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 This paper presents the development of a runway allocation planning tool that seeks to 
maximize the permissible number of flight operations into and out of an airport within a 
given annual noise budget. Although the model that underlies the planning tool is generic in 
nature, the tool has been customized for application to a specific airport, viz. Amsterdam 
airport Schiphol in the Netherlands. The noise budget regulations applicable at Schiphol 
stipulate limits on the annual cumulative noise loads at a large number of enforcement 
points arranged around the airport. To ensure an equitable distribution of the cumulative 
noise load at the enforcement points, an efficient allocation and distribution of the annual 
flight movements over available runways and routes is required that takes weather induced 
restrictions into account. To this end, a Linear Programming (LP) optimization formulation 
has been developed that implements a minimax performance criterion that aims to minimize 
the maximum cumulative noise load value occurring at any of the enforcement points. The 
numerical results obtained for the operational year 2005 clearly demonstrate the potential of 
the tool to maximize the yearly number of flight movements within the assigned noise 
budget.   

 

I. Introduction 
o mitigate the impact of aircraft noise, an array of measures has been developed and implemented at airports 
located close to sensitive communities. A type of measure that is frequently employed to mitigate the effect of 

airport noise concerns the enforcement of airport access restrictions, such as operating quota, noise budgets, 
(nighttime) curfews and restrictions on the operation of certain (noisy) types of aircraft1. 
 The application of a noise budget generally places a ceiling on the total amount of noise that may be produced at 
an airport during a longer period such as a season or a year2. Due to their long-term nature, noise budgets are 
typically based on a cumulative (rather than a single-event) noise metric. In some cases noise budgets restrict 
operations only during a certain night time period, whilst in other cases the budget may apply during the day as well. 
In contrast to an operating quota, which imposes a direct limit on the permissible number of movements, the 
application of a noise budget provides some degree of flexibility in the scheduling of operations owing to the fact 
that it is based on the aggregation and distribution of all flight movements over an extended period of time. For 
example, within a given noise budget, the operation of a few noisy aircraft might be exchanged in favor of a larger 
number of quieter planes. By the same token, the permissible number of movements might be increased through 
efficient allocation and distribution of the annual flight movements over available runways and routes. Noise budget 
restrictions, presently in place at various noise-sensitive airports around the globe, can take on several forms 
depending on the community noise policy objectives sought to be achieved at a particular airport.  
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At several airports in the UK, including London Heathrow and Manchester airport, a noise budget has been put 
in place in the form of a “points budget” known as a Quota Count system3. Based on ICAO aircraft noise 
certification data, all arriving and departing aircraft are given a noise classification in terms of a Quota Count (QC), 
with a noisy aircraft receiving a higher QC than a quieter one. For each inbound and outbound flight, the 
corresponding QC is then deducted from the points budget that is typically fixed for any given season. This process 
allows airlines to operate more quiet aircraft in exchange for fewer noisier ones. In Germany, Hamburg airport is 
subject to noise limits based on the surface area of land around the airport where the noise exposure exceeds a 
specified Leq energy-equivalent  sound level limit (62 dBA)4. The airport conducts continuous noise monitoring and 
reports annually on its operation within the noise budget. At Friedrichshafen Airport in Germany, a similar noise 
budget restriction is imposed during the six busiest months of the year3. Here, a Leq sound level limit of 62 dBA is 
imposed and monitored at a specific location in a village adjacent to the airport. One of the strictest noise-controlled 
airports in the United States is Long Beach airport. At Long Beach airport a noise budget has been put in place that 
aims to have no communities exposed to a community noise equivalent level (CNEL) of 65 dBA or greater3. To 
help enforce the noise budget regulations, the airport has an extensive airport noise and operations monitoring 
system in place3. In New Zealand, noise budgets are imposed at the international airports of Auckland and 
Wellington. At both airports, outside a certain surface area of land around the airport defined on a map, the day-
night average sound level Ldn should not exceed 65 dBA. At Auckland international airport, an additional area 
known as Moderate Aircraft Noise Area is defined. At the boundary of this Moderate Aircraft Noise Area Ldn 
should not exceed 60 dBA. Noise monitoring is undertaken in the exposed communities3.   

One of the most noise-sensitive major airports in Europe is Schiphol airport, located near Amsterdam in the 
Netherlands. To manage the noise resulting from flight operations and to mitigate its worst effects, Schiphol airport 
and (national and local) authorities have legislated and implemented an extensive set of measures. The noise 
regulations currently applicable to Schiphol airport, effective since 2003, also include a noise budget restriction that 
stipulates limits for the total annual noise volume, as well as for the average annual noise exposure at a number of 
predefined locations in the vicinity of the airport, known as “enforcement points”5.  

