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Summary
This study approached migration-related problems from a global perspective. The inter-
connected nature of migration means that migration problems accumulate and intensify
throughout the world. To capture these effects, a data-rich model component was devel-
oped for global migration dynamics.

To that extent, this study has developed the following innovations on a methodological
level: a technique to comprehensively implement spatial phenomena into System Dynam-
ics, a method to implement multi-scale System Dynamics through subscript mapping, and
a semi-automated data acquisition process to obtain and structure a great variety of data
sets on a country level. The nature of the developed model component is generic. That is,
the component is scalable, and resolution-independent, as it is initialized through exter-
nal databases. Therefore, a significant part of this study comprised the development of a
semiautomated data acquisition process. The model component was then connected to a
root-causes model component to analyze future migration scenarios on a global scale. It was
found that migration is expected to increase in line with population growth.

Policies were implemented and tested on a global, regional, and national scale. In the
global policy case, the location of additional shelter and coping capabilities was found to
greatly influence migration dynamics across the world. Additional shelters in low-income
countries greatly reduced the number of migrants traveling towards the more wealthy coun-
tries. The regional policy—closure of the European borders when a certain threshold is
reached—had significant effects on the countries near the border, but failed to significantly
improve the situation in the rest of Europe. This can be attributed to the delayed effects of
such policies in these countries. National policies were tested for the Netherlands. Effects
of these policies were insignificant, due to the inertia of the migration system. The number
of migrants in Germany—a neighboring country—did not significantly change, and even the
effect on the number of migrants in the Netherlands was negligible.

Therefore, the first advice from this study towards policy-makers is that it might be more
effective to address the root causes of migration, rather than just mitigating its detrimental
effects. In addition, the inertia of the migration system requires globally aligned, large-scale
policy implementation to prevent andmitigate migration-related problems. The delay in these
policies should not be neglected, so it is important to identify potential problems as early as
possible and take appropriate action.
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1
Introduction

This study aims to develop a data-rich model in order to explore possible future migration
flows—and their underlying root causes—from a global perspective. The developed model
will then be used to assess how such migratory flows develop in various plausible scenarios,
and how they respond to national, regional, and global migration policies. The goal of this
study is twofold: to encourage and stimulate the debate about migration, and to illustrate
that a more extensive integration of data science with modeling techniques can make both
more useful. The remainder of this chapter will further introduce the topic and scope of this
study.

1.1. A Pressing Problem?
Over the last few decades, the debate in Europe about migration and immigrants has become
increasingly fierce (Geddes and Scholten, 2016; Lucassen, 2018). The migrant problem in
Europe reached a climax in 2015, when—according to the most conservative estimates—
over one million refugees and migrants crossed the Mediterranean Sea into Europe (BBC
News, 2018). A schematic overview of the asylum applications per European country and the
migrants’ country of origin during this European migrant crisis can be found in Figure A.1.
The arrows in this figure depict the main routes used by migrants to migrate into Europe.
These inflows caused a ”European migrant crisis” which is still ongoing, despite the low
numbers of refugees and migrants currently arriving in Europe (The New York Times, 2018).

The term ”European migrant crisis” is arguable, as it only refers to the destination of the
migrants. Suppose that the European borders were closed during the time of the crisis, and
that no migrants or refugees would have been able to make the crossing towards the South-
ern European countries. In this case, the migrant crisis in Europe might have been averted,
but would this also mean that there is no migration crisis in general? Presumably not, since
the actual problems that were faced in 2015 did not start at the European borders. The con-
ditions in various Middle-Eastern, Asian, African, and even some European countries caused
a massive outflow of refugees and economic migrants. This—more extensive—spatial aspect
of the 2015 migration problem is depicted in Figure 1.2. The map shows the widespread
variety of countries that were dealing with an excessive outflow of migrants during 2015. It
is well known that numerous refugees fled from Syria and Afghanistan, but also roughly 50
thousand Kosovars left their home during the migration crisis—albeit for economic reasons
rather than persecution, war, or violence (Friedrich Ebert Stiftung, 2015).

Consequently, this can lead to some interesting questions: where are the actual problems
regarding migration that need to be solved located? On the European borders? Or do we
need to look further? And what actually caused these massive migration waves in the first
place? And, as such, could it be more effective to address the problem(s) in the country
of origin of migrants, rather than to wait until their migration starts to cause problems in
Europe? Is it possible to negate some of the detrimental effects of migration early on in the
migration process, for instance by supplying neighboring countries with the means to provide

1



2 1. Introduction

Figure 1.1: Asylum applications during the European migrant crisis in the European Union (EU) and European Free Trade
Association (EFTA) states between January 1 and June 30 2015 (Dörrbecker, 2015a).

adequate shelter? The answers to these questions are not trivial. Essentially, this means
that migration problems—and the migration process in general—should not be considered
in an excessively isolated manner, since it is not just a local, national, or regional process.
It is a global phenomenon that links all continents, countries, and even municipalities or
neighborhoods, directly or indirectly into one immense network. As such, policy-makers,
politicians, but also scientists should always take into consideration that this is in fact a
global problem that does not start at the border of their region or country.

The notion that migration is not just confined to certain regions or countries, is supported
by the almost simultaneous uprising of multiple migration crises in addition to the European
version. For instance, the Venezuela-Colombia migrant crisis mid-2015, where Colombians,
living in Venezuela, emigrated massively after some violent incidents (Alvarez and Marcaletti,
2018; Symmes Cobb, 2015), and the Rohingya refugee crisis, where mass migration occurred
among “stateless entities” in Myanmar (Bandopadhyay, 2017).

