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A Review of Numerical
Methodologies for Predicting
Rotating Stall and Surge in
High-Speed Centrifugal
Compressors
High-speed supersonic radial compressors are a critical enabling technology for meeting
the requirements of future aviation-propulsion and thermal-management systems. These
turbomachines must be designed to be both efficient and robust on the widest possible
operating range. Flow instabilities in the form of rotating stall and surge are therefore
phenomena that must be accurately predicted early in the design process. Unsteady full-
annulus computational fluid dynamics (CFD) can be used to get accurate information about
the onset of instabilities, but at the expense of costly simulations. As a result, the design of
new compressors continues to rely on existing correlations for the prediction of the critical
mass flowrate. This approach, however, leads to suboptimal compressor designs. This
article provides a review of the numerical methodologies that can be used for the accurate
prediction of the critical mass flowrate in high-speed centrifugal compressors. Methods of
different fidelity level and computational cost are described. Two particularly promising
models, namely, those proposed by Spakovszky and Sun, are subsequently examined in more
detail. Exemplary applications of these two models are finally discussed.
[DOI: 10.1115/1.4066715]
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1 Introduction

The current trend of increasing the pressure ratio and speed in
radial compressors of novel propulsion and thermal management
systems can lead to compact transonic designs characterized by
reduced operating range. Examples of such applications are high-
speed air compressors for H2-fed fuel cells, refrigerant cycle
compressors for environmental control systems based on the vapor-
compression cycle concept, and compressors for novel turboshafts
of onboard power-generation systems for hybrid propulsion [1].
Operation at reduced mass flowrate is particularly severe for high-
speed machines due to the occurrence of shock-wave—boundary-
layer interaction phenomena and large-scale boundary layer
separations that can lead to rotating stall or surge [2].
Surge consists of axisymmetric flowperturbations that lead, in the

most dramatic case, to intermittent reverse flow (i.e., deep surge). Its
fundamental mechanism was described by Greitzer [3], who
attributed the phenomenon to the natural resonance of the
compression system excited by the unsteady action of the

compressor. Rotating stall is characterized by perturbations with a
finite circumferential extension that propagate and evolve through-
out the machine. In this condition, the compressor performance is
degraded even if it continues to work steadily. Emmons [4] was the
first to describe the fundamentalmechanism, relating rotating stall to
the flow blockage generated by a local flow separation. Under these
conditions, the flow incidence of adjacent blades is altered, and the
stalled lobe passes to the neighboring blades. The physical
phenomenon is illustrated in Fig. 1. In most of the cases, rotating

Fig. 1 Sketch of the rotating stall mechanism, adapted from
Emmons et al. [4]
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stall eventually leads to surge, and both phenomenamust be avoided
for the safe and efficient operation of the compressor. In order to
guarantee attached flow at all operating conditions, designers
typically apply a significant safety margin. In the early design stage,
such margin is estimated by means of semi-empirical correlations,
and reduced later in the process through more accurate computa-
tional fluid dynamics (CFD) studies. The accurate prediction of
rotating stall and surge early in the design process of compressors is
therefore of paramount importance to meet the required target of
operability.
Instability models have been developed over the last 80 years and

reviewed, for instance, by Day [5]. Rotating stall was deeply
investigated in the 1940swhen it became evident that certain aircraft
engines faced catastrophic failures under specific flight conditions.
Compared to centrifugal machines, the flow in axial compressors
undergoes similar instability mechanisms, even though the critical
location is usually different [6–8]. In axial compressors, flow
instabilities usually originate at the blade tip of the first stage, where
the blade loading is at its maximum. In radial machines, the diffuser
is usually the most critical component, where the low momentum
flow in the boundary layer tends to reverse its direction due to the
adverse pressure gradient.
In spite of the many studies, there is not yet consensus in the

research community on whether the critical mass flowrate must be
set on stall or surge. Many authors suggest that rotating low-
amplitude waves are always the main inception mechanism for both
stall and surge. In their experimental campaigns, Camp and Day [9],
Tryfonidis et al. [10], andGarnier et al. [11] showed that thesewaves
always occurred before any rotating stall or surge event. They
noticed that these prestall waves can be distinguished into two
different types:

� long-wavelength, or modal-waves, which are characterized by
a circumferential extension of the same order of magnitude of
the machine diameter, and their growth process spans several
rotor revolutions;

� short-wavelength, or spike-waves, whose length scale is that of
the blade pitch, and their growth process saturates in a few rotor
revolutions.

The two types of waves as detected experimentally by six
circumferentially distributed hot-wires [9] are displayed in Fig. 2.
As can be observed from these pressure signals, modal and spike
stall are characterized by a very different dynamic behavior. Modal
perturbations can have from 1 to 6–10 circumferential lobes, and
rotate at a fraction of the shaft speed (�10� 40%). On the
contrary, spike perturbations were found to rotate much faster, at
around �70� 90% of the rotational speed. This was in agreement
with the intuitions of Emmons et al. [4], who attributed the rotational
speed of the disturbance to the inertia of the stalled region. As the
volume of the stalled portion decreases, the ratio of pressure forces
to mass increases. This leads to perturbations whose rotational rate
approaches that of the shaft.
The critical mass flowrate at which rotating stall and surge occur

can be well predicted experimentally. Full annulus unsteady CFD
simulations also provide accurate results [12–16], but their use is
still limited due to the high computational cost. Several reduced
order models (ROM) have been developed over the years to predict
the onset of instabilities at low cost. Greitzer [3] proposed a lumped
parameters model capable of determining the occurrence of surge in
a compression system. The rotating stall problem was tackled by
Moore [17–19], who modeled the evolution of circumferential inlet
perturbations in the machine through incompressible two-
dimensional (2D) linearized equations applied to each subcompo-
nent. Coupling together the different compressor components, he
derived an eigenvalue problem (EVP), whose solution provides the
onset of rotating stall waves. Moore and Greitzer subsequently
developed a unified model [20,21], capable of describing the onset,
growth, and interaction of stall and surge-like perturbations.
A semi-empirical model for low-speed radial compressors has