Consistent with airline seasonal planning, a noise planning is made for Schiphol airport for an operational year 
that runs from November 1 through October 315. This implies that on October 31 of a given calendar year, the noise 
exposure that was accumulated as of November 1 of the preceding calendar year should not exceed the regulatory 
noise limit specified at any of the enforcement points. The annual usage plan, known as the “operational plan”, is 
made well ahead of the start of an operational year and relies on a prediction of the cumulative noise exposure in the 
enforcement points based on a comprehensive traffic forecast.  In the usage plan it must be clearly demonstrated that 
the environmental impact of the planned operations does not result in a noise budget overrun by year-end. The 
environmental capacity resulting from the usage plan is then apportioned to airlines through the allocation of slots 
(date and time of departure or arrival for a single aircraft movement). It is readily clear that in order to make 
maximum use of the available environmental capacity, the annual flight movements should be efficiently distributed 
over the available runways and arrival and departure routes such that the annual budget is met at every enforcement 
point. It is inevitable though that differences between the planned and actual operations will occur during the 
operational year. Therefore the noise loads produced at the enforcement points are closely monitored during the 
operational year. When necessary, operational measures are applied to prevent noise budget exceedance. 

At present Schiphol airport has five main runways available, permitting a multitude of runway combinations. 
Typically, three runways are operated simultaneously in a runway configuration, although configurations that 
feature one, two or four active runways are also possible.  However, due to the often changing weather conditions 
(notably wind speed and direction), the availability of each runway configuration varies. Clearly, any change in 
runway combination results in a different traffic distribution around the airport and, as a consequence, in a different 
noise load distribution.  

Based on safety and efficiency considerations, runway combinations have been set up and ranked in an order of 
hierarchy in a preference list by the air traffic service provider at Schiphol airport (LVNL)6. The use of an individual 
runway is determined by the prevailing meteorological conditions and if the weather conditions allow more than one 
runway combination to be used, then the highest combination from the preference list is selected. Each month, the 
annual noise load at the enforcement points is recalculated using actual traffic as available and projected traffic for 
the remaining months. Based on the results, the preference list is updated such as to achieve the most balanced noise 
load accumulation at the enforcement points without exceeding the noise budget limits set by year-end.  

Amsterdam Airport Schiphol has developed an optimization tool that aims to accommodate as many flights as 
possible during an operational year, while minimizing the chance of exceeding the limit values of the enforcement 
points5. The optimization tool is used in conjunction with a traffic forecast model, a runway combination selection 
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model and a collection of historic meteorological datasets. It is readily clear that meteorological data forms an 
important basis for the traffic and noise distribution forecasts. As mentioned earlier, the steering mechanism 
presently used in the optimization process to manage the noise load distribution is to allocate over time the order of 
preference of the available runway combinations. 

In Reference 7, an alternative approach to runway allocation optimization is presented. The multi-objective 
optimization tool proposed in Ref.7, called SNAP (Strategic Noise Allocation Planning), optimizes the allocation of 
flights to runways on an annual basis with respect to three criteria, viz., noise impact, third party risk and average 
delay per movement. The multi-objective optimization is also subject to a number of constraints, related to 
operational procedures, runway capacity and weather conditions. In order to reach a final solution, a trade-off 
between the three performance criteria needs to be made. The noise criterion considered in SNAP does not relate to 
average annual noise exposure at predefined locations (i.e., enforcement points), but rather it is based on the number 
of people expected to be annoyed by annual aircraft noise exposure. In contrast to the optimization algorithm 
currently in use at Schiphol5, which steers the traffic distribution indirectly through adjustment of the preference list, 
SNAP does not make use of a preference list, but rather directly allocates optimal runway configurations. 

The present study on environmental optimization of runway allocations builds on the approach taken in SNAP, 
by extending it to take into account the current noise regulations that specify limits at discrete enforcement points. 
To ensure an equitable distribution of the noise load, a minimax performance criterion is adopted. The minimax 
criterion aims to minimize the risk of exceeding the limit at any enforcement point by minimizing the maximum 
noise load value occurring at any of the enforcement points6. Unlike in SNAP, third party risk and average delay are 
not considered as performance criteria in the present study. However, these metrics remain available as performance 
indicators that can be evaluated a posteriori.  

 
 

II. Managing the Noise Load Distribution through Runway Allocation 

A. Runway Combination Selection 
 
In Figure 1 the runway layout at Schiphol airport is presented. Schiphol features six runways in total, including   

five main runways and one (viz., RWY 04-22) that is primarily used for smaller aircraft and domestic travel. During 
the day, outside of peak times, the airport often uses one runway for departures and one for arrivals. However, since 
Schiphol is a hub airport it also needs to accommodate traffic “waves”, i.e., peaks in arriving traffic followed by 
peaks in departing traffic6. During an arrival peak, typically two arrival runways are used. Similarly, during a 
departure peak two departure runways are operated. Occasionally, two departure and two arrival runways are used 
simultaneously. During the night there is always one runway for arriving traffic, and one runway for departing 
traffic.  

