, derived from the same initial mass distribution
as Figure 18 with N = 1500. The intersections are taken at z = 0 +

n

4
Mpc, with n =

−7,−6, ..., 6, 7. The full MOND potential seems to follow the shape of the ND potential of
Figure 18 at the center of the galaxy cluster, and of the deep MOND potential of Figure 19 at
the outside. The potential is almost spherically symmetric.
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Figure 27: A plot of the size of the acceleration field f devided by a0, derived with full MOND
from the same initial mass distribution as in Figure 14. The white curve corresponds to |f|/a0 =

1. The intersections are taken at z = 0 +
n

4
Mpc, with n = −7,−6, ..., 6, 7. There are large

regions where f > a0, but there are also large regions where f < a0.
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In Figure 27 it is visible that the acceleration f in the galaxy cluster is both above and below a0

in large regions. This was expected since this was also the case in Figure 20, and since the full
MOND potential in Figure 14 showed deep MOND behaviour at the outside of the cluster, and
ND behaviour at the inside.

We made a Figure similar to Figure 27 for N = 1500, to see whether for larger N the galaxy
cluster still contained areas with f larger than a0 and areas with f smaller than a0. This is
expected for the same reasons as was for the galaxy cluster with N = 100. The acceleration
field was found by applying the Poisson equation to the full MOND potential given in Figure
26.
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Figure 28: A plot of the size of the acceleration field f devided by a0, derived with full MOND
from the same initial mass distribution as in Figure 18. The white curve corresponds to |f|/a0 =

1. The intersections are taken at z = 0 +
n

4
Mpc, with n = −7,−6, ..., 6, 7. There are large

regions where f > a0, but there are also large regions where f < a0.

Indeed the acceleration f is both smaller and larger than a0 in large regions of the galaxy clus-
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ter.

6.3. Apparent matter
In this section we will discuss the apparent matter needed to represent the results of MOND
in the framework of DM. Figure 29 gives the apparent matter distribution derived with full
MOND and based one same mass distribution as used for Figure 14.
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Figure 29: A plot of the apparent dark matter distribution derived with full MOND from the
same initial mass distribution as in Figure 14. The white curve corresponds to ρ = 0. The
intersections are taken at z = 0 +

n

4
Mpc, with n = −7,−6, ..., 6, 7. There are significant areas

where ρAM ≤ 0, and they all seem to be located inbetween galaxies. The dotted crosses are
artefacts of the Fourier transform that is used to derive the distribution.
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In Figure 29 we also see some areas in which ρ ≤ 0. These negative apparent mass densities
are no reason to question our methods, for the same reason as in Section 5 [2]. We will again
compute the total negative apparent mass M− in the next Section.

Similarly to the apparent mass distribution we derived with deep MOND, the regions where
ρAM ≤ 0 seem to occur inbetween masses. Again, this is in agreement with what Milgrom
found [2]. If we compare Figure 29 to Figure 27, we can see that the areas where ρAM ≤ 0 also
mostly occur right outside the regions where f ≥ a0. However, similarly to the observations
in Section 5.3, there are also regions where ρAM ≤ 0 and f ≥ a0. Therefore it is still hard
to determine a clear relation between f and ρAM, this is something that could be investigated
in followup research. At the outside of the galaxy clusters, f becomes even smaller, and no
negative apparent mass occurs. This is again in agreement with what Milgrom found.

There are also dotted crosses that have values around ρAM = 0, and again we suspect they are
caused by the fourier transform.

6.4. Negative apparent matter
In this section we will discuss results similar to those discussed in Section 5.4, now derived
with full MOND. For this we define and compute ρ− and M− in the same way as in Section
5.4. We will first vary the radiusRsphere of the galaxies of a galaxy cluster, next we will vary the
number of galaxies N in the galaxy cluster. By the same reasoning as in Section 5.4, we expect
that if Rsphere or N increases, and thus the initial mass distribution ρ becomes more spherically
symmetric, then the negative apparent mass M− decreases.