Furthermore, it should be taken into consideration that a significant part of (forced) mi-
gration takes place within the borders of a certain region or country. Within Africa, estimates
indicate that almost 13 million people lived in internal displacement at the end of 2016 (In-
ternal Displacement Monitoring Centre and Norwegian Refugee Council, 2017). Internally
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Figure 1.2: Countries of origin for the European migration crisis in 2015 (Dörrbecker, 2015b).

displaced persons (IDPs) are forced to move due to conflict and violence, disasters, or other
root causes—but do not cross international borders. Therefore, these migrants often do not
classify as refugees—persons that are forced to leave their country in order to escape war,
violence, persecution, or natural disaster—and are consequently not entitled to protection
by international law (International Committee of the Red Cross, 2017).

An additional issue concerning these recent migration crises, is the polarization of nations
that are faced with a significant rise in migrants crossing their borders (Williams, 2009). Over
the years, migration seems be accompanied more and more by a negative connotation, but it
is in fact migration that has allowed human society as a whole to evolve to where we are now.
That is, the massive spread of technology, innovations, knowledge, and science throughout
history can be largely attributed tomigration (Skeldon, 2014). This is an important realization
for anyone dealing with migration problems. Social remittances can lead to cultural diffusion
(Levitt, 1998), which can lead to significant—arguably positive—national or regional change
(Levitt and Lamba-Nieves, 2011). Therefore, when considering migration from a positive point
of view, it could also be seen as a process that distributes wealth, means, and technology
more equally across the world. Looking at it from this perspective, it could even be argued
that there has not been enough migration (and consequently mixing of cultures) over the last
few centuries.

So, what would be the correct perspective to look at migration? Unfortunately, this is a
very complex question that is difficult to answer. If we look at this phenomenon from a global
perspective, we see that humans have divided the world into continents, regions, countries,
states, provinces, cities, villages etc. However, resources are not distributed equally between
all of these places, and as a consequence people migrate between these places for various
reasons: conflict, persecution, repression, suppression, economic factors, scarcity, natural
disasters, a lack of opportunities, family reunification, and undoubtedly many more. This
migration takes place in an increasingly complex and interconnected world due to improved
transportation, globalization, and digitalization. Solving all or even part of the problems
that are inevitably intertwined with migration, is next to impossible. But while addressing
these problems, it is important to realize that migration is—fundamentally—advantageous
to mankind.
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Actually, migration is one of the most important aspects in modern society, as it is a vital
mechanism in the progress of societies. It is therefore crucial that any problems caused
by this phenomenon are addressed appropriately and adequately. In order to tackle future
issues related to migration, it first needs to be assessed how migration might evolve in the
future on a global scale. To that extent, this thesis will employ a systems modeling approach
to study migration across the globe.

1.2. Scale and Computational Limits
Having argued in the previous section that migration is in fact a global problem, which in-
volves all ”bounded areas” in the world, this study approaches it as such. In order to tackle
migration-related challenges on a micro-scale, it is crucial to first gain insight into what we
can expect on a global scale—since this can provide a context within which these smaller
problems should be solved. A systematic approach (i.e. modeling), can be very useful in
this regard, as it allows for a systematical description of global migration processes within
certain spatial and temporal boundaries. However, in tackling such a huge—and almost
infinitely complex—phenomenon with any modeling approach, computing power might be a
major limiting factor.

Modeling software and computing power have both developed significantly over the last
few decades. Large, data-rich models have become the benchmark of modern science. Still,
consider the following simple calculation: If one would like to model migration between con-
tinents, the first thing that one would like to keep track of is the population in each one
of them: Africa, Asia, Europe, North America, South America, Antarctica, and Australia/O-
ceania. In total, this sums up to seven continents. Now suppose that people would be free
to travel to any continent directly. From each continent, one has the option to travel to 6
other continents. This would lead to 7 ⋅ 6 = 42 migration flows. Now also suppose that the
origin of each migrant needs to be tracked. For each continent, this adds another 7 ⋅ 6 = 42
variables. The total number of variables—solely to track where migrants are traveling to and
where they come from—is then 91. This number of variables is perfectly manageable, but
the rough estimates provided in Table 1.1 show that the complexity increases extremely fast
with the number of unique divisions.

Type Total number of type Number of flows Origin tracking Total number of variables
Continents 7 42 42 91
Countries 217 ~50 thousand ~50 thousand ~100 thousand
Provinces ~1720+ ~3 million+ ~3 million+ ~6 million+
Cities ~50 thousand+ ~2.5 billion+ ~2.5 billion+ ~5 billion+

Table 1.1: A simple calculation performed for the number of variables needed to track migrants and their origins on various
scales.

But this is only the number of variables needed to track migrants across the world in each
case. Since such amodel would also require a representation of the environment in each area,
what that environment means for people currently residing in that area, and some sort of a
decision process for migrants on if and where they travel, it is evident that implementation
of migration dynamics on a global scale might not be straightforward.

For instance, suppose a high-level programming language like Python would be used to
make a model for migration dynamics. Even the simplest attempt to keep track of migrant
distribution in a Python model for all countries could already become problematic quite fast.
The maximum size of a Python list (a list is a common data structure in programming lan-
guages) on a 32-bit computer system is approximately 537 million. This means that—when
using Python lists to store results—100 thousand variables can be saved for roughly 5 thou-
sand time steps. Therefore, modeling migration on this scale can rapidly approach the edge
of computational limits, and extreme caution should be taken in constructing and defining
models on this scale.

