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If you build systems where people are rarely required to respond,
they will rarely respondwhen required.

Hancock (2014, p. 453)





Summary

Air traffic control (ATC) is transitioning towards a more automated system where hu-
man air traffic control officers (ATCOs) are increasingly supported by systems working
at a high(er) level of automation (LOA). Made possible by advancements in computing
power, artificial intelligence and a more data-driven air traffic management (ATM) sys-
tem, automation is expected to address major issues, such as a global staff shortage,
growing air traffic demand and environmental concerns.

On this shift towards greater reliance on automation, two main strategies can be iden-
tified that each have a distinct impact on the system’s operators (i.e., ATCOs). Chapter 2
details how these differ between a traditional function-based strategy, where all flights
are controlled at a gradually increasing LOA, and a constraint-based strategy, where a
subset of flights is operated at a higher LOA than other flights. The former strategy brings
many human-automation issues that have been widely demonstrated through empirical
research, such as ’out-of-the-loop’ situation awareness, transient workload peaks, skill
erosion, boredom and reduced job satisfaction. The latter strategy has the advantage of
avoiding mixed authority over individual flights by creating a more parallel system than
the function-based serial system. The resulting human-autonomy team (HAT) acceler-
ates the introduction of higher LOA in operational environments, fostering innovation.

The HAT perspective has only recently appeared on the radar of the ATC community,
and practical examples of its potential and implications are scarce. An interesting exam-
ple is found at Maastricht Upper Area Control Centre (MUAC), an air navigation service
provider (ANSP) responsible for air traffic above 24,500 ft over Belgium, Luxembourg,
the Netherlands, and part of Germany. MUAC is currently employing a constraint-based
strategy in the development of a future shared airspace where ATC services for low-
complexity routine flights are fully automated while complex flights stay with the ATCO.
A key challenge for such an ATC system is to determine which flights should be allocated
to either the human ATCO or the automation.

This research set out to broaden the knowledge about constraint-based automation
in ATC and the desired allocation of flights in particular. Each chapter addresses a sub-
question, often through empirical research with professional MUAC ATCOs. The research
had three phases, starting with a first exploration, followed by an impact analysis of flight
allocation on ATCO workflows and the role of flight complexity in this. The thesis con-
cludes with a validation exercise consolidating all insights from the preceding chapters.

To test several preconditions and general ATCO acceptance of this novel concept,
Chapter 3 begins with an exploratory simulator experiment. The participating ATCOs
had full control over which flights they would delegate to the automation. Although pre-
defined suggestions were presented, the ATCOs mostly ignored these. This experiment
demonstrated the potential for allocating selected flights to either human or automation
in a single airspace, but also stressed the importance of using a clever algorithm to de-
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viii | Summary

termine this allocation. Geographic sector-based allocation, with automation handling
all traffic in one sector and the ATCO all traffic in another sector, was rejected by the ma-
jority of participating ATCOs. They preferred an interaction-based allocation, hinting at
the need to establish a complexity-score for each single flight.

Diving deeper into the impact that flight allocation might have on the workflow
of an ATCO, Chapter 4 focuses on the core ATCO tasks: conflict detection and resolu-
tion (CD&R). Following a literature study and on-the-job ATCO observations, cognition
flowcharts were constructed for these two tasks. Through an experiment with simplified
static traffic scenarios, in which ATCOs had to detect and resolve conflicts, the most cog-
nitively demanding types of traffic situations were searched for, as a means to quantify
the various cognitive paths that can be traversed in the flowcharts. This turned out to
be challenging, as ATCOs, like other experts, make frequent use of shortcuts and par-
allel processing. The constructed flowcharts can, however, serve as a starting point for
the design of more human-like CD&R algorithms, such as used in this thesis’ experiments.
Automation that performs tasks in similar fashion as an ATCO might increase operator ac-
ceptance. This chapter’s results stressed the importance of understanding flight-centric
complexity before the impact of flight allocation on workflows can be determined.

To increase this understanding, the experiment in Chapter 5 used actual traffic snap-
shots overlaid with a single flight of interest for which the ATCOs had to indicate their per-
ceived complexity. This individual flight complexity was a unique approach, compared
to existing literature that mainly considers sector-wide complexity. Despite individual
differences, flights on either end of the complexity scale were reliably identified. These
results indicate that a flight allocation scheme may not need to be fine-tuned towards
individual ATCO preferences. In general, a flight’s complexity appears to be mostly driven
by (potential) spatiotemporal interactions with other flights.

Consolidating the insights from preceding chapters, Chapter 6 discusses the most
realistic and extensive experiment of this thesis. It replicates the experiment from Chap-
ter 3 while addressing many of that experiment’s shortcomings. Lessons learned in the
preceding chapters led to several improvements, such as an increase in automation capa-
bilities and communication, and more informed allocation schemes than the pragmatic
schemes from the first experiment. In a direct comparison between two distinct allo-
cation schemes, it was found that an interaction-based scheme is subjectively preferred
by ATCOs and shows small efficiency benefits over a simpler flow-based allocation. In
addition, it was concluded that automation should be sufficiently equipped to issue the
same instructions as ATCOs, and should have the same notion of constraints from letters
of agreement, to create a common ground and reduce mixed conflicts.

In conclusion, this thesis has brought forward the knowledge about flight allocation
in an airspace that is shared between a human ATCO and a computer system. It can serve
as a starting point for future research and development of highly automated ATC sys-
tems. Fully autonomous ATC will not become a reality in the short-term, but results show
promising effects and a general feasibility of higher LOA applied to a constrained envi-
ronment (i.e., a subset of flights). Researchers and ANSPs are encouraged to step beyond
purely function-based visions on automation allocation and embrace a constraint-based
automation strategy. This thesis has shown that a combination of these two strategies
may lead to desired human-automation teamwork.



Samenvatting

Luchtverkeersleiding (ATC) evolueert naar een steeds hoger niveau van automatisering
(LOA) waarin luchtverkeersleiders (ATCOs) door steeds meer systemen ondersteund wor-
den. Dit wordt mogelijk gemaakt door vooruitgang op het gebied van rekenkracht,
kunstmatige intelligentie en een meer datagedreven ATC-systeem. Automatisering
wordt gezien als (deel)oplossing voor enkele grote wereldwijde problemen, zoals per-
soneelstekort, de groei van het luchtverkeer en het klimaatprobleem.

Op weg naar hogere LOAs kan men twee strategieën onderscheiden, zoals beschre-
ven in Hoofdstuk 2. Bij een traditionele functiegebaseerde strategie worden alle vluch-
ten geleidelijk op een steeds hoger LOA afgehandeld. Dit leidt tot allerhande problemen
tussen mens en automatisering die veelvuldig zijn aangetoond in empirisch onderzoek,
zoals een verminderd toestandsbewustzijn (‘out-of-the-loop’), kortstondige werklastpie-
ken, verlies van vaardigheden, verveling en verminderd werkplezier. Bij een voorwaar-
dengebaseerde strategie wordt slechts een deel van de vluchten op een (nog) hoger LOA
afgehandeld. Dit heeft als voordeel dat er sprake is van een meer parallel systeem, waarin
de verantwoordelijkheid over afzonderlijke vluchten bij de mens danwel de automatise-
ring ligt. Het resulterende mens-automatiseringsteam (HAT) versnelt de introductie van
hogere LOAs in operationele werkomgevingen en bevordert zo innovatie.

Het HAT-perspectief is pas recent op de radar van de ATC-gemeenschap verschenen
waardoor goede praktijkvoorbeelden schaars zijn. Een interessant voorbeeld is te vinden
bij Maastricht Upper Area Control Centre (MUAC), een instantie die verantwoordelijk is
voor het luchtverkeer dat op 24,500 voet of hoger boven België, Luxemburg, Nederland
en een deel van Duitsland vliegt. Op basis van een voorwaardengebaseerde strategie
ontwikkelt MUAC een gedeeld luchtruim waar simpele routinevluchten in de toekomst
door een computer afgehandeld worden, terwijl complexe vluchten bij de ATCOs blijven.
Eén van de belangrijkste uitdagingen van zo’n voorwaardengebaseerd systeem is om te
bepalen welke vluchten aan de mens of aan de computer moeten worden toegewezen.

Dit promotieonderzoek had als doel om de kennis over voorwaardengebaseerde au-
tomatisering in een ATC-context te vergroten, waarbij de focus op het toewijzen van
vluchten ligt. Elk hoofdstuk behandelt een deelvraag, vaak door middel van empirisch
onderzoek met professionele ATCOs van MUAC. Het onderzoek bestond uit drie fasen en
begon met een eerste verkenning, gevolgd door een analyse van veranderende ATCO-
taken bij het invoeren van individuele vluchttoewijzing en de rol van vluchtcomplexiteit
hierin. Het proefschrift eindigt met een validatie-experiment waarin de lessen uit voor-
gaande hoofdstukken samenkomen.

Om de vooroordelen en acceptatie van ATCOs omtrent dit nieuwe concept te pei-
len werd een eerste simulatie-experiment uitgevoerd (Hoofdstuk 3). De deelnemende
ATCOs hadden de volledige controle over welke vluchten ze aan de automatisering toe-
wezen. Hoewel er suggesties werden getoond negeerden de meeste ATCOs deze. Dit
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experiment demonstreerde de potentie van het gedeelde-luchtruimconcept, maar be-
nadrukte ook het belang van een slim toewijzingsalgoritme. Toewijzing op basis van
geografische sectoren, waarbij de automatisering alle vluchten in een bepaald gebied
afhandelt en de ATCO alle vluchten in een ander gebied, werd door de meeste ATCOs af-
gewezen. Zij prefereerden toewijzing op basis van onderlinge interacties tussen vluch-
ten, wat wijst op de noodzaak om de complexiteit van individuele vluchten te bepalen.

Om de impact van vluchttoewijzing op het werk van ATCOs te specificeren, focust
Hoofdstuk 4 op twee hoofdtaken: conflicten detecteren én oplossen (CD&R). Een litera-
tuurstudie en werkplekobservaties resulteerden in cognitieve stroomdiagrammen voor
deze twee taken. Middels een experiment met versimpelde statische verkeerssituaties,
waarop ATCOs CD&R moesten toepassen, werd gezocht naar de meest veeleisende si-
tuaties om zo de stromen in de diagrammen te kunnen kwantificeren. Dit bleek lastig
te zijn omdat ATCOs, net als andere experts, regelmatig aan parallelle verwerking doen
en stappen overslaan. De stroomdiagrammen kunnen echter als startpunt dienen voor
meer mensachtige CD&R-algoritmes zoals geïmplementeerd in Hoofdstuk 3 en 6. Als een
computer taken op eenzelfde manier als een ATCO uitvoert kan dit de acceptatie verho-
gen. De resultaten in dit hoofdstuk benadrukken het belang van complexiteitsbepaling
per vlucht voordat de impact van vluchttoewijzing op ATCO-taken bepaald kan worden.

Om deze complexiteitsbepaling te verbeteren werd in het experiment uit Hoofd-
stuk5 telkens één vlucht aan echte radarbeelden toegevoegd, waarna de ATCOs de com-
plexiteit van deze vlucht beoordeelden. Een unieke aanpak, aangezien de meeste litera-
tuur alleen naar sectorbrede complexiteit kijkt. Los van individuele voorkeuren werden
vluchten aan de uiteinden van de complexiteitsschaal betrouwbaar geïdentificeerd. Dit
toont dat een toewijzingsschema niet op individuele ATCOs hoeft te worden toegespitst.
De complexiteit lijkt bovenal afhankelijk van interacties tussen vluchten in ruimte en tijd.

In Hoofdstuk 6 komen de verworven inzichten samen in het meest realistische en
uitgebreide experiment van dit proefschrift. Het borduurt voort op het experiment van
Hoofdstuk 3, maar lessen uit eerdere hoofdstukken leidden tot een aantal verbeterin-
gen. Zo zijn de capaciteiten en communicatie van de computer uitgebreid, en werden
beter onderbouwde toewijzingsschema’s gebruikt dan de pragmatische schema’s uit het
eerste experiment. In een directe vergelijking tussen twee verschillende toewijzings-
schema’s bleek een interactiegebaseerd schema de voorkeur te hebben van de ATCOs
en tot een iets betere efficiëntie te leiden ten opzichte van een simpel stromingsgeba-
seerd schema. Ook bleek dat de computer dezelfde instructies moet kunnen geven als
ATCOs en hetzelfde begrip van procedures moet hebben, zodat er sprake is van een ge-
meenschappelijke basis en gedeelde conflicten vermeden worden.

Concluderend heeft dit promotieonderzoek de kennis vergroot over vluchttoewij-
zing aan een ATCO óf een computer in een gedeeld luchtruim. Het kan als startpunt
dienen voor verder onderzoek naar de ontwikkeling van hoogautonome ATC-systemen.
Volledig autonome ATC zal niet snel bereikt worden, maar de uitgevoerde experimenten
toonden een positief effect en de haalbaarheid van hoge LOAs bij individuele vlucht-
toewijzing. Onderzoekers en ATC-instituten worden aangemoedigd om verder te kijken
dan puur functiegebaseerde automatisering en een voorwaardengebaseerde strategie
te omarmen. Dit proefschrift heeft aangetoond dat het combineren van beide strate-
gieën tot de gewenste samenwerking tussen mens en automatisering kan leiden.



Contents

Summary vii

Samenvatting ix

1 Introduction 1
1.1 Airspace sectorization 4
1.2 The rise of automation 5
1.3 Automation challenges 7
1.4 Towards human-automation teamwork 7
1.5 Goals and contributions of this thesis 10
1.6 Research scope 12
1.7 Thesis outline 14

2 Automation strategies 17
2.1 Introduction to automation 19
2.2 Automation in ATC 19
2.3 Strategies towards full automation 23
2.4 Function-based strategy 26
2.5 Constraint-based strategy 32
2.6 Conclusions 34

3 Concept exploration 35
3.1 Introduction 37
3.2 Method 38
3.3 Results 44
3.4 Discussion and recommendations 55
3.5 Conclusions 56

4 Empirical task analysis 59
4.1 Introduction 61
4.2 Concept of operations 62
4.3 Task analysis of common processes 64
4.4 Empirical quantification 71
4.5 Results 79
4.6 Discussion and recommendations 87
4.7 Conclusions 89

xi



xii | Contents

5 Flight-centric complexity 91
5.1 Introduction 93
5.2 Background: modeling flight complexity 94
5.3 Method 97
5.4 Results 102
5.5 Discussion and recommendations 109
5.6 Conclusions 111

6 Validation 113
6.1 Introduction 115
6.2 Background: Brussels sector group 116
6.3 Flight allocation schemes 116
6.4 Method 120
6.5 Results 126
6.6 Discussion and recommendations 140
6.7 Conclusions 142

7 Discussion and conclusions 143
7.1 Introduction 145
7.2 Retrospective 146
7.3 Reflections on a constraint-based approach 152
7.4 Reflections on teamwork 154
7.5 Limitations and recommendations 155
7.6 Operational relevance, future outlook 159
7.7 Final reflections 160

A SectorX ATC simulator 163
A.1 Introduction 165
A.2 Program structure 165
A.3 Human-machine interface 165
A.4 Aircraft performance models 171
A.5 Automated ATC agent 172

B Experiment briefing and questionnaire 175
B.1 Briefing 177
B.2 Questionnaire 179

C Preventing scenario recognition 183
C.1 Introduction 185
C.2 Mitigation techniques 185
C.3 Data description 187
C.4 Results and discussion 189
C.5 Conclusions 191



Contents | xiii

References 193

Acronyms 213

Acknowledgments 215

Curriculum vitae 217

List of publications 219





1
Introduction

This chapter introduces the current state of the art and future visions on automation in
air traffic control. After listing some of the key challenges that generally come with an
increase in automation, it continues with a discussion of several potential remedies that
served as inspiration for this thesis. The chapter then presents the research goal and
questions, as well as a definition of the scope and research assumptions. It concludes
with an outline of the various chapters in this thesis and how they relate to each other.

1
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I n the early days of aviation, with just a handful of aircraft flying around only in daylight,
there was no need to provide air traffic control (ATC) services. With increasing num-

bers of aircraft, airfields started using flagmen in the 1920s (Figure 1.1a) to signal pilots
whether they could land or take-off (Nolan, 2011). The introduction of radio communi-
cation in the 1930s as shown in Figure 1.1b meant that aircraft could be controlled from
farther away, and that more detailed instructions could be given (Gilbert, 1973). This in-
creased even further after radar was invented in World War II, enabling the surveillance
and control of aircraft far beyond the vicinity of the controller and in any weather or visi-
bility condition (Figure 1.1c). In the following decades, area control centers (ACC) staffed
by dozens of controllers, working in human-human teams, were constructed around the
world to manage an ever-increasing stream of air traffic (Figures 1.1d and 1.1e).

(a) 1920s: flag man (b) 1930s: radio communication (c) 1950s: radar

(d) 1960s: en-route center (e) 2010s: modern en-route center

Figure 1.1: Evolution of air traffic control over the years (images by FAA, NATS and EUROCONTROL).

Looking back at the past century, one can see a substantial increase in the number of
systems and humans involved. Nowadays, operators have a plethora of support tools at
their disposal to help them handle the traffic, such as automated conflict detection and
alerting. However, humans have not disappeared. In fact, the air traffic control officers
(ATCO) remain at the very center of the system and play a key role in ensuring a safe,
orderly and expeditious flow of traffic. Despite long-lived future visions on soon-to-be-
operational highly automated ATC (Hunt and Zellweger, 1987) and abundant research
in the area of automatic conflict resolution (Alaeddini et al., 2011, Erzberger et al., 2012,
Frazzoli et al., 2001, Gariel and Feron, 2009, Trapsilawati et al., 2021), humans are still per-
forming most of the work. Unlike in other parts of the aviation system, e.g., the flight
deck of commercial airliners, automation is thus relatively sparse in ATC.



4 | 1 Introduction

1 This is bound to change with the continuous quest for more efficient and safer air
traffic management (ATM), driving the development of more advanced automation to
support ATCOs. The Single European Sky ATM Research (SESAR) program and its United
States equivalent Next Generation Air Transportation System (NextGen) both aim for
higher levels of automation (LOA) in the coming decades, leading to a more supervisory
and strategic role for humans (Joint Planning and Development Office, 2011, SESAR Joint
Undertaking, 2020). In such an environment, fewer people are expected to handle more
traffic in larger airspaces (Prevot et al., 2012).

1.1 Airspace sectorization
The number of flights in a (national) airspace is nowadays often so large that the airspace
is divided into smaller sectors, with potentially an even further (dynamic) division in dif-
ferent altitude layers and sub sectors based on traffic demand (Baumgartner, 2007). This
is today’s most fine-grained flight allocation, shown in the top half of Figure 1.2.

An average commercial flight departing from an airport is first in contact with tower
control, followed by approach and area control as it climbs higher and further away from
the airport. Before entering the cruise phase, it may be transferred to upper area control.
Every time the flight leaves a sector, the ATCO transfers the flight and asks the pilots to
switch to the next sector’s radio frequency. Depending on the flight’s length and route,
multiple en-route sectors are traversed, before starting the descent in which the flight is
transferred between the aforementioned sectors in reverse order. En-route ATC, as ex-
ecuted by Maastricht Upper Area Control Centre (MUAC) above 24,500 ft over Belgium,
Luxembourg, the Netherlands and northwestern Germany, is the scope of this thesis.

Each en-route sector is staffed by two ATCOs: an executive controller (EC) who com-
municates with pilots and has final authority over the sector, and a coordinating con-
troller (CC) who coordinates with adjacent sectors to manage the EC’s workload. Sector
geometries are occasionally re-assessed and updated to reflect changing traffic demands
and to (further) reduce the number of inter-sector conflicts. Research into dynamic sec-
torization aims to make sector geometries adapt in real time (Gerdes et al., 2018).

Present day

Level Grouping per

Future

Airspace

Sector

Altitude band

Flight type
(over�ight/arrival/

departure)
Route

Aircraft
(type/speed/datalink)

National

Regional

Vertical

Trajectory based

Individual

Figure 1.2: En-route control authority and responsibility allocation in current-day and future operations.
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Note: Throughout the figures and tables in this thesis, the color green is used when
a reference is made to a human controller, while blue relates to the automated
system. This is inspired by the colors on the current MUAC radar screen, where
green flights are under control of the ATCO, whereas blue flights are within that
ATCO’s area of responsibility, but controlled by a different ATCO.

The planned introduction of trajectory-based operations (TBO), where flights strictly
follow pre-negotiated trajectories, opens up the possibility of working with a more tai-
lored division of responsibilities that is not tied to geographical areas, transitioning to
the lower half of Figure 1.2. Potentially even down to the level of individual flights, such
as proposed for flight-centric ATC (FCA, Volf, 2019), where one ATCO is responsible for
the entire en-route trajectory of a flight. High bandwidth air-to-ground digital data links
will enable this, greatly reducing the number of transfers between centers and balanc-
ing workload more evenly over the available ATCOs (Schmitt et al., 2011). The technology
and capabilities that come with that also pave the way for the allocation of certain indi-
vidual flights to an automated system, rather than automating an entire sector.

1.2 The rise of automation
The trend towards more (advanced) automation is not unique to ATC. In aviation, the
increased use of automation on the flight deck is a prime example. In contrast to early
aircraft designs with purely manual trajectory planning, guidance and control, modern
airliners are largely automated. Pilots delegate control to the autopilot for prolonged
flight phases and assume a largely supervisory monitoring role. Similar trends are seen
in the automotive domain, where, after the adoption of driver assistance technologies
like lane-keeping assistance, self-driving cars are on the horizon of several manufacturers
(Merat et al., 2019). However, it is yet to be seen whether truly self-driving cars will (and
should) ever be widely accepted.

Focusing on the European ATM system, Table 1.1 provides an overview of the vari-
ous levels of automation (LOA) from the 2025 edition of the European ATM Master Plan
(SESAR Joint Undertaking, 2024). Current-day operations are at Level 0, with the human
ATCO responsible for most tasks, supported by automation in the information perception
and analysis tasks (e.g., the display of routes and interpretation of raw radar data) and to
some extent in the execution of actions. At Levels 1 and 2, the automation will assist the
human in making decisions and selecting appropriate actions, and will subsequently im-
plement the actions when directed by the human. Where the human is responsible for
making the decisions at Level 1, the automation proposes an optimal solution at Level 2,
which the human can then either accept or amend.

Starting with Level 3, automation has sufficient autonomy and authority to initiate
some of the actions without human involvement, which is further expanded at Level 4.
The stepwise transition towards full automation with no human involvement (Level 5)
will require mixed forms of operation, where parts of the system and/or traffic are in-
creasingly being automated.
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1
Table 1.1: Levels of automation from the European ATM Master Plan 2025, adapted from SESAR Joint Under-
taking (2024, p. 68).

Tasks

Level of automation P A D E Authority

0 Low automation
Automation gathers and exchanges data. It analyses and prepares all available
information for the human operator. The human operator takes all decisions
and implements them (with or without execution support).

A A H H/A N/A

1 Decision support
Automation supports the human operator in action selection by providing a so-
lution space and/or multiple options. The human operator implements the ac-
tions (with or without execution support).

A A H/A H/A N/A

2 Resolution support
Automation proposes the optimal solution in the solution space. The human
operator validates the optimal solution or comes up with a different solution.
Automation implements the actions when due and if safe. Automation acts un-
der human direction.

A A H/A A N/A

3 Conditional automation
Automation selects the optimal solution and implements the respective actions
when due and if safe. The human operator supervises automation and overrides
or improves the decisions that are not deemed appropriate. Automation acts
under human supervision.

A A A A

4 Confined automation
Automation takes all decisions and implements all actions silently within the
confines of a predefined scope. Automation requests the human operator to
supervise its operation if outside the predefined scope. Any human intervention
results in a reversion to Level 3. Automation acts under human safeguarding.

A A A A

5 Full automation
There is no human operator. Automation acts without human supervision or
safeguarding.

A A A A N/A

Perception, Analysis, Decision and Execution
Human and Automation

Operations at Level 4 (confined automation) is the scope of this thesis. At this level,
one sector may, for example, already operate at a higher LOA than its neighboring sector.
Or certain aircraft may have capabilities on board, such as advanced navigation and com-
munication aids or coupling with the autopilot (Sgorcea et al., 2016), that enable these
aircraft to receive ATC services at a higher LOA¹ than other aircraft lacking this equipment.
Even at high LOA, humans are expected to play an important role in supervising these fu-
ture systems and to intervene when automation falls short (Metzger and Parasuraman,
2005); people will ultimately remain responsible. The automation will alert the ATCO to
supervise (and potentially step in) when it detects that it needs to operate outside its pre-
determined scope. Level 5 (“There is no human operator. Automation acts without human
supervision or safeguarding”, SESAR Joint Undertaking, 2020, p. 24) was only envisioned
for future unmanned vehicle operations known as U-space, but has been excluded alto-
gether from the 2025 edition of the master plan (SESAR Joint Undertaking, 2024).

¹Note that whenever this thesis mentions LOAs it refers to the automation levels of the (next generation) ATC
services, rather than that of the (current generation) aircraft.
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1.3 Automation challenges
In many transportation domains, the technology is capable of handling the majority of
situations. It is the remaining fraction that is difficult to automate in a safe and reliable
way (Norman, 2015). The easy way out is to make human operators (whether a car driver,
pilot or ATCO) responsible for intervening when the system cannot handle a situation.
Unfortunately this has several significant drawbacks, referred to as ‘ironies of automa-
tion’ by Bainbridge (1983) that remain largely unresolved up to this day (Strauch, 2018).
The increased popularity of artificial intelligence only aggravates this by introducing ad-
ditional ironies (Endsley, 2023). Three ironies are particularly relevant for this thesis.

Firstly, humans are known to be bad at intervening in a task that they have not been
actively involved in. Think of a self-driving car ‘driver’ who was not paying attention to
the road and suddenly has to grab the steering wheel to avoid an accident (Nordhoff
et al., 2023). As Hancock (2014, p. 453) puts it: “if you build systemswhere people are rarely
required to respond, they will rarely respond when required”. It are precisely these difficult
situations and tasks involving (sudden) high workload when the human would like to be
supported by automation (Billings, 1996). SESAR explicitly states that ATCOs supervising
automated systems require support tools to be able to intervene in unexpected events
(SESAR Joint Undertaking, 2020, p. 87), reiterating the opinion of ATCOs themselves (Bea-
dle, 2007).

Secondly, the importance of keeping operators engaged has been recognized (Chi-
appe et al., 2012) and is known to improve failure detection (Pop et al., 2012), situa-
tion awareness (Endsley and Kiris, 1995), motivation and job satisfaction (Endsley, 2017).
ATCOs that are satisfied with their job are, in turn, more willing to accept new forms of
automation (Bekier et al., 2011).

Thirdly, when human operators rarely perform a task, their (cognitive) skills in per-
forming this task can deteriorate. During the COVID-19 pandemic, ATCOs reported skill
erosion due to historically low traffic demands and subsequently had to spend more time
in the simulator to stay proficient under high traffic loads (Kenny and Li, 2022).

Although listing these challenges separately may imply that they are standalone, in
practice they are all intermingled (Edwards et al., 2017). Lowering workload, for example,
can have a detrimental effect on situation awareness. Dekker (2004) compares this to an
inflatable mattress, where pushing the air down in one part inevitably leads to a rise of
air in another.

1.4 Towards human-automation teamwork
In highly automated systems, critical moments often occur after periods with little hu-
man involvement followed by a sudden need for the human to intervene. This interven-
tion is made difficult when the automation has largely been working independently from
the human, creating a disconnect between the two agents. Numerous studies suggest
that humans (including ATCOs) should be kept in the loop by establishing teamwork be-
tween the human and automation (Endsley, 2017, Martin et al., 2016, Metzger and Para-
suraman, 2001). If this is not done, the work domains of the two agents barely touch
each other (Figure 1.3a) with only minimal exchange of information, a clear example of a
potentially brittle team that would be unable to successfully handle situations when the
automation’s capabilities are inadequate (Klein et al., 2004).
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(a) Lack of teamwork. (b) Teamwork established (overlap).

Figure 1.3: Schematic overview of human-automation teamwork.

Despite the fact that much ATCO work is currently performed as a human-human
team effort (Soraji et al., 2012), most of the automation solutions proposed or imple-
mented thus far are aimed at supporting individual ATCOs (Corver and Aneziris, 2015,
Eurocontrol, 2024b, Maynard and Rantanen, 2005, Zon et al., 2009). In the sociotechnical
community, there is an increasing belief that applying human-human teamwork con-
cepts in human-automation teams (HAT) is the way forward (Endsley, 2017, Lyons et al.,
2021). By increasing the exchange of information between both agents to establish a
common frame of reference (Hoc and Carlier, 2002), the overlap is increased (Figure 1.3b).
While back-up behavior is part of teamwork (Salas et al., 2005), the overlap should not be
too large in order to prevent adding a significant amount of workload solely to establish
and maintain teamwork.

To assign work to either agent, the Venn diagram from Figure 1.3 cannot only be
applied to the agents themselves, but can also be applied to the physical world that
the agents are acting in. Starting with the traditional sector-based allocation in Fig-
ure 1.2, the diagram can represent entire airspace sectors, with one sector fully auto-
mated and the other controlled by a human ATCO (Figure 1.4a). Then, the boundary be-
tween the two sectors will lead to a certain overlap between the agents in both sectors
(Figure 1.4b) to ensure a streamlined transfer at the sector boundaries. In current-day
operations, comprehensive letters of agreement are established between adjacent units
(Nolan, 2017). These reduce the number of locations where flights interact across sector
boundaries or shortly after entering a new unit, thereby requiring less cognitive work-
load than an airspace with many possible conflict locations. However, the reliance on
designated coordination points (COP), altitude ranges, and additional separation criteria
opposes many of the benefits seen in flight-centric ATC (FCA).

(a) Minimal sector interaction. (b) Sector interaction (overlap).

Figure 1.4: Schematic overview of sector interactions.



1

1.4 Towards human-automation teamwork | 9

At a more fine-grained scale, the diagrams could represent individual flights. As long
as there is no interaction between these flights, for instance when they fly in different sec-
tors or directions, they can more or less be considered as isolated entities (Figure 1.5a). As
soon as the flights have conflicting trajectories or trajectories that limit the other flight’s
solution space, they have a certain overlap (Figure 1.5b). If the flights are then handled
by different agents (i.e., human and automation), it becomes necessary for these agents
to create a similar overlap in their work domains in order to establish efficient teamwork.
Such mixed conflicts are one of the key challenges of FCA, where it is proposed to have a
‘less impacted flight’ algorithm determine which ATCO should take action to resolve the
conflict with minimal deviation from the planned trajectories (Finck et al., 2024).

(a) Flights with no interaction. (b) Flight interaction (overlap).

Figure 1.5: Schematic overview of flight interactions.

If both flights are instead assumed by a single ATCO who delegated one of the flights
to automation, it might be undesirable to assign the resolution of these mixed conflicts in
the same way as in FCA. Unlike FCA’s human-human setting, a human-automation team
has larger asymmetry between the two agents. On the one hand, humans may prefer
to always solve these conflicts themselves, as they can then stick to their own plan, a
plan the automation is likely to be unaware of. On the other hand, humans are likely to
have better situation awareness with respect to flights that are under their active control
as compared to delegated flights, which could complicate and/or increase the time and
effort required to manually resolve mixed conflicts.

Apart from these two extremes (allocation at the individual flight level or at the sector
level), an intermediate form could consist of only delegating flights in a certain stream
of traffic to either automation or human, as done by Finck et al. (2023b). Overflights,
for example, could be delegated to automation, as they are generally less susceptible to
conflicts than climbing and descending flights that need to be merged with other traffic.
When automation is assumed to be capable of handling certain areas of the airspace
or specific flights, there will still be some interaction between these flights and those
controlled by a human.

To support the human in understanding, supervising and/or assessing the automa-
tion’s actions in these interactions, systems can be introduced to increase automation
transparency (Jans et al., 2019). Interacting with these systems inevitably comes with
substantial mental demands for its operator (Wright et al., 2016). By tuning the allocation,
the overlap between the two agents can be adjusted, which manifests itself in changes
in human supervisory control performance in terms of attention allocation, workload,
situation awareness, etc.
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1 A concept along these lines is currently under development at MUAC where ‘simple’
flights are envisioned to be allocated to an automated system while ‘complex’ flights
are still handled by human ATCOs (Hendrickx and Tisza, 2019). By handling flights at
two different LOAs, it is expected that low vigilance, skill erosion and low engagement
problems will be evaded, while simultaneously lowering the operator workload. This
vision forms the main inspiration for this thesis.

1.5 Goals and contributions of this thesis
This thesis discusses the feasibility of modifying the allocation of flights to either human
or automation in such a way that, whenever the human is required to act, he or she al-
ready has the related flights internalized in their mental model. Determining the impact
of different levels of integration (overlap) and the role of flight allocation in those scenar-
ios is at the core of this thesis. The smart allocation of flights can ease the formation of an
efficient human-automation team, manifesting in improved human supervisory control
performance and minimized human effort in handling mixed conflicts (Joe et al., 2014).
The main research goal is therefore:

Research goal

Establish how flights can best be distributed between a human ATCO and an au-
tomated system, sharing control of an en-route sector, such that interference be-
tween the two agents/entities is minimized.

At first, it is important to get a good understanding of the current and future state
of automation in the ATC domain, and what strategies different stakeholders apply in
transitioning there. Knowledge from other domains aiming for higher levels of automa-
tion, such as the automotive industry, will also serve as an inspiration for the thesis. The
literature survey is thus driven by:

Research question 1

How does the human-automation allocation of flights fit within existing strategies
towards full automation in the ATC domain?

Previous works suggest that ATCOs are reluctant to adopt new forms of automation
at the decision making level in their work (Bekier et al., 2012, Langford et al., 2022, Westin
et al., 2016a). With most of the existing research focusing on automation at a functional
level, it is not yet known whether sharing control over part of the traffic in an airspace
would be a workable and acceptable situation from an ATCO stance. Therefore, the first
exploratory research question is formulated as:

Research question 2

To what extent is the transfer of control of flights to an automated system depen-
dent on system-proposed allocations, individual ATCO preferences and automa-
tion capabilities?
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When flights are delegated to automation, they become ‘foreign objects’ within the
airspace. The execution of certain tasks (mainly conflict detection and resolution) with
respect to human-controlled flights will inevitably change. As ATCOs will keep the final
authority over all flights for the foreseeable future, it might be beneficial to not delegate
all tasks associated with a flight completely to automation, but leave some tasks with the
ATCO. In doing so, the distribution of responsibilities, however, has the potential to lead
to ambiguous situations. Understanding these changing tasks and their impact on the
overall work of the ATCO feeds the third research question:

Research question 3

To what extent is the workflow of ATCOs affected by flights delegated to an auto-
mated system that interact with flights under their responsibility?

One of the most difficult situations in a shared airspace is the case of a mixed con-
flict, where the flights involved are controlled by different agents. The present-day op-
eration relies on clear agreements on who is responsible for a certain part of airspace
and tries to minimize the chance on inter-controller conflicts through the use of stan-
dard routes and procedures as set out in letters of agreement between adjacent ATC
providers (Baumgartner, 2007). It might be beneficial to allocate flights such that the
impact of these mixed conflicts is minimized. The classification of flights based on their
individual complexity, which in turn depends on their (potential) interaction with other
flights, serves as an input for determining this allocation. Whereas existing complexity
metrics primarily focus on entire sectors (Hilburn, 2004, Prandini et al., 2011, Prevot and
Lee, 2011), i.e., for personnel scheduling purposes, the complexity of individual flights is
a less well-researched area.

Research question 4

Which other flights in the airspace add to the perceived complexity of an individual
flight and what characterizes them?

After answering all the aforementioned questions, it remains to be seen if allocating
flights based on their interaction is indeed favorable over allocations based on simpler
rules, like the destination airport or sector exit. For this, a full-scale simulator experiment
involving realistic traffic scenarios, where all elements from the preceding chapters come
together, serves to answer the final research question:

Research question 5

Given a realistic traffic scenario, how should flights be allocated to either the
human or automation, such that interactions between human- and automation-
controlled flights are reduced, combined team performance is best supported and
ATCO acceptance is increased?
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1 1.6 Research scope
Given the broad topic of human-automation teamwork, the research has been narrowed
down to match the available resources. First and foremost, the operational context is
en-route ATC, as conducted at MUAC. Due to the less time-critical and more predictable
nature of en-route ATC, high LOAs are expected to be adopted here first. Second, the
focus is on allocating flights to either human or automation and its impact on one
particular aspect of teamwork (Salas et al., 2005): working towards a common goal
(the safe and efficient handling of air traffic). Finally, the impact on human supervisory
control performance is considered in relation to full automation at the decision-selection
and action-implementation level.

Additional assumptions are listed as follows:

Automation While automation is an important element in this thesis, the development
of such automation is not part of it. Simple, rule-based automated solvers are used
to provide a basic level of automation that is both predictable and reliable, and
foremost easy to understand by the ATCO. The automated agent mimics the way an
ATCO thinks (i.e., conformal automation, Westin, 2017), by following their decision
making process and standard rules, such as keeping aircraft as high as possible and
on direct routes. To increase predictability and in anticipation of future trajectory-
based operations, the automation cannot issue heading or speed clearances and
solves conflicts only by altitude.

The automation is fully capable of acting within the experiment scenarios with-
out any human involvement, automatically executing actions to ensure safe and
efficient air traffic.

Automation failures are outside the scope of this research. Together with the rule-
based solvers, this diminishes or even removes the requirement for the highly in-
dependent automation to extensively communicate its intentions to the human
operator, for which (complex) interfaces would be needed. The design of such in-
terfaces is a research topic on its own, while this thesis focuses on the impact of
flight allocation on teamwork, rather than the impact of inter-agent communica-
tion. If some level of communication is required for the sake of the experiment,
present-day tooling is used as much as possible.

Participants and teamwork All experiments are performed with operational en-route
ATCOs from MUAC to ensure realism and data validity. The participants are respon-
sible for a certain airspace, optionally in co-operation with an automated agent. In
current-day operations, ATCOs often control a sector in co-operation with a second
ATCO, who is responsible for the coordination with adjacent sectors. This so-called
dyad has been abandoned in this thesis, as the focus is on the teamwork between
human and automation, rather than human-human co-operation. Future devel-
opment, such as Single Controller Ops, may make this a feasible scenario (Gerdes
et al., 2022). Coordination with adjacent sectors or pilots is for the same reason
also neglected.
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Teamwork, whether human-human or human-automation, is a broad topic involv-
ing many different aspects, such as leadership and communication (Salas et al.,
2005). The focus of this thesis lies on one aspect: working towards a common goal.

Control task ATCOs are responsible for the safe and efficient handling of air traffic. Since
speed clearances are given less frequently in en-route control, due to the narrow
speed envelopes of aircraft flying at high altitude, aircraft are assumed to either
be flying constant Mach throughout the simulations or follow a standard speed
profile. ATCOs can therefore only issue heading, route and altitude clearances. This
reduces the number of control strategies to resolve conflicts and further simplifies
the automated solvers.

Note that, whenever this thesis speaks of ‘control’, it refers to the handling of flights
by ATCOs in terms of issuing instructions to pilots, rather than the on-board control
of aircraft by (auto)pilots. In addition, the final responsibility over all flights remains
with the ATCO.

Infrastructure Controller pilot data link communications (CPDLC) is an essential ele-
ment for future trajectory-based operations and is already increasingly in use to-
day (Alharasees et al., 2022). Future automation is not expected to communicate
via voice at all. This also provides human and automation a level playing field in
terms of ground-air communication, information acquisition and uplinking clear-
ances to aircraft. This thesis assumes CPDLC to be implemented, all other forms of
communication with pilots are neglected.

Simulation The simulation environment is designed to mimic the current-day MUAC
human-machine interface to provide high face validity (Dow and Histon, 2014) and
reduce the required training/familiarization time. To this end, only support systems
that are already in use at MUAC, such as the verification and resolution advisory
tool (VERA), are made available to the ATCOs. Furthermore, Base of Aircraft Data
(BADA) 3.10 performance models from Eurocontrol (2012) are used to provide re-
alistic aircraft behavior, although reference weights are used for each aircraft type.
The aircraft are flown by scripted autopilots that always adhere to instructions is-
sued by the ATCO or automation. No human pseudo-pilots are used.

Data quality Uncertainties and unpredictability such as variable delays in pilot re-
sponses and changing weather are eliminated, ensuring perfect automation so-
lutions. In conjunction with the absence of automation failures, this removes the
considerable impact that (a lack of ) trust in automation might have, which is be-
yond the scope.
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1 1.7 Thesis outline
This thesis consists of three parts relating to three phases of research. Figure 1.6 shows
how the various chapters connect. Each chapter addresses one of the research questions
stated in Section 1.5.

Phase I contains the exploratory phase of the research.

Chapter 2 provides an overview of existing literature on automation, as well as
specifics in an ATC setting. It also introduces the state of the art at MUAC and
their envisioned future concept of operations with respect to automation. It
serves as a foundation for the thesis.

Chapter 3 discusses results of a preliminary experiment performed at MUAC to
provide initial insights in the concept of sharing traffic between a human and
an automated system in a single airspace, and to examine the willingness of
ATCOs to delegate flights. Lessons learned from this experiment have been
used as a basis and inspiration for Chapters 4 and 5. Also, the MUAC-style
simulation platform used throughout the thesis was first tested in this exper-
iment.

Phase II takes a deeper dive into what makes specific flights more complex for ATCOs
than others and how to model or predict this complexity.

Chapter 4 describes the development of a control task and strategy framework
in the form of cognition flowcharts for conflict detection and resolution. The
charts are based on observations in the experiment of Chapter 3 and in
MUAC’s operations room. The charts show connections between these typ-
ical ATCO (sub)tasks, together with empirically collected time trace data to
quantify the complexity of these tasks, and the potential impact of delegat-
ing flights to automation on this.

Chapter 5 discusses the perceived complexity of individual flights, in relation to
surrounding flights. The resulting complexity metric can be used to drive an
automated flight allocation algorithm.

Phase III puts the insights from Phase II into practice, reflecting on their practical use as
basis for an allocation algorithm.

Chapter 6 applies the lessons learned in testing two allocation schemes in a full-
scale experiment with a relatively large number of ATCOs and a realistic traffic
scenario. Compared to the experiment from Chapter 3, here the allocation is
further scrutinized in a more controlled environment.

The findings from this thesis are discussed and concluded in Chapter 7, together with
recommendations for further research and potential operational use of individual flight
allocation.
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Appendix A introduces the SectorX simulator that was used in all experiments in this
thesis, as well as several experiments from other research projects. It also provides
pseudo-code of the automation solvers used in Chapters 3 and 6.

Appendix B contains the experiment briefing and questionnaire of the experiment
from Chapter 6. These are exemplary for the other experiments.

