
 
 

Delft University of Technology

Visual Navigation for Tiny Drones

van Dijk, Tom

DOI
10.4233/uuid:322d4c2e-37b0-4d3d-a739-55b9905987c4
Publication date
2024
Document Version
Final published version
Citation (APA)
van Dijk, T. (2024). Visual Navigation for Tiny Drones. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:322d4c2e-37b0-4d3d-a739-55b9905987c4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:322d4c2e-37b0-4d3d-a739-55b9905987c4
https://doi.org/10.4233/uuid:322d4c2e-37b0-4d3d-a739-55b9905987c4


Visual Navigation

for Tiny Drones
Tom van Dijk



Visual Navigation for Tiny Drones





Visual Navigation for Tiny Drones

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen;
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 15 november 2024 om 12:30 uur

door

Josephus Cornelis VAN DIJK

Master of Science in Systems & Control,
Technische Universiteit Delft,

Master of Science in Mechanical Engineering,
Technische Universiteit Delft,
geboren te Tilburg, Nederland.



Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:
Rector Magnificus voorzitter
Prof.dr. G.C.H.E. de Croon Technische Universiteit Delft
Dr.ir. C. De Wagter Technische Universiteit Delft

Onafhankelijke leden:
Prof.dr. P. Campoy Cervera Universidad Politécnica de Madrid
Dr. J.C. van Gemert Technische Universiteit Delft
Prof.dr. G. Hattenberger Ecole Nationale de l’Aviation Civile
Prof.dr.ir. M. Mulder Technische Universiteit Delft
Prof.dr. A.O. Philippides University of Sussex
Prof.dr.ir. M. Snellen Technische Universiteit Delft, reservelid

Trefwoorden: Micro Aerial Vehicles, visual navigation, obstacle avoidance, route
following, depth perception

Gedrukt door: Ipskamp Printing
Omslag: T. van Dijk

Copyright © 2024 by J.C. van Dijk
ISBN 978-94-6384-675-2
Een elektronische versie van dit proefschrift is beschikbaar op
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


“The enemy of art
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Summary
In recent years, the use of drones in practical applications has seen a rapid increase, for
instance in inspection, agriculture or environmental research. Most of these drones have a
span in the order of tens of centimeters and a weight of half a kilogram or more. Smaller
drones offer advantages in terms of safety and cost. However, their reduced payload capac-
ity makes it difficult to carry the sensors and computers required for autonomous operation.
One of the most essential tasks an autonomous drone needs to perform is navigation.

Here, navigation is defined as the ability to move towards a specified location while avoid-
ing obstacles along the way. Ideally, the drone should also remember traveled routes, to
make the return journey more efficient. However, on tiny drones (palm-size or smaller)
the on-board processing power is often limited to a single microcontroller and the choice
of sensors is limited. Cameras are popular sensors for tiny drones, because they’re small,
lightweight and passive, although they do require some processing power to produce useful
results. The goal of this dissertation is to find a new, visual navigation strategy that fits
within the constraints of these tiny drones.
First, existing work in terms of visual perception and avoidance is reviewed. Multiple

options exist for visual perception: stereo vision, optical flow and monocular vision. All of
these options are discussed and compared, leading to the conclusion that stereo vision per-
forms best at shorter distances albeit at the cost of an additional camera, while monocular
vision performs better at longer distances. Optical flow is ruled out for avoidance, as it has
excessively large errors precisely in the direction of movement. For avoidance, the options
in terms of motion planning, map types and odometry are discussed. Perhaps unsurpris-
ingly, the optimal choice is found to be dependent on the application. For computational
efficiency on tiny drones, the most important choice is whether multiple measurements
should be fused into a single map, or if individual percepts are good enough for avoidance.
The latter is significantly less computationally demanding. For visual odometry, the depth
information should be used if available, and the IMU can provide efficiency benefits in
feature tracking. At Preliminary results are shown for monocular vision, visual odometry
and obstacle avoidance.
Secondly, the dissertation takes a deeper dive into monocular depth estimation. Monoc-

ular depth estimation has the advantage that it only needs a single camera – which saves
valuable weight on tiny drones – but its processing is more complex. The goal of this chap-
ter is to analyze the learned behavior of neural networks for monocular depth perception,
to see if this can be distilled into simple, lightweight algorithms. Using experiments based
on data augmentation, it is shown that all four of the analyzed networks rely on the vertical
position of objects in the image to estimate their depth. While this cue would be simple to
replicate, it does depend on a known pose of the camera. Further investigation shows that
the networks have a strong prior ‘assumption’ about this pose, which may make transfer
to drones more difficult. Finally, the networks need to have some sense of an ‘object’. In
this case, it is shown that various shapes are recognized as an object provided that they

ix



x Summary

have contrasting outlines and a dark shadow at the bottom. While this last feature is clearly
present in the car-based KITTI dataset, it may not transfer directly to other environments.
However, the vertical position cue can likely be used to provide monocular depth estimates
to resource-limited systems such as tiny drones.
Thirdly, the remembering of traveled routes is investigated. Traditional mapping strate-

gies from robotics would quickly run out of memory on microcontrollers, especially over
longer trajectories. Instead, inspiration for a memory-efficient route-following strategy is
found in nature. Here, insects are able to remember and follow remarkably long routes
despite their tiny brains. Their strategy is often broken up into a few components, most
notably path integration (odometry in robotics) and visual homing. We implement a novel
strategy based on these components on a 56-gram drone. Here, the focus lies on traveling
long distances using odometry, while periodically using visual homing to return to known
locations to counteract odometric drift. The proposed strategy is demonstrated over mul-
tiple experiments, where the most efficient run required only 0.65 kilobytes to remember
a route of 56 meters. This shows that tiny drones can retrace known paths by combining
odometry with periodic homing maneuvers to counteract drift.
Finally, the avoidance of obstacles is discussed in the conclusion of this disserta-

tion. This research has been performed by MSc students under my supervision, who
have found and demonstrated that bug algorithms are an effective navigation strategy
in three-dimensional, limited-field-of-view applications and provide a lightweight goal-
oriented avoidance strategy that is suitable for tiny drones.
By combining all of the above results, a full navigation strategy for tiny drones can

be proposed: tiny drones can visually navigate by using lightweight monocular vision
algorithms to perceive obstacles, three-dimensional bug algorithms to avoid them while
moving to new locations, and odometry and visual homing to retrace known paths.
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2 1. Introduction

Bitcraze Crazy�ie 2.1

Approximate cost: $225

92 x 92 x 29 mm
27 grams

Max payload weight:
15 grams

On-board processor:
STM32F405
(ARM Cortex-M4, 168 MHz,
192 kB RAM, 128 kB Flash)

Figure 1.1: An example of a ‘tiny drone’: the palm-sized Bitcraze Crazyflie 2.1.

1.1. Tiny drones
Drones are an upcoming technology that find more and more applications nowadays. For
instance, drones can be used to inspect powerlines [1], industrial sites [2] or railways [3].
Precision agriculture is another widely-discussed application, where drones can capture
high-quality data and measurements in a relatively short time [4]. Drones can also in-
teract with their environment, for instance by collecting water- or atmospheric samples
[5, 6], environmental DNA [7] or acoustic measurements1. In indoor environments such
as greenhouses, drones may have an advantage over regular robots since they require less
infrastructure.
Current-day drones are typically quadrotors or multirotors with a span in the order of

tens of centimeters and a weight of half a kilogram or more. Tiny drones such as the
Crazyflie shown in Fig. 1.1 do not see much practical use yet. This is unfortunate, since
such drones offer a lot of advantages compared to their larger cousins. Firstly, tiny drones
are very safe and unlikely to cause serious harm [8]. Their mass is significantly smaller,
reducing the impulse and energy on collision. Additionally, their rotors have less mass and
inertia, and are therefore less likely to seriously harm any person they come in contact with.
As a result, tiny drones could be used near humans or in otherwise sensitive environments,
where regular drones would be too dangerous. A second advantage of smaller drones is
their lower cost. Even if the drone is completely destroyed, their replacement cost will
likely be less than that of a regular-sized quadrotor. As a direct consequence, tiny drones
could take a lot more risk during their mission. Alternatively, tiny drones could be used
in larger numbers, in which they could speed up tasks by doing them in parallel or add
redundancy in numbers [9–11].
With all that said, there are of course also disadvantages to tiny drones compared to

1https://www.tudelft.nl/en/2023/lr/flying-robots-survey-biodiversity-and-climate-inside-tropical-rainforests
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larger ones. The most obvious and important one is their small payload capacity. While
larger drones can carry a variety of sensors – either for the mission, navigation, or both –
tiny drones need to make a selection in what they carry. Some sensors like laser scanners
(such as the 830-gram Velodyne Puck2 or the 190-gram Slamtec RPlidar A13) cannot
even be carried at all because of their weight. Besides sensors, the onboard computer and
battery capacity are also limited by the payload capability. Unfortunately, this makes it
really difficult to make tiny drones fully autonomous.

1.2. Visual navigation
To make tiny drones more useful, it is important that they can find their way between
different places. They should be able to find their way to new locations, while avoiding
obstacles along the way. To achieve this, the drones will first need to detect obstacles, and
then to maneuver such that a collision is avoided while still moving towards the target po-
sition. When routes are traversed more often, the efficiency of navigation can be improved
by following routes that are already known to be safe, rather than re-discovering a new
route each time.
This behavior is already possible on larger drones. On tiny drones, however, it is

still an open problem. Two main factors come into play here: firstly, tiny drones have
significantly less payload capacity (Fig. 1.1). As a result, it is not possible to carry most
of the sensors that are available on larger drones. Either the sensor itself is too heavy,
or the power they require causes an excessive increase in battery weight. However, one
sensor that seems especially suitable for tiny systems, is the camera. The camera is a
passive sensor and therefore requires relatively little power. At the same time, it is highly
versatile and provides rich information about the drone’s immediate environment. This is
also the major downside of cameras and vision: significant amounts of processing are often
required to extract useful information.
The processing of sensor data is the second hurdle for navigation on tiny drones. On

larger drones and robots, Simultaneous Localization and Mapping (SLAM) is the go-to
approach for navigation from local sensor data. Using SLAM, the robot can construct a
map of its environment that maintains consistency over multiple measurements, despite
errors in e.g. the measured displacement between positions [12–14]. However, SLAM
tends to be a computationally intensive process which requires a powerful processor and
high memory capacity. And while steps are taken to reduce these requirements, state-
of-the-art methods in this direction still require a mobile GPU or FPGA [15] rather than
a simple microcontroller. One of the smallest examples of SLAM, ‘tinySLAM’ [16], is
able to run on a microcontroller, but can only map relatively small areas and is not shown
to maintain consistency at greater distances. Even without the processing requirements
of SLAM, just keeping a map in memory can already be challenging for tiny drones,
which often only have a few kilobytes of microcontroller memory to work with. Ideally,
navigation should be performed without a map altogether. But is this actually possible?
Luckily, insect navigation results from biology show us that such a feat is indeed pos-

sible. Insects such as ants and bees are able to traverse remarkable distances despite their
2https://velodynelidar.com
3https://www.slamtec.ai/home/rplidar_a1/

https://velodynelidar.com
https://www.slamtec.ai/home/rplidar_a1/
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tiny brains. Rather than building a detailed, geometrical map, navigation strategies in na-
ture seem far more ‘behavior-based’, leading to robust results with remarkable little data.
The navigation strategies of insects have been broken down by biologists into three ma-
jor components: Path Integration, Visual Guidance and Route Following [17]. These will
provide a great source of inspiration when implementing navigation for tiny drones.
The observations of biology have also spawned new research topics in robotics. Of

note here is the development of Bug Algorithms [18, 19]. Bug algorithms use very simple
behavior rules to let a robot traverse a complex, obstacle-ridden environment towards a
target position. The main challenge of these algorithms is to prevent the robot from getting
stuck in loops. Not only do these algorithms manage to do this, they can even do so without
a map! Therefore, bug algorithms form a great complement to the techniques mentioned
above. If bug algorithms, path integration and visual guidance could be combined with a
lightweight visual perception algorithm, this would pave the way towards visual navigation
for tiny drones.

1.3. Research questions
As has become apparent from the above sections, the goal of this thesis is to bring visual
navigation to tiny drones. How to achieve this, is the main research question:

Main Research Question

How do we bring visual navigation to tiny drones?

To make this question as specific as possible, I define navigation as the ability to pur-
posefully move through an environment without collision to reach a given point of interest.
The drone must move purposefully, rather than moving randomly until it eventually en-
counters the point of interest, because battery capacity is limited. Collisions with the
environment should be avoided, because for most drones this leads to failure or damage to
the environment. (Collision-proof concepts such as caged drones are not considered in this
thesis.) Exploration is not considered to be a part of navigation, but as a higher-level task
that provides target positions to the navigation system. On the other hand, moving towards
such a position that has not been visited before, but whose position is precisely specified,
is considered part of navigation.
To safely move towards new locations, the drone should be able to perceive and avoid

obstacles along the way. As discussed above, the hardware that the drone can bring along
for this task is severely restricted. Therefore, the first research question is how tiny drones
can perceive obstacles, taking the payload and processing limitations into account:

RQ 1

How can tiny drones perceive obstacles?

After perceiving an obstacle, the drone must find a way around it. For random explo-
ration, any action that avoids a collision would be sufficient, but when moving towards a
goal (as defined above), the drone should also take the position of its intended target into
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account. The question of how to weigh the different movement options, how to take the
target location into account, and how to do all of this as efficiently as possible, forms the
basis of research question 2:

RQ 2

How can tiny drones avoid obstacles while moving towards a specific point?

With the answers to these two questions, it is possible to implement a navigation sys-
tems that allows the drone to move between points. However, it is still somewhat lacking,
as for each movement the drone has to re-discover the route. While this is fine in unex-
plored environments, there are better ways to do this in environments that are traversed
multiple times. By remembering the routes between important points, the drone can skip
the search for a new route, and instead follow the same route as it did before. This might
save valuable time and reduce the chance of a collision or getting stuck. Returning to the
start location is also part of nearly all missions. Therefore, the following research question
serves to fully ‘complete’ the navigation task:

RQ 3

How can tiny drones retrace known paths?

While solutions are already available for larger drones, the main challenge here will
be to find suitable algorithms and strategies that can be used on microcontroller-equipped
tiny drones.

1.4. Dissertation outline
This dissertation is structured as follows. Chapter 2 will take a significantly deeper dive
into the existing literature than was possible in this introduction. It is primarily focused
on the two first research questions: how can obstacles be perceived and how can they be
avoided? Besides the literature overview, it presents some very early results of a practical
collision avoidance system. Additionally, it presents the initial experiments on monocular
depth estimation that led to the research of Chapter 3.
Chapter 3 takes a closer look at perception (RQ 1). Based on Chapter 2’s findings, it

assumes the use of a camera for obstacle avoidance. Furthermore, it assumes monocular
vision, as the stereo baseline on tiny drones will be a strong limitation for stereo vision
on these platforms. At the time of writing, monocular depth perception is primarily done
through deep learning. However, there was no research into how these networks actually
achieved this task. Chapter 3 aims to experimentally find the underlying mechanisms for
monocular depth perception. While it does not directly lead to a lightweight implementa-
tion, it gives useful insights that might inspire such an algorithm in the future. At the same
time, it provides a critical view of the safety of current depth estimation applications and
strongly advocates the use of more varied training and testing datasets in the process.
Research question 2 is discussed in Chapter 2, but will not be treated in further detail

in this dissertation. The research into this question has been performed by MSc students
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that I have supervised during my time at the MAVLab. I am happy to report that their
work shows that mapless avoidance of obstacles while moving towards a goal is not only
possible, but can even be performed with a high success rate. The results will be discussed
in the conclusion chapter to answer this question.
In Chapter 4, the following of known routes will be investigated (RQ 3). Since nearly all

map structures quickly become too large for the kilobyte-size memory of microcontrollers,
a novel approach inspired by insect navigation is developed and evaluated on a 56-gram
microdrone. The results show that routes can be followed using less than 20 bytes of
memory per meter, and that the strategy is therefore highly suitable for tiny systems.
Finally, in Chapter 5 I will collect the results from the main chapters to answer the

research questions posed above. Using the conclusions of Chapter 5, it will be possible to
bring visual navigation to tiny drones, thereby achieving the main goal of this thesis.
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2
A (p)review of visual collision

avoidance
With a growing number of Unmanned Aerial Vehicles (UAVs), the risk of collisions in-
creases. A Collision Avoidance System (CAS) is required to keep UAV operation safe. A
major challenge for CASs on smaller UAVs is the limited payload capacity, which dras-
tically limits the sensors that can be carried. Here, cameras can provide rich information
despite their low weight.
Visual collision avoidance starts with seeing potential obstacles. Stereo vision works well
to estimate depth at short range, but requires an additional camera. Optical flow is less
useful for avoidance, since the optical flow converges to zero near the focus-of-expansion,
i.e. precisely in the direction of movement. Finally, appearance cues – such as the height
of objects in the field-of-view – provide an extra sense of depth while requiring only one
camera. These cues are difficult to implement by hand. However, rapid developments in
deep learning have created new opportunities to learn these cues instead. Once an obstacle
is sensed, it must be avoided. An overview of maps and strategies is presented, but the
optimal choice depends strongly on the application.
This chapter ends with preliminary results on the above-mentioned topics. It turns out that
appearance-based depth prediction using neural networks might not transfer well to UAVs.
However, since these networks are black boxes, this is difficult to predict or debug. An ex-
perimental approach is used to gain an insight into the inner workings of the neural network
under evaluation. Other parts of a potential collision avoidance system are implemented
on a real-world UAV. Using stereo vision in combination with visual odometry, the UAV
can control its trajectory in indoor and outdoor environments and is able to stop in front of
obstacles.

The contents of this chapter have been published as:
van Dijk, T. (2020). Self-Supervised Learning for Visual Obstacle Avoidance. TU Delft. (Conceptualization:
Tom van Dijk, Guido de Croon)
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https://research.tudelft.nl/en/publications/self-supervised-learning-for-visual-obstacle-avoidance
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2.1. Problem statement
With a growing number of drones, the risk of collision with other air traffic or fixed ob-
stacles increases. New safety measures are required to keep the operation of Unmanned
Aerial Vehicles (UAVs) safe. One of these measures is the use of a Collision Avoidance
System (CAS), a system that helps the drone autonomously detect and avoid obstacles.
The design of a Collision Avoidance System is a complex task with many smaller

subproblems, as illustrated by Albaker and Rahim [1]. How should the drone sense nearby
obstacles? When is there a risk of collision? What should the drone do when a conflict
is detected? All of these questions need to be answered to develop a functional Collision
Avoidance System. However, all of these subproblems – except the sensing of obstacles –
only concern the behavior of the vehicle. They can be solved independently of the target
platform as long as it can perform the required maneuvers; it does not matter whether it is
a UAV or a larger vehicle.
The sensing of the environment, on the other hand, is the only subproblem that places

requirements on the hardware, specifically the sensors that should be carried by the UAV.
It is the hardware that sets UAVs apart from other vehicles. Unlike autonomous cars,
other ground-based vehicles or larger aircraft, UAVs have only a small payload capacity.
It is therefore not practical to carry large or heavy sensors such as LIDAR or radar for
obstacle avoidance. Instead, obstacle avoidance on UAVs requires clever use of lightweight
sensors: cameras, microphones or antennae. This literature survey will therefore focus on
the sensing of the environment.
Out of the sensors mentioned above – cameras, microphones and antennae – cameras

are the only ones that can detect nearly all ground-based obstacles and other air traffic;
microphones and antennae are limited to detection of sources of noise or radio signals1.
Therefore, this review will focus on the visual detection of obstacles.
The field of computer vision is well-developed; it may already be possible to find an

adequate solution for visual obstacle detection using existing stereo vision methods like
Semiglobal Matching (SGM) [2]. These methods, however, only use a fraction of the
information present in the images to estimate depth – the disparity. Other cues such as
the apparent size of known objects are completely ignored. The use of appearance cues
for depth estimation is a relatively new development driven largely by the advent of Deep
Learning, which allows these cues to be learned from large, labeled datasets. As long as
the UAV’s operational environment is similar to this training dataset it should be possible
to use appearance cues in a CAS. However, this is difficult to guarantee and may require
a prohibitively large training set.

Self-Supervised Learning may provide a solution to this problem. After training on an
initial dataset, the UAV will continue to collect new training samples during operation.
This allows it to ‘adapt’ to its operational environment and to learn new depth cues that
are relevant in that environment. Self-Supervised Learning for depth map estimation is a
young field, the first practical examples started to appear around 2016 (e.g. [3]). Most
of the current literature is focused on automotive applications or on datasets captured at
1They could be used to detect reflections of sound or radio waves – this is the working principle behind ultrasonic
ranging and radar – but since these are active measurements the power consumption is assumed to be too large
for use on UAVs. Additionally, in the case of ultrasonic measurements the range might be too short.
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eye-level. It is still an open question whether Self-Supervised Learning techniques can be
used for visual obstacle avoidance on UAVs.

2.2. Literature review
This section presents an overview of relevant literature for visual obstacle avoidance. The
review consists of two parts: subsection 2.2.1 presents an overview of obstacle avoidance
systems and their components, paying special attention to the visual detection of obstacles.
Then, subsection 2.2.2 takes a closer look at the use of neural networks for depth estimation.

2.2.1. Obstacle Avoidance
Practical Collision Avoidance Systems (CAS) need to solve a number of subproblems
in order to detect and avoid obstacles. An overview of the tasks involved and possible
solutions is given in [1, 4]. In general, a CAS contains the following elements:
• Sensing of the environment
• Conflict detection
• Avoidance maneuver: planning and execution

The system should have some way to sense potential obstacles in its environment. In this
review, sensing will be primarily performed through vision, but other sensors could also be
used to detect obstacles. Communication with other aircraft also falls under this element.
Conflict detection is used to decide whether an evasive maneuver should be performed. It
usually requires a method to predict future states of the UAV and of detected obstacles or
aircraft and a threshold or minimum safe region that should stay free of obstacles. When
the conflict detection indicates that a collision is imminent, an escape maneuver has to
be performed to avoid this potential collision. Depending on the method, this maneuver
can be performed using simple rules, planned by optimizing some cost function or even
performed in collaboration with other aircraft (e.g. TCAS).
The elements listed above are typical for the avoidance of other vehicles but can also

be used for the avoidance of static obstacles. In this case, the conflict detection is often
skipped or simplified since only the UAV itself is moving; instead it is often performed
implicitly during the planning of the escape maneuver around the obstacle.
Subsections 2.2.1 and 2.2.1 take a closer look at the sensing of the environment and

planning of escape maneuvers. Conflict detection is not considered for now as this review
is primarily aimed at the avoidance of static obstacles. Subsection 2.2.1 will briefly high-
light the literature (or lack thereof) on the performance evaluation of Collision Avoidance
Systems.

Sensing
The goal of sensing is to detect and locate nearby obstacles. The range of sensors that
could be used for obstacle detection is large, but a number of these can be ruled out for
usage on UAVs because of their weight or power requirements. This subsection will focus
on the visual detection of obstacles.
The localization of obstacles through vision can be split into two parts: estimation of

the bearing towards the obstacle and estimation of the distance. As long as the obstacle
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𝐵 [m]

𝑑 [px]

Figure 2.1: Stereo vision uses the disparity 𝑑 to estimate the depth 𝑧 towards obstacles. The camera baseline 𝐵
and focal length 𝑓 are constant and obtained through calibration.
can be reliably found in the image, estimation of the bearing is fairly straightforward. The
position of the obstacle in the image is a direct result of its bearing relative to the camera
and this relation can be inverted.
Estimation of the distance towards the obstacle is more complicated. Since the obstacle

is projected onto the image plane, the depth information is lost. Other cues need to be used
to estimate the distance towards the obstacle. These cues can be broadly split into three
categories:
• Stereo vision
• Optical flow
• Appearance

Stereo vision uses two images taken at the same time from different locations, optical flow
uses two images taken at different times and appearance is based on single images. The
next subsections take a closer look at these depth estimation methods.