As such, an important aspect of this study will be to constantly evaluate the trade-off be-
tween the added value of elements that are taken into account, and the added complexity they
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bring with them. The simple demonstration of how fast complexity increases, will have to be
taken into consideration at all times. Presumably, any significant element that is added will
cause a snowball-effect that might lead to severe, unworkable complications. Consequently,
this study will also need to address the viability of the quantitative implementation regarding
the various elements of the migration concept.

1.3. Project Scope and Research Objectives
Section 1.1 addressed the relevance and scope of the migration phenomenon, and its corre-
sponding challenges. It was illustrated that it is in fact a complex, spatial phenomenon on a
global scale. Problems and situations in certain regions resonate throughout the world and
cause additional problems and challenges in other, far-away places. To engage this topic,
this study will therefore approach the subject from a top-down, global perspective. It will also
entail a constant trade-off between completeness (in capturing the migration phenomenon)
and computational limits, as was elaborated on in Section 1.2.

Various modeling techniques could be used for addressing this issue. System Dynamics
(SD) is one of these techniques. It is a modeling method that is commonly used to model
nonlinear behavior of complicated systems over time. This continuous-time method uses
stocks, flows, time-delays, and feedback effects to gain better understanding of complex is-
sues and problems (Pruyt, 2013). Its high level of aggregation makes SD an appropriate
modeling method to model global issues, and this has been done on multiple occasions (e.g.
Forrester, 1971; Meadows et al., 1972; Simonovic, 2002). Therefore, to model the underlying
root causes for migration (economic situation, conflict, drought, scarcity, etc.) SD is very
well suited. In addition, since SD modeling can be combined with exploratory modeling and
analysis, it is a very versatile approach to tackle societal grand challenges. It allows for the
systematic exploration of different hypotheses related to model formulation and model pa-
rameterization, and their effect on the kinds of behavioral dynamics that can occur (Kwakkel
and Pruyt, 2015). However, for problems with a significant spatial factor, such as migration
dynamics, SD is not an obvious choice. Although developments in this area are taking place,
e.g. by coupling SD software to a Geographic Information System (GIS) (Neuwirth et al.,
2015), these are usually addressing relatively small-scale problems. In addition, these de-
velopments are mostly aimed at combining SD with other modeling methods, and often do
not involve—or allow for—flows between modeled entities. Coupling of software or modeling
methods brings about a considerable level of complexity in terms of implementation, while
also significantly decreasing model manageability in terms of simulation time. Instead of
integrating SD with another method, it might be more beneficial to explore the possibilities
of implementing a spatial factor in SD itself.

Another consideration to take into account is that a global migration model should also
incorporate the differences between regions, countries, or any areas between which people
can migrate. To that extent, one of the essential aspects—and also limitations—of this study
is the significant dependence on data. The recent digitalization and globalization has unques-
tionably increased data availability, but this does not mean that actually employing this data
in a System Dynamics model is trivial. In particular, although the combination of SD mod-
eling and data science is promising, data science and machine learning techniques should
first be further developed to provide useful inputs for simulation models (Pruyt et al., 2014).
The data problem is amplified by additional issues that emerge when dealing with data from
multiple databases. Problems that quickly arise are: unavailability of data, poor data quality,
integration of conflicting and/or redundant data, algorithm incompatibility across datasets,
poorly structured data, and many more. For example, the World Bank specifies numerous
indicators for 217 countries, while the United Nations only provide data for 193. In order to
correct for this difference, either countries need to be dropped from the analysis, or missing
data needs to be corrected for. This study also aims to address these issues thoroughly.

Together, these considerations lead to the following research objectives:

1. Explore the extent to which System Dynamics can be used to forecast potential future
migration flows.
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(a) Develop a System Dynamics model component for migration dynamics that tracks
the origin of migrants, and can—consequently—distinguish between them.

(b) Couple this model component to a global root causes model.

2. Develop a significantly automated data acquisition process in order to extract data from
a multitude of databases.

(a) Establish a versatile, accessible, and adaptable data mining method with the pur-
pose of effortlessly converting between, and combining, multiple datasets.

(b) Assess available data sources for their utility and employ the developed data mining
method to assemble and structure the required data.

3. Explore the future of migration using the coupled model for migration dynamics and
root causes of migration.

(a) Define a set of plausible future scenarios, and their uncertainty ranges.
(b) Define a set of plausible future policies on a global, regional, and national scale.
(c) Determine the impact of the various root causes, policies, and other uncertainties

on future migration dynamics.

1.4. Outline
This thesis starts by providing a historical overview of migration, demarcating the concept of
migration for this study, an assessment of its complexity, and a brief discussion on migration
ethics in Chapter 2. This chapter will lead to some important considerations that should be
taken into account when addressing this topic. Chapter 3 looks at migration from a systems
perspective, and provides an overview of the elements and principles that served as a basis for
the model development in this study. The actual implementation is further elaborated on in
Chapter 4, where the developed model is described in detail. Chapter 5 presents the results
that were obtained by simulating the model in its uncertainty space, and the effect of global,
regional, and national policies on the behavior of variables of interest. Chapter 6 discusses
the results, and reflects on how these should be interpreted in light of the considerations
from Chapter 2. It also addresses the limitations of the current model implementation and
its dependence on data. The chapter concludes with the resulting policy advice. Finally, in
Chapter 7, the scientific contributions of this study are discussed, and recommendations for
future research are made.