 
 

 
 

Figure 1: Runway layout (left) and example runway configurations (right) at Schiphol airport.  
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Some of the main factors that influence the choice of the best possible runway combination for a particular 
situation are, peak period and time, visibility, Runway Visual Range (RVR), cloud base and wind limits. In 
particular the wind limits have a strong influence on which runway combination is most suitable for a particular 
situation in a particular period of the day. Landings and take-offs are typically conducted into the wind. However, 
operations on a runway are sometimes permitted with a slight tailwind. The maximum allowable tailwind is usually 
about 5 to 6 knots8. In addition to a tailwind limit, also a limit to the crosswind component is imposed to guarantee 
flight safety. The crosswind component is the component of the wind velocity vector that is perpendicular the 
runway centerline. At Schiphol airport, cross wind limits are imposed that depend on the visibility, cloud base and 
runway surface condition (dry or wet), which affects the braking action9. 

As mentioned earlier, predictions of future runway allocations and associated noise load distributions are based 
on an average of past years meteorological data. Historical wind statistics can be conveniently summarized in the 
graphical form of a so-called wind rose8 (see Figure 2). In essence, a wind rose arranges velocity, direction, and 
frequency of wind occurrences within a certain period of time. Circles on the template represent the wind speed, 
while the radial lines illustrate the angles or the wind blowing directions. Each cell bounded by two circle segments 
and two radial lines contains the percentage of time that the winds correspond to a given direction and velocity 
range. On the wind rose shown in Figure 2, a runway template (rectangle shown in red) is placed, representing a 
one-directional runway. The location, dimensions and orientation of the rectangle are determined by the direction of 
operation and by the applicable cross and tail wind limits. All wind conditions within the rectangle are essentially 
covered by the considered runway. It is important to realize that for any given runway configuration to be valid 
under a particular wind condition, that wind condition (cell) should be contained within the “box “ associated to 
each individual runway available in that configuration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 2: A wind rose and superimposed one-directional runway wind limit template.  
 

B. Runway Allocations 
  
Runway allocation is the process of assigning a runway to each flight movement. Clearly, runway allocation is to 

a large extent implicitly determined by the runway combination selection process. Only for configurations that 
feature multiple runways for departure or landing operations, the runway allocation process also involves 
distribution of flights over the different runways available in the configuration. When a flight is assigned to a 
particular runway, the spatial allocation of the noise impact associated to that flight is to a large extent fixed as well. 
Indeed, the origin or destination of a flight, in combination with the selected runway, usually results in a particular 
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routing to or from the airport. It is exactly this property that makes runway allocation such an important steering 
mechanism with respect to noise management. 

 

C. Noise Enforcement Points 
 
To limit the noise disturbance for the population around Schiphol, the Dutch government has specified limits for 

yearly day-evening-night average sound level Lden in 35 enforcement point located in the vicinity of the airport (see 
Figure 3)5. A specific Lden limit value has been assigned to each individual enforcement point. The noise limit 
values for the enforcement points are listed in the table displayed in Figure 3. It needs to be noted that Lden is a 
cumulative measure of noise that expresses the total noise effect at a given location of all the aircraft movements 
taking place within an operational year. The metric Lden features weightings of the single event levels depending on 
the time of day or night at which they occur. In addition to the limits on yearly Lden at the 35 enforcement points, 
also yearly Lnight (applicable to the night period, 23:00 – 07:00 hr. local time) limits have been imposed at 25 
separate enforcement points close to the airport. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: the 35 enforcement points (Lden ) in the vicinity of Schiphol airport (Ref. 6). 
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III. Minimax Formulation of the Runway Allocation Problem 

D. Conceptual model description 
 
In this section a concept description is given of a model that forms the basis for a tool that optimizes the runway 

allocation for the planned flight movements within an operational year, using a Linear Programming (LP) 
formulation10. The main inputs for the model are identified wind patterns and. traffic patterns. 

In a first step, a wind rose analysis is conducted as described in section II.B, using the weather history from the 
year 1951 until 20057. The outcome of this analysis is a list containing for each cell of the wind rose the historic 
occurrence percentage of the associated wind condition. Next, for each cell in the list it is determined which runway 
combinations are available, based on the prevailing cross and tail wind limitations. All cells that share the same list 
of available runway configurations are clustered in a “wind pattern”. For Schiphol airport only 19 unique wind 
patterns were identified6. 