Stereo vision Stereo vision uses images taken at the same time from different viewpoints
to estimate depth. The difference in viewpoints causes the obstacle to appear in different
positions in the images. The difference in these positions – the disparity – is inversely
related to the depth of the object.
An example of depth estimation using stereo vision is shown in Figure 2.1 for an

obstacle at distance 𝑧 observed using a stereo camera with focal length 𝑓 and baseline 𝐵.
Using equal triangles, the disparity of the obstacle is:𝑑 = 𝐵 𝑓 𝑧−1 (2.1)

This equation can be solved for 𝑧 to find a distance estimate ̂𝑧 given a disparity 𝑑:̂𝑧 = 𝐵 𝑓 𝑑−1 (2.2)
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The camera parameters 𝐵 and 𝑓 are found beforehand through calibration.
The main challenge of stereo vision is to find this disparity; it is often difficult to find

out which pixels in the images belong to the same point in the world. A first way to catego-
rize stereo vision algorithms is to make a distinction between sparse and dense algorithms.
Sparse algorithms estimate the disparity of a small number of highly recognizable points
in the images. The disparity accuracy tends to be good as these points are easy to match,
but because only a small number of points is considered the resulting depth map can con-
tain large holes, especially in environments with little texture. Sparse stereo algorithms
are therefore a poor choice for obstacle detection, but they sometimes appear as part of
Visual Odometry (VO) or Simultaneous Localization and Mapping (SLAM) algorithms.
Dense algorithms, on the other hand, estimate the depth for the entire image. They should
therefore be able to estimate the distance towards all obstacles in view.
In [5], Scharstein and Szeliski present an extensive taxonomy of dense stereo vision

algorithms. According to the authors, most dense stereo vision algorithms perform the
following steps to find a disparity map:
1. Matching cost computation
2. Cost aggregation
3. Disparity optimization
4. Disparity refinement

An example of these four steps is shown in Figure 2.2 for the block matching algorithm.
An important distinction can be made between global and local algorithms, which differ

in the way the disparity optimization is performed. Global algorithms try to optimize a
single cost function that depends on all pixel disparities. These algorithms can produce
accurate depth maps even for scarcely textured scenes, but tend to be slower than local
algorithms. Local algorithms independently optimize the disparities of pixels or small
regions. These algorithms are easier to parallelize and typically faster, but less accurate.
An in-depth review of stereo vision methods is out of scope for this chapter. While it is

important to understand the way these stereo vision algorithms work, their run-time perfor-
mance and accuracy are perhaps more relevant for their use on UAVs. These are difficult
to predict from first principles and are instead measured on benchmarks, of which the Mid-
dlebury Stereo benchmark2 [5] and the KITTI Stereo benchmark3 [6] are commonly-used
examples.
In [7], Tippetts et al. perform an extensive review of stereo vision algorithms for

resource-limited systems. The authors collected run-time and accuracy measurements for
a large number of algorithms and use these to produce scatterplots of their performance.
Where possible, the run-times were normalized based on the hardware for which they were
reported. The article provides an excellent starting point for the selection of stereo algo-
rithms, its only downside being that it was written in 2012 and that it is therefore not fully
up-to-date.
2http://vision.middlebury.edu/stereo/
3http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

http://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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(a) Matching cost computation. The matching cost is calculated per pixel for all disparities under
consideration. In this example the pixel difference is used as matching cost. Shown are difference
images at three different disparities, where white indicates a low matching cost and black a high cost.
In the left image, the disparity is roughly equal to the true disparity of the background: the background
has a low matching cost (white). In the middle image, the disparity is close to that of the head; in the
right image it is close to that of the lamp.

(b) Cost aggregation. Sometimes individual pixels can be hard to match. In this case, information on
neighboring pixels can make the matching task easier. In this example, the matching cost images are
convolved with a 3 × 3 averaging filter to take nearby pixels into account.

(c) Disparity optimization. Using the aggregated matching cost, the per-pixel disparity can be found
through optimization. In this example, the per-pixel argmax over the disparities is used. This is a
form of local optimization as the pixel disparities can be found independently.

(d) Disparity refinement. Post-processing is used to clean up the disparity map from the previous step.
In this example, a median filter is used to remove outliers.

Figure 2.2: Example of the block matching stereo algorithm broken down into the four steps described by
Scharstein and Szeliski [5]. Input image: Tsukaba, Middlebury Stereo Vision Dataset 2001 [5] courtesy of
the University of Tsukuba.
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A similar review was performed for this literature study, so that algorithms published
after 2012 could also be included. Run-time and accuracy measures were obtained from the
Middlebury and KITTI benchmarks. Run-time figures were not normalized, as the majority
of methods are evaluated on similar platforms (CPU-based methods on an unspecified2.5GHz processor, GPU-based methods on an NVIDIA Titan X). The main focus of this
comparison is on algorithms for which code is publicly available. The results are shown
in Figure 2.3.
The following conclusions are drawn from these results: first of all, there exist close-

to-optimal stereo vision algorithms for which code is publicly available. This means that it
is not necessary to write an own implementation of a state-of-the-art algorithm. Secondly:
from the CPU-based methods, ELAS [8] and SGM/SGBM variants [2] are still among the
best performers. The inclusion of SGBM in OpenCV makes this an ideal algorithm for
initial development. Thirdly: the use of a GPU can significantly increase performance,
mainly in terms of accuracy. However, it is currently unclear how this performance im-
provement weighs up against the increase in weight and power consumption of such a
platform. The 250W power required by the NVIDIA Titan X is quite high for a UAV,
and the performance benefit seen in the benchmarks might be significantly smaller on an
embedded GPU.
On a higher level, stereo vision has the advantage over other depth cues that its depth

estimate is based on the baseline between the two cameras. This is an advantage because
the baseline is constant and easy to measure or calibrate. In comparison, the distance
between successive images for optical flow is often unknown; it has to be estimated and
therefore leads to more uncertainty in the distance estimate. Appearance cues have a similar
disadvantage, the size of certain cues in the environment is not exactly known, also leading
to uncertainty in the depth estimate.
Stereo vision also has limitations. First of all it requires two or more cameras. The

resulting weight will be larger for this setup than for depth estimation based on optical flow
or appearance cues.
Secondly, the range of stereo vision is limited, although not as badly as commonly

thought [9]. As the distance to obstacles increases, the disparity decreases inversely (see
Figure 2.4). This means that for far-away objects the disparity hardly changes with distance.
As a result, the sensitivity to measurement errors d ̂𝑧/d𝑑 increases with distance until it
becomes impractically large:

d ̂𝑧
d𝑑 = −𝐵 𝑓 𝑑−2 (2.3)= − 𝑧2𝐵 𝑓 (2.4)

This growing uncertainty limits the maximum range of stereo vision. The disparity errors
are the result of incorrect matching of pixels in the input images and are typically inde-
pendent of distance. If the stereo algorithm only searches for discrete disparities, these
errors will be in the order of 0.5 px at best. Stereo algorithms for long-range distances
therefore need to estimate subpixel disparities. According to Pinggera et al., it is possible
to reach a consistent error limit of 0.1 px under real-world conditions [9]. The sensitivity
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(b) Platforms and performance on the KITTI
benchmark.
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(c) Code availability on the Middlebury bench-
mark.
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(d) Code availability on the KITTI benchmark.
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Figure 2.3: Scatterplots of accuracy versus runtime performance on the Middlebury1 and KITTI2 stereo vi-
sion benchmarks. Runtime on the Middlebury benchmark is measured in seconds per Giga Disparity Evalua-
tions (GDE), which is found by multiplying the image width, height and maximum number of disparities. Data
obtained on 27/11/2017. a, b: Methods running on the GPU tend to perform better than those running on the
CPU. On the Middlebury benchmark they perform better in terms of accuracy, while on the KITTI benchmark
they also outperform CPU methods in terms of runtime – perhaps because runtime performance is more important
for automotive applications than for the static pictures of Middlebury. c, d: While code is not available for every
method, there are enough close-to-optimal algorithms for which source code has been published. e, f : These
methods should be considered first when choosing a stereo vision algorithm, as they perform well and their code
is publicly available. Popular choices are ELAS [8] and SGM/SGBM [2]; the latter is also included in OpenCV.1: https://vision.middlebury.edu/stereo/ [5]2: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
(CC BY-NC-SA 3.0)

https://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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(b) Sensitivity vs. distance. The sensitivity is de-
fined as −d𝑧/d𝑑, i.e. the distance error for a 1 px
error in the disparity estimate.

Figure 2.4: Maximum range of stereo vision. As the distance increases, the sensitivity to stereo matching errors
increases quadratically. Example plots generated for a camera with baseline 𝐵 = 20 cm and focal length 𝑓 =400 px. Best-case disparity errors are in the order of 0.5 px to 0.1 px [9] depending on the algorithm.
to measurement errors can also be reduced by increasing the baseline 𝐵 or focal length 𝑓
of the cameras.
Finally, the matching of features between the input images is often a weak point of

stereo vision. As a result, it may perform badly with the following obstacles: textureless
surfaces, finely or repetitively textured surfaces, textures oriented parallel to the baseline,
reflections and transparency. Furthermore, depending on the algorithm, slanted surfaces
and occlusions can be problematic.

Optical flow Optical flow tracks the movement of image features over time. In a static
environment, the shift of these features depends on the movement of the camera and the
distance to the features; in general, features further away from the camera will move less
than those that are nearby. If the movement of the camera is known, the distance to the
features can be obtained. When only the rotation is known the distance cannot be found;
however it is still possible to estimate the time-to-contact, which is sufficient for some
forms of obstacle avoidance.
Figure 2.5 shows an example of optical flow and its use for depth estimation. The

example assumes forward motion4 at a known velocity without rotation of the camera.
Given the obstacle’s position (𝑥, 𝑧) and the camera’s focal length 𝑓 , its image position 𝑢
can be found using equal triangles: 𝑢 = 𝑥 𝑓 𝑧−1 (2.5)

Taking the time derivative produces the instantaneous optical flow 𝑢̇ of the obstacle or
4Optical flow from sideways or vertical motion has slightly different characteristics, but will not be explained here
to keep the explanation short. A forward-facing camera is the most relevant example for obstacle avoidance.
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Figure 2.5: Optical flow for forward motion. The image position 𝑢 of an obstacle located at (𝑥, 𝑧) changes as
the UAV moves forward with a velocity of − ̇𝑧.
feature: 𝑢̇ = −𝑥 𝑓 𝑧−2 ̇𝑧 (2.6)= −𝑢 𝑧−1 ̇𝑧 (2.7)
In practice, however, the optical flow is estimated between two images separated by a time
interval Δ𝑡. The result is a shift in position Δ𝑢 instead of the flow 𝑢̇:Δ𝑢 ≈ 𝑢̇ Δ𝑡 (2.8)≈ −𝑢 𝑧−1 ̇𝑧 Δ𝑡 (2.9)
The depth ̂𝑧 can be found by solving this equation for 𝑧:̂𝑧 = −𝑢 ̇𝑧 Δ𝑡 Δ𝑢−1 ∀Δ𝑢 ≠ 0 ⟹ ∀𝑢 ≠ 0 (2.10)
and, if velocity ̇𝑧 is not available, the time-to-contact 𝜏 is found using:𝜏 = ̂𝑧/ ̇𝑧 (2.11)= −𝑢 Δ𝑡 Δ𝑢−1 (2.12)
Note, however, that from Equation 2.7 and 2.9 it follows that the flow 𝑢̇ and shift Δ𝑢 will
be zero in the center of the image where 𝑢 is zero (the Focus-of-Expansion). It is therefore
not possible to estimate depth at the Focus-of-Expansion as the result is undefined.
The main problem of optical flow is not the estimation of depth but the tracking of

features between images. It is therefore very similar to stereo vision. The main difference,
however, is that stereo vision only searches for matches along one dimension, while optical
flow is two-dimensional. Optical flow is therefore more difficult to compute.
As in stereo vision, a distinction can be made between sparse and dense optical flow

algorithms. Sparse algorithms track highly recognizable points, typically corners. Sparse
tracking is frequently found in VO or SLAM. Like sparse stereo vision, sparse optical flow
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is not suitable for obstacle detection as it may leave large holes in the depth map. Dense
algorithms estimate optical flow for the complete image and are therefore better suited for
obstacle detection.
An overview of optical flow techniques is presented in [10]. The survey is similar to

[5] in that it breaks down the algorithms into a few key components. According to Baker
et al., most dense optical flow algorithms perform a global optimization (i.e. for all pixels
at the same time) of the following energy function: 𝐸data + 𝜆𝐸prior, where the data term𝐸data follows from the content of the images (similar to the matching cost in stereo vision)
and the prior term 𝐸prior encodes assumptions of the flow field such as its smoothness [10].
The final component of a dense optical flow algorithm is the optimization algorithm.
An in-depth overview of optical flow algorithms is again beyond the scope of this

chapter. Instead, existing optical flow algorithms are compared by benchmark results. The
results are obtained from Baker et al., 2011 [10] (the more up-to-date Middlebury website5
unfortunately does not report run-times) and from the KITTI optical flow 2015 benchmark6
[6]. The results are shown in Figure 2.6.
The KITTI results show that code is available for fast and accurate optical flow esti-

mation on GPUs. Code for the best performing CPU-based algorithms is not available;
SPyNet [11] might be used as an equally fast alternative, but it has a higher error percent-
age than the best-performing algorithms. The other CPU-based algorithms for which code
is available have run-times larger than one second. While it may be possible to reduce their
run-times by, for instance, lowering the resolution of the images, there is no guarantee that
they will run fast enough for practical use in obstacle avoidance. From the results of Baker
et al., 2011 only FOLKI has a run-time of one second, while the others are in the order of
ten seconds or more.
Compared to stereo vision, the main advantage of optical flow is that it only requires a

single camera, which saves weight. However, optical flow also has a number of disadvan-
tages. First of all, if a metric depth estimation is required, the velocity of the UAV should
be known. Estimation of this velocity is not trivial and uncertainties in this estimate are an
additional source of error for depth estimation.
A second problem is that the optical flow approaches zero near the FoE. By definition

the FoE lies in the direction of travel, exactly the place where obstacles should be detected.
Since the flow needs to be inverted to estimate distance, this makes the depth estimate
extremely sensitive to measurement errors in shift Δ𝑢. This is demonstrated with the
sensitivity d ̂𝑧/dΔ𝑢, i.e. the error in the distance estimate for a 1 px error in Δ𝑢, which is
found by differentiating Equation 2.10 with respect to Δ𝑢:

d ̂𝑧
dΔ𝑢 = 𝑢 ̇𝑧 Δ𝑡 Δ𝑢−2 (2.13)= 𝑧2̇𝑧 𝑢 Δ𝑡 (2.14)

For reference, the best average end-point errors in the KITTI optical flow 2012 benchmark7
[13] lie in the order of 1 px. The expected flow and sensitivity are shown in Figure 2.7 for a
5http://vision.middlebury.edu/flow/
6http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
7http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow

http://vision.middlebury.edu/flow/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
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(b) Code availability of the methods reviewed in
Baker et al., 2011.
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(c) Code availability on the KITTI benchmark.
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Figure 2.6: Scatterplots of dense optical flow estimation accuracy and run-time performance. Data is obtained
from Baker et al., 20111 [10] and the KITTI optical flow 2015 benchmark2 [6] (data obtained on 28/08/2018).
a: GPU-based methods tend to have lower runtimes and error percentages than CPU-based algorithms. (Platform
information is not available for Baker et al., 2011). b, c: Of the methods listed in Baker et al., 2011, source code
is not available for the best performing ones. This is slightly better for the KITTI benchmark. d, e: These are the
best performing methods for which code is publicly available. GPU-based methods perform significantly better
than CPU-based ones. There is little overlap between Baker et al., 2011 and KITTI in terms of algorithms, but
note that there is a 7-year gap between the two benchmarks. The algorithm by Brox et al. is included in OpenCV
[12]. For the other methods code is available, but it might take more work to integrate these into research code.1: Baker et al., 2011 [10] (CC BY-NC 2.0)2: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
(CC BY-NC-SA 3.0)

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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(a) Expected optical flow Δ𝑢 as a function of im-
age position 𝑢 for three obstacle distances 𝑧.
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(b) Sensitivity to measurement errors in Δ𝑢 as a
function of image position 𝑢 for three obstacle dis-
tances 𝑧.
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(c) Expected optical flow Δ𝑢 as a function of ob-
stacle distance 𝑧 for four image positions 𝑢.
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(d) Sensitivity to measurement errors in Δ𝑢 as a
function of obstacle distance 𝑧 for four image po-
sitions 𝑢.

Figure 2.7: Example of expected optical flow and sensitivity to measurement errors in Δ𝑢. Data generated for
a camera traveling at 10m/s with an optical flow algorithm running at 10Hz (Δ𝑡 = 0.1 s). Plot b shows that
the sensitivity to errors strongly increases near the center of the image and approaches infinity at the Focus-of-
Expansion (FoE). Plot d shows that obstacles near the FoE (𝑢 = 1 px) can only be detected at short ranges where
the sensitivity to measurement errors is low, while the range is significantly larger near the edge of the image
(𝑢 = 400 px).
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drone traveling at 10m/s. The conclusion drawn from this figure is that it may be difficult
to get an adequate measurement range near the FoE, as the sensitivity to measurement
errors rapidly increases for |𝑢| < 100 px.
Equation 2.14 suggests a few ways to reduce the sensitivity to errors. First of all, the

UAV can fly faster; this results in larger flow vectors relative to the measurement error.
Secondly, the frame rate can be reduced, this will also increase the size of the flow vectors.
Note, however, that there is an upper limit to Δ𝑡 as the resulting Δ𝑢 should remain small
enough that features remain in view. The frame rate should also remain high enough to
detect obstacles in time. Finally, the sensitivity can be reduced by using a higher-resolution
camera or a zoom lens, as 𝑢 will be larger (note that the sensitivity does not depend on the
camera’s focal length).
The final disadvantage of optical flow is that it requires sufficient texture to match

pixels between successive images. Like stereo vision, it can produce incorrect results for
textureless surfaces, finely or repetitively textured surfaces, reflections and transparency.
Not mentioned in this review is scene flow, the 3D equivalent of optical flow. The

result of scene flow is a 3-dimensional velocity vector for each pixel, together with a depth
or disparity. A review of this field is left for future work.

Appearance Unlike stereo vision or optical flow, appearance cues can be found inside a
single image. As humans we are already familiar with appearance-based cues because we
use them all the time, such as when looking at photographs. Photographs do not contain
disparities since they are flat, nor do they produce optical flow as they do not move. Still,
it is possible to estimate depth from these images; this is the field of monocular depth
estimation.
‘Appearance’ is not really a single cue, as is the case for stereo vision which relies

entirely on disparities or optical flow which results only from the flow vectors. Instead,
appearance cues are a collection of image features that depend in one way or another on
depth. An extensive treatment of depth cues used by humans can be found in [14]. The
following is a non-exhaustive list of appearance cues:
• Occlusion. Nearby objects cover those further away.
• Image size of known objects. Using the focal length of the camera, this can be
transformed back into a distance estimate.
• Different image sizes of similar objects. The objects that appear smaller in the image
are further away.
• Perspective. Parallel lines in the environment appear to converge in the image, their
distance provides an indication of depth.
• Vertical image position. Objects that appear higher in the image are further away.
• Texture gradient. Surface textures will appear more fine-grained if they are further
away.
• Light and shadow. This cue is especially relevant for surface relief. Light typically
comes from above, brighter regions are assumed to face upwards.
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• Atmospheric haze. Far-away objects take on a blue-ish tint.
• Sky segmentation. The sky is infinitely far away.

Most of these cues require knowledge about the environment, such as the presence of a
flat ground or parallel lines, knowledge about the size of objects, and so on. This makes
appearance-based depth estimation more difficult to implement than stereo vision or optical
flow. If it is even possible to implement some of these cues, this quickly leads to rather
ad-hoc solutions. For this reason, appearance-based cues have seen relatively little use in
computer vision until recently.
One of the first practical examples of monocular depth estimation for arbitrary outdoor

images is Saxena et al.’s Make3D [15, 16], first published in 2006. The system relies on
a combination of superpixel segmentation and hand-crafted features. These are fed into
a Markov Random Field (MRF) to model the relations between the regions in the image.
Another example of monocular depth estimation using classical machine learning methods,
this time based on the texture gradient cue, is given in [17].
The field of monocular depth estimation really took off with the arrival of Deep Learn-

ing. Using Convolutional Neural Networks (CNNs), it is no longer necessary to develop
feature descriptors by hand. Instead, these features and the relations between them are
learned from a large dataset of example images. Eigen et al. are the first to use a CNN
for monocular depth estimation in [18, 19]. Their network is trained on color images la-
beled with the true depth map obtained with a Kinect (NYU Depth v2) or LIDAR (KITTI).
The first example of Self-Supervised Learning for depth estimation is published in 2016 by
Garg et al. [3]. Instead of training to predict a depth map, their CNN is trained to predict
the other image in a stereo pair. Deep learning has made it possible to use appearance for
depth estimation by taking away the need to manually implement an estimator for these
cues. Section 2.2.2 will go into more detail on Deep Learning for depth estimation.
Appearance-based depth estimation has the advantage that it only requires a single

camera. Unlike optical flow, however, it can work without an estimate of the UAV’s
velocity. Secondly, appearance-based depth estimation relies on different features than
stereo vision and optical flow. As a result, appearance cues may work better for obstacles
where the previous algorithms are likely to fail. Appearance-based depth estimation could
therefore be a valuable addition for depth estimation, but this is not yet proven. Whether
obstacle avoidance will truly benefit from appearance cues is still an open question.
The main disadvantage of appearance-based depth perception is that it is inaccurate,

especially with regards to scale. Monocular depth perception lacks a reliable reference
length by which the scene can be scaled. In stereo vision this is provided by the baseline
between the cameras; in optical flow by the distance between the two images. In monocular
depth estimation, the only obvious source of this information is the known size of objects,
but this has to be learned from the training set and may vary between different object
instances.
The depth scale, however, is not the only problem of monocular depth estimation.

The relative depth between objects also suffers from large inaccuracies. This is effec-
tively demonstrated by Smolyanskiy et al. in [20]. The authors show that the depth map
produced by MonoDepth [21] looks visually correct; however, an overhead view of the
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(a) Depth estimation using the known size 𝐿 of an
object and its image size 𝑙.
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(b) Depth estimation using the vertical image posi-
tion 𝑣 and the altitude 𝐴 of the UAV.