Appendix C provides a literature survey of techniques often used in ATC research to
mitigate recognition of repetitive scenarios. Using data from the experiment in
Chapter 4, it discusses the delicate balance between preventing recognition and
simultaneously measuring conditions that are – except for the studied indepen-
dent variable(s) – as much alike as possible.
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Automation strategies

As seen in Chapter 1, many domains, including air traffic control (ATC), are moving to-
wards higher levels of automation to increase capacity, safety and efficiency, while cop-
ing with predicted staff shortages. After a short introduction to automation in general
as well as several key concepts, this chapter serves as a basis for the thesis, by setting the
stage for future automation developments in ATC. Two automation strategies, or paths,
towards full automation are discussed in an ATC context. The chapter furthermore intro-
duces ongoing automation projects in the ATC domain, with a special focus on Maastricht
Upper Area Control Centre (MUAC), whose ARGOS project is closely related to the work
in this thesis.
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2.1 Introduction to automation
Automation can be defined as “the execution by amachine agent (usually a computer) of a
function thatwaspreviously carriedout byahuman” (Parasuraman and Riley, 1997, p. 231).
In the traditional technology-centered designs, automation was indeed used to relieve
human operators by taking over (some of) their tasks (Endsley and Kaber, 1999). This
effectively moves the human away from the control loop into a supervisory role, moni-
toring the automation.

This significant shift from the use of ‘dumb’ (analog) tools, where humans have full
control over all aspects (Sheridan and Parasuraman, 2005), brings forward a number of
issues as articulated by Bainbridge (1983) that are still valid today (Strauch, 2018) and
remain valid in the future with the growing use of artificial intelligence (AI, Endsley,
2023). Operators can, for example, wrongfully assume that the automated system they
are supervising is functioning nominally, leading to complacency (Wickens et al., 2015).
This form of non-calibrated trust can also occur the other way around, with operators
distrusting the automation and therefore ignoring its alerts (Parasuraman et al., 2000).
Furthermore, operators are at risk of losing their vigilance, manual skills and situation
awareness when the system is performing most of the work.

Advances in computing power and more reliable technology are enabling the devel-
opment of smarter, more autonomous agents that can make independent decisions and
adapt to circumstances (Rieth and Hagemann, 2022). Automation is no longer limited to
performing pre-programmed, fixed tasks that a human has asked it to perform, but can
perform tasks without external (i.e., human) involvement. Eventually, this may evolve
into a fully autonomous system where no human involvement is required at all.

The onset of autonomy comes with new challenges, where automation should no
longer be seen as a tool but as a nearly equal collaborator (De Visser et al., 2018). This
can be attained by applying a human-centered approach in which automation supports
or complements the operator (Billings, 1997). Not taking away all authority from humans
is known to help them gain trust in a system (De Visser et al., 2018) and keeps them in-
volved and skilled. Determining an adequate function allocation is a delicate undertak-
ing though, requiring careful consideration (Pritchett et al., 2014).

2.2 Automation in ATC
2.2.1 Present-day automation
Recalling Figure 1.1, it is clear that the air traffic control (ATC) domain is not adverse to
automation. In fact, present-day controller working positions (CWP), as shown in Fig-
ure 1.1e, widely embrace automation support in the display and processing of informa-
tion. Flight plans, downlinked aircraft information and air traffic control officer (ATCO)
inputs are automatically associated with the corresponding radar plots and populate the
related aircraft labels. Another accepted use of automation is in the conflict scanning and
alerting task. Alarms go off when two aircraft are predicted to lose separation if adher-
ing to their cleared trajectories, and warnings are displayed when an alternative trajec-
tory (desired by the ATCO) would result in a loss of separation. The detection horizon
varies from circa two minutes for short-term conflict alerting (STCA) to up to 20 minutes
for medium-term conflict detection (MTCD) (Eurocontrol, 2007, 2017). MTCD makes use
of a flight’s predicted trajectory based on its flight plan, whereas STCA simply takes the
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current speed vector (position, heading and speed) to determine a future position. The
introduction of 4D trajectory-based operations is expected to make MTCD predictions
more reliable in the coming decades, although some intrinsic uncertainty will always re-
main (Paglione et al., 2017).

More recent developments include the adoption of probing tools that can show the
feasibility of an intended clearance. At Maastricht Upper Area Control Centre (MUAC),
this is implemented by the highlighting of unsafe control actions in the clearance menus
and, upon request, the highlighting of flights that conflict with the intended clearance
(Eurocontrol, 2024b). This is a first step towards more support in the resolution task. Even
though various algorithms have been developed that can automatically provide solu-
tions to solve conflicts (Alaeddini et al., 2011, Erzberger et al., 2012, Frazzoli et al., 2001,
Gariel and Feron, 2009), the inability of proving that these are always safe severely com-
plicates certification for operational use. They are therefore not yet in service, leaving the
resolution task to the human as creative and adaptive decision-maker.

Unlike the decision stage, where a solution needs to be chosen from a set of options,
executing (or implementing) the selected option is already more automated (Hendrickx
and Tisza, 2019), as seen with the automated uplinking of clearances for example. Human
decision making is for good reasons one of the most, if not the most, difficult stages to
automate, as widely recognized in literature (Endsley and Kaber, 1999). It is not without
reason that ATCOs around the world see automation as a helpful and useful addition,
as long as it supports them instead of taking over their decision making (Bekier et al.,
2012, Langford et al., 2022). ATCOs generally prefer to be ‘in control’. Apart from technical
challenges, legal constraints currently prohibit the use of automated decision making
and execution, as the executive ATCO is ultimately still responsible (Contissa et al., 2012).

2.2.2 Future visions on automation
In its 2025 master plan for the European ATC system, SESAR Joint Undertaking (2024,
p. 68) presents an automation roadmap towards higher levels of automation (LOAs), as
shown in Table 2.1. This automation taxonomy is based on a levels of automated driving
standard (SAE International, 2021), in combination with four stages (or tasks) devised by
Parasuraman et al. (2000).

In Levels 0 and 1, a human operator is still fully responsible for executing all actions,
whether they are self-created or proposed by the system. The current European ATC sys-
tem is at Level 0, and progressing towards Level 1 with limited action selection support.
At Level 2, expected by 2035, the automation proposes the optimal solution for the ATCO
to validate or reject. The automation can now implement actions when approved by the
ATCO who assumes a ‘director’ role (i.e., management by consent, Billings, 1997).

From Level 3 onward, the automated system receives an increasing amount of au-
thority, which means that it can autonomously execute actions unless the ATCO inter-
venes (i.e., management by exception, Billings, 1997). Here the human acts as a super-
visor. At Level 4, ATCOs will no longer directly guide traffic but will act as ‘safeguarder’.
They will only be asked to supervise when a situation is outside the automation’s prede-
fined scope and potentially requires their intervention, which would revert the system to
Level 3. Compared to the previous edition of the master plan (SESAR Joint Undertaking,
2020, p. 24), ‘High automation’ at Level 4 has been rephrased to ‘Confined automation’ in
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Table 2.1: Levels of automation from the European ATM Master Plan 2025, adapted from SESAR Joint Under-
taking (2024, p. 68).

Tasks

Level of automation P A D E Authority

0 Low automation
Automation gathers and exchanges data. It analyses and prepares all available
information for the human operator. The human operator takes all decisions
and implements them (with or without execution support).

A A H H/A N/A

1 Decision support
Automation supports the human operator in action selection by providing a so-
lution space and/or multiple options. The human operator implements the ac-
tions (with or without execution support).

A A H/A H/A N/A

2 Resolution support
Automation proposes the optimal solution in the solution space. The human
operator validates the optimal solution or comes up with a different solution.
Automation implements the actions when due and if safe. Automation acts un-
der human direction.

A A H/A A N/A

3 Conditional automation
Automation selects the optimal solution and implements the respective actions
when due and if safe. The human operator supervises automation and overrides
or improves the decisions that are not deemed appropriate. Automation acts
under human supervision.

A A A A

4 Confined automation
Automation takes all decisions and implements all actions silently within the
confines of a predefined scope. Automation requests the human operator to
supervise its operation if outside the predefined scope. Any human intervention
results in a reversion to Level 3. Automation acts under human safeguarding.

A A A A

5 Full automation
There is no human operator. Automation acts without human supervision or
safeguarding.

A A A A N/A

Perception, Analysis, Decision and Execution
Human and Automation

the 2025 edition, acknowledging the belief that high LOA may be applicable in a limited
scope, rather than trying to handle all situations at a single automation level.

At Level 5, ‘Full automation’, the system operates completely without the ATCO. This
level has been excluded altogether from the 2025 edition, but is kept here to indicate the
highest theoretical level. SESAR aims to reach Level 4 by 2045. The table clearly shows
that SESAR postpones the transfer of full decision and action selection authority to the
automation. This is indicative for the widely supported belief that, ultimately, ATCOs re-
main and should be in control for the foreseeable future (Bekier et al., 2012).

2.2.3 Enablers for future ATC
A plethora of research projects have been and still are devoted to researching and devel-
oping novel technologies that can enable future ATC systems (SESAR Joint Undertaking,
2019). Trajectory-based operations (TBO) are a prominent example that will have flights
follow pre-negotiated 4D trajectories (position and time) that are constantly updated
by all stakeholders to provide accurate predictions (Enea and Porretta, 2012). These
trajectories can then be cleared of conflicts, even before a flight departs (Pérez-Castán
et al., 2020). However, intrinsic uncertainties like unforeseen events or changing weather
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conditions remain and can prevent flights from maintaining the negotiated trajectories
(Corver and Grote, 2016), necessitating real-time ATC.

The downlinking of extended projected profiles (EPP) from the aircraft’s on-board
flight management system (FMS) through automatic dependent surveillance - contract
(ADS-C) will greatly enhance the accuracy of ground-based vertical and speed profiles
(Haugg et al., 2015). By sharing the ideal (from the aircraft’s point of view) top of de-
scend, ATCOs can issue optimized descent clearances and subsequently save fuel. As of
2024, circa 130 of the 5,500 daily flights at MUAC establish an ADS-C connection, which
is expected to increase to 800 flights in 2026, in anticipation of a mandatory regulation
for all newly-built European aircraft in 2028 (Jagasits, 2024).

An additional prerequisite for automated controllers is an increased adoption of con-
troller pilot data link communications (CPDLC), as already mandated for nearly all flights
operating above FL285 in European airspace since 2020 (Alharasees et al., 2022). This is
fundamental as next to, e.g., reducing radio congestion and improving transmission clar-
ity, it removes the dependence on the human voice for air-ground communication. Sev-
eral instructions can be issued in parallel, which was not possible with radio only. While
talking to one flight, the ATCO can uplink a few more instructions to some other flights
– which is a significant boost to ATCO productivity. In a similar fashion, CPDLC will allow
a human-automation team to instruct several flights in tandem – without disrupting the
workflow of one another.

Despite all its benefits, CPDLC has several important shortcomings as well, such as
increased latency compared to radio and reduced situation awareness of pilots (i.e., no
‘party line’ where pilots can hear instructions to other flights, Etherington et al., 2019),
that can hinder the introduction and acceptance of automatic controllers. In fact, CPDLC
is currently not to be used for short-term time-critical instructions (International Civil
Aviation Organization, 2017), where voice is expected to remain the prevalent means of
communication due to its intrinsic speed and instant feedback/acknowledgment. How-
ever, it are precisely flights requiring short-term tactical control that are expected to re-
main the responsibility of an ATCO in a shared human-automation airspace.

In tandem with the developments of improved trajectory prediction and data ex-
change infrastructures, rapid advances in AI-based technology are paving the way for
the creation of ‘digital ATCOs’ to safely and efficiently direct flights through the airspace
(Ortner et al., 2022). Examples include experimental data-driven approaches to conflict
detection (Pérez-Castán et al., 2022) and conflict resolution (Pham et al., 2022) that can
augment well-established physics-based models and algorithms. Currently, legal barri-
ers and certification hurdles prohibit the use of (nondeterministic) AI for automated de-
cision making and execution, leaving the human ATCO with the ultimate responsibility
(Contissa et al., 2012, Lanzi et al., 2021). Therefore, it is expected that advanced data-
driven and physics-based algorithms will initially be integrated into decision-support
tools to assist rather than replace the ATCO.

Indeed, many of the ongoing projects that expand the role of automation still rely on
some form of human involvement. Single-controller operations, for example, transition
from the current human-human ATCO dyad to an automation-human dyad (Gerdes et al.,
2022, Hunger et al., 2024). Fully automated ATC is still far on the horizon, but that does
not preclude the introduction of new forms and higher LOAs in the forthcoming decades.
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2.3 Strategies towards full automation
The strive towards full automation in the ATC domain has interesting parallels with the
automotive industry, whose automation strategies can serve as a source of inspiration for
ATC. Cars increasingly receive automation support functions. For instance, cruise control
is a standard feature on most modern cars and allows the human driver to set a desired
speed that the vehicle then maintains. As more automation is introduced, cars start mak-
ing more autonomous decisions without human involvement. One such feature is adap-
tive cruise control, which automatically slows the vehicle when it is approaching another
vehicle in front. Nevertheless, the human driver still needs to steer the car. When a driver
wishes to overtake the preceding vehicle, the system cannot reliably anticipate exactly
when the driver will steer towards the adjacent lane (which can vary with driver prefer-
ence) and may therefore start braking, which the driver did not anticipate. This lack of
mutual understanding is just one example of many potential human-automation inter-
action issues.

On the one hand, such a gradual function-based introduction to more automation in-
creases acceptance by allowing operators to slowly adapt and gain trust and confidence
in the automation (Cioroaica et al., 2020). Incremental automation can make operators
feel like they remain in control, while delegating fine-grained control to automation. On
the other hand, this approach slows down achieving higher levels of automation, as it
requires solving many intermediate mixed-authority challenges that do not directly add
to the development of full automation.

As an alternative, systems that operate within a constrained environment, such as
trains or shuttle buses on dedicated lanes, can overcome many of these issues by oper-
ating at very high LOAs or even fully autonomously (Schutte, 2017, Stayton and Stilgoe,
2020). Proving that automation can work under any condition and in any environment
(i.e., unconstrained) is no easy feat though. It is therefore that the most advanced au-
tonomous cars are currently operating at Level 4 at most on an automotive industry-
standard defined by SAE International (2021). These vehicles can only operate within
geofenced areas (e.g., city centers or highways) and under specific (weather) conditions,
and require human intervention when exiting the constraints. Similar developments
are seen in the maritime domain with remotely supervised autonomous ships (Rødseth,
2021). For Level 5, the constraints need to be lifted such that the vehicle can operate
anywhere at anytime.

2.3.1 Comparing strategies
To compare the aforementioned function- and constraint-based strategies in an ATC con-
text, we introduce the chart in Figure 2.1. The numbered boxes denote the respective
system level (referring to the system as a whole), while the boxes’ vertical and horizontal
location indicate the share of flights in an airspace that operates at a specific LOA. Since
present-day ATC makes heavy use of automation in the information acquisition and anal-
ysis stages (e.g., conflict alerts and label correlation), most LOA taxonomies used in indus-
try do not start at a fully manual level. Despite the misleading name, Level 0 often does
involve some form of automation, as reflected by the gray area on the left of the chart.
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Figure 2.1: Function- and constraint-based automation strategies towards full automation.

At the highest level on the far right of the figure (Level 5 in this case), human ATCOs are
no longer involved. This is not foreseen to be attainable in the medium-term future (or
even at all) and therefore grayed out as well. Note that for both strategies the number of
intermediate levels can vary and that the horizontal axis is an ordinal scale (i.e., the exact
horizontal distance between levels does not have any meaning).

Function-based
Traditional function-based automation strategies can be seen as one-dimensional, when
evaluated at system-level, with the LOA gradually, but system-wide, increasing as the
capabilities of the automated system advance over time (i.e., moving from left to right
in Figure 2.1). Examples of this can be found on the flight deck (e.g., the first autopilots
could only maintain attitude and heading whereas modern systems can follow complete
routes, Landry, 2009) and in the automotive industry, where Tesla has been gradually
increasing the capabilities of its ‘autopilot’ systems (Kannan and Lasky, 2020).

Constraint-based
An alternative, constraint-based strategy, is to promptly attain a high(er) LOA in a con-
strained environment and gradually expand this environment. Looking at the automo-
tive industry once again, companies like Waymo abandoned the development of SAE
Level 3 systems in favor of Level 4 as successor to the widely available driver support
systems at Level 2 (Kannan and Lasky, 2020). Their self-driving taxis can operate au-
tonomously, but only in a constrained environment such as specific urban areas.

In Figure 2.1 this strategy pivots around a central point and has simultaneous – but
counterbalanced – up and down movements at two distinct LOAs, enabling a higher LOA
for certain flights only, before making this available to all flights. It can be thought of as
a traditional balance scale, where an increase in flights operating at one LOA is accom-
panied by an equal reduction in flights operating at the other LOA.
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2.3.2 Serial and parallel automation

Function-based automation generally invokes serialized interactions in which the hu-
man operator needs to monitor the automation and/or accept or reject solutions pro-
posed by it (Endsley, 2017), as shown at the top of Figure 2.2. In such a setup, described
by Millot and Mandiau (1995) as a vertical system, the human is mostly backing up the
automation, leading to reiteration of a large part of the work. Serial automation at the
decision-making and execution stages is often not efficient (Endsley, 2017), as operators
may prefer to or even need to re-analyze a situation. For example, if ATCOs need to check
whether a solution presented by the automation is feasible, they may perform a similar
or even more time-consuming analysis compared to when they had to come up with the
solution themselves. Similar to on-the-job training, where experienced ATCOs sit along-
side trainees to monitor their actions, automation is degraded to a ‘student’ that requires
close supervision. Therefore, the desired workload reduction is often not attained with
serial automation in complex tasks (Endsley, 2017). In addition, serial processes require
high levels of conformance with respect to the ATCO’s individual style in order to increase
acceptance (Hilburn et al., 2014, Westin et al., 2016b). Serial automation is often imple-
mented as a hierarchy, with the human governing and delegating tasks to automation.

Flights

Flights

Clearances

Clearances

Flights Clearances

Flights Clearances

Level of
automation

Flights

Clearances

Basic

Non-basic

Basic

Non-basic

Basic

Non-basic

Communication

Serial

Parallel

Figure 2.2: Serial versus parallel automation at various LOA, adapted from Endsley (2017). ’Basic’ and ‘Non-
basic’ refer to the complexity of individual flights’ trajectories through the airspace.
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Constraint-based automation leads to a parallel (or horizontal, Millot and Mandiau,
1995) system that evokes a heterarchy, that is, a level playing field where both human
and automation can take initiative and execute actions (Pacaux-Lemoine and Flemisch,
2019, Rieth and Hagemann, 2022) as illustrated in the lower half of Figure 2.2. In contrast
to a serial system, the automation now gets sufficient authority to make autonomous
decisions that do not require human input. In ATC, the most extreme form of parallelism
can be achieved by fully automating an entire sector while a neighboring sector remains
completely under manual control.

In practice, flights in both sectors can have an impact on each other, meaning that
true parallelism can only be approximated, as discussed in Chapter 1. A common frame
of reference (Hoc and Carlier, 2002) or team orientation (Joe et al., 2014) is a prerequisite
for efficient parallel systems, making joint communication equally or even more impor-
tant (Feigh and Pritchett, 2014). Experienced human-human teams often rely on implicit
communication, such as body language and voice nuances, which is naturally very dif-
ficult for computers (Joe et al., 2014). In current-day operations, with a human ATCO in
every sector, mutual performance monitoring and backup behavior is provided by plac-
ing the ATCOs responsible for adjacent sectors side-by-side, or on direct phone lines with
each other (Svensson et al., 2019). Insufficient communication can lead to compensat-
ing behavior and a (temporary) return to a serial system. The main challenge in creating
a parallel system is, therefore, how to organize the overlap between the ATCO and au-
tomation work domains to ensure that not too many serial processes co-exist.

2.4 Function-based strategy
The traditional approach towards full automation is to gradually increase the LOA of spe-
cific functions (Figure 2.1). In such a function-based automation strategy, there is a con-
tinuum between ‘none’ and ‘full’ automation with many intermediate steps where part
of a (sub)task is performed by a human and part by automation. Intermediate steps seem
to have advantages over near-full automation with a human supervisor by (theoretically)
enabling human-machine teamwork (Kaber and Endsley, 2004), but partial automation
can also lead to increased operator workload compared to manual operation, as demon-
strated in car driving experiments by McDonnell et al. (2023).

2.4.1 Stages and levels of automation
To describe the various intermediate stages of an automated system, LOA taxonomies
like SESAR’s (Table 2.1) are widely used in many variations (Vagia et al., 2016). A system
can simultaneously operate at multiple LOAs by assigning a distinct level to specific tasks
or situations, but a single LOA can also be used to describe the system as a whole.

In 1978, Sheridan and Verplank were the first to list ten LOAs on a one-dimensional
scale for robot teleoperation (Table 2.2). At all levels the automation implements the job,
but with increasing LOA, human involvement is reduced in exchange for more autonomy
of the automated system. At Level 1 the human tells the automation what to do, at Levels
2–6 the automation suggests actions to the human and at Levels 7–10 the automation
only informs the human about its decision after it has implemented it. As can be seen,
the scale mainly refers to making a decision out of several options and subsequently
implementing the chosen action, i.e., the output of a system.
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Table 2.2: Levels of automation in human-computer decision-making, adapted from (Sheridan and Verplank,
1978, pp. 8-17–8-19).

LOA Description

1 Human does the whole job up to the point of turning it over to the computer to imple-
ment

2 Computer helps by determining the options

3 Computer helps determine options and suggests one, which human need not follow

4 Computer selects action and human may or may not do it

5 Computer selects action and implements it if human approves

6 Computer selects action, informs human in plenty of time to stop it

7 Computer does whole job and necessarily tells human what it did

8 Computer does whole job and tells human what it did only if human explicitly asks

9 Computer does whole job and tells human what it did, if the computer decides he should
be told

10 Computer does whole job if it decides it should be done, and if so tells human, if it decides
he should be told

Parasuraman et al. (2000) later realized that automation can also play a role in the
input preceding the decision-making. They therefore extended the taxonomy by formu-
lating four consecutive stages reflecting human information processing: a) information
acquisition, b) information analysis, c) decision and action selection, and d) action im-
plementation. The first two and latter two stages relate to, respectively, the input and
output of the system. Each stage has a specific LOA ladder with a variable number of
steps, dependent on the system at hand.

The original LOA taxonomy discussed so far is rather generic and not easily applicable
to cognitively demanding domains like ATC. Endsley and Kaber (1999) therefore came up
with another ten-level taxonomy (Table 2.3) that describes in detail who performs what
role at each level: the human operator, the automation, or a mixture of both. The asso-
ciated four stages (or roles) are more in line with the typical tasks of an ATCO. As the LOA
increases, automation involvement gradually expands to more action-based roles. At the
same time, human involvement sees an opposite shift towards a more monitoring role.
In the table this shows as the green area shrinking to the right with increasing LOA, while
the blue area expands to the left. In contrast to, e.g., the taxonomy from SESAR (Table 2.1),
here full action-implementation autonomy is allocated at an earlier stage. Although this
taxonomy explicitly acknowledges that many functions are performed as a co-operation
between human and automation, it does not further detail this co-operation, making it
too superficial for system designers (Kaber, 2018).

In an attempt to tackle this, Save and Feuerberg (2012) developed a new LOA taxon-
omy for the European SESAR program, specifically aimed at designs for systems support-
ing flight crews and ATCOs (Table 2.4). Its number of LOAs varies per function (or stage),
as was already suggested by Parasuraman et al. (2000): there are six levels for both per-
ception and analysis, seven for decision and nine for execution. The higher number of
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Table 2.3: Hierarchy of levels of automation, adapted from (Endsley and Kaber, 1999, p. 466).

Roles

Level of automation Monitoring Generating Selecting Implementing

1 Manual control H H H H

2 Action support H/A H H H/A

3 Batch processing H/A H H A

4 Shared control H/A H/A H H/A

5 Decision support H/A H/A H A

6 Blended decision making H/A H/A H/A A

7 Rigid system H/A A H A

8 Automated decision making H/A H/A A A

9 Supervisory control H/A A A A

10 Full automation A A A A

Human and Automation

levels for the decision and execution tasks reflect the difficulty and sensitivity of automat-
ing these tasks that are key for autonomy. At Level 0, all tasks are manually performed,
without any support, while at Level 1, “the human is accomplishing a task with ‘primitive’
external support, which is not automation as such” (Save and Feuerberg, 2012, p. 47). Note
that from Levels 4 and 5 onward in, respectively, the decision and action functions, au-
tomation switches from purely supporting human decision making and action execution
to actually making and executing the decision autonomously. In contrast, both informa-
tion acquisition and analysis do not go beyond the ‘support’ level and leave room for
human involvement, even at their most automated levels.

Despite their widespread use, LOA taxonomies have several shortcomings that have
caught attention in recent years. Kaber (2018) suggested that the taxonomies should
evolve to more descriptive human performance models. In response, Wickens (2018)
proposed some solutions, for example by combining the information acquisition and
analysis stages to a ‘situation assessment’ stage. Similarly, he argued that the decision
making and action stages could be combined into a single ‘choose and execute’ stage.
Other criticism is aimed at the apparent ordinal nature of numbered levels, while in reality
it is a nominal scale, that is not necessarily listed in a particular order that needs to be
traversed from top to bottom (Stayton and Stilgoe, 2020).

This also implies that the highest level is not a ‘holy grail’ that must be reached what-
ever the cost. This was already coined by Parasuraman et al. (2000), who suggested that
the appropriate LOA depends on the risks associated to automating a certain function,
but seems to have been replaced by an overoptimistic belief in computer capabilities
over the years. For example, Martin et al. (2016) showed that introducing full automa-
tion in an ATC setting resulted in worse overall system performance than an interme-
diate level, where both human and automation were involved. System designers could
skip LOAs or systems can revert back to lower levels for better performance. On the flight



2

2.4 Function-based strategy | 29

Table 2.4: Levels of automation taxonomy, adapted from (Save and Feuerberg, 2012, pp. 48–50).

Functions

LOA Information acquisition Information analysis Decision and action
selection

Action implementation
(execution)

0 H: without any tools H: without any tools or
support

H: generates and selects
options

H: executes and controls
actions manually

1 H: non-digital artifacts H: non-digital artifacts H: generates and selects
options with non-digital
artifacts

H: executes and controls
actions with non-digital
artifacts

2 A: supports acquisition
H: integrates and filters

A: helps compare,
combine and analyze
on request

A: proposes options
H: selects one option or
requests new options

A: executes parts
on request or provides
execution guidance
H: full execution control

3 A: supports acquisi-
tion, helps integrating
and filtering based on
user settings

A: helps compare,
combine and analyze
on request, triggers
alerts
H: request help

A: proposes option(s)
H: selects one proposal
or requests new options

A: executes on request
H: initiates, modifies or
interrupts

4 A: supports acquisition,
integrates and filters
based on predefined
criteria (visible to user)

A: helps compare, com-
bine and analyze, alerts
user

A: generates options
and decides
H: always informed

A: executes on request
H: initiates, monitors or
interrupts

5 A: supports acquisition,
integrates and filters
based on predefined
criteria (not visible to
user)

A: compares and an-
alyzes data based on
predefined parameters,
alerts user

A: generates options
and decides
H: informed on request

A: initiates and executes
H: monitors, modifies or
interrupts

6 A: decides
H: never informed

A: initiates and executes
H: monitors and inter-
rupts

7 A: initiates and executes
H: monitors partially,
limited interruption
opportunities

8 No higher levels defined by Save and Feuerberg A: initiates and executes
H: cannot monitor nor
interrupt

Human and Automation

deck, for example, it is a widely recognized practice to revert to a lower LOA in abnormal
flight conditions (Moriarty, 2015). In the case of system failure or limitations, graceful
degradation is preferable over catastrophic failure (i.e., reverting to a lower level, rather
than disabling all automation) (Edwards and Lee, 2017).

Another important realization, already introduced in Chapter 1, is that higher LOAs
may be easier to implement than lower levels as human involvement is reduced. Think of
autonomously driving trains that have been operating for decades, albeit in constrained
environments often physically separated from user-operated vehicles, such as on ele-
vated tracks between airport terminals (SAE International, 2021).
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2.4.2 Adaptable and adaptive automation
Depending on its design, a system can operate at a static LOA (as chosen by the system
designer) or dynamically change to higher or lower levels in real time (Lagu and Landry,
2010). Many automated systems switch to a lower LOA when they detect a situation
that they cannot handle, giving back some or even full control to their human opera-
tors. There can, however, also be human-centered reasons to (temporarily) lower the
LOA. While a high LOA may lead to improved overall performance and lower operator
workload, it can simultaneously lead to a reduction in situation awareness and opera-
tor skills (Metzger and Parasuraman, 2001, Onnasch et al., 2014, Parasuraman and Wick-
ens, 2008). Humans are, for example, more capable of detecting changes when such
changes are controlled by themselves rather than automation or other humans (Wick-
ens, 1995). Essential skills, like conflict detection and resolution in ATC, should not be
fully automated at all times but may need to be under certain conditions (Landry, 2012).
Finding a method to cater for such a dynamic balance is key in developing a successful
human-automation system (Calhoun, 2021).

The more LOAs available to a system, the smaller the difference between levels and
the larger the potential for confusion about the active level, recognized as ‘mode confu-
sion’ on the flight deck by Sarter and Woods (1995). As this risk is largely dependent on
who gets to decide the active LOA, a further distinction can be made between adaptable
and adaptive automation (Parasuraman and Wickens, 2008). Adaptable automation re-
quires the user to initiate changes in presentation modes or function allocation, whereas
in adaptive systems such changes are initiated by the system. Hybrid automation com-
bines both forms, with user and system jointly capable of changing the LOA.

Of the two, adaptable automation is vastly easier to implement, as it assigns the allo-
cation responsibility solely to the operator. This in itself may lead to a workload increase
though (Bailey et al., 2006, Kirlik, 1993). A further complication is that humans are bi-
ased in assigning interesting or challenging tasks to themselves, even though automa-
tion may be better in performing those tasks (Hopkin, 1998).

With adaptive automation, a system could automatically switch to a different LOA
after a detected change in e.g., an operator’s decision-making quality (IJtsma et al., 2022)
or mental workload (Aricò et al., 2016). In a study with professional ATCOs, Di Flumeri
et al. (2019) showed that adaptive automation driven by electroencephalography (EEG)
and eye tracking measures is indeed capable of increasing operator performance and
satisfaction by re-evaluating the active LOA every 5 minutes. Their study was limited to
only two LOAs though, meaning that the active LOA was often either too high or too low.
Determining exactly when to change an adaptive system to a different level is a delicate
task that has not yet been reliably solved in the ATC domain.

Both forms of automation have their advantages and disadvantages (Calhoun, 2021).
In general, adaptive automation works best when applied to the information acquisition
and action implementation stages, rather than the more cognitively demanding analy-
sis and decision stages (Kaber et al., 2005). The Federal Aviation Administration, among
others, recommends adaptable automation over a static LOA, as it leaves the operator
actively in control (Ahlstrom, 2016). This was echoed by Rieth et al. (2024) in a recent
study involving 126 professional ATCOs.
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2.4.3 Advantages and disadvantages
The stepwise technology-centered expansion of automated functions allows for rela-
tively easy tasks, such as transfer of control to the next sector, to be automated first. On
the one hand, this allows operators to gradually gain trust in the automated functions,
one at a time. On the other hand, this easily leads to many intermediate steps where au-
tomation does (an increasing) part of the job and the human does another part, which
is prone to the aforementioned ‘ironies of automation’ (Section 1.3). Rather than full au-
tomation, it is generally the intermediate levels that are problematic (Norman, 2015).

For this reason, Young and Stanton (2023) propose that the automation of a func-
tion should preferably be delayed until the automated system is mature enough to act
fully autonomously without human involvement. They dubbed this human-centered ap-
proach the ‘cliff-edge’ principle after the envisioned sudden jump in LOA compared to
the traditional step-wise increments across intermediate LOA, as illustrated in Figure 2.3
where it circumvents the ‘area to avoid’. Note that here the vertical axis depicts the level
of ‘human involvement’, rather than the share of flights. Although the two may seem
similar, human involvement can vary independently of the share of flights.

Because reaching mature automation is a lengthy process, especially in safety-critical
domains like ATC, strictly following the cliff-edge principle would mean that no higher
LOAs could be implemented in the coming decades. Fortunately, the left boundary of
the ‘area to avoid’ can be shifted towards the right, by increasing the LOA of the infor-
mation stages while mostly delaying the automation of decision-making (Young and
Stanton, 2023). As seen in Section 2.4.1, most automation issues arise when the LOA
of the decision-making and/or execution stages are increased, leading to serial automa-
tion (Endsley, 2017). Automation should thus be designed to support rather than replace
the human in the meantime, to ensure that human involvement does not drop below a
certain minimum.
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Figure 2.3: Human involvement in a human-centered ‘cliff-edge’ approach versus a technology-centered (i.e.
function-based) approach, adapted from Young and Stanton (2023).
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2.5 Constraint-based strategy
Another way to speed up the introduction of higher LOAs, loosely related to the cliff-edge
principle (Young and Stanton, 2023), is to follow a constraint-based strategy. Although a
relatively new phenomenon in the context of ATC, it is an established strategy in the au-
tomotive domain, with numerous companies developing fully autonomous self-driving
cars that can operate in constrained environments (Kannan and Lasky, 2020). These com-
panies skip the troublesome intermediate LOAs that lead to so many human-automation
issues. When this strategy is applied to an ATC context two (or more) LOAs can be selec-
tively assigned to a subset of the flights, as illustrated in Figure 2.1 by the two parallel but
counterflowing vertical paths.

2.5.1 ATC example strategy: ARGOS
The ATC Real Groundbreaking Operational System (ARGOS) currently in development
by MUAC is an example of a constraint-based automation strategy (Eurocontrol, 2024b).
Where most ATC automation solutions proposed or implemented to date address indi-
vidual tasks, such as conflict resolution, the ARGOS project takes a holistic approach, en-
compassing the entire set of ATCO tasks. This is reflected in the following three project
objectives (Hendrickx and Tisza, 2019):

• Fully automated pre-tactical (planning) phase,

• Automated decision making and execution support for complex traffic scenarios,

• Fully automated control of basic traffic scenarios.

Here, the terminology ‘basic’ and ‘non-basic’ (or ‘complex’) flights is used to distinguish
between flights requiring little ATCO attention and intervention (e.g., overflights), and
flights requiring much ATCO attention, such as when they involve (multiple) vertical
changes which may interact with multiple other flights.

The ARGOS philosophy is explicitly not to replace the ATCO completely, but to “let
ATCOs focus on the real, challenging work, to do what they are the best at, and leave the
routine work to the machine” (Hendrickx and Tisza, 2019, p. 1). Although this may seem
very much like function-based allocation, there is a small but important nuance in the
meaning of the word ‘work’. Here it refers to the entirety of ATCO tasks for specific traffic
scenarios, instead of specific (sub)tasks (e.g., only conflict detection) in any scenario. The
workload reduction and other benefits that ARGOS is hypothesized to bring can then be
used to work larger or busier sectors with the same number of staff (Lanzi et al., 2021).

MUAC envisions ARGOS to operate in one of three modes, pertaining to Levels 1–3
in Table 2.5 that can be enabled by the ATCO (supervisor). During the development of
ARGOS, Level 1 will be progressively implemented to gradually gain ATCO trust and vali-
date the systems, akin to a function-based strategy, before Levels 2 and 3 can be put into
practice. Note that Levels 1 and 2 resemble several decision and execution LOAs from
Table 2.4 to emphasize that the exact LOA in each stage can differ per situation and task.
Figure 2.4 illustrates how the various ARGOS levels relate to each other on the LOA chart
introduced in Section 2.3.1, with the vertical axis denoting the share of flights allocated
at a certain LOA. Level 2 largely resembles a constraint-based strategy, where both ATCO
and ARGOS fully control different parts of the traffic, and is the focus of this thesis.
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Table 2.5: ARGOS and human ATCO responsibilities, adapted from Hendrickx (2023). Intermediate levels of the
10-level ARGOS taxonomy, that are not envisioned to be used, have been omitted for clarity.

LOA per function

(Table 2.4)

Level ARGOS ATCO Decision Execution

0 N/A Controls all flights. 0 0

1 Suggests plan for all flights. Ex-
ecutes approved plans for CPDLC
flights. Reminds ATCO and de-
faults menu for non-CPDLC flights.

Approves, requests revision or re-
jects plans by ARGOS. Executes
plans for non-CPDLC flights.

2-3 2-5

2 Presents and executes plan for
flights allocated to it (by algo-
rithm).

Controls all other flights. Takes
back control over individual AR-
GOS flights.

2-3 & 6 2-5 & 7

3 Presents and executes plan for all
flights. Alerts ATCO when flights
are outside its comfort zone.

Monitor (stay in Level 3) when re-
quested, or take back manual con-
trol for alerted flights (degrade to
Level 2).

6 7

4 Controls all flights. N/A 6 8
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Figure 2.4: Level of automation chart for ARGOS.

A first step in introducing elements of ARGOS in the operational CWP was made in
2020 when occupied flight levels were color coded in the menus that ATCOs use to input
their clearances, following the ecological interface design principle of intuitively display-
ing the constraints of the work domain (Borst et al., 2015). This feature was followed
by the implementation of the Lateral Obstacle and Resolution Display (LORD) in 2024, a
more advanced conflict space (constraints) display (Eurocontrol, 2024b). LORD shows the
ATCO which combinations of altitude and heading clearances are free of conflicts in the
coming 8 minutes and highlights any conflicting traffic. Both are examples of decision
support tools that can be used in any traffic scenario.
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2.5.2 Advantages and disadvantages
Compared to a function-based strategy, a constraint-based strategy circumvents the
technology-centered stage where both human and automation are controlling the same
flight at various stages. This cliff-edge approach (Young and Stanton, 2023) can speed up
the development of fully automated systems, as many of the aforementioned human-
automation challenges and their – often complex – required solutions are skipped.

Nevertheless, in practice, flights on either side of the LOA spectrum cannot be com-
pletely segregated, and thus inevitably create an overlap between agents, as introduced
in Chapter 1. These interactions present a challenge that is also seen with self-driving
cars, when they are mixed with conventional traffic (Nyholm and Smids, 2020) or pedes-
trians (Ezzati Amini et al., 2021). This calls for careful consideration on how to best facil-
itate the joint work. Determining which flights should operate at either the high or the
low LOA is the main research area of this thesis.

2.6 Conclusions
When transitioning an ATC system towards higher LOAs, two main strategies can be
taken. A constraint-based strategy, as seen elsewhere in the mobility domain, seems
to be a promising way to avoid forthcoming issues when authority over flights is shared
between human and automation. Unlike the traditional – and in ATC widely applied –
function-based strategy, it enables attaining a high(er) LOA for a subset of flights. In do-
ing so, it creates a parallel system where human and automation can work alongside each
other. As true parallelism can only be approached, tailoring the overlap between either
agent’s work is essential to minimize interference in achieving a common goal. Deter-
mining which flights should be allocated to either human or automation is, therefore, of
paramount importance.

As a first step, an empirical simulation experiment should be performed to explore
the concept of sharing flights in a single airspace and see if ATCOs act alike in their pref-
erence for which flights should be allocated to which agent. Later experiments can then
focus on finding and fine-tuning an algorithm for automatically allocating flights, such
that this burden is not placed upon the ATCO.
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As discussed in Chapter 2, air traffic service providers around the world are aiming for
higher levels of automation. So far, no extensive research has been performed on the fea-
sibility and implications of selectively delegating specific flights to an automated agent,
within one airspace. Through an exploratory experiment with six professional air traffic
control officers (ATCOs), this chapter aims to provide some initial insights into the possi-
bilities and complications of such a shared environment. Each ATCO was given sugges-
tions from a distinct allocation scheme, but the system also allowed for manual revisions.
Lessons learned in this chapter serve as a foundation for the remainder of the thesis.
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3.1 Introduction
Air traffic control officers (ATCOs) work in a challenging and demanding environment.
The continuous quest for more efficient and safer air travel drives the development of
more advanced automation. Both Europe and the United States aim for higher levels
of automation (LOAs) in the coming decades with a more supervisory/strategic role for
humans (Prevot et al., 2012, SESAR Joint Undertaking, 2020). In such an environment,
less people can handle more traffic in larger sectors. Despite striving for high levels of
automation, humans are expected to play an important role in supervising these future
systems and to intervene when automation falls short (Metzger and Parasuraman, 2005);
people will ultimately remain responsible.

To be able to intervene, it is essential that ATCOs maintain vigilance, situation aware-
ness and a sufficient skill level to perform tasks unassisted (Bainbridge, 1983). This could
be achieved by not making the human a supervising bystander, but have them work side-
by-side with automation in a team, both able to perform and share tasks. This sparks the
question of what such co-operation should look like, and what impact it will have on
human-automation performance.

Currently, the airspace is divided into sectors, each under the responsibility of a dif-
ferent ATCO. This requires considerable coordination between adjacent sectors and may
lead to an imbalance in traffic load (and thus workload). To mitigate these issues, so-
called flight-centric or sectorless operations are proposed (Birkmeier et al., 2016). In-
stead of coupling controllers to geographic areas, a single controller would be assigned
to several flights, from departure to arrival, reducing the number of transfers and possi-
bly providing a better workload balance. This, however, also introduces new challenges.
Consider, for example, when two flights under control by different ATCOs are in conflict.
Who should then solve the conflict?

Research suggests that conflicts are best solved at the planning stage (Hoc and Car-
lier, 2002), increasingly enabled by future initiatives like trajectory based operations
(TBO, Enea and Porretta, 2012). However, even when flights are deconflicted before en-
tering an airspace, unexpected conflicts may still occur, for example due to weather or
emergencies (Corver and Grote, 2016), necessitating real-time ATC. In flight-centric ATC,
it is expected that a computer algorithm then determines what flight is assigned to which
controller, who then has to solve the conflict (Schmitt et al., 2011).

What if the other controller is not another human ATCO, but an automated computer
system? How are flights then assigned to either agent: the controller or automation?
Should problem-free flights be identified first (Drew and Makins, 1994) and subsequently
automated? Should all flights involved in a conflict be controlled by either the ATCO or
the automation, so as to mitigate additional workload related to inter-agent coordina-
tion? If not, who solves a mixed conflict? In addition, with an automated agent, it be-
comes possible to share (sub)tasks dynamically, back and forth, between human and au-
tomation. This could establish true teamwork, but only if the aforementioned questions
have been answered first.
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Figure 3.1: Experiment levels of automation, as introduced in Section 2.3. The distribution of flights between
either LOA could be adjusted by the ATCO.

Existing research has primarily focused on allocating either the entire airspace to au-
tomation, or delegating certain tasks to an automated system (Martin et al., 2016). Re-
search on delegating individual flights is scarce. Vanderhaegen et al. (1994) found that
ATCOs do not act alike, when given the authority over which flights to automate. Some
controllers allocated every other aircraft to automation, while others based the decision
on their own workload.