6.4.1. Changing the radius of galaxies

Results similar to those in section 5.4.1 are given, now derived with full MOND.

Figure 30: The negative apparent mass M−, plotted against the radius Rsphere of the galaxies in
a galaxy cluster withN = 100. The blue circles give the sum of the negative part of the apparent
mass distribution ρ−. M− is derived with full MOND. There is a clear relation between Rsphere

and −.

We can clearly see that whenRsphere is increased, the negative apparent mass becomes smaller.
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6.4.2. Changing the number of galaxies

Results similar to those in Section 5.4.2 are given, now derived with full MOND.
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Figure 31: The negative apparent mass M−, plotted against the number of galaxies N in the
galaxy cluster with Rsphere = 8/256 Mpc. The blue circles give the sum of the negative part of
the apparent mass distribution ρ−. M− is derived with full MOND. There is no clear relation
between N and M−.

Similarly to Figure 23, in Figure 31 no clear relation is visible between the number of galaxies
N and the negative apparent mass M−. This can be explained by the same reasoning as in
Section 5.4.2.

6.4.3. Discussion of the negative apparent matter in full MOND

In this section we see similar results as in Section 5.4. So again, we have that when ρ becomes
smoother, the negative apparent mass M− decreases. Also the amount of negative apparent
mass in a cluster with N = 1500 and Rsphere = 8/256 Mpc, is of the order M− ≈ −0.09M .
Therefore we can conclude that also with full MOND, realistic mass configurations can be
generated that give a significant amount of negative apparent mass.
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7. Discussion
In this section we will discuss the results found in this thesis. For various initial mass dis-
tributions ρ we computed their deep MOND potential φMdeep, and their full MOND potential
φMfull. With these potentials we derived the acceleration fields f = −∇φM, the apparent mass
distributions ρAM and computed the total negative apparent mass M−. All these aspects will be
discussed.

In Sections 5.1 and 6.1 we found that the full MOND potential gives a larger range in potential
than the deep MOND and ND potential. In Figure 27 we found that for full MOND the accel-
eration f is smaller than a0 at the outside of the galaxy cluster, and larger than a0 at the center
of the galaxy cluster. Therefore we expect the full MOND potential to follow deep MOND at
the outside of the cluster, and ND at the center. Indeed at the outside, the full MOND potential
was steeper than the ND potential, and seemed to follow the deep MOND potential. Also, at
the inside the full MOND potential was steeper than the deep MOND potential and seemed to
follow the ND potential.

For N = 100 we computed the acceleration field f of the deep MOND and the full MOND
potential. In both cases there are large areas with f = |f | < a0 and large areas with f > a0. This
was also done for N = 1500 in the full MOND regime, and got the same result. From this we
conclude that the deep MOND assumption, that in the entire galaxy cluster f � a0, is wrong
for clusters like the Virgo cluster.

Next, we computed the apparent mass distribution for both the deep MOND as the full MOND
potential with N = 100. In both cases we can see clear regions where ρAM ≤ 0, and in both
cases these regions appear inbetween masses, and are mostly outside of regions where f ≥ a0.
The shape and location of these regions are in agreement with what Milgrom found [2], but we
have not found a clear relation between f and ρAM. Furthermore, we see white dotted crosses
at which ρAM ≈ 0, we suspect these are artefacts caused by the Fourier transform.

To further investigate the areas with a negative apparent mass distribution we computed the
total negative apparent mass M−. We did this for multiple mass distributions, varying the
galaxies their radius Rsphere, and the number of galaxies N . Varying the radius of the galaxies
gave us Figures 22, and 30. From these we conclude that for both deep and full MOND,
when the initial mass density becomes smoother, the total negative apparent mass M−becomes
smaller. However, this was not clear from Figures 23 and 31. This can be explained by the fact
that changing the radius has a much larger effect on the smoothness of the mass distribution
ρ, than the number of galaxies N . Also, for each different N a new random galaxy cluster
was generated, creating a random element in M− and explaining why the Figures are chaotic.
However, both for deep and full MOND, we see that for all values N and Rsphere, including
values based on the Virgo cluster, the amount of negative apparent mass is of the order M− ≈
−0.09M . Thus there exist realistic mass distributions that generate a significant amount of
negative apparent mass M− according to MOND with our method.