In a next step, the traffic patterns and their associated noise load distributions are determined. Based on the flight 
schedule for the operational year (also taking into account projected charter operations) it is determined for each 
hour of the year how many arrivals and departures take place and by what aircraft type. With 365 x 24 = 8760 hours 
in a year, this gives 8760 traffic samples. To limit the scale of the optimization problem to be formulated, similar 
traffic samples are aggregated into “traffic patterns”. In this context “similar” is defined as, (i) the same number of 
departures, (ii) the same number of arrivals, and, (iii) same period of the day (Day, Evening, Night). The structure of 
a traffic pattern could, for example, look like: 

 
Pattern 33 : 

Arrivals: 10 
Departures: 7 
Traffic sample occurrence: 3x 
Arriving a/c: 12x B747, 14x B737, 4x A320 
Departing a/c: 10x B737, 9x A320, 2x MD11 
Period of the day: evening 
 

When for example the 2005 schedule of Schiphol is considered, this approach aggregates the 8760 yearly traffic 
samples into about 2000 unique traffic patterns. One of the advantages of the selected form of aggregation is that it 
preserves the capability to assess average runway delays, which depends on the number of traffic movements per 
hour and the traffic mix. Also note that specific information regarding the time of day is needed to enable Lden noise 
load calculations at the enforcement points.  

 In the model formulation, each traffic pattern is combined with each wind pattern, resulting in a list of unique 
combined “situations” (see figure 4). This list represents every situation that can occur during a year, combined with 
the probability that it occurs. In the optimization formulation, an allocation decision for each of these unique 
situations has to be made. Here, a decision comes down to the choice of one of the available runway configurations, 
and in the case of multiple arrival/departure runways also the percentages of distribution over the two runways. For 
each unique combined situation it now has to be checked which of the available runway configurations have 
sufficient capacity to handle the traffic. Runway configurations that are available but supply insufficient capacity are 
discarded. After this, a check is made whether there are some situations with no available runway configurations at 
all. If so, these unique situations are removed from the model to prevent that the LP problem formulation becomes 
infeasible. 

 To choose the optimal runway configuration, the LP problem formulation needs to contain information on the 
consequence of each allocation choice. Therefore the noise cost for the usage of each available runway configuration 
is determined for each unique combined situation.  Note that the noise contribution values have to be determined 
separately for each enforcement point, since the noise load accumulation in each enforcement point needs to be 
recorded. In this study the methodology for conducting the noise load calculations has been principally based on the 
approach taken in SNAP7.   

The SNAP tool relies on the Integrated Noise Model (INM) 11 to record the noise load contribution at each noise 
observation point, for each individual flight movement. The results for the single event flight movement noise 
computations are provided in terms of Sound Exposure Levels (SEL). The spatial distribution of noise caused by a 
departing or approaching aircraft depends not only on the assigned runway, but also on the route leading to the 
runway (when considering an arrival) or the route leading from the runway (when considering a departure). In total, 
104 routes have been defined for Schiphol airport6. To calculate the noise of a flight movement, a flight path is 
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synthesized by combining one of the existing departure/arrival tracks, with a standard INM profile (vertical flight 
path) for the considered aircraft type. It needs to be noted that for the purpose of noise calculations, each aircraft 
type in the yearly flight schedule is substituted by one of 15 standard types, representing various noise categories. 
The calculated noise levels, stored in a data file, are thus unique for a certain aircraft type, a certain flight procedure 
(arrival or departure), and a given runway in conjunction with one of the associated tracks. The noise cost for the 
usage of each available runway configuration can now be determined upfront for each unique combined situation 
through aggregation of the individual flight movement results. In the case that a runway configuration features 
multiple departure and/or arrival runways, the noise cost for the usage of each individual runway needs to be 
assessed. More specifically, the noise cost for each possible mode of a configuration needs to be determined. In this 
context, a mode is a combination of a specific departure and a specific arrival runway of a certain configuration. 
Table 1 gives the possible modes of each of the four configuration types considered6. 
 

 
Table 1: The possible modes for each configuration type (A = Arrival; D = Departure). 

 
Configuration Type   Available Modes (k) 
1A + 1D 
2A + 1D 
 
1A+ 2D 
 
2A+2D 
 

  (1) single  departure runway combined with arrival runway  
(1) arrival runway 1 combined with the single departure runway 
(2) arrival runway 2 combined with the single departure runway 
(1) departure runway 1 combined with the single arrival runway 
(2) departure runway 2 combined with the single arrival runway 
(1) departure runway 1 combined with arrival runway 1 
(2) departure runway 1 combined with arrival runway 2 
(3) departure runway 2 combined with arrival runway 1 
(4) departure runway 2 combined with arrival runway 2 

 
 
When determining the noise cost of an allocation choice, it is assumed that each departure/arrival route 

connected to a specific runway is used equally often on average. Therefore, the noise cost is the average of the noise 
cost calculated for each departure/arrival track separately. 