been proposed by Senoo and Kinoshita [22]. The model correlates

the rotating stall limit with the flow angle at the diffuser inlet and the
geometrical characteristics of the machine. At those critical
conditions, the radially outwards momentum of the slow particles
in the boundary layer is not large enough to overcome the adverse
pressure gradient, leading to flow reversal and large-scale
instability. The applicability of the model to high-speed compres-
sors has not been assessed yet.
Research carried out atMIT in the 1990s led to the conception and

development of more accurate models. Bonnaure [23] modeled
instabilities in high-speed axial compressor stages by solving the 2D
linearized compressible flow perturbation equations. Feulner [24]
extended the model in the frequency domain to be suitable for
control purposes. Amilestone in themodeling of flow instabilities in
centrifugal compressors was reached by Spakovszky [25–27], who
developed a 2D incompressible model capable of accurately
predicting modal stall inception in low-speed axial and radial
machines. The main flaw of the model is arguably its inaccuracy to
deal with compressibility and spike-stall phenomena.
Gong [28,29] proposed a three-dimensional (3D) compressible

flow model able to predict modal and spike-stall phenomena. It is
based on the numerical simulation of the unsteady Euler equations
augmented with body forces (BFM), a concept initially proposed by
Marble [30]. The use of body forces makes the model computa-
tionally efficient, as the mesh can be coarse due to the absence of the
physical blades in the domain. Gong [28,29] showed that the model
was able to predict spike stall solely in axial machines, and its
accuracywas found to be highly dependent on the formulation of the

Fig. 2 Modal stall (top) and spike stall (bottom) hot-wire
readings, from Camp and Day [9]
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body forces. Because of this reason, more accurate BFM were
conceived by, e.g., Chima [31] and then Longley [32], who added
the blade metal blockage factor into the BFM formulation. Benneke
[33] and Kottapalli [34] developed BFM models specifically
tailored to centrifugal compressors; however, their application to
stall predictions failed due to numerical instability issues. Other
versions of BFM-based flow models for compressor stall simu-
lations were proposed by Righi et al. [35–38], Ji et al. [39], and
Zheng et al. [40].
More recently, Sun et al. [41] applied the global instability theory

[42] to turbomachinery flows. The approach revolves around a
BiGlobal stability analysis of the circumferentially averaged
solution of a single-passage Reynolds-averaged Navier–Stokes
(RANS) simulation. Liu et al. [43], Yunfei et al. [44], Sun et al. [45],
Hu et al. [46], He et al. [47], Xie et al. [48,49], and Xu et al. [50,51]
extended the model and applied it to stall prediction in axial and
radial high-speed machines. In the investigated cases, the results of
themodel provided a value of the criticalmass flowratewithin 2% of
the experimental datum. In addition, the model accuracy was found
to be unaffected by the choice of the turbulence closure used for the
computation of the base flow [49].
With the abundance of available models, there arises the need of

understanding their suitability for the design of high-speed radial
compressors. This review provides a comprehensive discussion of
the strengths and limitations of the various modeling approaches.
Considerations on the appropriate model selection are discussed.
Two models that appear particularly promising, namely, those of
Spakovszky and Sun, are detailed and applied to exemplary flow
instability problems.

2 Methodologies for Instabilities Prediction

The various numerical models for predicting flow instabilities in
compressors can be grouped in three main categories:

� High-fidelity unsteady CFD modeling (HiFi-CFD)
� Reduced-order unsteady CFD modeling (ROM-CFD)
� Linearized stability analysis (LSA)

The use of the occurrence of periodic oscillations in the residuals
of RANS simulations as a criterion for the onset of instabilities is
here not considered as a further method, since the results can be
highly dependent on the turbulence model and numerical settings
[52].

2.1 High-Fidelity Unsteady Computational Fluid Dynamics
Modeling. In the context of compressor instability, HiFi-CFD
refers to full annulus unsteady Reynolds-Averaged Navier–Stokes
(URANS) simulations, large eddy simulations (LES) or hybrid
RANS-LES approaches. The whole machine needs to be meshed
since the rotating stall perturbations break the circumferential
periodicity of the compressor geometry, which renders single-
passage simulations unsuitable. The mesh needs to guarantee an
accurate resolution of the boundary layers, and the simulated time
interval should span several rotor revolutions. This class of very
accurate methods is suited to validate results from reduced order
models or to investigate the physics of the instability phenomena.
The choice of the turbulencemodel depends on the level of details

required. Rotating stall is a phenomenon triggered by local
separations, where an accurate resolution of the boundary layer is
fundamental. Several authors obtained good accuracy of the critical
mass flowrate using URANS modeling [12–16]. As a result, this
approach should be the first to be employed, followed eventually by
LES in case a higher level of details of the small-scale effects is
required.
If the simulation of surge phenomena is of concern, the

compressor CFD domain must be coupled with other system
components to provide realistic dynamic boundary conditions. Ji
et al. [39] and Huang et al. [53] describe how such coupling may be
established using reduced order models for the other system
components. On the other hand, one can simulate stall events by

exclusively focusing on the compressor and treating it as if it were
decoupled from the system.
To predict the critical mass flowrate, different simulation

strategies can be used. The first option is to perform a simulation
at a near stallmass flowrate until statistical steadiness is achieved.At
this point, the mass flowrate is reduced, and the process is repeated
until the instability shows up spontaneously in the domain. This
method requires extensive computational resources since many
simulations must be performed for several rotor revolutions.
An alternative strategy is to artificially force perturbations at the

most critical location. The force should be of minimal magnitude,
brief in duration, and designed to excite the maximum possible
number of fluidmodes. Thismethod allows reducing the cost of each
simulation since the perturbations are directly excited. An example
of the usable perturbation shape is provided by the 3D short-scale
force impulse described by Gong [28].
Another alternative numerical methodology for reducing the

computational cost is to promote local flow separation by increasing
the effective stagger angle of a single blade. Pullan et al. [12]
investigated spike-stall mechanisms in the NASA E3 rotor using
URANS simulations with the Spalart–Allmaras (SA) turbulence
model. They increased the stagger angle of one blade by 1 deg,
setting the spike location. They compared the results of 3D and 2D
simulations, and they found matching results, leading to the
conclusion that the small-scale effect can be neglected once large-
scale flow separations emerge.
A similar approach was employed by Dodds and Vahdati [15],