The observation that realistic mass configurations exist that generate a significant amount of
negative apparent mass, gives the opportunity to create falsification conditions. Suppose that
we find a galaxy cluster with a visible matter distribution ρ and lensing observations that the
MOND potential φM predicts correctly. Then MOND works correctly. Now if this potential φM
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also predicts apparent negative mass M−, then the DM model is falsified, since negative mass
is impossible in any model.

Furthermore, we can also create falsification conditions for MOND with this observation.
Namely if all potentials φ found with lensing observations give no negative apparent mass M−,
then the MOND potentials φM that correspond to negative apparent mass cannot be correct. In
that case, the MOND model would be falsified.

Lastly, we see that most results of deep and full MOND are similar. There are quantitative
differences, but we can derive the same conclusions from them. Although for example Figure
20 allowed us to conclude that deep MOND is based on wrong assumptions, these similarities
show that the asymptotic behaviour of MOND (i.e. deep MOND) is still relevant to create a
qualitative awareness about MOND.
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8. Conclusion and recommendations
In this section we will summarize our conclusions and give some recomendations.

We found that the full MOND potential φMfull follows the deep MOND potential φMdeep at
the outside of Virgo-like galaxy clusters, and it follows the ND potential φND at the center of
Virgo-like galaxy clusters. This suggests that the behaviour of galaxy clusters like Virgo cannot
be approximated with deep MOND, and thus need an interpolation function µ in the MOND
model to be accurate.

This conclusion can also be drawn from the Figures of the acceleration fields f in both deep
MOND and full MOND. In all three Figures 20, 27 and 28 there are large regions where f is
larger than a0, and large regions where f is smaller than a0. Again suggesting that the clusters
behaviour cannot be described with ND or deep MOND, and only by full MOND.

Another result is that we can generate realistic mass distributions ρ that give an apparent mass
distribution ρAM that is negative in some regions. The shape and location of these regions is
in agreement with what Milgrom [2]. The total negative apparent mass M− decreases when
the initial mass distribution ρ becomes smoother. However, we found that galaxy clusters like
the Virgo cluster do give a significant amount of negative apparent mass M− with our method.
Namely of the order M− ≈ 0.09M , with M the total mass of the actual mass distribution
ρ.

Therefore we can set up falsification conditions for the DM model. Suppose that we can find
a galaxy cluster with a visible matter distribution ρ where MOND predicts a potential φM that
correctly predicts the lensing observations. Then the MOND model seems to work. Now if this
potential φM also predicts negative apparent mass M−, then the DM model would be falsified,
because in DM and any other model, negative mass is impossible.

We can also set up falsification conditions for the MOND model. If all potentials φ found with
lensing observations give no negative apparent mass M−, then the potentials φM that MOND
predicts to give negative matter cannot be correct. Thus, the MOND model is falsified.

Some recommendations for followup reasearch are now given. Firstly the effect of different in-
terpolation functions µ can be investigated. This could have effect on the full MOND potential
φMfull, the acceleration f, and the amount of negative apparent mass M−.

Another recommendation is to investigate the effect of the initial mass distribution, and the
probability function that is used to generate it. We chose to generate the initial mass distribution
with the NFW profile. However the NFW profile gives a mass distribution for dark matter halos,
and we generated a mass distribution of visible mass in a galaxy cluster. The isothermal sphere
profile however, would also have been an incorrect choice of initial mass distribution, since it
has been designed to satisfy the hydrostatic equilibrium, which is an equilibrium based on ND.
In followup research, a distribution could be found in the same way as the isothermal sphere
profile, satisfying the MOND equation (23).