As a first step, this chapter discusses an exploratory experiment with six profes-
sional ATCOs on the allocation of flights in a future shared human-automation en-route
airspace. Initial system-produced suggestions were given for each flight, based on the
notion of creating a parallel system (complete sectors allocated to either agent), or a
more mixed system with flights in the entire airspace under mixed control. The ATCOs
had the final say in which flights to delegate to automation, to gain insight in the condi-
tions, such as sector-based structures, personal preference and automation capabilities,
that could lead to a successful allocation strategy. Figure 3.1 illustrates how the ATCOs
could only manipulate which (and how many) flights operate at either a low or high LOA,
but that they cannot switch to other (intermediate) LOAs. That is, when the control point
on the left moves down, the point on the right moves up and vice versa (i.e., around the
pivot point in the center).

3.2 Method
3.2.1 Participants
Six professional en-route ATCOs (age M = 38.3, SD = 10.0, years of experience M = 14.8,
SD = 8.7), from Maastricht Upper Area Control Centre (MUAC) voluntarily participated
in a real-time simulator experiment. Four of them had active licenses for the Delta and
Coastal (DECO) sector group, one for Hannover, and another for Brussels. During the
initial briefing, they were informed about the content and aim of the study and were
asked to sign an informed consent form. The experiment setup was approved by the
Human Research Ethics Committee of TU Delft under number 1441.
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3.2.2 Apparatus
SectorX, a TU Delft-built Java-based simulator (Figure 3.2) was designed to mimic the op-
erational MUAC interface in order to ensure that participants could focus on working with
the experimental automation (see Appendix A). Figure 3.3 shows the setup, consisting of
a 1920× 1920 pixels 27” monitor and a standard computer mouse for control inputs.

Aircraft performance was modeled using Eurocontrol’s Base of Aircraft Data (BADA)
version 3.10 (Eurocontrol, 2012). The ATCOs could issue clearances for heading, route
(direct-to or adding an intermediate waypoint) and altitude. Speed and vertical rates
were not controllable. All clearances were uplinked through a datalink, removing the
need for voice transmission over radio, and were instantaneously executed by the simu-

Figure 3.2: Simulator interface, with blue flights allocated to automation and green flights to the human ATCO.
Note that flights approaching the controlled sector (gray polygon) have not yet been assumed, as indicated
by their partially colored labels, which communicate a suggested allocation. Background colors have been
inverted in the image for clarity.
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Figure 3.3: Experiment setup.
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Figure 3.4: Traffic density of the scenario.

lated pilots. Using MUAC’s verification and advice tool (VERA), the ATCOs could request
the predicted minimum distance between any two flights (based on linear extrapolation
of the current tracks) as well as the time-to-go until that minimum distance was reached.
VERA’s graphical representation of the conflict geometry and corresponding flight posi-
tions was not included in this particular experiment.

3.2.3 Airspace and traffic scenario
Participants were responsible for air traffic above FL245 in the combined Delta and Jever
sectors above the Netherlands and part of Germany. This combination of sectors from
the DECO sector group is not used in real operation, but was selected for the experi-
ment because it encompassed two comparably sized sectors. Each ATCO experienced
the same real-time traffic scenario: a typical radar snapshot of flights passing through
the controlled sectors on an average day in February 2020, prior to the COVID-19 pan-
demic and the associated traffic reduction. Figure 3.4 shows the scenario’s traffic density,
with a clearly visible hotspot in the Delta sector.

There were between 15 and 30 (M= 21, SD= 4) flights in the airspace at any time (Fig-
ure 3.5), totaling to 104 flights for the entire 95-minute scenario. MUAC ATCOs would cur-
rently handle 20-25 flights in a combined sector the size of Delta and Jever. A higher peak
value was chosen for the experiment to compensate for an expected workload reduction
caused by offloading some flights to the automation and by the absence of voice com-
munication. As two of the participating ATCOs were not licensed for this sector and the
automation was new to all participants, the traffic density was not artificially increased
beyond current levels (e.g., as sometimes done to simulate future traffic densities).

All flights followed standard routing or direct routes (24 flights) to their designated
exit points and flew at a constant indicated airspeed of 250 knots. In addition to overfly-
ing traffic, arrivals and departures to several airports within or close to the sector were
included. In total, 22 flights had to climb within the sector, 15 flights had to descend, and
the remaining 67 flights had identical entry and exit levels. There was no wind.
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Figure 3.5: Time trace of the number of flights in the scenario.

3.2.4 Automation
During the exercise, the ATCOs were accompanied by an ‘automated colleague’. When
flights entered their sector, the ATCOs had to decide whether to manually assume the
flight or delegate it to automation (Figure 3.6). The allocation remained flexible, allow-
ing the participants to re-assume manual control or delegate flights at any time anywhere
in the sector. This loosely corresponds to Level 1 or 2 of the ARGOS LOA model from Ta-
ble 2.5, with the ATCO explicitly delegating flights to or taking back from the automation,
but it lacks the proposed presentation of suggested actions or plans (i.e., there was no
decision support for manual flights). To enforce an explicit transfer of responsibilities, all
flights had to be manually transferred to the next sector, including those delegated to
automation.

(a) Not yet assumed (b) Assumed manually (c) Assumed and delegated to
automation

Figure 3.6: Callsign menu, shown when clicking the callsign in a flight label; ATCOs could delegate a flight to
automation by pressing ”ASSUME TO AUTO” or take it (back) manually by pressing ”ASSUME”.

For experimental control, simple, rule-based automated solvers were used to pro-
vide a basic level of automation that was both predictable and easy for the ATCO to un-
derstand. This diminishes or even removes the requirement for the highly independent
automation to extensively communicate its intentions to the human operator, for which
(complex) displays would be needed. The design of such displays is an entire research
topic on its own, while this study’s focus is the impact of flight allocation on teamwork
rather than the impact of inter-agent communication.
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The automation was fully capable of acting without human involvement and auto-
matically executing actions to ensure safe air traffic. The automation performed the fol-
lowing tasks on flights delegated to it:

• Ensuring sufficient separation between automated flights (5 NM horizontally,
1,000 ft vertically).

• Delivering flights at their exit point and transfer level, climbing as early and de-
scending as late as possible.

• Descending arrivals to FL260 for transfer to lower area control.

The automation solved conflicts between automated flights in the vertical plane only.
It would never issue any heading clearances or direct-to’s, meaning that flights allocated
to automation would continue along their planned routes (or routes modified by the
ATCO). If both conflicting flights were already at their planned exit level, one of the flights
would be instructed to climb or descend 1,000 ft to solve the conflict. Thereafter, when
clear of the conflicting traffic, the flight would be instructed to return to the exit level.
All human-automation conflicts had to be solved by the ATCO, under the presumption
that automation would not know the ATCO’s plans or intentions. Apart from showing the
issued clearances in the flight labels, the automation did not provide any other feedback
on its intentions.

3.2.5 Procedure
All participants followed the procedure outlined in Figure 3.7, starting with a short brief-
ing and pre-experiment questionnaire about their stance on automation. Next, each par-
ticipant received a ten-minute training, during which the automation was introduced,
they could familiarize themselves with the interface and practice their designated tasks.
Both human-automation and automation-automation conflicts were shown to demon-
strate how automation would handle both situations. The training was concluded with
a short questionnaire.

TrainingBrie�ng

10 min 10 min95 min

Pre-experiment
questionnaire

Post-experiment
questionnaire

Post-training
questionnaire

Experiment
trial

5 min5 min5 min

Figure 3.7: Experiment procedure.

Next, the experimental run started with a five-minute period simulating a shift take-
over, during which scripted clearances were automatically executed without the ability
to issue manual clearances, followed by 90 minutes of real-time simulation. Throughout
the run, the experimenter observed and asked the ATCOs to explain their actions and
what they were taking into consideration. Every three minutes, the ATCOs had to rate
their instantaneous self-assessed (ISA) workload by clicking on an on-screen 0-100 scale
(Tattersall and Foord, 1996). The scale showed their previous rating for reference. After
the experiment, they completed a questionnaire with several open and Likert-type scale
questions.
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3.2.6 Independent variable
There was one independent variable, namely the suggested flight allocation, which was
unique for each ATCO, as specified in Figure 3.8. The suggestions were either solely based
on each flight’s required absolute flight level change |ΔFL| from the entry level (NFL) until
the transfer level (TFL) or based on the sector where the flight first entered the controlled
airspace. Flights with |ΔFL| ≤ 2,000 ft were considered overflights in this context. For
ATCOs 3 and 4, flights crossing the internal sector border would automatically change
the responsible agent during the take-over period to adhere to the suggested allocation.

The suggestions were shown by the color of the flights’ labels and radar position
symbols upon approaching the sector (green = manual, blue = automated, inspired by
the colors on the MUAC radar screen, where green flights are under control of the ATCO
and blue flights are within that ATCO’s area of responsibility but controlled by a different
ATCO). The ATCOs were not briefed on which scheme was applied to them. They could
ignore the suggestions and re-allocate flights at any time, even after delegating them to
automation. Note that the chosen allocation color replaced that of the suggested allo-
cation once a flight had been allocated by the ATCO.

Human Automation

ATCO 1

|∆FL| ≤ 2,000ft
|∆FL| > 2,000ft

ATCO 2

|∆FL| ≤ 2,000ft
|∆FL| > 2,000ft

ATCO 3

Jever
Delta

ATCO 4

Jever
Delta

ATCO 5

All

ATCO 6

All

Figure 3.8: Suggested human-automation flight allocation schemes.

3.2.7 Control variables
The following control variables were the same for each participant:

• Airspace and traffic sample: as described in Section 3.2.3,

• Atmospheric conditions: international standard atmosphere without wind,

• Automation capabilities: as described in Section 3.2.4,

• No voice communication: all instructions were transmitted via controller-pilot data
link communications (CPDLC) without transmission delay,

• No pilot delay,

• ATCO support systems: only VERA and short-term conflict alert (STCA).
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3.2.8 Dependent measures
The following measures were collected in the experiment:

• Pre-experiment questionnaire: Prior to the simulation session, a short questionnaire
using open and Likert-type scale questions aimed to probe ATCOs’ stance and pre-
conceptions on what automation could offer them. They were also asked to indi-
cate which tasks and functions they would like or expect automation to support
and/or take over.

• Post-training questionnaire: After brief exposure to automation in the new flight-
based control allocation concept, the ATCOs expressed their initial opinions.

• Experiment trial:

– Chosen flight allocations: Each ATCO was presented with a unique initial flight
allocation, but was free to revise the suggested allocation as they saw fit by
either delegating flights to automation or taking back control from automa-
tion at any time. As such, their level of appreciation for the initial allocation
could be observed.

– Control activity: The number, type and timing of issued clearances (altitude,
heading and direct-to).

– Perceived workload: Measured through an instantaneous self-assessed (ISA)
rating (0–100) every 3 min during the trial (Tattersall and Foord, 1996),

• Post-experiment questionnaire: After the experiment, the ATCOs provided their
opinions on the automation, flight-based control allocation concept, and simula-
tion in general after having worked with it during the 90 min trials.

3.3 Results
Because the number of participants was small and the primary goal of the experiment
was to provide a first insight into the feasibility and challenges of delegating part of the
traffic to automation, we focused on providing a qualitative analysis of the raw data, ob-
servations and questionnaires rather than engaging in inferential statistics. Results are
presented in accordance with the four data collection phases defined in Section 3.2.8.

3.3.1 Pre-experiment questionnaire
The results of the questionnaire at the start of the experiment revealed that the par-
ticipating ATCOs had mixed opinions on automation and its involvement in their work
(Figure 3.9). Answers into this and other questionnaire figures that are either relatable
to human or automation have been colored accordingly: green corresponds to a more
human-favorable answer, while blue relates to an automation-favorable answer. Most
ATCOs trusted automation and expressed the opinion that it generally lowers their work-
load, but were also strongly of the opinion that a human should ultimately be in charge.

While this experiment focused on flight-based allocation, a human-automation team
may also be created by sharing tasks according to a more conventional function-based
allocation scheme. We replicated part of the study from Prevot et al. (2012) to see what
kind of tasks the ATCOs would prefer to do themselves and which they would share with
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or completely delegate to automation if a function-based allocation was used. In line
with that study, Figure 3.10 shows that the ATCOs indicated that a considerable number
of tasks can be either shared with or completely delegated to automation. Transfer of
control can be automated as a first step towards more automation, but ATCOs would like
to be able to reject auto-transfers and to initiate early transfers. The ATCOs preferred to
keep short-term, tactical actions under their control, while suggesting that more strate-
gic long-term planning and routine tasks can be (partially) delegated to automation.
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Figure 3.9: Pre-experiment ATCO response to various statements about automation in ATC.
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Figure 3.10: Human-automation task allocation as desired by the ATCOs in a function-based allocation system.
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3.3.2 Post-training questionnaire
After a brief introduction and exposure to the experimental automation, the ATCOs had
mixed opinions on whether it would be a useful asset in their work, as shown in Fig-
ure 3.11. Furthermore, contrary to their high level of trust in automation in general (Fig-
ure 3.9), the ATCOs indicated very low trust in this particular form of automation.

6 0 6
ATCOs

This form of automation looks useful to me

I will only delegate a �ight to automation
when my workload is too high

I trust the automation
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2 1

Favoring
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Neutral Somewhat
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agree

Figure 3.11: Post-training ATCO response to various statements about the experimental automation.

3.3.3 Experiment trial
Chosen flight allocation
All ATCOs delegated between 50% and 100% of the flights to automation, when consid-
ering the median share over the entire scenario (Figure 3.12). ATCO 3 appears to be an
outlier, with a more balanced distribution compared to the other ATCOs, who were more
automation-minded in their allocation decisions. For all ATCOs combined, flights were
manually assumed for 23% of the total flight time.

Full manual Full automation
Level of automation

0%

50%

100%

Sh
ar

e 
of

 �
ig

ht
s

1

1

2

2

3

3

4

4

5

5

6

6

N
O

A
U
T
O
M
A
T
I

O
N

N
O

A
T
C
O

Figure 3.12: Allocation of flights to either LOA as chosen by the ATCOs. Numbers refer to specific ATCOs.



3

3.3 Results | 47

The evolution per ATCO over time, as shown in Figure 3.13, allows for a more de-
tailed analysis. Had all ATCOs adhered to the suggested allocations, the figures on the
right would have been the inverse of those on the left (i.e., all flights that were green
for ATCO 1 would have been blue for ATCO 2 and vice versa). Note that despite identi-
cal traffic scenarios, the total number of simultaneously assumed flights varies slightly
between ATCOs due to individual assume and transfer timings. Whereas most ATCOs
largely ignored the suggested allocation, ATCO 3 tried to follow it after realizing that one
of the sectors was completely handled by automation. Moving on to ATCO 4, the stark
shift around 60 minutes from a nearly completely automated airspace towards a substan-
tial number of manual flights followed a self-proclaimed “test of the automation” by this
ATCO who deliberately re-directed flights manually. While the same ATCO claimed to be
“comfortablewithpurelymonitoringa completely automated scenario”, this ‘test’ may have
been a sign of boredom. For ATCO 6, all flights were suggested for delegation; however,
they did assume some of the flights (or at least part of their paths) manually. Note that
none of the ATCOs who received the suggestion to delegate flights (everyone but ATCO
5) assumed more flights manually than was suggested to them.
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Figure 3.13: Stacked time traces of the number of actual and suggested flights allocated per agent and ISA
workload ratings. The red lines correspond to the number of manual flights if the ATCOs had followed their
uniquely assigned allocation suggestion from Figure 3.8.
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The strategies suggested to the ATCOs and those they ultimately adopted can be
more clearly seen when comparing the ground track density maps and required verti-
cal movement |ΔFL|with the associated distribution of flight time (i.e., the duration that
a flight was allocated to either agent) in Figure 3.14. Note that flights under control by
either agent shared the same airspace in the experiment, and have only been split per
agent in the figure for visualization purposes. The left (green) and right (blue) figures
always add up to 100% of the traffic for each ATCO. As an example, ATCO 1 delegated
73% of the flight time in the Jever sector and 81% of the flight time in the Delta sector to
automation. For the remaining time, 27% and 19% respectively, the flights were under
manual control. In terms of vertical movement, only 24% of the flight time of flights with
|ΔFL| ≤ 2,000 ft (LT) was under manual control by this ATCO, with the remaining 76%
being automated. Following the suggested allocation would have led to 100% manual
flight time, as indicated by the green outline of the ‘LT’ bar. The ’GT’ bars resemble the
flights with |ΔFL| >2,000 ft. The suggestion was that ATCO 1 automate all of these flights,
they instead chose to take manual control for 17% of the flight time.

As already hinted at by Figure 3.13, ATCO 3 exhibited the greatest adherence to the
proposed allocation strategy among all ATCOs. This ATCO even delegated flights as they
transitioned from Delta to Jever, commenting that solitary manual flights in a predomi-
nantly automated area were difficult to handle. This resulted in 95% of the flight time in
Jever being delegated to automation, approaching the suggested 100% in this sector-
based allocation. Interestingly, the same ATCO did not consistently re-assume auto-
mated flights that entered Delta from Jever, resulting in a considerable 46% of the flight
time in Delta being delegated to automation instead of the suggested 0%. All other
ATCOs had a considerably more even distribution in both sectors.

For ATCOs 1 and 2, the suggested allocation was based on the required |ΔFL|between
sector entry (NFL) and transfer (TFL) rather than on the entry sector. ATCO 2 appears to
have followed the suggestions slightly better than ATCO 1, as shown by a 97% delegation
of overflights and considerably lower share of 66% for flights with |ΔFL| > 2,000 ft. It
must be noted that the bars in Figure 3.14 are based on the |ΔFL| between sector entry
and exit; therefore, flights that were flying level for the majority of their flight time may
have predominantly contributed to the blue GT bar even though they were assumed
manually during the actual (short) climb or descent phase. Upon closer inspection, all
ATCOs frequently delegated flights as soon as they had (almost) reached their TFL and
were clear of any remaining conflicts. ATCO 3 is again a noticeable outlier, with manual
control used for a relatively large share of flights with small |ΔFL| for a prolonged time
(43%) due to this ATCO’s adherence to the suggested sector-based allocation.

One of the ATCOs kept a low and slow flying Beluga cargo flight with |ΔFL| = 0 ft
under manual control throughout the sector. This ATCO commented that this was mainly
because of the flight’s close proximity to lower airspace that is not controlled by MUAC
and the potential disruption it may cause to or receive from traffic in that airspace. If
such traffic had been present in the experiment, the other ATCOs may have also decided
to manually control the Beluga.
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Control activity
The ATCOs issued 51% of all clearances (30% of altitude clearances), leaving the rest to the
automation (Figure 3.15). As discussed in Section 3.3.3, most ATCOs took manual control
for a short period of time to issue a clearance before delegating the flight for the remain-
der of its trajectory. Here, 55% of the flights did not change agent after being assumed,
while 43% of the flights that did spent less than one minute with the ATCO (Figure 3.16).
This was especially true for flights that could benefit from a direct-to, which the automa-
tion could not issue. Interestingly, ATCO 3 hardly sent any flights on a direct-to, while
ATCO 5 did so for over 50 flights. ATCOs 1 and 3 both issued intermediate-level clearances
to up to 25 flights, resulting in an above average total number of altitude clearances.
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Perceived workload
The ISA workload ratings in Figure 3.13 do not show a significant correlation with the
fraction of automated flights. A higher share of automated flights did not provide the
workload reduction that ATCOs generally expect with automation (Figure 3.9). ATCO 5
reported a very consistent workload, ranging between 15 and 24 (on a 100-points scale),
whereas for ATCOs 3 and 4 it varied considerably. In general, the ATCOs commented that
their workload was low due to a relatively low traffic demand (when considering that part
of the tasks were performed by automation) and the absence of voice communication.
Because every ATCO only experienced one of the suggested allocation schemes, and as
workload ratings are subjective, no further within-participant comparisons can be made
with respect to the suggested or followed allocation schemes.

Despite 51% of the control actions being performed by the ATCOs, only 23% of all
flight time was manually assumed. This discrepancy may explain why the number of
flights allocated to either agent did not correlate with the perceived workload.

3.3.4 Post-experiment questionnaire
Flight allocation
At the end of the experiment, the ATCOs were asked what percentage of flight time they
believed themselves to have delegated to automation over the entire run. All ATCOs
were able to estimate this within eight percent point of the actual median (Table 3.1),
indicating a good match.

Table 3.1: Self-reported and actual flight time delegated to automation over the entire run.

ATCO

1 2 3 4 5 6 Mean

Self-reported (%) 71 86 66 92 95 71 80

Actual mean (%) 77 (+6) 85 (-1) 60 (-6) 88 (-4) 80 (-15) 77 (+6) 78 (-2)

Actual median (%) 79 (+8) 86 (=) 58 (-8) 94 (+2) 91 (-4) 75 (+4) 81 (+1)

The questionnaire provided further insight into how ATCOs determined whether
flights should be delegated in the experiment trial (Figure 3.17). Note that the ATCOs
could classify factors as ‘not considered’ (this ranged from three to six per ATCO), mean-
ing that not all ATCOs ranked the same number of factors. Traffic directly surrounding a
flight was considered especially important when there were many nearby manual flights.
Delegating a single flight to automation would then have added (too) much uncertainty.
Overflights are generally considered to be more predictable than arrivals and departures,
making the type of flight another important factor. Special flight types, such as the slow
and low-flying Beluga cargo flight, also played a role here. The suggested allocation was
given low priority or even ignored by most ATCOs. ATCO 3 ranked this as the most impor-
tant factor and acted accordingly, as confirmed by Figures 3.13 and 3.14. If automation
would have been capable of giving direct-to’s, the ATCOs commented that they would
have delegated more flights in this experiment. Four ATCOs included the automation ca-
pabilities, while only two included their workload (which was relatively low, as discussed
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Figure 3.17: Factors driving the ATCOs’ decision-making on whether to allocate flights to automation or to
themselves.

in Section 3.3.3). Surprisingly, some ATCOs mentioned that the distance to the next sec-
tor should be included in an allocation algorithm, despite none of them considering it in
their own allocation decision-making during the experiment.

Although every ATCO only received suggestions from a single flight allocation
scheme in the experiment trial, the questionnaire asked their opinion on all of the
schemes from Figure 3.8. Grouped per type of allocation-driver, their feedback was as
follows:

• Vertical change: the ATCOs unanimously agreed that ‘complex’ climbing/de-
scending flights need to be handled manually (potentially with support tools).
They indicated a strong preference for delegating ‘basic’ (over)flights to automa-
tion. For most ATCOs, this was also reflected in the time that they delegated
such flights to automation: 70% of the flights with identical entry and exit levels
(|ΔFL| = 0) were automated for 95% of their flight duration, versus only 50% of
the flights requiring some level change. Although some ATCOs commented that
a 5,000 ft level change would have been a more appropriate threshold to divide
traffic in basic and complex than the used 2,000 ft, this was not directly reflected in
their chosen allocation strategy. All traffic that had to change levels evoked more
manual control than overflights, and as such could be considered at least some-
what ‘complex’. This corresponds to the allocation suggested to ATCO 2.

• Sector: allocating flights per sector was outright rejected by three ATCOs, who
commented that the choice of whether or not to delegate a flight should depend
on the situation rather than the geographic sector. Two ATCOs (including ATCO 3)
did see some use in it when one of the sectors was busy and/or required more
concentration, while one ATCO refrained from commenting.
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• Full manual or automation: four ATCOs praised the fully manual scheme for giv-
ing them full authority over which flights to delegate to automation and when (e.g.,
after turning and climbing). One ATCO preferred to have overflights always pro-
posed to automation, while the remaining ATCO simply disliked this scheme. Fi-
nally, the fully automated scheme received favorable comments from five ATCOs,
provided that the automation functioned well and that the supervising ATCO could
take over at any moment. One ATCO criticized it on the basis that there will always
be flights that need human involvement due to their flight profile or because they
pass through traffic hotspots.

Perceived impact of the automated agent
Figure 3.18 shows that the ATCOs believed the automation as implemented in the exper-
iment to have somewhat worsened their situation awareness and work style. Neverthe-
less, all ATCOs classified their situation awareness as ‘okay’, the middle score on a five-
point Likert scale from ‘poor’ to ‘very good’. All ATCOs mentioned that they paid (much)

Overall workload

Organise your work as you wanted

Solve con�icts in an e�cient manner

Overall situation awareness

Predict the evolution of the tra�c

1

2

3

3

5

1

3

2

3

1

2 2

1

1

Favoring human

Much
worse

Somewhat
worse

About
the same

Somewhat
better

Much
better

Favoring automation

I trusted the automation

The automation was useful

The automation and I worked as a team

1

4

1

1

4

2

2

2

1

Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree

Strongly
agree

6 0 6
ATCOs

I missed feedback from automation
on what it was doing

I was suprised by the actions of
automated �ights

I adjusted my clearances to work
around automated �ights

I had the feeling that I was
�ghting automation

2

4

5

1

4

1

1

1

1

3 1

Never Sometimes About half
the time

Most of
the time

Always
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less attention to the blue automated flight, akin to transferred flights, even though they
knew that they were still responsible for these flights. At the only (not explicitly pro-
grammed) occurrence of a short-term mixed conflict in the experiment, the involved
ATCO was surprised by the STCA. He explained that he had not spotted the conflict be-
cause the automated flight was emerging from “a sea of blue aircraft”. While the ATCOs
were aware that such conflicts could occur and would require their involvement, the un-
expected occurrence could be considered a ‘gray swan’ as described by Wickens (2009).
Any other potential mixed conflicts were avoided by the ATCOs in a timely way.

The ATCOs reported the lack of feedback from the automation regarding what actions
it would take and the associated uncertainty as the largest contributor to their negative
experience. All ATCOs would have liked the automation to at least show its intentions
about where on the trajectory it would start and end a climb or descent. Interestingly,
they also reported that the automated agent’s actions were not surprising, suggesting
that the implemented rule-based automation was in fact predictable. However, several
ATCOs reported that they proactively took manual control at times (e.g., when approach-
ing a top of descent) in order to forestall any potential surprises from automation.

In the end, the automation did have a positive impact on their overall perceived work-
load and was considered to be somewhat useful by most ATCOs, exceeding expectations
as reported in the post-training questionnaire (Figure 3.11). Nonetheless, only ATCO 4
considered collaborating with the automation to be a form of teamwork.

Simulation fidelity
This experiment was a first test of the SectorX simulator’s MUAC style. The ATCOs were
asked to rate the fidelity of various aspects when compared to the operational human-
machine interface and traffic (Figure 3.19). The most missed interface feature was VERA
not showing the conflict geometry at the closest point of approach¹.

The aircraft behavior was rated as unrealistic by two ATCOs, who particularly men-
tioned the simulated climb rates. This can be partly attributed to the fact that in the
absence of operational data, all flights were assigned a constant reference mass from
the BADA performance model, making them exceptionally light on departure and heavy
on arrival. All aircraft were flying at a constant indicated airspeed, and did not follow the
standard climb/descent profiles. In addition, no pilot delay was modeled, meaning that
all clearances were immediately executed.

Finally, the traffic scenario was considered realistic, although somewhat low in traffic,
leading to relatively low workload ratings throughout the runs.
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Figure 3.19: Post-experiment simulator fidelity ratings.

¹This feature has since been added to the simulator and was available in the other experiments of this thesis.
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3.4 Discussion and recommendations
The experimental results of this initial exploration of flight-based control allocation in en
route ATC show promising results in terms of concept feasibility and ATCO acceptance.
Followup studies should address the limitations and assumptions of our study, e.g., by in-
troducing pilot delays, wind, and voice communication. Together with a more demand-
ing traffic scenario, in which unaided manual ATC would lead to excessive workload, this
is hypothesized to better demonstrate the benefits of offloading flights to automation
in conjunction with the distinctive problem-solving abilities of ATCOs. In addition, it is
recommended that future research focuses on the two research areas outlined below to
bring the concept one step closer to operational implementation.

3.4.1 Automation
At the start of the experiment, all ATCOs reported having a high level of trust in automa-
tion in general, but were nevertheless suspicious of the experimental automation after
the (short) training. Despite this, their trust was largely restored through the experiment
trial (Figure 3.20). According to the ATCOs, this trust buildup was mainly due to their
seeing the automation perform well. The rule-based form of automation (programmed
to be ‘perfect’), clear separation of responsibilities, and absence of uncertainties such as
wind and pilot behavior further contributed to this.
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Figure 3.20: The ATCOs’ stances on ”I trust (the) automation” at three different moments during the experiment.

Fostering a high level of trust in the automation is of paramount importance in suc-
cessfully creating a parallel system. In this experiment, the ATCOs needed some time to
observe and monitor the behavior of their digital colleague before a sufficient level of
trust was gained. Occasionally, they saw a need to intervene by taking back control over
a flight, issue a clearance, and delegate it back to automation again. Monitoring and
intervention are typical of supervisory control environments, which invoke the more se-
rialized interactions that flight-based control allocation seeks to avoid.

Based on ATCO comments and observations during the experiment, the need for
monitoring and intervention appeared to be caused by the limited capabilities of au-
tomation combined with the ATCO’s responsibility for resolving mixed conflicts as well
as the rather simple and pragmatic flight allocation schemes. To achieve a more desir-
able parallel system, automation should be able to perform all ATCO tasks and should
have the responsibility and authority to resolve mixed conflicts. The potential downside
of the latter, where the automation avoids all other automation- and human-directed
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flights, is that the two agents might engage in oscillating behavior by reacting to each
other’s actions. One way to avoid this issue is to use a smarter flight allocation strategy
based on predicted interactions between flights rather than on individual flight and/or
sector characteristics. If mixed conflicts do occur, a ‘less impacted flight algorithm’, as
developed for flight-centric ATC (FCA, Finck et al., 2023b) where flights stay with a sin-
gle ATCO throughout their trajectory, could quickly identify which agent can resolve the
conflict with minimal effort and disruption and alert the ATCO if it is their responsibility.

3.4.2 Flight allocation suggestions
In general, the ATCOs did not follow the suggested flight allocations, with half of the
ATCOs explicitly reporting that they ignored them (Figure 3.17). The suggestions were
based on simple pragmatic schemes, and did not take into account the actual interac-
tions between flights. While the ATCOs indicated that the automation capabilities and
suggested allocation were equally important, the former seemed to be prevalent in their
chosen allocations. The high number of lateral control actions issued by the ATCOs illus-
trates the lack of lateral control ability on the part of the automation. Nevertheless, half
of the ATCOs reported that they did not consider the automation’s capabilities in their
allocation.

To provide more fitting (and consequently more accepted) flight allocation sugges-
tions, it may be beneficial to take the actual (predicted) complexity of flights into account.
In contrast to the abundance of research on sector-based complexity (e.g., dynamic den-
sity, interval complexity, fractal dimension, input/output approach, Lyapunov exponents
and trajectory-based complexity (Prandini et al., 2011, Prevot and Lee, 2011)), the com-
plexity of individual flights is less understood. Flight-centric complexity is a prerequisite
for the automated allocation of flights in both FCA and our proposed operations. In FCA,
a predicted workload increment per flight is used to allocate flights while balancing the
workload between ATCOs (Finck et al., 2024), whereas in our proposal low-complexity
flights are allocated to the automated agent. In both cases, interacting flights are best
assigned to the same agent in order to prevent ‘mixed conflicts’ between flights under
the responsibility of different agents and avoid excessive communication and coordina-
tion efforts between agents.

The complexity of a flight is not necessarily constant throughout its time in the sec-
tor. Section 3.3 showed that ATCOs frequently delegated flights after they had passed
the ‘challenging’ part of their route, i.e., the climb, descent or conflict situation. Exter-
nal factors such as adverse weather conditions and associated reroutes can also play a
role as trajectory uncertainty increases. Thus, flights could be re-allocated when their
complexity changes beyond a certain threshold.

3.5 Conclusions
This exploratory study has yielded useful insights into human-automation teaming in a
realistic ATC setting. We show that, after initial skepticism, professional en-route ATCOs
are not averse to sharing their work in an airspace with automation. In a simplified sit-
uation lacking uncertainties due to wind, emergencies and pilot requests, a high level
of delegation to automation was reached under the condition that flights were on direct
routes and free of conflicts. The ATCOs generally ignored the suggested allocations, hint-
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ing not only at the need for a different form of allocating flights but also at the impact of
automation capabilities.

While some ATCOs may simply prefer to make their own division when flights come
in, the majority of the participants welcomed an automated allocator. However, the au-
tomation should be able to perform all tasks in order to prevent the serialized interactions
found in systems requiring human supervision. This includes issuing direct-to’s, assum-
ing/transferring flights and solving or communicating about conflicts between human-
directed and automation-directed flights. To further minimize interactions between hu-
man and automation, future research should take a closer look at determining the com-
plexity of individual flights and consequently classifying them as ‘basic’ or ‘complex’ such
that a fitting allocation scheme can be applied. Together with empirical studies on the
various forms of task sharing and distribution, this can help establish human-automation
teamwork in a shared ATC environment.





4
Empirical task analysis

While it is not expected that air traffic control officers (ATCOs) will completely ignore
flights delegated to the automation, findings from Chapter 3 and previous research sug-
gest that they do pay less attention to those flights. Based on literature research and
workplace observations, this chapter first presents an overview of the cognitive work-
flows of ATCOs in the conflict detection and resolution task. To support this with further
empirical insights into the impact of flights that lack a proper representation in the ATCO’s
mental model, a worst-case scenario is simulated in which the ATCO has been completely
out-of-the-loop with respect to the automation-directed flights.
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4.1 Introduction
The air traffic management (ATM) community is increasingly advocating higher levels of
automation (LOAs) to improve efficiency and capacity, with a more strategic supervisory
role for humans (Prevot et al., 2012). The Single European Sky ATM Research (SESAR)
program envisions a future in which air traffic control (ATC) tasks are increasingly auto-
mated, starting with information acquisition and analysis, followed by action implemen-
tation, and finally decision making (SESAR Joint Undertaking, 2024). Concurrently, the
associated systems should become more autonomous, initiating a greater number of ac-
tions without human intervention. Nevertheless, air traffic control officers (ATCOs) are
expected to play an important role in supervising these systems and to intervene when
automation falls short (Metzger and Parasuraman, 2005).

Decades of human-automation research have taught us that bluntly shifting tasks
previously carried out by humans to automated systems is not the way forward (Endsley,
2017). The manual execution of certain tasks can actually be beneficial in other tasks.
Delegating only the conflict detection task to automation, for example, while leaving
the resolution task for the ATCO, leads to a situation awareness (SA) reduction and in-
creases the use of less optimized resolutions (Mercer et al., 2017). Keeping ATCOs or any
other operator actively engaged is key in preventing many of the issues encountered
when introducing higher LOA, such as skill degradation and reduced SA (Strauch, 2018).
In the past decade this insight has led to a growing interest for, and belief in human-
automation teamwork, with human operators dynamically sharing tasks with automa-
tion (O’Neill et al., 2022).

Where considerable research is devoted to (dynamically) allocating certain functions
to automated ATC systems, Eurocontrol’s Maastricht Upper Area Control Centre (MUAC)
takes interest in a slightly different approach (Hendrickx and Tisza, 2019). As a first step
towards higher LOA, part of the traffic may be completely directed by an automated sys-
tem to alleviate the workload of ATCOs and increase capacity or sector size. A prime can-
didate for such delegation are flights that can be considered ‘basic’ (i.e., requiring little
monitoring or cognitive effort). When these basic flights are delegated, the ATCOs can fo-
cus on ‘non-basic’ flights that require more attention and skills which humans are known
to be good at (Endsley, 2017). Putting problem-free flights that do not require any action
at all in a separate group was already proposed in the 1990s (Drew and Makins, 1994). Its
associated workload-relief was limited though, as ATCOs already pay relatively little at-
tention to these flights. Therefore, it is desirable to delegate flights that do require some
active control. An example of more recent research focused on US-based operations and
mixed self-separating flights with human-directed flights (Prevot et al., 2005), requiring
considerable airborne equipment and wide adoption of time based operations.

The delegation of some flights in a sector introduces a number of challenges. For
example, the question of which agent is responsible for solving a conflict when the in-
volved flights are directed by different agents, a mixed conflict. Research on flight-centric
operations (also known as sectorless operation), where ATCOs are responsible for flights
from start to finish rather than based on geographical sectors, seems to allocate mixed
conflicts to either ATCO, based on pre-determined (conflict) criteria (Korn et al., 2020) or
ATCO workload (Schmitt et al., 2011). When one of the flights is instead directed by an
automated system under the supervision of an ATCO who controls the other flight, a dif-
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ferent approach may be more beneficial. The ATCO may, for example, prefer to manually
solve the conflict and prevent automation from working against their plan for dealing
with flights in their sector. ATCOs not actively involved with a considerable share of traf-
fic in their sector may experience a detrimental effect on their SA.

In previous work (Chapter 3), a preliminary setup was experimentally tested where
ATCOs could delegate individual flights to an automated system. While it showed the
feasibility of such a shared airspace and its acceptance among ATCOs, it also revealed that
ATCOs adopted different allocation strategies than anticipated. Their seemingly reduced
attention for delegated flights also suggests these are not well present in their mental
models, complicating conflict detection and resolution (CD&R) of mixed flight pairs.

To shape the implementation of a shared human-automation airspace, it is
paramount to better understand the implication of delegating (part of ) the traffic to au-
tomated systems. This requires a thorough understanding of the tasks carried out by
ATCOs. In 1999, Eurocontrol published an integrated task analysis (ITA), based on inter-
views, observations and flight progress data obtained at five en-route control centers in
Europe (Dittmann et al., 2000, Kallus et al., 1999). While it provides an extensive insight
into the generic tasks of an en-route ATCO, it lacks on several aspects that would be use-
ful here for shaping future human-automation teaming. For example, how the task flows
change in the presence of automation and consequential mixed conflicts, as introduced
in the concept of operations. In a similar way, the ITA lacks how current-day support
tools are increasingly utilized and where they fit in the processes. Finally, it lacks tempo-
ral quantification, making it difficult to objectively assess the performance and workload
impact of different allocation strategies.

After first presenting a concept of operations (CONOPS, Section 4.2), this chapter uses
the Eurocontrol ITA as an inspiration to introduce flowcharts in Section 4.3 that describe
the cognitive thought and action processes of en-route ATCOs in the CD&R tasks. The
charts have been shaped based on extensive literature research and observing profes-
sional ATCOs at work. By focusing on MUAC, the tasks are linked to their currently oper-
ational (interface) tools. Expanding upon the work in Chapter 3, the expected impact of
delegating flights and potential mitigation measures inspired by current procedures and
tools are discussed. The models are then validated and quantified through a human-in-
the-loop experiment (Section 4.4), for which the results are presented and discussed in
Sections 4.5 and 4.6, respectively. Ultimately, the models are expected to be of use in
designing human-automation flight allocation strategies for future shared airspaces.

4.2 Concept of operations
This chapter, like the rest of the thesis, takes the operations at MUAC as a baseline.
MUAC is a cross-border air navigation service provider (ANSP), directing flights between
24,500 ft and 66,000 ft over Belgium, Luxembourg, the Netherlands and the western part
of Germany. ATCOs work together in pairs, consisting of an executive controller (EC) and
a coordinating controller (CC). The EC is responsible for all tactical control and is in direct
contact with pilots, while the CC communicates with adjacent sectors and prepares the
traffic for the EC. This study focuses on the work of the EC.

Unlike in flight-centric operations, ATCOs are (initially) assumed to maintain respon-
sibility over a geographic area, in which some flights are delegated, to ease implemen-
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tation in the current ATM system. The ATCOs are ultimately responsible for all flights in
this area, including those delegated to the automation, and are therefore capable of re-
gaining control at any moment over any flight.

The ground-based automation envisioned here can autonomously ensure separa-
tion between flights and issue clearances towards their planned exit point and flight
level, corresponding to Level 5 from SESAR’s LOA taxonomy (SESAR Joint Undertaking,
2020, p. 24). The use of simple rule-based algorithms that mimic the way ATCOs work
increases acceptance and reduces the need for (complex) automation decision trans-
parency (Westin et al., 2016a).

Despite future implementations of 4D time-based operations, potentially leading to
less conflicting traffic, flights may still need to deviate from negotiated 4D trajectories
due to unforeseen events such as weather or emergencies (Corver and Grote, 2016). In
a similar manner, automation is not expected to actively direct flights into conflict with
human-directed flights, but mixed conflicts cannot be excluded. There are various pos-
sibilities regarding solving such conflicts, sorted here by increasing LOA:

1. The ATCO has to manually resolve the conflict, by directing the flight under their
control around the computer-directed flight, or delegate the flight to make it a fully
automation-directed conflict (Chapter 3).

2. Automation proposes a solution to the ATCO. This can be either implemented
as managed-by-exception (i.e., the proposal is automatically executed unless the
ATCO rejects it within a specified time), or managed-by-consent (i.e., the proposal
is only executed after the ATCO explicitly accepts it). Research indicates, how-
ever, that ATCOs are reluctant to accept decision-making aids (Bekier et al., 2012).
The proposals can be limited to the delegated flights only or also involve manual-
directed flights if that solution appears to be more efficient. The latter should be
implemented as managed-by-consent, to give the ATCO full control over manual-
directed flights.

3. Automation solves the conflict, by directing the flight under its control around the
human-directed flight (Prevot et al., 2005, Strybel et al., 2016). While ATCO work-
load can be lowered by automatically solving conflicts, limiting the resolution to
only one of the involved flights can lead to suboptimal resolutions.

It is important to stress that manual-directed flights are not necessarily excluded from
all forms of automation. The current-day practice of automating most of the information
acquisition and analysis stages, as well as adopting various conflict alerts is also followed
here. Manual- and automation-directed flights differ mainly in the decision selection and
implementation authority.

Finally, controller-pilot data link communications (CPDLC) are increasingly supple-
menting or replacing traditional voice-based radio transmissions (R/T). While the com-
bined use of CPDLC and R/T has some advantages, such as sending clearances over either
channel in parallel, a more distant future is being considered in which all agents commu-
nicate through CPDLC only. The complete termination of R/T provides both automation
and the human with equal communication capabilities, until text-to-speech and speech-
to-text technology has sufficiently evolved to close the gap.
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4.3 Task analysis of common processes
This section introduces flowcharts for the CD&R processes, in which the various steps are
identified and linked through letter-coding to the accompanying interface elements and
tools that MUAC currently provides to its ATCOs (Table 4.1). At other ANSPs, many of these
tools or variations thereof will also be available. The analysis by the authors, including a
subject matter expert, is primarily based on observing two ATCOs on duty at MUAC for
two hours each and simultaneously discussing their thought and action processes with
them (when their workload allowed). While the exact sequence, inclusion of steps, and
usage of tools can differ per person and situation, the analysis aimed to capture the most
common flow of steps as executed at MUAC. It is further supported by in-text references
to existing literature.

Table 4.1: MUAC support tools and interface elements.

Tool or element Information or action

Plan view display Horizontal flight positions and directions

STCA Characteristics of short-term conflicts

Flight label Actual and cleared level, vertical trend, next
point/heading and speed (optional)

FIM Digital flight strip: aircraft type, destination,
cruise level etc.