In the present model runway delay is neither an optimization criterion nor an operational constraint. Instead, a 
constraint on runway throughput capacity has been introduced. Moreover, the possibility exists to perform delay 
calculations a posteriori once the optimization process has been completed, thus allowing to assess the delay 
consequences of the allocation choices that have been made. The model will calculate the arrival and departure 
delay for all the allocated traffic, and subsequently takes the weighted average. The delay calculations are based on a 
steady state M/G queuing model as presented in Ref.7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: schematic view of the modeling approach. 
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Minimize
L

Enforcement
Point 1

Enforcement
Point 2

Enforcement
Point 3

Enforcement
Point 4

Enforcement Point 1

Enforcement Point 2

Enforcement Point 3

Enforcement Point 4

Minimize

E. Performance criteria 
 
As outlined previously, the noise regulations applicable to Schiphol airport stipulate noise limits for yearly day-

evening-night average sound level Lden at 35 enforcement points. The Lden value at a given location for a certain 
period can be calculated using the following equation12: 

 

10

1

10 10 10
flights nn SEL

den
den n

n

T
L log w log ,



   
      

  
              (1) 

 
where nflights is the number of flight movements within the considered period Tden, SELn is the Sound Exposure 
Level of the nth flight,  wn is an adjustment factor tor the nth event (enabling to penalize movements occurring 
during the evening or night), and   is a reference period of one second.  

 The fact that the Lden metric is logarithmic in nature hampers its direct use in a linear optimization formulation. 
For this reason, rather than to consider the SEL value of a flight movement, its associated acoustic energy level is 
considered: 
 

 1010
nSEL

n

0

E

E
                          (2) 

 
where E0 is a reference sound exposure. Substitution of Eq.(2) into Eq.(1) yields: 
 

1 0

10 10
flightsn

n den
den n

n

E T
L log w log

E 

   
      

  
               (3) 

 
Instead of using Lden , cumulative acoustic energy: 
 

1 0

flightsn
n

n
n

E
w

E

 
 
 
                          (4) 

 
is now addressed in the optimization formulation. 
 In this study two distinct energy-based performance criteria have been considered. The first criterion aims to 
minimize the average energy at an enforcement point through the minimization of the summated energies of the 
noise at all the enforcement points. This principle is illustrated in Figure 5a. The second objective function is a 
minimax criterion that aims to minimize the maximum noise load value (in terms of cumulative energy) occurring at 
any of the enforcement points. In practical terms the minimax criterion has been implemented as the minimization of 
a limit value L, where L is always larger or equal than the noise load at any individual enforcement point. The 
minimax principle is displayed in Figure 5b. 
 
 

 
 

 
 
 
 
 
(a) minimum average energy         (b) minimum energy of worst individual 

 
Figure 5: illustration of the two energy-based performance criteria. 
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F. Mathematical model  
 

In this section, the LP model for the noise allocation problem is defined. 
 

Decision variables 
The variables that are used to define the noise allocation problem are. 

 
real  xi,j     0 ≤  xi,j ≤ 1  fraction of instances that configuration  j is selected in situation i     
real i , j ,kw      0 ≤ i , j ,kw ≤ 1  fraction of the traffic assigned to mode k of configuration  j for situation i 

real  L  0 ≤ L ≤ 1    minimax criterion , expressed as a fraction of the imposed cumulative 
 energy limit    
 

By defining xi,j as a real variable, rather than as a binary variable, it may occur that multiple configurations can be 
assigned in a given situation i. Suppose that  situation i occurs 10 times in an operational year. A value xi,j = 0.7 
then implies that in seven out of the ten instances that situation i occurs, configuration  j is selected.  

 
Cost coefficients 
The coefficients entered in the performance criteria are:  

 

i , j ,k ,lc    noise cost at enforcement point l for mode k of configuration j in situation i 

ip     the occurrence percentage of situation i 

iq     the DEN (Day-Evening-Night)  multiplier for situation i 
 

Constraints 
The constraints applicable to the noise allocation problem are: 
 

(i)  Configuration choice: 
 

 
                    (5) 
 

 
 where r is the total number of situations considered, and si the maximum number of configurations available for 
situation i. The configuration choice constraint ensures that in each instance in which a particular situation 
occurs exactly one runway configuration is assigned.  
 