In this thesis we saw that the regions where the apparent mass distribution ρAM ≤ 0 were
mostly located outside of regions where the acceleration f ≥ a0. This suggests that there is
some relation between f and ρAM. In followup research this could be investigated more in
depth.
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In the apparent mass distribution there were also dotted crosses visible where ρAM ≈ 0 that
are artefacts of the Fourier transform. To lessen the size of these artefacts the step size in the
Fourier transform could be decreased in future research.

Lastly, Figures 23 and 31 did not show a clear relation between the number of galaxies N and
the negative apparent mass M−. We do expect such a relation to exist, and expect our chaotic
results to be caused by random noise in our measurements. The random noise might decrease
if M− is calculated for multiple galaxy clusters with a particular number of galaxies N , and an
average is computed. M− could also be computed for much larger N , since then the random
noise of M− might become relatively small in comparrisson to the relation between N and
M−.
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Appendix A
All code used in this thesis was based on the code by W. Hajer (to be published on the TU Delft
repository). In this appendix the functions that were used in the code are given, and the code
to find the ND potential φND, the full MOND potential φMfull, the acceleration f, the apparent
mass distribution ρAM and the negative apparent mass M− is given. φMdeep can be derived in a
similar way, using the iterative proces described in Section 4.5.1. How the Figures were made
is not included in this appendix.

Definition functions
In this part of the appendix all functions that were used in this thesis are given.

1 # Mass in a ball of radius r with spherically symmetric mass distribution
rho

2 def M_rad(r,rho):
3 def Mfunc(r_):
4 return 4*np.pi*r_**2*rho(r_)[0]
5 return integ.quad(Mfunc,a=0,b=r)
6

7 # pdf for gaussian distribution
8 def pdf2(x,s):
9 return np.e**(-x**2/(2*s**2))/(2*np.pi*s**2)**0.5

10

11 # Add a gaussian mass distribution with radius Rsphere at location x to
mass distribution rhox

12 def rho_gaus2(x,rhox):
13 dxyz=xyz-x
14 dsqrd = np.sum(dxyz**2,axis=1)
15 for i in np.where(dsqrd<=Rsphere**2):
16 rhox[i] = rhox[i] + Msphere*pdf2(dxyz[i,0],Rsphere/5)*pdf2(dxyz[i

,1],Rsphere/5)*pdf2(dxyz[i,2],Rsphere/5)
17 return rhox
18

19 # ND potential of an arbitrary mass distribution
20 def phi_rad(r,rho):
21 res = np.zeros_like(r)
22 def phifunc(R_):
23 return G*M_rad(R_,rho)[0]*R_**(-2)
24 if type(r) == np.float64:
25 for i,val in enumerate(np.array([r])):
26 res[i] = integ.quad(phifunc,a=1, b=val)[0]
27 else:
28 for i,val in enumerate(r):
29 res[i] = integ.quad(phifunc,a=1, b=val)[0]
30 return res
31

32 # ND potential of NFW-profile
33 def phi_NFW(x):
34 return phi_rad((x.T[0]**2+x.T[1]**2+x.T[2]**2)**0.5,rho_NFW)
35

36 # Create a random location according to mass distribution rho
37 def rand(rho):
38 u = np.random.uniform()
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39 v = np.random.uniform()
40 w = np.random.uniform()
41 def Finv(ran,rho):
42 def F_min_u(r):
43 return M_rad(r,rho)[0]/M_rad(rho(5)[1],rho)[0] - ran
44 return fsolve(F_min_u, x0 = rho(5)[1]/2)
45 return np.array([Finv(u,rho)[0],2*np.pi*v,np.arccos(2*w-1)])
46