VERA Horizontal conflict verification and geometry

Velocity leader length Position extrapolation

Clearance menu Input/uplink clearances

NTCA Near-term conflict alert and probe

Color codes are used to indicate at what level of the skill, rule, and knowledge (SRK)
taxonomy (Rasmussen, 1983) each block in the flowchart is executed (Table 4.2). Skill-
based behavior is mostly associated with repetitive tasks or information processing that
is readily available and pertains to tasks that can be instantly executed. Rule-based be-
havior reflects decision and action processes based on fixed rules or experience. When
a new situation is encountered, knowledge-based behavior comes in sight requiring the
most cognitive effort (and time). In practice, en-route ATCOs report that only few situ-
ations require this highest level, even in non-routine traffic situations (Dittmann et al.,
2000). Multiple colors in a block indicate a situation-dependent level.

Table 4.2: Skills-rules-knowledge taxonomy-based color coding, plus an example.

SRK Example

Skill-based Comparing flight levels

Rule-based Applying routine solutions

Knowledge-based Generating new solutions
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Figure 4.1: Connections between processes, adapted from Dittmann et al. (2000). See Table 4.2 for color coding.

Finally, the potential impact of delegating part of the traffic to an automated agent is
discussed qualitatively for each of the processes based on the CONOPS from Section 4.2.
It was preliminary tested in the simulation experiment from Chapter 3 where six ATCOs
could dynamically delegate individual flights to and from an automated system. When
available, examples from similar situations in current-day operations are given as a first
hint towards potential solutions to reduce the impact.

4.3.1 Monitoring
At the start of a shift, an ATCO takes over from a colleague and receives a short brief-
ing about any specialties (such as weather or active military areas) and flights that might
require extra attention or that have been re-directed to solve a conflict. The takeover
lasts not longer than one or two minutes, in which the ATCO creates an initial mental
picture and sector plan. After assuming responsibility, the new ATCO enters a monitor-
ing process that continues for the remainder of the shift. Monitoring involves updating
the mental picture and sector plan, and in turn triggers all of the other processes as vi-
sualized in Figure 4.1. While the use of flowcharts may suggest purely linear processes,
constant attention switching means that the processes can be interrupted or resumed
due to shifting priorities.

4.3.2 Conflict detection
ATCOs start looking for conflicts while flights are approaching their sector, still under con-
trol of the previous sector. When a pilot calls in on the radio of the receiving sector, the
ATCO first has to locate the flight, which is made easier by a radio direction finder that
shows a circle around the transmitting flight on the plan view display (PVD, ). Most
conflicts get identified and solved at this initial contact (Hoc and Carlier, 2002). While
acknowledging that conflict detection is mostly pattern-driven when assuming flights,
the focus in this chapter is on the detection of intra-sector conflicts. Throughout their
shifts, ATCOs frequently check for these conflicts that may have developed well after as-
suming a flight. Even when multiple flights are involved, ATCOs tend to solve conflicts
pair-wise (Kirwan and Flynn, 2002) and thus perform conflict detection on flight pairs, as
visualized in Figure 4.2. For any given flight pair, the flowchart can be traversed via one
of the ‘paths’ mapped in Table 4.3.
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Figure 4.2: Flowchart of the conflict detection process. For letter and color coding, see Tables 4.1 and 4.2.

ATCOs first look at conflicting flight levels, as shown in the flight labels , before con-
sidering the directions of these flights on the PVD (Fothergill and Neal, 2013, Rantanen
and Nunes, 2005). Professional ATCOs have been shown to filter out flight pairs that are
safely separated in altitude from their scan patterns (Kang and Landry, 2015). The use of
odd/even flight levels for traffic in 180° heading bands simplifies this task considerably,
as level flights can then only be in conflict with flights from a subset of directions or with
flights changing altitude (Hoekstra et al., 2016). In sectors with clear traffic streams, such
flight level allocation enables further filtering of flights to be considered.

Flights changing altitude often require more effort and attention than level flights for
two main reasons. First, their trajectories are harder to extrapolate due to the potential
ground speed variations with vertical changes as well as possible wind conditions at dif-
ferent altitudes. Second, their flight levels cross with more flights that consequently have
to be considered. This is especially true for flights that need to climb to their cruise level
as indicated in the Flight Information Management window (FIM, ) and subsequently
descend to the coordinated transfer flight level (TFL) before leaving the sector.

Fortunately, ATCOs can often rely on their so-called ‘conflict possibility library’, con-
taining hot spots within the sector where conflicts frequently occur. With the introduc-
tion of free route airspace (FRA), where flights are no longer required to follow fixed
routes, the usability of such a library has diminished (Renner et al., 2018), although the
majority of traffic will still follow predictable routes. For efficiency reasons, airlines prefer
direct routes, increasingly made possible by FRA. Direct routes also have an advantage
for the ATCOs, as it simplifies the (horizontal) detection task to a mere checking of the
crossing angle between two tracks: diverging tracks will never lead to a conflict (unless
involving a turning outbound flight), while parallel tracks can only be a conflict when
they are already spaced less than 5 NM apart. Detection complexity is largely dependent
on the convergence angle between the tracks of two conflicting flights, with shallow an-
gles being harder to detect than perpendicular tracks (Hilburn, 2004).
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Table 4.3: Possible paths to traverse the conflict detection flowchart from Figure 4.2.

Vertical Horizontal Temporal

A B D

C E

F

G

Only when both vertical and horizontal separation are questionable, relative speeds
are taken into account to assess whether the trajectories will actually conflict in time (Loft
et al., 2007). Processing speed information requires more effort than altitude and head-
ing (Rantanen and Nunes, 2005), potentially eliciting rule-based behavior. If the ATCO
suspects an imminent conflict, the verification and advice tool (VERA, ) can be used to
validate and judge the criticality of the conflict. After selecting two flights, it extrapo-
lates their positions along their current tracks to predict the time till and the minimum
distance at the closest point of approach (CPA) between two flights. VERA only considers
horizontal separation though; the ATCO needs to take the vertical aspect into account as
well as any potential speed or heading changes. Any flight pair on which VERA is ap-
plied is added to a special on-screen list showing its parameters, until the ATCO cancels
it. From this list, the combined PVD of both flights can be evoked, with their extrapolated
positions and the corresponding CPA time. The list can serve as a to-do list or to ease the
monitoring of the evolution of a conflict over a prolonged time. Apart from VERA, the
length of the velocity leaders can also be extended (from 1 minute to 2, 4 or 8 min-
utes) to quickly extrapolate the future positions of flights and gauge the CPA.

A more advanced tactical prediction system is the Near-Term Conflict Alert (NTCA, ),
which extrapolates the future position along the flight’s cleared route¹. If a flight deviates
from its route, or is flying on a heading, NTCA resorts to simply extrapolating the track
for that flight, alike VERA. In contrast to VERA, NTCA is triggered automatically. If a loss
of separation (LOS) is predicted within 4, 6 or 8 minutes (depending on ATCO selection),

¹NTCA was not available in any of the experiments in this thesis.
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an orange diamond is shown in the labels of the conflicting flights to alert the ATCO. By
placing the mouse over this diamond, a VERA-like conflict geometry is shown on the PVD.
Additionally, the NTCA logic is also utilized in what-if tools, which allow for the probing
of alternative flight levels and/or headings before executing the pertinent clearance(s).

As a last safety measure, if a conflict is overlooked, a solely radar-based Short-Term
Conflict Alert (STCA, ) triggers 2 minutes before a LOS in the form of a red/yellow flash-
ing radar position symbol and a yellow border around the callsign in the label. The STCA
is accompanied with an entry in the Conflict Alert Message (CAM) window on the screen,
showing whether the two involved flights are climbing, level or descending, and the cur-
rent and predicted minimum distances between them. Both NTCA and STCA can trigger
the ATCO to switch attention to conflict resolution, with STCA naturally requiring an im-
mediate response.

Impact of flight delegation

Firstly, ATCOs have been shown to pay less attention to flights not under their (man-
ual) control and not updating them as frequently in their mental model, poten-
tially leading to slower CD&R (Metzger and Parasuraman, 2001). While conflicts
between automation-directed flights will be automatically solved, and thus require
little monitoring when the ATCO has sufficient trust in the system, the associated
attention reduction can have a detrimental effect on the resolution of mixed con-
flicts (Chapter 3). In such conflicts, the ATCO can be taken by ‘surprise’ and may
need to revisit the delegated flight(s) to update their mental image. In current-
day operations, the CC can flag potential conflicts for the EC by adding them to
the VERA list. It could be beneficial if the system acted similarly for automation-
directed flights that conflict with manual-directed flights to timely inform the ATCO
and reduce the risk of surprises.

Secondly, as ATCOs are not actively involved in delegated flights, they would
not be updated either about (route) changes that the automation issues to flights
in their sector. Something similar happens when ATCOs ‘skip’ flights passing
through an empty part of their sector, meaning that the next sector already takes
control over the flight. This is, however, only done when the flight is clear of any
other traffic. With less strict conditions for delegating flights to the automation,
it is even more important for ATCOs to maintain an up-to-date mental model of
these flights that may interact with theirs. In current-day operations, the CC can,
under certain restrictions, use CPDLC to uplink a clearance to a flight to relieve the
EC. The uplink action is shown on the EC’s screen by highlighting the flight’s cor-
responding label item in magenta for a short time. Since the EC and CC are sitting
next to each other, they can easily coordinate such actions.

If the other agent is an automated system, (complex) visualizations may be in-
troduced to pro-actively communicate its actions and intentions (Jans et al., 2019),
at the trade-off of increased mental demand (Wright et al., 2016). The use of a
smart allocation strategy is hypothesized to reduce the need for these features
by keeping ATCOs naturally in-the-loop, such that the aforementioned label item
highlighting might be sufficient in most situations.
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Figure 4.3: Flowchart of the conflict resolution process. For letter and color coding, see Tables 4.1 and 4.2.

4.3.3 Conflict resolution
Once a conflict has been detected, the ATCO enters the conflict resolution process, shown
in Figure 4.3. Based on the criticality of the conflict – which can be derived from the
time/distance to go and minimum separation given by VERA or NTCA – the ATCO
needs to determine whether any action is required. With a potential conflict still far away,
ATCOs may opt to ‘wait and see’ (Kallus et al., 1999). Especially in large sectors, uncertain-
ties such as wind or clearances to other flights can make conflicts disappear over time
with no additional effort required from the ATCO and pilots. ATCOs may therefore tem-
porarily switch to a higher priority task and return to the conflict at a later stage if it still
exists. However, under high workload, immediate actions are generally preferred as they
relieve the ATCO from monitoring the situation over an extended period of time (Kirwan
and Flynn, 2002, Loft et al., 2007). In most cases where a conflict triggers an STCA ,
ATCOs have already recognized and commenced resolving the conflict before the alert
goes off, or they find the alert to be premature (e.g., when a fast-climbing flight can get
into conflict with another flight (far) above its cleared flight level (CFL)). The ‘wait and see’
option then involves checking that the flight truly levels off at its CFL.

The conflict geometry visualizations from VERA or NTCA can help ATCOs in
their resolution process. Most conflicts are routine conflicts that they have experienced
many times during training and their career. ATCOs maintain an extensive mental ‘con-
flict resolution library’ with standard options to solve such conflicts that therefore re-
quire little mental (rule-based) processing (Loft et al., 2007). More challenging conflicts
are those that are less common and thus require a custom solution, generated in a more
demanding knowledge-based process. The process is repeated until an acceptable so-
lution is found, which is then converted into a (series of ) clearance(s) and input through
the clearance menu . The ATCO then returns to monitoring and may revisit the flight
at a later stage to make sure the issued clearances are properly followed up. Indications
in the flight labels alert the ATCO if a flight has selected the wrong flight level, is not
climbing or descending as instructed, or is deviating from its cleared route.

To solve conflicts, ATCOs can pick from several options. Speed clearances are rarely
used in en-route control, as aircraft are mostly flying at their optimal speeds with very
small flight envelopes margins. Exceptions are inbound flights that need to slow down
at some point and for which the ATCO may receive speed requests from the next units.
Preferred solutions are mostly those that optimize a flight’s efficiency, by sending the
flight either to an intermediate flight level closer to its exit level, or on a short-cut to-
wards a point further down its planned route. At increased workloads, ATCOs give lower
priority to such optimizations and are more prone to pick the first satisfactory solution
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they see (D’Arcy and Della Rocco, 2001) whereas in periods of low workload ATCOs may
pro-actively re-inspect non-conflicting flights to see if they can further optimize them.

Any unsafe heading or altitude clearance, that would lead to a LOS within the next
2 minutes as predicted by NTCA , is automatically marked in the clearance menu ,
and the corresponding conflicting flight(s) is/are highlighted when the cursor is placed
on the clearance value. Such features speed-up the decision selection process by quickly
eliminating potentially unsafe solutions, thereby offering a solution space to select a safe
clearance from. The acceptable safe solution varies by the ATCO’s workload. Solutions
should not increase the probability of follow-up conflicts (Niessen and Eyferth, 2001) and
should minimize the need for further monitoring. This is especially important in complex
or high workload situations when buffers are often increased as well (D’Arcy and Della
Rocco, 2001, Kirwan and Flynn, 2002). Heading clearances usually do require a follow-up
clearance to bring the flight back on its route (Corver and Grote, 2016), but can be help-
ful to prevent flights from turning into each other’s path unnoticed. Furthermore, using
parallel headings alleviates the ATCO from taking differential wind effects into account.

In line with conflict detection, the resolution of conflicts with large convergence an-
gles can be difficult when both flights are already flying a direct route (Hilburn, 2004). A
conflict with a 90° angle is considered easy and usually requires the slower aircraft to be
directed behind the faster aircraft. Small convergence angles, on the other hand, often
require larger track deviations up to a point where supplemental speed changes may be
used to reduce the track deviations.

Impact of flight delegation

In current-day operations, flights under control by different ATCOs are less prone
to get into conflict with each other due to the coordinating role of the CC and inter-
sector agreements. When flights within a sector are delegated, the ATCOs need to
confirm that any of their clearances have no detrimental effects on this traffic. It
is expected to take more effort as, analogous to conflict detection, the flights that
are not under manual control may have become dormant in or even removed from
the ATCO’s mental model. That would require the ATCO to actively attend to them
to retrieve all (updated) information before issuing a resolution clearance.

A proposal-like setup, as described in Section 4.2, can assist in solving mixed
conflicts by providing ATCOs with ready-made solutions. Instead of only highlight-
ing the unsafe clearances in the menu (as NTCA currently does), a similar visualiza-
tion could be used to indicate the suggested safe clearance. Then it would be im-
portant for the ATCO to promptly understand why exactly the system prefers that
clearance over other (safe) solutions.

Regardless of the preceding, if flights can be dynamically delegated to the au-
tomation, a conflict may not need to be solved by the ATCO at all. Instead, they
can delegate the manual-directed flight(s) involved in the conflict and have au-
tomation resolve it. Doing so is especially straightforward when one of the flights
is already under automated control. Delegating both flights does mean that the
automation may go beyond solving the conflict and issue additional clearances to
the involved flights, unless the ATCO resumes control.
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4.4 Empirical quantification
To objectively assess the impact of reduced SA of some (automation-directed) flights on
CD&R of mixed conflicts, the traversal through each of the elements in the flowcharts can
be linked to readily applicable measures. Since efficient and timely CD&R is key in ATC,
temporal quantification seems a fitting choice (that is: how long it takes to go from one
point in the chart to another). Hereto, this section describes an experiment in which a
number of static traffic samples were presented to professional ATCOs. It is assumed that
a completely parallel human-automation system has been established (Section 2.3.2),
where the human operator does not need to pay attention to the blue automated flights
for a prolonged time. In such a shared airspace, mixed conflicts can occur where the ATCO
has not been actively involved with a flight that interacts with their flights. In the worst
case, the ATCO has not seen an automated flight at all, until it suddenly poses a problem
to one of the flights under their manual control. An example of this was observed in
Chapter 3, where an ATCO did not spot a mixed conflict because the automated flight
was emerging from “a sea of automated aircraft”.

Based on real life traffic samples, the experiment scenarios are constructed to simu-
late such worst-case ‘pop-up’ flights. They are simplified to reduce the number of vari-
ables and to measure individual contributions (Boag et al., 2006). This simplification does
mean that the process of assuming flights and early checking for conflicts will be left out.
The focus is on intra-sector CD&R with a short to medium-term time scale, in line with
the presented flowcharts.

By analyzing the logged usage of tools from Table 4.1, a first estimation can be made
of which path in the flowchart the ATCO follows. Additionally, eye tracking will show
which other flights are considered and possibly re-visited, e.g., to reassess a no longer
safe clearance. Similarly, the order of elements and their associated SRK-levels (i.e., higher
levels requiring more effort and time, Rasmussen, 1986) can be validated. Although the
duration of individual steps might not be directly traceable, relative differences in these
measures between different (mixed) conflict types are hypothesized to give an objective
measure for comparing future flight allocation strategies.

4.4.1 Participants
Ten professional en-route ATCOs from MUAC with age and experience as shown in Ta-
ble 4.4 volunteered in the experiment. All participants provided written informed con-
sent prior to their participation. The experiment setup and protocol were approved by
the Human Research Ethics Committee of TU Delft under number 2574.

Table 4.4: Participant characteristics.

Sector group

All Brussels DECO Hannover

Number of ATCOs 10 5 2 3

Age, years (SD) 43.6 (7.1) 42.7 (6.7) 49.0 (1.0) 41.3 (8.3)

Experience, years (SD) 20.0 (6.5) 19.2 (5.3) 25.5 (1.5) 17.7 (8.2)
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Figure 4.4: Experiment set-up with participant (left) and observer (right) positions.

4.4.2 Apparatus
The participants were seated behind a desk with a 27 inch monitor (1920× 1920 pixels),
and standard computer keyboard and mouse for inputs. The monitor showed SectorX, a
TU Delft-built Java-based simulator with an interface mimicking the MUAC operational
interface (see Appendix A). Aircraft labels could not be moved and panning or zooming
of the radar display was disabled too. The interface elements (VERA, FIM and experiment
dialogs) were positioned such that they were well clear of any flight symbols or labels to
ease the proper distillation of gaze positions.

Eye tracking data were recorded using a Pupil Labs Core eye tracker that was to be
worn as glasses (Kassner et al., 2014). Pupil Capture and Pupil Player (both version 3.5.1)
were used to record and analyze the eye tracking data. None of the participants wore
glasses that could hinder eye tracking measurements (contact lenses were allowed).
The forward facing out-of-the-world camera recorded at 30 Hz, while the pupils were
recorded at 120 Hz. Eight AprilTag markers were placed along the edges and corners of
the screen to relate eye tracking data to pixels on the screen.

The experimenter was seated alongside the participant to control the simulator and
note down observations. He monitored the eye tracking recording on a separate moni-
tor. Figure 4.4 shows the complete test set-up.

4.4.3 Procedure and participant tasks
During the briefing, the participants were instructed that they could only control green
flights. Blue flights were assumed to be controlled by a different ATCO and therefore not
susceptible to receiving any clearances from the participants. Apart from the initial clear-
ances shown in the flight labels, the blue flights would not receive any follow-up clear-
ances. The ATCOs could practice on six training scenarios that were identical in nature to
the measurement scenarios.
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The participants were then asked to put on the eye tracker glasses and make sure
they were in a comfortable position before a nine-point on-screen calibration sequence
was performed. This calibration was repeated before each measurement block of 15 sce-
narios. At the end of each block, an on-screen validation sequence was performed to
account for the buildup of slippage errors due to small movements of the eye tracker
due to the participants’ face movements. Only one additional intermediate calibration
was performed between two scenarios, when one of the participant’s eye tracker moved
noticeably.
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Figure 4.5: Experiment procedure, as repeated three times for all 15 scenarios.

Each scenario followed a standard procedure consisting of three phases, as outlined
in Figure 4.5. This exact procedure was also followed in six training runs to prepare the
participants for the measurement runs.

1. Phase I: only green flights

A static traffic situation was shown to the participants consisting of a number of
green-colored aircraft. The participants had to indicate whether they believed any
flights within the sector boundaries were currently in conflict (i.e., they would get
within 5 NM horizontally and 1,000 ft vertically if no clearance was issued). VERA
was available at this point, but no clearances could be given just yet. As soon as
the participant was confident in their assessment, they would submit it by pressing
the space bar and clicking an on-screen ‘Yes’ or ‘No’ button, depending on whether
they believed there was a conflict. The ATCOs were briefed to press the space bar
as soon as they had spotted a conflict and to not wait until they had analyzed the
whole scenario.

Participants were then given the opportunity to issue altitude clearances to any
of the flights by making use of the clearance menu from the interactive labels.
Conflicts had to be solved instantaneous and could not be left for ‘wait and see’.
No heading, speed or trajectory clearances could be given, nor any vertical rates.
Flights should preferably be cleared to their TFL, unless it was unsafe to do so. Then
an adjacent level should be selected.



74 | 4 Empirical task analysis

4

Once the ATCO was sufficiently content, they could press a ‘Done’ button to move
on to Phase II.

2. Phase II: green and blue flights

One or two blue-colored flights were revealed alongside the existing green-
colored flights. The participants had to re-judge this new situation and once again
indicate whether any or none of the green flights was in conflict (either with an-
other green or a blue flight) as soon as they could. Some of the conflicts would
have been solved already in Phase I, while new conflicts may have been introduced
by the blue flights.

Participants then issued altitude clearances as before, with the notion that clear-
ances could only be given to the green-colored flights. It was possible to overwrite
clearances from Phase I, if required by the new situation. Once the ATCO was con-
tent with the given clearances, they pressed the ‘Done’ button again.

3. Phase III: fast forward

The scenario was unfrozen and fast forwarded at 50x real time for 5 minutes of
scenario time (6 seconds real time), to give the ATCOs a chance to see the implica-
tion of their actions. This allowed them to observe whether their clearances had
the desired effect and provided a break between scenarios. After 6 seconds, the
simulation was frozen again and the ATCOs could move on to Phase I of the next
scenario by pressing a ‘Next scenario’ button. Before doing so, the ATCOs were told
to make sure they were ready to immediately start the conflict detection process,
as the measurements would start promptly.

This procedure was repeated for a consecutive block of 15 scenarios, after which the
ATCO could briefly relax before re-calibrating the eye tracker for the next block. After
three of such blocks (45 measurements in total), the experiment was concluded.

4.4.4 Scenario design
The scenarios consisted of two to five flights. The number of flights was relatively low, to
streamline the collection of a sufficient number of situations in limited time. All scenarios
featured the same artificial octagon-shaped sector of 80 by 80 NM, with four waypoints
(one in each cardinal direction) acting as exit coordination points (XCOP). An artificial sec-
tor was chosen to avoid any sector group specific advantages and to be able to transform
the scenarios to prevent recognition (see Appendix C). The following situations could de-
mand ATCO input on green flights:

• Two flights with a predicted loss of separation (conflict).

• The flight still needs to climb/descend to its transfer level, in which case:

– There may be a clear direct path to this TFL, or

– One of the other flights may block the TFL, requiring an intermediate level-off.
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Figure 4.6: Scenario 12 in two phases (symbols and labels not to scale).

As an example, Scenario 12 is shown in Figure 4.6. Phase I is conflict free, with all six
flight pairs eliciting conflict detection flowchart Path A (Table 4.3). Two flights, RYR925W
and LOT9YZ, not yet meet their exit conditions (third line of the label) and require, re-
spectively, a climb and descend clearance. After issuing these clearances and proceed-
ing to Phase II, the newly introduced BAW5ZR creates four additional flight pairs. Three
of which are conflict free (all Path A), and one is a conflict (Path G). The conflict invalidates
the clearance issued to RYR925W, necessitating an intermediate level-off at FL330.

Table 4.5 gives an overview of which paths from the conflict detection flowchart in
Figure 4.2 were present in each scenario and phase. Note that each path is hypothesized
to have an associated cognitive load, meaning that different combinations of the same
number of paths can require varying ATCO effort. Conflict-free and action-free scenarios
were also included to raise the ATCOs’ alertness. The following design rules were applied
to scope the experiment and prevent confusion about procedural discrepancies:

• All flights were on direct routes to their XCOP: one of the waypoints.

• If two blue flights were in conflict with each other, they would already be cleared
to another flight level to solve the conflict, as ATCOs were not able to control those
flights. These clearances were visible in the flight labels.

• Conflicts could not involve more than two flights, as multi-flight conflicts are rela-
tively sparse in real-life and ATCOs tend to approach these pairwise.

• All flights were of the same Airbus A320 aircraft type.

• Data associated with each flight were kept to a minimum (e.g., no destination air-
ports or requested cruise levels).

All scenarios were presented three times (referred to as a, b and c), either rotated,
mirrored and/or moved up/down in flight levels, to get three measurements per scenario
without participants recognizing this repetition (see Appendix C).
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Table 4.5: Number of flight pairs per scenario and phase with corresponding conflict detection paths (Table 4.3).
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4.4.5 Independent variables
There was one independent variable in the experiment: the scenario, as described in
Section 4.4.4. The scenarios were directly related to the conflict detection flowchart from
Figure 4.2 and varied in number of flights and conflict characteristics (if present).

4.4.6 Dependent measures
The following measures were either collected in real-time or derived post-hoc from eye
tracking data:

• Conflict detection status as submitted by the ATCO and its timing,

• Timing of VERA inspections and associated flight pair(s),

• Timing and flight level of altitude clearances,

• Eye tracking data:

– Dwell time, the total time spent looking at each flight and flight pair, and

– Gaze transitions, the number of times ATCOs alternated their gaze between
flights, after looking at another flight for at least 100 ms (as used by, e.g., Nord-
man et al., 2023).

4.4.7 Data analysis
Eye tracking data, in combination with on-screen markers, allowed for the distillation of
gazes on the radar screen. As the experiment involved static and visually well-separated
(non-overlapping) flights, it was deemed unnecessary to look at fixations. To correlate
gazes to specific flights or interface elements, the radar display was divided into areas
of interest according to the Voronoi tessellation method, which determines for each lo-
cation which seed (object of interest) is closer to it than any other seed (Voronoi, 1908).
Using such partitioning caters for potential accuracy issues by assigning all gazes in a
wider area to a certain object. An example for Scenario 12 is given in Figure 4.7, where a
seed was placed at each of the following elements to create the Voronoi polygons:

• Radar position symbol (blip),

• Center of flight label,

• Tip of velocity leader,

• Four corners of the dialogs (VERA, FIM and experiment).

Because the flowcharts from Section 4.3 deal with the assessment of flight pairs, the
dwell time measures of individual flights need to be transferred to flight pairs. For this,
transitions between flights (gaze moving from one flight to the other, Kang and Landry,
2015) are matched to the respective flight pair and its corresponding flowchart path from
Table 4.3. As it is impossible to reliably determine how much of the gaze on a flight per-
tains to the flight that is looked at before or after it, it is assumed that a flight’s dwell time
is proportionally devoted to the directly preceding and following flights. Figure 4.8 illus-
trates this concept. Note that the dwell times of the first and last gazed flight in a scenario,
that lack a preceding or succeeding flight, are completely associated to just one pair.
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Figure 4.8: Calculation of dwell time per flight pair and corresponding conflict detection flowchart path.

4.4.8 Hypotheses
The following hypotheses were formulated:

H1 Conflict detection time is proportional to the number of flights appearing on the
screen.

H2 Sequential steps in the conflict detection task, as outlined in Figure 4.2, require
increasing cognitive effort. Vertical checks are the fastest, followed by directional
and finally temporal overlaps.

H3 ATCOs are faster in detecting a conflict in Phase II when it involves a green flight for
which they had given a clearance in Phase I (e.g., as shown in Figure 4.6), compared
to cases where they did not interact with that flight.
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4.5 Results
4.5.1 Conflict assessment
For every scenario, the ATCOs first had to indicate whether they believed there was a
conflict. Every block in Figure 4.9 corresponds to one repetition of a particular scenario
for a single ATCO and the block’s color indicates the submitted conflict assessment. Each
ATCO is represented by one row of blocks, while each column corresponds to one of the
three repetitions of a scenario (a, b and c).

Overall the ATCOs agreed on whether there were conflicts present, as shown by the
generally consistent colors per scenario. An outlier in this regard is ATCO 4, who consis-
tently flagged all flights that would cross another flight’s path if they were to be cleared
to their TFL, despite being briefed to only consider the current and cleared flight levels.
Furthermore, Scenario 9 stands out as ambiguous in Phase I, with six ATCOs changing
their mind for one or two of the repetitions. In this scenario, two level flights were on
converging paths with a CPA separation of 13 NM, which does not strictly breach the
separation criterion of 5 NM. It may have been considered unsafe by the ATCOs because,
in reality, flights that follow a route instead of a heading may deviate from their route or
make unanticipated heading changes, which can lead to a decrease in CPA separation.

In 22 occasions (5% of 450 assessments), ATCOs refrained from issuing the intended
clearances in Phase I, giving them a potential ‘advantage’ in Phase II over the other ATCOs,
as they would not encounter a designed conflict. This is indicated in Figure 4.9 with dots
and explains some of the ‘incorrect’ conflict assessments in Phase II, such as ATCO 2’s
solitary conflict-free assessment of Scenario 12b. Due to the small number of such oc-
currences, and given that the ATCOs sometimes corrected their own ‘mistake’ in Phase II,
these results are not excluded from the remainder of the analysis.
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Figure 4.9: Conflict assessment and VERA usage per scenario repetition (a, b and c) and ATCO in both phases.
Colors show the conflict status that each ATCO submitted, while the shade of that color indicates whether VERA
was used, and if so, on how many flight pairs. Dots indicate that an intended clearance was not given in Phase I.
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4.5.2 VERA support tool usage
Figure 4.9 also shows the ATCOs’ use of VERA to measure the predicted CPA between two
flights and/or show their conflict geometry. Scenarios 6, 7 and 9 stand out with more
VERA usage than others in Phase I. Scenario 6 involved two flights that would have had a
CPA of 8.4 NM when flying at identical speeds, but due to their different speeds the actual
CPA was only 4.5 NM. For Scenario 9, the high VERA usage is reflected in the relatively
inconsistent conflict assessment, with four ATCOs only flagging it as a conflict when they
did not use VERA, whereas they flagged it as conflict-free when they did use VERA.

To ease further analysis, Table 4.6 lists the aggregated numbers per ATCO and sce-
nario repetition. Overall, the VERA tool was used on 75 and 51 flight pairs in Phases I
and II, respectively. A learning effect is observed in the decreasing number of VERA in-
vocations with subsequent occurrences of the same scenario in both phases. The largest
decrement for all ATCOs combined was between the first and second repetition (a and
b), which flattened out in the third repetition (c). This greatly varied between the ATCOs
though, with some ATCOs showing a strong decrease over the repetitions (e.g., ATCO 6)
while other ATCOs were more consistent (e.g., ATCO 10) or did not use VERA at all (ATCO 8).
Of the checked pairs, 40 were in conflict (CPA < 5 NM and crossing flight levels), while six
others were not currently in a conflict, but would be conflicting if they were cleared to
their TFL.

Table 4.6: Number of flight pairs on which VERA was used per phase and scenario repetition.

Scenario ATCO

repetition 1 2 3 4 5 6 7 8 9 10 Total

Phase I

a 1 6 1 3 1 7 2 0 4 7 32

b 0 2 1 0 1 4 3 0 4 8 23

c 1 2 0 1 2 2 3 0 1 8 20

2 10 2 4 4 13 8 0 9 23 75

Phase II

a 1 6 0 0 2 3 1 0 2 9 24

b 0 4 0 0 0 1 2 0 0 8 15

c 0 3 0 0 0 0 0 0 2 7 12

1 13 0 0 2 4 3 0 4 24 51

4.5.3 Gaze timelines
When presented with a traffic picture, ATCOs gaze over the flights and their labels to
assess the situation. The collected eye tracking data reveals these gaze patterns. An
example of a gaze timeline for a single repetition of Scenario 12 is shown in Figure 4.10,
where the colors correspond to the areas of interest defined in Figure 4.7.

It is clear that using the press on the space bar (vertical dashed line) or the actual
submission of a conflict rating (right end of the stacked bars) were not good measures
of conflict detection time. Many ATCOs either forgot to press the space bar timely (e.g.,
ATCO 3), or they spent considerable time thinking about whether they had to answer
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Figure 4.10: Gaze timelines of all ATCOs for a single repetition of Scenario 12 in Phase II. Colored blocks corre-
spond to the areas of interest defined in Figure 4.7.

‘yes’ or ‘no’ to indicate a conflict. ATCO 5 tried to resolve the conflict after having clicked
the conflict button without pressing the space bar first (which would have unlocked the
clearances), leading to an excessively long duration of nearly 14 s. Therefore, to deter-
mine a more accurate conflict assessment duration the time is capped at the onset of the
first gaze on the experiment dialog that lasted more than 200 ms, indicated by the solid
black vertical line in the figure.

Figure 4.10 also shows that all ATCOs were looking at a green flight when Phase II
started (Time = 0 s). Within circa 300 ms, all of them moved their gaze to the newly
shown blue flight, which was generally followed by gazes on one or two green flight(s)
before looking at the experiment dialog. The green flight that was involved in an unre-
solved conflict with the blue flight clearly dominates the dwell time, as indicated by the
relatively large dark green (and blue) sections. Interestingly, seven out of ten ATCOs did
not look at VLG3877 at all in Phase II. As shown in Figure 4.6, this flight was flying head-
on with a blue flight, albeit at an adjacent flight level and thus conflict-free. Furthermore,
note that ATCO 10 was the only ATCO who used VERA in this scenario. The gaze timeline
shows how this ATCO looked at the VERA dialog to confirm the CPA distance just before
submitting a conflict assessment.
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To account for learning effects (as observed in e.g., the use of VERA, Table 4.6) and
given the time-critical nature of conflict detection, for the remainder of this analysis each
ATCO’s results were trimmed down to the single repetition of each set of three for which
the ATCO showed minimal detection time in Phase II. In the vast majority of scenarios this
was either the second (31%) or the third (61%) repetition. The largest reduction in mean
detection time for all participants and scenarios combined was observed between the
first and second repetition (1.0 seconds), which flattened between the second and third
repetition (0.2 seconds). This flattening is consistent with the observed trend in VERA
usage (Table 4.6).

4.5.4 Conflict assessment duration
Figure 4.11 shows the conflict assessment duration in Phase I. Each data point corre-
sponds to the fastest duration of that particular scenario for one ATCO. Data points shown
in black indicate that the ATCO used VERA before the measurement was capped, as ex-
plained in Section 4.5.3, while for the other points VERA may have been used later in the
scenario or not at all. Scenarios are ordered according to their median values (indicated
by the thick black lines) and are grouped by their number of flights, for which the gray
rectangles denote the median detection time.

As expected, the number of flights had a significant effect on the measured duration,
as confirmed by a Friedman’s test (𝜒2(2) = 11.4, 𝑝 = .003). Conover’s pairwise post
hoc comparisons with Bonferroni correction showed that the duration was significantly
higher when the number of flights was doubled from two (median = 1.5 s) to four flights
(median = 3.6 s, 𝑝 = .011), with a moderate effect size (𝑊 = 0.570). Scenario 11 is a
noticeable outlier, encompassing four flights but a duration that is comparable to scenar-
ios with only three flights. As this was the only scenario with four flights that contained
a conflict in Phase I, it seems plausible that the ATCOs did indeed stop assessing the situ-
ation further once they had spotted the conflict, like they were briefed to do. Apart from
this, the variation between scenarios with an identical number of flights hints at a further
dependence on scenario-specific characteristics.
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Figure 4.11: Minimum detection times in Phase I for all ATCOs, ordered by median time per scenario and
grouped per total number of flights, for which the gray rectangles show the median time.
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In Phase II, the total number of flights cannot be directly linked to the assessment
duration, as visible in the top half of Figure 4.12. Whereas one might expect to see a
similar staircase pattern as in Figure 4.11, the number of additional blue flights seems
to have a stronger impact than the total number of flights (lower half of Figure 4.12).
Two instead of one additional blue flight raises the median detection time from 1.7 s to
3.4 s, a significant increase (𝑡(9) = −8.379, 𝑝 < .001) with a large effect size according
to Cohen’s 𝑑 (−2.65). This suggests that the detection and resolution loops in Phase I
have already ruled out several flight pairs that do not need to be revisited in Phase II.
Furthermore, the composition of the individual flight pairs might explain some of the
variance found between scenarios with similar number of flights, just like in Phase I.

Scenarios 1, 8 and 11 were very quickly traversed by almost all ATCOs. In all three sce-
narios, a green flight cleared to its TFL in Phase I was unable to safely reach the CFL due to
a blue flight blocking that level. The ATCOs quickly recognized these conflicts, as shown
by relatively low detection times (similar to Scenarios 13 and 15 with just two flights) and
small variance between ATCOs. Scenario 10 is found at the other end of the spectrum.
In many cases this scenario required two previously issued clearances to be modified,
due to a blue flight blocking the TFL of two green flights. While this is an easy conflict to
spot, the solution is more difficult, as now three flights are involved. This is reflected in
the above-average detection time and may indicate that ATCOs simultaneously started
to (mentally) resolve the conflict.
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Figure 4.12: Minimum detection times in Phase II for all ATCOs, ordered by median time per scenario and
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4.5.5 Visual attention per flight (pair)
As seen in Figure 4.12, the number of blue flights can explain some of the differences in
detection duration. However, several scenarios with an identical number of green and
blue flights showed considerably different detection times, such as Scenarios 1 and 10.
To get a more detailed analysis of which specific flight(s) (pairs) contributed most to the
conflict detection duration, the visual attention per flight was determined in terms of
total dwell time and number of gaze transitions (i.e., moving gaze from one flight to the
other, with a minimum dwell time of 100 ms).

Figure 4.13 shows the results for three characteristic scenarios, selected on the basis
of their detection durations. For each scenario, the left-hand side of the figure shows the
traffic situation at the start of Phase II, provided that the ATCOs had issued the expected
clearances in Phase I. Note that the callsigns as shown here have been simplified from
those presented in the experiment to ease the discussion, and aircraft symbols and labels
have been up-scaled for legibility. The right-hand side of the figure shows each ATCO’s
dwell time per flight (top) and a matrix of the average number of gaze transitions per
ATCO for any flight pair (bottom). The callsigns of conflicting flights that require ATCO
interference are outlined with rectangular boxes.

Starting with Scenario 1 (Figure 4.13a), BAW had been cleared by the ATCOs in Phase I
to climb to FL320, a flight level that is now blocked by DEN. In line with the relatively
low overall conflict detection duration for this scenario (median of 1.2 s, Figure 4.12), all
flights showed low dwell times, but the two conflicting flights have significantly higher
dwell times than the other flights. This higher level of attention for the conflict pair is
confirmed by the number of gaze transitions, which is also the highest of all pairs.

Scenario 10 had a significantly higher detection duration in Figure 4.12 than Sce-
nario 1 (𝑡(9) = −8.027, 𝑝 < .001), despite an identical number of flights. This scenario,
shown in Figure 4.13b, was a special case as it involved two green flights that needed
adjustment in Phase II. Both EZY and GER had identical exit levels of FL320. Since this
would result in a conflict, the ATCOs cleared EZY to FL320 in Phase I, while GER was ini-
tially cleared to an intermediate FL330. The introduction of HOP at FL320 in Phase II
created a conflict with EZY, necessitating this flight to stay at FL330, which then became
unavailable to GER. Similar to Scenario 1, the ATCOs spend most of their visual attention
on these three interacting flights. FIN was barely looked at, despite the fact that it was
on the same flight level as HOP (but horizontally separated).

As a final example, Scenario 4 contained three green and two blue flights. As shown
in Figure 4.13c, the ATCOs quickly established that MPH was not conflicting with ‘their’
flights, leading to one of the lowest dwell times of all flights in this scenario. The other
blue flight, LOT, was descending to the same flight level as KLM and thus required the
ATCOs to adjust their clearance for this flight. The two flights of this mixed conflict had
the highest dwell times in the scenario and the gaze transition matrix shows that the
ATCOs’ gaze mainly jumped between these two flights.

The other scenarios showed similar results. In general, the flights with the longest
dwell time were often also part of the flight pair that received the highest number of
consecutive visits. This always included a blue pop-up flight when it created a conflict.
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Figure 4.13: Per-flight dwell times and mean number of gaze transitions between flights for three scenarios in
Phase II. Flights with ‘boxed’ callsigns are in conflict.
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4.5.6 Visual attention per flowchart path
Taking the visual attention analysis one step further, each flight pair can be linked to a
corresponding flowchart path (Table 4.3) based on the required steps to assess the pair’s
conflict status (i.e., first checking for sufficient vertical, then horizontal and finally tempo-
ral separation). Following the method outlined in Section 4.4.6, the previously discussed
dwell times per flight and gaze transitions between flights were consolidated into dwell
times per flight pair.

Figure 4.14 shows the resulting dwell times, averaged per ATCO and split per flight
pair type. Note that each type was represented between 0 and 40 times per path (Ta-
ble 4.7), such that only Paths A and G were represented by all types. Paths C, D, and F did
not occur with fully automated pairs, while Paths B and E only occurred in the form of
manual pairs. This incomplete representation of types makes it impossible to do a proper
statistical between-paths comparison and to test the hypothesized increasing cognitive
effort with increasing traversal depth of the flowchart.

Overall, the median dwell time was higher for flight pairs that involved a blue ‘popup’
flight (i.e., mixed or automated flight pairs) than for manual flight pairs, irrespective of the
path. In addition, fully automated flight pairs evoked dwell times that were, compared to
mixed pairs, higher for Path A and lower for Path G. For seven ATCOs the Path C duration
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Figure 4.14: Average dwell time per ATCO for each conflict detection flowchart path (Table 4.3) in Phase II,
split per flight pair type. The headers above the figure refer to the depth of traversal through the flowchart
(Figure 4.2), hypothesized to evoke increasing cognitive effort from left to right.

Table 4.7: Number of occurrences of each flowchart path per ATCO, split per flight pair type and scenario phase.

Path in flowchart

Flight pair type A B C D E F G

Phase I Manual 25 2 1 5 5 13 3

Phase II Mixed 40 - 1 4 - 3 10

Automated 3 - - - - - 1
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was zero in Phase I. The differences between the median dwell time of manual and mixed
pairs is just 90 ms for Path D, making this a negligible difference as well.

Because the main research objective here was to determine the duration of transi-
tioning a path in the conflict detection flowchart, preferably the time differences be-
tween paths are compared. Although a statistical significance could be calculated for
each of these observations, Wasserstein et al. (2019) and others, reason that statisti-
cal tests are of limited value in many cases, e.g., where insufficient data is obtained.
Given that some path types were only encountered in one scenario (e.g., automated pair,
Path G), the specific layout of that scenario has an excessive influence on the measured
dwell time, meaning that a test would not actually compare paths, but scenarios.

4.6 Discussion and recommendations
4.6.1 Hypotheses
The number of new flights that were introduced to a scenario showed a statistically signif-
icant effect on conflict detection duration, confirming Hypothesis H1. This was the case
in both Phase I and II, where the latter phase showed that the total number of flights
in the scene had little impact. ATCOs are able to ‘memorize’ traffic pictures to a great
extent, especially when it comes to an aircraft’s position and altitude (Gronlund et al.,
1998), so only existing flights relevant to the ‘pop-up flights’ were revisited and received
significantly more visual attention. This result supports the notion that mixed conflicts,
involving flights that the ATCO may have not or only superficially inspected, can be more
cognitively demanding than conflicts between manual flights.