Figure 2.8: Two examples of depth estimation based on appearance features.

resulting point cloud shows that this is clearly not the case. It is not clear whether this is a
limitation of MonoDepth or its training set, or a more fundamental issue with monocular
depth estimation.
Estimating the sensitivity to measurement errors of appearance cues is a bit more dif-

ficult than for stereo vision or optical flow as the cues are not always clearly defined or
based on simple geometry. An attempt is made to model the uncertainty of the two depth
cues: the size of known objects in the image and the vertical position of objects in the
image. These examples are shown in Figure 2.8. Using equal triangles, the image size 𝑙 of
an object can be found as follows: 𝑙 = 𝑓 𝐿 𝑧−1 (2.15)
Similarly, given the drone’s height 𝐴 above the terrain, the vertical position 𝑣 in the image
is found using: 𝑣 = 𝑓 𝐴 𝑧−1 (2.16)
Note that these equations are exactly the same when 𝐿 = 𝐴 and 𝑙 = 𝑣. For brevity only
the first cue will be discussed in more detail, the results also apply to the second case.
Equation 2.15 can be solved for 𝑧 to produce a depth estimate ̂𝑧:̂𝑧 = 𝑓 𝐿 𝑙−1 (2.17)

There are two sources of uncertainty in this equation. First of all, there may be a small
error in the length measurement 𝑙 in the image. Sensitivity to this error is found to be:𝜕 ̂𝑧𝜕𝑙 = −𝑓 𝐿 𝑙−2 (2.18)= 𝑧2𝑓 𝐿 (2.19)



2.2. Literature review

2

25

𝐵 20 cm 𝜖𝑑 0.1 px𝑓 400 px 𝜖Δ𝑢 1.0 pẋ𝑧 10m/s 𝜖𝑙 2 pxΔ𝑡 0.1 s 𝜖𝐿 3m𝐿 10m 𝜖𝐴 10m𝐴 100m
Table 2.1: Parameters used to generate Figure 2.9. Error bounds 𝜖𝑙, 𝜖𝐿 and 𝜖𝐴 are an educated guess, the bounds𝜖𝑑 and 𝜖Δ𝑢 are based on literature and the KITTI benchmark.
While this sensitivity also increases quadratically with distance, its magnitude remains
relatively small compared to the errors of stereo vision or optical flow: when observing
an object with size 𝐿 = 10m (e.g. a tree, or the length or wingspan of a Cessna 172) at a
distance of 100m with a focal length of 𝑓 = 400 px, the sensitivity to length measurement
errors is only 2.5m/px, compared to ∼ 100m/px for a stereo camera with baseline 𝐵 =20 cm and the same focal length.
The second source of error is uncertainty about the object’s true size 𝐿. Sensitivity to

these errors is found as follows: 𝜕 ̂𝑧𝜕𝐿 = 𝑓 𝑙−1 (2.20)= 𝑧𝐿 (2.21)
Note that unlike all error sensitivities found before, this one only grows linearly with
distance. This suggests that appearance-based depth estimation might have an advantage
over stereo vision or optical flow at longer distances, as long as the error in the image
length measurement 𝑙 remains sufficiently small.
Sensitivity to errors in the image length measurement (Equation 2.19) can be reduced

with a larger focal length 𝑓 . There is, however, no way to reduce the sensitivity to errors
in 𝐿 (Equation 2.21), as 𝐿 mainly depends on the object that happens to be in front of the
UAV.
In the example of the vertical image position, however, 𝐿 is equal to the altitude of the

drone. This altitude is mostly likely larger than the size of objects the drone will encounter,
which means this depth estimation method will be more accurate than using the size of the
object. Secondly, the sensitivity to errors can in this case be reduced by flying higher,
thereby increasing 𝐿.
This section on sensing is concluded with a comparison of the expected errors of stereo

vision, optical flow and appearance-based depth estimation. The expected error is calcu-
lated by multiplying the sensitivity (e.g. d ̂𝑧/d𝑑) with an estimated upper bound on said
error (e.g. 𝜖𝑑 = 0.1 px for stereo vision with subpixel disparities). Note that this is only a
first-order approximation of the error, the results may not be realistic as the expected error
approaches or exceeds the true distance 𝑧. A comparison chart of the depth estimation
methods is shown in Figure 2.9. The parameters used to generate this chart are listed in
Table 2.1.
While the results should be taken with a grain of salt, they do highlight the trends

found in this literature review. The error of optical flow is prohibitively large near the
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Figure 2.9: Comparison of expected error bounds for selected depth estimation methods.

center of the image (𝑢 = 1 px and 100 px), but comparatively decent near the edge of
the image (𝑢 = 400 px). The error could be reduced by flying faster, a speed of 10m/s
was assumed for this comparison. Stereo vision appears to be the best choice in this
scenario for obstacles up to a distance of ∼ 80m. Unlike optical flow, however, this depth
estimate should also be accurate near the center of the image. The result plotted here is
based on a stereo vision algorithm that can estimate subpixel disparities. Finally, at larger
distances the depth estimate based on the vertical position of objects performs best, due to
its predominantly linear increase in sensitivity to measurement errors.

Avoidance
When an obstacle is detected along the UAV’s direction of travel, it should perform an
avoidance maneuver to prevent a collision. There are different ways to handle this, from
the very simple and lightweight reflexive behaviors, to high-level planning in maze-like
environments.
The execution of an avoidance maneuver typically requires the following components:

1) motion planning, which determines the actions the UAV should take; 2) a map, a rep-
resentation of the obstacles in the vicinity of the UAV and 3) odometry, which is often
required to accurately perform the planned maneuver. These components will be briefly
discussed in the following subsections.

Motion planning Motion planning determines the action the UAV should take to avoid
collisions while moving towards its goal location. An overview of motion planning and
obstacle avoidance algorithms can be found in [22, 23].
Minguez et al. [23] make a distinction between global planning and local planning

(called ‘motion planning’ and ‘obstacle avoidance’ in their article, these terms will not be
used here to avoid confusion with the overall task of obstacle avoidance). Global planning
assumes that the location of all obstacles is known, the goal is to find a trajectory that
optimizes a given performance measure. Local planning assumes that only obstacles de-
tected by the UAV’s sensors are known. The goal here is to adapt the current trajectory of
the UAV to avoid a collision with nearby obstacles. Local planning has the disadvantage
that it can get trapped in certain situations (mazes for example, but these situations are
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unlikely in outdoor flight). However, unlike global planning it can function in unknown
environments. Local planning is therefore the most relevant for UAV obstacle avoidance.
Motion planning algorithms can be broadly divided into the following classes: reactive

planning, planning without dynamics and planning with dynamics. Reactive planning refers
to a class of algorithms that prescribe a control input or motion based directly on the
presence of obstacles. An example is the use of potential fields to determine the direction
of travel of the UAV: detected obstacles ‘repel’ the drone, preventing a collision. In
planning without dynamics the goal is to find a path for the UAV that guides it past the
detected obstacles. This path should also minimize a cost function, setting these algorithms
apart from reactive planning. Once a path is found, it is left to a lower-level controller to
actually follow it. An example is [24] where a Rapidly-exploring Random Tree (RRT) is
used to plan a path through a forest. Planning with dynamics also optimizes a cost function,
but includes a dynamic model of the UAV. Model Predictive Control (MPC) is an example
of this. The inclusion of dynamics ensures that the maneuver can actually be performed, but
requires a dynamic model of the UAV to be available. The use of dynamics is particularly
suitable for high-performance manneuvers (e.g. drone racing), while planning without
dynamics is more suitable for general-purpose applications as it does not require a model.
For brevity this section only lists examples of algorithms. The reader is referred to the

cited reviews for a more extensive overview of methods.

Maps Motion planning requires a map, but the exact function of the map differs per
algorithm. At the very least, the map serves to document the location of nearby obstacles;
even reactive planning will need this information. For more complicated algorithms, the
map allows the planning of an avoidance maneuver around the obstacles. Finally, a map
allows multiple observations of obstacles to be combined, which is the basic idea behind
SLAM.
Maps can be made at different levels of detail. Ground robots and autonomous cars

often create highly detailed maps of their immediate surroundings. These types of maps
are also applicable to UAVs flying at low altitudes or indoors, but their creation is compu-
tationally intensive. An example of less detailed maps for aircraft is the Enhanced Ground
Proximity Warning System (EGPWS), which uses relatively coarse-scaled static maps to
prevent terrain collisions on passenger aircraft. Such a map could also be used on UAVs
as a form of geofencing, but this would primarily apply to cruise flight as such a static map
is difficult to keep up to date at a high enough level of detail for take-offs and landings.
Table 2.2 lists map types that could be used to model the immediate surroundings

of the UAV during flight. The maps are divided into three classes: image-space maps,
discretized space maps and continuous space maps. Image space maps are essentially the
same as depth maps: they consist of pixels for which the distance towards the first obstacle
is stored. Discretized space maps split the surroundings of the drone into a collection of
discrete cells that can be free or occupied. These maps are commonly used for range-
sensor-based SLAM on indoor robots. Finally, continuous space maps do not discretize
the space around the UAV, but store a continuous position estimate for each measurement
point. A point cloud is a typical example of this map, but it is also possible to track the
position of entire objects.
The table furthermore lists the following properties: computational complexity gives an
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Image-space Discretized space (voxels) Continuous space
Cartesian Polar Point cloud Obstacle positions

Computational complexity Low High High High Low
Volumetric 2.5Da Yes Yes Nob Noc
Probabilistic No Occupancy Occupancy Position Position
Dynamic No No No Yes Yes
Single-frame Yes Yes Yes Yes Yes
Multi-frame No Yes No Yes Yes
Reference frame Body World Body Any Any

aVolumetric in horizontal and vertical directions but not in depth.
bIt is possible to fit a mesh on the point cloud or assume a small, fixed volume around each point.
cA fixed volume can be assumed for the obstacle, if known.

Table 2.2: Overview of common properties of map types. This table only lists the typical properties of these
maps; exceptions can likely be found for many entries in this table. Note that combinations of these maps are
possible (e.g. a cartesian voxel map for static obstacles and an EKF for the positions of other aircraft).

indication of the amount of processing power and memory required to build and maintain
the map. Single-frame maps are relatively lightweight, as are filter-based maps if they
have small covariance matrices (e.g. an EKF of obstacle positions). Maps that are con-
structed from multiple image frames tend to require more processing and memory. The
next properties describe the information a map may contain: volumetric maps describe
non-zero volumes of space, such as voxels. On the other hand, non-volumetric maps such
as point clouds model obstacles using infinitesimally small points. Additional processing
(e.g. mesh- or surface fitting, or expanding the points by a certain volume) of these maps
is required before they can be used to test for collisions. Probabilistic maps can explicitly
model uncertainty; either in the occupancy of parts of the environment, or in the position
estimate of points or obstacles. Dynamic maps can also model the velocities of obstacles.
Continuous-space maps are particularly suitable for this, as they can be updated over mul-
tiple frames without introducing quantization errors by storing intermediate states into a
discretized map.
In principle all of the maps in Table 2.2 can successfully be used on UAVs, but it

depends on the application which map is the most suitable. The most important deci-
sion is whether the map should combine multiple measurements (multi-frame) or represent
only a single measurement (single-frame). Combining multiple measurements allows the
drone to map large and complex environments; it is therefore particularly suited for indoor
operations but its use is limited to larger drones as the underlying algorithms can be com-
putationally intensive. Cartesian voxel maps are a common choice for this application (e.g.
[25, 26]). If the environment is simple enough that it can be captured in a single measure-
ment, then image-space maps are a logical choice as these require very little processing to
create and because other map types do not provide additional advantages if they do not fuse
multiple measurements. An example of the use of an image-space map for UAV obstacle
avoidance is found in [24]. For the avoidance of other aircraft, a continuous-space map is
a good choice as such a map is easy to update and can also model the velocity of the other
aircraft. An Extended Kalman Filter (EKF) with the states of the detected aircraft is an
example of such a map.
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Odometry To perform all but the most basic avoidance maneuvers, the UAV will need
an estimate of its velocity. Outdoors GPS is often available, but reflections can make it
inaccurate in densely built areas. Indoors, GPS is not available for navigation so a different
solution needs to be found.
A common solution for GPS-less flight is Visual Odometry (VO), where a camera is

used to estimate the velocity of the drone. The simplest methods directly transform the
optical flow from a bottom-facing camera into a velocity estimate; this is commonly com-
bined with sonar measurements to provide a sense of scale. More complex VO algorithms
are closely related to SLAM but lack loop closure capabilities. These algorithms often
estimate the UAV’s pose relative to a keyframe. The use of a keyframe instead of the inte-
gration of velocities prevents drift over time; errors only accumulate when new keyframes
are created.
VO algorithms can be separated into dense and sparse algorithms, and direct and in-

direct methods. A good description of these categories is provided in the introduction of
[27]. The dense and sparse attributes are similar to those in stereo vision and optical flow:
sparse algorithms only track a small number of keypoints, while dense algorithms use the
entire input image. Direct and indirect refers to the way that keypoints are matched or
tracked: direct methods rely only on the intensities of neighboring pixels, while indirect
methods first need to construct feature descriptors.
Both monocular, stereo and RGB-D vision can be used for VO. Stereo and RGB-D

have the advantage that the map can be initialized from a single observation; this is not the
case for monocular VO as one observation can only provide the bearing of the keypoints.
Since a depth map is already required for obstacle avoidance, it should also be used for
VO.
Another design consideration is the use of an Inertial Measurement Unit (IMU). IMUs

measure accelerations and angular velocities, which can be integrated to track the drone’s
pose. Additionally, it can provide an estimate of the gravity vector. The IMU typically
has a higher update rate than the camera and is also not sensitive to the appearance of
the environment. The integration of small measurement errors, however, causes the pose
estimate to drift over time – especially in the horizontal plane [28]. It is therefore not
practical to rely solely on the IMU, it needs to be fused with other measurements like
VO. There are two approaches to the fusion of IMU data with VO: tight coupling and
loose coupling. With tight coupling, the IMU measurements are used in the same filter
that performs the visual pose estimation, for instance in the update step of an EKF. With
loose coupling, the vision-based pose estimate is calculated separately, after which a second
filter is used to fuse it with the IMU measurement. Tight coupling produces more accurate
results, but loose coupling might be easier to implement with existing autopilot filters. A
second use of the IMU is in feature tracking. The IMU can be used to predict the next
position of keypoints; this estimate can reduce the search space for tracking. An example
of this principle can be found in [29].
An overview of VO methods is presented in Table 2.3. UAV obstacle avoidance ap-

plications should prefer methods that use stereo or RGB-D input together with the IMU.
Performance evaluation
Once a Collision Avoidance System (CAS) has been implemented, its performance should
be evaluated. The literature review on this subject can be kept brief: hardly any literature
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http://www.robots.ox.ac.uk/~gk/PTAM/


2.2. Literature review

2

31

exists on this topic. Most articles on obstacle avoidance demonstrate their method in an
example application, but there is no common benchmark on which they can be compared.
A first step towards such a benchmark was taken in [43]. One of the core ideas of

this paper is that the obstacle avoidance task can be split into smaller subtasks that can be
evaluated independently. For instance, the accuracy of obstacle detection can be evaluated
independently from the UAV’s motion planning algorithm or state estimator.
The main difficulty in the development of a benchmark is to find suitable metrics to

describe the avoidance problem: the metrics should be chosen such that different environ-
ments with the same metrics (e.g. obstacle density, typical obstacle size) result in the same
behavior. It should be possible to predict the performance of an obstacle avoidance system
when all relevant metrics of the target environment are available. Such a benchmark would
be extremely valuable both for UAVs and other types of robots.
A similar lack of benchmarks exists for robot navigation. A proposal for a navigation

benchmark is found in [44], perhaps this paper can also serve as inspiration for an obstacle
avoidance benchmark.

2.2.2. Deep Learning for depth perception
Because of strict weight constraints, UAV obstacle detection is strongly dependent on
vision. While earlier vision algorithms had to be designed and tuned by hand, the arrival
of Deep Learning allows depth estimation to be learned from large datasets. This section
presents an overview of recent literature and developments in the field of depth perception.
Since the first application of a Convolutional Neural Network (CNN) for depth perception
in 2014 [18] this field has been rapidly evolving. This is also illustrated by the articles
cited in this section, as the majority of them were uploaded to ArXiv between June 2018
and now. Each month, roughly ten new relevant papers appear on ArXiv.
Section 2.2.2 describes different depth perception tasks. Section 2.2.2 will discuss the

training of these networks including a brief overview of commonly used datasets. Finally,
section 2.2.2 presents some works on the analysis of networks after they have been trained.

Problems in depth perception
While the goal of depth perception is clear – the estimation of a depth map from input
images – there are a few ways this problem is formulated in literature. The most common
problem that is solved in literature is depth prediction: generating a depth map using only
one or more input images. A second problem in literature is that of depth completion.
In this case, a partial depth map is already available, such as the depth towards VO or
SLAM keypoints. The goal of the neural network is then to fill in the missing parts of
the depth map. Finally, recent literature has shifted towards the combination of depth
perception with other tasks in the same network. For instance, a single network performs
both depth estimation and object segmentation. The next subsections look more closely at
these problems.

Depth prediction The goal of depth prediction is the estimation of a depth map given
only one or more RGB images. The field of monocular depth prediction uses only one
image for its depth estimate. The first CNN for monocular depth prediction was presented
in 2014 by Eigen et al. [18]. This network was trained on images labeled with true depth
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maps. Because these maps are hard to obtain, Garg et al. [3] developed the first network
that used unsupervised learning. Training is performed by predicting the other image from
a stereo pair; it is no longer necessary to collect true depth maps. Godard et al. [21]
proposed further improvements to this technique. The recently published PyD-Net (July
2018) can run at ∼ 2Hz on a Raspberry Pi 3 CPU and still produce competitive results
[45].
While methods [3, 21] do not require true depth labels, they still need to use a stereo

camera to collect training data for monocular vision. As a result, these methods cannot be
used for on-board training of monocular vision. An alternative to these approaches is to
train on monocular image sequences. Examples of this approach are [46–48].
While it may seem redundant at first, it is also possible to perform depth prediction on

stereo images. The advantage of this over ‘normal’ stereo vision methods such as SGM is
that the neural network can also learn to include appearance cues. These provide additional
depth information that is not provided by just the disparities. An example of deep learning
for stereo vision is found in [49], where Self-Supervised Learning (SSL) is used to learn
stereo vision from scratch. After training, the network can compete with existing state-of-
the-art algorithms.
Compared to monocular vision, stereo vision has the advantage that a reliable reference

distance is available: the baseline between the two cameras. As a result, depth estimates
from stereo vision are more accurate than those from monocular vision. This point is
strongly argued by Smolyanskiy et al., who state that any application that relies on accurate
depth estimates and that can carry more than one camera should do so [20]. The use of a
stereo camera should be possible on all UAVs as even the ∼20 g DelFly can carry a small
stereo camera. The only reason the preliminary work in section 2.3 still looks at monocular
vision is that this allows appearance cues to be examined in isolation from disparity or flow
cues.

Depth completion Where depth prediction uses only RGB images, depth completion as-
sumes that some sparse depth information is available. This information can come, for
instance, from the depth of VO keypoints. In literature, LIDAR is also commonly men-
tioned as a source of sparse depth measurements.
Ma and Karaman [50] implement a network that uses sparse depth information and

then compare its performance to monocular depth estimation. They come to the interesting
conclusion that even a depth map generated from only 20 sparse depth measurements
without RGB images already has a higher accuracy than the monocular depth estimation
networks of [19, 51]. Note that this comparison is based on scale-aware metrics; the scale-
invariant error [18] is not reported so it is not possible to say whether the relative distances
are incorrect or that the monocular methods only suffer from a scaling error. Nevertheless,
the experiments show that sparse depth measurements can be a valuable addition for depth
estimation. The authors also check whether the use of RGB images in addition to sparse
depth estimates leads to further accuracy improvements: this is primarily the case for low
numbers of depth measurements, at higher numbers there is also an increase in accuracy
but it is small. The work of Ma and Karaman is continued in [52]; other recent examples
of depth completion are [53–55]. No examples were found where sparse depth completion
is combined with or compared to stereo vision.
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The good results from depth completion lead to an interesting design choice: is it better
to perform depth prediction and use the results for VO, or to use VO to collect sparse
measurements and use these to estimate a depth map? A third option has also appeared in
recent literature: use a single network to predict both depth and pose from image sequences.

Combined tasks: depth, pose, flow, segmentation, ... Recently a growing number of
articles is appearing on networks that combine depth estimation with other tasks. Com-
mon combinations are depth with pose, segmentation and/or optical flow. There are a few
potential advantages to combining these techniques in a single network: if filters can be
shared between tasks, this might lead to a lower total number of parameters. Secondly,
combining multiple tasks can potentially improve learning as the depth estimation is en-
couraged to use the (intermediate) results of, for instance, object segmentation and vice
versa. A review of these networks is left for future work; it is therefore not possible to
confirm these advantages in this chapter.
Training
Training is an essential component of Deep Learning. For depth estimation, two types of
training are common in literature: supervised and unsupervised (also called self-supervised).
Earlier examples of monocular depth estimation (e.g. [18]) rely on supervised learning.
The network is trained to replicate a true depth map that belongs to the input image. This
depth map is typically obtained using a LIDAR sensor or an RGB-D sensor (e.g. Mi-
crosoft’s Kinect). An advantage of supervised learning is that in most cases a true depth
value is available for every pixel. The major disadvantage, however, is that it requires an
additional sensor to capture the true depth of the scene. For this reason, supervised learning
cannot be used on-board a UAV; all training has to be performed offline.
In unsupervised learning, the true depth map is not available. Instead, unsupervised

learning often depends on a reconstruction error, where for instance the other images in a
stereo pair are predicted and compared to the true images (e.g. [3]). The advantage of un-
supervised learning is that the training data is easier to collect. Since no additional sensor
is required, learning can also be performed online, allowing the UAV to adapt to its envi-
ronment during operation. ‘Unsupervised learning’ is a bit of a misnomer as the methods
primarily rely on supervised training methods. The argument to call them unsupervised is
that no labeled data has to be provided from an external source. Unsupervised learning
is the same as Self-Supervised Learning (SSL), but this term does not introduce ambiguity
about the learning method, while it still makes it sufficiently clear that the supervision is
already provided by the input data. Therefore, only ‘SSL’ will be used in this chapter.
Recent articles have started to use Generative Adversarial Networks (GANs) for depth

perception (e.g. [56, 57]). In the GAN framework, a second network (the discriminator)
is trained to distinguish the network’s output from the training label. The depth perception
network (the generator) and discriminator are trained in alternation. In this framework the
discriminator essentially replaces the loss function, but unlike the loss function it is trained
specifically for the (last version of) the generator network and can therefore provide a more
precise measure of its performance.
GANs can be used in both supervised and self-supervised settings. In the former ([57]),

it compares the generated and true depth maps; in the latter ([56]) it compares reconstructed
and true images. In both papers the accuracy exceeds that of common benchmark papers.
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The (off-line) training of a neural network requires an appropriate dataset. The use of
publicly available dataset also allows a quantitative comparison between methods. Com-
monly used datasets are the KITTI stereo dataset8 and the NYUv2 dataset9 [58]. The
KITTI dataset is aimed at automotive applications; the images are obtained from a stereo
camera and LIDAR mounted on the front of a car. The NYUv2 dataset contains RGB-D
images captured in indoor environments. Other frequently-used datasets are Make3D10
[15, 16, 59] and the Cityscapes dataset11 [60].
Instead of using data captured in the real world, it is also possible to generate these from

a simulation. Examples of generated datasets are vKITTI12 [61] and Synthia13. Training
data can also be generated during closed-loop simulation. An example of this is Microsoft’s
AirSim14 for UAVs and autonomous cars. An advantage of simulation is that the actual
depth of all pixels is directly available. The disadvantage is that the generated images differ
from those captured in the real world – the reality gap. In [62] Zheng et al. propose to use
a GAN to reduce the difference between real and simulated images. The resulting network
can outperform [18] but not [3, 21] when subsequently evaluated on real datasets.

Analysis of trained networks
While there are many articles on deep learning for depth perception, no articles were found
on how the trained networks perform this task. There is a small number of articles that
focus on the analysis of CNNs in general. In [63] Zeiler and Fergus use unpooling and
deconvolution operations to map neuron activities back to the input space. Given an input
image, this technique produces an image that highlights the regions that cause a strong
activation of a selected neuron. This technique focuses on single neurons, but note that
[64] argues that it is the space spanned by multiple neurons can be more informative than
individual neuron activations. In a more recent paper Olah et al. [65] present a highly
detailed (interactive) overview of visualization techniques. This article provides a good
starting point for further research into neural network visualization.
The cited papers examine generic CNNs at a rather low level. No articles were found

that examine the high-level behavior of networks for depth perception. How exactly do
these networks estimate depth? This information is essential in order to predict the behavior
of these networks on other platforms – UAVs in this case. Therefore, section 2.3 presents
the first steps towards a high-level understanding of these networks.