47 # Generate N random co rdinates of mass M/N with mass distribution rho
48 def randClus(N,rho,M):
49 zero_vec = np.array([0.0,0.0,0.0])
50 x = np.array([zero_vec for i in range(N)])
51 m=M/N
52 for i in range(N):
53 x[i] = rand(rho)
54 return np.array([x,m])
55

56 # Constant mass distribution
57 def rho_cst(r):
58 R = 2*mpc
59 c = M*3/(4*np.pi*R**3)
60 out = np.where(r<R, c,0.0)
61 return (out,R)
62

63 # Mass distribution for NFW-profile
64 def rho_NFW(r):
65 c = 3.8
66 R_vir = 2*mpc
67 A_NFW = np.log(1+c)-c/(1+c)
68 M_vir = M
69 rho_halo = 3*M_vir/(4*np.pi*R_vir**3)
70 out = np.where(r<R_vir, rho_halo*R_vir/(3*A_NFW*r*(c**(-1)+r/R_vir)**2)

,0.0)
71 return(out,R_vir)
72

73 # Reshaping numpy arrays in a certain way
74 def reshape_3d(A):
75 Ax = np.concatenate((A[:,int((nsteps-1)/2):nsteps,:,:],A[:,0:int((

nsteps-1)/2),:,:]),axis=1)
76 Axy = np.concatenate((Ax[:,:,int((nsteps-1)/2):nsteps,:],Ax[:,:,0:int((

nsteps-1)/2),:]),axis=2)
77 Axyz = np.concatenate((Axy[:,:,:,int((nsteps-1)/2):nsteps],Axy[:,:,:,0:

int((nsteps-1)/2)]),axis=3)
78 return Axyz
79

80 def reshape_3d_inv(Axyz):
81 Axy = np.concatenate((Axyz[:,int(1+(nsteps-1)/2):nsteps,:,:],Axyz[:,0:

int(1+(nsteps-1)/2),:,:]),axis=3)
82 Ax = np.concatenate((Axy[:,:,int(1+(nsteps-1)/2):nsteps,:],Axy[:,:,0:

int(1+(nsteps-1)/2),:]),axis=2)
83 A = np.concatenate((Ax[:,:,:,int(1+(nsteps-1)/2):nsteps],Ax[:,:,:,0:int

(1+(nsteps-1)/2)]),axis=1)
84 return A
85

86 def reshape_1d(A):
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87 Ax = np.concatenate((A[int((nsteps-1)/2):nsteps,:,:],A[0:int((nsteps-1)
/2),:,:]),axis=0)

88 Axy = np.concatenate((Ax[:,int((nsteps-1)/2):nsteps,:],Ax[:,0:int((
nsteps-1)/2),:]),axis=1)

89 Axyz = np.concatenate((Axy[:,:,int((nsteps-1)/2):nsteps],Axy[:,:,0:int
((nsteps-1)/2)]),axis=2)

90 return Axyz
91

92 def reshape_1d_inv(Axyz):
93 Axy = np.concatenate((Axyz[int(1+(nsteps-1)/2):nsteps,:,:],Axyz[0:int

(1+(nsteps-1)/2),:,:]),axis=2)
94 Ax = np.concatenate((Axy[:,int(1+(nsteps-1)/2):nsteps,:],Axy[:,0:int

(1+(nsteps-1)/2),:]),axis=1)
95 A = np.concatenate((Ax[:,:,int(1+(nsteps-1)/2):nsteps],Ax[:,:,0:int(1+(

nsteps-1)/2)]),axis=0)
96 return A
97

98 #Iterative proces for deep MOND
99 def f_iterate(fnx,fny,fnz):

100 fnx_tilde,fny_tilde,fnz_tilde = np.fft.fftn(fnx),np.fft.fftn(fny),np.
fft.fftn(fnz)