2
Migration

This chapter will gradually introduce the topic of migration. It will start off in Section 2.1 by
exploring the relevance of migration throughout the past, in order to illustrate that migration
is a phenomenon that is inseparably linked with human history—and undoubtedly with the
future. Then, in Section 2.2, the concept of migration is demarcated for this study by an-
swering the following question: what classifies as migration? In Section 2.3, the complexity
of migration is assessed on an abstract level, by considering some relatively simple thought
experiments. Section 2.4 briefly discusses some of the ethical difficulties that arise in ad-
dressing migration-related problems. Throughout the chapter, several considerations will be
formulated. These considerations will help to place this study in the correct perspective, and
provide an outset for the discussion in Chapter 6.

2.1. A Historical Perspective
History in its broadest aspect is a record
of man’s migrations from one
environment to another.

Ellsworth Huntington
1876-1947

In search for an alternative route to the Indies, Christopher Columbus—unintentionally—
”discovered” the Americas in 1492 (Rickey, 1992). Subsequently, this new land was colonized
by Europeans over the course of a few centuries, laying the foundation for the American
countries as they are known at present. One of these countries, the United States of America,
is now generally considered as one of the most powerful countries in the world (Wilson III,
2008), and this is a prime example of the considerable influence of migration on human
history. But even long before the Europeans were able to cross the Atlantic Ocean, humans
had already moved to the Americas across the Bering land bridge (Hopkins, 1959). Figure 2.1
gives a schematic overview of prehistoric migration—including migration across the Bering
land bridge, which is estimated to have happened after 15,000 B.C. (Reich et al., 2012).

Subsequently, the invention of clothes and housing enabled humans to break through
climatic and geographical barriers, resulting in an almost unrestrained population growth
until the end of the great migration in ca. 8000 B.C. (McNeill, 1984). In addition, agricultural
developments facilitated further human population growth by enabling an increase in food
supply (Vasey, 2002). After harvesting the crop, early farmers burned the field and moved
onwards to find new fertile soil elsewhere. As a consequence of this nomadic behavior, crops
like wheat and barley spread around all of Eurasia within a few millennia. This type of
migration can be defined as whole-community migration (Manning, 2012), and it mainly
transpired among early human communities.

From about 4000 B.C., maritime developments made it possible to sail the seas, and
populate offshore islands (Gray and Jordan, 2000). In addition, biological changes gave

7
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Figure 2.1: Three distinct waves of prehistoric migrants from Asia to North America, based on genetic analyses (National Geo-
graphic Society, 2008).

humans the capability to consume animal products, leading to nomadic communities on the
plains in Eurasia, Africa, and the Middle East. The emergence of these mobile communities
ensured that any useful innovations could spread relatively fast throughout the continent,
and the first civilizations ensued shortly after (McNeill, 1984).

These early civilizations are generally regarded as more complex societies, with a slowly
developing social stratification as key element. Community members were no longer limited
to hunting or farming as main occupation, but could choose alternative specializations (e.g.
military or craft). These specializations resulted in a military dominance by civilized commu-
nities in most encounters with their barbaric counterparts. As a consequence, communities
were forced to evolve and—to that extent—adopt the civilized approach in order to safeguard
themselves from adjacent, more developed communities.

At this point in time (ca. 2000 B.C.) new forms of migration started to emerge. Diversifica-
tion on a social level meant that societies could now benefit from adopting outsiders. These
new forms of migration included the merging of communities by conquest, (in)voluntary in-
corporation of individuals from one community into another, and slavery. It is around this
time that the first towns and cities arose (Bairoch, 1991).

Towns and cities struggled with numerous infectious diseases and periodic food short-
ages, which meant that they were dependent on an inflow of rural people and their supplies.
This means that rural communities were in fact the main driver for survival for these early
civilizations, since cities themselves were unable to prevent a long-term population decay. A
net excess of children in the rural areas in the long-term, provided cities the opportunity to
preserve and pass along artisan skills to next generations. On the other hand, innovations in
agricultural methods that were developed in the more civilized parts of societies sometimes
led to migration from urban to new—previously uncultivated—rural areas. This expansion
of cultivated land both extended the border of the civilized society and enabled further popu-
lation growth. These opposite migratory patterns were an essential element required for the
further development of civilizations (McNeill, 1984).

In addition to these inner-society migrations, military and merchant migration patterns
contributed further to the spreading of civilized principles over even longer distances. Knowl-
edge, skills, and religions, as well as diseases, were brought from one society to another by
traveling merchants and religious preachers (McNeill, 1984). While this facilitated the spread
of innovation and technology, the spread of diseases across regions by these travelers caused
severe problems in various ancient empires (e.g. the Roman and Han empires) and was prob-
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ably the accelerating factor in their downfall. Although these epidemics killed the major part
of the population, survivors developed a resistance to some of these diseases, ensuring the
survival of at least part of the urban population. During this time, humans slowly advanced
to spread across the entire globe, populating essentially all inhabitable regions during several
large migration waves: e.g. the Austronesian migration (Figure 2.2) (Gray and Jordan, 2000;
Matisoo-Smith, 2015), the Indo-Aryan migration (Bamshad et al., 2001), and the Greek and
Roman empire expansions (Boardman et al., 2001).

Figure 2.2: Schematic overview of Austronesian expansion. Dates are expressed in years before present (BP) (Matisoo-Smith,
2015).