who studied the behavior of an eight-stage high-speed compressor
during slow acceleration maneuvers with URANS modeling. They
induced amismatch in the front stages by adjusting the variable stator
vanes, thereby reducing the time required for the rotating stall to form.
Large eddy simulationsmodeling can be applied to investigate the

effects of broadband and small-scale flow structures on the stall
process. S€undstrom et al. [54,55] used LES to investigate the surge
and rotating stall characteristics of a turbocharger for automotive
applications. They analyzed the correlation between the instability
inception and evolution with the main blading characteristics, such
as the instantaneous incidence and loading. Proper orthogonal
decomposition was employed to extract the most energetic flow
structures during surge and stall events, revealing the underlying
physics of the process.
In conclusion, high-fidelity CFD is versatile and applicable to

various compressor types and fluid scenarios, and limited primarily
by the available computational resources. It also serves as an
effective tool to evaluate nonlinear effects, to scrutinize local
details, and to validate ROM.

2.2 Reduced-OrderUnsteadyComputational FluidDynam-
icsModeling. To reduce the computational cost ofHiFi-CFD,Gong
[28] proposed to solve the full-annulus incompressible Euler
axisymmetric equations with the use of a BFM
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where q, ur , uh, uz, q are the density, absolute velocity components,
and pressure. Fr ,Fh,Fz are the components of the body force, andX
is the shaft angular velocity, which serves to formulate the equations
in the stationary frame for the rotating blocks. The BFM allows to
drastically reduce the computational cost since the mesh does not
need to resolve the blades and the associated boundary layers. In
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addition, simulation time-step can be larger as in HiFi-CFD. For this
modeling approach, an example of simulation workflow is given in
Fig. 3.
In Gong’s original work, the body force was expressed in relation

to the pressure-turning characteristics of the blade, as derived from
experimental data. In alternative versions, however, the model
coefficients are calibrated using the results of single-passage RANS
simulations. Perturbations were promoted by the inclusion of a
short-scale 3D disturbance at the blade tip, and both spike andmodal
waves were successfully predicted in axial compressors.
Many evolutions of this technique are available in the literature,

with the main differences resulting from the chosen fidelity level of
the governing equations and the calibration data type of the BFM.
Several references for these works can be found in the introduction.
In summary, ROM-CFD models are adequate for predicting the

instability limit of low and high-speed compressors to finite
amplitude perturbations. Their drawbacks include higher computa-
tional cost compared to LSA models and lower accuracy compared
toHiFi-CFD.The accuracy ofROM-CFDmodels highly depends on
the BFM.

2.3 Linearized Stability Analysis. Linearized stability analy-
sis is a mathematical technique used to examine the response of a
dynamic system to perturbations of infinitesimal amplitude. In the
context of fluid flows in compressors, LSAcan be used to analyze the
stability characteristics of the fluid system when perturbed around a
steady-state condition, corresponding to a stable operating point of
the machine. The dynamics of a time-invariant nonlinear system
without external forcing can be expressed by the general governing
equations

_x ¼ fðxÞ (2)

where x denotes the state space vector and f the nonlinear governing
equations. The specific state vector and equations vary depending on
the employed model. The state vector generally corresponds to the
primitive flow variables x ¼ ½q, u, p�T, and f represents the
Navier–Stokes equations. Under the assumption of small amplitude
perturbations around an equilibriumpoint (e.g., a steady compressor
operating point), the equations can be linearized and written as

_x0 ¼ @f

@x

����
x0

� x0 ¼ A � x0 (3)

where x0 denotes the equilibrium point, x0 ¼ x� x0 is the related
perturbation vector, andA is the dynamic matrix of the system. The
methods developed for compressor instabilities differ in the
underlying governing equations and state space variables, but they
all result in an EVP whose solution provides the stability
characteristics of the system.
Themodelswithin this category cover a broad spectrumof fidelity

levels, and the choice should be tailored to the particular application.
From a qualitative perspective, a smaller dimension of the state
space vector translates to reduced computational costs, increased

modeling weight, and increased sensitivity of results to model
parameters. The primary strength of these models lies in their
computational efficiency relative to the other two classes, rendering
them well-suited for investigating the design space of innovative
compressors with the goal of expanding their operating range.
Sections 2.3.1–2.3.3 provide a comprehensive description of

three LSA-basedmodels of increasing complexity and accuracy: the
Greitzer Model, the Spakovszky Model, and the Sun Model.

2.3.1 The Greitzer Model. Every compression system can be
represented by an equivalent model consisting of the components
represented in Fig. 4. Greitzer assumed a lumped parameter
approach, with a uniform inviscid incompressible flow in the ducts,
and a compressible plenum where isentropic transformations take
place. He introduced the parameters

B ¼ u

2a

ffiffiffiffiffiffiffiffiffiffi
Vp

AcLc

r

G ¼ LtAc

LcAt

8>>>><>>>>: (4)

where u is the flow velocity in the compressor duct, a ¼ ffiffiffiffiffiffiffiffi
cRT

p
is the

speed of sound, Vp is the plenum volume, and Ac, Lc,At, Lt are the
area and length of the compressor and throttle ducts. The governing
equations can be written in nondimensional form as

d/c

dn
¼ B wc /c,Xð Þ � wp

� �
d/t

dn
¼ B

G
wp � wt /tð Þ� �

dwp

dn
¼ 1

B
/c � /tð Þ

8>>>>>>>>>><>>>>>>>>>>:
(5)

where x ¼ ½/c,/t,wp�T is the state vector comprised by flow

coefficients in the compressor and throttle ducts, and by the

nondimensional plenum pressure. n ¼ ta
ffiffiffiffiffiffiffi
Ac

VpLc

q
is the nondimen-

sional time, wcð/c,XÞ and wtð/tÞ are the compressor and throttle
characteristics, specific for each system. The characteristic
polynomial of Eq. (5) is given by

s kð Þ ¼ �k3 þ k2 Bw0
c0
� Bw0

t0

G

� �
þ k

B2w0
c0
w0
t0

G
� 1

G
� 1

� �
þ Bw0

c0

G
� Bw0

t0

G

� �
(6)

where the slopes of the characteristics are evaluated at the operating
point. If all the three roots of Eq. (6) have negative real part, the
system is stable to small surge-like perturbations. The result can be

Fig. 3 ROM-CFD workflow

Fig. 4 Sketch of the Greitzer model compression system
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used to alter the B and G characteristics of the system during the
design process to enhance stability.