101 k_dot_fn_tilde = Kx*fnx_tilde + Ky*fny_tilde + Kz*fnz_tilde
102 fn1x_tilde = Kx*k_dot_fn_tilde*kxyz_inv**2
103 fn1y_tilde = Ky*k_dot_fn_tilde*kxyz_inv**2
104 fn1z_tilde = Kz*k_dot_fn_tilde*kxyz_inv**2
105 fn1x,fn1y,fn1z = np.fft.ifftn(fn1x_tilde),np.fft.ifftn(fn1y_tilde),np.

fft.ifftn(fn1z_tilde)
106 return fn1x,fn1y,fn1z
107

108 #Iterative proces for deep MOND
109 def B_iterate(fn1x,fn1y,fn1z):
110 fn1 = np.sum([fn1x**2,fn1y**2,fn1z**2],axis=0)**0.5
111 Bn1x = fn1*fn1x-gx*a0
112 Bn1y = fn1*fn1y-gy*a0
113 Bn1z = fn1*fn1z-gz*a0
114 Bn1x_tilde,Bn1y_tilde,Bn1z_tilde = np.fft.fftn(Bn1x),np.fft.fftn(Bn1y),

np.fft.fftn(Bn1z)
115 k_dot_Bn1_tilde = Kx*Bn1x_tilde + Ky*Bn1y_tilde + Kz*Bn1z_tilde
116 Bn2x_tilde = Bn1x_tilde - Kx*k_dot_Bn1_tilde*kxyz_inv**2
117 Bn2y_tilde = Bn1y_tilde - Ky*k_dot_Bn1_tilde*kxyz_inv**2
118 Bn2z_tilde = Bn1z_tilde - Kz*k_dot_Bn1_tilde*kxyz_inv**2
119 Bn2x,Bn2y,Bn2z = np.fft.ifftn(Bn2x_tilde),np.fft.ifftn(Bn2y_tilde),np.

fft.ifftn(Bn2z_tilde)
120 Fn2x,Fn2y,Fn2z = gx*a0+Bn2x,gy*a0+Bn2y,gz*a0+Bn2z
121 Fn2 = np.sum([Fn2x**2,Fn2y**2,Fn2z**2],axis=0)**0.5
122 fn2x,fn2y,fn2z = Fn2x*Fn2**-0.5,Fn2y*Fn2**-0.5,Fn2z*Fn2**-0.5
123 return fn2x,fn2y,fn2z
124

125 #Iterative proces for full MOND
126 def f_it_int(fnx,fny,fnz):
127 fnx_tilde,fny_tilde,fnz_tilde = np.fft.fftn(fnx),np.fft.fftn(fny),np.

fft.fftn(fnz)
128 k_dot_fn_tilde = Kx*fnx_tilde + Ky*fny_tilde + Kz*fnz_tilde
129 fn1x_tilde = Kx*k_dot_fn_tilde*kxyz_inv**2
130 fn1y_tilde = Ky*k_dot_fn_tilde*kxyz_inv**2
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131 fn1z_tilde = Kz*k_dot_fn_tilde*kxyz_inv**2
132 fn1x,fn1y,fn1z = np.fft.ifftn(fn1x_tilde),np.fft.ifftn(fn1y_tilde),np.

fft.ifftn(fn1z_tilde)
133 return fn1x,fn1y,fn1z
134

135 #Iterative proces for full MOND
136 def B_it_int(fn1x,fn1y,fn1z):
137 fn1 = np.sum([fn1x**2,fn1y**2,fn1z**2],axis=0)**0.5
138 Bn1x = fn1x*fn1/(a0**2+fn1**2)**0.5-gx
139 Bn1y = fn1y*fn1/(a0**2+fn1**2)**0.5-gy
140 Bn1z = fn1z*fn1/(a0**2+fn1**2)**0.5-gz
141 Bn1x_tilde,Bn1y_tilde,Bn1z_tilde = np.fft.fftn(Bn1x),np.fft.fftn(Bn1y),

np.fft.fftn(Bn1z)
142 k_dot_Bn1_tilde = Kx*Bn1x_tilde + Ky*Bn1y_tilde + Kz*Bn1z_tilde
143 Bn2x_tilde = Bn1x_tilde - Kx*k_dot_Bn1_tilde*kxyz_inv**2
144 Bn2y_tilde = Bn1y_tilde - Ky*k_dot_Bn1_tilde*kxyz_inv**2
145 Bn2z_tilde = Bn1z_tilde - Kz*k_dot_Bn1_tilde*kxyz_inv**2
146 Bn2x,Bn2y,Bn2z = np.fft.ifftn(Bn2x_tilde),np.fft.ifftn(Bn2y_tilde),np.