Unlike hypothesized in H2, the presumed depth of traversal through the conflict de-
tection flowchart of Figure 4.2 did not show a clear effect on dwell time (and therefore
conflict detection duration). This can be due to several reasons. To start with, the greatly
simplified scenarios required little cognitive processing. They elicited hardly any (if any)
knowledge-based behavior, which was expected beforehand to lead to the biggest mea-
surable change. Furthermore, expert operators may not adhere to the steps in a linear
fashion as suggested by the presented flowcharts, but may employ shortcuts like de-
scribed by Rasmussen (1986). This could potentially impact the reliability of temporal
measurements, as operators may use shortcuts in some scenarios only.

Besides, not all flight pair types were represented in all flowchart paths and if they
were, the number of data points was rather low. The paths resembled less than 20 flight
pairs per ATCO (and as low as two pairs for Paths B and C), except for Path A which was
found in 68 pairs (Table 4.5). This means that for the majority of paths the specific sce-
nario had a large impact on the measures, such that no trends can be observed with
respect to the flowchart traversal depth.

Finally, it turned out to be infeasible to determine whether the ATCOs solely per-
formed conflict detection, without simultaneously resolving found conflicts. These two
tasks cannot be entirely isolated as they are cognitively closely interlinked, as indicated
by the loop around ‘acceptable solution’ in the conflict resolution flowchart of Figure 4.3.

The impact of interactions in Phase I on the conflict detection time in Phase II could
not be reliably determined due to the limited number of scenarios in which this occurred.
However, the scenarios where it did occur led to the fastest detection times in Figure 4.12,
hinting at a (small) reduction effect on the duration. Based on the preceding, H3 could
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not be confirmed. Regardless, in an operational setting ‘popup’ flights can occur up to 20
minutes after a clearance has been issued (depending on the size of the sector), which
may lead to more pronounced effects of manual interaction on conflict detection speed.

4.6.2 Experiment
As briefly touched upon in the previous section, the experiment design had a significant
impact on the results and subsequent analysis. The ATCOs were not familiar with the
presented zoom-level nor sector shape, which was reflected in some ATCOs noting that
it was harder to judge distances and speeds than in their daily work. This may have led
to longer detection times and a potentially higher-than-normal use of VERA. Indeed, the
decrement in VERA usage over the three scenario repetitions suggests that the ATCOs
became more familiar with the scale of the display as the experiment progressed.

In addition, several ATCOs considered the required press on the space bar, before
being able to set a conflict status, troublesome and non-intuitive. This led to a delayed
response time in some cases, especially in the first repetition block. In latter blocks this
had only a minor influence and, together with the order-balancing between participants,
therefore little impact on the analysis presented here. Nevertheless, using eye tracking
data to determine when ATCOs had spotted the conflict proved to be more reliable and
generally more convenient for the ATCOs.

Echoing the preceding discussion, future work should also consider more realistic
and diverse scenarios. Special care must be taken when designing these scenarios to en-
sure that all flowchart paths are sufficiently present with all three flight pair types (i.e.,
manual, mixed and automated). This will allow a proper trend analysis which could not
be performed for this chapter’s experiment. Rather than isolated situations, complete
traffic scenarios are expected to evoke more knowledge-based behavior and will ensure
that the results are more indicative of operational CD&R time scales. However, such sce-
narios will be more difficult to analyze as tight experiment control is traded for realism
and ATCO freedom.

4.6.3 Conflict resolution
Given the limited success of the chosen method in quantifying the conflict detection
task, it does not directly provide a clear recipe for quantifying the conflict resolution task.
Apart from the aforementioned general issues with quantifying (complex) cognitive pro-
cesses, the present experiment setup and in particular the scenario design, resulted in
insufficient resolution flexibility and variation. All conflicts in Phase I could be solved by
sending flights to or towards their exit flight levels. Although this was by design to ensure
consistent start-situation in Phase II, it also reduced the resolution task to a mere check
whether this logical solution was safe or not. Again, more realistic and diverse scenarios
are needed to provide sufficient ground for a conflict resolution analysis, at the risk of
complicating the analysis.

Concluding, it might be beneficial to take a more holistic approach and combine the
CD&R task into a single ‘complexity’ measure that could represent the entire cognitive
effort required to guide a flight safely and efficiently through a sector. This will simulta-
neously circumvent the problematic (and probably futile) isolation of conflict detection
as an independent subtask.
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4.7 Conclusions
This chapter introduced flowcharts representing the common ATC tasks of conflict detec-
tion and resolution. The charts show which steps an ATCO generally traverses in order
to complete these tasks. Depending on a flight pair’s composition, the steps require in-
creasing cognitive effort. An attempt to empirically quantify these steps through a simu-
lation experiment with professional ATCOs was only partly successful, mostly due to the
intrinsic complexity of cognitive processes that are not (easily) captured in linear steps.
Frequent task switching and the interdependence of conflict detection and resolution
further contributed to this. However, results indicate that the number of flights is not the
main factor impacting CD&R workflows. Presumably, interactions between flights (or a
lack thereof) play a more important role, next to ATCO perceptions and experiences.

Future research should identify exactly which interactions between flights, in more
realistic scenarios, add to the perceived complexity of guiding a particular flight through
a sector (i.e., combining both CD&R). In addition, it should be established to what level
ATCOs are consistent in their perceptions of complexity. This can then be used to drive a
complexity-based flight allocation scheme in future shared airspaces, that can minimize
the occurrence of mixed conflicts where the authority and responsibility over each flight
is assigned to a different agent (i.e., human or automation).





5
Flight-centric complexity

The classification, and subsequent allocation of flights to either human or automation,
is preferably based on objective measures relating to the traffic situation. Existing com-
plexity models are, however, often used for capacity predictions or airspace restructuring
and primarily to assess the complexity of a sector as a whole. This chapter uses empiri-
cally collected flight complexity ratings from 15 professional en-route air traffic control
officers. By analyzing the interactions between flights that they themselves included in
their complexity assessments, a classification model is established to differentiate be-
tween basic and non-basic flights, and to identify which traffic features play the largest
role. This can then serve as a starting point for an automatic allocation algorithm that
distributes flights between a human controller and the automation.
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5.1 Introduction
In striving for safe and efficient operation of air traffic control (ATC) in an increas-
ingly capacity-limited air traffic management (ATM) system, air traffic control officers
(ATCOs) are progressively supported by automated tools (SESAR Joint Undertaking,
2020). Decades of human-automation research have shown, however, that humans are
bad at supervising automated systems and thus benefit greatly from active involvement
(Endsley, 2017, Strauch, 2018). On the other hand, routine traffic does take away cogni-
tive capacity from ATCOs that could be better used in handling more complex situations.

One way to redistribute workload and cognitive effort is to allocate a subset of the
traffic to an automated agent, enabled by the increased use of controller-pilot data link
communications (CPDLC), freeing up the ATCO’s cognitive resources, which are needed
for complex problem solving. The human ATCO is then responsible for controlling the re-
maining traffic with active involvement. Exploratory research showed that such a shared
airspace is feasible and accepted by ATCOs under certain conditions (Chapter 3). Assign-
ing flights to either a human or an automated agent can be regarded as the next evolu-
tionary phase in flight-centric ATC (FCA), a concept where specific flights are assigned to
different human ATCOs (Volf, 2019).

Eurocontrol’s Maastricht Upper Area Control Centre (MUAC), an air navigation service
provider (ANSP) responsible for the upper airspace of the Netherlands, Belgium, Luxem-
bourg and part of Germany, proposes a strategy to initially only allocate basic traffic to an
automated system, while the ATCOs are kept engaged with the task of handling the more
complex non-basic traffic (Hendrickx and Tisza, 2019). Basic flights are presumably easier
to automate and do not evoke the creative problem-solving skills that human ATCOs are
known to enjoy, making them a prime candidate for delegation to the automation.

The level of responsibility of the envisioned automated system will be increased in
three stages, throughout which the automation will only aid with or control the basic
part of the traffic. In the first two stages, the ATCO can still take back manual control over
a flight. In Stage 1 all flights are handled with approval of the ATCO, in Stage 2 for the ba-
sic part there is no ATCO approval, but the controller is still responsible. In the third, and
final stage, the automation will autonomously control an entire sector with basic traffic,
performing all ATC tasks in that sector. In this stage, the ATCO will no longer be respon-
sible for the traffic and will not be monitoring the sector. An option will be available,
however, for the automation to indicate to the ATCO that supervision is required.

As an enabler for this strategy, it is paramount to understand what differentiates a ‘ba-
sic’ from a ‘non-basic’ flight. Furthermore, this classification should be automated, based
on objective criteria that can be obtained in real-time as a flight approaches a sector.
Three decades ago, Drew and Makins (1994) already performed an initial study to iden-
tify a ‘problem-free’ set of flights that could be controlled by a planner ATCO through
datalink. Current air traffic complexity models, however, predominantly consider the
complexity of an entire sector (Hilburn, 2004), for example to predict sector capacity.
This is most commonly done by taking a weighted sum of various contributing factors,
such as the rate of flights entering/exiting the sector or the traffic density (Lee et al., 2009,
Mogford et al., 1995). This sector-wide approach makes them unsuited for classifying in-
dividual flights. Studies of per-flight complexity classifications are rare, but suggest their
feasibility and call for further research (e.g., Capiot et al., 2019).
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This chapter reasons from the perspective of a single flight, rather than an entire
sector and asks the following questions: What is the relationship between the number
of flights ATCOs consider to impact a single flight and the perceived complexity of that
flight? What level of consensus exists among ATCOs on these included flights? What traf-
fic parameters impact the perceived complexity the most? To answer these questions,
empirically collected flight complexity ratings from fourteen professional en-route ATCOs
are analyzed using state-of-the-art supervised learning techniques so as to discover re-
lationships, if they exist, between complexity ratings and traffic factors.

The structure of this chapter is as follows. First, we distill what lessons can be learned
from existing complexity measures that are primarily used to describe entire sectors (Sec-
tion 5.2). Next, in Section 5.3 a human-in-the-loop experiment is described where pro-
fessional ATCOs had to indicate which other flights they included in their complexity as-
sessment of a single flight of interest (FOI) that varied in location and target state over
a number of scenarios. Results of the experiment, and subsequent descriptive perfor-
mance of our machine learning models are given in Section 5.4. The implications of the
findings and an outlook into the future applicability of a flight allocation algorithm are
discussed in Section 5.5. Section 5.6 concludes the work.

5.2 Background: modeling flight complexity
5.2.1 From sector-based towards flight-centric complexity
Complexity prediction in ATM has predominantly been done in the context of dynamic
sectorization to either split or combine sectors based on expected traffic loads and ATCO
workload. Over decades, several complexity models have been developed, such as dy-
namic density, interval complexity, fractal dimension, input/output approach, Lyapunov
exponents and trajectory-based complexity (TBX, Prandini et al., 2011, Prevot and Lee,
2011). The majority of these complexity models output either a scalar value or a map
that represent the sector-based complexity by integrating (e.g., counting and averaging)
specific flight characteristics over the entire sector, for example Hilburn (2004):

• the number of climbing and/or descending flights

• the variance in heading and speed

• the structure of traffic flows (e.g., crossing angle)

• the number of crossing and/or merge points

• distance at, and time to, the closest point of approach (CPA)

It can be argued that sector-based complexity dilutes the complexity contribution
of each individual flight (Isufaj et al., 2022). Take for instance the situation illustrated
in Figure 5.1 where the sector-based complexity map indicates a hotspot in the middle
of the sector. This, however, does not mean that all flights passing through the center
of the sector are equally complex (or, non-basic). Conversely, flights that do not pass
through the center are not all basic flights. Additionally, certain sector disruptions, like
local adverse weather or an emergency flight, might not impact all flights equally.
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Figure 5.1: Examples of a basic and non-basic (or complex) flight overlaid on a sector-based complexity map.

In an effort to capture the complexity of a single flight, we propose, based on discus-
sions with operational ATCOs and ATM experts at MUAC, that flight complexity centers
around attentional and control demands, such as:

• Attentional demands

– Trajectory complexity (e.g., winding vs. direct route)

– Uncertainty (e.g., in climb/descent profiles, arrival time management, pilot delays)

– Multi-dimensional interaction profile with other flights (e.g., route crossings, alti-
tude overlap, conflict probability)

– Interaction with environmental disruptions (e.g., restricted airspace, weather
cells)

• Control demands

– Easiness of a conflict resolution (e.g., altitude vs. heading)

– Conflict geometry (e.g., overtake vs. crossing)

– Number of required (follow-up) actions (e.g., evade conflict and steer back to tar-
get waypoint)

– Timing of actions (e.g., proactive vs. reactive)

– Size of the ‘solution’ space (e.g., sector size for maneuvering flights)

Many of these elements cannot be considered independently in how they impact the
complexity of a single FOI and are therefore not easily modeled. For example, given a cer-
tain CPA, the convergence angle between flights impacts the time to reach that point. To
cope with complexity, ATCOs typically make hierarchical pair-wise comparisons between
flights (Rantanen and Nunes, 2005). For example, to detect conflicts, they first scan the
flight labels for overlapping altitudes, then narrow down the search to flights with cross-
ing paths, followed by anticipating their CPA (Chapter 4). As such, the ATCOs’ strategies,
skills and expertise are expected to play a role in how complexity is perceived.
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5.2.2 Inherent versus perceived flight complexity
Similar to the division between taskload and the experienced workload (Hilburn, 2004),
classification of ‘basic’ and ‘non-basic’ flights may depend on the preferences, skills and
experience of ATCOs as illustrated in Figure 5.2. This notion suggests that the perceived
flight complexity may be individual sensitive, similar to the findings of research that stud-
ied the impact of personalization on fostering ATCO agreement and acceptance in the
context of conflict resolution advisories (Westin et al., 2016a). Nevertheless, with highly
trained professionals, some level of consensus on which flights are more complex than
others can still be expected, providing ground for an automated classification algorithm.

ATCO factors
• Skills
• Experience
• Strategies
• …

Tra�c factors
• Flight type
• Horizontal pro�le
• Vertical pro�le
• Con�ict probability
• …

Environment factors
• Weather
• Sector geometry
• …

+
Inherent 

complexity
Perceived

complexity

Figure 5.2: Factors that play a role in ATC complexity.

To be able to discern the contribution of inherent and perceived complexity in deter-
mining single flight complexity, labeled data would be needed that allows for relating
traffic factors to ATCO complexity ratings. Currently, such labeled data does not yet ex-
ist. Therefore, the study described in this chapter aimed to collect labeled data on single
flight complexity by designing and conducting a human-in-the-loop experiment.

5.2.3 Supervised learning
When labeled data is available, classification and prediction can be done using supervised
learning techniques, such as logistic regression, random forests and gradient boosting
trees. These have been used, for example, to determine traffic parameters that are most
influential to sector complexity (Pérez-Castán et al., 2022, Pérez Moreno et al., 2022), but
to the best of our knowledge not yet on individual flight complexity.

In a classification problem, unbalanced classes can have a detrimental effect on the
model’s performance. In this chapter, the number of flights not contributing to a single
flight’s complexity vastly exceeds the number of flights that do matter. When mostly
trained on non-relevant flights, a model might not be able to predict the important
flights. Using ensemble techniques, such as gradient boosting, the impact of included
flights on model training can be increased. Similar techniques are done in medical stud-
ies, where decease cases are rare, but of paramount importance to discover and predict.

Note that machine learning is mainly used in this preliminary study to examine and
describe the complexity factors in a specifically crafted set of scenarios. Creating an op-
erational prediction model for any traffic sample is outside the current scope and would
require more extensive data collection.
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5.3 Method
5.3.1 Participants
Fifteen ATCOs from MUAC (Table 5.1) voluntarily participated in a simulator experiment.
All participants provided written informed consent and the experiment was approved by
the Human Research Ethics Committee of TU Delft under number 2206.

Table 5.1: Participant characteristics.

Sector group

All Brussels DECO Hannover

Number of ATCOs 15 5 5 5

Age, years (SD) 39.9 (6.3) 37.0 (4.3) 40.8 (7.6) 42.0 (5.4)

Experience, years (SD) 15.9 (6.4) 13.0 (4.0) 15.4 (7.2) 19.4 (6.0)

5.3.2 Apparatus
During the experiment MUAC’s operational interface was mimicked using SectorX, a
medium-fidelity Java-based simulator built by TU Delft (see Appendix A). Figure 5.3 was
displayed on a computer monitor and could be controlled with a computer mouse. While
only static scenarios were shown, the simulator allowed for some interaction that helped
the ATCOs assess the traffic situation. A flight’s planned route could be revealed by
press-and-hold on the associated label. Furthermore, MUAC’s verification and advice tool
(VERA) was available to see a prediction of the closest horizontal distance between two
flights and their corresponding future positions. And finally, the velocity leaders could
be extended to show a flight’s predicted position one to eight minutes into the future.

(a)

(b)

(b)

(b)

(c)

(d)

Figure 5.3: Simulator interface showing a Brussels scenario with flight of interest (a), three included flights (b),
complexity rating scale (c) and VERA information (d). Background colors have been inverted for print clarity.
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5.3.3 Procedure and participant tasks
Each participant followed the same procedure, outlined in Figure 5.4. At the start they
were briefed on their task to assess the complexity of guiding an individual FOI from its
current location to the required sector exit coordination point (XCOP) and transfer flight
level (TFL). The ATCOs then practiced operating the simulator on a simplified scenario
containing only two flights in an artificial sector.

Next, four training scenarios were executed, in which the background traffic, sector
and experiment procedure were identical to the measurement scenarios. After assess-
ing the situation (optionally making use of the provided support tools), each scenario
required two consecutive actions from the ATCOs, before they could click on a button to
advance to the next scenario:

1. Indicate which background flights played a role in their complexity assessment
(from here on referred to as ‘included flights’). If no flights were selected, a con-
firmation popup was shown before continuing.

2. Register their FOI complexity rating on a 0–100 scale on the screen (see Figure 5.3).

After the four training scenarios were completed, the measurement phase consisted
of 36 scenarios. It was followed by a review phase where the scenarios that received the
highest, lowest and middlemost rating (three each) were revisited. These nine scenarios
were presented in the same order as they appeared in the first phase. The ATCOs could
see their registered complexity score and which flights they had included, but were not
told why these scenarios were selected for review. The ATCOs were asked to fill out a
questionnaire about these scenarios to gain more insight into the reasoning behind the
reported complexity and why flights were included or not.

Training phase (4x) + Measurement phase (36x)

Review phase (9x)

Practice 
controls

Flag �ights 
for inclusion

Provide complexity 
rating

Load new 
scenario

Assess 
situation

Questionnaire
Reload 

scenario
Review 

situation

Brie�ng

Figure 5.4: Experiment procedure.
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5.3.4 Scenario design
Three distinct MUAC sectors were selected for the experiment, ranging from large and
relatively quiet (DECO East) to small and dense (Brussels West). The ATCOs were only pre-
sented with the sector they had an endorsement for, ensuring comparable familiarity lev-
els. For each sector, a distinct radar snapshot from 23 March 2022 served as background
traffic. The snapshots were selected such that it was possible to introduce conflicts with
various characteristics. As individual sectors are often combined to balance capacity with
demand, we used the same sector configuration as was operational at the time of the
corresponding radar snapshot: DECO East contained Jever and Holstein, Brussels West
consisted of Koksy and Nicky, and Münster was a single sector from the Hannover sector
group. Figure 5.5 shows these sectors and the number of flights in each of them.
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22
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Figure 5.5: Selected MUAC sectors and their number of flights, excluding the FOI.

A single FOI was overlaid on the background traffic in a variety of initial positions and
exit conditions to create distinct scenarios (see Figure 5.3 for an example). It was col-
ored differently to distinguish it from other traffic. Manipulating a single flight, instead
of using an entirely different traffic sample for each scenario, eliminated the influence of
sector complexity factors external to the FOI (e.g., traffic density, total number of climb-
ing flights) as much as possible.

Following the flight complexity demands identified in Section 5.2.1, the various sce-
narios were manipulated to address all of these demands. For example, by using three
different sectors with distinct sizes and traffic densities, control demand in terms of avail-
able ‘solution’ space is manipulated. Sector size also impacts attentional demands since
the chance of interactions between flights increases. Within each sector, Table 5.2 lists
the traffic factors that were manipulated to impact the complexity of the FOI. Note that
these manipulations might have interactions with one another, meaning that it is not
possible to study the impact of each manipulation on complexity separately. The sce-
narios were presented in a partially randomized order to account for order effects.
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Table 5.2: Scenario design parameters.

Parameter Variation

Time to CPA (urgency)

Short 0–300 s

Medium 300–600 s

Long 600–900 s

Conflict-free direct
route (easiness of
resolution)

Interactions on current trajectory (I)

Interactions on current trajectory (II)

Interactions on current flight level

Flight level change
(uncertainty)

Small descent 0–4,000 ft

Small climb 0–4,000 ft

Large climb or descent >4,000 ft

5.3.5 Dependent measures
The experiment resulted in the following output measures:

• Complexity rating for the FOI,

• Flights included by the ATCOs as ‘contributing to the complexity rating’,

• Usage of support tools: VERA, velocity leaders and route preview,

• Questionnaire: reasons to include flights and how comfortable the ATCOs would
be to delegate the FOI to the automation.

5.3.6 Data analysis
With the (target) states of all flights known, the features listed in Table 5.3 have been com-
puted to describe each of the flight pairs including the FOI. The selection of features is
based on existing sector complexity research referenced in Section 5.2. Lacking sufficient
data to accurately predict climb or descend points, horizontal positions are extrapolated
along the current tracks and ground speeds. No advanced trajectory predictions are used
yet in this exploratory study. To exclude predicted conflicts beyond a reasonable look-
ahead horizon, the calculation of the features was limited to the trajectory before reach-
ing the XCOP for flights descending to a lower airspace within the sector. If a predicted
CPA would occur after reaching the XCOP, the CPA was capped to the distance between
the flights upon reaching the XCOP. This was only done for these descending flights, as
ATCOs do ‘look’ beyond their sector boundaries to prevent causing any conflicts for their
colleagues in adjacent sectors.
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Table 5.3: Candidate features of included flights relative to the FOI.

Feature Unit Comment

A
tt

en
tio

na
ld

em
an

ds

Current horiz. separation NM

Predicted min. horiz. separation (CPA) NM

Time to CPA s

Vertical separation ft

Exit altitude difference ft

Overlapping flight levels true/false True if flights may be at the
same level at some point

Climbing/descending true/false

Co
nt

ro
ld

em
an

ds Convergence angle deg

Ground speed difference kts

Flight state - Assumed or transferred to me

Distance to XCOP NM Along a direct path

Required altitude change ft From actual flight level to TFL

To relate a single FOI complexity rating to the characteristics of multiple included
flights in a scenario, the aggregated features listed in Table 5.4 have been proposed. Note
that these only relate to the FOI itself, or in relation to flights included by the ATCO. Non-
included flights may have an impact on the sector complexity, but have been considered
irrelevant to the FOI complexity in this study. For all altitude differences the absolute
value was taken.

Table 5.4: Candidate features for the FOI, aggregated over all included flights.

Feature

FOI
Required altitude change

Distance to XCOP

Included flights

Number of flights with altitude overlap

Number of climbing flights

Number of descending flights

Number of flights with CPA under 10 NM

Number of flights with identical TFL

Min./average current separation

Min./average CPA

Min./average distance to XCOP
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5.4 Results
The results are discussed in three steps:

1. The experimentally collected data is described in terms of number of included
flights with respect to the complexity rating and the level of consensus between
different ATCOs, in addition to their use of support tools.

2. A classificationmodel is used to determine whether the inclusion of a flight can be
linked to objective features and what the relative importance of each feature is.

3. In combination with the FOI’s complexity rating, a regression model is used to ex-
amine the feasibility of predicting a FOI’s complexity through its included flights.

Since the number of flights varied over the sectors (see Figure 5.5), percentages of the
total number of flights shown to the ATCOs are used when comparing sectors. Each cell
in the tables refers to values belonging to one ATCO, unless explicitly stated otherwise.

5.4.1 Complexity rating and number of included flights
Figure 5.6 shows the subjective complexity ratings as given by the ATCOs for each of the
36 scenarios of their sector that were presented to them. The large spread in ratings
per ATCO shows that the designed FOI manipulations had an effect on the perceived
complexity, as the background traffic did not change between scenarios. This effect was
weaker in Münster, where the ATCOs gave relatively low ratings compared to their col-
leagues in the other sectors. To account for between-participant differences, complexity
ratings per ATCO are standardized by z-scores in the remaining analyses.

In total, the ATCOs included 1,139 (10.0%) of the 11,340 flights that were presented to
them. Although the number of flights was different for each sector, the share of included
flights seems to be primarily ATCO-dependent and varies as much as between 6.8-19.2%
in a single sector (Table 5.5). One Brussels ATCO is a noticeable outlier with 180 included
flights, significantly skewing the average for that sector.
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Figure 5.6: Subjective complexity ratings per ATCO for each scenario.
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Table 5.5: Total included flights per ATCO, as share of total flights presented to that ATCO.

Brussels West DECO East Münster

118 12.6% 60 7.6% 55 10.2%

93 9.9% 70 8.8% 41 7.6%

180 19.2% 97 12.2% 37 6.9%

64 6.8% 56 7.1% 52 9.6%

71 7.6% 77 9.7% 68 12.6%

Mean 106 11.2% 72 9.1% 51 9.4%

Std. dev. 42 4.5% 15 1.8% 11 2.0%

Similar to the complexity ratings, the number of included flights can be standardized
per ATCO to account for individual differences. A Kendall’s tau-b correlation test, chosen
because of the non-normality of the data, then shows a moderate positive correlation
(𝜏𝑏 = .547, 𝑝 < .001) between the complexity scores given by the ATCOs and the num-
ber of included flights for all sectors combined. In Table 5.6 the correlations are given
per ATCO and sector. The strongest, yet still moderate, correlation is found for Brussels
West (𝜏𝑏 = .611). The correlations are statistically significant (𝑝 < .001) for all sectors.
In both DECO East and Münster, one ATCO exhibits noticeably weaker correlations than
the other ATCOs.

Table 5.6: Correlation between standardized number of included flights and standardized complexity score per
ATCO.

𝜏𝑏, 𝑝

Brussels West DECO East Münster

.592,<.001 .627,<.001 .381,=.004

.684,<.001 .802,<.001 .561,<.001

.702,<.001 .478,<.001 .563,<.001

.718,<.001 .388,=.003 .553,<.001

.592,<.001 .547,<.001 .773,<.001

All ATCOs .611,<.001 .503,<.001 .527,<.001

5.4.2 Usage of support tools
To determine (or confirm) whether a flight conflicts with the FOI, the ATCOs could use
VERA to show the predicted minimum separation between two flights. Usage varied
greatly over the ATCOs, ranging from not being used at all to checking 106 flight pairs
(Table 5.7). Note that the sectors cannot be readily compared with each other, due to
their vastly different number of flights (and thus potential conflicts). The Brussels ATCO,
who included the most flights, was also by far the most active user of VERA. All ATCOs
practiced with VERA in the training phase and were thus aware of its availability. In total,
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352 (69%) of the 512 VERA flights were eventually included (Figure 5.7), while only 8% of
the flights with a CPA below 10 NM was not included by the ATCO after confirming this
distance through VERA. Presumably, some ATCOs felt comfortable with smaller separa-
tion margins and/or would not consider this an immediate problem for far-away flights.
Above 20 NM, only some flights were included, mostly by ATCOs who considered any
VERA-check to be a part of their cognitive complexity assessment.

Table 5.7: Number of flight pairs on which VERA was used per ATCO and how many of those were included.

Checked pairs (included)

Brussels West DECO East Münster

38 (37, 97%) 11 (10, 91%) 9 (8, 89%)

24 (14, 58%) 35 (29, 83%) 0 (0)

106 (61, 58%) 1 (0) 33 (25, 76%)

63 (41, 65%) 56 (36, 64%) 9 (8, 89%)

78 (47, 60%) 49 (36, 74%) 0 (0)
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Figure 5.7: Number of flights on which VERA was used and how many of those were subsequently included,
with respect to their minimal separation distance to the FOI.

Besides VERA, extending the velocity leaders beyond the default one minute is an-
other, more crude, technique to check future positions of flights and assess their CPA. As
the velocity leaders are adjusted for all flights at once, this cannot be linked to the inclu-
sion of particular flights. Neither did we find indications for velocity leaders being used
instead of VERA (i.e., a DECO ATCO who used VERA only once did not extend the velocity
leaders at all).

Akin to the usage of VERA, the number of flights for which a visual representation of
the planned route on the radar display was requested varied considerably between 0 and
54. While the display of routes made flights with planned turns more pronounced, the
planned turn was already indirectly visible by the waypoint listed in the flight’s label. To
illustrate the limited predictive value of this measure: three ATCOs requested the route
of the same flight that would come into proximity once the FOI commenced a turn, but
only one of them decided to include it.
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5.4.3 ATCO consensus
As the number of included flights already shows, there is a level of subjectivity in the
data. We therefore introduce three majority levels regarding flight inclusion. Consen-
sus is reached when all five ATCOs of a sector unanimously agreed to either include or
exclude a flight. For a qualified or simple majority respectively four and three ATCOs
were in agreement. The distributions in Figure 5.8 show a high level of consensus for
all sectors, with the ATCOs unanimously agreeing for 84-88% of the flights, increasing
to 94-96% with qualified majorities. Between any two ATCOs in a sector, 88-97% of the
flights were identically labeled. The relatively low share of excluded flights in Brussels
West, compared to the other sectors, is mostly due to the large number of inclusions by
a single ATCO, as also reflected in Table 5.5.

80% 90% 100%
Share of �ights

All

Münster

DECO East

Brussels West Excl. Incl.

Consensus (5 ATCOs)

Quali�ed (4 ATCOs)

Simple (3 ATCOs)

Figure 5.8: ATCO consensus on flight inclusion per sector and for all sectors combined.

Figure 5.9 shows the number of flights per scenario that was included by a qualified
majority of the ATCOs (i.e., four or five ATCOs), versus the average standardized complex-
ity rating for that scenario. Note that the ATCOs agreed on the inclusion of just a single
flight in the vast majority of scenarios. Again, a moderate positive correlation is visible
(𝜏𝑏 = .553,𝑝 < .001), but it is also clear that a higher number of included flights does not
necessarily relate to a higher complexity rating. Hence, the features of those particular
flights might better explain some of the variability.
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Figure 5.9: Correlation between standardized complexity rating and number of flights included by a qualified
ATCO majority in each scenario. Shown with 95% confidence interval.
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5.4.4 Features of included flights
To analyze which features play a role in the ATCOs’ selection of included flights and see
whether this selection can be modeled, we applied a gradient boosting classifier on the
features from Table 5.3. Gradient boosting was used in this study, because of its ability
to combine weak learners (e.g., due to imbalanced data) into a strong model. The model
target was to classify whether a flight was included or excluded by a specified majority of
the ATCOs. All flights that did not meet the specified level of consensus were filtered out
to ensure that the model was trained and tested on a progressively well-labeled data set.
As the label was binary (include or exclude), the simple majority case included all flights.

To avoid under- or overfitting the model, the data was split over four stratified folds,
meaning that the share of included flights was equal in all folds. The model was then
trained and tested on four splits (each consisting of three training folds and one testing
fold) and subsequently tuned through cross-validation and grid search for high F1-scores
(a balance between precision and recall).

The resulting confusion matrices, summed over the four splits, are shown in Fig-
ure 5.10 for each of the majority categories. This clearly reflects the expected increase
in performance when filtering on at least a qualified majority that provides more robust
labels on the data (Table 5.8, averaged over the four splits). 89% of the flights that were
included by all ATCOs were correctly classified as ‘include’ by the consensus model, while
only 11% of the included flights were missed.
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Figure 5.10: Classifier confusion matrices per majority category.

Table 5.8: Flight inclusion classifier performance.

Majority category Accuracy Precision Recall F1

Simple 0.97 0.86 0.81 0.83

Qualified 0.99 0.91 0.87 0.89

Consensus 0.99 0.91 0.89 0.90

As a measure for the predictive value of each of the features, their relative impor-
tance in the consensus model is given in Figure 5.11, as an interval over the four folds. As
was expected, the predicted minimum separation (CPA) appears to be the most impor-
tant feature, followed by the presence of an altitude overlap. Flights where the altitude
bands are not overlapping will never be in conflict, unless one of the flights has to deviate
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Figure 5.11: Feature importance of consensus classifier model.

to another level. To illustrate, only seventeen (0.4%) out of 4,492 flights without altitude
overlap have been included by the ATCOs and never by more than one ATCO at a time.
Ten of these were in the Jever scenarios, with a single ATCO including seven. We were
unable to identify the reasons for including these particular flights, other than two cases
where the included flight would first climb and then descend within the controlled sec-
tor, whereas our metric purely looked at current, cleared and exit flight levels to assess
the overlap. The current horizontal separation and time till CPA are marginally more im-
portant than the other features used in this study. Finally, a flight’s ATC state and whether
it is climbing or descending seem to have negligible impact.

5.4.5 Predicting complexity ratings
Besides identifying the important features of flights that may impact whether a certain
flight should be included or not in assessing the FOI complexity, it would also be im-
portant to predict the complexity rating associated with the FOI. In that way, the future
system envisioned by MUAC would be able to predict the complexity level of a flight en-
tering the sector, classify it as either ‘basic’ or ‘non-basic’ and assign the flight to either
the automation or the human ATCO, respectively.

Creating such a prediction model first requires that parameters denoting the relation-
ships between the FOI and the included flights are aggregated by descriptive statistics,
such as the average, sum, minimum, etc. Table 5.4 lists the relational parameters that we
included in this first exploratory study. When an ATCO included zero flights for a scenario,
it was filtered out in this study, as no aggregated features could be computed in that case.
The model’s goal is mainly to detect the complex cases and scenarios with zero included
flights received relatively low complexity ratings anyway. This model is, furthermore, in-
dependent of the level of consensus between ATCOs, as they may agree on the inclusion
of some flights in a scenario, but may also include flights in their complexity rating for
which no consensus was reached. Therefore, we consider their individual combination
of included flights and complexity rating.
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To test and train the gradient boosting regression model, a fifteen-fold is used with
one ATCO per fold. This ensures that the data belonging to a single ATCO does not get
spread out over the training and test data, such that the model performance is an indi-
cation for how well the model generalizes on ratings from other ATCOs for which it was
not trained. The model’s hyperparameters were tuned through cross-validation and grid
search optimizing for high R2-scores.

Figure 5.12 shows an example of the actual complexity ratings by the ATCOs and the
corresponding model-predicted rating, for each of the folds combined. With 𝑅2 = 0.16,
𝑀𝑆𝐸 = 0.68, 𝑀𝐴𝐸 = 0.65 and 𝑅𝑀𝑆𝐸 = 0.34, the model’s performance is relatively
weak compared to existing subjective sector-based complexity models, such as those
discussed in Andraši et al. (2019). The importance of the features, over the fifteen splits,
is given in Figure 5.13. Despite the weak model performance, some observations stand
out. First, the number of flights with an altitude overlap is clearly the most important
feature. According to Section 5.4.4 this is closely related to the number of included flights,
confirming this metric’s moderate correlation with the complexity rating. Furthermore,
flights at a closer distance to their exit point (XCOP) are more likely to receive a high
complexity rating. Presumably because their solution space is limited. Finally, a group
of features is of equal or marginally different importance, confirming that many factors
play a role in perceived complexity.
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Figure 5.12: Comparison between the original data and regression model output, with 95% confidence interval.

5.4.6 Willingness to delegate flights to automation
With the complexity rating known, a flight can be classified as either basic or non-basic
based on a complexity threshold. In the post-measurement reviews, the ATCOs had to
indicate how comfortable they were with having the FOI handled by the automation.
Unfortunately, due to technical issues, only a small part of this data was saved. Based
on this limited data and discussions with ATCOs, a higher complexity rating seems to
generally match with a lower willingness to delegate the flight, tipping around the zero
in their z-scored ratings.
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Figure 5.13: Feature importance of regression model.

5.5 Discussion and recommendations
5.5.1 Included flights
Despite a high level of consensus, the ATCOs clearly had different interpretations of which
flights to include. This can originate in different working styles, with some ATCOs more
proactively solving distant conflicts, but may also indicate a lapse in the briefing. Several
ATCOs, for example, included all flights that would lead to a loss of separation if no ac-
tion was undertaken, while other ATCOs did not include such flights if a straightforward
solution was available (e.g., descending the flight to its TFL). Furthermore, some ATCOs
included flights that did not directly pose a problem for the FOI, but that decreased the
solution space for solving conflicts between the FOI and other flights. This was especially
evident when the FOI had to fly opposite a stream of bunched flights.

The features that we selected proved sufficient to classify most of the flights for which
there was consensus between the ATCOs though. The relative importance of the CPA
and the presence of an altitude overlap that was found in the included flight analysis,
strengthens the hierarchical task analysis presented in Chapter 4. ATCOs seem to pre-
dominantly filter flight pairs based on these two characteristics. Nevertheless, we identi-
fied several possible improvements during our analysis. Most prominently, we simplified
conflict prediction to a mere extrapolation along the current track, ignoring any expected
turns or speed changes that the ATCOs may have included.

5.5.2 Complexity ratings
The results show a moderate correlation between the number of included flights and
complexity ratings. This confirms the idea behind the Dynamic Density model, where
number of flights in a sector is the primary driver for complexity (Prandini et al., 2011).
Brussels West showed the strongest correlation, which is most likely related to its rela-
tively large number of flights, and therefore interactions, compared to the other sectors.

Again, a discrepancy in the used definition of ‘complexity’ cannot be ruled out. Al-
though standardizing the ratings per ATCO is an established method to reduce between-
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participant differences, it cannot ensure that all ATCOs equally isolated the complexity of
the FOI from that of the entire sector.

The gradient boosting model was able to predict the complexity ratings to some ex-
tent, but would have to be improved if it were to be used for flight classification. The
input features need to include additional measures for both the FOI and other flights.
For example, whether a flight can transit to its TFL unhindered, or whether it has to be
put on a heading, requiring prolonged monitoring and rejoining the route. These factors
are known to add to the perceived complexity (Fothergill and Neal, 2013).

5.5.3 Experiment design
The present study only considered a single base traffic sample per sector and is therefore
not necessarily applicable to every traffic situation within or outside these sectors. The
fact that we observed differences between the three sectors can stem from multiple fac-
tors, including the participating ATCOs, the sector geometry or the used traffic sample.

While the base traffic was a snapshot from real traffic data, the artificially introduced
FOI did not always match ATCO expectations. Some scenarios were rated more complex
than initially expected, because they presented an abnormal situation to the ATCOs. In a
small number of scenarios, the FOI was planned to fly a non-straight trajectory. While the
retrieval of routes was logged in the experiment, the route points could also be seen in
the label without any (logged) action. If ATCOs incorrectly assumed the flight would pro-
ceed along its current track, it would most likely have affected their choice of inclusion,
as some conflicts only existed along the planned trajectory. Since we primarily focused
our analysis on flights for which there was consensus, we expect its impact to be lim-
ited, however. Nevertheless, future research should aim to only include realistic FOIs to
completely eliminate such inconsistency. For example, by taking a large sample of radar
snapshots and highlighting a single FOI coming towards or just entering the sector.

The relatively small number of participants per sector increased the potential influ-
ence of outliers. With a larger sample size, the qualified majority may be more usable.
This would increase the certainty about which flights to include beyond just the unani-
mously included flights.

5.5.4 Operational relevance
As soon as we can predict an individual flight’s complexity based on objective, readily
available traffic characteristics, the next step would be to determine the threshold, below
which flights are considered basic. The incomplete questionnaire data from the reviewed
scenarios does not provide sufficient ground for this cause, other than the observation
that the willingness to delegate flights was largest with low complexity. This finding is
consistent with the results of Chapter 3 and matches MUAC’s proposed strategy to au-
tomate basic flights first (Hendrickx and Tisza, 2019). The ATCOs indicated that, among
others, high trajectory uncertainty of potentially interfering flights was a key reason to
be hesitant about delegating a flight. The introduction of automation-directed flights
within an airspace may itself have an impact on the perceived complexity of human-
directed flights due to the changed teamwork dynamics and tasks (Prandini et al., 2011)
and associated uncertainty. This effect is not included in our current analysis and strongly
depends on the way the automated system is implemented.
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In an operational context, it would make sense to automatically assign basic flights to
the automation, while leaving non-basic and undetermined flights to the human ATCO.
Manually handling a basic flight is expected to be a smaller nuisance than prematurely
allocating a non-basic flight to automation. Thus, the model should be tuned favoring a
high true positive rate (i.e., recall metric of a classifier) over a high precision. Here, expert
opinions play an essential role in establishing the threshold to increase ATCO acceptance.

Finally, tweaking the model to the individual ATCO might result in a more accurate
model and hence increased ATCO acceptance (Westin et al., 2016a). On the downside,
a personalized model might create an unworkable situation where flight allocations
change whenever a new ATCO takes over from a colleague. It also means that the au-
tomation has to be sufficiently advanced to handle a wider range of complexities than
when it is limited to flights about which consensus was reached.

5.6 Conclusions
In the development of a future ATC system where human controllers remain in charge of
all non-basic flights while the automation handles all basic flights, this chapter demon-
strated the feasibility of classifying basic and non-basic flights, based on features ex-
tracted from their interaction with surrounding traffic. We showed that the perceived
complexity of a single flight of interest can be related to the combined sum of interac-
tions that this flight has with other traffic.

Follow-up research should determine the complexity threshold below which flights
can be considered basic. Subsequently, the operational applicability should be validated
by simulating a shared human-automation airspace with flights automatically assigned
to either agent based on the presented model. With increasing model accuracy leading
to a larger share of confidently classified flights, increasingly more flights can be auto-
matically allocated to the automation.





6
Validation

After the exploratory research in Chapter 3 and the more focused and controlled studies
from Chapters 4 and 5, this chapter discusses the most realistic and most comprehensive
experiment of the thesis. In this final experiment, 14 air traffic control officers are sub-
jected to two allocation schemes: one pragmatic, based on flows (i.e., overflights and
inbound/outbound streams), and one carefully constructed to minimize interactions be-
tween automated and manual flights. The chapter serves to validate the findings of all
other chapters regarding flight allocation best-practices, and to assess the practical use
of an interaction-based allocation scheme in future air traffic control operations.
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6.1 Introduction
En-route air traffic control (ATC) is currently primarily sector-based, with all flights within
a geographic area under the responsibility of a single executive air traffic control officer
(ATCO), often supported by a second coordinatingATCO who mainly coordinates with ad-
jacent sectors (Pfeiffer et al., 2015). With the projected growth in air traffic over the next
decades and a worldwide shortage of ATCOs, this sector-based flight allocation is un-
der pressure (Pavlović et al., 2023). Flight-centric operation, where one executive ATCO
guides a flight from departure till arrival, aims to improve the workload balance between
available ATCOs (Finck et al., 2023b, Schmitt et al., 2011). Advances in computer capabili-
ties and an increased use of pilot-controller data link communications (CPDLC), however,
pave the way for the introduction of higher levels of automation (LOAs) in ATC.