2.3.2 The Spakovszky Model. The underlying idea is to solve
simplified perturbation equations for every component of a
compressor in terms of the complex frequency s, and then connect
the single transfer functions linking input to output perturbations.
These modular characteristics enable easy implementation and
flexibility of the model to treat different kinds of compressors.
The model is based on the assumption of uniform 2D

perturbations along the blade span, incompressibility of the base-
flow, and exploits a semi-actuator disk model for modeling the
components acting on the flow (e.g., bladed rows and impeller). The
state vector utilized in the analysis is given by x0 ¼ ½u0z, u0h, p0�T for
the axial stations (e.g., the inlet of a radial impeller) or ½u0r, u0h, p0�T for
the radial ones (e.g., the outlet of a radial impeller). Expressions
for the transfer functions of every component (e.g., inlet duct, rotor
rows, stator rows, etc.…) are given in Ref. [25]. The transfer
functions connect the output to the input n-th circumferential
harmonic perturbation

x02 ¼
X1
n¼0

Bn � x01,n (7)

where Bn is the n-th circumferential harmonic transfer function of
the specific component, and 1, 2 refers to the input and output
stations. For the inlet and outlet domains, the transfer functions
connect the perturbations at a given location and the fundamental
modes present in the domain

x0 ¼
X1
n¼0

Tn �
AðsÞ
BðsÞ
CðsÞ

2664
3775
n

(8)

whereTn is then-th transfer functionof thespecific inletoroutletdomain,
and AnðsÞ,BnðsÞ,CnðsÞ refers to the n-th two pressure and vorticity
waves. Considering, as an example, the vaned centrifugal compressor of
Fig. 5, the n-th system transmission matrix can be expressed as

Xsys,nðsÞ ¼ T�1
ax,nðz4, sÞ � Bdif,nðsÞ

� Bvlsd,nðsÞ � Bimp,nðsÞ � Tax,nðz1, sÞ (9)

where Tax,n, Bdif,n, Bvlsd,n, Bimp,n are respectively the n-th transfer
functions for an axial duct, a vaned diffuser, a vaneless diffuser and a
radial impeller. Xsys,nðsÞ is defined through the relation

AðsÞ
BðsÞ
CðsÞ

2664
3775
dn,n

¼ Xsys,nðsÞ �
AðsÞ
BðsÞ
CðsÞ

2664
3775
up,n

(10)

where up and dn refer to the far upstream and downstream locations
with respect to the compressor.
The boundary conditions needed to close the problem are:

� Zero forward potential wave at STA1

BnðsÞ
���
up

¼ 0 (11)

� Zero vortical wave at STA1

CnðsÞ
���
up

¼ 0 (12)

� Zero backward potential wave at STA5

AnðsÞ
���
dn

¼ 0 (13)

Application of the boundary conditions results in the following
homogeneous system:

EC � Xsys,nðsÞ
IC

� 	
�

AnðsÞ
BnðsÞ
CnðsÞ

264
375
up

¼
0

0

0

264
375, 8n � 0 (14)

where the exit and inlet boundary condition blocks are defined as

EC ¼ � s

n
� �udnz � j�udnh

� �
enz5 ,

s

n
� �udnz þ j�udnh

� �
e�nz5 , 0

� 	
(15)

IC ¼ 0 1 0

0 0 1

� 	
(16)

To admit nontrivial solutions, the determinant of the coefficient
matrix in Eq. (14) must be zero. Since the matrix is composed by
transcendental functions of s, there is no indication of the number of
roots. If one of the roots has a positive real part, the corresponding
mode, if excited, will lead to instability, while the imaginary part
describes its rotation rate. The critical mass flowrate is identified as
the mass flowrate at which the first pole transitions into the positive
real half-plane.

2.3.3 The Sun Global Instability Model. Rotating stall pertur-
bations move along the annulus of the machine and remain confined
in the computational domain while growing in amplitude. The
baseflow field is 2p periodic in the circumferential direction and this
makes BiGlobal temporal stability analysis suitable. The instability
model developed by Sun [41] is a modification of the classical
BiGlobal method developed for laminar to turbulent boundary layer
transition. The physical plane used in the analysis is the meridional
plane of the machine ðz, rÞ and the h coordinate is treated as a
direction of invariance.
The starting point is the 3DEuler equations with a body forceF to

model the effects of the blades on the flow

Dq
Dt

¼ �qr � u

q
Du

Dt
¼ �rpþ qF

q
De

Dt
¼ �pr � uþ qWF

8>>>>>>><>>>>>>>:
(17)

where
DðÞ
Dt refers to thematerial derivative, e to the total energy, andF

to the body force.WF is the work done by the body force on the flow.
The equations are then linearly perturbed and written in the
cylindrical reference frame of the machine. In compact form they
read

Fig. 5 Sketch of the NASA CC3 vaned centrifugal compressor,
adapted from [25]
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A
@

@t
þ B

@

@r
þ C

@

r@h
þ E

@

@z
þ Rþ S

� �
� x0 ¼ 0 (18)

where the matrix S refers to the body force terms. The detailed
perturbation Eq. (18) is given in appendix A for x0 ¼
½q0, u0r , u0h, u0z, p0�T as state vector.
The solution of Eq. (18) can be decomposed in the following

series over all possible values of m and x:

x0ðr, z, h, tÞ ¼
X
m,x

~xmxðr, zÞ � e�jðxt�mhÞ (19)

where m represents the circumferential mode number, x is the
complex frequency, j2 ¼ �1, and ~xmxðr, zÞ is the eigenfunction
associated with a specific ½m,x� couple. Substituting the decom-
position in Eq. (18) and considering every possible mode results in

�jxAþ B
@

@r
þ jm

r
Cþ E

@

@z
þ Rþ S

� �
� ex ¼ 0 (20)

wherem,x subscripts have been dropped for convenience. Equation
(20) represents an eigenvalue problem, where perturbations exist
only for thosemodes having shape ~xmxðr, zÞ � ejmh, and fluctuating at
x, solution of the EVP. Equation (19) shows that for every
eigenvalue x ¼ xR þ jxI:

� xR > 0 indicates rotation of the perturbation in the same
direction of the shaft revolution, as it is usually experienced for
compressors.