fft.ifftn(Bn2z_tilde)
147 Fn2x,Fn2y,Fn2z = gx+Bn2x,gy+Bn2y,gz+Bn2z
148 Fn2 = np.sum([Fn2x**2,Fn2y**2,Fn2z**2],axis=0)**0.5
149 fn2x = Fn2x*(0.5+(a0**2+Fn2**2/4)**0.5/Fn2)**0.5
150 fn2y = Fn2y*(0.5+(a0**2+Fn2**2/4)**0.5/Fn2)**0.5
151 fn2z = Fn2z*(0.5+(a0**2+Fn2**2/4)**0.5/Fn2)**0.5
152 return fn2x,fn2y,fn2z

Code for finding the ND and full MOND potential, the acceleration field,
the apparent mass distribution and the total negative apparent mass
In this part of the appendix it is described how the ND potential φND, the full MOND potential
φMfull, the acceleration f, the apparent mass distribution ρAM and the negative apparent mass
M− are derived. φMdeep can be derived in a similar way, using the iterative proces described in
Section 4.5.1.

1 #Importing
2 import scipy.integrate as integ
3 import numpy as np
4 from scipy.optimize import fsolve
5 import scipy.stats as stat
6 import matplotlib.pyplot as plt
7

8 #Constants
9 ly = 9.4605284 *10**15 #m Light year

10 mpc = 3.26 *10**6 *ly #m Megaparsec
11 M_O = 1.9891*10**30 #kg Solar mass
12 G = 6.674 * 10**(-11) #m^3/kg/s^2 Gravitational constant
13 H0 = 72000/mpc # 1/s Hubble constant
14 c = 2.998 * 10**(8) # m/s Speed of light
15 a0 = c*H0/(2*np.pi) # m/s^2 Acceleration constant MOND
16 N = 1500 # Number of galaxies
17 M = 10**15*M_O # Total mass
18 R = 2*mpc # Radius galaxy cluster
19 nsteps = 257
20 nstepsc = 257j
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21 dv = (2*2*R/(nsteps-1))**3
22 dx = 2*2*R/(nsteps-1)
23 Msphere = M/N
24 Rsphere = 5*dx # straal sphere
25 d = M*3/(N*4*np.pi*Rsphere**3) # dichtheid sphere
26

27 #Define xyz space
28 xyz = np.mgrid[-2*R:2*R:nstepsc,-2*R:2*R:nstepsc,-2*R:2*R:nstepsc].reshape

(3,-1).T #mesh of 513x513x513 points
29 rxyz = np.sum(xyz**2,axis=0)**0.5
30

31 #Define K space
32 Kvector = np.mgrid[-np.pi/dx:np.pi/dx:nstepsc, -np.pi/dx:np.pi/dx:nstepsc,-

np.pi/dx:np.pi/dx:nstepsc]
33 Kxyz = reshape_3d(Kvector)
34 Kx = Kxyz[0]
35 Ky = Kxyz[1]
36 Kz = Kxyz[2]
37 kxyz = np.sum(Kxyz**2,axis=0)**0.5 #find the lenght of all k vectors
38 kxyz_inv = 1/kxyz
39 kxyz_inv[0,0,0]=0
40