During the next millennium, various other types of migration made their entry: coloniza-
tion, various forms of (regional) slave practices, and a slowly intensifying form of labor migra-
tion. These types of steady, relatively low-paced, migration processes continued until the Age
of Exploration and European colonialism. By that time, the industrial revolution facilitated
migration through the development of more accessible, faster, and safer transportation from
the mid-19th century onwards. Combined with stacked European cities, this led to mas-
sive migration towards oversea, less-populated territories. During the 19th century, over 50
million people departed from Europe to the Americas (Eltis, 1987).

This mass migration was accompanied by a gradual global increase in urbanization. An-
other important development is the genesis of Romantic nationalism, which is generally as-
sumed to originate in 1848. This development led to a change in perspective in a significant
number of countries, where ethnocentrism became the norm (Omohundro, 2008). It also
further stimulated migration, as a distinction was made between ethnicities, causing people
to move to more tolerant countries. In addition, migration rates increased significantly due
to a rise in transnational labor migration until the early 20th century.

The next major drivers of migration are the First and Second World Wars. The dissolution
of the Ottoman Empire during World War I resulted in a migration flow of Muslims from the
Balkan into Turkey, while Christians moved the opposite way (Şeker, 2013). On the other
side of the Black Sea, the Russian Civil War resulted in the migration of roughly 3 million
Russians, Poles and Germans out of the Soviet Union to its Western neighbors. During World
War II, a variety of (mostly forced) migration phenomena were predominantly present: depor-
tation, forced displacement, mass evacuation, and expulsion (Castles et al., 2013). In 1943,
this led to the origination of the United Nations Relief and Rehabilitation Administration,
which was the predecessor of the presently well-known United Nations High Commissioner
for Refugees (UNHCR). This was the first large-scale international relief agency, and provided
aid to more than 8 million refugees. The aftermath of World War II led to the expulsion of
16.5 million Germans from Eastern Europe, and the expelling of several millions of Eastern-
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Europeans out of the Soviet Union (Hoffmann-Nowotny, 1978).
After the Second World War, migration has slowly evolved into the form as we are familiar

with in the present day. In this form of migration, individuals move from one community to
another, and it can be defined as cross-community migration (Manning, 2012). It has turned
into a topical issue due to a recent occurrence of massive migration waves throughout the
world. For example, nearly 60 thousand individuals registered in the Netherlands as asylum
seekers in 2015, while this number was below 15 thousand in 2010 (Centraal Bureau voor de
Statistiek, 2018). This increase is typical for the trend that can be seen in the past five years,
where migrant flows to Europe have risen exponentially since 2010 (Figure 2.3). In 2015 and
2016, the yearly number of asylum applications was over 1.2 million in the European Union.

Figure 2.3: Total asylum applications in the European Union and the number of residence permits granted. Data on granted
residence permits was unavailable for 1998–2006, and 2007. Data from (Eurostat, nd).

These significant migrant waves were accompanied by a variety of problems. European
border countries became overwhelmed, and were unable to cope with the large number of
migrants and refugees. Europe as a whole was unprepared, and was consequently forced to
operate and respond in a reactive manner. This resulted in severe political chaos, polarization
in society, and—most importantly—numerous migrant deaths. The European migrant crisis
has put migration high on the agenda amongst politicians, policy-makers, the media, and
scientists—even though the current migrant numbers are back to their pre-crisis levels (The
New York Times, 2018).

Several important aspects can be identified in this short historical overview. The essence
of these aspects is represented in the following considerations:

Consideration 2.1.1 Migration is a natural phenomenon that is inseparably intertwined with
human history. Therefore, it might also be an important aspect regarding the future develop-
ment of human society.

Consideration 2.1.2 Remains of ethnocentrism ideologies may be the underlying cause for
current polarization anomalies in societies.
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2.2. Concept Demarcation
The previous section provided a brief overview of global migration throughout history, and
it became evident that there are different types of migration. In this section, the concept
migration and its elements are briefly discussed to get a clear demarcation for what is meant
by migration in the remainder of this study. To this extent, a comparison is made between
the definitions of migration by several well-known institutions:

• If people migrate, they travel in large numbers to a new place to live temporarily. (Cam-
bridge Dictionary Online, nd)

• (Of a person) move to a new area or country in order to find work or better living conditions.
(Oxford Dictionaries Online, nd)

• To move from one country, place, or locality to another. (Merriam-Webster Online, nd)

Looking at these definitions, it appears that there is no clear consensus on what precisely
classifies as migration. According to the Cambridge definition, it involves large numbers
of people, and they only move somewhere for a limited period of time. Every year in July
and August, large numbers of North- and West-Europeans travel to Southern Europe to
enjoy the warmer climate. After a week or two, whether or not with a deep tan, they travel
back home and return to their regular daily business for another year. According to the
Cambridge dictionary this would classify as migration, but obviously this phenomenon is
not what caused the European migration crisis in 2015.

The Oxford Dictionaries require migrants to move to a new area or country, but only
because they want to find work or better living conditions. However, this would exclude vol-
untary migration to, for example, explore foreign cultures (Madison, 2006). Another doubtful
case following this definition is people migrating to less-developed parts of the world to help
the local population by means of volunteer work. Their intrinsic motivation for migration is
not that they want to find work or better living conditions, since they would probably find
better living conditions or work more easily in their country of origin.