2.3. Preliminary results

2.3.1. Monocular depth perception
The goal of this research is to use SSL to improve obstacle avoidance on UAVs. SSL
will be used for depth estimation as the need to use vision to sense the environment sets
8http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
9https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
10http://make3d.cs.cornell.edu/data.html
11https://www.cityscapes-dataset.com/
12http://www.europe.naverlabs.com/Research/Computer-Vision/
Proxy-Virtual-Worlds

13http://synthia-dataset.net/
14https://github.com/Microsoft/AirSim

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://make3d.cs.cornell.edu/data.html
https://www.cityscapes-dataset.com/
http://www.europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds
http://www.europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds
http://synthia-dataset.net/
https://github.com/Microsoft/AirSim
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Figure 2.10: Monocular depth estimation with MonoDepth [21]. Input image: KITTI stereo vision dataset (CC
BY-NC-SA 3.0)

Figure 2.11: The MonoDepth network does not transfer well to different viewpoints. The road on the left is seen as
a nearby obstacle. The high-rise building of EWI appears closer than the trees in front of it. Input image: Aanzicht
Mekelpark met studenten by D. Brinkman, © Delft University of Technology, https://repository.
tudelft.nl/view/MMP/uuid:cb952de1-34e8-4db3-a577-9177a62581ed?fullscreen=1.

UAVs apart from other vehicles. The first question to be asked is whether SSL-based
depth estimation can actually be used on a UAV. At first sight this may seem obvious:
why would it not work on a UAV? However, results indicate that this might not be as
simple as it appears.
This section presents experiments performed on theMonoDepth network [21]. MonoDepth

is a Self-Supervised monocular depth estimation network that is trained on the KITTI stereo
vision dataset. The network predicts disparities such that these minimize a reconstruction
error between two images of a stereo pair. On images in the KITTI dataset the network
performs quite well (Figure 2.10). However, when the network is used on images taken
from a different viewpoint (Figure 2.11), the accuracy of the depth map quickly degrades.
Clearly, a network trained on a dataset of automotive images cannot be transferred

directly to a UAV. Most likely it is possible to get MonoDepth to work on a UAV by
training it on a suitable dataset. However, that does not explain why the network trained
on KITTI fails. The results on KITTI images show that the network can estimate depth, but
apparently it does so using image features that do not work on UAVs. To guarantee correct
behavior it is important to know what these features are and under what circumstances they
are learned.
While there is a large and increasing number of articles on monocular depth perception,

there is not a single paper that analyses what these networks actually learn. This experiment
is a first step towards an understanding of monocular depth perception as learned by neural
networks. The goals of this experiment are:
• Provide insight into monocular vision. While useful for UAVs, this insight will
also be extremely valuable for automotive applications. With an understanding of

https://repository.tudelft.nl/view/MMP/uuid:cb952de1-34e8-4db3-a577-9177a62581ed?fullscreen=1
https://repository.tudelft.nl/view/MMP/uuid:cb952de1-34e8-4db3-a577-9177a62581ed?fullscreen=1
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the inner workings of monocular depth perception, it becomes easier to predict its
behavior and to make guarantees about its correctness.
• Provide insight into the use of monocular vision on UAVs. The results should explain
why the network trained on KITTI does not transfer well. The same experiments can
then be performed on a network trained on a UAV dataset, and the differences can
be compared.
• The features learned by MonoDepth might be replicated using simpler, lightweight
algorithms. This would enable the use of monocular vision on embedded hardware
and tiny UAVs, perhaps even the DelFly.

The problem with neural networks like MonoDepth is that they are black boxes. It is
difficult to analyze what is going on inside them. In that respect there is some overlap with
human depth perception, which is also difficult to take apart piece-by-piece. For neural
networks there are techniques to visualize the functions of individual neurons, but this is
a very low-level form of analysis. Instead, the experiments presented here will analyze
the behavior of the entire network using the time-tested scientific method: coming up with
hypotheses on how the network could estimate depth, then designing experiments that test
whether these hypotheses are true.
So what would be a good hypothesis on the inner workings of MonoDepth? The ex-

periments performed in this section test the following points:
• MonoDepth assumes there is a flat ground in front of the vehicle.
• MonoDepth uses color to detect the sky.
• MonoDepth estimates the distance towards obstacles using one or more of the fol-
lowing features:
– Apparent size of known obstacles.
– Vertical position in the image.

MonoDepth is trained on the KITTI dataset, which contains images taken from a forward-
facing camera on a car. The camera has a fixed attitude and height and in the majority
of the images there is a free section of road in front of the car. Rather than detecting the
road, MonoDepth can just assume it is there as this will be true for nearly all images in
the training set. It is hypothesized that MonoDepth assumes the presence of a flat ground
rather than detecting it. The ground’s depth estimate will be ‘overwritten’ by any obstacles
it detects.
The upper half of the image consists of sky and obstacles. The sky seems easy to

detect using its color or brightness and would result in a large number of correct pixels;
it is therefore assumed that MonoDepth does just that, possibly combined with a prior
expectation of seeing the sky in the upper half of the image.
With the ground and sky detected, the rest of the depth map consists of obstacles.

Following the list of appearance cues in section 3.5, likely candidates for depth estimation
towards obstacles are their apparent size and vertical position as both seem relatively easy
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(a) MonoDepth’s response to a completely white
input image. Although there is a hint of a ground
surface, the depth map (especially the top half) con-
tains a lot of garbage.

(b) Addition of a single thin line is enough to make
MonoDepth detect a floor and sky, or at least as-
sume they are there.

Figure 2.12: MonoDepth has strong prior expectations about the presence of a flat ground in the lower half of
the image and sky in the upper half. (Outlines added for visibility, these are not part of the input images.)

Figure 2.13: When the image is flipped vertically, the trees and sky in the lower half of the image are assumed to
be closer than the road in the upper half. If MonoDepth did not have prior expectations about a flat ground, the
disparity map would also have flipped vertically. Input image: KITTI stereo vision dataset (CC BY-NC-SA 3.0)

to measure, although the former also requires knowledge about the true size of various
types of obstacles.
If MonoDepth indeed assumes the presence of a flat ground, it should be possible to

make it ‘see’ a ground surface even if it isn’t actually there. This is attempted in Figure 2.12.
First, MonoDepth is presented with a completely blank input image to see if it will guess
the presence of ground and sky. This is not entirely the case. However, when a thin horizon
line is added to the image, MonoDepth is suddenly able to detect a floor and sky. Since
the input image contains no features other than a single line, these can only come from
MonoDepth’s prior expectations.
This prior expectation can also be demonstrated on real photographs, as shown in Fig-

ure 2.13. In this figure, a vertically flipped image from the KITTI dataset is presented to
MonoDepth. If MonoDepth would not assign a high prior probability to the presence and
location of the ground and sky, the resulting depth map would also be a flipped version of
the original depth map. This is, however, not the case. Instead, the resulting depth map
still assumes that the lower half of the image is closer than the upper half, confirming the
presence of this bias in the estimation.
It appears that MonoDepth indeed assumes the presence of a flat ground in the lower
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(a) Lower horizon line. (b) The original horizon line,
aligned with the horizon in the
KITTI images.

(c) Higher horizon line.

(d) Lower horizon line. (e) Original horizon line. (f) Higher horizon line.

Figure 2.14: a-c: The vertical position of the horizon line does not change the ground plane. While it has some
influence on the depth map, the ground plane still seems to end at the same height in the image. d-f : In real
images, the extent of the ground plane matches the position of the horizon. This suggests that MonoDepth has
a mechanism to detect the horizon that is not triggered in images a-c; it is not yet understood how this works.
Input images d-f: KITTI stereo vision dataset (CC BY-NC-SA 3.0)

half of the image, but does it assume a fixed depth map for the ground or does it detect
the horizon in the input image? The latter would allow the network to correct changes in
the pitch of the camera. To test this, the network is first presented with artificial images
based on Figure 2.12, but with the horizon line shifted to different positions. The result
is shown in Figure 2.14 a-c. In these artificial images it seems that MonoDepth does not
use the position of the line for the ground plane, although it does have some influence on
the depth map. This is also tested on real images by cropping different regions from one
of the KITTI images, see Figure 2.14 d-f. The result is different; now the ground plane
in the depth maps ends at the horizon in the input image. Apparently MonoDepth does
estimate the position of the horizon. At the time of writing it is not yet clear how this
works. Note that MonoDepth’s correction to the pitch is not perfect: the depth towards
obstacles appears to have changed, especially in Figure 2.14 d.
Does MonoDepth also detect roll angles? This is tested by rotating the input images,

the result is shown in Figure 2.15. It appears that MonoDepth does not detect the roll
angle of the camera: the ground surface still appears flat. Also note the tree trunks that
appear vertical in the depth map even though they are clearly tilted in the input image. This
seems another example of MonoDepth assuming the presence of certain features rather than
actually observing them.
The second hypothesis is that MonoDepth detects the sky using color segmentation.

While this sounds plausible, Figure 2.10 already hints that this is not entirely true: in the
depth map the sky appears closer than the trees that occlude it. Figure 2.13 also shows that
there is a prior expectation of the position of the sky in the upper half of the image; the
sky color in the bottom half of the image does not result in an infinite depth (although its



2.3. Preliminary results

2

39

(a) When the artificial horizon line is tilted, the
ground surface remains flat in the depth map. There
are some artefacts where the line is above the as-
sumed horizon.

(b) Even though the input image is tilted, the road
surface appears more-or-less flat in the disparity
map. Also notice the trees that are vertical in the
disparity map but clearly tilted in the input image.

Figure 2.15: Both in artificial and real images MonoDepth does not appear to detect roll motions and will still
assume a flat road surface and vertically oriented obstacles. Input image b: KITTI stereo vision dataset (CC
BY-NC-SA 3.0)

(a) Original image. (b) Blue sky. No difference in the depth map.

(c) Black sky. The sky appears further away,
there are some artifacts around the traffic light.

(d) Red sky. The sky appears further away.

Figure 2.16: Sensitivity to sky color. There is no perceivable difference between the depth maps for white and
blue sky, colors that naturally occur in the training dataset. There is some difference when the sky is made black
or red, but the effect remains relatively small. Input image: KITTI stereo vision dataset (CC BY-NC-SA 3.0)
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Figure 2.17: MonoDepth’s depth perception can easily be triggered using simple visual features. Notice how the
right rectangle appears to be further away than the left, even though they are the same size.

observed depth is further than that of the trees).
In Figure 2.16 the sky is replaced with different colors. The figure shows that unnatural

colors have some effect on the depth estimate, but do not cause large disturbances such as
objects appearing at close distance. These results show that MonoDepth does not detect
the sky using (only) color segmentation. What mechanism it uses instead remains to be
found in further research.
The final hypothesis on the workings of MonoDepth concerns the depth estimation of

obstacles. Two options appear likely: the obstacle’s size is used, or its vertical position in
the image.
Figure 2.17 provides a first clue. The image shows that MonoDepth’s perception of

obstacles is easy to trigger: black rectangles are already shown as obstacles in the depth
map. More importantly, however, is how it determined the distance towards the rectangles:
the rectangles are the same size in the image but at different vertical positions. They are
placed at different depths, which suggests that the vertical position had a strong influence
on this estimate.
Further evidence towards this conclusion is presented in Figure 2.18. In this figure,

three scenarios are presented to the network: the real-life scenario in which one car is
smaller and higher in the image, one where the car is only smaller, and one where it is only
placed at a higher position. In all cases, the vertical position of the car appears to control
the depth estimate.
A final clue can be found back in Figure 2.14 d where the camera pitch was changed.

When the camera is pitched up, the obstacles move downwards in the image. In the result-
ing depth map, the obstacles appear closer.
There are a few possible reasons why the vertical position is used as the main cue

for depth. First of all, it might be easier for a CNN to measure the vertical position than
the scale of obstacles because the convolution operation is translation-invariant but not
scale invariant. Secondly, since the camera is fixed at a nearly constant height and attitude,
distance estimates based on the vertical image position may be more accurate than estimates
based on the scale as the latter depend on the real-world dimensions of the obstacle which
can contain large variations.
What do these results mean for the use of MonoDepth on a UAV? The strong as-

sumption of a flat ground in front of the camera is not compatible with the large pitch and
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Figure 2.18: MonoDepth’s depth estimation depends on the vertical position of objects in the image, not their
apparent size. Top: the cars are assigned the same disparity, even though the car on the right has a smaller
apparent size. Middle: the right car is smaller and positioned higher in the image (as would be the case in real
images), it is correctly estimated to be further away. Bottom: the car on the right has the same apparent size as
the one on the left. Still, it is indicated to be further away as its vertical position in the image is higher. Cars:
KITTI stereo vision dataset (CC BY-NC-SA 3.0)
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roll angles expected on a UAV. The same holds for the use of vertical image position to
estimate the depth towards obstacles: this assumes a constant height above the ground and
a constant pitch angle. In conclusion, MonoDepth trained on the KITTI dataset can not
be directly transferred to a UAV. Training on a suitable dataset for UAVs should reveal
whether these problems come from the use of the KITTI dataset for training or whether
they are more fundamental.

The ideas in this section were developed together withGuido de Croon. In 2019we published
a conference paper on this topic at the International Conference on Computer Vision:15

Tom van Dijk and Guido de Croon. How Do Neural Networks See Depth
in Single Images? In The IEEE International Conference on Computer Vision
(ICCV), October 2019. http://openaccess.thecvf.com/content_
ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_
in_Single_Images_ICCV_2019_paper.html

2.3.2. Flight tests
Flight tests were performed to get more practical experience with visual obstacle avoidance.
The system uses a combination of stereo vision and visual odometry for obstacle avoidance,
even in GPS-less environments. These flight tests were performed as part of the Percevite
project (www.percevite.org).

Stop-before-obstacle with OptiTrack
The first task towards obstacle avoidance was the implementation of visual obstacle de-
tection on the Parrot SLAMDunk. This work started with a review on stereo vision and
optical flow (subsection 2.2.1). The review showed that SGBM [2] still belongs to the
best-performing algorithms. An implementation of SGBM was already present on the
SLAMDunk and performed better than the OpenCV implementation due to its use of the
GPU.
The depth map obtained from SGBM is then used as follows: a Region of Interest (ROI)

is cropped from the center of the image where the view is not occluded by rotors or other
parts of the drone. Of this region, the 5th percentile of depth values is calculated. The
use of the 5th percentile instead of the minimum value adds some robustness to noise, at
the cost of missing tiny obstacles (although this has not been a problem in practice). The
5th-percentile distance is sent to the autopilot as the distance to the nearest obstacle in front
of the UAV. Additionally, the number of valid pixels (pixels for which a disparity can be
found without ambiguity) is sent to the autopilot; if this value is too low the UAV is not
allowed to move forward.
The movement logic is implemented as a Paparazzi16 autopilot module (but general

enough to be ported to other autopilots). The movement of the UAV is controlled using a
waypoint; this waypoint can only be moved within the region that is observed to be free
of obstacles with a sufficient safety margin. Since the waypoint is always in a safe region,
this should prevent collisions when used in a static environment, provided that the drone
15Chapter 3
16http://wiki.paparazziuav.org/wiki/Main_Page

http://openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html
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Figure 2.19: Parrot Bebop 2 with SLAMDunk stopping in front of an obstacle using SGBM and OptiTrack.
(March 2018.)

can maintain its position without drift. At this stage, the OptiTrack system inside the TU
Delft Cyberzoo was used for position feedback, so there was no drift present.
The full system was successfully demonstrated in March 2018 in the Cyberzoo (Fig-

ure 2.19). The code developed for the SLAMDunk/ROS is published at https://
github.com/tomvand/percevite_slamdunk, the Paparazzi module is published
at https://github.com/tomvand/paparazzi/tree/percevite.

Implementation of ‘embedded Visual Odometry’
While the system of March 2018 worked, its dependency on OptiTrack was a strong lim-
itation. Work on VO started with a review of existing methods (Table 2.2.1). Out of
the reviewed methods, the following were evaluated on the SLAMDunk: ORB-SLAM217
[31], OKVIS18 [33] and SVO219 [30]. However, all of these packages had performance
issues either in terms of run-time (ORB-SLAM2, OKVIS) or drift (SVO2). The optical
flow algorithm of the Paparazzi autopilot was also evaluated but was found to produce poor
velocity estimates or cause segmentation faults, leading to a crash of the autopilot.
Since none of the readily available packages was suitable for use on the SLAMDunk,

there was no other choice but to implement a lightweight alternative. Encouraged by the
results of [26], the embedded Visual Odometer (eVO) algorithm by Sanfourche et al. [29]
was selected. The algorithm is a relatively straightforward implementation of VO using the
Perspective-3-Point (P3P) algorithm. P3P is used to compute the UAV’s pose relative to a
single keyframe of 3D points; these 3D points are obtained using the depth map of SGBM.
The run-time of eVO is reduced by using a fixed position for the points in the keyframe;
17https://github.com/raulmur/ORB_SLAM2
18https://github.com/ethz-asl/okvis_ros
19http://rpg.ifi.uzh.ch/svo2.html

https://github.com/tomvand/percevite_slamdunk
https://github.com/tomvand/percevite_slamdunk
https://github.com/tomvand/paparazzi/tree/percevite
https://github.com/raulmur/ORB_SLAM2
https://github.com/ethz-asl/okvis_ros
http://rpg.ifi.uzh.ch/svo2.html
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Figure 2.20: Body-frame velocities estimated using embedded Visual Odometer (eVO) compared to the ground-
truth from OptiTrack. The figure shows both the raw estimates (eVO) and the velocity estimates after fusion
with the accelerometer readings (INS). In general the estimate of eVO corresponds well to the OptiTrack mea-
surements and appears to be less noisy (this may depend on the OptiTrack calibration and lighting conditions in
the Cyberzoo). The INS estimates have a slight bias (especially in the y axis) that comes from the accelerometer.
Possibly the SLAMDunk is not placed exactly above the Center-of-Gravity (CoG) of the drone.
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Figure 2.21: UAV trajectory estimated using eVO as input to the INS, compared to the ground truth captured
using the OptiTrack system. The starting position of the UAV is indicated by the circle at (0, 0). The final
position error was 50 cm after a flight of 60 s.
these are not further refined when new measurements arrive. Secondly, the gyroscope is
used to predict the next positions of the keypoints, thereby lowering the search region for the
optical flow algorithm. My implementation of eVO is published at https://github.
com/tomvand/openevo (and https://github.com/tomvand/openevo-ros
for the ROS wrapper). This implementation does not reach the run-times reported in [29],
but still runs at a rate of ∼ 5 − 10Hz on the SLAMDunk.
The velocity estimates from eVO are sent to Paparazzi, where the horizontal EKF

combines the velocities with accelerometer measurements to get a final estimate of the
UAV’s velocity and position. The world position and angular rates – also estimated by
eVO – are currently unused. The eVO algorithm was tested inside the Cyberzoo and
found to be surprisingly robust: it was able to follow the drone’s trajectory even when no
textured panels were placed around the edge of the Cyberzoo. Test flight results are shown
in Figure 2.20 and 2.21. The drone could successfully navigate between waypoints and
stop in front of obstacles (Figure 2.22).

Outdoor test flights
Outdoor test flights allowed eVO and SGBM to be tested in real outdoor environments
with natural obstacles and lighting and under windy conditions. The velocity estimate

https://github.com/tomvand/openevo
https://github.com/tomvand/openevo
https://github.com/tomvand/openevo-ros
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Figure 2.22: Stop-before-obstacle using eVO. (July 2018.)

Figure 2.23: Outdoor stop-before-obstacle tests at ENAC. (August 2018.)
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of eVO was found accurate enough for the UAV to maintain its position under windy
conditions. SGBM was able to reliably detect obstacles, although it produced a few false
positive detections when facing the sun. Tests of the full obstacle avoidance system were
performed by sending the drone towards obstacles. In most of the cases the drone stopped
successfully in front of the obstacle (Figure 2.23).
A second goal of the outdoor flights was to add GPS to the position estimate of the

drone. The use of GPS allows the UAV to follow pre-programmed trajectories and is
more in line with the target applications. Fusion of GPS with eVO velocity estimates was
successfully demonstrated during short test flights. Longer GPS trajectories were however
not tested because of battery limitations.
During the outdoor tests the ground-truth position of the drone could not be recorded,

most test flights are instead recorded as videos of the UAV combined with logs of its
internal estimates. The outdoor tests were very successful; during the week the UAV only
crashed once, possibly as the result of human error instead of an algorithm failure.
The collision avoidance system described here was used in the International Micro Air Ve-
hicle (IMAV) competition 2018, where the ENAC/TU DELFT Team Paparazzi reached first
place in the outdoor competition. http://www.imavs.org/imav-2018-awards/
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3
Monocular depth perception

Deep neural networks have lead to a breakthrough in depth estimation from single images.
Recent work shows that the quality of these estimations is rapidly increasing. It is clear that
neural networks can see depth in single images. However, to the best of our knowledge,
no work currently exists that analyzes what these networks have learned.
In this chapter we take four previously published networks and investigate what depth cues
they exploit. We find that all networks ignore the apparent size of known obstacles in favor
of their vertical position in the image. The use of the vertical position requires the camera
pose to be known; however, we find that these networks only partially recognize changes
in camera pitch and roll angles. Small changes in camera pitch are shown to disturb the
estimated distance towards obstacles. The use of the vertical image position allows the
networks to estimate depth towards arbitrary obstacles – even those not appearing in the
training set – but may depend on features that are not universally present.

The contents of this chapter have been published as:
van Dijk, T., de Croon, G. (2019). How do neural networks see depth in single images?
Proceedings of the IEEE/CVF International Conference on Computer Vision.
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3.1. Introduction
Stereo vision allows absolute depth to be estimated using multiple cameras. When only a
single camera can be used, optical flow can provide a measure of depth; or if images can
be combined over longer time spans then SLAM or Structure-from-Motion can be used
to estimate the geometry of the scene. These methods tend to treat depth estimation as a
purely geometrical problem, ignoring the content of the images.
When only a single image is available, it is not possible to use epipolar geometry.

Instead, algorithms have to rely on pictorial cues: cues that indicate depth within a single
image, such as texture gradients or the apparent size of known objects. Shape-from-X
methods (e.g. [1, 2], [3], [4]) use some of these cues to infer shape, but often make strong
assumptions that make them difficult to use in unstructured environments such as those
seen in autonomous driving. Other cues such as the apparent size of objects may require
knowledge about the environment that is difficult to program by hand. As a result, pictorial
cues have seen relatively little use in these scenarios until recently.
With the arrival of stronger hardware and better machine-learning techniques – most

notably Convolutional Neural Networks (CNN) – it is now possible to learn pictorial cues
rather than program them by hand. One of the earliest examples of monocular depth esti-
mation using machine learning was published in 2006 by Saxena et al. [5]. In 2014, Eigen
et al. [6] were the first to use a CNN for monocular depth estimation. Where [6] still re-
quired a true depth map for training, in 2016 Garg et al. proposed a new scheme that allows
the network to learn directly from stereo pairs instead [7]; this work was further improved
upon by Godard et al. in [8]. In parallel, methods have been developed that use monoc-
ular image sequences to learn single-frame depth estimation in an unsupervised manner,
of which the works by Zhou et al. [9] and Wang et al. [10] are examples. Recent work
focuses primarily on the accuracy of monocular depth estimation, where evaluations on
publicly available datasets such as KITTI [11] and NYUv2 [12] show that neural networks
can indeed generate accurate depth maps from single images. However, to the best of our
knowledge, no work exists that investigates how they do this.
Why is it important to know what these neural networks have learned? Firstly, it is

difficult to guarantee correct behavior without knowing what the network does. Evaluation
on a test set shows that it works correctly in those cases, but it does not guarantee correct
behavior in other scenarios. Secondly, knowing what the network has learned provides
insight into training. Additional guidelines for the training set and data augmentation may
be derived from the learned behavior. Thirdly, it provides insight into transfer to other
setups. With an understanding of the network, it is for instance easier to predict what the
impact of a change in camera height will be and whether this will work out-of-the-box,
require data augmentation or even a new training set.
In this chapter, we take four previously published neural networks (MonoDepth by

Godard et al. [8], SfMLearner by Zhou et al. [9], Semodepth by Kuznietsov et al. [13]
and LKVOLearner by Wang et al. [10]) and investigate their high-level behavior, where
we focus on the distance estimation towards cars and other obstacles in an autonomous
driving scenario. Section 3.2 gives an overview of related literature. In section 3.3 we
show that the all of the networks rely on the vertical image position of obstacles but not on
their apparent size. Using the vertical position requires knowledge of the camera pose; in
section 3.4 we investigate whether the camera pose is assumed constant or observed from
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the images. For MonoDepth we investigate in section 3.5 how it recognizes obstacles and
finds their ground contact point. We discuss the impact of our results in section 3.6.