� xR < 0 implies a backward rotating mode, as it has been
documented for some peculiar case of compressor pre-stall
waves [56].

� xI > 0 denotes exponential growth of the perturbation
amplitude in time, leading rapidly to a nonlinear transient
and eventually to rotating stall and/or surge.

� xI < 0 indicates a stable mode that will decay if excited.

Given these considerations, the rotating speed (RS) and damping
factor (DF) of the perturbations are defined as

RS ¼ xR

mX

DF ¼ xI

mX

8>><>>: (21)

whereX is the shaft angular rate.With this definition, RS defines the
relative angular speed of the stall inception wave compared to the
shaft. The ultimate goal of the analysis is to identify the eigenvalue
with the largest DF that determines the stability margin of the
compressor. The mass flowrate at which the first eigenvalue crosses
the real axis sets the instability limit.
Equation (20) is discretized on a two-dimensional grid of the

meridional flow passage. To improve the numerical accuracy, the
physical grid in the ðz, rÞ domain is mapped to a computational grid
ðn, gÞ, where the differential operator is expressed with the
Chebyshev-Gauss-Lobatto collocation method [57]. On this auxil-
iary grid, the nodes must be located on the Gauss–Lobatto points

ni ¼ cos
pi

Nz � 1

� �
, i ¼ 0,…,Nz � 1

gj ¼ cos
pj

Nr � 1

� �
, j ¼ 0,…,Nr � 1

8>>>><>>>>: (22)

where Nz,Nr are the number of points along the streamwise and
spanwise directions used in the physical domain. Equation (18) is
then converted in

�jxAþ bB @

@n
þ jm

r
Cþ bE @

@g
þ Rþ S

� �
� ex ¼ 0 (23)

where the transformed axial and radial matrices are given by

bB ¼ 1

J
E
@r

@g
� B

@z

@g

� �
bE ¼ 1

J
B
@z

@n
� E

@r

@n

� �
8>>>><>>>>: (24)

and J is the Jacobian of the transformation computed with finite
differences

J ¼ @z

@n
@r

@g
� @z

@g
@r

@n
� Dz

Dn
Dr
Dg

� Dz
Dg

Dr
Dn

(25)

The n and g differentiation operators can now be expressed with the
Chebyshev-Gauss-Lobatto collocation method, which results in

�jxAþ B̂d þ jm

r
Cþ Êd þ Rþ S

� �
� ex ¼ 0 (26)

As shown in theAppendixB, theSmatrix related to the body force
perturbations can be expressed as

S ¼ Sss

1þ s �jxþ jmXð Þ (27)

where Sss denotes the steady-state BFM coefficient matrix, and s is a
time-delay constant representing the lag between the flow
perturbations and their effect on the body force field.
By defining the matrix

J ¼ B̂d þ jm

r
Cþ Êd þ R (28)

the nonlinear eigenvalue problem results in

�jxAþ Jþ Sss

1þ s �jxþ jmXð Þ
� �

� ex ¼ 0 (29)

Multiplyingwith the denominator and rearranging the terms yields a
quadratic EVP [58]

ðL2x
2 þ L1xþ L0Þ � ~x ¼ 0 (30)

for the matrices

L0 ¼ Jð1þ jmXsÞ þ Sss

L1 ¼ AðmXs� jÞ � jsJ

L2 ¼ �sA

8>><>>: (31)

The definition of the generalized state vector ~u ¼ ½~x,x~x�T allows
one to transform Eq. (30) in a generalized linear EVP

Y � ~u ¼ xP � ~u (32)

where

Y ¼ �L0 0

0 I

" #
,

P ¼ L1 L2

I 0

" # (33)

The eigenvalues of Eq. (32) can be solved by the implicitly restarted
Arnoldi method in the ARPACK library [59]. Because the search
should typically focus on the most unstable eigenmode, and its
corresponding eigenvalue is expected in a region close to a value r
than can be estimated, a shift-and-invert strategy can be applied
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Ŷ � ~u ¼ k~u (34)

where Ŷ ¼ ðY� rPÞ�1
P, and k ¼ 1=ðx� rÞ. The computational

cost of the model is determined by the eigenvalue solver, which
scales with the cube of the number of grid nodes. Since the model
performs a temporal stability analysis, where x is the unknown
eigenvalue and m is a prefixed circumferential harmonic, it is
essential to consider all potential values ofmwhen searching for the
critical mode. However, this procedure can be simplified by
recognizing that, in the context of compressor instabilities, m ¼ 1
is always the critical harmonic, as demonstrated by Sun et al. [41].
Consequently, the prediction of instability limits requires solely to
solve for m ¼ 1.

2.4 Model Selection. The selection of the most appropriate
model for predicting the criticalmass flowrate necessarily involves a
tradeoff between accuracy and computational cost. Based on the
review of existing literature, the following considerations are made:

� The treatment of instabilities in high-speed compressors with
models developed for low-speed machines leads to misleading
results, especially in those machines affected by critical
compressible modes. A quantitative analysis of the discrep-
ancies is given by Liu et al. [43].

� Models that use semi-actuator disk strategies produce
inaccurate results for spike-stall inception. These models
assume that all the blades operate under the same flow
conditions, which is unrealistic when spikes occur. The model
limitations were demonstrated on the case of a high-speed
compressor with vaned diffuser by Spakovszky and Roduner
[60]. Modal-stall was successfully detected in cases with an
open bleed valve, but the model failed to provide accurate
results for spike-stall inception mechanisms, observed when
the bleed valve was closed.