Merriam-Webster does not include any minimum group size or time restrictions, and it
does not specify any underlying reason for migration. This definition is very broad, and is
satisfied if one moves from one country, place, or locality to another. However, it is not
clear where the boundary of such localities or places should be placed. Another province?
Another city? Another neighborhood? Or would moving to the house across the street also
be classified as migration? This definition is still unclear regarding this aspect.

These three different definitions do give a clear view on unclear and ambiguous aspects
of migration. Basically, three main elements need to be further specified to get a clear de-
marcation of migration for this study:

1. Community-boundaries between which migration can take place

2. Underlying reasons for moving

3. Time

For element (1), the boundaries can be specified through already existing boundaries:
continents, regions, countries, provinces, states, municipalities, cities and villages, or even
neighborhoods. But another, less obvious choice, would be language regions. However,
languages tend to transition slowly from one language into another over a certain distance.
This study will address migration on a country level. That is, the spatial factor of internal
migration within countries is not taken into account.

Element (2) is an important factor, because it allows the distinction between migrants
and ‘normal’ travel. A person that works in a neighboring country can cross a border twice
a day, but should not be considered a migrant. In addition, various other migratory-like
manifestations need not be classified as migration in this study (e.g. tourism, family visits,
study). Therefore, this study considers migration only for a selected group of root causes.
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With respect to element (3), this study will not artificially impose any time limits. As long
as (2) is satisfied, the amount of time that a migrant moves to an alternative location is not
deemed relevant.

This leads to the following consideration:

Consideration 2.2.1 Migration is an ambiguous concept. That is, it is scale-, location-, and
time-dependent, and can be cause-specific. Therefore, it can be studied from multiple perspec-
tives (e.g. local, national, regional, global).

2.3. Migration: A Complex Topic
In this section, the complexity of migration is explored on an abstract level, by considering
some relatively simple thought experiments. In the present day, the only types of human
migration that still occur are home-community mobility, and cross-community migration
(Manning, 2012). Home-community mobility is comprised of movement within the commu-
nity, and while this is certainly an interesting topic, it is not within the scope of this study.
Cross-community migration is the most complex form of migration, and it entails the migra-
tion of humans across linguistic and cultural boundaries. The remainder of this section will
address the phenomenon of cross-community migration.

The first questions that might be asked are ‘why?’ and ‘how?’. Why do people decide
to migrate? How do they decide where they want to go? Or—more generally—what is the
decision– or thought process that any individual goes through before he or she decides to
migrate? Given the fact that some areas generate significantly more migrants that other
areas, this decision process is probably heavily dependent on the environment an individual
is in. As a consequence, the circumstances in an area could be somehow related to the
number of migrants that decide to leave or enter that area.

Suppose that this is indeed the case, and consider the (very) simple system description
of the migration decision process for an individual in Figure 2.4. An individual receives
(continuous) input from his or her environment, undergoes an internal decision process,
and makes a decision whether or not to migrate. Generally, the individual will decide to
migrate when a certain (unique) threshold is reached. The relevance of this simple system
description lies in the complexity that it actually represents. As of 2017, the world population
is estimated to have reached almost 7.6 billion people (United Nations, 2017a). As every
person is unique, every one of these 7.6 billion people has his or her own internal decision
process and external environment, and (in principle) they are free to move anywhere.

Figure 2.4: A simple overview of the migration decision process for a single individual.

Even if this decision process could be defined for every single individual, this would still
not suffice to adequately capture—let alone predict—the complete phenomenon of migration.
As time progresses, not only the environment in each region changes, but also the internal
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decision processes of all individuals will most likely be subject to change. That is, the same
person might make a different decision tomorrow than he or she makes today. In addition,
over 300 thousand babies are born each day, while roughly 150 thousand people die.

Of course, this complexity can be reduced by means of generalizations and simplifications.
But although this would reduce complexity to a certain extent, this would consequently also
greatly reduce the extent to which the migration process is captured. Even when approaching
this problem on a country level, differences between these countries would still have to be
accounted for. The people of each country are different culturally, socially, and have different
norms and values—all of which could affect their country-specific decision process.

Another complicating factor is that people leaving an area at the exact same time might
have different reasons for migrating. These root causes for migration should somehow be
distinguished from one another. Identifying the underlying root causes and their effect on
migration dynamics could provide useful insights in the coherence of the migration system.
Additionally, root causes may overlap; maybe it is the combination of various factors that
has convinced a migrant to leave his home.

What should also be realized, is that problematic circumstances rising in certain areas as
a result of migration, can have its origin in areas thousands of kilometers away. The solution
to problems in an area, should therefore not necessarily be sought within its own proximity.
Moreover, the solution to problems in one area might actually be the cause of problems in
another. For example, building a wall to prevent immigrants from entering a country would
immediately negatively affect its neighboring countries.

This hypothetical wall also shows that addressing migration problems is a matter of per-
spective. If no migrants would be able to enter Europe anymore due to a giant wall, this could
potentially solve the problem from a European point of view. However, from a migrant’s per-
spective this only leads to additional problems, and one would tend to a completely different
solution when addressing this problem from their point of view.

This complexity should be taken into account when dealing with migration:

Consideration 2.3.1 The migration process is extremely complex, and any attempt to capture
it requires severe generalizations and simplifications.

2.4. The Ethical Aspect
The previous section illustrated the complexity of migration from a quantitative perspective.
Arguably even more complex is the ethical aspect of migration, while migration policies in-
volve highly contested normative judgments in all phases (Bader, 2005). Since the focus
of this study is to analyze how global, regional, and national policies affect migration, it is
important to identify the ethical issues that accompany them. Therefore, this section will
briefly discuss some considerations that should be taken into account regarding the ethics
of migration.