In future ATC systems, part of the traffic may therefore be completely delegated from
the human ATCO to an automated computer system to reduce ATCO workload (Hen-
drickx and Tisza, 2019). The resulting mixture of authority over flights within a single
airspace, however, introduces new and potentially more intricate interactions. Non-
complex flights, such as high-altitude overflights, are the prime candidate for delegation,
as they are relatively easy to automate, require little input from ATCOs and have gener-
ally few interactions with other flights in the airspace (Chapter 5). Leaving more complex
traffic directed by the ATCO also helps them to remain proficient, alert, and increases
acceptability of automation.

An empirical workflow analysis of the conflict detection and resolution tasks (Chap-
ter 4) supports the notion that mixed conflicts, where flights with interacting flight trajec-
tories are allocated to different agents, are particularly demanding for ATCOs. Together
with the associated lower predictability of vertical flight paths, it is hypothesized that
it is undesirable to split the responsibility over flights involved in such interactions be-
tween human and automation. Providing a single agent (human or automation) with
full control over interacting flights allows the agent to potentially prevent conflicts (Mar-
tins et al., 2019) or, if a conflict does occur, instruct the flight that has the most efficient
or easy-to-monitor solution. While various works have touched upon the area of dele-
gating specific flights to automation (Vanderhaegen et al., 1994) or another ATCO (Finck
et al., 2023b), no extensive previous work is known that empirically tests and compares
human-automation flight allocations in a realistic current-day ATC setting.

This chapter presents two flight allocation schemes (Section 6.3). One is based on
the aforementioned insight that flights should be delegated based on their level of com-
plexity, which is mainly driven by interactions with other flights (Chapter 5). The other is a
more pragmatic scheme based on the notion that overflights are generally the least com-
plex, together with clearly structured and therefore predictable inbound and outbound
streams. Through a simulator experiment with fourteen professional en-route ATCOs,
as described in Section 6.4, the potential performance and ATCO acceptance benefits
of the interaction-based allocation is investigated in Section 6.5. Unlike the experiment
from Chapter 3, the human/automation allocation was fixed per scenario and could not
be adjusted by the ATCO (Figure 6.1). Section 6.6 discusses the impact of the results and
limitations from the experiment, with the final conclusions and outlook for future use
given in Section 6.7.
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Figure 6.1: Experiment levels of automation, as introduced in Section 2.3. The ATCOs could not adjust the initial
allocation of flights, which was designed for an approximately equal distribution between both agents.

6.2 Background: Brussels sector group
The Brussels sector group from Eurocontrol’s Maastricht Upper Area Control Centre
(MUAC) serves as an example. This sector group covers the airspace above 24,500 ft over
both Belgium and Luxembourg and is relatively small and dense compared to the other
MUAC sectors. In our previous work on single flight complexity, Chapter 5, this group
showed the highest correlation between flight characteristics and their perceived com-
plexity, paving the way for developing an algorithm that can automatically delegate spe-
cific flights to automation.

The group can be split into four sectors: Koksy, Nicky, Olno and Luxembourg, which
all can be further split into a low (FL245–355) and high (FL355+) sector. Based on traffic
demand, one executive ATCO can control a combination of multiple sectors in various
configurations, e.g., Brussels West, comprised of Koksy and Nicky. Shown in Figure 6.2,
key traffic characteristics of Brussels are a large east/west stream coming from and go-
ing to the London airports and a considerate north-south stream mainly consisting of
Amsterdam and Paris in- and outbounds. Traffic to/from Brussels and Düsseldorf further
complicates the sector. Traffic density is highest in the western part of the sector (Koksy
and Nicky). Flights coming from the west are generally still climbing as they enter the
airspace, while eastbound flights are mostly cruising flights that will not start their de-
scent into London before they have been transferred by Brussels shortly after crossing
the border between Nicky and Koksy.

6.3 Flight allocation schemes
A good allocation scheme results in a fair share of flights allocated to either a human or
automated agent. Too few automated flights means that the added value of automating
them becomes small, while too many automated flights can make human ATCOs com-
placent, bored and lead to skill-erosion. In all cases, the success of the allocation depends
on the capabilities of the automated agent. If the automation is relatively basic, a more
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Figure 6.2: MUAC’s Brussels sector group with main traffic flow densities of flights assumed by its ATCOs on
Saturday 2 September 2023 between 17:15–17:40 UTC.

segregated allocation can be beneficial to prevent mixed conflicts where the automa-
tion has a different plan than the ATCO. When two flights interact, it is easier and more
efficient to have both flights under one controlling agent, as this agent can then choose
which flight to adjust (or even both) to most efficiently solve the conflict.

This problem is also relevant in flight-centric operations (Martins et al., 2019), where a
flight is assigned to a single ATCO over its entire route to balance the workload between
available ATCOs. If two flights, handled by two different ATCOs, are in conflict, a ‘less
impacted flight algorithm’ will propose which ATCO can best solve the conflict and will
inform the other ATCO to observe (Finck et al., 2022). Similar heuristics could be used
when either of the ATCOs is an automated system, although the capabilities of the system
will be an additional factor in determining who could best solve the conflict.

In this chapter, two static allocation schemes are investigated: 1) a flow-based alloca-
tion, based on overflights and clearly defined traffic streams, and 2) an interaction-based
scheme, that takes into account the predicted interactions between flights, building
upon previous complexity-based work in Chapter 5. The static nature of the allocation
means that flights do not get re-allocated after entering the sector. The two schemes dis-
cussed here are used as independent variable in the experiment described in Section 6.4.
Since there is no ubiquitous research on what level of flights can best be automated in
such a setting, a 50-50% division has been chosen as the starting point.
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6.3.1 Flow-based allocation scheme
When asked about which flights to automate first, the majority of ATCOs mention over-
flights as being prime candidates, i.e., flights requiring limited level changes within the
controlled sector (Chapter 3). There is, however, no consensus on what this limit should
be. Given the aforementioned traffic sample provided by MUAC (Figure 6.2), during
25 minutes, only 12 flights (14%) passing through the Brussels airspace had no planned
flight level change (|ΔFL| = 0 ft). Automating such a small fraction of flights can be
a first step towards higher levels of automation, but will bring a minimal reduction in
ATCO workload, as these flights already require hardly any intervention, if at all. The |ΔFL|
threshold can be progressively increased to classify a larger share of flights as overflights.
Anecdotal evidence from ATCOs suggests that any vertical change between 2,000 and
5,000 ft can still be considered as overflights (Chapter 3). Raising the limit to 5,000 ft
yields 32 overflights (36%) in the given traffic sample.

As this is still well below the 50% target distribution, a further increase can be ob-
tained by also allocating clearly defined streams of traffic to the automation. Gil et al.
(2023) found that allocating flights to ATCOs solely based on their entry heading was not
positively received by ATCOs. In flow-centric operations, flights following similar trajec-
tories are assigned to the same ATCO which, compared to flight-centric operations, leads
to fewer mixed conflicts (Bin Jumad et al., 2023). Adding inbounds to and outbounds
from Amsterdam (EHAM), for example, raises the share of automated flights to 51% for
the given traffic sample.

Figure 6.3 illustrates this flow-based allocation concept. By adjusting the overflight
flight level change threshold and/or adding or removing traffic streams, the share of au-
tomated flights could be controlled. This can be sector- or ATCO-dependent, but may
also change dynamically in response to inbound/outbound peaks at airports, similar to
the long-standing practice of splitting or collapsing (i.e., merging) sectors when the traf-
fic demand changes. Because the allocation of each individual flight does not depend
on the other flights in this scheme, the allocation can be determined whenever a flight
approaches the sector.
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Figure 6.3: Flow-based allocation scheme with corresponding traffic distributions for the scenario described in
Section 6.2.
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6.3.2 Interaction-based allocation scheme
Although the flow-based scheme should, thanks to rigorous airspace design, segregate
traffic to some extent, conflicts can and will still occur. This especially applies to flights
from different directions and at different speeds that need to be merged in a single
stream, such as the many flights coming from the direction of London. Ideally the com-
plexity of flights is predicted real-time based on the study from Chapter 5, but for this
chapter a fast-time simulation was used to imitate such an algorithm and determine in
advance which flights would interact based on their flight plans.

For this, the expected trajectories of all flights are simulated, ignoring any conflicts
that may arise. Loosely mimicking ATCO best-practices, all flights are cleared to climb to
their expected cruise level as early as possible and descend as late as possible, to even-
tually arrive at the planned transfer flight level (TFL). In the lateral plane, two distinct
strategies are used: 1) flights follow direct routes to their exit coordination point (XCOP)
as soon as this can be done without clipping the sector boundary, and 2) flights follow
their filed flight plan route for the entirety of the sector. This mimics a strategy where
ATCOs will try to send a flight direct, but if that is not possible, or their attention is else-
where, the flight will simply continue along the filed route.

Using short term conflict alert (STCA) predictions from Eurocontrol (2007), the ‘over-
lap’ between trajectories of each combination of flight pairs is then determined. As not
only flights breaching the regulatory separation minima are considered to be interact-
ing (see Chapter 5), the minimum separation distance is raised from 5 to 10 NM and the
look-ahead time is increased from 2 to 8 minutes (in line with MUAC’s lateral obstacle dis-
play Eurocontrol, 2024b), compared to the standard STCA configuration. Flight pairs that
fall within this detection window at some point along one of the two simulated trajecto-
ries are assigned to either the automation or the ATCO, such that roughly 50% of all the
flights belong to either agent. Figure 6.4 illustrates this interaction-based allocation con-
cept. Similar to the flow-based allocation scheme from Section 6.3.1, the threshold (and
STCA configuration) can be changed to adjust the distribution between both agents.

Fast -time simulation

Direct-to

Via planned route

Separation to
other �ights Threshold

Automation

Human
50%

Earliest climb
Latest descent

Flights
- Entry state
- Flight plan
- Exit state

50%

Figure 6.4: Interaction-based allocation scheme with corresponding traffic distributions for the scenario de-
scribed in Section 6.2.
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6.4 Method
6.4.1 Participants
Fourteen professional en-route ATCOs from MUAC, aged between 30–52 years with 6–33
years of professional experience, voluntarily participated. All ATCOs had active licenses
for the Brussels sector group. To account for order effects, the participants were split in
two groups, balancing for professional experience as much as possible (Table 6.1). All
participants provided written informed consent and the experiment was approved by
the TU Delft Human Research Ethics Committee under number 3573.

Table 6.1: Participant characteristics.

Group

A B Δ p*

Number of ATCOs 7 7

Age, years (SD) 42.3 (5.6) 45.0 (6.8) 2.7 0.465

Experience, years (SD) 18.9 (5.2) 22.0 (7.7) 3.1 0.427

* Welch’s t-test

6.4.2 Apparatus
SectorX, a TU Delft-built Java-based medium-fidelity simulator was designed to mimic
the MUAC interface, to ensure that participants could focus on working with the experi-
mental automation (see Appendix A). A 1920 × 1920 pixels 27” display was used with a
standard computer mouse for control inputs. Eye data were recorded using a Pupil Labs
Core head-worn eye tracker and Pupil Capture version 3.5.1 (Kassner et al., 2014). The for-
ward facing out-of-the-world camera recorded at 30 Hz, while the pupils were recorded
at 120 Hz. Eight AprilTag markers were placed along the edges of the screen to relate
gaze to screen pixels (Figure 6.5). An observer was seated alongside the participant to
monitor the eye tracking, make notes and occasionally ask the ATCO to comment on cer-
tain decisions or situations.

Aircraft were simulated using the BADA 3.10 performance model (Eurocontrol, 2012).
The ATCOs could control heading, route and altitude. Speed and vertical rates were not
controllable; flights would follow the default speed profiles from the BADA airline proce-
dures. All clearances were uplinked through datalink, removing the need for voice trans-
mission over radio, and executed by the simulated pilots after a fixed delay of 10 seconds
(two radar updates) to simulate the flight crew’s response time in processing and imple-
menting a CPDLC instruction. The display could not be adjusted, apart from toggling
the history dots and repositioning the dialogs. In terms of support tools, only STCA and
MUAC’s verification and advisory tool (VERA) were available. STCA would trigger when
two flights were expected to have a loss of separation (LOS) within two minutes. VERA
could be used to measure the predicted minimum distance between two flights as well
as the time to go till that moment, by extrapolating the current speed and direction. It
also showed the predicted corresponding locations of both flights. More details about
the simulator can be found in Appendix A.
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Figure 6.5: Experiment setup, with observer (left) and participant (right) positions.

6.4.3 Scenarios
MUAC provided a traffic sample for Saturday 2 September 2023, consisting of actual radar
data and filed flight plans for 6,251 flights (see Section 6.2). All flights not passing through
the Brussels sector group were removed. A 25-minute window (17:15–17:40 UTC) was
distilled from the data in which the number of flights simultaneously under control by
Brussels varied between 25 and 35 (Figure 6.6), totaling to 88 unique flights that would
appear on the radar. The base traffic scenario is as shown in Figure 6.2. For training, a 10-
minute window was selected that started 15 minutes prior to the measurement scenario
(17:00–17:10 UTC), with a slightly lower traffic load of 25–30 flights.

At the time of the selected experiment windows, the sector group was split in four
sectors, each staffed by an ATCO duo, consisting of a planner and executive controller.
To ensure a sufficiently high workload level, compensating for the lack of voice com-
munication and additional tasks like coordination in the experiment, all Brussels sectors
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Figure 6.6: Time trace of the number of flights simultaneously controlled by the ATCOs of the Brussels sector
group on Saturday 2 September 2023.
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were combined into one large airspace. In such a configuration, e.g., during low demand
night operations, ATCOs are allowed to handle up to 20 flights for sustained periods and
24 flights during peak moments. As the experiment did not include voice R/T, leading to
a workload reduction compared to normal operation, a slightly higher peak of 35 flights
was selected. With 50% of the flights automated, the ATCOs would – in theory – never
be at their peak capacity. However, due to the expected interactions between human-
direct and automation-directed flights, it was expected that the latter flights cannot be
completely disregarded from these numbers.

All flights spawned 10 minutes before they were assumed in the data sample and
received scripted clearances to prevent pre-sector conflicts as much as possible. Since
no R/T was simulated with pilots announcing their entry, the ATCOs were instructed to
assume flights at a realistic distance from their sector. One minute after leaving the sec-
tor, transferred flights disappeared from the screen to prevent interference with incom-
ing flights, as they were no longer controlled (neither by the ATCO nor the automation).
Flights descending out of the airspace where automatically cleared to FL200 after being
transferred at FL250 by the ATCO or automation. To prevent additional uncertainty, an
international standard atmosphere was used with no wind.

6.4.4 Procedure and participant tasks
All participants followed the procedure outlined in Figure 6.7. During the initial briefing
they signed a consent form and were informed about the content and aim of the study,
and that they could withdraw from the study at any time. Throughout the experiment,
participants were responsible for maintaining separation between flights allocated to
them, as well as with respect to flights allocated to automation. Furthermore, they had
to ensure that their flights exited the sector at the assigned exit points and flight levels.

In a 10-minute training run, participants were actively encouraged to try all com-
mands and tools available to them. The flight allocation in this run was randomized to
not confuse the participants with yet another allocation scheme that was not tested in
the experiment. Special attention was given to slight differences in input actions, the lack
of letters of agreement with adjacent sectors, and the notion that flights would generally
descend at high rates with no ATCO control over vertical climb and descent rates.

After the training, all participants experienced the same measurement scenario
twice: once with the flow-based flight allocation and once with the interaction-based

Flow-based
allocation

Interaction-
based allocation

QuestionnaireTrainingBrie�ng

Flow-based
allocation

Interaction-
based allocation10 min

25 min 25 min

10 min5 min

Group A

Group B

Figure 6.7: Experiment procedure.



6

6.4 Method | 123

allocation. To account for order effects in this within-participants design, participants
were split over two groups, each starting with one of the allocations, followed by the
other. While the identical traffic samples could evoke scenario recognition (see Ap-
pendix C), the different allocations and associated flight colors and control actions were
expected to reduce this to an acceptable level.

6.4.5 Automation
During the exercise, the ATCOs were accompanied by an automated ‘colleague’ that was
capable of performing the following tasks on its allocated flights:

• Accept and transfer flights three minutes before entering or leaving the sector.

• Solve conflicts between automated flights by issuing altitude clearances only,
ensuring sufficient separation (5 NM, 1,000 ft), plus an additional buffer of 2 NM.

• Deliver flights at their exit point and transfer level, climbing as soon as possible and
descending as late as possible.

• Give flights a direct-to towards the route point closest to the exit point for which
the path is free of conflicts in the next 8 minutes and does not pass through an
adjacent sector.

• Inform ATCOs of mixed conflict pairs 8 minutes before LOS (6 minutes before STCA)
through VERA.

The automation used a look-ahead time of 8 minutes, extrapolating each flight’s cur-
rent track, speed and vertical rate, to assess the safety of its clearances before issuing
them, taking into account both human-directed and automation-directed flights. This
meant that automation would not actively clear a flight into a conflict, but human-
automation conflicts could still occur. Either because they were outside the look-ahead
window, a flight changed direction while following its route, or the ATCO issued a new
clearance to one of their flights. In case of such a mixed conflict, it was up to the ATCO
to solve it, under the presumption that automation would not know the ATCO’s intents
and should not ‘fight’ for a solution. Automation did apply VERA to inform the ATCO that
it had detected a potential conflict that it would not resolve, if the conflicting pair was
detected within its look-ahead time. Note that, unlike the ATCOs, the automation could
not put flights on a heading. The ATCOs could not take manual control over automated
flights, meaning that suboptimal solutions may be needed to solve the conflict.

Automation would only clear flights to a flight level for which it predicted no conflicts
within its look-ahead time. This prevented the automation from blocking an excessive
altitude band for other flights. The automation would issue the next clearance when
a flight was within 3,000 ft of the previously cleared level, to prevent continuous clear-
ances, as the look-ahead window moved ahead.

Apart from showing the uplinked clearances in the flight labels, automation did not
provide any feedback on its intent. The simple rule-based approach was designed to
support trust buildup (Lee and See, 2004) and reduce the need for more extensive com-
munication, although previous experiments have shown that ATCOs like to be able to see
information such as the expected top of descent (Chapter 3). Adding and visualizing this
was, however, outside the scope of the experiment.



124 | 6 Validation

6

6.4.6 Independent variable
There was one independent variable: the two distinct allocation schemes discussed in
Section 6.3, with traffic densities as visualized in Figure 6.8. To account for ordering
effects, the participants were divided over two groups with distinct independent vari-
able orders. The color of the flight label and radar symbol indicated which flights were
allocated to the human or the automation. Unlike the experiment from Chapter 3, the
human-automation allocation was fixed per scenario and could not be adjusted by the
ATCO.

0

100

200

y,
 N

M

0 100 200 300
x, NM

0

100

200

y,
 N

M

0 100 200 300
x, NM

Flow

Interaction

Human Automation

Figure 6.8: Traffic density maps of the two scenarios, split per agent.

6.4.7 Control variables
The following control variables were constant for each participant and both scenarios:

• Traffic sample, as described in Section 6.4.3,

• Atmospheric conditions: international standard atmosphere without wind,

• Automation capabilities, as described in Section 6.4.5,

• Pilot delay: 10 seconds,

• ATCO support systems: only VERA and STCA.
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6.4.8 Dependent measures
The following measures were collected in or derived from the simulation:

• Perceived workload: Measured through an instantaneous self-assessed (ISA) rating
on a 0–100 scale every 5 minutes (Tattersall and Foord, 1996).

• Support tool usage:

– Flight pairs for which VERA was activated more than 100 ms, either by the
automation or the ATCO.

– Lengthening of speed vectors beyond 1 minute.
– Triggering of STCA.

• Gaze patterns: On-screen gaze locations provided by the eye tracker.

• Control activity: The number, type and timing of issued clearances (altitude, head-
ing and direct-to) and instructions (assume and transfer).

• Efficiency: Track miles of flights, as described in Section 6.4.9.

• Post-experiment questionnaire: With open and Likert-scale questions on the func-
tioning of the automation, two allocation schemes and simulator fidelity.

6.4.9 Data analysis
Automation was not able to clear flights beyond their XCOP, but ATCOs are used to do so
in their daily operation. Many of these points are on a more or less straight path beyond
the XCOP and thus have only a limited effect on the traveled distance. To nevertheless
ensure a fair comparison, the XCOP was projected as XCOP* on a line between the cleared
waypoint and the current aircraft position, at the same distance from the cleared point as
the XCOP (Figure 6.9). Secondly, variations in transfer locations meant that the remaining
distance towards the XCOP (or XCOP*) had to be added to the traveled distance since
the start of the scenario for flights that had not yet reached that point by the end of the
scenario. For any other flight the track miles were calculated until reaching the minimum
distance to the XCOP.

Cleared
waypoint

XCOP

XCOP*

Excluded              Included  
Cleared
Planned

Figure 6.9: Calculation of track miles for flights that are cleared to points beyond the XCOP.

6.4.10 Hypotheses
It was hypothesized that the use of the interaction-based allocation scheme:

H1 would lower the perceived workload due to the reduced interference with
automation-directed flights.

H2 would reduce VERA usage on mixed flight pairs, as fewer mixed conflicts should
occur.



126 | 6 Validation

6

H3 would reduce gaze activity on flights allocated to the automation, as these flights
become less relevant for the flights allocated to the human.

H4 allowed for more efficient conflict resolution, in terms of track miles, by assigning
both flights in a (predicted) conflict to the same agent, giving that agent more free-
dom over how to solve the conflict.

H5 was overall more appreciated by the ATCOs as it would give them more freedom
to implement their own plan and it would minimize the number of mixed conflicts
for which the automation’s capabilities and actions had to be considered.

6.5 Results
All eye tracking data with confidence levels below 0.9, as reported by Pupil Player version
3.5.1, were excluded. Results are presented in accordance with the dependent measures
defined in Section 6.4.8 and preceded by a general description of the flight distribution
between human and automation and subsequent exclusion of part of the data.

6.5.1 Flight distribution and data exclusion
Figure 6.10 shows the distribution between manual and automated assumed flights,
averaged over the fourteen ATCOs. The freedom to assume or transfer a manual flight
was entirely with the ATCOs, which meant that the number of flights under control at
a specific timestamp varied up to five flights between any two ATCOs. The flight share
was comparable between the two allocations for the first 20 minutes. With 48% and 45%
manual flights for the flow- and interaction-based allocation, respectively, it was close to
the 50% division that was targeted in the experiment.

In the final five minutes of the flow-based scenario, the share of manual flights in-
creased to 63% on average, versus 46% for the interaction-based allocation. This differ-
ence was mostly caused by a bunch of flights from London that all had to climb more than
5,000 ft and were thus allocated to the ATCO in the flow-based scenario. As the number of
assumed flights is directly related to measures such as the number of issued clearances,
checked conflict pairs and potentially workload, the remainder of this analysis focuses
on the first 20 minutes of each simulation run, unless otherwise noted.

0 5 10 15 20 25
Time, min

0

10

20

30

40

N
um

be
r o

f a
ss

um
ed

 �
ig

ht
s Flow

37%
52% automation

48% human 63%

0 5 10 15 20 25
Time, min

Interaction

54%55% automation

45% human 46%

Figure 6.10: Stacked time traces of the number of assumed flights per agent, averaged over all ATCOs. The final
five minutes were excluded from the rest of the analysis.
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The distinct flight allocations were clearly reflected in the location at which flights
were assumed by either the ATCO or the automation (Figure 6.11). With the interaction-
based scheme, in- and outbounds to and from Amsterdam are manually assumed, while
they were automated with the flow-based allocation. Whereas the automated flights
were always assumed at the same location, the manual flights show a considerable
spread between participants due to the absence of pseudo-pilots calling in.
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Figure 6.11: Location at which flights were assumed. Each flight appears fourteen times, once per ATCO.

6.5.2 Perceived workload
In the self-reported workload rating (Figure 6.12), a downward trend is visible after the
first 10 minutes for the interaction-based allocation that is not replicated with the flow-
based allocation and only marginally reflected in the number of manually assumed
flights. The lower number of assumed manual flights in the final five minutes of the
interaction-based scenario is, however, clearly reflected. Only these final five minutes
led to a statistically significant higher workload in the flow-based allocation (M = 0.231,
SD = 1.174) than in the interaction-based allocation (M = −0.717, SD = 0.972):
𝑡(13) = 3.463, 𝑝 = .004, with a large effect size (Cohen’s 𝑑 = 0.93). The relatively
large difference can be entirely attributed to participant Group A, who first experienced
the flow-based scenario, as Group B showed a more symmetric workload distribution.
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Figure 6.12: ISA workload ratings, Z-scored per ATCO. Lines connect median values per allocation.
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6.5.3 Support tool usage
VERA
As one of the primary tasks of an ATCO, timely conflict detection is a key performance in-
dicator. On average, 19 unique flight pairs were checked with VERA to verify whether the
selected pair was in conflict. One ATCO was a noticeable outlier and checked only one
pair. Figure 6.13 shows the VERA actions initiated by the ATCOs as well as the automa-
tion. Note that the latter could only add mixed conflicts and would automatically remove
mixed pairs from VERA when the flights did not have a predicted LOS, even though the
ATCOs may still have been interested in monitoring the pair. To prevent counting repet-
itive activations, only the first VERA action for each unique flight pair is included in the
figure. Furthermore, only pairs for which VERA was active for more than 100 ms are con-
sidered, as VERA was, once attached to a flight, (temporarily) added to any other flight
that the mouse passed over while it was moved towards a flight of interest by the ATCO.

The total number of VERA actions did not differ per allocation scheme (18 on aver-
age), but there was a shift from mostly mixed flight pairs in the flow-based scenario to
a more balanced share between mixed and manual pairs in the interaction-based sce-
nario. According to a Wilcoxon signed-rank test with Bonferroni correction, both the in-
crease in manual pairs (𝑍 = −3.180, 𝑝 = .002, 𝑟𝐵 = −1) and the decrease in mixed
pairs (𝑍 = 3.170, 𝑝 = .002, 𝑟𝐵 = 0.962) were significant. The rank-biserial correla-
tions suggest that these are both large effect sizes. The significant shift is a testimony to
the interaction-based allocation’s functioning in reducing the number of complex mixed
conflicts, by assigning interacting flights to a single agent. Furthermore, in the flow-
based scenario, slightly more automated pairs were second-guessed, signaling a lack of
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Figure 6.13: Number of unique flight pairs per ATCO for which VERA was activated.
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trust in the automation. This was especially true for one particular ATCO who checked
nine mixed pairs in the flow-based allocation. It must be noted that in some cases these
pairs were merely checked to confirm and/or highlight the severity of – according to the
ATCOs – a bad decision by the automation.

Speed vector
Next to VERA, the ATCOs could increase the length of the speed vectors beyond the
default one minute to extrapolate the positions of flights. This was sparsely used with
only 38 activations in the entire experiment and was not significantly different between
the two scenarios. ATCOs mostly used this to judge whether a given lateral clearance
provided sufficient future separation. VERA on the other hand provides a more accurate
measurement of the CPA and a way to keep track of potential conflicts over a prolonged
time. Since the speed vector length was changed for all flights at once, it is not possible
to reliably link this to specific flight pairs. It is worth noting though, that the sparse use
of VERA by some ATCOs is only partly compensated by a higher use of speed vectors.

STCA
When ATCOs fail to detect and/or respond too late to conflicts, an automatic STCA can
trigger. This occurred eight times during the experiment, all in the flow-based scenario
and each with a different ATCO. The primary cause of STCA was the late descent by
automation of flights inbound to Amsterdam and subsequent conflict with a human-
controlled west-bound flight that would never have happened in current operations. The
six ATCOs that did not get the STCA proactively steered their (manual) flights around this
particular conflict area to ensure sufficient separation.

6.5.4 Gaze patterns
The eye tracker allowed to record the ATCOs’ gaze patterns. Figure 6.14 shows the areas
with highest gaze density, as well as the areas with highest traffic densities, for all ATCOs
combined. For clarity, the traffic density figures are split per controlling agent, while the
gaze density contours are duplicated. Traffic densities are based on flight trajectories
until the flight was transferred to the next sector, as transferred flights are generally not
of interest to ATCOs and rarely looked at. Furthermore, about 16% of the gazes were
collected while a clearance menu was open. These have been filtered out to prevent
incorrectly mapping them to flights on the screen that may have been obfuscated by
the menu.

The large concentration of flights entering the sector from the west is clearly visible.
In both scenarios, an area of high gaze density follows the east-bound transition of a
cluster of green flights. Two additional observations stand out. First, areas with high gaze
density generally coincide with areas with high densities of manual traffic. Areas with
high density of automated flights only seem to coincide with high gaze activity when
they overlap with dense manual areas. Second, the gaze patterns are largely comparable
between the two scenarios. This is not surprising, as the sector and traffic streams were
identical, meaning that hotspots occurred at similar locations.
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Figure 6.14: High density traffic (filled polygons) and gaze (outlines) areas, for all ATCOs combined, over a 50%
and 75% kernel density. To quantify the match between gaze and traffic, Jaccard indices are given. Green refers
to human-controlled flights, while blue relates to automation-controlled flights.
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Figure 6.14: Continued from previous page.
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To quantify these observations, the Jaccard index is calculated per Equation (6.1), i.e.,
the ‘similarity’ between high density areas of radar blips and ATCO gazes.

Jaccard index = Area of overlap
Area of union

(6.1)

Shown in Figure 6.15, the interaction-based allocation resulted in higher Jaccard in-
dices for green flights than the flow-based allocation throughout the scenario, while the
blue flights have a lower Jaccard index, except for the 50%-index between 0–5 minutes.
With the interaction-based allocation, there is a clear ‘gap’ between the Jaccard indices
for human and automation-directed flights, an indication for the parallelism of the sys-
tem. The gap is much reduced or even absent in the flow-based allocation, with the
automated flights sometimes even having a better match with gaze than the human-
directed flights. To illustrate, at 15–20 minutes in Figure 6.14, the primary gaze is clearly
on human-controlled flights in the interaction-based scenario, while it is more aimed at
blue flights in the flow-based scenario. This is reflected by a ‘reversal’ of the 75% Jaccard
indices in Figure 6.15 (blue line above the green line).

The lower half of Figure 6.15 shows per-ATCO results. While the indices for the human-
controlled flights are somewhat lower, the clear gap with automation-controlled flights
is still present in the interaction-based scenario. The lower spread in this scenario’s results
indicates that ATCOs had more uniform gaze patterns.
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6

6.5 Results | 133

6.5.5 Control activity
To resolve conflicts and/or make flights meet their exit conditions, the ATCOs issued on
average a total of 61 and 67 manual clearances for the flow- and interaction-based sce-
nario, respectively, while automation issued 53 and 48 clearances. Since different flights
require different actions, the aggregated distribution between automation-issued and
ATCO-issued clearances cannot be readily compared, but the differences per agent be-
tween scenarios can shed some insights.

Eleven of the ATCOs issued more altitude clearances in the interaction-based scenario
than in the flow-based scenario (Figure 6.16), which was a significant change according
to a Wilcoxon signed-rank test (𝑍 = −3.18, 𝑝 < .01). Altitude clearances also show
the largest difference of all clearances between the two scenarios, with the ATCOs on
average issuing 41 in the interaction-based scenario and only 33 (-22%) in the flow-based
scenario. This was only partially compensated by automation issuing, on average, four
altitude clearances more (28 versus 32). With the same entry and exit conditions, this
means that more intermediate levels were given in the interaction-based scenario by
the ATCOs.
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Figure 6.16: Number of altitude clearances per ATCO.

Figure 6.17 shows that the number of manual direct-to’s was similar between the two
scenarios, and that on average the flow-based scenario elicited two additional direct-to’s:
one by either controlling agent. Between 10 and 15 minutes into the scenario, the num-
ber of automated direct-to’s was substantially lower in the interaction-based scenario (by
five clearances on average), which was not offset by an increase in manual direct-to’s or
heading clearances. In addition, many ATCOs put one of their flights on a heading dur-
ing this period to steer around an automated inbound to Amsterdam in the flow-based
scenario (Figure 6.18). The number of issued heading clearances over the entire scenario
shows substantial variation between ATCOs, ranging between 1 and 24. These numbers
are not directly proportional to the number of direct-to’s, even though most flights on
a heading received a direct-to clearance at some point to return to the planned route.
Only the difference in automated direct-to’s was statistically significant, but at only one
flight it can be considered negligible.
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Figure 6.17: Number of direct-to clearances per ATCO.
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Figure 6.18: Number of heading clearances per ATCO.

The location where clearances were issued was slightly different in the two scenarios
(Figure 6.19). Especially the in- and outbounds to/from Amsterdam are clearly visible in
the interaction-based scenario as green stripes, corresponding to increased gaze activity
in that area (Figure 6.14). Also note that the automation was very consistent, whereas
the ATCOs timed their clearances on an individual basis leading to a much larger spread.
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Figure 6.19: Location at which clearances (excluding assume and transfer) were issued to flights. All ATCOs are
included, so a similar clearance to a single flight can be shown in multiple locations.
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6.5.6 Efficiency
The total system efficiency can be related to the total track miles traveled by all flights,
with a lower track distance resembling fewer en-route delays, lower fuel consumption
and higher overall efficiency. As the traffic sample and environmental conditions were
identical in both scenarios, the two allocation schemes can be compared. In 186 (27%)
out of 693 direct-to clearances, the ATCO cleared a flight to a route point beyond the
XCOP. This is standard practice, but the ATCOs were briefed not to do so in the ex-
periment, unless required for the safety of the traffic. The procedure discussed in Sec-
tion 6.4.9 compensates the track mile calculation for the variety in last cleared points.

In all, the total flown distance was slightly lower in the interaction-based scenario for
nine ATCOs (M = 4.0 NM, SD = 3.3 NM) and higher for five ATCOs (M = 3.0 NM, SD =
2.1 NM). These differences are not significant on a combined distance of circa 13,400 NM
for all flights in a scenario. However, since many small shortcuts can compensate for one
big delay, the track mile difference per flight might be more relevant from an airline per-
spective. Including every of the 80 unique flights from the first 20 minutes of the traffic
sample once per participant yields 1,120 flights (80 x 14) for which a track difference can
be calculated.

For display clarity, Figure 6.20 only shows the 178 flights with an absolute track dif-
ference of at least 0.5 NM. All 266 flights exclusively allocated to the automation in both
scenarios flew consistent track miles and were among the 942 excluded flights. Flights
on either side of the ‘excluded’ bar had shorter tracks when one of the two allocation
schemes was applied, for which the color indicates which agent was responsible for the
flight. The figure shows that out of the 294 flights that were allocated to the ATCOs in
both scenarios, 36 flew fewer track miles in the interaction-based scenario and 15 in the
flow-based scenario (the rest was excluded). This suggests that the ATCOs were able to
implement more efficient routing for some of their manual flights, now that they were
not hindered by automation-controlled flights.

10 8 6 4 2 0 2 4 6 8 10
Reduction in trackmiles, NM

0

10

20

30

40

50

60

N
um

be
r o

f �
ig

ht
s

Shorter tracks in
interaction-based allocation

Shorter tracks in
�ow-based allocation

E
X
C
L
U
D
E
D

14
22

 4  3  5

 4

 4
 5

 5

35

 5

 6

12

47

942

Shorter tracks when
allocated to:

Automation
Human

Human-controlled
in both schemes
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On the contrary, 109 flights that were allocated to automation in only one of the two
scenarios flew longer distances when allocated to the ATCOs in the other scenario and
only 18 flights flew shorter distances under human control. Figure 6.21, shows three ex-
amples of the former with their respective planned routes and XCOPs. The flight towards
GTQ flew close to the sector boundary, meaning that it could not yet turn towards its
exit point without clipping the adjacent sector. The automation in general issued the
turning clearance earlier than its human counterparts, resulting in a slightly (ca. 2 NM)
shorter track distance. One ATCO cleared the flight to a point beyond the XCOP, resulting
in a more south-bound trajectory, crossing that of the automated flights. The flight to-
wards PITES saw considerable variation in when ATCOs cleared it towards PITES, with all
but one ATCO turning later than the automation. Finally, the flight towards COA crossed
the inbound stream to Amsterdam, which the automation in the flow-based scenario
descended later than the ATCOs did in the interaction-based scenario, resulting in many
ATCOs steering their flight around these flights. Four ATCOs took timely evasive action,
while the rest waited until the STCA triggered as indicated by the dense cluster of turning
points. Also note that only three ATCOs chose to turn left to pass behind the conflicting
flight. The wide variety in end-locations of these flights exemplifies the need for the track
mile calculation as shown in Figure 6.9.
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Figure 6.21: Ground trajectories of three flights for both scenarios and all ATCOs. Trajectories are clipped from
being assumed until transfer to the next sector or end of the scenario.
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6.5.7 Post-experiment questionnaire
Flight allocation
In general, more ATCOs liked the interaction-based allocation (Figure 6.22), with none
of them disliking that allocation a great deal, versus five ATCOs disliking the flow-based
allocation a great deal. Two ATCOs preferred the flow-based over the interaction-based
allocation, and three were indifferent as to which allocation was used.
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Figure 6.22: ATCO opinion about experimental allocation schemes.

The interaction-based allocation scored generally favorable on all aspects of the post-
experiment questionnaire (Figure 6.23). All ATCOs who reported a lower workload with
the flow-based allocation were in Group B, meaning that they had first experienced the
interaction-based allocation. Presumably their increased experience with the automated
‘colleague’ and the traffic scenario played a role here. The other aspects show no clear
differences between the two groups. On safety and efficiency, the majority of ATCOs were
indifferent as to which allocation was better, with the rest having a slight preference for
the interaction-based scheme. Several ATCOs mentioned that they see safety as binary,
it is either safe or not safe. Since automation would issue, according to current ATC rules,
a number of unsafe clearances in both allocations, the ATCOs considered both scenarios
‘equally’ unsafe.

In an open question, the ATCOs were encouraged to think about what they would
consider when designing an allocation scheme. Apart from one ATCO who outright
rejected “working live traffic alongside artificial intelligence”, all ATCOs mentioned that
conflict-free flights that do not require any (planned) action can indeed be automated.
Six ATCOs proposed a maximum flight level change for automated flights, ranging from 0
to 2,000 ft (matching one of the proposed allocation schemes in Chapter 3), or simply “the
less vertical movement, the better.” In the horizontal plane, turns can be treated similarly,
as they complicate extrapolation of the predicted flight path. Assigning flights that in-
teract with each other to the same agent was mentioned by three ATCOs, on the premise
that this allows the selection of the most optimal solution, regardless of whether that
is from an airline, environmental or ATCO perspective. One ATCO suggested that flights
with subjacent exits (i.e., descending to FL250 within the airspace) should not be del-
egated to automation at all, as these often have stricter exit conditions and frequently
require coordination with the ATCO responsible for the lower sector. Bunches of traffic
should be given to the ATCO, while clearly defined trails of traffic (e.g., EHAM outbounds)
can be given to the automation, provided that their climb profile is monitored.
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Figure 6.23: Relative subjective differences between the two allocation schemes. Dots towards either extreme
indicate a strong(er) preference for one scheme over the other.

Automation
Although the design of the automated agent was not explicitly investigated, some results
do give an insight into the ATCO’s stance. Two ATCOs mentioned, after the experiment,
that they lacked sufficient knowledge about the automation’s capabilities due to the lim-
ited training they received. An interesting example was when an in-trail automated flight
was overtaking a leading flight that was also automated. Both flights were flying level at
their (identical) TFL. Automation solved this conflict by lowering the trailing flight one
flight level, which surprised some ATCOs who had not (yet) identified the conflict.

As shown in Figure 6.24, ATCOs were divided on whether the automation was reli-
able. Most ATCOs thought the automation was not predictable, but at the same time
quite consistent, as was already proven objectively by the small variances in number of
automated clearances (Figures 6.16 and 6.18). The ATCOs were also ambiguous about
how much trust they had in the automation. One of them phrased it as having “a lot of
trust in the automation between the blue flights”, but less for mixed pairs where it felt like
“my green flights were often ignored by the computer”. ATCOs would have liked to be able
to ‘nudge’ the automation to start an action, such as a descent. Especially when a mixed
conflict could be most easily solved by the automation starting a planned descent ear-
lier, the ATCOs did not like having to solve the conflict by adjusting their green flight(s).
Similar comments were collected in flight-centric trials by Martins et al. (2019), where
participating ATCOs in addition mentioned that the corresponding item in the flight la-
bel should highlight when a clearance is given by the other ATCO.
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Figure 6.24: Questionnaire results on statements about the experimental automation.

In general, the ATCOs appreciated that automation flagged potential mixed con-
flicts with VERA. However, some requested the VERA to be mutable, if the ATCO had
determined the alert to be non-urgent (e.g., because one of the flights was expected
to descend well ahead of the crossing point). The fact that automation could remove a
manually-added VERA pair turned out to be an unintended nuisance in the experiment.

Simulation fidelity
Figure 6.25 shows the ATCOs’ opinions on the realism of the simulation. Traffic scenarios
were considered realistic, although some flights had to exit the sector to an adjacent
MUAC sector at unusual levels. This was traced back to the absence of intra-sector TFLs
in the flight plan sample that was used to construct the scenario.

The appearance of the interface was considered to largely resemble the real HMI, ex-
cept for several inputs requiring slightly different actions. For example, right instead of
left clicking a label to transfer a flight. Most ATCOs managed to adapt to this behavior dur-
ing the training scenario, although for many, occasional miss clicks occurred throughout
the experiment. This may have added some additional cognitive load.

Aircraft behavior leaned towards somewhat unrealistic, which was mainly attributed
to high climb and descent rates, which do occur in reality but are, unlike in the experi-
ment, not attained by default. Flights increasingly climb at vastly different cost indices,
leading to greater variance in vertical rates. Being able to issue vertical rates would have
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Figure 6.25: Questionnaire results on simulation fidelity.
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given more precise control over timely climbs or descend. Furthermore, speed control
would have eased resolving in-trail conflicts. As ATCOs are used to regular delays of up
to one minute between their clearance and the flight actually implementing it, they con-
sidered the fixed 10 seconds pilot delay too short. In some cases this resulted in ATCOs
issuing a clearance earlier than they would have done in hindsight.

Finally, label decluttering was considered acceptable when it did a good job, but the
occasional presence of overlapping labels was considered unacceptable and is some-
thing that the real system reliably avoids. Most overlaps occurred in the western part of
the sector with many tightly packed flights entering from the United Kingdom. ATCOs
could manually rotate these labels to declutter them.

6.6 Discussion and recommendations
6.6.1 Hypotheses
Overall, the results show a small improvement on all hypothesized aspects with the
interaction-based allocation. Both the ISA ratings and the post-experiment question-
naire point to a workload reduction. It can, however, not be ruled out that this was caused
by the asymmetric flight allocation in the last five minutes of the flow-based scenario.
Hypothesis H1 about the expected workload reduction can therefore only be condition-
ally accepted. Interestingly, contradicting the lower perceived workload, the number
of manual altitude clearances was 26% higher in the interaction-based scenario. ATCOs
are probably so used to providing those clearances that it barely adds to their workload,
whereas dealing with the novel automation takes more effort and thus becomes the
dominant factor. The absence of voice communication may have played an important
role here as radio transmissions are known to be a significant contributor to (perceived)
ATCO workload (Dow and Histon, 2015).