41 # Generate random mass distribution
42 clus = randClus(N,rho_NFW,M)[0]
43 zero_vec = np.array([0.0,0.0,0.0])
44 clusxyz = np.array([zero_vec for i in range(N)])
45 for i in range(N):
46 clusxyz[i] = np.array([clus[i][0]*np.cos(clus[i][1])*np.sin(clus[i][2])

,clus[i][0]*np.sin(clus[i][1])*np.sin(clus[i][2]),clus[i][0]*np.cos(clus
[i][2])])

47 clus_ijk = np.round(clusxyz*256/(8*mpc)).astype(’int’)
48 clus_int = clus_ijk*8*mpc/256
49 rho = np.zeros(nsteps**3)
50 for i in range(N):
51 rho = rho_gaus2(clus_int[i],rho)
52 rho = rho.reshape(nsteps,nsteps,nsteps)
53

54 # Find ND potential
55

56 rhotilde = np.fft.fftn(rho)#,np.array([nsteps,nsteps,nsteps])).astype(’
float64’)

57 phi_N_tilde = -4*np.pi*G*rhotilde*kxyz_inv**2
58 phi_N = np.fft.ifftn(phi_N_tilde).astype(’float64’)
59

60 # Calculate vector field g
61 gx_tilde = 1j*np.multiply(Kx,phi_N_tilde)
62 gy_tilde = 1j*np.multiply(Ky,phi_N_tilde)
63 gz_tilde = 1j*np.multiply(Kz,phi_N_tilde)
64 gx = np.fft.ifftn(gx_tilde)
65 gy = np.fft.ifftn(gy_tilde)
66 gz = np.fft.ifftn(gz_tilde)
67 #Length of g
68 g = np.sum([gx**2,gy**2,gz**2],axis=0)**0.5
69 g_inv = 1/g
70 for i in range(0,nsteps):
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71 for k in range(0,nsteps):
72 for l in range(0,nsteps):
73 if g[i,k,l]==0:
74 g_inv[i,k,l]=0 #Wouter had heir 1 ipv 0, maakt niet uit

want je vermenigvuldigt ook met gx,gy,gz, en die zijn 0 op deze locaties
75 # Calculate f0
76 f0xI = gx*(0.5+(a0**2+g**2/4)**0.5*g_inv)**0.5
77 f0yI = gy*(0.5+(a0**2+g**2/4)**0.5*g_inv)**0.5
78 f0zI = gz*(0.5+(a0**2+g**2/4)**0.5*g_inv)**0.5
79

80 # Iterate n times
81 n = 2
82 for i in range(n):
83 f1xI,f1yI,f1zI = f_it_int(f0xI,f0yI,f0zI)
84 f2xI,f2yI,f2zI = B_it_int(f1xI,f1yI,f1zI)
85 f0xI,f0yI,f0zI = f2xI,f2yI,f2zI
86 ffxI,ffyI,ffzI = f0xI,f0yI,f0zI
87

88 # Find MOND potential
89 ffx_tildeI,ffy_tildeI,ffz_tildeI = np.fft.fftn(ffxI),np.fft.fftn(ffyI),np.

fft.fftn(ffzI)
90 phi_M_tildeI = -1j*(Kx*ffx_tildeI + Ky*ffy_tildeI + Kz*ffz_tildeI)*kxyz_inv

**2
91 phi_MI = np.fft.ifftn(phi_M_tildeI).astype(’float64’)
92

93 # Find relative size of acceleration field fn
94 f_n_over_a0I = (np.sum([ffxI**2,ffyI**2,ffzI**2],axis=0)**0.5/a0).astype(’

float64’)
95

96 # Find apparent mass distribution
97 rho_dark_tildeI = - kxyz**2 * phi_M_tildeI /(4*np.pi*G)
98 rho_darkI = np.fft.ifftn(rho_dark_tildeI).astype(’float64’)
99

100 # Find negative apparent mass
101 dark = rho_dark[np.where(rxyz<=2*mpc)]
102 M_neg = np.sum(dark[np.where(dark<0)])*dv
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