While policy-makers tend to focus on how migration can be controlled, it is also dis-
putable whether migration should be controlled—and, if it should, by whom. Do national
and/or international governments have the right to interfere with the migratory preferences
of individuals? Can this interference be ethically justified? In the current global situation, an
individual’s place of birth greatly affects his or her migratory opportunities and limitations.
From an egalitarianism point of view, governments should not make distinctions based on
nationality or underlying reasons for migration—but it would be quite complex to design
migration policies that satisfy this criterion.

Another important aspect is related to the responsibility of legal authorities towards mi-
grants. Do national governments have an obligation to take care of migrants—including
those in transit—in their country? And what is their responsibility towards individuals that
migrated to another country, but retain their nationality? The spatial aspect of migration
makes these questions exceedingly complex, and it not only involves authority-to-migrant
interactions, but also cooperation between various authorities (i.e. between governments of
countries, regional institutions, and global initiatives). It is often not clear where the respon-
sibility of one legal authority starts or ends. For instance, the European Union is currently
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planning to build migrant processing centers in Africa (The Guardian, 2018), which is well
outside of their geographical boundaries.

Whether a migrant is granted asylum often depends on his or her underlying reason for
migrating. Migrants that flee from e.g. war, violence, or persecution, are classified as refugees
and receive a special status in most receiving countries. However, specifying the criteria
regarding for who is and who is not classified as a refugee is an ambiguous and perspective-
dependent affair. That is, these criteria would be heavily dependent on the interests of the
one making the decision. For instance, a policy-maker or politician might tend more towards
pleasing the citizens of the nation he or she represents, than ensuring the well-being of
migrants from abroad. In contrast, a civil servant who meets migrants personally on a daily
basis may have a significantly different perspective. For example, a difference in perspectives
led to a heated debate in the Netherlands in 2011, in the case of MauroManuel (The Guardian,
2011).

Since each migrant case is unique, generalizing policies may lead to distressing individual
cases. As a consequence, the discussions and debates about such cases are—most often—
emotionally intense. It is hard to quantify this emotional aspect, which should be taken into
account when analyzing any model related to migration.

The issues mentioned above illustrate the ethically complex character of the migration
phenomenon and its problems, but it is still only a small selection of the ethical aspects of
migration. Summarizing, this leads to the following consideration:

Consideration 2.4.1 Addressingmigration-related problems is ethically complex and perspective-
dependent.
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A Systems Perspective

In Chapter 2 it was discussed that migration is an almost infinitely complex topic. In or-
der to pinpoint the aspects that can be quantified and modeled, it is helpful to first have a
systematic description of processes related to migration. The definition of a system, and the
corresponding scientific approach is briefly summarized in Section 3.1. After that, Section
3.2 will describe migration as a system. This system description served as a starting point
for the development of the model that is presented in Chapter 4.

3.1. What is a System?
Systems theory is an approach to comprehensively describe natural or artificial phenomena.
A system is a set of connected elements or parts that function together within certain spatial
limits or time constraints. Every system is surrounded by its environment (which could also
be interpreted as a set of systems), with which it can interact (Von Bertalanffy, 1973). Due
to the interrelations between a system’s components, a change in one element can affect all
other elements in the system as well.

Most—if not all—modeling methods utilize a systems thinking approach to formulate
knowledge in a structured way. It is basically a systematic technique to organize and repre-
sent ideas regarding the processes and mechanisms of a system. This allows for quantitative
analysis, future exploration, assessment of element interdependence, and opens the door for
many more advanced research techniques.

In this case, describing migration as a system is a prerequisite to develop a migration
model. Essential migration elements and processes will need to be identified, defined, and
described in detail. Therefore, the next section will provide an overview of relevant aspects
of migration for this study. It will do so by assessing a select number of historical attempts
to model migration, and identifying useful aspects of these previous studies.

3.2. Migration Mechanisms
A structured overview of the migration system and its elements is essential before actually
quantifying and modeling the relevant processes. To that extent, this section will provide
an overview of the selected academic perspectives on migration processes that will be used
for this study. To gain insight in the process of migration from a systems perspective, two
important aspects should be taken into account: root causes for migration and migration
dynamics.

Root causes of migration are the principles that drive people to migrate from one region
to another. They can either provide people with a reason to leave a certain area, or provide
people with a reason to move towards a certain area. Therefore, these root causes can be
subdivided in push factors and pull factors. Push factors are defined as circumstances in
regions or countries that repel individuals from staying at that place (Zimmermann, 1996).
Examples of push factors are lack of services, lack of safety, high crime rates, crop failure,
droughts, flooding, poverty, political instability, and war. On the other hand, regions or

15



16 3. A Systems Perspective

countries can attract individuals to move there by pull factors (Zimmermann, 1996). Pull
factors are—for instance—higher employment, more wealth, better services, good climate,
low crime rates, political stability, more fertile land, and lower risk from natural hazards. It
is generally the difference in factors between places that drives individuals to migrate from
one region to another.