(ii)   Runway distribution: 
 

1

1 1
jk t

i , j i , j ,k i
k

x w , i ,..,r , j ,..,s




                         (6) 

where tj is the maximum number of modes available for runway configuration j. The runway distribution 
constraint ensures that the traffic fractions summated over all modes k of a configuration j in situation i do not 
exceed the total traffic assigned to configuration j in situation i.  
 
(iii) Runway capacity: 
 

      (a) Applicable for runway configurations of the type 2A + 1D and 1A + 2D (see Table 1): 

1

1 1
ij s

i , j
j

x , i ,..,r ,




  
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0 9 1 1 2   i , j ,k i A i , jw A . C x , i ,..,r , k ,                   (7) 

0 9 1 1 2   i , j ,k i D i , jw D . C x , i ,..,r , k ,                            (8) 

 
(b) Applicable for runway configurations of the type 2A + 2D (see Table 1): 
 

1 3 0 9 1   i , j , i , j , i A i , j( w w )A . C x , i ,..,r                    (9) 

 

2 4 0 9 1   i , j , i , j , i A i , j( w w )A . C x , i ,..,r                  (10) 

 

1 2 0 9 1   i , j , i , j , i D i , j( w w )D . C x , i ,..,r                  (11) 

 

3 4 0 9 1   i , j , i , j , i D i , j( w w )D . C x , i ,..,r                  (12) 

 
where Ai and Di are, respectively, the amount of arriving and departing aircraft in situation i, CA and CD are, 
respectively, the arrival and departure throughput capacity for a single runway. A 90% load factor has been 
defined to reduce the theoretical capacity limit into a practical capacity limit. The runway capacity constraints 
are applied only to runway configurations that feature multiple departure and/or arrival runways. The runway 
constraints preclude traffic overloading on a given runway. Note that constraints (9) and (11) relate to runway 1, 
whilst constraints (10) and (12) are associated to runway 2 of the 2A + 2D runway configuration. It is recalled 
that no constraints are needed for the overall configurations, since configurations with insufficient capacity for a 
given situation were already removed from the list of available configurations upfront. 
 
(iv) Noise load at enforcement points (only applicable in conjunction with the minimum average energy 

criterion): 
 
(a) Applicable in conjunction with the minimum average energy criterion: 
 

1 1 1

1


  

    
ji

k tj si r

i i i , j ,k ,l i , j ,k l
i j k

p q c w Lim , l ,...,v    ,               (13) 

 
where v is the total number of enforcement points, and Liml is the imposed noise load limit at enforcement 
point l. The noise load constraints evaluate the cumulative noise loads in the enforcement points and force the 
resulting values to be smaller than the imposed limits.  
 
(b) Applicable in conjunction with the minimax criterion: 
 

1 1 1

1


  

     
ji

k tj si r

i i i , j ,k ,l i , j ,k l
i j k

p q c w L Lim , l ,...,v                (14) 

 
The noise constraint (14) is similar in behavior to constraint (14), except that the permissible value at the 
enforcement point is reduced by a factor L, a value we seek to minimize in the minimax criterion.  
 

Objective functions 
 
(a) Minimum average cumulative energy criterion: 
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1 1 1

ji
k tj si r

i i i , j ,k i , j ,k
i j k

min Z p q c w


  

     ,                  (15) 

where: 
 

1

1 1 1
l v

i , j ,k i , j ,k ,l i j
l

c c , i ,..,r , j ,..,s , k ,..,t




                   (16) 

 
is the noise cost for mode k of configuration j in situation i aggregated over all enforcement points. 
 
(b) Minimax criterion: 
 
min Z L                            (17) 
 

To handle the noise allocation problem outlined above, Linear Programming (LP), one of the most commonly 
employed operations research methods for large-scale problems, has been successfully used10. More specifically, a 
commercial LP package called CPLEX has been employed13. 

 

IV. A Case Study for Schiphol Airport  

A. Assumptions 
 
To illustrate the developed concept, a case study is presented pertaining to the operational year 2005. Processing 

of the flight schedule resulted in about 2000 unique traffic patterns. Similarly, processing of the historic wind data 
produced 19 unique wind patterns. The historic wind data set that has been used to predict the wind conditions for 
2005, covers the measurement period from 1951 to 2005 (over 460000 hours). Combination of the identified wind 
and traffic patterns leads to about 38000 unique situations, to each of which a runway configuration and mode 
assignment needs to be made. In the model 30 different runway configurations have been considered for Schiphol 
airport, including 13 1A+1D configurations, 8 2A+1D configurations, 8 1A+2D configurations and 1 2A+2D 
configuration. As an illustration, Table 2 lists the available configurations of the type 2A+1D. 