3.2. Related work
Existing work on monocular depth estimation has extensively shown that neural networks
can estimate depth from single images, but an analysis of how this estimation works is
still missing. Feature visualization and attribution could be used to analyze this behavior.
One of the earlier examples of feature visualization in deep networks can be found in [14].
The methods have been improved upon in e.g. [15, 16] and an extensive treatment of
visualization techniques can be found in [17]. In essence, the features used by a neural
network can be visualized by optimizing the input images with respect to a loss function
based on the excitation of a single neuron, a feature map or an entire layer of the network.
The concurrent work of Hu et al. [18] in which the authors perform an attribution analysis
to find the pixels that contribute most to the resulting depth map is most closely related
to our work. However, these methods only provide insight into the low-level workings
of CNNs. A collection of features that the neural network is sensitive to is not a full
explanation of its behavior. A link back to depth cues and behavior in more human terms
is still missing, which makes it difficult to reason about these networks.
In this chapter, we take a different approach that is perhaps more closely related to the

study of (monocular) depth perception in humans. We treat the neural network as a black
box, only measuring the response (in this case depth maps) to certain inputs. Rather than
optimizing the inputs with regards to a loss function, we modify or disturb the images and
look for a correlation in the resulting depth maps.
Literature on human depth perception provides insight into the pictorial cues that could

be used to estimate distance. The following cues from [19] and more recent reviews [20, 21]
can typically be found in single images:
• Position in the image. Objects that are further away tend to be closer to the horizon.
When resting on the ground, the objects also appear higher in the image.
• Occlusion. Objects that are closer occlude those that lie behind them. Occlusion
provides information on depth order, but not distance.
• Texture density. Textured surfaces that are further away appear more fine-grained
in the image.
• Linear perspective. Straight, parallel lines in the physical world appear to converge
in the image.
• Apparent size of objects. Objects that are further away appear smaller.
• Shading and illumination. Surfaces appear brighter when their normal points to-
wards a light source. Light is often assumed to come from above. Shading typically
provides information on depth changes within a surface, rather than relative to other
parts of the image.
• Focus blur. Objects that lie in front or behind the focal plane appear blurred.
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𝑍
𝑌

(𝑍, 𝑌 )
𝐻

𝑓
(𝑓, 𝑦)ℎ

Figure 3.1: True object size𝐻 and position 𝑌 , 𝑍 in the camera frame and vertical image position 𝑦 and apparent
size ℎ in image coordinates. Image coordinates are measured from the center of the image.
• Aerial perspective. Very far away objects (kilometers) have less contrast and take
on a blueish tint.

Of these cues, we expect that only the position in the image and apparent size of objects
are applicable to the KITTI dataset; other cues are unlikely to appear because of low image
resolution (texture density, focus blur), limited depth range (aerial perspective) or they are
less relevant for distance estimation towards obstacles (occlusion, linear perspective and
shading and illumination).
Both cues have been experimentally observed in humans, also under conflicting con-

ditions. Especially the vertical position in the visual field has some important nuances.
For instance, Epstein shows that perceived distances do not solely depend on the vertical
position in the visual field, but also on the background [22]. Another important contextual
feature is the horizon line, which gains further importance when little ground (or ceiling)
texture is present [23]. Using prismatic glasses that manipulated the human subjects’ vi-
sion, Ooi et al. showed that humans in real-world experiments use the angular declination
relative to the ‘eye level’ [24] rather than the visual horizon, where the eye level is the
expected height of the horizon in the visual field. The apparent size of objects also in-
fluences their estimated distance. Sousa et al. performed an experiment where subjects
needed to judge distances to differently-sized cubes [25]. The apparent size of the cubes
influenced the estimated distance even though the true size of the cubes was not known
and the height in the visual field and other cues were present. No work was found that
investigates whether these observations also apply to neural networks for depth estimation.

3.3. Position vs. apparent size
As stated in section 3.2, the vertical image position and apparent size of objects are the
most likely cues to be used by the networks. Figure 3.1 shows how these cues can be used
to estimate the distance towards obstacles. The camera’s focal length 𝑓 is assumed known
and constant and is implicitly learned by the neural network. We furthermore assume that
the camera’s pitch angle relative to the horizon is small; pitch angles can therefore be
approximated by a shift in vertical image coordinates 𝑦, where the horizon level 𝑦ℎ is used
as a measure for the camera’s pitch. All coordinates are measured relative to the center of
the image.
Given the obstacle’s real-world size 𝐻 and apparent size ℎ in the image, the distance

can be estimated using: 𝑍 = 𝑓ℎ𝐻 (3.1)
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1.0 1.5 3.0

Position and size

Position only

Size only

Relative distance

Figure 3.2: Example test images and resulting disparity maps from MonoDepth. The white car on the left is
inserted into the image at a relative distance of 1.0 (left column), 1.5 (middle column) and 3.0 (right column),
where a distance of 1.0 corresponds to the size and position at which the car was cropped from its original image.
In the top row, both the position and apparent size of the car vary with distance, in the middle row only the
position changes and the size is kept constant, and in the bottom row the size is varied while the position is
constant. The region where the estimated distance is measured is indicated by a white outline in the disparity
maps.
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Figure 3.3: Influence of vertical image position and apparent size cues on depth estimates. Shaded regions indicate±1SD (𝑁 = 1862) for the network by Godard et al. When both depth cues are present, all networks successfully
estimate the distance towards the objects, except Wang et al.’s which overestimates the distance. When only the
vertical position is available, the distance is either over- or underestimated and the standard deviation of the
measurement increases (only shown for MonoDepth). When only the apparent size is available, none of the
networks are able to estimate distance.
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This requires the obstacle’s true size 𝐻 to be known. The objects encountered most often
in the KITTI dataset come from a limited number of classes (e.g. cars, trucks, pedestrians),
where all objects within a class have roughly the same size. It is therefore possible that the
networks have learned to recognize these objects and use their apparent size to estimate
their distance.
Alternatively, the networks could use the vertical image position 𝑦 of the object’s

ground contact point to estimate depth. Given the height 𝑌 of the camera above the ground,
the distance can be estimated through:𝑍 = 𝑓𝑦 − 𝑦ℎ 𝑌 (3.2)

This method does not require any knowledge about the true size𝐻 of the object, but instead
assumes the presence of a flat ground and known camera pose (𝑌 , 𝑦ℎ). These assumptions
also approximately hold in the KITTI dataset.

3.3.1. Evaluation method
To find which of these cues are used by the networks, three sets of test images are generated:
one in which the apparent size of objects is varied but the vertical position of the ground
contact point in the image is kept constant, one in which the vertical position is varied but
the size remains constant, and a control set in which both the apparent size and position
are varied with distance – as would be expected in real-world images.
The test images are generated as follows: the objects (mostly cars) are cropped from

the images of KITTI’s scene flow dataset. Each object is labeled with its location relative
to the camera (e.g. one lane to the left, facing towards the camera) and with the position
in the image it was cropped from. Secondly, each image in the test set was labeled with
positions where an obstacle could be inserted (e.g. the lane to the left of the camera is
still empty). Combining this information with the object labels ensures that the test images
remain plausible.
The true distance to the inserted objects is not known; instead the network’s ability

to measure relative distances will be evaluated. Distances are expressed in relation to the
original size and position of the object, which is assigned a relative distance 𝑍′/𝑍 = 1.0.
The relative distance is increased in steps of 0.1 up to 3.0 and controls the scaling 𝑠 and
position 𝑥′, 𝑦′ of the object as follows: 𝑠 = 𝑍𝑍′ , (3.3)
and 𝑥′ = 𝑥 𝑍𝑍′ , 𝑦′ = 𝑦ℎ + (𝑦 − 𝑦ℎ) 𝑍𝑍′ (3.4)
with 𝑥′, 𝑦′ the new coordinates of the ground contact point of the object and with 𝑦ℎ the
height of the horizon in the image which is assumed constant throughout the dataset.
The estimated depth towards the car is evaluated by averaging the depth map over a

flat region on the front or rear of the car (Figure 3.2). A flat region is used rather than
the entire object to prevent the estimated length of the vehicle from influencing the depth
estimate; the length is very likely dependent on the apparent size of the object, while the
distance might not be.
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3.3.2. Results
The results of this experiment are shown in Figure 3.3. When both the position and scale
are varied, all depth estimates except Wang et al.’s behave as expected: the estimated
depth stays close to the true depth of the object which shows that the networks still work
correctly on these artificial images. When only the vertical position is varied, the networks
can still roughly estimate the distance towards the objects, although this distance is slightly
overestimated (Godard et al., Zhou et al., Wang et al.) or underestimated (Kuznietsov et
al.). Additionally, the standard deviation of the distance estimate has increased compared
to the control set. The most surprising result is found when only the apparent size of
the object is changed but the ground contact point is kept constant: none of the networks
observe any change in distance under these circumstances.
These results suggest that the neural networks rely primarily on the vertical position of

objects rather than their apparent size, although some change in behavior is observed when
the size information is removed. The fact that all four networks show similar behavior
also suggests that this is a general property that does not strongly depend on the network
architecture or training regime (semi-supervised, unsupervised from stereo, unsupervised
from video).

3.4. Camera pose: constant or estimated?
The use of vertical position as a depth cue implies that the networks have some knowledge
of the camera’s pose. This pose could be inferred from the images (for instance, by finding
the horizon or vanishing points), or assumed to be constant. The latter assumption should
work reasonably well on the KITTI dataset, where the camera is rigidly fixed to the car
and the only deviations come from pitch and heave motions of the car and from slopes
in the terrain. It would, however, also mean that the trained networks cannot be directly
transferred to different camera setups. It is therefore important to investigate whether the
networks assume a fixed camera pose or estimate this on-the-fly.
If the networks can measure the camera pitch, then changes in pitch should also be

observed in the estimated depth map. The unmodified KITTI test images already have
some variation in the horizon level; in an initial experiment we look for a correlation
between the true horizon level in the images (determined from the Velodyne data) and the
estimated horizon level in the depth estimates from MonoDepth. The horizon levels were
measured by cropping a central region of the disparity map (the road surface) and using
RANSAC to fit a line to the disparity-y pairs. Extrapolating this line to a disparity of zero
(i.e. infinite distance) gives the elevation of the horizon. For each image, this procedure
was repeated five times to average out fitting errors from the RANSAC procedure.
Figure 3.4 shows the relation between the true and estimated horizon levels. While it

was expected that MonoDepth would either fully track the horizon level or not at all, a
regression coefficient of 0.60 was found which indicates that it does something between
these extremes.
A second experiment was performed to rule out any potential issues with the Velodyne

data and with the small (±10 px) range of true horizon levels in the first experiment. In this
second experiment, a smaller region is cropped at different heights in the image (Figure 3.5).
For each image, seven crops are made with offsets between -30 and 30 pixels from the
image center, which approximates a change in camera pitch of ±2-3 degrees. Instead of
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Figure 3.4: True and estimated horizon levels in unmodified KITTI images. Results for MonoDepth (Godard
et al.). A medium-to-large correlation is found (Pearson’s 𝑟 = 0.50, 𝑁 = 1892) but the slope is only 0.60,
indicating that the true shift in the horizon is not fully reflected in the estimated depth map.

-30 px

+30 px

30
0 

px

993 px

Figure 3.5: Larger camera pitch angles are emulated by cropping the image at different heights.
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Figure 3.6: True and estimated shifts in horizon levels after cropping the images at different heights. Shaded
regions indicate ±1SD for the network by Godard et al. (𝑁 = 194, six outliers > 3 SD removed).
using the Velodyne data to estimate the true horizon level, the horizon level from the depth
estimate of the centrally cropped image is used as a reference value. In other words, this
experiment evaluates how well a shift in the horizon level is reflected in the depth estimate,
rather than its absolute position.
The results for all four networks are shown in Figure 3.6. A similar result as in the

previous experiment is found: all networks are able to detect changes in camera pitch, but
the change in the horizon level is underestimated by all networks. Since the networks use
the vertical position of obstacles to estimate depth, we expect this underestimation to affect
the estimated distances. To test this hypothesis, we use the same pitch crop dataset and
evaluate whether a change in camera pitch causes a change in obstacle disparities. The
results are shown in Figure 3.7. The estimated disparities are indeed affected by camera
pitch. This result also suggests that the networks look at the vertical image position of
objects rather than their distance to the horizon, since the latter does not change when the
images are cropped.

3.4.1. Camera roll
Similarly to the pitch angle, the roll angle of the camera influences the depth estimate
towards obstacles. If the camera has a nonzero roll angle, the distance towards obstacles
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Figure 3.7: Changes in camera pitch disturb the estimated distance towards obstacles. Shaded regions indicate±1SD for the network by Godard et al.
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Figure 3.8: Camera roll angles are emulated by cropping smaller, tilted regions from the original KITTI images.
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Figure 3.9: True and estimated roll shifts in the cropped images. For all networks, the change in road surface
angle is smaller than the true angle at which the images are cropped. Shaded regions indicate ±1SD for the
network by Godard et al. (𝑁 = 189, eleven outliers > 3 SD removed).
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Figure 3.10: Objects that are not found in the training set (fridge, dog) are not reliably detected when pasted into
the image.

does not only depend on their vertical position but also on their horizontal position in the
image. A similar experiment was performed as for the pitch angle: a smaller region of the
images was cropped at varying angles (Figure 3.8). To measure the roll angle, a Hough line
detector was applied to a thin slice of the depth map to find the angle of the road surface.
As in the previous experiment, we look for a correlation between the camera angle and the
change in the estimated angle of the road surface. The result is shown in Figure 3.9 and is
similar to that for pitch angles: all networks are able to detect a roll angle for the camera,
but the angle is underestimated.

3.5. Obstacle recognition
Section 3.3 has shown that all four networks use the vertical position of objects in the
image to estimate their distance. The only knowledge that is required for this estimate
is the location of the object’s ground contact point. Since no other knowledge about the
obstacle is required (e.g. its real-world size), this suggests that the networks can estimate
the distance towards arbitrary obstacles. Figure 3.10, however, shows that this is not always
the case. The car is recognized as an obstacle, but the other objects are not recognized and
appear in the depth map as a flat road surface.
To correctly estimate the depth of an obstacle, the neural networks should be able to:

1) find the ground contact point of the obstacle, as this is used to estimate its distance, and
2) find the outline of the obstacle in order to fill the corresponding region in the depth map.
In this section, we attempt to identify the features that the MonoDepth network by Godard
et al. uses to perform these tasks. The results of Figure 3.10 suggest that the network relies
on features that are applicable to cars but not to the other objects inserted into the test
images.
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Figure 3.11: Example images and depth maps for unmodified, grayscale, false color, class average color, and
semantic rgb images.

Test set Abs Rel Sq Rel RMSE RMSE log D1-all 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253
Unmodified images 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
Grayscale 0.130 1.457 6.350 0.227 31.975 0.831 0.930 0.972
False colors 0.128 1.257 6.355 0.237 34.865 0.816 0.920 0.966
Semantic rgb 0.192 2.784 8.531 0.349 46.317 0.714 0.850 0.918
Class-average colors 0.244 4.159 9.392 0.367 50.003 0.691 0.835 0.910

Table 3.1: MonoDepth’s performance on images with disturbed colors or texture. The unmodified image results
were copied from [8]; the table lists results without post-processing. Error values for images that keep the value
channel intact (grayscale and false colors) are close to the unmodified values. Images where the value information
is removed and the objects are replaced with flat colors (semantic rgb, class-average colors) perform significantly
worse.

Figure 3.12: Objects do not need to have a familiar shape nor texture to be detected. The distance towards these
non-existent obstacles appears to be determined by the position of their lower extent.
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Figure 3.13: Influence of car parts and edges on the depth map. Removing the center of the car (top right) has
no significant influence on the detection. The car’s bottom and side edges (bottom right) seem most influential
for the detected shape, which is almost identical to the full car image (top left).

3.5.1. Color and Texture
The objects inserted in Figure 3.10 differ from cars in terms of color, texture and shape. In
a first experiment, we investigate how color and texture affect MonoDepth’s performance
by evaluating it on modified versions of the KITTI images. To investigate the influence of
color, two new test sets are created: one in which the images are converted to grayscale to
remove all color information, and one in which the hue and saturation channels are replaced
by those fromKITTI’s semantic_rgb dataset to further disturb the colors. Two other datasets
are used to test the influence of texture: a set in which all objects are replaced by a flat color
that is the average of that object class – removing all texture but keeping the color intact
– and the semantic_rgb set itself where objects are replaced with unrealistic flat colors.
Examples of the modified images and resulting depth maps are shown in Figure 3.11, the
performance measures are listed in Figure 3.1.
As long as the value information in the images remains unchanged (the unmodified,

grayscale and false color images), only a slight degradation in performance is observed.
This suggests that the exact color of obstacles does not strongly affect the depth estimate.
However, when the texture is removed (class-average colors and semantic rgb) the perfor-
mance drops considerably. The network also performs better on the semantic_rgb dataset
with false colors than on the realistically colored images. This further suggests that the ex-
act color of objects does not matter and that features such as the contrast between adjacent
regions or bright and dark regions within objects are more important.

3.5.2. Shape and contrast
Since color does not explain why the objects in Figure 3.10 are not detected, we next look at
shape and contrast. A first qualitative experiment shows that objects do not need a familiar
shape nor texture to be recognized (Figure 3.12). Furthermore, the distance towards these
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Figure 3.14: To measure the influence of the bottom edge, we vary its brightness and thickness. The experiment
is repeated over 60 background images.
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Figure 3.15: Mean distance error as a function of the bottom edge color and thickness. For comparison, we include
results for realistically textured shapes (Tex) and completely filled shapes (F). Distance errors are measured
relative to the estimated distance of the realistic (F, Tex) shape.
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Figure 3.16: Adding a shadow at the bottom of the objects of Figure 3.10 causes them to be detected. The fridge,
however, is only detected up to the next horizontal edge between the doors.

unfamiliar objects seems to follow from their lower extent, further supporting our claim
that the networks use the ground contact point as the primary depth cue.
In a second experiment, we find the features that the network is the most sensitive to by

systematically removing parts of a car until it is no longer detected. The car is still detected
when the interior of the shape is removed, suggesting that the network is primarily sensitive
to the outline of the object and ‘fills in’ the rest. The car is no longer detected when the
side- or bottom edges are removed. However, when only the bottom edge is removed, the
sides of the car are still detected as two thin objects.
We suspect that the dark region at the bottom of the shape is the main feature by which

the network detects obstacles. The bottom edge formed by the shadow underneath the car
is highly contrasting with the rest of the scene and an examination of the KITTI images
shows that this shadow is almost universally present and could form a reliable feature for the
detection of cars. We examine the influence of the bottom edge in a quantitative experiment
where both the brightness and thickness of the lower edge are varied (Figure 3.14, 3.15).
Additionally, the results are compared to completely filled shapes (F) and shapes with a
realistic texture (Tex). We measure the error in the obstacle’s depth relative to the estimated
depth of the realistic shape (F, Tex). The results are averaged over 60 background images
in which the shape does not overlap other cars.
Figure 3.15 shows that the bottom edge needs to be both thick and dark for a successful

detection, where a completely black edge with a thickness of ≥ 13 px leads to an average
distance error of less than 10% relative to a realistic image. A white edge does not result in
a successful detection despite having a similar contrast to the road surface. Furthermore,
a completely black edge results in a smaller distance error than when realistic textures
are used. This suggests that the network is primarily looking for a dark color rather than
contrast or a recognizable texture. Finally, the results show that completely filled shapes
result in a better distance estimate. We suspect that completely filling the shape removes
edges from the environment that could otherwise be mistaken for the outline of the obstacle.
As a final test, we add a black shadow to the undetected objects of Figure 3.10. The

objects are now successfully detected (Figure 3.16).
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3.6. Conclusions and future work
In this chapter we have analyzed four neural networks for monocular depth estimation and
found that all of them use the vertical position of objects in the image to estimate their
depth, rather than their apparent size. This estimate depends on the pose of the camera, but
changes to this pose are not fully accounted for, leading to an under- or overestimation of
the distance towards obstacles when the camera pose changes. This limitation has a large
impact on the deployment of these systems, but has so far received hardly any attention in
literature. We further show that MonoDepth can detect objects that do not appear in the
training set, but that this detection is not always reliable and depends on factors such as
the presence of a shadow under the object.
While our work shows how these neural networks perceive depth, it does not show

where this behavior comes from. Likely causes are the lack of variation in the training set,
which could be corrected by data augmentation, or properties inherent to convolutional
neural networks (e.g. their invariance to translation but not to scale). Future work should
investigate which of these is true and whether the networks can learn to use different depth
cues when the vertical image position is no longer reliable.
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4
Visual route following

Navigation is an essential capability for autonomous robots. Especially visual navigation
has been a major research topic in robotics, since cameras are lightweight, power-efficient
sensors that provide rich information on the environment. However, the main challenge of
visual navigation is that it requires substantial computational power and memory for visual
processing and storage of the results. As of yet, this has precluded its use on small, ex-
tremely resource-constrained robots such as lightweight drones. Inspired by the parsimony
of natural intelligence, we propose an insect-inspired approach toward visual navigation
that is specifically aimed at extremely resource-restricted robots. It is a route-following
approach, in which a robot’s outbound trajectory is stored as a collection of highly com-
pressed panoramic images together with their spatial relationships as measured with odom-
etry. During the inbound journey, the robot uses a combination of odometry and visual
homing to return to the stored locations, with visual homing preventing the buildup of
odometric drift. A main novelty of the proposed strategy is that the number of stored com-
pressed images is minimized by spacing them apart as far as the accuracy of odometry
allows. To demonstrate the suitability for small systems, we implement the strategy on a
56-gram nano drone. The drone can successfully follow routes up to 100m with a trajectory
representation that consumes less than 20 bytes per meter. The presented method forms a
substantial step toward the autonomous visual navigation of tiny robots, facilitating their
more widespread application.

An edited version of this chapter has been published as:
van Dijk, T., De Wagter, C., de Croon, G.C.H.E. (2024). Visual route following for tiny autonomous robots.
Science Robotics.

75

https://www.science.org/doi/10.1126/scirobotics.adk0310
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Figure 4.1: 56-gram nano-drone that performs autonomous visual route-following with its panoramic camera.
We propose an insect-inspired approach to visual route-following that allows tiny, resource-restricted robots to
follow long routes using only a microcontroller and exceptionally little memory.