The shift in VERA usage from primarily mixed conflict pairs to more manual pairs was
significant, confirming Hypothesis H2. This result shows that the goal of the interaction-
based allocation scheme to reduce the number of mixed conflicts was fulfilled, as the
ATCOs were mostly occupied with resolving conflicts between flights that were under
their manual control.

Given the difficulty of linking gaze to specific flights when flight symbols and labels
are overlapping or closely spaced, the results do not provide conclusive evidence that
automated flights were less visited in the interaction-based scenario (Hypothesis H3).
It did provide proof, however, that automated flights in general evoke less gaze than
manual flights and that the interaction-based allocation created more visual segregation
between manual and automated flights. This might help prevent the ‘gray swan’ phe-
nomenon described by Wickens (2009). Here, gray swan refers to an unexpected event
that the operator could have anticipated (i.e., the ATCOs were aware that mixed conflicts
could occur and that they would require their involvement). An example was discussed
in Chapter 3 where one of the ATCOs was surprised by a mixed conflict in which the auto-
mated flight was completely surrounded by other automated flights, suggesting that the
ATCO did not scan the automated flights well, or not at all. Novel support tools that fade
irrelevant flights (e.g., Kumbhar et al., 2024) or highlight conflicting flights (e.g., MUAC’s
lateral obstacle and resolution display, Eurocontrol, 2024b) on the controller working po-
sitions can help further shield ATCOs from overlooking mixed conflicts.
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With respect to control resolution efficiency, Hypothesis H4, the interaction-based
scenario showed indeed a small advantage with slightly more flights flying shorter
routes. The ATCOs themselves also considered this scenario to be more efficient, partly
due to the fact that the automation felt more like a teammate, rather than an inde-
pendent entity interfering with their own work. Together with the increased sense of
safety, this was one of the primary reasons that they showed higher appreciation for the
interaction-based scenario, meaning that Hypothesis H5 was confirmed.

6.6.2 Automation
The lack of letters-of-agreement adherence in the automated agent led to interactions
between Amsterdam inbounds and other flights that are not present in current-day op-
erations. More specifically, automation should have ‘known’ that flights towards Ams-
terdam should be at FL250, 10 miles prior to DENUT (a XCOP near the Dutch border),
rather than at DENUT. Future research should therefore expand the automation to in-
clude at minimum the most important agreements and other sector-specific rules, to
strengthen the conformance with ATCO working styles (Westin et al., 2016a). This will
prevent the majority of mixed conflicts encountered in the experiment, which should
lead to increased ATCO acceptance.

Furthermore, when mixed conflicts do occur, automation should be able to indepen-
dently solve them if a straightforward solution is available. For example, when the auto-
mated flight still needs to climb or descend towards its exit level while the manual flight
is already at its exit level, the conflict can be most efficiently solved by adjusting the auto-
mated flight. If it cannot be guaranteed that adjusting the automation-controlled flight
is the preferred solution, the ATCO should still be able to request the automation to solve
specific conflicts. One ATCO suggested that the mixed conflict pairs in the VERA dialog
should be color-coded to indicate who has to solve the conflict as also communicated in
flight-centric operations (Birkmeier et al., 2011).

6.6.3 Experiment
The resemblance of the SectorX simulation environment with respect to the operational
system can be increased by several small adjustments, such as correcting mouse inputs
and fine-tuning the STCA settings. This will reduce cognitive workload unrelated to the
flight allocation or automation and likely increase ATCO acceptance. Interestingly, the
results on perceived simulation fidelity do not deviate much from those in Chapter 3, de-
spite extensive development of the simulator. The increased realism and additional fea-
tures greatly expanded the face validity of the simulator, but at the same time made mi-
nor differences with the operational HMI more prominent. Aircraft behavior could ben-
efit from using a probabilistic model, such as developed by Pepper et al. (2023), which
should improve climb performance realism.

The use of scenarios based on real traffic samples was a two-sided coin. On the one
hand, it meant that the experiment was close to the current operation, assessing a po-
tential ‘quick’ implementation. But on the other hand, the allocations may have had a
smaller effect than what would be possible if traffic patterns, routes and sector geome-
tries were optimized for the proposed concept of operations.
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As with most human-in-the-loop experiments, training time was a balance between
participant availability and required familiarization with the task at hand. According
to Balfe et al. (2018), understanding of automation is perhaps even more important in
safety-critical systems (rail signaling operators in this case) than the capabilities and reli-
ability of the automation. This was echoed in automated driving experiments by Khastgir
et al. (2018) where introducing knowledge about a system and its limitations facilitated
high levels of trust regardless the capabilities of the automation. The short briefing and
training duration in this chapter’s experiment severely limited the amount of understand-
ing that could be attained, despite the simple rule-based form of automation. In an ideal
world, each ATCO would have trained for a prolonged time, on multiple days and mea-
surements would have been taken for multiple distinct scenarios. This would not only
have increased trust in the automation, but would have also supported a wider applica-
bility of the results beyond the chosen sectors and scenario.

6.7 Conclusions
This chapter confirmed that automating the handling of part of the traffic in an en-route
airspace shared with a human ATCO is feasible under certain conditions. A human-in-
the-loop simulation exercise showed that minimizing interactions between automated
and non-automated flights through a smart allocation scheme, leads to increased ATCO
acceptance and a reduction in second-guessing automation capabilities compared to a
more pragmatic flow-based scheme. However, the overall efficiency was only marginally
better in the interaction-based allocation. To increase the operational applicability and
further reduce the occurrence of mixed conflicts, future research should ensure that the
automated agent has a better notion of the ‘rules’ that ATCOs use, such as those set out
in letters of agreements. In addition, a form of automation that allows the ATCO to re-
quest it to solve a conflict is expected to significantly increase mixed-conflict resolution
efficiency.
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Discussion and conclusions

This chapter revisits each of the chapters of this thesis and reflects upon their findings in
relation to the research questions outlined in Chapter 1. Limitations of the study are
provided, together with recommendations for future research in the field of human-
automation teaming in an air traffic control environment. The chapter concludes with
a discussion on the thesis’ operational relevance and a glimpse into the future.
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7.1 Introduction
The air traffic control (ATC) domain is expected to undergo a paradigm shift with the in-
troduction of advanced automation, capable of autonomously directing flights through
the airspace. Unless all ATC services are completely automated and all (legal) responsi-
bilities lie with the automation designers, human air traffic control officers (ATCOs) will
continue to play a central role. The gradual automation of functions, and the subsequent
phasing out of human involvement, leads to a large number of fundamental issues, as op-
erators seem to be inevitably pushed into a supervisory role (Bainbridge, 1983, Strauch,
2018). This leads to a serial system where humans monitor a (usually partly) automated
system, while performing a myriad number of tasks which could not be automated (yet)
(Endsley, 2017).

Many of these issues can be diminished or even avoided if the in-between state with
partial automation is skipped by only introducing automation that is mature enough to
act autonomously. This approach is referred to as the ‘cliff-edge’ principle by Young and
Stanton (2023). Because the maturing of automation in a safety-critical environment like
ATC is no easy feat, adhering to this principle could lead to significant delays in the intro-
duction of higher levels of automation (LOAs).

However, the cliff-edge principle can also be applied in conjunction with a constraint-
based automation strategy that limits the high(er) LOA to a subset of the work domain
(i.e., for some of the flights in an airspace). The subset can then be expanded in line with
technological advances. Limiting the number of (potential) active LOAs and providing a
clear separation of responsibilities can help prevent confusion among human operators
about the current system state (Endsley, 2017).

A constraint-based automation strategy had not yet been extensively researched in
an ATC context, despite its hypothesized benefits. Nevertheless, Eurocontrol’s Maastricht
Upper Area Control Centre (MUAC) has embraced this strategy in its ongoing ATC Real
Groundbreaking Operational System (ARGOS) as the first air navigation service provider
(ANSP) (Eurocontrol, 2024b). Many hurdles are yet to be overcome on the way towards
full operational implementation, however. In order to address some of these hurdles, this
thesis set out to achieve the following goal, as was defined in Section 1.5:

Research goal

Establish how flights can best be distributed between a human ATCO and an au-
tomated system, sharing control of an en-route sector, such that interference be-
tween the two agents/entities is minimized.

The chapters of this thesis were structured around five research questions, which are
discussed in Section 7.2. These included a literature survey and four simulation exer-
cises with professional en-route ATCOs, which lead to new insights on constraint-based
strategies and teamwork in general, as reflected upon in Sections 7.3 and 7.4. Next, Sec-
tion 7.5 discusses the limitations stemming from the research scope and subsequent rec-
ommendations for future research. Lastly, Section 7.6 dives deeper into the operational
relevance of the findings and summarizes what needs to happen before the researched
concept can advance to operational deployment.



146 | 7 Discussion and conclusions

7

7.2 Retrospective
The chart in Figure 7.1 was introduced in Section 2.3.1 to describe and compare a
function- and constraint-based automation strategy. To recall, a function-based ap-
proach simultaneously increases the LOA for all flights in an airspace, while a constraint-
based approach allocates certain flights to a high(er) LOA than others and gradually tilts
the balance towards the higher LOA. That is, more flights are increasingly handled at the
higher LOA. Each chapter of this thesis covers one or more of the elements in the chart:

Chapter 2 contains a literature survey on strategies to raise the LOA (i.e., move from left
to right in the figure).

Chapter 3 describes an initial experiment to empirically assess ATCO stances on the con-
cept of allocating flights either to themselves or to automation in a shared airspace
(i.e., the allocation of flights to two distinct LOAs as in a constraint-based strategy,
moving up and down in the figure).

Chapter 4 continued with a discussion and experiment on the impact that delegating
flights has on an ATCO’s conflict detection and resolution workflow (i.e., the inter-
dependence of flights at either LOA). The experiment focused on mixed conflicts
in a worst-case scenario, where ATCOs would have completely overlooked auto-
mated flights that may interact with flights under their control.

Chapter 5 aimed to find a method to determine the complexity of individual flights,
which can then be used to automatically allocate flights to the low or high LOA.

Chapter 6 combines all insights from the preceding chapters to empirically assess an
interaction-based flight allocation scheme, inspired by Chapter 5.

This section discusses each research question, grouped according to the three phases
of the research: 1) exploration, 2) model, and 3) validation. After stating the research
question, an itemized overview of the most important conclusions is given, followed by
a more elaborate discussion on their implications and relations.
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Figure 7.1: Level of automation chart, illustrating the function- and constraint-based automation strategies
introduced in Section 2.3.1.
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7.2.1 Exploration
The first phase of this research took an exploratory approach. It focused on investigating
automation strategies reported in literature and was followed by an initial human-in-the-
loop experiment to assess the proposed concept of operations and gauge its feasibility
from an ATCO perspective in terms of acceptance, trust, etc. The literature survey was
driven by the first research question:

main findings

Research question 1 Chapter 2

How does the human-automation allocation of flights fit within existing strategies
towards full automation in the ATC domain?

• Most automation projects follow a function-based allocation strategy, which
evokes a serial human-automation system that ultimately push the human
into a problematic supervisory role (leading to transient workload peaks, skill
erosion, out-of-the-loop situation awareness, etc.).

• Constraint-based (i.e., flight-based) allocation evokes a parallel human-
automation system that keeps humans as long as possible in the loop, po-
tentially leading to less skill erosion, better situation awareness, higher job
satisfaction, etc.

The vast majority of automation projects in- and outside the ATC domain follow
a technology-centered, function-based allocation strategy, where automation increas-
ingly replaces tasks that a human used to perform. Operators are pushed into a super-
visory role, leading to a serial system where they monitor a (usually partly) automated
system, while performing a myriad number of ‘remaining’ tasks which could not be au-
tomated (yet). The inevitable human-automation issues that come with this have been
identified decades ago (Bainbridge, 1983), are still valid today (Strauch, 2018), and are
expected to remain in the artificial intelligence (AI) minded future (Endsley, 2023).

A promising way to avoid (many of) these issues is a constraint-based strategy: first
attain a high level of automation in a constrained environment, before expanding its ap-
plication. MUAC is currently pursuing a strategy along those lines in its ARGOS project,
in which basic, routine traffic is automated, while the ATCOs remain responsible for the
more complex, non-basic, traffic (Eurocontrol, 2024b). Because a constraint-based strat-
egy has not yet been extensively researched in an ATC context, an initial exploratory
experiment was performed and discussed in Chapter 3 to answer the second research
question.

Research question 2 Chapter 3

To what extent is the transfer of control of flights to an automated system depen-
dent on system-proposed allocations, individual ATCO preferences and automa-
tion capabilities?
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main findings

• ATCOs are willing to allocate control over specific flights to automation, pro-
vided that the automation is sufficiently capable and the flight is routine.

• Flight allocation schemes should not be (solely) based on geographic areas
or a flight’s total vertical movement within the sector.

• Limited automation capabilities prevent ATCOs from fully delegating flights.

• Experiencing automation first-hand is important for ATCO trust and accep-
tance, advocating ‘innovation through simulation’.

Six professional ATCOs were subjected to six different flight allocation schemes based
on either a flight’s location, a flight’s vertical change within the sector, or on an ‘all-or-
nothing’ concept with either all flights allocated to the ATCO or to the automation. The
ATCOs were given total freedom in deviating from the proposed strategies, which most of
them took to heart, complicating the comparison of these strategies. Later experiments
have restricted the allocation freedom, because no conclusive in-between participant (or
suggested allocation) comparisons could be drawn from this experiment. Nevertheless,
it did result in some first insights regarding the desired allocation schemes.

In their reflections, ATCOs appeared to avoid potential interactions between human-
and automation-directed flights. ATCOs preferred to keep flights requiring (large) flight
level changes with them, although this was partly caused by the limited capabilities of
the automation (e.g., it could not issue direct-to clearances). These results suggest that
interactions between flights (should) play an important role in developing flight alloca-
tion schemes from the perspective of operator acceptance.

After some initial skepticism following a short training session, the ATCOs reported
a great deal of trust in the automated agent. First-hand experience was essential for
this, highlighting the importance of empirical research by real-time, human-in-the-loop
simulation exercises. The simple rule-based solver helped in creating a predictable ‘col-
league’, although the ATCOs would have appreciated additional communication options
with that ‘colleague’, especially regarding planned top of descent locations.

The experiment roughly corresponded to Level 2 of the ARGOS taxonomy discussed
in Section 2.5.1, where ARGOS only (but fully) controls individual flights allocated to it and
the ATCO controls all other flights. However, in MUAC’s vision the minimum LOA of the
manual flights would be higher than in the experiment, with ARGOS suggesting plans for
all flights. In this regard, MUAC envisions a more serial system at this level, as the ATCO
needs to check the suggested plan which contradicts the cliff-edge principle. Instead
of management by consent or exception (where the automation proposes a solution,
Billings, 1997), increased decision-support tools that allow ATCOs to make informed deci-
sions, such as MUAC’s lateral obstacle and resolution display (LORD, Eurocontrol, 2024b),
may be more appropriate for complex flights. In a human-centered system it is some-
times better to maintain a lower LOA, even when technologies that can provide a higher
LOA are available (Kaber and Endsley, 2004).
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7.2.2 Flight allocationmodel
The second research phase aimed to dive deeper into the conflict detection and resolu-
tion (CD&R) task of ATCOs and the intrinsic complexities of flight-based control allocation.
With the goal to obtain empirical quantification for both cognitive effort and flight com-
plexity, this phase’s two chapters would provide valuable input for a better allocation
scheme than the simple and pragmatic schemes suggested to the ATCOs in Chapter 3.

Chapter 4 set out to take a closer look at the CD&R task of an ATCO and how their work
flows change when an automated agent is introduced in the workspace. It focused on
analyzing CD&R tasks, because these are the most fundamental to an ATCO’s objective
of managing safe and efficient air traffic.

main findings

Research question 3 Chapter 4

To what extent is the workflow of ATCOs affected by flights delegated to an auto-
mated system that interact with flights under their responsibility?

• Conflict detection by ATCOs cannot be captured in a serial, step-wise process
that can be readily quantified in terms of cognitive effort by measuring its
duration.

• Conflict detection time is mostly determined by the number of new, unseen
flights, rather than the total number of flights in the sector.

Numerous previous studies, combined with new observations, led to the creation of
flowcharts that mimicked the likely thought processes of ATCOs in a structural way. In
general, ATCOs initially filter flights based on their vertical separation, followed by their
directional overlap and then their temporal overlap. Processing these steps is hypothe-
sized to take increasing cognitive effort, as skill-based behavior is traded for rule-based
behavior requiring a prediction of future aircraft states. This is done based on experi-
ence and training, but also a rigorous airspace design and the use of extensive letters of
agreement (e.g., even-odd flight levels for opposite streams of traffic) help ATCOs in this
task.

In case the flights in an airspace are shared between an ATCO and automation, mixed
conflicts can occur where the ATCO has not been actively involved with a flight that in-
teracts with their flights. In the worst case, the ATCO has not seen an automated ‘blue’
flight at all, until it suddenly poses a problem to one of the flights under their manual
control. An example of this was observed in Chapter 3, where an ATCO did not spot a
mixed conflict because the automated flight was emerging from “a sea of blue aircraft”.
To simulate this worst-case scenario in an experiment, ten ATCOs first performed CD&R
on simplified static scenarios with only ‘green’ flights (i.e., under manual ATCO control).
Then in a second phase, one or two blue flights would pop up in each scenario, requir-
ing the ATCO to re-evaluate the conflict status, and in some cases also adjust previously
issued clearances.

Despite the theoretical and observational foundation, quantifying the pop-up flight’s
impact on the CD&R workflows turned out to be challenging. Human ATCOs, or experts in
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general, do not appear to follow strictly serial thought processes when performing tasks
(Rasmussen, 1986). Even in a simplified and focused environment as simulated in the
experiment, mental shortcuts and frequent task switching or parallelism seem to occur.
While flowcharts are an appropriate means for analyzing, structuring and communicat-
ing general thought processes, they are inevitably a simplification and are not meant to
capture the entire cognitive process of ATCOs. Perhaps the aim should not be to quantify
these processes in numbers but rather to qualitatively describe these processes based
on less isolated, more dynamic and realistic scenarios. Observing a large number of such
scenarios may provide a sufficiently sound impression of which type of situations are
cognitively most demanding.

The flowcharts showed to be useful later on in the investigation, namely in the de-
sign of the automation solvers used in the experiments from Chapter 3 and Chapter 6
(see Appendix A.5 for details and pseudo-code). They were also used by Kumbhar et al.
(2024) in a flight-filtering algorithm that fades irrelevant flights for an ATCO based on
their level of interaction with a selected flight (which was validated on the results from
Chapter 5). Continuing along this line, they may be useful for substantiating the com-
plexity of individual flights and/or adapting the automated handling of flights, to better
match human-like reasoning and with that increase ATCO acceptance.

To obtain a baseline measure for perceived individual flight complexity and answer
the fourth research question, 15 ATCOs from three different MUAC sector groups were
asked to rate the complexity of 36 flights overlaid on a static radar snapshot (Chapter 5).
In comparison to Chapter 4, the use of actual traffic snapshots lead to more realistic and
complex traffic scenarios. Previous studies focused on the complexity of an entire traffic
scenario, rather than individual flights, while assessing the complexity of every single
flight is a prerequisite for the automated allocation of flights proposed/investigated here.

main findings

Research question 4 Chapter 5

Which other flights in the airspace add to the perceived complexity of an individual
flight and what characterizes them?

• ATCOs are largely consistent on which flights do and do not add to the per-
ceived complexity of another flight.

• Interactions between flights (i.e., closest spacing and reduced solution
spaces) play a major role.

Personal differences set aside, the ATCOs in the experiment largely agreed on which
flights were contributing to the complexity of a single flight of interest. This finding paves
the way for a flight allocation algorithm which does not need to be tailored for personal
preferences. ATCOs can then expect, and work with, predictable automated decisions,
which helps buildup and maintain their trust in the system. From a legal point of view,
this is preferred as well, as it is easier to certify a single static configuration algorithm.
ATCOs can then fine-tune the allocation when desired if they are allowed to take manual
control over any flight they want.
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Results indicate that (potential) interactions between flights are a primary factor
adding to complexity as perceived by ATCOs. Flights that overlap in altitude and get
within 10 NM of each other were overrepresented among the flights that the ATCOs se-
lected as contributing to the complexity. Nevertheless, also flights that did not meet
these criteria were included, suggesting that a flight allocation algorithm should take
more parameters into account. For example, there could be an interdependence be-
tween the complexities of flights that was not tested in this thesis. In other words, is
there a carryover effect that raises the complexity of an otherwise low-complexity flight,
when it interacts with a high-complexity flight?

Another remaining question is whether flight-centric complexity alone is suffi-
cient to determine flight allocation. The ATCOS indicated a preference to delegate
low-complexity flights to an automated agent in both Chapters 3 and 6. Although this is
in line with MUAC’s proposed strategy to automate basic flights first (Eurocontrol, 2024b),
it did not involve the full work domain of an ATCO.

Irrespective of these potentially missing links, an initial flight allocation algorithm
does not need to be perfect, as long as it only allocates flights to automation that are
guaranteed to be of low complexity. It is operationally preferred to, perhaps inadver-
tently, allocate low-complexity flights to the ATCO than it is to allocate high-complexity
flights to the automation.

7.2.3 Validation
With the final experiment, Chapter 6 consolidated all lessons learned and involved a re-
alistic dynamic traffic scenario with fixed allocation schemes to address the pitfalls from
the freedom given to the ATCOs in Chapter 3. It served to validate the idea originating in
the preceding chapters that a constraint-based flight allocation works best when inter-
actions between flights are considered. The last research question was therefore:

main findings

Research question 5 Chapter 6

Given a realistic traffic scenario, how should flights be allocated to either the
human or automation, such that interactions between human- and automation-
controlled flights are reduced, combined team performance is best supported and
ATCO acceptance is increased?

• Flights having (close) interactions should be assigned to the same agent, to
increase ATCO acceptance and reduce second-guessing of the automation.

• Both agents should follow the same rules and standards, adhering to estab-
lished letters of agreement.

• The automation should timely inform ATCOs of mixed conflicts, especially
those that it will not or cannot resolve.

Because this thesis did not investigate the desired complexity threshold at which
flights should be allocated to automation, a fixed 50% distribution of the flights to ei-
ther agent was chosen. In light of the findings in Chapter 3 this experimental restric-
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tion proved to be essential for a good comparison between the two designed allocation
schemes. Nevertheless, almost all of the ATCOs involved in the experiments stated that
they should always be able to take over any flight from the system, if this were to be
implemented in operations. Whenever ATCOs are held accountable for something, they
should be able to intervene as stressed by themselves (Bekier et al., 2012) and human-
factors experts. In general, operators of highly automated systems should always be able
to establish ‘meaningful control’, regardless of whether they are ATCOs, pilots or other
operators working on the sharp-end of complex sociotechnical systems (Holford, 2020).

The interaction-based allocation scheme, which led to a reduction in mixed conflicts,
was indeed preferred by the ATCOs over a more pragmatic flow-based scheme. Visual
attention for flights allocated to the automation reduced when these flights interacted
less with ATCO-controlled flights. In addition, second-guessing automation decisions
and actions was reduced and the overall efficiency in terms of track miles was slightly
higher. A flow-based scheme may benefit from human and automation both follow-
ing the same procedures and rules from letters of agreement, which was lacking in the
experiment. However, because such procedures will not preclude all interactions, an
interaction-based scheme is still encouraged.

7.3 Reflections on a constraint-based approach
This thesis only considered a purely constraint-based automation strategy, with flights
either at a very low or a very high LOA. However, flights at the low LOA could also ben-
efit from increased automation support beyond the basic level used in the experiments,
especially considering that these flights are by definition the most complex cases. Com-
bining the two strategies fosters faster innovation than a pure function-based approach,
but still acknowledges the incremental nature of technological advances and step-wise
changes in policies.

It is thus not surprisingly that MUAC’s ARGOS strategy also involves a combination
of a function- and constraint-based approach (Figure 7.2). The question is then what
should define the maximum LOA at which flights can still be operated manually, before
the human-automation issues that are best avoided become apparent. Consolidating
everything so far, the information acquisition and analysis stages can be largely auto-
mated for these flights, without negative effects on human performance. The execution
of actions can also be automated to a great extent, provided that the human takes the
initiative and cannot be surprised by silent action execution (i.e., management by excep-
tion). However, it is fundamental that the decision-making process should remain with
the human operator. Support for this can be provided by the automation, but should
not transcend the information stages (i.e., the input). Examples of this can be found in
MUAC’s LORD (Eurocontrol, 2024b) and solution space diagrams (Klomp et al., 2019), that
both show the ATCO which clearances would lead to or resolve a conflict with other traf-
fic, rather than selecting and proposing a single solution.

As discussed before, the allocation of flights in a constraint-based system to a specific
LOA should be based on each flight’s complexity, with lower complexity flights assigned
to the higher LOA first. These complexities are not necessarily constant throughout a
flight’s traversal through the sector though. Chapter 3 already showed that ATCOs fre-
quently delegated flights after passing the ‘challenging’ part of their route, i.e., the climb,
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Figure 7.2: Level of automation chart for MUAC’s ARGOS, as introduced in Section 2.5.1.

descent or conflict situation. External factors, such as adverse weather conditions and as-
sociated reroutes, can also play a role as these affect trajectory uncertainty (Corver and
Grote, 2016). Perhaps flights should thus be re-allocated when their complexity changes
beyond a certain threshold and basic flights become non-basic, or vice versa. Especially
when sectors become larger, a significant portion of the flight trajectories may be basic
as the cruise part of flights will make up a relatively large part of their time in the sector.
The predicted growth in air traffic (density) from the 10.1 million flights that transitioned
the European airspace in 2023 to 12.2 million flights (+21%, or +10% from pre-COVID-19
numbers) in 2030 (Eurocontrol, 2024a) can invalidate this. However, smarter and per-
haps also even dynamic sector designs may succeed in distributing flights more evenly,
which can lead to a decrease in interactions between flights and damp the trend.

Furthermore, the threshold at which flights are classified as basic or non-basic should
not only be complexity-dependent but also depend on human factors. To maintain all
the benefits of constraint-based automation allocation, the number of flights allocated
to the ATCO should not drop below a certain base line. As seen in Chapter 3, when ATCOs
delegate (almost) all flights to automation, they are at risk of becoming bored or unskilled
(Kenny and Li, 2022). A consequence of enforcing a minimum number of manual flights
might be that flights that would normally be considered basic are assigned to the ATCO,
and not much would be gained. Another option would be to dynamically enlarge or
adjust the airspace assigned to the ATCO, but this may clash with other considerations
such as the license/training of the ATCO. The total number of flights should be capped to
limit the potential of simultaneously occurring non-standard events (e.g., emergencies,
pilot requests) that require ATCO attention.

The threshold may be dynamically adjusted based on human performance through
physiological measures (e.g., brain activity, Borghini et al., 2017) or control performance
(IJtsma et al., 2022). This could also cater for the (temporary) offloading of additional
flights when the ATCO has to deal with extra complex flights.
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7.4 Reflections on teamwork
Although teamwork was not an explicit research objective in this thesis, the results and
insights collected throughout the experiments do lead to a number of observations. The
overarching question in this section is whether constraint-based automation can lead to
more human-automation teamwork in ATC.

In the experiments of Chapters 3 and 6, both agents worked towards the same goal:
ensuring safe and expeditious traffic flows within the sector. The interdependence of
each team member’s tasks in achieving this goal is a crucial aspect in teamwork (O’Neill
et al., 2023). As discussed in Section 1.4, there has to be a certain overlap between team
members in order to establish a sense of teamwork, but in our example of ATC this over-
lap should not lead to automation and ATCO thwarting each other in trying to resolve
many mixed conflicts. Much effort in this thesis was therefore put in creating a parallel
system where the ATCO and the automation interfered as little as possible (e.g., by using
an interaction-based allocation scheme in Chapter 6).

Only one of the six ATCOs in Chapter 3 perceived the experiment’s setup as team-
work. The more parallel interaction-based allocation in Chapter 6 received more favor-
able teamwork opinions, but both experiments stayed far from genuine teamwork ac-
cording to the ATCOs. In light of the Big Five model by Salas et al. (2005), several im-
portant aspects defining teamwork were indeed missing, such as team leadership and
orientation, and closed-loop communication. If the automation was programmed to op-
erate more like the ATCO and follow the same standard procedures (i.e., letters of agree-
ment), their work may require less segregation because interference will be reduced. On
the other hand, limited mutual performance monitoring was established (e.g., warning
ATCOs through VERA when a mixed conflict was unresolved).

In this regard, one might question whether the allocation of flights to either an au-
tomated system or an ATCO should be considered human-automation teamwork (HAT)
at all. The tested form is perhaps closer to human-automation interaction (HAI, Janssen
et al., 2019) or partnership. According to O’Neill et al. (2023), the LOA applied to an agent
determines whether discussing HAI or HAT concepts is more appropriate for a system
under consideration. In the constraint-based setup researched in this thesis, the agents
are operating at two different LOAs, so there is not a single system-wide LOA. For flights
that are completely allocated to the automation, HAT might be the better fit, whereas a
HAI perspective is more fitting for the manual flights with limited automation support.

Tentatively, it may be more important to establish teamwork in serial systems than in
parallel systems. With the ATCO responsible for non-basic flights, the majority of human-
automation interactions will take place between basic and non-basic flights. Instead of
providing automation-generated proposals to the ATCO, it might be more beneficial to
provide the human ATCO with alternatives after they have come up with their own solu-
tion. These alternatives should then follow the same constraints and goals that the ATCO
uses. For example, if the ATCO is about to turn a flight ‘left’ to establish a certain separa-
tion, the automation might show that turning ‘right’ would establish the same separation
but with less delay for the flight. In this case, a certain ‘improvement’ threshold should be
established, to prevent the automation from annoying the ATCO with micro-optimized
alternatives that provide no significant benefits. A system like this reverses the roles in
the learning-on-the-job scenario brought up in Section 2.3.2, with the automation now
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Flights Clearances

Flights Clearances

Figure 7.3: Two forms of serial automation, with the human backing-up the automation (top) or vice versa
(bottom).

becoming the supervisor (or mentor) of the ATCO, as shown in Figure 7.3. Of course it is
then important to prevent the ATCO from relying solely on the automation identifying
human errors (i.e., automation misuse). In addition, the ATCO should be able to bypass
the automation, e.g., in case of a system failure.

7.5 Limitations and recommendations
This thesis had to scope down the research conditions as outlined in Section 1.6 to meet
time and resource constraints. This inevitably affected the generalizability of the results
and their direct applicability to operational ATC environments. On the other hand, some
of the limitations found in previous research were avoided, broadening the applicability
of the results. For instance, the use of professional ATCOs and a medium-fidelity simula-
tor that mimicked their actual working positions led to significantly higher face validity
compared to many other experiments that used novices or greatly simplified generic sim-
ulators. Nevertheless, there are numerous recommendations for future research, which
are discussed in this section together with the implications of the chosen scope. Each
part ends with some take-away recommendations.

7.5.1 Experimental evaluation
Despite the medium-fidelity simulator and professional ATCO participants, experiments
were still simplified with respect to actual ATC operations. There was no weather (wind,
turbulence etc.) and there were no emergency flights or pilot requests that would de-
viate from the flight plans. The unpredictability of real-life traffic is an important reason
why we cannot increase the LOA. Humans and especially trained operators are naturally
very good at adapting to changing situations while this has proven to be much more
difficult for automation. In the perfect world of a simulation, automation can cope with
any situation that is thrown at it. In reality, however, there will always be unexpected
situations that were not foreseen and of which it is unknown a-priori how the automa-
tion would need to act (i.e., an open system). That is, unless the automation is limited to
rule-based behavior, a topic that is further discussed in Section 7.5.2.

The absence of voice communication was a major contributor to the relatively low
workload reported in the experiments from Chapters 3 and 6. Radio transmissions are
indeed a major element of the current ATCO work and an important focus of simulation
fidelity in ATCO training (Dow and Histon, 2015). However, it is not unrealistic to foresee
that data links will replace many instructions that are currently still transmitted via voice.
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For example, ‘assume’ and ‘transfer’ of flights are occasionally already performed via
controller-pilot data link communications (CPDLC) at MUAC. For short-term time-critical
instructions, voice is expected to remain the prevalent means of communication due to
its intricate speed and instant feedback/acknowledgment. However, it is precisely these
flights that will stay with the ATCO in a shared human-automation airspace. It is worth
noting that the shift from radio transmissions to data link has been shown to not only
lower workload but also decrease engagement (Martins et al., 2024).

In contrast to many experiments on en-route conflict detection and resolution, this
thesis was not limited to the horizontal plane and included the altitude dimension. The
vertical traversal of aircraft is a key complexity factor that cannot be neglected as echoed
by the involved ATCOs and the results of all experiments. In contrast, the assumed redun-
dancy of speed control in en-route operations turned out to be somewhat limiting the
ATCOs in finding (efficient) solutions and complicating the resolution task. This was es-
pecially the case with overtake conflicts, as often seen in sectors prone to bunching such
as the western part of the Brussels sector. Future experiments should open up the full
control-domain to ATCOs.

Despite numerous simulator improvements between Chapter 3 and Chapter 6, the
ATCOs’ subjective simulator fidelity ratings did not improve. This striking result shows
the irony that comes with increased realism and immersion: small inaccuracies become
more pronounced when the environment is more immersive. That is, the fidelity of the
lowest-fidelity component may have an excessive impact on a simulation’s total fidelity
(Schricker et al., 2001). Nevertheless, the use of a simulator with high face validity made
it easier for the ATCOs to appreciate the proposed concept as a viable system, rather than
a vague vision for the far future. It also encouraged the development of dual-use for ex-
isting tools and displays for automation-related functions, such as the automation high-
lighting mixed conflicts with VERA.

Ideally, longitudinal studies are performed in which ATCOs receive multiple days of
training before going through a number of trials involving different scenarios and/or
setups. Because some of the ironies of automation only emerge after a considerable
amount of time has passed (e.g., boredom) the relatively short studies in this thesis may
have underreported the benefits of flight-based control allocation. As the concept tran-
scends from its initial stage, such studies may become more feasible.

main recommendations

• Include uncertainties such as weather, pilot requests or system failures.

• Expand the control dimensions to the full scope available to ATCOs (e.g.,
speed instructions and vertical rates).

• Run longitudinal studies with extensive training to let the ATCOs get accus-
tomed to the automation.
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7.5.2 Automation control capabilities
In Chapter 3, the ATCOs frequently took manual control solely to issue direct-to’s, which
the automation could not do. Capabilities of an automated agent are therefore perhaps
more important in flight allocation than the ATCOs themselves may realize (Figure 3.17).
The automation in Chapter 6 was upgraded; the agent could now issue direct-to’s and
assume and transfer flights near the sector borders. Although the ATCOs could not allo-
cate flights themselves in the experiment – and were thus forced to let the automation
handle situations, or to work around automation-directed flights – subjective feedback
indicated a heightened appreciation for the automation with increased capabilities.

Nevertheless, mixed conflicts occurred in both chapters that could have been pre-
vented if the automation would have adhered to the rules from established letters of
agreement that the ATCOs did follow. Making these agreements, that are often pub-
lished in unstructured documents, machine-readable has been accelerated by the re-
cent advent of natural language processing techniques (Batra et al., 2024). Doing so will
equalize the constraints that human and automation use in handling air traffic and help
establish a common ground. However, present agreements may need to be revised to
suit the introduction of an automated agent.

An important assumption in this thesis was that the automation is infallible, i.e.,
ATCOs did not need to monitor its proper functioning. In fact, the automation should
self-monitor and alert the ATCO when it detects it is misbehaving, or if it encounters situa-
tions that are outside its constraints. In the ARGOS project, an independent autonomous
monitoring system is envisioned to take this role (Lanzi et al., 2021). When failures do oc-
cur, they should be ‘graceful’ and not remove all automation support at once (Edwards
and Lee, 2017). Even if the ground-based automation were infallible, the air-side (i.e., pi-
lots or aircraft/autopilot) may fail to respond to or even deviate from issued clearances.
One such case was inadvertently encountered by all ATCOs in the flow-based scenario
of Chapter 6 when an automated flight did not execute an instructed climb, which trig-
gered a yellow ‘LVL’ text alert in the flight’s label. Although the ATCOs’ responses to this
event were not explicitly measured, anecdotal evidence indicates that most ATCOs were
surprised by this occurrence and did not immediately understand whether it was a fault
of the automation, the pilot or the simulator. Bringing the ATCO back in-the-loop in such
situations is a research topic on its own, but may benefit from the constraint-based ap-
proach, where ATCOs are actively involved with (part of ) the traffic, rather than purely
monitoring.

main recommendations

• Equip the automation to perform all ATCO tasks, including the resolution of
mixed conflicts for which flights under its control can provide a logical and
straightforward solution.

• Feed the automation with letters of agreement to bring its clearances and
their timing more in line with ATCO behavior and expectations, which should
minimize the occurrence of mixed conflicts.
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7.5.3 Feedback and communication between human and automation
The automation was designed to be ‘simple’ and rule-based, with the intention to elim-
inate the need for extensive communication and long familiarization sessions to build
sufficient trust and proficiency with the ATCOs who had to work with it. This assumption
turned out to be overly optimistic. As articulated by Christoffersen and Woods (2002),
more automation generally requires more communication between human and ma-
chine, not less. Lack of communication is a common pitfall in automation design that
hinders the establishment of productive human-automation teamwork (Norman, 1990).

Consensus within the cognitive engineering and AI communities also points to the
requirement that automation should disclose information on its capabilities, limitations,
what task(s) it is currently doing, why and how it is doing the task(s) in the specific way(s)
that it is, and what it plans to do next. This type of feedback is commonly referred to
as ‘seeing-into’ transparency (Chen et al., 2020, Jamieson et al., 2022). However, open-
ing the ‘black box’ may also come with new challenges related to clutter and the com-
plexity of (visual) representations, potentially leading to increased workload and delayed
responses (Van de Merwe et al., 2024, Springer and Whittaker, 2020).

Especially for ATCOs, who prefer to have a clean and uncluttered radar screen, ‘mini-
malistic’ feedback solutions are sought that, for example, can communicate machine in-
tentions via decision-support tools (e.g., VERA) that ATCOs are already using today. The
ATCOs participating in the experiments of Chapters 3 and 6 reported that they, in partic-
ular, missed transparency on the automation’s planned top of descent. MUAC’s recently
introduced display of extended projected profile points from the aircraft’s flight man-
agement system demonstrates a potential visualization that could be re-used for this
purpose (Jagasits, 2024).

In an initial effort to enhance communication that supports the ATCO, Chapter 6’s
automation alerted the ATCO when it had identified a mixed conflict that it would not
solve. The conflicting pair was automatically added to VERA. This was indeed well re-
ceived by the participating ATCOs, as it corresponds to current practice, where the co-
ordinating ATCO, or ATCOs from adjacent sectors, can ‘flag’ imminent conflicts for the
executive ATCO in a similar way. A next step would be to declutter the screen and help
ATCOs focus by fading-out automation-directed flights that are not relevant to any of
the human-directed flights (Finck et al., 2023a, Kumbhar et al., 2024). This is especially
important as ATCOs will be working busier and/or larger sectors when part of the traffic
is automated.

Interestingly, several empirical studies in ATC have reported limited benefits of au-
tomation transparency. For example, Westin et al. (2022) showed that ATCOs’ accep-
tance of machine-generated resolution advisories was more affected by matching them
to human preferences and strategies (i.e., conformance) than by offering increased trans-
parency. This suggests that understanding and accepting machine intentions can also
be achieved by matching the automation’s behavior to ATCO best practices, preferences,
and expectations (Westin et al., 2016b). In addition, some form of ‘letter of agreement’
between human and digital ATCOs can further reduce the need for inter-agent commu-
nication and coordination, similar to how standard instrument departures and terminal
arrival routes minimize the need for communication between ATCOs and pilots.
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Eventually, when automation is sufficiently reliable and has proven itself in a variety
of challenging circumstances, the need for ‘seeing-into’ transparency may diminish alto-
gether. This is no different from high-performing human teams, where team members
do not need to understand and communicate each other’s intentions as long as the work
is done well and team members can rely on and trust each other.

While the preceding discussion focuses on communication from the automation to
the ATCO, communication in the other direction should not be ignored. Following com-
ments by many of the participating ATCOs, they should be able to ‘nudge’ the automa-
tion, just like they can with their human colleagues (Klein et al., 2004). For example,
ATCOs need to be able to exclude certain flights from being taken by the automation, e.g.,
to prevent the automation from complicating the ATCO’s sector plan. However, this does
come with several risks, such as unclear responsibilities, and additional workload. When
the current ATCO-dyad is maintained, the coordinating controller can take this ‘manage-
rial’ role. However, in future single-controller operations (Gerdes et al., 2022) the sole
ATCO should be able to perform this task.

main recommendations

• Allow ATCOs to take ownership over specific mixed conflicts, such that the
automation will not try to resolve these.

• The automation should adhere to letters of agreement to minimize commu-
nication needs.

7.6 Operational relevance, future outlook
New concepts take time to transition from the experimental phase to full operation. Back
in 1987, Hunt and Zellweger (p. 19) already claimed that “the FAA’s new technology ATC
computer systemwill lead to highly automated ATC by the turn of the century.” And yet here
we are in 2025, still talking about highly automated ATC as a future goal. As another
example, flight-centric ATC was first proposed over two decades ago (Duong et al., 2001)
and is still not in operational use anywhere. Giving full decision-making authority over
flights to an automated agent is not something for the short term. However, it does seem
plausible that specific flights will be handled at a high(er) LOA in the coming decade(s).

The Single European Sky Air Traffic Management (ATM) Research (SESAR) Master Plan
also keeps evolving over the years. Its latest edition (SESAR Joint Undertaking, 2024),
published shortly before finalizing this thesis, supports the approach taken in this thesis.
For the first time, this edition explicitly acknowledges the merits of a form of automa-
tion operating within a confined scope. Although this does not necessarily equate to a
constraint-based strategy, the trend may continue.

As recently demonstrated by MUAC’s LORD (Eurocontrol, 2024b), advanced novel
concepts, originating from academic studies like this thesis, can be integrated into ex-
isting ATC work environments. A major contributor to that success is the empirical re-
search preceding said integration. Continuing that line, this thesis is a step forward from
the many theoretical plans and concepts that have been published over the years. Never-
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theless, on its way towards becoming operational, human-automation flight allocation
requires additional experiments that go beyond the realism level from Chapter 6, ad-
dressing the limitations discussed in Section 7.5.1. The developed software platform, TU
Delft’s SectorX, provides a solid basis for such further research.