Given their relatively low computational cost and high accuracy,
the Spakovszky model and the Sun model are deemed most suited
for the flow analysis and design optimization of radial compressors.
For this reason, two exemplary applications of these two models are
documented in the following.

3 Applications

3.1 Spakovszky Model. The Spakovszky model has been
applied to predict the stall mass flowrate of a high-speed radial
compressor for inverse Rankine integrated systems (IRIS) [1]. The
compressor operates with the refrigerant R1233zd(E), the external
diameter of the impeller is 45mm, and the range of rotational speed
is from 68 to 94 krpm. The compressor layout and its calculated
operating map are shown in Fig. 6.
The system transmissionmatrix for this problemcan be expressed as

Xsys,nðsÞ ¼T�1
rad,nðr3, sÞ � Bvlsd,nðsÞ

Bimp,nðsÞ � Tax,nðz1, sÞ (35)

where Trad,n is the n-th transfer function for a swirling flow. The
boundary conditions are given by

IC ¼ 0 1 0

0 0 1

� 	
, EC ¼ ½0 0 1� (36)

which correspond to an undisturbed flow at the impeller inlet and a
volute discharge characterized by a zero backward potential wave.
Figure 7 reports the growth factors for the speedlines of Fig. 6. From
the results, a change of the critical circumferential mode from the
second to the fourth harmonic at high rotational speeds is evident.
Due to the absence of experimental reference data, the results
obtained with the Spakovszky model are compared with those
obtained with the Senoo model, see Fig. 8. The plot demonstrates

that both models predict a qualitatively similar instability curve,
namely, the line connecting the points on the speed-lines at which
the onset of instabilities occurs. However, the instability curve
predicted by the Spakovszky model is shifted rightward compared to
the prediction of the Senoo model, and therefore predicts a reduced
operating range of the compressor. It is important to note that these
results can only quantify differences between the models. Both
models have been derived for low-speed compressors, and it cannot
be concluded that one is more accurate than the other for high-speed
machines without further validation based on reliable reference data.

3.2 SunModel. The accuracy and robustness of the Sun model
is shown by comparing model predictions with the analytic solution
for an annular-duct flow [45]. Consider a segment L of an infinitely
long annular duct, with internal and external radii r1, r2, charac-
terized by uniform axial velocity, pressure, and density fields.
Assuming ideal gas behavior, the pressure perturbation satisfies the
following equation:

1�M2ð Þ @2p0

@z2
þ @2p0

r2@h2
þ @2p0

@r2
� 1

a2
@2p0

@t2

� 2M

a

@2p0

@z@t
þ 1

r

@p0

@r
¼ 0 (37)

where a is the speed of sound andM is the axialMach number. Using
the method of separation of variables, the solution can be expressed
as a series of modes

p0ðr, h, z, tÞ ¼
X

RðrÞejðkzþmhþxtÞ (38)

where k is the axial wavenumber,m is the circumferential harmonic
order, x is the eigenfrequency, and RðrÞ is the radial eigenfunction.
Substituting Eq. (38) in Eq. (37) yields a Bessel equation of orderm

Fig. 6 Sketch of the IRIS compressor (top), and its characteristic
curves (bottom)
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x2R00ðxÞ þ xR0ðxÞ þ ðx2 � m2ÞRðxÞ ¼ 0 (39)

where

x ¼ kmnr

k2mn ¼
x
a
þ kmnM

� �2

� k2mn

8><>: (40)

for the circumferential m and radial n mode numbers.

The general solution of Eq. (39) is

RðrÞ ¼ a1JmðkmnrÞ þ a2YmðkmnrÞ (41)

where JmðxÞ, YmðxÞ are theBessel functions of ordermof the first and
second kind, and a1, a2 are two integration constants. Using the
nonpenetration conditions at the duct walls

u0r
���
r1,r2

¼ 0 ) @p0

@r

���
r1,r2

¼ 0 ) @R rð Þ
@r

���
r1,r2

¼ 0 (42)

leads to an eigenvalue problem for kmn

@

@r
Jm kmnr1ð Þ @

@r
Ym kmnr1ð Þ

@

@r
Jm kmnr2ð Þ @

@r
Ym kmnr2ð Þ

26664
37775 �

a1

a2

24 35 ¼
0

0

24 35
) detQ kmnð Þ ¼ 0 (43)

Figure 9 shows the first seven roots of Eq. (43) form ¼ 1 and the duct
parameters of Table 1.
Substituting the results in Eq. (40) yields the eigenfrequencies

xmna ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2ð Þ ap

L

� 	2
þ 1�M2ð Þk2mn

s
(44)

where a denotes the axial mode number (i.e., k ¼ ap
L , for

a ¼ 1, 2,…,1). The first eigenvalues for m ¼ 1 are reported in

Fig. 7 Growth factors of the first 4 circumferential harmonics as a function of the mass flowrate at four different
regimes

Fig. 8 IRIS compressor map, with Senoo and Spakovszky
instability models predictions
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Table 2. Notice that all the eigenvalues are real numbers, due to the
simplified assumptions that lead to zero damping and growth. In
other words, the perturbations conserve their initial amplitude,
pulsating at xR in time.
The same problem has been solved using the Sun model,

discretizing the duct on a grid of 60	 20 nodes in the axial and
radial directions. Zero pressure perturbations have been set as
boundary conditions at the duct ends and a nonpenetration velocity
condition on the duct walls. The first five eigenfrequencies obtained
are shown in Fig. 10, which demonstrates good agreement between
numerical and analytical values.
The eigenfunction shapes were also analyzed. The analytical

mode shape can be expressed as

~pmnaðr, zÞ / RmnðrÞ � ZaðzÞ (45)

where ZaðzÞ is set by the zero pressure perturbation condition at the
duct extremities [0, L]

Za zð Þ / sin
apz
L

� �
, a ¼ 1, 2,…,1 (46)

RmnðrÞ is obtained by combining Eqs. (41) and (43)

RmnðrÞ / JmðkmnrÞ � bYmðkmnrÞ, m, n ¼ 1, 2,…,1 (47)

where b has been defined as

b ¼ @ Jm kmnr1ð Þ½ �
@r

. @ Ym kmnr1ð Þ½ �
@r

(48)

Figure 11 shows the comparison between the numerical pressure
eigenfunction and their analytical one-dimensional (1D)-slices, for
the mode ½m, n, a� ¼ ½1, 3, 3� at x ¼ 51350 rad/s.