4.1. Introduction
In order to do useful tasks, mobile autonomous robots need to navigate through their sur-
rounding environment. Unlike their fixed counterparts, mobile robots will need to travel
toward locations that are relevant to their mission or to return to their base after their mis-
sion has been completed. Currently, most autonomous robots rely on external infrastructure
for localization and navigation, such as the Global Positioning System (GPS) outdoors [1]
or ultra-wideband localization systems indoors [2]. However, for many applications this
dependence on external infrastructure is undesirable. For one, the external infrastructure
might not always be available, such as GPS in dense urban environments, extreme envi-
ronments such as in caves, or when it is jammed. Secondly, it might be too impractical
or time-consuming to set up additional infrastructure, especially in new or unknown envi-
ronments such as in search-and-rescue operations. Even in fully controlled environments
such as greenhouses or warehouses, costs might be another prohibitive factor. Hence, for
many applications, it is vital that robots can navigate using only their own sensors, without
reliance on external infrastructure.
While options are abundant for larger robots, this is unfortunately not the case for

tinier systems such as the 56-gram nano drone considered in this chapter (Fig. 4.1) or even
smaller systems [3]. First of all, the sensors might be too large, heavy or power-hungry
for use on small platforms. This is for instance the case with Light Detection and Ranging
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(LiDaR) sensors [4], which otherwise provide a popular and high-precision solution for
larger robots. Vision-based navigation could be a solution here because cameras are passive
sensors that can be both very lightweight and power efficient (e.g. [5, 6]). However, here
we run into the second issue: excessive computational demands of the underlying vision
algorithms. Mainstream approaches toward visual navigation tend to rely on Simultaneous
Localization and Mapping (SLAM) [7], a class of algorithms that typically construct and
maintain detailed, metrically accurate maps of the environment, while taking measurement
uncertainties explicitly into account. The calculations that deal with these uncertainties and
correct the map globally make SLAM computationally complex and memory intensive,
requiring hundreds of megabytes to even several gigabytes to map medium-sized spaces
in the order of tens of square meters [8]. Achieving navigation with the maps built by
visual SLAM additionally requires algorithms for path planning and trajectory tracking.
The resulting computational and memory demands require powerful embedded processing
units that far exceed smaller robots’ payload capacity or power budget.
For this reason, there has been an increasing amount of work that focuses on more effi-

cient navigation solutions. For instance, the class of topological SLAM methods saves on
computation and memory by forgoing the construction of a global metric map [9, 10]. A
major concern for these methods is the visual distinctiveness of different places in the en-
vironment, since place recognition is necessary to globally correct the map. This typically
still requires quite complex visual processing. Reducing the computational complexity
of visual place recognition is hence an active research area [11, 12]. Other approaches to
achieve more efficient navigation leverage the design of smaller, more powerful processors.
For example, in [13] judicious software-hardware co-design led to a 2.4mW-consuming
custom-designed chip that was able to perform visual-inertial odometry (VIO). VIO algo-
rithms form a subset of SLAM in which there is no recognition of already visited places
(known as “loop closure”), and hence they cannot eliminate odometric drift. Moreover,
there is still some progress in scaling down existing processors despite the slowing down of
processor miniaturization due to impending physical limits [14]. Examples of light-weight
computing units include Google Coral’s TPU [15], Intel’s NCS [16] and the JeVois smart-
cam, cf. [17]. Until now, these processors have not yet brought vision-based navigation to
very small robots, like lightweight nano-copters. Furthermore, even if processing power
will increase in the future, it is questionable if one has the luxury to spend all that processing
power on navigation. Real-world applications involve many other tasks, such as perception
for obstacle avoidance or for recognizing mission-relevant objects. Hence, a parsimonious
solution to navigation is and will remain highly relevant for small, autonomous robots.
Luckily, nature is a great source of inspiration for parsimonious solutions to navigation.

Insects such as ants and bees can navigate over remarkable distances despite their tiny
brains. For example, the desert ant Cataglyphis [18] can forage over long distances and then
walk straight back to its nest, with journey lengths of up to 1 km! To bring a comparable
algorithm to our robots, we must first understand how it works.
Biologists have studied insect navigation for more than a century, and have revealed its

two core ingredients [19]. The first ingredient is path integration, which has a counterpart in
robotics called odometry, i.e. the integration of traveled distance and direction to estimate
one’s position. For instance, ants determine the distance they have traveled by counting
the number of steps they have taken, and by integrating ventral optical flow (i.e. how fast
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the ground is seen moving past them) [20]. The direction is measured with respect to the
sun, and the corresponding polarization of the sky [18]. Using these measurements, ants
can maintain an estimate of their position relative to their nest [19]. In recent work, the
mechanisms behind path integration have been traced back all the way to the neural level,
where ring attractors in the central complex play an important role [21–23].

While path integration can provide an estimate of position, it has one major downside:
it is susceptible to drift because it integrates its measurement errors. To solve this, nature
uses a second mechanism: view memory. Here, the environment itself forms an additional
cue for localization or navigation. There is less consensus on how this view memory is
used by insects [24–26]. The most relevant model for our work is the snapshot model,
proposed by Cartwright and Collet [24] to describe the homing behavior of bees. In this
model, the authors posit that bees remember the presence and location of landmarks in their
visual field, as seen at their goal location. Then, in order to return, they try to maneuver
such that the landmarks in their field of view move back to their remembered positions.

Of course, the highly efficient nature of insect navigation has not gone unnoticed by
roboticists [27, 28]. An early study focused on visual homing with the help of artificial
landmarks and showed that visual homing can enable robots to return to a known spot in the
environment [29]. However, visual homing only works within a small region surrounding
the target, called the catchment area. To navigate longer distances, a straightforward ap-
proach would be to home toward nearby targets in sequence. As long as the robot is inside
the catchment area of the next snapshot, this will indeed succeed. However, catchment ar-
eas tend to be limited in size. As a result, snapshots need to be spaced close together, which
means that a large number of snapshots needs to be stored to remember longer routes. De-
pending on the representation of the snapshot, which can range from full-resolution images
[30] to more compressed representations [31], this can still require more memory than is
available on tiny robotic platforms, like the 56-gram drone used in this study.

To reduce memory requirements, further proposals have been made in two directions.
First of all, a reduction of the memory consumption of the snapshots. Many papers already
reduce the images to a single row of pixels, where the lateral flow of features is sufficient for
visual homing. However, Stürzl et al. take this one step further [31], by transforming this
line into the frequency domain and remembering only the lowest-frequency components,
thereby drastically reducing the size of the snapshot even further. The second direction is
to increase the spacing between snapshots. In [32] an improvement is proposed in which
the homing vector is used as a position estimate relative to the snapshot. This allows
the drone to navigate some distance toward the next catchment area, provided that the
vector is accurate enough. As a result, the overlap between snapshots is reduced, though
not eliminated. A simulation study in [33] proposes to combine odometry with visual
homing. New snapshots are taken when the odometry and visual homing estimates of the
direction toward the snapshot start to diverge. However, since this happens at the edge of
the catchment area, this method still results in considerable overlap between the catchment
areas of subsequent snapshots. In this chapter, we propose an approach to substantially
increase the distance between snapshots and combine it with a memory-efficient homing
algorithm.
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4.1.1. Efficient visual route following
To bring visual navigation to tiny robots, we present a highly memory-efficient strategy
for visual route following. We propose to traverse longer distances by better exploiting the
combination of visual homing and odometry (Fig. 4.2). In this framework, we assume that
the robot first performs an outbound flight towards a mission goal, followed by an inbound
flight back to the starting location. The outbound flight can in principle be performed under
any control law, including manual control. Since our focus in this chapter lies on route
following during the inbound flight, we assume that the outbound flight was performed
without collision and that the environment is static such that the route remains free of
obstacles.
During the inbound flight, most of the distance is covered using odometry, but without

any correction, the odometric drift would eventually become too large. To correct this
drift, we let the robot use visual homing to periodically return to known locations in the
environment (the snapshot locations). During homing it compares its omnidirectional im-
age only with the current active snapshot. Since the robot is now at a known position, it
can reset its pose estimate and thereby eliminate any incurred odometric drift. After this
reset, the robot can start a new leg of odometry and visual homing, where the initial error
only consists of the homing inaccuracies at the last snapshot.
The proposed strategy is extremely memory efficient as we propose to space the snap-

shots as far apart as possible. Specifically, we forward that the distance between snapshots
is ultimately limited by the accuracy of the odometry, in that the strategy will succeed as
long as the drone can reliably end up inside the next catchment area. Given a reasonable
odometry accuracy, this distance can be far greater than when overlapping catchment areas
for consecutive snapshots are required.
In the remainder of this chapter, we implement and evaluate this strategy step-by-

step. First, we evaluate and compare different visual homing algorithms by their memory
efficiency, where we take both the size of the snapshot and of the resulting catchment area
into account. After selecting a suitable algorithm for efficient visual homing, we continue
with the key experiment of this chapter: we implement our strategy on a tiny 56-gram nano
drone and let it follow trajectories of up to 100 meters. We show that periodically homing
toward a snapshot indeed eliminates the buildup of odometric error over time. Finally, we
demonstrate the same strategy on more complex trajectories and environments.
By implementing our strategy on a 56-gram nano drone equipped with only an STM32F4

microcontroller featuring a mere 192 kB of memory, we prove that the proposed algorithm
is especially suitable for tiny robots. With our contribution, we bring autonomous visual
navigation to a class of robots where this was previously unavailable.

4.2. Results
4.2.1. Selected homing algorithms for comparison
As a first step toward memory-efficient visual route following, we compare homing algo-
rithms in terms of their memory efficiency. To aid the search for an efficient algorithm,
first, we broadly categorize visual homing algorithms along two axes. Firstly, we make
a distinction between ‘steering methods’ or ’visual compass’-based methods, and ‘vector
methods’. The steering methods are characterized by their calculation of a steering angle
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Figure 4.2: Proposed navigation strategy. (A) The experimental platform considered in this chapter, a 56-gram
Crazyflie Brushless nano drone. (B) Raw and unwrapped omnidirectional camera image. (C) The route following
strategy. During the outbound trajectory, which could be performed under an arbitrary control law (a), the robot
periodically takes snapshots (b) of its surroundings. To follow the same route in reverse, the robot first uses
odometry (c) to move toward the location of the next snapshot. For success, it is vital that the drone ends up
inside the catchment area (d) of this snapshot. Hence, the distance between snapshots has to be proportional to
the expected odometry drift and catchment area size. After the odometry movement has been completed, the
robot uses visual homing (e) to converge to the snapshot location and thereby cancel the incurred odometric drift.
These steps are repeated until the robot is back at its intended location.
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or rate for position control. Typically, these methods depend only on features in the for-
ward field of view of the robot. Steering methods are often used in visual-teach-and-repeat
navigation tasks and have been successfully demonstrated over long distances, such as in
[34–37]. Additionally, convergence has been proven for straight-line segments [38] and
more complex paths [36, 39].
On the other hand, vector-based methods typically do not produce a steering angle, but

a vector toward the snapshot. In contrast to steering-based methods, vector methods tend
to not have an obvious ‘forward’ direction and typically rely on a panoramic field of view.
While vector methods are often used to home toward a single point, they have also been
used in visual route following such as in [30, 40], though research in this direction has
been far less extensive than for steering methods.
While steering-based methods might be an obvious choice, in this chapter we choose to

focus on vector-based approaches. Our reasoning is as follows: first of all, steering-based
methods require their reference images to be spaced close together. Following the proof
in [38], the distance between images must be smaller than the distance to the dominant
feature in the environment; where a distance of 35cm is used in said article. We expect to
achieve a far greater spacing using odometry. Secondly, we aim to bring the robot as close
to the snapshot as possible, ideally on top of it. As a result, we have no guarantee that the
snapshot will be in front of the robot after traveling with odometry, it may just as likely
lie behind it or to its side. Finally, we think that a vector is a more natural way to express
movement for holonomic systems like our drone.
The second axis by which we categorize homing algorithms is the way in which snap-

shots are represented. We consider two broad categories of snapshot representations for use
in visual homing: landmark-based and holistic representations. Landmark-based methods
represent the snapshot as a collection of point landmarks that each have their own bearing.
Consequently, in landmark-based visual homing, points in the environment are tracked
from the current to the target image. From the point correspondences between these two
images, a homing vector directed toward the target can be derived, for instance using Vi-
sual Servoing [41–43]. In order to describe and track landmarks, keypoint detectors and
descriptors from computer vision are used. Examples include the computationally expen-
sive Scale Invariant Feature Transform (SIFT) [44] features and the much more efficient
Binary Robust Invariant Scalable Keypoints (BRISK) [45]. Additionally, the bearing to-
ward each landmark needs to be stored. All in all, this still leads to a sizable memory
consumption, especially when a large number of snapshots needs to be remembered. In
order to reduce memory consumption, it is possible to share descriptors between multiple
snapshots as demonstrated by Stelzer et al. [46]. However, the size of a snapshot remains
in the order of hundreds of bytes or more.
On the other end of the spectrum are the holistic methods. Unlike landmark-based

algorithms, these operate on the image as a whole. Instead of matching the bearings of
landmarks, the entire current and target images are matched, for instance with the Sum of
Square Differences (SSD). This leads to an Image Difference Function (IDF) (see Fig. 4.3),
which should be zero when the current and target view coincide and - more importantly
- increase smoothly with distance near the target location. By finding the direction in
which the IDF decreases, homing can be performed. One option to detect and follow the
gradient down the IDF is to make physical movements, as demonstrated by Zeil et al.
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[47]. Finding the gradient in this way may be time-consuming. Therefore, Franz et al.
[30] propose an alternative method in which small movements are simulated by warping
the image. Using this method, the authors perform a brute-force search over multiple
potential movements and select the best match. Hence we term the method ‘search’ in the
following. As a computationally more efficient alternative, Moller et al. [48] suggest only
predicting two perpendicular movements and using these to estimate the gradient of the
IDF. By following the gradient, the robot will end up in the (local) minimum of the IDF.
In later work, they include the second-order gradient as well. They term their approach
‘MFDID’. Storing entire images is not ideal in terms of memory efficiency; in fact, it is
worse than most landmark-based approaches. A first improvement is that the snapshot
images can be vertically averaged, as just the lateral flow should already be sufficient to
find the homing vector. On top of that, Stürzl et al. [31] show that these one-dimensional
snapshots can be significantly compressed while maintaining homing performance. This
compression is performed by first transforming the snapshots to the frequency domain, and
then only keeping the lowest frequency components, where most of the power is found
in natural images. The authors show that homing is still possible using only the lowest
5 components. With appropriate rounding, such a snapshot could be stored in as little
as 10 bytes per snapshot. Figure 4.3A shows a raw panoramic image and beneath it the
reconstruction by using the highly compressed Fourier representation. It can be observed
that this method, which we term ‘Fourier’, captures the coarse vertical structures in the
environment. Because these images can ultimately be compressed further than the bearing-
descriptor pairs of landmark-based homing, we will focus on holistic algorithms for the
remainder of this chapter.

4.2.2. Comparison of holistic visual homing algorithms
The selection of a specific visual homing algorithm means exploring a trade-off between
the catchment area size, memory consumption of snapshots and computational demands.
We evaluate the catchment areas from the above-mentioned holistic vector-based methods
[30, 31, 48] with the help of the publicly available panoramic image dataset by Gaffin
and Brayfield [49]. The dataset contains 100×100px grayscale images taken at 12.7cm
intervals in a 7.3×6.9m room and part of the adjacent corridor. To evaluate the catchment
area, we generate snapshots throughout the environment and for each snapshot we calcu-
late the homing vectors at all panoramic image locations in the room (Fig. 4.3B). Then,
from each starting position, homing trajectories are generated by integrating the bilinearly-
interpolated homing vectors. These trajectories let us determine the final position of the
robot after homing, and thereby find the set of starting locations from which homing would
be successful, i.e., the catchment area. Since the catchment area can have a highly irregu-
lar shape (see the dark blue area in Fig. 4.3B), we take the number of successful starting
cells as a measure of the size of the catchment area. The top plot in Figure 4.3C shows
the relationship between the snapshot size in bytes (B) and the average catchment area in
m2. The Fourier method leads to the largest catchment areas for snapshot sizes below 32
bytes, while the Search method gives the largest catchment areas above. The lower plot
in Figure 4.3C shows the average ratio of the catchment area with respect to the snapshot
size. It shows that the Fourier method is highly efficient for small snapshots. Because this
algorithm is both memory-efficient and computationally cheap, it will be used in our fur-
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Figure 4.3: Comparison of visual homing algorithms. (A) Illustration of the Image Difference Function (IDF) with
the Fourier method [31]. Images are compressed using vertical averaging and a low-passed Fourier transform.
The difference between the compressed image at the current and target location increases smoothly with distance,
as shown in the plot. Finding the minimum in this IDF brings the robot back to the target position. (B) To evaluate
the size of the catchment area belonging to a snapshot, we generate all homing vectors (left), predict the robot
trajectories (center), and collect all starting points for which the endpoint error is small (right, error indicated by
color). (C) Homing algorithms are compared by the size of their catchment area, given a snapshot size in bytes.
At small snapshot sizes, Fourier-based homing performs best, while at larger sizes Search-based homing is more
effective. In terms of efficiency in m² of catchment area per byte, Fourier-based homing performs best.



4

84 4. Visual route following

0510152025
Time to arrival (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
is

ta
nc

e 
(m

)

−2 −1 0 1 2 3
(m)

−2

−1

0

1

2

(m
)

Flight arena
C

A B

Figure 4.4: Visual homing toward a single point. The drone is commanded to home over longer distances
toward a snapshot at the center of the flight arena (grey circle). Visible are the homing trajectories (A, colored
lines, crosses for the end positions) and the decreasing distance toward the snapshot over time (B, colored lines,
black line indicates the worst homing performance attained in this experiment for trajectories converging to the
snapshot). For illustration purposes, a possible catchment area is drawn with a dashed line. One of the starting
positions lies outside of the catchment area and leads the drone to diverge (red cross as end position). Homing is
successful for distances well over one meter, while the odometric drift between snapshots during route following
is expected to be significantly smaller.

ther experiments. Please note that the choice for this representation entails a dependence
on contrasts along the horizon line, and mainly large vertical features such as walls, doors,
windows, trees, etc. Furthermore, the idea of snapshot matching relies on these contrasts
being static.

4.2.3. Visual homing and odometry
Before combining visual homing and odometry into a single navigation strategy, we exam-
ine these elements in isolation. We first validate the homing performance of the selected vi-
sual snapshot representation on our robotic platform, a 56-gram, Bitcraze Crazyflie Brush-
less (Fig.4.1, 4.2A). This tiny 12.5cm drone carries a 10-gram panoramic camera assembly
(included in the 56-gram take-off weight). The assembly includes an STM32F4 chip for
processing the omnidirectional images onboard in real time. Furthermore, the drone is
equipped with a ‘flow deck’ with a downward-looking camera and a tiny laser ranger to
measure optical flow and height, respectively. Combining these measurements results in
velocity estimates, which are used for odometry.
In the homing experiment, the drone is first directed to the center of our testing environ-

ment, a 10×10×7m flight arena termed the ‘Cyberzoo’ (see Fig. 4.4C for an impression).



4.2. Results

4

85

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Target distance (m)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

C
ro

ss
-t

ra
ck

 e
rr

or
 (

ab
s)

 (
m

)

Real data
RMSE (m)

Target distance

−2 −1 0 1 2
(m)

−2

−1

0

1

2

(m
)

Odometry + snapshot (100m)

−2 −1 0 1 2
(m)

−2

−1

0

1

2

(m
)

Odometry only (100m)

A

C

Error model, exaggerated

Flight arena

B

D E

Figure 4.5: Combining visual homing and odometry. Each leg of the route-following strategy consists of a homing
operation toward a snapshot, followed by an inbound maneuver toward the next snapshot using odometry. (A) The
error model with exaggerated noise parameters, showing both the initial pose error after homing and the increased
spread due to odometry. (B) Experimental data for real-world odometry experiments in which the traveled distance
is varied. (C, D) Proof-of-concept demonstration. The drone is commanded to fly a 5m trajectory back and forth
for a total distance of 100m. In (C), the drone only uses odometry, while in (D) it periodically homes to a
snapshot. Repeatedly homing toward snapshots is shown to prevent drift over longer trajectories. (E). Overview
photo of the test environment.

Subsequently, we commanded the drone to go to a small number of locations away from
the target, to a maximum distance of approximately two meters. Then, the drone performed
visual homing with the Fourier method. Figure 4.4 shows an overhead view of the drone’s
trajectories (A), the distance to the target location over time during homing (B), and an
overview image of the flight arena (C). We observe that eight out of nine runs bring the
drone close to the target location, i.e. within ∼0.5m, at which point the run is ended. The
failed run starts at one of the outer positions. By definition, the failed homing attempt
means that the starting position is outside of the (unknown) catchment area of the snapshot
in the center. The experiment also shows that the drone does not always fly straight to the
target location, an indication that the homing vector can point in a different direction than
the target vector. As long as the homing vector is within ±90∘, however, the distance will
decrease and the drone will eventually arrive at the target location.
As explained earlier, our strategy relies on spacing the snapshots as far apart as odom-

etry allows. Specifically, the drone should end up just inside the next catchment area. The
drone’s positioning accuracy depends on two main factors: the accuracy of its starting
pose after homing, and the drift incurred while moving toward the new position. This is
demonstrated by means of a simulation of multiple trajectories in Fig 4.5A, in which the
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standard deviations of the initial position and heading, yaw rate and velocity errors are ex-
aggerated to demonstrate their effect. The model shows that at short distances the position
error is primarily caused by errors in the initial pose, as it is almost constant. For longer
distances the error begins to grow because of integrated odometry errors. At the end of
a route leg traveled by means of odometry, the cross-track error is larger than the along-
track error. This can be seen in Figure 4.5A, where there is a larger spread orthogonal to
than along the route, and in Figure 5C, in which this is also the case for the real-world
odometry experiments. This effect is caused by the heading error, consisting of an initial
offset and subsequent drift. Figure 4.5B shows the absolute cross-track errors of the drone
experiment. Overall the accuracy is quite good, with a cross-track RMSE of 13cm after
five meters of travel. The plots in Figure 4.5C, 4.5D show a similar experiment but over
longer distances. The drone traverses a line of approximately five meters back and forth ten
times. In C, the drone only uses odometry for this procedure. In D, the drone has recorded
a snapshot in the top left corner and uses this to re-align itself on each arrival there. The
results show that the odometry does indeed drift and that the drift becomes significant for
longer distances. They also show that our periodic re-alignment scheme, while introducing
some error due to homing inaccuracies, prevents the buildup of odometric drift over time
and as a result keeps the error bounded when traveling longer distances.