 

 
 

Combined with the fact that 35 enforcement points need to considered, it is readily clear that a very large scale 
optimization problem results. To keep the computational burden within acceptable limits, the number of 
enforcement points taken into account in the optimization was reduced from 35 to 9 in this study.  The 9 points  
were selected such that no runway could be used unrestricted without contributing to the noise load development. 
This led to the choice of the 9 enforcement points that are displayed in Figure 6. It is readily clear that the use of 
only 9 enforcement points rather out of  the 35 that are actually imposed, implies a limitation of the model. Because 
the noise load accumulation in the remaining 26 enforcement points is not accounted for, there is a larger degree of 
freedom in the allocation process, which may potentially lead to different allocation choices. Of course, it is possible 

Table 2: Double arrival single departure runway configurations at Schiphol airport. 
 

Configuration  Arrival 1 Arrival 2 Departure 
14 
15 
16 
17 
18 
19 
20 
21 

 06 
18R 
18R 
27 
27 

18R 
18R 
06 

36R 
18C 
18C 
36C 
18R 
22 
22 
09 

36L 
24 

18L 
36L 
24 
24 

18L 
09 
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5

6

8

18

19 20

24

3031

to a posteriori evaluate the actual noise load accumulated in those 26 remaining enforcement points, allowing  to 
detect possible anomalies. 

 In addition to the reduced number of enforcement point taken into account, several other limitations of the 
model need to be mentioned. First of all, the model entirely ignores the 25 enforcement points used during the night 
time hours. Also, reduced visibility conditions, which influence the availability of runway configurations, have not 
been taken into account. Another limitation relates to the flight schedule. The original schedule does not include 
charter operations and to allow for this the charter flights actually recorded for 2005 have been artificially added to 
the schedule and distributed evenly over the year. In reality this is probably not the case. It needs to be noted that, in 
principle, most of the above limitations can be removed in follow-on studies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The nine enforcement points incorporated in the optimization model. 
.  

B. Optimization results  
 
In Figure 7 the optimization results are displayed for both the minimum average energy criterion and the 

minimax criterion for the operational year 2005.  
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 7: The results for the year planning for 2005 for, 
 minimum average energy criterion (left), and minimax criterion (right) 
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Tables 3 and 4 summarize the numerical results for, respectively, the minimum average energy criterion and the 
minimax criterion.  As can be seen from Figure 7 and Table 3, in the minimum average energy solution, the traffic is 
concentrated in the area south-west from the “Kaagbaan” (runway 06-24), and to the north of the “Polderbaan” 
(18R-36L). For the Polderbaan this is probably caused by the fact that no enforcement points are located near the 
approach/departure path of this runway, resulting in only a moderate contribution of flight movements to the 
objective function. For the Kaagbaan the reason is probably that during certain weather situations (i.e. wind from the 
west or south-west), no other runways are available. It can be seen that relatively few flights are assigned to the 
“Buitenveldertbaan.” (09-27). This was to be expected due to the fact that enforcement points are placed in the 
direct vicinity of the runway, thus contributing significantly to the objective function. This behavior closely 
resembles reality, where the Polderbaan and Kaagbaan are the preferential runways, whilst the Buitenveldertbaan is 
avoided as much as possible. 

 

 

 
 From Table 4 and Figure 7 it can be seen that for the minimax solution the traffic is more spread out over the 
various runways to realize balanced noise load development. The enforcement points are kept below their limit 
values as much as possible. To realize this, runways that are not noise preferential also have to be used. This actually 
leads to a higher overall cumulative noise value (higher average energy value at the enforcement points). This is 
demonstrated in Table 5, which compares the characteristic values of the two results. Note that in this comparison 
the cumulative energy levels obtained for the two criteria have been expressed as a ratio relative to the total noise 
energy value that was actually recorded at Schiphol airport in 20056.  

The results in Table 5 clearly reveal that whilst the use of the minimum average energy criterion results in a 
cumulative energy level that is significantly lower than the actually realized result (about 15%), the cumulative 
energy level is considerably higher than the actually realized result when the minimax planning approach is used 
(some 10%). This appears to be realistic. Since Schiphol aims to realize a balanced development of noise load by 
spreading the traffic, it relies on an approach similar in nature to the minimax approach. However, the actual noise 
spreading will never be as balanced as in the minimax approach taken here, simply because the minimax 
optimization approach does not rely on (i.e., is not constrained by the use of) a preference list, but rather always 
directly allocates the optimal configurations. In addition, the extended freedom that the minimax model has by not 
considering all 35 enforcement points also allows it to accumulate the noise loads in a more balanced fashion. 
 

Table 3: Optimal planning results for the minimum average energy criterion. 
 