Fig. 9 First seven roots of Eq. (43) for the case of Table 1, with
m51

Table 1 Parameters of the annular duct test case

Input Units Value

Temperature (K) 288
Pressure (bar) 1
Mach number 0.015
Internal radius (mm) 182.6
External radius (mm) 248.7
Length (mm) 80

Table 2 Natural frequencies of the modes [m,n, a]

m n a x ðrad=sÞ

1 1 1 13,450
1 1 2 26,721
1 1 3 40,102
1 2 1 21,077
1 2 2 31,296
1 2 3 43,261
1 3 1 35,049
1 3 2 41,996
1 3 3 51,534

Fig. 10 Comparison between numerical and analytical eigen-
frequencies for the annular duct case

Fig. 11 Axial (top), and radial (bottom) slices of the numerical
pressure eigenfunction for the mode ½m,n, a�5½1, 3, 3�
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Despite a qualitatively good agreement, the results provided by
the Sun model deviate from the analytical reference close the
boundaries of the domain. For this reason, a sensitivity study has
been carried out and is documented in Sec. 3.2.1.

3.2.1 Sensitivity Study. The following numerical settings were
identified to have the largest influence on the results of the Sun
model:

� The grid resolution in the axial and radial directions;
� The finite difference order used for the Jacobian that relates the

physical and computational grids.

Table 3 shows the parameters tested. The missing checkmarks
indicate that the number of grid points is insufficient for the use of a
particular finite difference scheme. For all the combinations tested,
the relative error between the first five eigenvalues of the spectrum
and the numerical results has been computed according to

ek ¼ jxN
k � xA

k j
xA

k

, k ¼ 1,…, 5 (49)

whereA andN stand for analytical and numerical values. The results
were gathered in an error matrix, shown in Fig. 12.
The results indicate that the optimal settings are not characterized

by a larger resolution, or a higher finite difference order, as it could
be expected. In particular, the best settings for this case are 45 15 06
and 60 20 06. Due to this unexpected result, the accuracy of the grid
Jacobian was analyzed to identify the error source.
Without loss of generality, consider the 1D grid transformation

x ¼ xðnÞ, where x and n are the physical and computational
coordinates. For the i-th node of the grid

x ið Þ ¼ i

N � 1

n ið Þ ¼ cos
ip

N � 1

� � i ¼ 0, 1,…,N � 1

8>>><>>>: (50)

where the nodes along x are evenly spaced, the ones on n lie on the
Gauss-Lobatto points, and N is the total number of points. The

analytical transform and its derivative can be found eliminating i
from the previous equations

x ¼ 1

p
arccos n

dx

dn
¼ � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
8>>><>>>: (51)

which present singularities of the derivative at the extremes of the
computational domain n ¼ �1 and n ¼ 1. The comparison between
analytical and numerical derivatives obtained with several finite
difference schemes with order-of-convergence ranging from 2 to 10
is shown in Fig. 13.
High-order polynomials severely under or overshoot the

analytical values near the extremities. Employing low-order

Table 3 Settings used for the sensitivity study

15	 5 30	 10 45	 15 60	 20

2 � � � �
4 � � �
6 � � �
8 � �
10 � �

The columns represent different grid resolutions ðNz 	 NrÞ, and the rows the
order of the finite difference schemes.

Fig. 12 Error matrix of the sensitivity study. The x-axis refers to
the settings combinations according to the nomenclature
(Nz Nr FDO). The last row summarizes the averaged relative
error.

Fig. 13 Analytical and numerical gradients between a physical
and a computational grid with 20 nodes

Fig. 14 Eigenvalues (top) and error matrix (bottom) for the
annular duct flow discretized with the law given in Eq. (52)
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differentiation schemes and increasing grid resolution does not
resolve the issue. Instead, it leads to extremely large numerical
values of the transformation gradients at the boundaries, thereby
deteriorating the accuracy of the iterative Arnoldi eigensolver. As a
result, there exists an optimal order of accuracy leading to the
minimization in the error of the eigenvalues for a given grid
resolution. This explains the results reported in Fig. 12, and the
discrepancies observed in Fig. 11.

3.2.2 Alleviation of Numerical Model Errors. To alleviate the
singularity problem in the grid Jacobian, we propose to employ an
uneven distribution that closely resembles the Gauss-Lobatto
distribution for generating the physical grid. Both axial and radial
directions are discretized according to

x ið Þ ¼ x1 þ x2 � x1ð Þ �
1� cos

pi
N � 1

� �
2

, i ¼ 0,…,N � 1

(52)

where x1 and x2 denote the first and last coordinates along the
direction considered. Following the same approach used in Sec.
3.2.1, the transformation and the derivative are given by

x ¼ x1 þ 1� nð Þ � x2 � x1
2

dx

dn
¼ x1 � x2

2

8>><>>: (53)

and are not affected by singularities. Using this grid for the duct
problem yields the eigenvalues shown in Fig. 14. The errors have
been significantly reduced by at least two orders of magnitude. In
addition, the results demonstrate grid-resolution independence,
thereby verifying the correct implementation of the model. The
numerical pressure eigenfunctions of the first five modes are shown
in Fig. 15. As expected, the coarser configuration (15 05 02) shows
larger errors for themodes ~p2,~p4, and ~p5 due to insufficient resolution
in the radial direction.
For practical applications to realistic compressor geometries, it is

challenging to define an analytical grid transformation. Never-
theless, the grid generation method can aim at clustering nodes
toward the boundaries to emulate the distribution of Gauss-Lobatto
points. This approach will arguably mitigate the most critical
numerical errors introduced when solving the stability equations,
ultimately yielding more accurate results.