4.2.4. Route following with minimal memory
With the core principles proven, we now demonstrate the complete strategy on more com-
plex trajectories and environments. We created different types of trajectories, of which
the outbound portion is traversed using odometry (without any global position feedback).
After the outbound journey is completed, the drone starts its inbound journey with the
help of the proposed insect-inspired navigation strategy. We qualitatively compare the
route following accuracy with respect to the outbound trajectory. A motion capture sys-
tem is used to record the absolute position of the drone during its outbound and inbound
flight. These measurements are never communicated to the drone, they are only used for
evaluation after the experiment. The trajectories consist of multiple traversals of an S-
(Fig. 4.6A) or U-shape (Fig. 4.6B). The trajectories were repeated to maximize the travel
distance within the limited testing area. The resulting path lengths (of the outbound route)
were 40m for the S-shaped trajectory and 56m for the U-shaped one. Ultimately, the length
of the experiment was limited by the battery capacity of the drone.
Above we have mentioned that snapshots are spaced as far as odometry allows. Of

course, given the varying unknown shapes and sizes of catchment areas and the variable
nature of drift, choosing a spacing between snapshots has implications for the trade-off
between navigation robustness and memory expenditure (see Section A.3). In our experi-
ments, we use a fixed one or two-meter spacing between snapshots during the experiments.
Firstly, these are conservative values where the position error is primarily dominated by
homing inaccuracies while the odometric drift between snapshots remains small. Secondly,
this gives us a larger number of visual homing attempts, which gives a better indication of
its use and robustness during route following.
Figure 4.6 shows the resulting trajectories for the proposed method (A, B). It success-

fully and reliably follows the outbound trajectory back to the start. The route following
memory for the U-trajectory consists of 31 16-byte snapshots, and two to three 2-byte
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Figure 4.6: Validation of the complete route following strategy. The drone can successfully follow long routes in
complex environments where it is impossible to see the entire route from a single point-of-view. The outbound
route is shown in red, route following using odometry in yellow and homing in blue (A, B, C). The drone traverses
the route multiple times during the outbound- and inbound segments to maximize the length of the trajectory (all
in the order of 50m). For comparison, a route-following attempt in which the drone only uses sequential visual
homing as a strategy is shown (C). The drone can successfully follow the route but stops early because the
increased travel time caused the battery to run out before even completing one stretch of the trajectory. Time-
lapse photos of the experiment are shown in D.
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odometry vectors between snapshots, leading to a total memory size of 0.65kB for a dis-
tance of 56m. We also compare our method to sequential visual homing on one of the
trajectories (Fig. 4.6C). The experiment shows that homing between successive snapshots
is indeed a viable method of navigation. However, the snapshots had to be spaced at a
distance of 25cm; earlier attempts with 1m spacing consistently failed. Because the catch-
ment area scales proportionally to the size of the environment (i.e. distance to the dominant
features, the walls in this case), they were significantly smaller than in Figure 4.4. Besides
the increased memory consumption, the homing procedure is also relatively slow (to pre-
vent overshoot or large pitch/roll angles), and as a result the drone traveled a significantly
shorter distance before the battery ran out. In comparison, the new strategy has a signifi-
cantly higher average speed, while the tracking error is in the same order of magnitude.
We also performed a number of experiments to evaluate the robustness of the proposed

approach. One important characteristic of the chosen snapshot representation (with verti-
cal averaging and Fourier compression) is that it depends on prominent vertical features
(contrasts along the horizon line). Such features are commonly present in both indoor and
outdoor environments. To illustrate this, we made a set of snapshots in various places in
the building of the Faculty of Aerospace Engineering at TU Delft (see Section A.1). The
low resolution of the snapshots may initially seem purely disadvantageous for accurate
homing, but actually also brings some robustness against small, dynamic objects. This is
illustrated with an experiment in which we monitor the resulting home vector while we
move objects around the robot (Section A.1). Sometimes in indoor environments there are
corridors with purely uniform walls. In that case, the current approach will not be able to
correct the drift in the direction of the corridor (lateral drift can be cancelled due to the
different appearance of the floor and walls). Furthermore, in order to show that the drone is
also able to follow routes in different indoor environments, we have performed additional
experiments in three different places at the faculty of aerospace engineering: close to an
airplane simulator SIMONA [50], in an office hallway, and in our lab-space (Fig. 4.7).
Videos of these flights can be found as supplementary material. Finally, since the flight
time of the real drone is limited, we performed simulation experiments to show that also
longer distances can be covered with the proposed strategy. Specifically, in the AirSim
simulator [51], a simulated AR drone is able to use the strategy to successfully track a
300m trajectory in a forest environment (Section A.2).

4.3. Discussion
We have proposed an insect-inspired navigation strategy for route following, which exten-
sively depends on odometry to reduce memory usage. The strategy was demonstrated on
the lightest robot to date to perform vision-based navigation, a 56-gram Crazyflie drone,
leading to successful navigation for as long as the battery lasted.
The experiments show that even tiny robots can navigate autonomously. Of course,

the strategy studied in this chapter is a route-following strategy. This sets it clearly apart
from SLAM-based navigation approaches and has two important implications. Firstly, the
robot will perform an inbound route that is identical to the outbound route. This is similar
to other teach-and-repeat methods in robotics [37, 52]. By not going straight back to the
starting location as insects are known to do (see, e.g., [18]), the robot follows a trajectory
that is suboptimal in terms of path length. In contrast, robots performing metric SLAM
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Figure 4.7: Flights in different indoor environments. In order to test the robustness of the proposed visual
navigation method, we performed tests in various indoor environments. A time lapse image of each test is shown
for three environments, from top to bottom: a large indoor test facility for airplane simulation (SIMONA), an
indoor office hallway, and the Micro Air Vehicle lab space (the bright spot on the floor is due to direct, bright
sunlight). The outbound trajectory is indicated by red arrows, odometry-based indoor trajectories by yellow
arrows, and homing maneuvers by blue arrows.
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can plan and execute optimal paths at the expense of considerable processing. How to
perform straight returns to the initial location while coping with odometric drift without
metric maps is an important topic of future study. Secondly, the current algorithm is unable
to combine multiple paths to move between arbitrary locations in the environment. It will
not be able to fly to another previously visited place that is relevant to its task, without first
returning to the home location. Also here, insects are able to do this, and it is hypothesized
that insects may store different places in a nest-centered reference frame [19]. Such a
representation is reminiscent of topological mapping approaches, which may provide fertile
ground for cross-fertilization with the method proposed in this chapter. For example, in
[53] new nodes (places) are created in a topological map by estimating online whether the
robot is about to leave the catchment area of the previous node. This leads to overlapping
catchment areas, an idea very similar to that of [33] in the insect route-following literature.
The proposed idea of further spacing snapshots (or nodes in the topological graph) apart is
directly relevant to such a topological mapping approach.
In terms of biological plausibility, we do not believe that the proposed strategy is an

accurate model for explaining insect navigation behavior. While some switching between
path integration and visual homing occurs when insects move from unknown to known
environments; behavioral experiments show that they mostly use these cues simultaneously
[54, 55] in contrast to our strategy. However, our results do support the general idea
that path integration and visual homing are best used in combination. Even more, they
suggest that path integration has a dramatic impact on the efficiency and parsimony of
navigation even when other (visual) cues are present, and encourages further research into
the integration of these cues cf. [19, 55, 56].
Concerning the impact on robotics, the performed experiments are highly encouraging

as they show that also tiny robots are able to perform vision-based autonomous naviga-
tion. Future work could focus on improved robustness by introducing obstacle avoidance
capabilities. For instance, the omnidirectional image could be used to determine optical
flow for collision avoidance [57, 58]. Moreover, the robot could estimate catchment area
size online and be endowed with a search procedure when losing the route. Additional
experiments in varying environments could identify which elements of the method need
most improvement. Still, as already hinted above, the choice for route-following implies a
cost in terms of tracking accuracy and flexibility in navigation targets. Even if we further
approach the impressive navigation capabilities of insects, it may be that on these char-
acteristics a traditional SLAM-based navigation approach remains superior. However, for
autonomously navigating robots optimality in terms of mass and energy expenditure are
also important. This is definitely the case for applications such as greenhouse monitoring
by flying robots. The driving factors for that application are safety and navigation in nar-
row, cluttered environments. Tiny, light-weight flying robots are hence ideal for such an
application, in which it is most important that the robots fly out, gather data, and come
back to a fixed charging station. The data can then be uploaded to a server for mission-
specific processing, such as evaluating crop growth or disease detection. We expect that the
best navigation solution will eventually be task-dependent, and venture that even for much
bigger robots in the order of kilograms, insect-inspired navigation may be the best option
when efficiency is more important than high positioning accuracy along the trajectory. If
orders of magnitude in computation and memory can be saved from the task of navigation,
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this computation can be used for onboard mission-relevant tasks such as the recognition of
diseases or pests in a greenhouse application or the counting of products in a warehouse
monitoring application. Hence, the current work will not only benefit tiny robots such as
the 56-gram drone used in this chapter or even the insect-sized Harvard Robobee [59], but
much larger robots as well.

4.4. Materials and methods
4.4.1. Hardware
The experiments in this chapter are performed on a prototype of the Crazyflie Brushless
drone provided by Bitcraze. The Flowdeck V2 (PMW3901 optical flow sensor, VL53L1x
laser ranger) is used for velocity and altitude control and odometry. For navigation, the
drone is equipped with a TCM8230MD camera with a Kogeto Dot 360 panoramic lens.
Processing is performed using two STM32F4 microcontrollers, one on the autopilot and one
on the camera assembly. Visual processing is performed on the camera micro-controller;
state estimation and control are performed on the autopilot. Logging is performed off-board
using the radio link.
The default Crazyflie firmware is used as autopilot. State estimation is performed with

the default Extended Kalman Filter. A custom on-board app communicates with the camera
over a UART link and sends position setpoints and measurement updates to the autopilot’s
controller and estimator.

4.4.2. Image processing
Visual navigation begins with the pre-processing of the camera frames. Raw images are
captured at a 128x96 pixel resolution (Fig. 4.2B). A custom auto-exposure routine adjusts
the shutter time to keep the horizon’s mean luma at a fixed value (80 out of 255) while
ignoring the rest of the image (e.g. the lens fixture).
The image is then reprojected to cylindrical coordinates at a 128x16 pixel resolution.

We use a look-up table and nearest-neighbor sampling for computational efficiency. The
cylindrical images are aligned with the drone’s North estimate by offsetting the sampling
angle. Derotation of pitch and roll angles was implemented but not used, as the angles dur-
ing the experiment remained sufficiently small. The images are then converted to grayscale
and vertically averaged to produce a one-dimensional periodic signal. We use the Fast
Fourier Transform from the ARM CMSIS DSP Library to transform this signal to the fre-
quency domain. For memory efficiency, the DC- and higher-frequency components are
dropped. The remaining complex coefficients are quantized to pairs of 8-bit signed inte-
gers, with a fixed per-frequency scaling to cover most of the 8-bit range.

4.4.3. Homing implementation
For the comparison of homing methods, we implemented the algorithms by Franz et al. [30]
(’Search’), Möller et al. [48] (’MFDID’) and Stürzl et al. [31] (’Fourier’) as described in
the respective papers. For each choice of snapshot size, the parameters were re-tuned using
a grid search to maximize the size of the catchment area. For the Search algorithm, we
used a bearing-distance search grid, as the exact grid was not described in the article. For
MFDID, we included the use of the Newton-based correction [60] as part of the parameter
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search, but found little difference in this dataset which mainly consists of a square, open
room.
The Fourier-based homing algorithm by Stürzl et al. [31] was also implemented on the

experimental hardware. For an efficient implementation, we wish to highlight an important
property of this algorithm. To find the homing vector, Stürzl et al. derive and minimize an
‘approximate IDF’ ℰ2 in terms of hypothetical movement h ∈ ℝ3 in the form of a quadratic
surface: ℰ2(h) = 12h⊤Ah + b⊤h + 𝑐
Here, A, b and 𝑐 are fully defined by the complex coefficients of the Fourier-transformed,
derotated images. As a result, the homing vector can be found using only the Fast Fourier
Transform and a 3 × 3 matrix inversion, which makes this algorithm highly efficient in
terms of runtime. For the full definition, we refer to [31].
While the images are already coarsely aligned with respect to the north estimate, we did

include the coarse rotation alignment step of the algorithm. However, we have replaced the
phase-based algorithm with a brute-force search over all possible rotations, as we found that
this provided more robust results in practice. The phase-based algorithm appeared to lack
robustness when symmetries were present in the environment or when lower frequencies
were absent in the panoramic images, though we did not fully investigate this further.
For the sequencing of snapshots, it is important to detect arrival after homing. This was

initially determined by observing the difference between the currently relevant snapshot
and the current observation. If this difference did not reach a new minimum during the
last 10 frames (∼1 second), the drone was considered to have arrived. While this worked,
it resulted in long hover times near the snapshots. In the final experiments, this detection
was replaced by a simple timeout. This significantly reduced hovering times and thereby
allowed longer travel distances, at the cost of a slightly higher homing position error.

4.4.4. Route memory
The ’route memory’, containing the snapshots and odometry vectors, is implemented in
memory using two stacks (Fig.4.8). The odometric trajectory is recorded as a sequence of
translation vectors. While recording, a new vector is pushed onto the stack every 0.3m.
These vectors are stored as a pair of 8-bit signed integers, with a resolution of 10cm.
Each new vector is calculated by comparing the current position estimate to the sum of
all previous vectors, this prevents the buildup of rounding errors. To reduce memory
consumption, the recorded trajectory is simplified when a new snapshot is taken. At that
time, the complete trajectory since the last snapshot is decimated using the Ramer-Douglas-
Peucker algorithm [61, 62] (𝜖=0.1m). This strongly reduces the number of odometry
vectors, while keeping the resulting deviation within strict bounds. Additional vectors
may be remembered to keep the lengths within 8-bit integer bounds. After simplifying the
trajectory, the snapshot is pushed onto its own stack together with the size of the odometry
stack at that time, so that its position in the odometry frame can be retrieved during route
following.
During route following, after each odometry segment the drone should be close to the

true position of the snapshot on top of the stack (Fig. 4.8). The drone will then start a hom-
ing maneuver towards this snapshot, removing the need for along-route localization. Once
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Figure 4.8: Route representation in memory. The trajectory is represented using two stacks: one holding snapshots
and one holding odometry vectors. When a new snapshot is pushed, it is stored together with the number of
odometry vectors that were present at that time. This allows the snapshot position to be found by adding all
odometry vectors before it and aids in the sequencing of odometry- and homing maneuvers. A single odometry
vector consists of two int8 numbers at decimeter resolution (two bytes). A snapshot consists of 8 complex
coefficients (2x int8, so 16 bytes in total) plus a uint16 odometry count (2 bytes).

the homing maneuver has completed, the drone re-aligns its position and heading estimate
to those of the snapshot as recorded by the odometry vectors and the north alignment of the
snapshot. In practice, this re-alignment is implemented as an absolute position and heading
measurement with a small covariance, for easier integration with the Kalman filter.

4.4.5. Experimental setup
During the flight experiments in Figures 4.4-4.6, the true position of the drone is measured
using an OptiTrack motion capture system. This position data is not communicated to the
drone at any time; it is only recorded for analysis after the flight. The timestamps are
aligned by maximizing the cross-correlation between the north or east positions in both log
files. The outbound trajectories during the flight experiments do not use the true position
either; these rely entirely on the onboard position estimate.
The experimental flights shown in Figures 4.4-4.6 are performed over artificial grass.

Judging by the performance of odometry-only navigation, this provides sufficient texture
for the Crazyflie’s optical flow sensor. The drone uses its downward-facing laser range
sensor to maintain a constant height during the experiment. On the sides of the flight area,
canvas panels with mostly natural scenes provide additional texture for navigation. For the
U- and S-shaped trajectories, these panels were also placed in the center of the flight area
to block the line of sight between the extreme points.
The experimental flights shown in Figure 4.7 are performed at different locations in

the Faculty of Aerospace Engineering: In a large open space of the SIMONA airplane
simulator, a narrow corridor, and in the Micro Air Vehicle lab. Each experiment starts with
a manually designed, preprogrammed outbound flight that is executed based on odometry.
The outbound flight is followed by an autonomous inbound flight. Figure 4.7 contains
stitched time lapse images, in which we show the drone when making the snapshot during
the outbound flight (red arrows), and when the drone thinks to arrive at the snapshot location
with odometry during the inbound flight (yellow arrows), and after homing to the snapshot
(blue arrows). The videos can also be found as supplementary material.



4

94 References

4.4.6. Simulation setup
Figure 4.5A shows the results of elementary simulation experiments to illustrate the effects
of odometry drift. The simulation includes both an initial position and heading offset due
to imperfect homing and odometry drift along the route leg. Hence, we initialize the pose
as: 𝑥, 𝑦, 𝜓 ← 𝑥0 + 𝒩(𝜎𝑥0), 𝑦0 + 𝒩(𝜎𝑦0), 𝜓0 + 𝒩(𝜎𝜓0) ,
where (𝑥0, 𝑦0, 𝜓0) is the actual snapshot position and𝒩(𝜎) is a normally-distributed

random variable with zero mean and standard deviation 𝜎. Then, for each timestep, the
state is updated as follows:

𝜓 ← 𝜓 + 𝒩(𝜎𝜓)𝑥 ← 𝑥 + Δ𝑥 cos𝜓 + 𝒩(𝜎𝑥)𝑦 ← 𝑦 + Δ𝑥 sin𝜓 + 𝒩(𝜎𝑦)
For the simulation in Figure 4.5A, the following values were used: Δ𝑥 = 0.25m,𝜎𝑥0 = 𝜎𝑦0 = 0.10m, 𝜓0 = 5∘, 𝜎𝑥 = 𝜎𝑦 = 0.025m, and 𝜎𝜓 = 2∘. Please note that these

values are large compared to the real homing and drift errors, so that the figure clearly
shows the effects they have on the position error at the end of the route leg.
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In Chapter 1, we set out to find a visual navigation strategy that is suitable for tiny
drones. Now, at the end of this dissertation, we can reflect back upon the previous chapters
to see if they indeed made this possible. I will start by discussing the individual research
questions, and end this chapter with a conclusion about visual navigation on tiny drones
and an outlook to further research.

5.1. Perception
In Chapter 1, the problem of visual navigation was split into three separate problems:
perception, avoidance and route following. Using perception, the drone should be able
to detect the presence of obstacles, and estimate their location so a route can be followed
around it. While bigger drones can use systems like LIDAR, the options for tiny drones
are limited. As discussed in Chapter 2, visual perception provides a great trade-off of
information versus weight, but the processing of this information on tiny systems remains
a challenge. Perceiving obstacles in such a way that the algorithm can be implemented on
a tiny drone is the core of the first research question:

RQ 1

How can tiny drones perceive obstacles?

In Chapter 2, visual perception was split into further categories: stereoscopic depth
estimation, monocular depth estimation, and depth estimation using optical flow. Optical
flow was the first option to be deemed infeasible. While it has the advantage that only a
single camera is required, it has the fundamental flaw that its estimates become inaccurate
near the focus-of-expansion, which by definition is the exact direction in which the drone
is flying!
Stereo vision does not have this problem. Secondly, it is the simplest of the three

classes of depth estimation, as it is mostly a geometrical problem. The main challenge
in stereo vision is to find correspondences between the left- and right images. While
this is still not a simple, light-weight process, many algorithms are available that do not
rely on deep learning (e.g. [1]) and the concept has also already been demonstrated on
microcontrollers [2, 3]. The disadvantage of stereo vision is probably obvious: it requires
two cameras. Additionally, the baseline between the cameras needs to be sufficiently large
to see obstacles further away. While this is still possible on the multiple-centimeters-scale
drones in this dissertation, it will eventually limit the usability on insect-size drones such
as [4].
Finally, (single-frame) monocular vision has the advantage that it also works in the

direction of movement, but only requires a single camera (which means that the baseline
is not a concern anymore). The downside of monocular vision is that it requires significant
amounts of processing, as unlike the previous methods its estimate relies primarily on the
content of the images rather than a ‘simpler’ geometrical problem. Or does it?
Because of the potential advantages of monocular depth estimation, Chapter 3 took a

closer look at these algorithms. While many implementations exist, there had so far not
been an explanation of how they actually function. Using black-box experimental methods,
partly inspired by human psychology, it was found that the evaluated networks did not learn
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to recognize familiar objects or reason about their size. Instead, the single cue of vertical
position in the image together with contrasting outlines of the obstacle, was more-or-less
enough to estimate its shape and distance. While this does not directly result in a lighter
algorithm that is suitable for microcontrollers, it at least strongly suggests that such an
algorithm is possible. If I had the time to write one more paper during my PhD studies, I
would have loved to tackle this problem. But for now, the answer to Research Question
1 will be that light-weight monocular vision can provide obstacle perception for tiny
drones, but a practical demonstration remains future work.

While the article provides a good starting point for light-weight monocular depth esti-
mation, it also raised some new questions. If the neural networks use the vertical position
in the image to determine the distance to obstacles, how then does it respond to changes in
camera pose? This question has been answered in detail by Benjamin Keltjens [5], one of
the MSc students that I supervised. Keltjens found that the evaluated neural networks can
learn to cope with changes in camera pose if they are trained on a representative dataset.
(How exactly they do that remains open for investigation). Additionally, said paper fo-
cused on self-supervised learning for depth estimation in indoor environments, where a
lack of texture leads to poor gradients in reconstruction-based loss functions. By extend-
ing the loss function with an additional supervisory signal based on depth interpolation
between reliable edges, the performance in indoor environments can be strongly improved
irrespective of the underlying neural network.

As mentioned above, stereo vision is still a viable option for small drones with spans
in the order of a few centimeters. Stereo vision is expected to provide better results at
close range because of its geometrical underpinnings, though its performance will likely
drop below that of monocular depth estimation at longer ranges. Two MSc students have
looked at the problem of fusing these estimates to obtain an optimal result. Alexios Lyrakis
developed a method to estimate the certainty of the depth estimates from stereo vision
[6]. Using this information, a better weighing between the two estimates can be made.
Additionally, the certainty can be taken into account when planning new waypoints to avoid
obstacles [6]. Dani Tóth’s work focused on the fusion of monocular- and stereoscopic depth
estimates through a neural network, with the goal to achieve a higher accuracy than either
method in isolation. At the time of writing, this work is still in progress.

Besides the works above, my own investigation into monocular depth estimation has
also been well picked up by the scientific community. The problems raised by the paper
are recognized and steps are taken to improve upon this. For example, [7–9] have proposed
improved methods for data augmentation. And in [10] the authors explicitly try to weaken
the dependence on the vertical position cue. In contrast, [11] try to increase the dependence
on this cue, recognizing that it provides a good estimate if the conditions are right. Other
works try to keep the vertical position cue, but address the dependence on camera pose
by supplementing the missing camera pose information. In [8, 12, 13], the camera pose is
provided as an extra input to the network. Alternatively, [14] estimates the ground plane
in the input image, while [15] finds the horizon and vanishing points, with the advantage
that neither requires an external measurement of the camera pose.
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5.2. Avoidance
Once obstacles are detected, the drone needs to take some action to avoid them. At the
same time, the drone should continue to make progress towards its target location. This
lead to the second research question:

RQ 2

How can tiny drones avoid obstacles while moving towards a specific point?

Chapter 2 gave an overview of avoidance strategies and the maps that they could use.
Ideally though, to minimize memory consumption, avoidance without any map would be
the most efficient strategy. Such a solution already exists in the form of bug algorithms. My
former colleague and MSc-supervisor Kimberly McGuire has already written an extensive
review on this topic [16] and demonstrated its use in a real-world experiment on tiny drones
[17]. The limitation of the existing works, however, is that they mainly focus on planar,
two-dimensional movement. The few three-dimensional methods that exist (e.g. [18, 19])
assume omnidirectional vision, which may be difficult to implement within the weight
constraints of tiny drones.
The latter half of Chapter 2 discusses initial flight tests with a Parrot Bebop 2 and

SLAMDunk. After these initial flight tests, a very basic bug-inspired avoidance algorithm
was implemented on this drone. It was closely related to TangentBug [20], but extended
to three dimensions by looking for solutions on three different planes (climbing, level,
descending). The algorithm was demonstrated at the International Micro Air Vehicle con-
ference and competition in 2018, but did not result in an article.
The astute reader will have noticed that there is no further chapter on this topic. The

reason is that the area of three-dimensional bug algorithms was further investigated by
MSc students that I have supervised: Alexios Lyrakis, Ralph Schmidt and Ruben Meester,
while I was working on route following. Lyrakis’ work primarily focused on the uncertainty
estimation for stereoscopic depth estimates, but includes the selection of possible escape
points under uncertainty when a potential collision is detected [6]. Schmidt worked on an
extension of the WedgeBug algorithm [22] to three dimensions, demonstrating its use in
simulation. Finally, Ruben Meester developed an extensive state-machine-based algorithm
that performed autonomous flights on a drone with a forward-facing stereo camera [23].
The algorithm ‘FrustrumBug’ was evaluated in simulation in diverse realistic environments
(city, forest) and achieved a success rate of more than 90% (Fig. 5.1a). Additionally, the
algorithm was implemented on a real-world stereo camera powered by a Jevois smart
machine vision processor1, where it was able to run in real-time. Preliminary flight tests
with this system were successfully performed in the TU Delft Cyberzoo (Fig. 5.1b). This
work has been accepted and presented at the International Micro Air Vehicle conference
and competition, 2023 [21]. Based on the work of these thesis students and especially
the results by Meester, the answer to the second research question is therefore that bug
algorithms are effective in three-dimensional, limited-field-of-view applications and
provide a lightweight goal-oriented avoidance strategy that is suitable for tiny drones.
1jevois.org
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a)

b)

Figure 5.1: Flight results from Ruben Meester’s FrustrumBug [21]. a) Flight trajectories in the simulated Ur-
banCity environment. Out of the 182 flights, 177 successfully reach their goal. In the remaining five flights, the
drone either got stuck in repetitive behavior (4x) or collided with a building (1x). b) Real-world flight result in
the TU Delft Cyberzoo. Image of the drone and environment, plus the real-world trajectory plotted in a schematic
overview of the test environment. The drone can successfully find its way to the goal position despite the obsta-
cles and the local minimum that they form. Images reproduced with permission.