The experiments in this thesis were performed using currently trained ATCOs, on cur-
rently operational sectors and traffic. When new automation concepts are introduced, a
holistic approach needs to be taken that also looks at these aspects and potentially ad-
justs them to further optimize combined human-automation performance. ATCOs cur-
rently receive extensive training for a particular sector and may need even more training
when they become responsible for larger sectors (Klünker et al., 2023), whose design may
also change with different routing structures to further optimize the allocation of flights.
An example of an innovative concept in that aspect involves flight-centric ATC in com-
bination with moving sectors (Schultz et al., 2023), where ‘grouped’ flights are assigned
to a single ATCO who then handles conflicts within the group as well as conflicts with
adjacent groups. In addition, ATCO selection processes may need to be revised in ac-
cordance with changes in required skill-sets due to responsibility adjustments (Griffiths
et al., 2024).

All this comes with substantial legal implications for ATCOs, ANSPs and system manu-
facturers (Lanzi et al., 2021). It should be prevented that ATCOs are blamed for following
the automation if the automation fails and similarly blamed for not following the automa-
tion if they make a mistake. Additionally, who is responsible for automation failures in
the first place? As long as such legal barriers have not been fully addressed, transitioning
to higher LOAs where automation can take action might not be wise, or even impossible.

7.7 Final reflections
At the start of this thesis, the goal was set to expand the knowledge about allocating indi-
vidual flights to an automated agent at high LOA, while keeping (large) parts of the traffic
in an airspace under manual control. The results of human-in-the-loop simulation exper-
iments indicate that this configuration is indeed viable and can be appreciated by ATCOs,
provided that several conditions are met. Most importantly, the automation should be
capable of autonomously performing all standard tasks of a human ATCO, should follow
the same rules as its human colleagues and should foster a form of two-way communi-
cation that is integrated in the controller working position.

To conclude, future airspaces should be organized as shared space, where humans
and automation independently and dependently co-operate to facilitate safe and effi-
cient air travel. ANSPs and researchers are encouraged to further research flight-based
control allocation and lift the experimental research to a higher technology readiness
level (TRL). However, even if new forms and levels of automation can reach a high TRL,
this does not mean that they should always be deployed. In a human-centered approach,
the human readiness level (HRL) should be the decisive factor in whether a technology is
to be used (See, 2021). Now that the ATC domain has celebrated its first centennial and
with the imminent advent of advanced automation concepts, ATC should become even
more human-centered, not less.
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A
SectorX ATC simulator

Throughout the experiments in this thesis, SectorX has been used to simulate the work
environment of air traffic control officers. For this thesis, the simulator has been vastly
enhanced to closely mimic the controller working positions of Maastricht Upper Area
Control Centre (MUAC), including commonly used support tools. This chapter provides
a brief overview of the various functionalities and implementation details.
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A.1 Introduction
The experiments in this thesis made extensive use of SectorX, a Java-based air traffic
control (ATC) simulation package developed at Delft University of Technology that fo-
cuses on the evaluation of human-machine interfaces (HMI) in human-in-the-loop ex-
periments. The predecessor of SectorX was developed for the MUFASA project on con-
formal solutions (Westin, 2017), which ran in two editions between 2011 and 2015. Since
then it was used for various other research projects. In recent years, SectorX has received
numerous enhancements to make it into the full-fledged simulator that it is today. Many
of these enhancements were directly driven by this thesis.

A.2 Program structure
A.2.1 Modes
SectorX consists of three modes, all consolidated in a single program pertaining to three
standard phases of an experiment:

Editor used to create and preview scenarios. Here sector boundaries, waypoints, routes
and flights can be added, deleted or modified on an interactive map. The editor
doubles as an operational HMI such that changes in the scenario and their effect
on any support tools can be instantly evaluated.

Simulator used to perform an experiment and log data. Using a configuration file, set-
tings can be tuned per experiment run, for example, to enable or disable specific
tools.

Viewer used to replay a logged experiment run, replicating the actual interface shown
during the experiment by reloading the window setup and configuration param-
eters. The replay is interactive, making it possible to see what an experiment par-
ticipant would see and be able to do at any moment in the run (e.g., inspecting
solution space diagrams or probing alternative resolution options).

A.3 Human-machine interface
As face validity is an important factor when researching interfaces for professionals in
safety critical operations (Dow and Histon, 2014), SectorX is capable of mimicking op-
erational HMIs from various air navigation service providers. Apart from simulating the
Maastricht Upper Area Control Centre (MUAC) interface used in this thesis (Figure A.1),
SectorX provides support for additional ‘styles’. As of yet, LVNL-style positions for area
control, approach and tower have been implemented (Figures A.2 and A.3). Providing
a high face validity was found to be paramount in getting ATCOs along and increasing
acceptance of future tools. By selectively enabling tools and display items, the simulator
can be tailored for use by novices or expert ATCOs, minimizing the training duration for
both.

The following sections provide a more detailed view of the various tools and elements
in the MUAC interface that were relevant for this thesis’ experiments. As such, the func-
tionality described here matches the experiments and may deviate slightly from the ac-
tual MUAC HMI.
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Figure A.1: SectorX in MUAC style.

Figure A.2: SectorX in LVNL area control style. Figure A.3: SectorX in LVNL tower style.
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A.3.1 Radar menu
The radar menu at the top of the screen provides a series of options to adjust the radar
display. Only a subset of the buttons, shown in Figure A.4, was functional in this thesis’
experiments. The speed vectors could be lengthened beyond the standard 1 minute to
2, 4 or 8 minutes, and the ATCOs could toggle the history dots that trail each RPS. While
these dots can be used to judge ground speed and turning behavior, some ATCOs prefer
to hide them to declutter the screen.

Figure A.4: Part of the MUAC radar menu showing the buttons that were active in the experiments.

A.3.2 Flight informationmanagement (FIM)
The flight information management (FIM) window shows flight plan information of a se-
lected flight, together with Mode S transponder data (pilot selected flight level and head-
ing, actual Mach number and indicated airspeed) and derived groundspeed and vertical
speed (Figure A.5). In this thesis’ experiments, the ATCOs mainly used this window to see
a flight’s aircraft type, destination, groundspeed and vertical speed.

Figure A.5: MUAC flight information management (FIM) window for a KLM Boeing 737-800 flight from Zurich
(LSZH) to Amsterdam (EHAM). The pilot has selected FL320 in the autopilot and the aircraft is flying on a heading
of 334° with an indicated airspeed of 283 knots (Mach 0.78) and a groundspeed of 455 knots with no vertical
speed. Its exit coordination point (XCOP) is BUB, where the flight needs to be at FL250.

A.3.3 Interactive labels and clearancemenus
Each flight has an associated label on the plan view display, containing label items as
illustrated in Table A.1. Depending on the state of the flight and its allocation to either
human or automation, the label items and colors can change. Table A.2 shows examples
of labels as encountered in the experiments of this thesis. All labels (and radar position
symbols, RPS) in green relate to human-controlled flights, while blue items denote flights
(suggested to be) allocated to the automation. When hovering the mouse over a label, a
magnified label appears showing additional information. Only the label items needed for
the experiments were included (e.g., due to the absence of speed control the speed label
item was omitted). The standard, non-magnified, labels follow a minimal information
approach, hiding any non-relevant information. This allows an ATCO to use them as a
todo-list (i.e., labels with little items require little action).

Table A.1: MUAC flight label items, with actual flight level (AFL), cleared flight level (CFL), cleared heading/route
point (HDG), transfer flight level (TFL), and exit coordination point (XCOP).

CALLSIGN
AFL - CFL HDG
TFL XCOP
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Table A.2: MUAC flight labels in SectorX as used in the experiments of this thesis. White and gray colors have
been replaced with black here for print clarity.

Situation Standard label Magnified label

Unconcerned flight. The flight is currently controlled
by an adjacent sector and will not be transferred to the
ATCO, but its flight plan lead/leads through the sector.

KLM123
340 -

KLM123
340 – 34
34 REDFA

Previous sector is controlling the flight, but it will be
transferred to the ATCO’s sector at some point. Color
indicates the suggested allocation.

KLM123
340 –
REDFA

KLM123
340 – 34
34 REDFA

KLM123
340 –
REDFA

KLM123
340 – 34
34 REDFA

Flight has been assumed by the ATCO, is flying level
at its designated TFL (FL340) and on own navigation
towards the XCOP (REDFA). No further action required.

KLM123
340 –

KLM123
340 – 34
34 REDFA

Flight is flying level at FL310, but needs to be at FL340
when exiting the sector. A climb instruction is re-
quired.

KLM123
310 –
34

KLM123
310 – 31
34 REDFA

Flight is climbing from FL314 to its cleared FL340,
which is also its TFL. No further action required.

KLM123
314 ↑ 34

KLM123
314 ↑ 34
34 REDFA

Flight is at the correct flight level, but is flying on a
heading (230°), meaning that it might not end up at
the XCOP (REDFA).

KLM123
340 – H
REDFA

KLM123
340 – 34 H230
34 REDFA

Flight has been transferred to the next sector.
KLM123
340 –

KLM123
340 – 34
34 REDFA

KLM123
340 –

KLM123
340 – 34
34 REDFA

Flight is under automation control in the ATCO’s sec-
tor. It has been cleared to descend to FL360, but needs
to descend further to FL340 before leaving the sector.

KLM123
379 ↓ 36
34

KLM123
379 ↓ 36
34 REDFA
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All label items are interactive, meaning that ATCOs can click on them with their mouse
to open associated clearance menus. For example, clicking the CFL on the second label
line will open a CFL menu, as shown in Figure A.6. The mouse is automatically centered
on the TFL that the flight needs to be at when transferred to the next sector, although
a different level can be selected by moving the mouse or using the scroll wheel to cy-
cle through the list. Clicking any flight level automatically moves the mouse to the ‘ex-
ecute’ button, such that the selected clearance can be executed swiftly with minimal
mouse movement. Similar menus exist for heading and route clearances. In Chapter 3,
the ATCOs could allocate flights to themselves or the automation by clicking the callsign
item (see Figure 3.6).

The provided inputs are used to keep track of what clearances have been given, and
allow subsequent sectors to see what an incoming flight has been cleared to. In addi-
tion, support systems use the inputs for their alerting systems, for example when a flight
deviates from the CFL or route. In reality, the inputs provided through the clearance
menus are primarily relayed to the aircraft via voice-based radio transmissions (R/T), with
the exception of certain CPDLC instructions. Throughout this thesis, all clearances were
transmitted via CPDLC to remove the need for pseudo-pilots and voice R/T.

Figure A.6: MUAC clearance menus in SectorX, from left to right: flight level (2x), heading and route.
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A.3.4 Verification and advice (VERA)
MUAC’s verification and advice (VERA) tool provides an easy-to-use measure of the pre-
dicted minimum horizontal separation between two flights. In other centers similar tools
are known under the name ‘horizontal scanning tool’ (HST, Corver and Aneziris, 2015).
Figure A.7 shows an example, where two flights have a minimum separation of 2.6 NM,
which will be reached in 2 minutes from now. The predicted position of both flights at
that moment is shown by the amber ‘dagger’ symbols. ATCOs use VERA to verify separa-
tion and/or to inspect conflict geometries to, e.g., decide which flight can be turned to fly
‘behind’ the other flight. VERA is shown on request when the ATCO ‘connects’ two flights
with the mouse and can be toggled or locked to monitor a flight pair over a prolonged
time. In the experiment of Chapter 6, the automation could autonomously enable VERA
for a mixed flight pair, like ATCOs at MUAC can do to inform their colleagues of an immi-
nent conflict.

Figure A.7: MUAC VERA. Figure A.8: MUAC STCA.

A.3.5 Short-term conflict alert (STCA)
Short-term conflict alerts (STCA) were implemented according to the example from Euro-
control (2007) and were shown on the HMI as illustrated in Figure A.8. To alert the ATCO,
both flights’ callsigns are outlined in yellow, while their respective RPS continuously flash
yellow and red. The ‘conflict alert message’ window provides further information on the
nature of the conflict. In this example, the two flights are currently 24 NM apart and
heading for a minimum separation of 4.1 NM.

STCA automatically triggers whenever two flights are predicted to have a horizontal
separation of less than 5 NM horizontal and simultaneously less than 1,000 ft vertical
separation. Unlike VERA, STCA considers the vertical dimension. It takes the cleared flight
level into account as well, to prevent nuisance alerts when flights are expected to level
off before bursting through an occupied flight level.
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A.3.6 Label decluttering
For the experiment in Chapter 6, a label decluttering algorithm devised by Reek (2010)
was implemented because the relatively large number of flights would lead to many
overlapping labels. Manually moving the labels was expected to add an excessive
amount of workload and would likely confound eye tracking and control activity mea-
sures. Furthermore, the ATCOs participating in the experiment of Chapter 3 unanimously
indicated that labels should (mostly) be decluttered automatically (Figure 3.10), like al-
ready done on the actual MUAC HMI.

The chosen implementation makes use of nine possible label locations around the
RPS, which are evaluated for each flight on each radar update. A cost (C) is calculated
for each position according to Equation (A.1) and the label is then moved to the position
with the lowest cost. To prevent labels from jumping around on every update, a heavily
weighted jitter penalty of 4 is added on each label movement, and subsequently reduced
by 1 on each update (i.e., after four updates the penalty from a single movement has
been removed). The overlap costs were as listed in Table A.3 and Cdistance was simply the
distance (in pixels) from the old to the new location of the label.

C = 1000 ⋅ Cjitter + 100 ⋅ Coverlap + 10 ⋅ Cangle + 2 ⋅ Cdistance (A.1)
Cangle = ||mod(track− leaderLineAngle+ 540, 360) − 180| − 135|

Table A.3: Label decluttering overlap costs (Coverlap).

Overlap

Label Leader line

Symbol 40 Not implemented

Label 30 20

Leader line 20 25

Speed vector 15 5

If the ATCOs preferred a different position, they could click the aircraft symbol to ro-
tate the label to the next position. Following feedback from the participating ATCOs, this
has since been changed to immediately jump to the position with the next lowest cost,
rather than cycling through all available positions which may or may not have an even
higher cost. In the experiment, ATCOs occasionally had to click multiple times until the
label reached a low-cost position where it did not overlap with other labels.

A.4 Aircraft performancemodels
SectorX supports three types of aircraft performance models, ranging from very basic to
an extensive parametric model widely used in industry. The latter was used in all exper-
iments of this thesis, but more basic models can be sufficient for evaluations with ATC
novices (van Paassen et al., 2023).
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Basic
The basic model allows users to specify their own performance models, based on XML
files with parameters for acceleration, deceleration, vertical rates and bank limits per air-
craft type. These values are all independent of altitude and airspeed and therefore mostly
useful for simulations that are limited to the horizontal plane.

Generic
A slightly more advanced generic model includes three aircraft types: light, medium and
heavy. Per type, average climb/descent rates, and minimum and maximum speeds have
been selected based on the BADA model for the Cessna 550, Boeing 737 and Boeing
747 respectively (Eurocontrol, 2012). Unlike the basic model, vertical rates do vary with
altitude to some extent. Bank angle is limited to 30 degrees for all types in all conditions.

BADA
The most advanced model is the Base of Aircraft Data (BADA) 3.10 parametric perfor-
mance model (Eurocontrol, 2012), which provides lookup tables with reference values
for circa 400 aircraft types. Apart from a performance model, BADA also supplies match-
ing airline procedure models (e.g., climb and cruise speeds) and aircraft characteristics
(e.g., wing area, turbulence category). Note that the airline procedure models are not in
fact airline-dependent, but solely aircraft type dependent and merely approximate aver-
age airline practice.

The ATCOs participating in this thesis’ experiments rated aircraft performance moder-
ately realistic (Figures 3.19 and 6.25). Especially climb and descend speeds need further
tuning as these were often too high compared to real life. Using standard climb/descend
speeds instead of the BADA provided maxima is expected to provide a significant im-
provement.

A.5 Automated ATC agent
SectorX supports the implementation of automatic solvers that can act as a digital ‘ATCO’.
The solver used in the experiments of Chapters 3 and 6 would follow three consecutive
algorithmic steps, for which pseudo-code is presented below. The steps were repeated
every 30 seconds for all flights. For the fast-time simulation that was used in designing
the interaction-based allocation scheme of Chapter 5, the algorithms were modified to
ignore any conflicts.

Algorithm 1 solve conflicts (only for fully automated pairs),

Algorithm 2 send direct-to as far as the XCOP if possible (not used in Chapter 3),

Algorithm 3 clear to next available flight level, closest to transfer flight level.

When checking for conflicts and the safety of clearances, the same routines as STCA
(see Appendix A.3.5) were used, but with 8 minutes look-ahead time and an additional
separation buffer of 2 NM. Conflicts were solved pairwise, meaning that the solver had
no notion of multi-flight conflicts and would not necessarily pick the best solution in
such a case. The pseudo-code shown here reflects the final experiment in Chapter 6. The
preliminary experiment from Chapter 3 used a slightly simplified version.
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Algorithm 1 Solve conflicts

if one or both flight(s) is/are climbing or descending then
Stop climb/descend of one of the flights

else if both flights are flying level then
if descend available then

Descend either flight 1000 ft
else

Climb either flight 1000 ft
end if

end if

The automation would always try to send a flight as direct to its XCOP as possible.
However, flights were not allowed to clip the sector boundaries, meaning that only tra-
jectories fully within the controlled sector boundaries were accepted. The process was
repeated for consecutive route points in the flight plan, starting from the XCOP and work-
ing towards the current position, until a conflict-free and non-clipping route was found.
Note that the algorithm only checks whether the trajectory was conflict-free for the du-
ration of its look-ahead time.

Algorithm 2 Clear direct-to if possible

furthest route point = XCOP
for furthest route point do

if conflict free and not clipping sector border then
Clear flight direct-to
return

end if
furthest route point = next route point closer to current position

end for

Automation would only clear flights to a flight level that could be reached within
its look-ahead time. This prevented the blockage of excessive altitude bands by giving
flights an unrealistically large climb/descend instruction. The automation would issue
the next clearance (if needed) when a flight was within 3,000 ft of the previously cleared
level, to prevent continuous clearances as the look-ahead window progressed in time.

Algorithm 3 Finding best available flight level

ROCD= |Δ𝐹𝐿|
𝑑𝑡𝑜𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

if ROCD< −1900 ft/min then
Descend aircraft

end if
if not safe then

Check if altitude is safe 1000 ft lower
end if





B
Experiment briefing and

questionnaire

As an example, this appendix contains the experiment briefing and questionnaires for
the experiment from Chapter 6. The briefings and questionnaires for the other experi-
ments were comparable.
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B.1 Briefing

Experiment briefing 
Empirical Analysis of Flight Allocations in a Shared Airspace 

Responsible researchers: Gijs de Rooij (G.deRooij@tudelft.nl) and Clark Borst (C.Borst@tudelft.nl) 

Introduction 

Dear participant, 

Thank you very much for taking part in this research for my PhD project! With this simulation experiment, 
we would like to gain insights into a future concept of operations, where the ‘basic’ flights in your airspace 
may be delegated to a computer, so you can focus on the more interesting and complex flights. 

The experiment will take at most 1.5 hours. This document contains important information to prepare you. 
Please read it advance so you know what to expect.  

Do not hesitate to contact me in case of any doubts or questions! 

Kind regards and see you soon, 

Gijs de Rooij 
PhD Candidate in Aerospace Engineering 

Experiment set-up and procedure 

Simulator 
The simulator that we use in this experiment is developed by TU Delft, and designed to resemble the MUAC 
interface. For the sake of the experiment there will be several differences that we will let you experience 
at the start of the experiment. Most importantly, you only need to input clearances in the system 
(simulating CPDLC) as there is no voice R/T. 

Scenarios 
You will be presented with two scenarios of ca. 25 minutes each, based on a recent radar sample. You are 
responsible for the entire Brussels sector group. However, roughly half of the flights in this airspace will be 
delegated to the computer, meaning that you have no control over them. These ‘automated flights’ are 
coloured blue, as shown in Figure 1 (your own flights are green). In either scenario, this distribution is 
based on different rules, which will be introduced beforehand. 

Your task 
It is your task to issue any clearances that you deem necessary to ensure that all flights can safely reach 
their XCOP at the correct TFL. You can give altitude, heading or route/direct clearances. Speed is at pilot 
discretion and cannot be modified by you. You can preview the planned trajectories and use VERA to assess 
potential conflicts. Blue flights will automatically be assumed, controlled and transferred by the computer. 

Automation 
The computer will climb blue flights as early as possible, descend them as late as possible and send them 
on direct routes to the XCOP when able. It has a lookahead time of 8 minutes and will take care of 
automatically preventing and/or solving conflicts between blue flights in this time frame. It will not steer 
blue flights into conflict with green flights, but if such conflicts do occur (after 8 minutes, or because you 
modified a green flight), the computer will not solve them. You are responsible for solving these ‘mixed’ 
conflicts, by issuing a clearance to the green flight. Automation will notify you when such conflicts are 
predicted, 8 minutes before the LOS, by marking the conflicting pair with VERA. 
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Fig. 1: Simulator interface Fig. 2: Eye tracker 

Your rights 

Participating in the experiment is on voluntary basis. You may cancel your participation at any moment for 
any reason, even during the experiment. This has no consequences for you. Your personal performance is 
not part of the study, there is no wrong or right, and there is no competition between you and your 
colleagues. 

Data that are collected during the experiment will be anonymised before they are stored by assigning a 
random identifier to you. Only the principal researcher (Gijs de Rooij) and his daily supervisor (Clark Borst) 
can link the data to you personally. This relation will never be made available to others (neither to MUAC). 
By participating, you give consent to publishing the data in anonymised form. 

In the experiment, you will be asked to wear an eye tracker in the form of a pair of glasses (Figure 2). This 
eye tracker records videos of both your eyes. After the experiment, we can derive from these videos where 
you were looking on the screen. The raw videos will be deleted as soon as this info is derived, but in any 
case no later than 3 months after the experiment date. 

At the start of the experiment you will be asked to sign a consent form to make sure that you have read 
and understood what participating in the experiment means. 

Important information if you wear eyeglasses and/or make-up 

For the best results, it is advised that you do not wear your own glasses in the experiment, as they may 
interfere with the recordings. Contact lenses are fine. In addition, your eyes and area around them is 
preferably free of make-up as much as possible, as this can cause reflections and therefore noisy data. 
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B.2 Questionnaire
The questionnaires were administered through an online Qualtrics environment before,
during and/or directly after the experiment.

Introduction
This questionnaire consists of four pages, with questions about:

1. You and your professional experience

2. The flight allocation algorithms

3. The automation

4. Simulator and experiment fidelity

Every page ends with a text box where you can type any additional comments you may
have that did not fit the preceding questions. You can use the buttons at the bottom of
the screen to go back and forth.

You and your professional experience

Age

Years of professional ATCO experience

Have you been involved in developing and/or testing an ATC environment where part
of the flights are controlled by automation? Can you very briefly explain what kind of
research/development that was?

Flight allocation algorithms
In the experiment you experienced two scenarios with two different flight allocation al-
gorithms. The following questions refer to this as the first and second algorithm respec-
tively.

Dislike a Dislike Neutral Like Like a

great deal somewhat somewhat great deal

First algorithm

Second algorithm
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Please drag the slider to indicate to which algorithm the following statements applied
the most. Place the slider in the middle (neutral) if it was the same in both scenarios.

First algorithm Neutral Second algorithm

Lower workload

Consistent workload

Better situation awareness

Automation and I were a team

I could organize my work the way
I wanted

Automation was helpful

I could solve conflicts efficiently

Automation and I kept the sector
safe

Automation and I managed the
traffic efficiently

What did you think were the ‘conditions’ under which the algorithm in the first scenario
would allocate a flight to automation?

Were there any things that you particularly liked or disliked about the flight allocation in
the first scenario?

What did you think were the ‘conditions’ under which the algorithm in the second sce-
nario would allocate a flight to automation?

Were there any things that you particularly liked or disliked about the flight allocation in
the second scenario?

If you were to design an automatic algorithm for allocating flights to either automation
or a human ATCO, what would that allocation look like? What should the algorithm take
into consideration?
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Is there anything else that you would like to share about the allocation algorithms?

Automation
The questions on this page relate to the functioning of the automation itself, which was
independent of the flight allocation algorithm.

How much trust did you have in the automation?

None at all A little A moderate amount A lot A great deal

Please indicate to what extent you agree or disagree with the following statements about
the automation.

Strongly Somewhat Neither agree Somewhat Strongly

disagree disagree nor disagree agree agree

It was reliable

It was predictable

It was consistent

Is there anything else that you would like to share about the automation?

Simulator fidelity
How would you rate the realism of the following simulation aspects? Please compare
the simulation to the actual MUAC working position and live traffic. Try to exclude de-
tails from your judgment that might be missing but were not relevant for the current
experiment.

Unrealistic - Acceptable - Perfect

Interface (look and feel)

Label decluttering

Aircraft behavior (vertical rates, turns)

Traffic scenario (density, routes)

Were there any features that you missed while performing the experiment?
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Do you have any other comments about the simulation? What did you really like, or what
can we improve for future experiments?

Anything else?
Is there anything else that you would like to share with us? Something that was not
treated in any of the questions? Or would you like to share your own experiences or
ideas?

Please make sure you are ready to submit your answers. Pressing the ‘Next page’ button
will close the survey.



C
Preventing scenario recognition

In academic air traffic control research, traffic scenarios are often repeated to increase
the sample size and enable paired-sample comparisons, e.g., between different display
variants. This comes with the risk that participants recognize scenarios and consequently
recall the desired response. This chapter provides an overview of mitigation techniques
found in literature and concludes that rotating scenario geometries is most frequently
used. The potential impact of these transformations on participant behavior, as de-
scribed in this chapter, is however not sufficiently addressed in most studies. As an ex-
ample, eye tracking data is analyzed from the experiment of Chapter 4 in which ten pro-
fessional air traffic control officers were each presented with three repetitions in various
rotations of several distinct scenarios. Results imply that researchers wishing to repeat
scenarios should more carefully consider whether mitigation techniques might have an
impact on their results.
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C.1 Introduction
In air traffic control officer (ATCO) training and airspace redesign trials, simulation scenar-
ios are designed to be as realistic as possible, with many different flights over a prolonged
period of time. High face validity enables the ATCOs to execute their tasks as they would
in an operational setting. Academic research, however, often benefits from simplified,
more constrained scenarios that are presented to novices or experts while tracking their
behavior e.g., when using different display variants. Constructing alike scenarios, where
the scenario itself is not an independent variable, is a major task, requiring considerable
effort and input from subject matter experts. As an alternative, identical traffic scenar-
ios are, therefore, often repeated to obtain paired-samples at the risk of scenario recog-
nition. Depending on the aim of the study, this can be undesirable as participants may
recall their earlier responses rather than coming up with an independent solution, aggra-
vating learning effects. This applies especially to studies that measure ATCO consistency,
such as in the personalization of conflict resolution advisories (Westin et al., 2016a). Find-
ing a balance between using alike scenarios and preventing recognition is not trivial.

This chapter, for the first time, provides an overview of techniques used to mitigate
scenario recognition in existing air traffic control (ATC) studies. A straightforward and
frequently employed method is to rotate and/or mirror scenarios. While these transfor-
mations result in identical scenarios in terms of conflict angles, traffic densities and pat-
terns etc., the change in orientation may unconsciously impact participant behavior. This
may not reveal itself in the final outcome, e.g., solving a conflict, but it can elicit different
visual scan patterns to arrive at this outcome. Visual search is an essential process that
ATCOs use to continuously update their mental picture (Fraga et al., 2021). Changes in
this process may lead to faster or slower conflict detection in otherwise identical scenar-
ios, affecting related objective measures. Furthermore, perceived workload may be af-
fected (e.g., due to unusual traffic directions, especially for experts) and action sequences
or conflict resolutions might change due to different fixation orders.

These effects are, to the best of our knowledge, not sufficiently identified and recog-
nized in literature. Authors often merely mention that scenarios are transformed to ‘pre-
vent recognition’ without further detailing their considerations or the transformation’s
implications. In addition to our literature survey on mitigation techniques, we therefore
analyze eye tracking data from a previously executed experiment that featured scenario
transformations (Chapter 4). The data consists of ten professional ATCOs who each per-
formed conflict detection and resolution in 15 distinct scenarios, of which five were se-
lected for this analysis. Each scenario was presented three times to them with different
transformations. By comparing the order in and speed at which flights were fixated, we
empirically describe the participants’ behavioral consistency when presented with trans-
formed repetitive scenarios. To conclude we argue on the implications that researchers
should consider when repeating scenarios, based on these initial findings.

C.2 Mitigation techniques
A literature survey resulted in the identification of three categories of techniques to pre-
vent scenario recognition, explicitly described in 20 ATC studies and summarized in Ta-
ble C.1: geometric, textual and temporal. Most studies used a combination of tech-
niques, with rotating scenarios as the most popular technique, employed in 15 studies.
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Table C.1: Scenario recognition mitigation techniques explicitly mentioned in existing research.

Geometric Textual Temporal

Rotation Mirroring
Renaming Renaming Time

Reordering
Study callsigns waypoints shifting

Abdul Rahman (2014) - - - - -

De Albuquerque Filho et al. (2008) - - -

Borst et al. (2017) - - - -

Borst et al. (2019) - - - -

Cummings et al. (2005) - - - - -

Harrison et al. (2014) - - - - -

Hilburn et al. (2014) - - - -

IJtsma et al. (2022) - - - - -

Jans et al. (2019) - - - - -

Jasek et al. (1995) - - - - -

Jha et al. (2011) - - -

Kim et al. (2022) - - -

Klomp et al. (2016) - - - -

Major and Hansman (2004) - - - -

Metzger and Parasuraman (2006) - - - - -

Rovira and Parasuraman (2010) - - -

Sollenberger and Hale (2011) - - - - -

Ten Brink et al. (2019) - - - - -

Trapsilawati et al. (2021) - -

Wilson and Fleming (2002) - - - - -

Number of studies 15 2/3 8 5 2 3

Geometric When a scenario is rotated or mirrored, its (objective) taskload formed by the
traffic density, conflict geometries etc. remains the same, but its (subjective) work-
load might change. Especially with experts, accustomed to traffic streams from
certain directions, changing the principal axis can have an impact on their per-
ceived workload, as it requires a change in scan pattern.

Geometric transformations can only be done when the sectors are relatively sym-
metric, which is generally not the case in operational environments. Furthermore,
on a widescreen monitor, rotations other than 180° may result in a reduced look-
ahead range for flights coming towards the sector. Square-shaped monitors (or
simulated windows), as found in many ATC centers, eliminate this problem. Only
rotation multiples of 90° were found in the studies, presumably because this gener-
ates sufficient transformations and is easy to execute. De Albuquerque Filho et al.
(2008) mention that they ‘invert the route structure’, without further detailing what
is meant by that.

Textual Changing callsigns and waypoint names is a simple technique that can be
widely applied, does not change the taskload and has proven to be sufficient on
its own in some cases, such as the study by Wilson and Fleming (2002). When real-
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istic callsigns and aircraft performance data are used, the callsign should match
the flight’s characteristics (e.g., no big airliner for small airlines or non-standard
destinations). Similarly, when using operational airspaces, waypoints may need to
be left unaltered to match operational routes. Neither are a problem when using
airspace-naive novices.

Temporal Shifting occurrences of, for example, conflicts in time is a feasible technique
for relatively long scenarios, where chunks of traffic entering the sector can be shuf-
fled (De Albuquerque Filho et al., 2008, Trapsilawati et al., 2021). Such temporal
transformations do, however, risk ignoring cognitive built-up and its associated
impact on (perceived) workload. This technique is, therefore, mostly used to con-
struct realistic scenarios from recorded flight data, by shifting flights to create a
plausible scenario that is denser or has more conflicts than the recording.

When an experiment consists of multiple scenarios per test condition, their or-
der can be changed. If, for example, display variants are tested that are suffi-
ciently distinct from each other, participants may be predominantly occupied by
the changed visuals and/or tasks, making it even less likely for them to recognize
repeated scenarios at all (Jasek et al., 1995).

An extreme case of re-ordering chunks of traffic is to add dummy scenarios in be-
tween measurement scenarios, as done by Borst et al. (2017). If planning allows,
measurements for each participant can even be split over multiple days. This re-
quires good planning (difficult when using experts) and is more prone to intro-
ducing confounds due to a lack of control over variables such as participant energy
levels or between-session (professional) experiences. It is therefore not often used,
except in longitudinal studies such as by Hilburn et al. (2014).

A technique not explicitly found in literature is the shifting of all flights up or down
in altitude. The individual contribution might be marginal, as humans predominantly
recognize plan-view patterns, but in combination with other techniques it can require
participants to not completely rely on their memory. Care must be taken not to alter the
altitudes too much, as changes in flight level have an effect on ground speeds and thus
closing rates, impacting the time a loss of separation occurs and/or conflict warnings will
be issued.

C.3 Data description
As an example of the potential impact of scenario transformations, we revisit and ana-
lyze eye tracking data from a previously executed experiment designed for task analyses
(Chapter 4). To prevent scenario recognition, it involved static scenarios featuring several
geometric and textual transformations, dummy scenarios and a varying scenario order.

C.3.1 Participants and apparatus
Ten professional en-route ATCOs (age: M = 43.6, SD = 7.1, years of experience: M = 20.0,
SD = 6.5), from Eurocontrol’s Maastricht Upper Area Control Centre (MUAC) voluntarily
participated in a simulator experiment, as approved by the Human Research Ethics Com-
mittee of TU Delft under number 2754. All participants provided written informed con-
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Figure C.1: Experiment set-up with participant (left) and observer (right) positions.

sent. A TU Delft-built medium-fidelity simulator was designed to mimic the MUAC inter-
face on a 1920 x 1920 pixels 27” display with a computer mouse for control inputs, shown
in Figure C.1. Although the scenarios were static, participants could measure predicted
minimum separation between flights and display extended flight labels.

Gaze data was recorded using a head-worn Pupil Labs Core eye tracker (Kassner et al.,
2014) with Pupil Capture v3.5.1. The forward-facing scene camera recorded at 30 Hz and
the pupils were recorded at 120 Hz. Eight AprilTag markers were placed along the edges
of the screen to relate gaze to screen pixels. Clusters of gaze points that were close in lo-
cation and time were classified as fixations through the Python version of I2MC by Hessels
et al. (2017), with a minimal duration threshold of 60 ms as used by Fraga et al. (2021).
The fixations were correlated to flights by drawing voronoi-like areas of interest around
each flight’s symbol, speed vector and label.

C.3.2 Scenarios
The ATCOs assessed 15 distinct static scenarios that were shown three times, each time
with different transformations. They featured an artificial, octagonal 80 x 80 NM sector,
with four waypoints in the cardinal directions. This made sure that the ATCOs would
not fully rely on their trained scan patterns and that repetitions could not be recognized
based on the sector shape. Two, three or four flights were present on direct routes to
their exit points. Variants were created by applying any (combination) of the following:

• Rotation: 90, 180 or 270 degrees,
• Mirroring: flipping along the x- or y-axis,
• Altitude shift: all flights up or down by 1,000 or 2,000 ft.

Callsigns were randomized for all variants and flight labels were always placed at a 90 de-
gree offset to the direction of travel. Figure C.2 shows an example of a scenario with cor-
responding transformations. Note that flights in the center of the sector were invariant
to all geometric transformations and always appeared at the same location on the screen
while their label was moved to match the new direction of travel. All participants got to
see the same order of transformations, but the scenario ordering was counterbalanced
between them to account for learning effects. This ordering of scenarios was defined in
the previously executed experiment and might, in hindsight, have been suboptimal for
the current study. The experiment started with six training scenarios.
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Figure C.2: Three transformations of Scenario 5. Colors relate to the same flights in each transformation.

C.3.3 Participant task
Participants were asked to first indicate for each scenario whether there were any con-
flicts and to consequently solve these through altitude clearances only. Some flights had
to leave the sector at a different flight level, requiring a clearance that would generally
also solve any conflict(s). An intermediate level was needed in some cases to not cre-
ate a conflict. If there were no (remaining) conflicts and all flights were at or cleared to
the correct flight level, the ATCO could advance to the next scenario by clicking a but-
ton in the lower right corner of the screen. This button was carefully placed to ensure a
common first fixation point, not related to any flights, when a scenario loaded. As the ex-
periment was designed for Chapter 4, it involved a second phase that was not included
in the present analysis.

C.4 Results and discussion
After the experiment, some ATCOs mentioned that they did recognize the repetition of
certain conflict geometries, but none of them recalled that they were identical scenarios
apart from the applied transformation(s). Our present analysis stays away from conclud-
ing whether the recognition mitigation has worked and instead focuses on the consis-
tency of fixation behavior. For the fixation measures, only the five scenarios containing
four flights are included, because for the other scenarios with two or three flights these
measures would be less robust. Since the ATCOs showed vastly individualized behavior,
no between-participant comparisons are performed and all observations discussed here
relate to the three scenario repetitions per individual.

C.4.1 Conflict assessment
The participating ATCOs were not always consistent in what situations they flagged as
conflict. Figure C.3 shows the ATCOs conflict assessment for each of the 15 scenarios.
Nineteen (13%) out of 150 scenarios (15 per ATCO) showed ambiguous results, with
ATCOs changing their opinion when presented with a transformed version of an other-
wise identical scenario. In 11 cases the first repetition was the odd one out, in five cases
the middle and in three the last. ATCO 3 consistently flagged all flights that would cross
another flight’s path, if they were to be cleared to their transfer flight level, despite being
briefed to only consider the current and cleared flight levels.
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Figure C.3: Conflict assessments, including the 10 dummy scenarios.

C.4.2 Fixation order
Conflict detection time is directly driven by the order in which flights receive attention,
especially when scenarios include many flights. After all, if an ATCO fixates flights in a dif-
ferent order, he/she might observe a conflicting pair earlier or later. To this end, Figure C.4
shows for each scenario’s three repetitions the flight that was first fixated by each ATCO.
The level of consistency, in terms of identical first fixations for all three transformations
(visible as a row of three similarly colored squares), varied per ATCO from zero (ATCOs 5
and 10) to three scenarios (ATCOs 7 and 8). A similar variance can be seen between the
scenarios, with consistent first fixations for one (Scenarios 1 and 2) to five (Scenario 5)
ATCOs. This suggests that the rotations may have had an impact on the fixation order,
and that this can differ per individual and traffic layout. On closer inspection, in 80% of
the runs, the first fixated flight in Scenario 5 was in the center of the sector (and therefore
in the exact same location for all repetitions). Conversely, Scenario 1, the only one with
no flight near the center, shows the lowest level of consistency.

To illustrate individual differences, complete orders of fixation for two ATCOs on either
extremes of the aforementioned consistency scale are shown in Figure C.5. Note how
ATCO 8’s complete fixation sequence is consistent for all variants of Scenario 3. This, in
combination with the inconsistent fixation orders seen in other scenarios or with other
ATCOs, further hints at a non-negligible influence of scenario rotation on the processing
of traffic scenarios. For more insight into the relevant mechanisms, an analysis of scan
patterns at different transformations would be useful, but this requires scenarios with
more flights. The static, low density scenarios used in this study imply that the results are
not necessarily applicable to dynamic and/or denser scenarios.
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Figure C.4: First fixated flight per ATCO. Colors repre-
sent specific flights in a scenario (see Figure C.2 for
Scenario 5).
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Figure C.5: Complete flight fixation orders of two
ATCOs. Colors represent specific flights in a scenario
(see Figure C.2 for Scenario 5).



C

C.5 Conclusions | 191

C.4.3 Fixation speed
To further illustrate the potential influence of rotations on fixation sequences and du-
ration, Figure C.6 shows the standardized time till specific flights in Scenarios 3 and 5
had been first fixated. Results imply that the rotational-influence on this measure is de-
pendent on the researcher’s flight of interest. This is most visible in Scenario 5b, where
Flight 1 shows significantly different means compared to the other two rotations. Akin
to the fixation order, differences between individuals are again considerable, reflected in
the wide spread of most data.
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Figure C.6: Standardized (per ATCO) time till flights have been first fixated in two scenarios, split per transfor-
mation. Colors represent specific flights in each scenario (see Figure C.2 for Scenario 5).

While the order of scenarios was counterbalanced between the participants, the or-
der of their repetitions was not (i.e., all ATCOs first saw a, followed by b and then c). While
this resulted in a clearly visible reduction in total fixation time over the three repetitions,
this reduction is not (always) reflected in the results presented here. We therefore con-
clude that this speed-up was mostly caused by the ATCOs getting more acquainted with
the task at hand and advancing to the next scenario, rather than recognizing the specific
scenarios. To further isolate the effect of purely the transformation, future studies should
include duplicate scenarios where no transformation has been applied.

C.5 Conclusions
Scenario transformations such as rotation and mirroring are proven techniques to create
paired-samples in human-in-the-loop ATC research, but the potential impact on results
is not always sufficiently recognized. We showed that the most popular technique, ro-
tating scenarios, does risk eliciting different eye fixation behavior from participants, po-
tentially confounding objective measures such as conflict detection time. Whether this
is problematic strongly depends on the research question(s) at hand and requires careful
consideration. No definitive conclusions regarding the size of these effects can be made
on the basis of the limited analysis presented here. The first indications do warrant fur-
ther research with more elaborate, potentially dynamic, traffic scenarios and a tailored
experiment design.
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Acronyms

ACC Area control center
ADS-C Automatic dependent surveillance - contract
AFL Actual flight level
AI Artificial intelligence
ANSP Air navigation service provider
ARGOS ATC Real Groundbreaking Operational System
ATC Air traffic control
ATCO Air traffic control officer
ATM Air traffic management
BADA Base of aircraft data
CC Coordinating controller
CD&R Conflict detection and resolution
CFL Cleared flight level
CONOPS Concept of operations
COP Coordination point
CPA Closest point of approach
CPDLC Controller-pilot data link communications
CWP Controller working position
DCT Direct routing
DECO Delta and Coastal
EC Executive controller
EPP Extended projected profiles
FCA Flight-centric ATC
FIM Flight information management
FMS Flight management system
FOI Flight of interest
FRA Free route airspace
HAT Human-automation team
HMI Human-machine interface
LOA Level of automation
LORD Lateral obstacle and resolution display
LOS Loss of separation
LVNL Luchtverkeersleiding Nederland (Air Traffic Control the Netherlands)
MTCD Medium-term conflict detection
MUAC Maastricht Upper Area Control Centre
NCOP Entry coordination point
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NFL Entry flight level
NTCA Near-term conflict alert
PVD Plan view display
R/T Radiotelephony
RPS Radar position symbol
SA Situation awareness
SESAR Single European Sky ATM Research
SRK Skill, rule and knowledge
STCA Short-term conflict alert
TBO Trajectory-based operations
TFL Transfer flight level
VERA Verification and advice tool
XCOP Exit coordination point
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Air tra�c control is transitioning towards a system 
where human controllers are increasingly supported 
by high(er) levels of automation. Full autonomy is not 
within reach in the short term and intermediate 
levels elicit human-automation issues as human 
involvement decreases. Applying a high level of 
automation to only a subset of (low-complexity) 
�ights is hypothesized to address these issues.

Through empirical research, this thesis addresses one 
of the key challenges for such a system: how to 
determine which �ights should be allocated to either 
the human or the automation. 

The results show the promising e�ects and general 
feasibility of applying higher levels of automation to 
a constrained environment (i.e., a subset of �ights). 
Interacting �ights are best allocated to a single agent.
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