4 Conclusion

Numerical models for estimating the critical mass flowrate have
been reviewed and classified into three distinct groups. ROM-CFD
and HiFi-CFD are considered the most appropriate for conducting
in-depth analyses of instability modes, while LSA appears to be the
optimal choice for predicting the operating range during the early
design process. From the models falling within the LSA category,
the Spakovszky model is deemed most accurate for predicting the
critical mass flowrate in low-speed compressors, whereas the Sun

model is considered more adequate for high-speed machines. Based
on both literature and the findings of this study, the following
conclusions are drawn:

� The rotating stall limit is the phenomenon on which the
operating range prediction must be set. Surge is always
preceded by stall-like perturbations, and its characteristics can
be adequately modeled by the Greitzer model. Therefore any
operating range calculation method should accurately predict
the critical mass flow rate for rotating stall.

� LSA may not yield meaningful results for finite amplitude
perturbations, such as radial or circumferential inlet distor-
tions. The stability of finite amplitude perturbations should be
studied with ROM-CFD or HiFi-CFD.

� The stability analysis conducted on the high-speed IRIS
compressor demonstrates the good performance of the
Spakovszky model for such machinery. The model accurately
captures the expected trend of growth factors. A quantitative
assessment of accuracy is pending;we encourage future studies
that investigate the instability limit using HiFi-CFD and
provide the required reference data.

� The analysis of the Sun model for a simple test case with an
analytic solution has revealed a significant sensitivity of the
results on numerical settings, particularly concerning grid
resolution and the discretization scheme employed to trans-
form the physical grid to the computational grid. While this
problem has been solved for simple geometries with the
approach given in Sec. 3.2.2, there are currently no general
guidelines for selecting the most suitable discretization
methods for complex compressor geometries.
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Appendix A: Perturbation Equations

Perturbing the flow variables of the continuity equation in
cylindrical coordinates, and retaining terms up to the first order
results in

@q0

@t
þ �ur

@q0

@r
þ �q

@u0r
@r

þ 1

r
�uh

@q0

@h
þ �q

@u0h
@h

� �

þ �uz
@q0

@z
þ �q

@u0z
@z

þ q0
@�ur
@r

þ @�uz
@z

þ �ur
r

� �

þ u0r
�q
r
þ @�q

@r

� �
þ u0z

@�q
@z

� �
¼ 0 (A1)

Fig. 15 First five pressure modes for the duct problem
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The radial perturbation momentum equation is

@u0r
@t

þ �ur
@u0r
@r

þ 1

�q
@p0

@r
þ �uh

r

@u0r
@h

þ �uz
@u0r
@z

þ q0

�q2
@�p

@r
þ u0r

@�ur
@r

þ�2
u0h�uh
r

þ u0z
@�ur
@z

¼ 0 (A2)

The tangential perturbation momentum equation is

@u0h
@t

þ �ur
@u0h
@r

þ 1

r
�uh

@u0h
@h

þ 1

�q
@p0

@h

� �
þ �uz

@u0h
@z

þ u0r
@�uh
@r

þ �uh
r

� �
þ u0h�ur

r
þ u0z

@�uh
@z

¼ 0 (A3)

The axial perturbation momentum equation is

@u0z
@t

þ �ur
@u0z
@r

þ �uh
r

@u0z
@h

þ �uz
@u0z
@z

þ 1

�q
@p0

@z

þ q0

�q2
@�p

@z
þ u0r

@�uz
@r

þ u0z
@�uz
@z

¼ 0 (A4)

The enthalpy perturbation equation is expressed in terms of pressure
and density, considering a constant cp ¼ cR

c�1

� c�p
�q
@q0

@t
þ @p0

@t
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� �
¼ 0 (A5)

Appendix B: Body Force Model

Following the discussion given in Ref. [47], the blade force acting
on the fluid is divided in a component Ft that guides the flow to
follow the mean camber surface, and another component Fl, which
reproduces the drag and loss effects

F ¼ Ft þ Fl (B1)

The turning force is perpendicular in every point to the local mean
camber surface, whileFl acts in the opposite direction of the relative
velocity. Under the assumption of steady and axisymmetric flow, the
tangential angular momentum equation gives

um
r

@ ruhð Þ
@m

¼ Fh (B2)

where um ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2r þ u2z

p
denotes the meridional velocity along the

streamsurface,
@ðÞ
@m refers to the directional derivative along um, and

Fh is the tangential component of the blade force.
The loss force calculation is based on the entropy production

Tum
@s

@m
¼ �w � Fl (B3)

where w ¼ ½ur , uh � Xr, uz�T is the relative velocity vector, T is the
static temperature, and s is the static entropy. The tangential
component of the turning force is given by

Ft,h ¼ Fh � Fl,h (B4)

and reconstruct the force vectors as a function of the blade geometry.
In order to obtain analytical expression for the force, the method
proceeds as follows:

� the loss force is modeled as proportional to the square of the
relative velocity magnitude

Fl ¼ aðu2r þ w2
h þ u2z Þ (B5)

where aðr, zÞ is calibrated using single-passage RANS
simulations.

� the magnitude of the turning force is assumed to be propor-
tional to the local meridional velocity and relative tangential
velocity

Ft ¼ bumwh (B6)

where bðr, zÞ is the model coefficient, found using the base-
flow results;

The body force perturbation F0 is then modeled as a first-order
system with time delay s

s
@

@t
þ X

@

@h

� �
F0 þ F0 ¼ @�F

@�ur
u0r þ

@�F

@�uh
u0h þ

@�F

@�uz
u0z

� �
(B7)

where the right-hand-side term corresponds to the steady-state body
force perturbation, and s is the time-constant characterizing the
delay, usually set equal to the blade-passage flow-through time. In
the frequency domain the relation becomes

eF ¼ 1

1þ s �jxþ jmXð Þ
@�F

@�ur
~ur þ @�F

@�uh
~uh þ @�F

@�uz
~uz

� �
(B8)
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