5

104 5. Conclusion

5.3. Route following
If an environment is traversed for a longer time, it becomes more efficient to follow known,
obstacle-free paths than to search for a new route every time the drone needs to move be-
tween locations. On larger-scale drones, building a map of the environment using Simul-
taneous Localization and Mapping is the most common solution to this problem, but this is
too complex for tiny drones. Because of the limited processing and memory capabilities,
an alternative strategy is required:

RQ 3

How can tiny drones retrace known paths?

In Chapter 4 an alternative strategy is proposed. Rather than building a geometrically
accurate map of the environment, the drone will remember just enough to reset its odometric
error from time to time. The chapter shows that the deviation from the path remains
bounded, and that long routes can be remembered using only a tiny amount of memory.
In fact, the traveled distance was bounded by the battery capacity rather than by memory
limitations.
The proposed method is so far limited to planar movement. Applicability to three-

dimensional routes still needs to be proven. However, the general idea of using visual
homing to correct odometry drift is sufficiently demonstrated in Chapter 4. Secondly,
other work has already shown that the image difference function and catchment areas are
also applicable in three dimensions [24]. The main challenge then, would be to find a
snapshot representation and visual homing algorithm that are as efficient as the Fourier-
based algorithm by Stürzl andMallot for planar visual homing [25]. And while it would still
need some work to implement on a real drone, recent work by Differt and Stürzl proposes a
three-dimensional visual homing algorithm with support for highly compressed snapshots
[26]. Therefore, I can say with reasonable confidence that tiny drones can retrace known
paths by combining odometry with periodic homing maneuvers to counteract drift.
Because there was little time between the publication of my article and the finalization

of this thesis, it is not possible to comment on its impact on the field. However, I hope it
will be seen as encouragement to look more towards behavior-based solutions for robotics
than more-and-more complex modeling and planning algorithms.

5.4. Navigation
With all research questions answered, we end up at the main goal of this dissertation:
bringing visual navigation to tiny drones.

Main Research Question

How do we bring visual navigation to tiny drones?

Because all research questions provided a positive answer, it is now possible to pro-
pose a strategy for visual navigation on tiny drones where this was previously not possible
due to size, weight and power constraints. Tiny drones can visually navigate by us-
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ing lightweight monocular vision algorithms to perceive obstacles, three-dimensional
bug algorithms to avoid them while moving to new locations, and odometry and visual
homing to retrace known paths.

5.5. Outlook
With the main research question answered, what work remains for future research? On a
high level, there is still room to investigate the strategies proposed in this thesis. These can
be tested individually, for instance by evaluating the simulation results in the real world,
or extending the test flights to varied real-world environments. Or, the integration of all
strategies proposed here could be investigated, since they have only been tested in isolation.
More into detail, the results in this thesis are primarily proof-of-concepts, and robust im-

plementations still need to be developed. For monocular depth estimation, a likely strategy
has been identified, but still needs to be implemented and tested on lightweight hardware.
There are also a few key items that remain for visual route following. Firstly, the current
strategy has been demonstrated for planar movement. While the steps towards a three-
dimensional solution are clearly described above, they still need to be implemented and
evaluated. Secondly, the current strategy relies on panoramic- or omnidirectional vision. A
solution with a forward-facing camera would save more weight for the smallest of drones.
This dissertation covered the autonomous navigation between different workspaces.

What was not discussed, is the movement within a workspace, i.e. small, precise move-
ments over a short distance. This is an area where the proposed strategies are less useful,
and where further developments in lightweight positioning techniques like Visual Servoing
(e.g. [27]) could provide new opportunities.
Finally, at a really high level, this thesis has shown that a complex task like visual

navigation can be performed without complex online modeling and/or state estimation.
Instead, the problem is solved by the interplay between relatively simple behaviors and the
environment. I think a stronger focus on behavior-based solutions like these could provide
a huge boost to robots in general, not just tiny ones, without the cost of additional sensors
or hardware. I hope that this work might set an example for future research into robot
navigation.
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A
Supplementary materials for

Chapter 4: Visual route
following

In this chapter, we provide the following supplementary material. First, we present omni-
directional images taken in different indoor and outdoor environments (Section A.1). Sub-
sequently, we explain the experimental setup and results for the simulation experiments
(Section A.2). Finally, we introduce a straightforward theoretical model for the spacing of
snapshots (Section A.3).

A.1. Presence of texture in different environments
As stated in Chapter 4, an important characteristic of the chosen snapshot representation
(with vertical averaging and Fourier compression) is that it depends on prominent vertical
features. Such features are commonly present in both indoor and outdoor environments.
To illustrate this, we made a set of snapshots in various places in the building of the Faculty
of Aerospace Engineering at TU Delft.
The raw images cannot be stored in-flight on the Crazyflie drone itself. Hence, in

order to be able to store the images, we made a setup in which the drone is connected to
Raspberry Pi 3 board. This board is mounted on a ground robot, and the tiny Crazyflie
quadrotor is mounted on a custom support, so that it is slightly elevated above the ground.
It is important to note that the ground robot was not operational and was only used to
support the Crazyflie and log the images.
Below, we show snapshots taken at different locations. From left to right we show: An

external image showing the environment, the omnidirectional image, and the snapshot at
An edited version of this chapter has been published as supplementary material for:
van Dijk, T., De Wagter, C., de Croon, G.C.H.E. (2024). Visual route following for tiny autonomous robots.
Science Robotics.
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Figure A.1: Setup for storing the images. The Crazyflie drone (blue arrow) is connected to a Raspberry Pi 3 (red
arrow) for storing omnidirectional images. The Raspberry Pi 3 is mounted on a ground robot. A custom support
(green arrow) elevates the Crazyflie for capturing of the omnidirectional images while keeping the robot outside
the field-of-view.
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different stages of processing. The stages of processing are, from top to bottom: the cylin-
drical reprojection of the omnidirectional image, the vertically averaged pixel values, and
the reconstruction from the selected Fourier components. Finally, although the approach
has been designed for static environments, we also show how the snapshots change when
objects change place. For instance, we show a snapshot without and with a person in view,
or shift around objects like chairs, plants, or boxes.
From the above dataset, we make the following observations. First and foremost, in

general, there is ample vertical texture both indoors and outdoors, leading to clear con-
trasts in the snapshot representation. Even in the texture-poor indoor corridor, there are
some features that remain, like the blue door and contrast between the floor and walls.
Less texture will lead to poorer homing performance. In a completely uniform corridor,
homing in the direction of the corridor will be particularly poor. Second, the main layout
of the snapshot is determined by large structural elements (walls, windows, doors, trees,
corridors, etc.). Dynamic objects do lead to small changes in the snapshot representation.
Larger vertical objects (like persons) typically introduce additional vertical “stripes” in the
snapshot representation (with broader stripes if they are closer to the robot).
Smaller or more far away objects seem to have little influence on the representation. In

this manner, the coarse resolution of the snapshots may bring robustness to small changes
in the environment. In order to gain more insight into this matter, we performed a pre-
liminary investigation. Specifically, we first placed the robot at a given location and made
a snapshot. Subsequently, we displaced the robot and made a video, during which the
experimenters are moving around the scene, also occasionally moving objects around like
chairs, large plants, etc. We then ran the vision algorithm on the video, extracting the
Fourier components and determining a homing direction to the first snapshot. The effect of
the dynamic environments on the homing vectors is shown in Movies S7-S131. The videos
are structured the same as the plots in Figure A.2, with the raw camera image on the left,
the unwrapped image in the top center, the horizon line in the middle and the snapshot
in the bottom center. On the right is the homing vector, in unscaled form (equivalent to
an environment radius of 1), with the plot axes ranging between -0.3 and 0.3. The videos
contain most of the same scenes as Figure A.2, with people walking in view and moving
objects. In general, the homing vector remains quite stable, even though the homing al-
gorithm was made for static scenes. A good example can be seen in Movie S10, where
the vector keeps pointing in a similar direction while people are moving in the frame and
moving furniture inside the office. However, highly-contrasting moving objects (such as
the people in front of the yellow wall in Movie S11) can have a noticeable effect on the
homing vector. If the vector still points within 90 degrees to the actual homing vector, this
could still lead to successful homing though.

A.2. Route-following experiments in simulation
While the experiments in Chapter 4 demonstrated the principles behind our navigation
strategy, they were ultimately limited in length by the flight time of the drone. In order to
evaluate the feasibility and robustness of the strategy over longer distances, we implement
the same strategy in simulation. As a simulated environment we select a forest, allowing us
1https://www.youtube.com/playlist?list=PLEmDnfepWI6Qiaw74hw9VTlko_EdNQ1NB

https://www.youtube.com/playlist?list=PLEmDnfepWI6Qiaw74hw9VTlko_EdNQ1NB
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(a) Outdoor grass area in-between buildings of the faculty of aerospace engineering. Bottom right: Same envi-
ronment, but with a person (yellow arrow), visible around pixel 55.
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(b) Outdoor pedestrian area in front of TU Delft’s SIMONA building. Bottom right: Same environment, now
with a person standing close-by (yellow arrow). It has an effect around pixels 80-90.
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(c) Indoor environment with as little texture as we could find in our building; A corridor with uniformly colored
walls. Bottom right: Same environment, but with a person.

Figure A.2: Snapshots taken in a variety of environments. The left images show an overview of the scenes. In
the center are two raw camera images with minor scene differences between them (yellow arrows), to give an
impression of the sensitivity to changes. The right column shows the post-processing steps for each raw image.
Top: unwrapped panoramic image; middle: vertically averaged image; bottom: Fourier-compressed snapshot.
Continued on page 113, 114.
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(d) Office with chairs close to the robot. Bottom right: Same office, with the chairs further away (see the absence
of the chair at the yellow arrow).
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(e) Indoor area with two large plants. Bottom right: Same area with plants moved closer together.
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(f) Indoor corridor with little texture on the walls. Bottom right: Same area, but now with a person (yellow
arrow).

Figure A.2: (Continued)
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(g) Indoor airplane simulation facility. Bottom right: Same area, but now with a cardboard box moved (yellow
arrow).
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(h) Entrance area of the SIMONA building with tables and chairs. Bottom right: Same area with two persons
(yellow arrows).

Figure A.2: (Continued)

to additionally test how the strategy fares in a natural outdoor environment without having
to deal with wind or other disturbances.
To produce relevant results, the simulation should have a high visual fidelity. Fur-

thermore, it should include measurement errors in odometry, as this is the reason a route-
following strategy is required in the first place and has a strong influence on the robustness
of the proposed strategy.
For this experiment, we use Microsoft’s Airsim (https://microsoft.github.io/AirSim/)

as a simulator. Specifically, we use the pre-compiled Forest binary from the 1.2.0 linux
release. The Forest environment provides realistic imagery of a pinewood forest (Fig. A.3)
and is large enough to evaluate long trajectories.
Airsim does not have a native omnidirectional camera. Therefore, we capture four

images with a 90 degree field-of-view at a 90 degree interval and combine these into a
cube-map (Fig. A.3), from which a cylindrical panorama is sampled.
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N=0m

N=50m N=100m

N=150m N=200m

N=250m N=300m

Figure A.3: Airsim Forest environment. Example panoramic photos of Airsim’s Forest environment, taken along
the 300m trajectory flown by the simulated drone (see Figure A.4). Labels indicate the North position, the East
position is 0m for all images.

The need to rotate the drone/camera assembly to capture panoramic images prevents us
from using Airsim’s physics simulation. Instead, a simplified movement model is imple-
mented using numpy. The movement model contains both the true movement of the drone
and a simulation of its odometry error, and is updated at a frequency of 10Hz (simulation
time) with a velocity capped at 1m/s.
Similar to our real-world experiments, this model assumes planar movement at a fixed

distance above the ground. We assume that elevation changes in the direct vicinity of a
snapshot are small enough not to disturb the homing strategy. In Airsim, the ground level
is measured by aiming a depth camera toward the ground and adjusting the virtual drone’s
height accordingly, so that panoramic images are captured at the correct height.
We also note that airsim does not recognize collisions between the drone and the trees,

but that collision avoidance is also outside the scope of our investigation. A collision with
a tree during either the outbound- or inbound journey therefore does not result in a crash,
but can cause visual disturbances by obstacles filling large parts of the field-of-view.
To improve the speed of the simulation, images are only captured on a 1x1m grid

(except during the outbound flight, when arbitrary positions for snapshots are allowed).
This allows the images to be cached, saving significant rendering time. To calculate homing
vectors at arbitrary positions, a homing vector is calculated for each of the four surrounding
grid positions and then bilinearly interpolated. This is the same procedure as used in
Figure 4.3B on real-world imagery.
For accuracy, our navigation strategy is directly ported from the camera firmware to



A

116 A. Supplementary materials for Chapter 4: Visual route following

Python with as few changes as possible. The simulation therefore uses the same recording,
image processing and route following algorithms as the real drone.
To realistically represent the odometry errors and their effect on both the recording and

route following process, these are also implemented in our drone model. The odometry
error model assumes the presence of Gaussian white noise on the velocity measurements
(independent and equally-distributed on both axes), plus Gaussian white noise on the yaw
rate measurement. Note that both these measurements are integrated by the state estimator
to obtain position and heading, leading to drift over time. The true pose is only used for
evaluation and to control the drone during the outbound flight; the simulated navigation
stack only has access to the estimated state, which is disturbed by the above errors.
We will now explain the mathematical model underlying the simulation, starting with

some notation.
H𝑎,𝑏 is a homogeneous transformation matrix ∈ ℝ3×3 representing the pose

of frame 𝑏 expressed in frame 𝑎.
T𝑎(Δ𝑝) is a homogeneous transformation matrix representing a translation Δ𝑝

expressed in frame 𝑎.
R𝑎(Δ𝜓) is a homogeneous transformation matrix representing a rotation Δ𝜓

expressed in frame 𝑎.
h𝑎 is a homogengeous vector ∈ ℝ3 expressed in frame 𝑎𝒩(𝜎) is a zero-mean normal-distributed random variable with standard de-

viation 𝜎, or a vector of independently-distributed variables of such
type.

Frame indices are arranged such that h𝑎 = H𝑎,𝑏h𝑏. Moreover, the following identity
holds: H𝑎,𝑏 = H−1𝑏,𝑎.
The drone’s state is represented by two transformation matrices: Hworld,drone repre-

senting the true pose of the drone in the world, and Hodo,world representing the difference
between the true and estimated pose (with “odo” as an abbreviation for “odometry”). For
a movement with translation Δ𝑝, the simulation state is updated as follows:

Hworld,drone ← Tworld(Δ𝑝) Hworld,drone
Hodo,world ← (Tdrone(𝒩(𝜎𝑡)) Rdrone(𝒩(𝜎𝑟)) Hdrone,odo)−1

Hdrone,world
where𝒩(𝜎𝑡) is the Gaussian noise on the translational part of the motion and 𝒩(𝜎𝑟)

on the rotational part (the heading). For a movement planned and executed in the drone’s
odometry frame, the true Δ𝑝 is found by:Δ𝑝world = Hworld,odo Δ𝑝odo
For control purposes, the pose of the drone in its internal odometry frame can be found

by:

Hodo,drone = Hodo,world Hworld,drone
We demonstrate our navigation strategy by sending the drone on a 300 meter straight-

line trajectory through the simulated forest. The drone then has to return to its starting
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Figure A.4: Route following results in Airsim’s Forest. Left: Route following result with the proposed navigation
strategy. The outbound path is shown in red, odometry segments in yellow and homing segments in blue. The
drone is able to record and follow of path of 300 meters with limited deviations. Right: The same experiment is
repeated, but using only odometry. The drone has an endpoint deviation of more than 50 meters.

Snapshot i Snapshot i+1

Catchment area

rCA

d

Figure A.5: Simplified theoretical model for spacing snapshots. The figure shows two subsequent snapshots, 𝑖
and 𝑖 + 1, and the straight route leg between them with distance d. A circular catchment area (CA) with radius𝑟CA is shown as a dotted circle. The dashed black arrow indicates that the robot deviates from the path due to
odometry drift.

position, using the same algorithm and tuning as the real drone. The drone successfully
finds its way back to the starting position (Fig. A.4). For comparison, we repeat the same
experiment using only odometry and observe that there is an excessive deviation from
the intended path (50m), highlighting the need for a route following strategy over longer
distances.

A.3. Theoretical model for spacing snapshots
In this section, we provide a theoretical model for the spacing of snapshots with the pro-
posed strategy. We first present a highly simplified model, since it suffices for conveying
the main intuitions on the memory gain obtained by the strategy and the scalability of the
approach. Subsequently, we discuss the effect of making several model elements more
realistic.
Simplified model Figure A.5 illustrates a simplified theoretical model for the spacing
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ex
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ey

Snapshot i Snapshot i+1

Figure A.6: Illustration of the initial error components due to imperfect homing. The figure shows two subsequent
snapshots, 𝑖 and 𝑖 + 1, and the straight route leg between them with distance 𝑑. It also shows two examples of
where the robot can be after homing, with its location (black, dashed circle) and heading (black, dashed triangle).
The dashed arrow lines show how the position of the robot can evolve over time when performing the leg. The
initial errors in position are shown in purple with the error along the leg direction 𝑒𝑥, orthogonal to the leg
direction 𝑒𝑦. The initial heading error 𝑒𝜓 is shown for the top example.
of snaphots. In this model, the robot starts perfectly at snapshot 𝑖, facing in the correct
direction towards snapshot 𝑖 + 1. The robot travels this leg of the route with the help of
odometry. The odometry in this simplified model only introduces a cross-track drift, which
is constant per covered meter. In this model we ignore heading drift and along-track drift:𝜓 ← 0𝑥 ← 𝑥 + Δ𝑥𝑦 ← 𝑦 + 𝐶 Δ𝑥
The constant 𝐶 in this model captures what is maximally expected as cross-track drift

per meter. Note that while traveling this leg, the robot keeps its heading constant and
attempts to keep its y-position also constant. When traveling a distance Δ𝑥 = 𝑑, the
accumulated drift is Δ𝑦 = 𝑦𝑖+1 − 𝑦𝑖 = 𝐶 𝑑. If we want to minimize the number of
snapshots while retaining successful homing, the end point of the route leg has to end on
the circumference of the catchment area. This implies that the optimal snapshot spacing𝑑∗ according to this model is: 𝑑∗ = 𝑟CA𝐶
Under this (heavily) simplified model, the required snapshot memory increases linearly

with the distance.

A.3.1. Impact of model refinements
In reality, there is not only a cross-track error. In fact, in real flights there are two types of
errors: an initial error due to imperfect homing, and an additional drift during the leg due
to odometry errors. Moreover, catchment areas vary in both shape and size, depending on
the robot’s surroundings.
Figure A.6 illustrates the initial errors that arise due to imperfect homing, i.e., an initial

position and heading offset. From this initial position, the robot’s estimate of where it is
with respect to snapshot i+1 will further deviate due to odometry drift. In the simulation
experiments (both of section A.2 and in Figure 4.5A in Chapter 4, p.85), we assume a more
realistic model with a Gaussian drift in both position and heading.
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𝜓 ← 𝜓 + 𝒩(𝜎𝜓)𝑥 ← 𝑥 + Δ𝑥 cos𝜓 + 𝒩(𝜎𝑥)𝑦 ← 𝑦 + Δ𝑥 sin𝜓 + 𝒩(𝜎𝑦)
Including an initial offset and more realistic drift leads to both a cross-track and along-

track error. However, both the simulations and real-world experiments show that the cross-
track error is still by far the most significant (an asymmetry arising due to the heading
error). A bigger difference with the simplified model arises in terms of the increase of
cross-track error over time. Figure 4.5A shows that this relationship is nonlinear, with a
nonlinearly increasing error for longer route legs. This property becomes really important
when devising a strategy that allows the robot to determine the route leg length dynamically.
However, in our setup we assume a fixed route leg length, which means that we can only
regard the distribution of position errors at that given length. We can then take, e.g., the
maximal offset at that location, and add an extra safety margin to take into account the
along-track error and possible odometry drift outliers. From that point on, one can assume
to deal with the simplified model.
Moreover, in the real world catchment areas have unknown, irregular shapes, depending

on the robot’s surroundings. For instance, a snapshot located in the center of a large open
field will have a large catchment area (potentially combined with a lower homing accuracy).
In a small, cluttered space, omnidirectional vision inputs may change very quickly, leading
to a small catchment area (but potentially a higher homing accuracy). Figure A.7 shows
three irregularly shaped catchment areas (thin blue, green, and orange dotted lines). Since
we do not know up front what the shape and size of a catchment area is, we need to assume
a shape and size for the catchment area. As there is no fundamental reason for asymmetry
when looking at all possible catchment areas, we assume a circular shape for the catchment
area. Moreover, because ending up inside of the catchment area is vital for the proposed
strategy, we need to be conservative with our estimate of the catchment area size. That is,
we cannot assume it to be too large, as ending up outside of the catchment area poses a
substantial risk for getting lost.
One strategy to estimate the catchment area is to assume it to be minimal among a set of

measured catchment areas. Figure A.7 shows what this looks like with a thick, grey dotted
circle that represents the maximal circular catchment area that intersects with all irregularly
shaped ones. Of course, one can be even more conservative by setting the catchment circle
radius even smaller. Changing the circle radius means moving on the trade-off between
route-following success and memory and time expenditure. Assuming a smaller radius
means shorter legs and a lower probability of ending up outside the CA. However, it
also means storing more snapshots in memory, and performing visual homing more often.
Because visual homing takes time, this might finally even reduce route-following success
when the route is long. This is illustrated in Figure 4.6C in Chapter 4, where snapshots are
placed really close to one another.
For the snapshot spacing in the real-world experiments, we made a conservative choice

for the distance between snapshots of 1 – 2 meters. The odometry drift results in Fig-
ure 4.5C show a cross-track error of < 8cm, implying a very small required CA size. This
while the CA that can be deduced from the experiments in Figure 4.4A possibly has a
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Figure A.7: Varying catchment areas modeled by a circular region of intersection. The snapshot location is
represented by a full, grey circle. The blue, green, and orange dotted lines show possible, irregularly shaped
catchment areas. The thick, grey, dotted line shows an assumed circular catchment area as the maximal circular
intersection area of the real catchment areas.

radius of ∼2.25m. Future work could investigate interesting avenues to better exploit the
relationship between odometry drift and visual homing. For instance, the robot could esti-
mate CA size dynamically and have a procedure to deal with “getting lost” when outside a
CA. Moreover, one could also improve the odometry error model. For instance, odometry
gets less accurate when flying really fast, due to motion blur. Moreover, visual odometry
like the one from the Crazyflie’s flowdeck works less well when there is little visual tex-
ture, and the height measurements from the downward-pointing laser can be impaired by
direct sunlight. Investigation into these matters and their use in a revised route-following
strategy could allow to further reduce memory requirements and / or improve robustness.

A.4. Position plots over time for flight experiments
Figure 4.6 in Chapter 4 shows a top view of the robot’s positions during S- and U-shaped
trajectories. In this section, we show the same information over time in Figure A.8. The
plots over time show that the battery during the homing-only U-flight was depleted after
200 seconds, earlier than during the odometry-and-homing U-flight. This is purely due to
differences between batteries. However, it is also clearly visible that the drone gets much
less far along the trajectory during the 200s of homing-only flight than during the same
period of the odometry-and-homing flight.
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Figure A.8: Time sequence plots of Fig. 4.6. The plots show the east and north position of the drone over time in
the same experiments. The same color coding as Fig. 4.6 is used: red is the outbound segment, yellow indicates
route following by odometry and blue by homing.
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