Location  Lden Limit Value (dB) Lden ActualValue (dB) Percentage (%) 
Point 5 
Point 6 
Point 8 
Point 18 
Point 19 
Point 20 
Point 24 
Point 30 
Point 31 

 57.71 
59.03 
57.98 
58.78 
51.89 
57.57 
56.96 
56.87 
59.54 

57.71 
55.91 
57.98 
54.79 
51.40 
50.15 
54.37 
52.82 
59.31 

100 
48.8 
100 
39.9 
89.3 
18.1 
55.1 
39.4 
94.8 

 

Table 4: Optimal planning results for the minimax criterion. 
 

Location  Lden Limit Value (dB) Lden Actual Value (dB) Percentage (%) 
Point 5 
Point 6 
Point 8 
Point 18 
Point 19 
Point 20 
Point 24 
Point 30 
Point 31 

 57.71 
59.03 
57.98 
58.78 
51.89 
57.57 
56.96 
56.87 
59.54 

57.33 
57.22 
57.60 
58.40 
51.51 
57.19 
54.70 
56.49 
58.98 

91.5 
65.9 
91.5 
91.5 
91.5 
91.5 
59.4 
91.5 
87.8 
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Table 5 also includes results pertaining to average delay. It can be seen from the table, that the average delay values 
do not differ very much for both cases. There is marked difference between the two cases with respect to the 
required computational effort. Indeed, the calculation time needed to establish a minimax solution is significantly 
higher for the minimax formulation.  
 Finally, in Figure 8 a comparison is given of the noise loads at the enforcement points obtained for the two 
optimization cases and the actual noise load realized at Schiphol airport in the operational year 2005.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Comparison of results obtained for the two criteria, minimum average energy (Objective 1), 
and minimax (Objective 2) with the actual realized loads at Schiphol (AAS report) 

 
 
Although the results obtained in the minimax optimization are in a much closer agreement with the actual results 

in comparison to the minimum average energy solution, the differences are still significant. As indicated earlier, this 
is likely in part due to the fact that in the minimax approach a variety of simplifying assumptions has been made, 
most notably the use of a limited number of enforcement points. Unlike for the actual result, the minimax solution 
provides a margin (in terms of energy) with respect to the noise limit of nearly 10% at 6 of the 9 enforcement points. 
The margin at the 3 remaining points is even larger. 

 

V. Conclusions 
 
The goal of this study was to develop a runway allocation optimization tool that seeks to maximize the 

permissible number of yearly flight movements within a specified noise budget. In this context a noise budget is to 
be understood as a set of regulations specifying that outside a certain surface area of land around the airport, 
community noise levels should not exceed certain specified annual limits. Although the runway allocation tool has 

Table 5: Comparison of the optimal planning results for the two performance criteria. 
 

Objective Total Noise 
Energy Ratio 

Av. Departure 
Delay (min.) 

Av. Arrival 
 Delay (min.) 

Solution Time 
(min.) 

Av. Energy 
Minimax 

0.846 
1.105 

0.96 
0.99 

2.30 
2.46 

17 
102 
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been developed with a particular example airport in mind, viz., Schiphol airport, the model underlying the tool is 
sufficiently generic to permit application to other airports that are subject to similar noise budget restrictions. To 
enable an efficient use of the available noise budget, a minimax optimization model has been formulated that aims to 
reduce the risk of exceeding the noise limit at any point along the boundary of the protected area. At Schiphol 
airport, the noise budget is imposed at a discrete number of specified points, called enforcement points, located on 
the boundary contour of the protected area. 

 Due to the large-scale nature of the runway allocation planning problem, combined with limited computational 
resources, not all of the enforcement points were included in the optimization formulation presented in this study. 
Nevertheless, the number and distribution of the enforcement that were selected proved to be adequate to produce 
meaningful results. Indeed, the minimax optimization analysis resulted in a rather efficient noise distribution, 
reducing the maximum noise energy at any of the enforcement points included in the optimization formulation to a 
level some 10% below the permissible value, without overloading the enforcement points that were not included at 
the optimization analysis. Future research will focus on the development of a modeling approach that allows for 
more enforcement points to be taken into account at a reasonable computational cost, and that will include capacity 
constraints due to poor visibility conditions.  

It needs to be noted that as of November 1, 2010, a new set of experimental noise regulations has been put into 
place at Schiphol airport, for the duration of a period of two years. The primary goal of the new set of regulations is 
to minimize the expected number of annoyed people, the same objective as used in the original SNAP tool that 
formed the basis for the present development. However, the existing regulations pertaining to the noise budget 
imposed at the enforcement points remains in principle intact. For this reason, the continued development of the 
minimax runway allocation optimization remains of considerable interest. 
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