It should be taken into account that these root causes should not be considered individ-
ually for a certain area. The meaning of these root causes lies in the spatial and temporal
distribution of these factors, where the relative difference between areas is the major driver
for migration processes. Also, the distance and mutual ‘ease of accessibility’ should not be
underestimated. A more difficult travel route might actually have a significant negative effect
on the magnitude of a certain migration flow. An alternative, more comprehensive approach
to root causes would be to distribute them into predisposing, proximate, precipitating, and
mediating drivers (Van Hear et al., 2018). Predisposing drivers are economic, political, and
environmental disparities between areas. Proximate drivers in this framework represent the
previously mentioned spatial factors. Precipitating drivers correspond to push factors, as
was discussed in the push-pull approach, but also include the actual departure thresholds
for individuals. Mediating drivers are factors that constrain or facilitate migration, such as
policies, transportation quality, or information availability.

In terms of root causes, this study will take the following attributes into account: spatial
distribution of environment characteristics and their dynamics, departure thresholds, limit-
ing or facilitating geographical factors, and drivers that facilitate or constrain migration. The
translation of all these elements into a migration model is challenging, but should lead to
better insight regarding the extent to which each of these factors influences migration.

The second aspect, migration dynamics, correspondsmore to themanner in which (groups
of) individuals respond to these changing root causes. When do they decide to migrate? How
do they decide where they will migrate to? How will they travel there? How long do they
stay in in-between countries? Will they reach their destination? All these elements could
be gathered under the previously introduced term migration dynamics. Therefore, in the
remainder of this study, migration dynamics refers to the spatial behavior and distribution
of migrants in response to external factors, while root causes refer to the dynamics of these
external factors.

Throughout academic history, migration modeling has developed significantly, and multi-
ple approaches have been suggested. The first substantial attempt at defining the migration
process dates back to two articles: Ravenstein (1885) and Ravenstein (1889), which was the
outset to define the following Migration Laws:

1. Every migration flow generates a return or counter-migration.

2. The majority of migrants move a short distance.

3. Migrants who move longer distances tend to choose big-city destinations.

4. Urban residents are often less migratory than inhabitants of rural areas.

5. Families are less likely to make international moves than young adults.

6. Most migrants are adults.

7. Large towns grow by migration rather than natural population growth.

The first four laws are particularly interesting, as they describe migration as a process with
gravity-like properties. More than fifty years later, in 1958, John Q. Stewart proposed the
idea of applying a physics law to population movement, which resulted in the gravity law of
population migration as it is commonly applied:

𝑀 = 𝐺𝑃 𝑃
𝐷

Although this formula is relatively simple, the gravity model has proven to fit migration data
exceptionally well, and has been used successfully in forecasting human displacement on
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a sub-national level (Poot et al., 2016). A more recent application is the adaptation of the
gravity model towards a radiation model (Simini et al., 2012), which significantly improved
the accuracy of the human displacement estimations.

At first glance this seems promising, but the gravity approach to migration still faces
significant challenges in some fundamental aspects. For instance, on a micro-level, the mi-
gration flow from one country to another is partly dependent on the origin country j. This
origin country could be defined in multiple ways: (a) the country of birth, (b) the country
of citizenship, or (c) the country of last residence of the migrant (Beine et al., 2016). In the
gravity model, the difference between these criteria proves hard to implement—partly due to
the level of complexity this would add, and partly due to a lack of data. Another difficulty
that is argued by Beine et al. (2016), is found in the multilateral resistance to migration. The
attractiveness of alternative destinations exercises influence on the determinants of bilateral
migration rates, but the attractiveness of each country is likely to be correlated with the at-
tractiveness of its peer countries—which should be accounted for. An example for how to
control multilateral resistance to migration in the gravitation model can be found through
the elaboration of the CCE estimator in Bertoli and Moraga (2013).

The exact internal feedback mechanisms and their corresponding migration dynamics is
a much debated topic in migration literature. Positive feedback effects may have a reinforc-
ing effect on migration, which would manifest itself in the formation of migration networks.
However, these theories are often neglecting indirect feedback effects (e.g. remittances), are
unclear about the exact causes of network migration (e.g. the underlying reasons for mi-
gration), and do not account for counteracting migration mechanisms (e.g. dynamic policies
and polarization of societies) (De Haas, 2010). As such, these shortcomings should be taken
into account in this study, and addressed or clarified where necessary.

Several of these attributes related to migration dynamics were already covered in the se-
lection of root causes, but the gravity model is a first step towards connecting and quantifying
the actual processes. That is useful, because a migration model requires some sort of dis-
tribution process that quantifies when, how, and where migrants move. To that extent, the
following attributes will be taken into account with regard to migration dynamics: the spa-
tial distribution of migrants over time, the feedback effects of migration on its own processes,
network migration, and indirect feedback effects of migration on the environment.





4
The Migration Dynamics Model

The previous chapter discussed the mechanisms and drivers of migration that are relevant
for this study. This resulted in a clear demarcation of concepts that the model in this study
should encompass. In this chapter, the constructed model for global migration is described
in detail. As was already mentioned before, the spatial character of this complex problem
requires integration of data science withmodeling techniques. Part of this chapter is therefore
dedicated to the data acquisition process that was developed for this study.

4.1. Data-Rich Modeling Approach
Recent digital developments and computational progress—particularly in terms of data avail-
ability and the origination of the big data concept—have initiated an interesting split in
modeling approaches. Whereas model-driven approaches rely heavily on the experience and
knowledge of the modeler or experts, data-driven models are more reliant on the actual in-
sights that can be obtained from big data sets. However, data does not answer questions
or solve problems. The size of a dataset is not necessarily representative for its potential to
address issues. As a result, data is only useful when it is used appropriately to address a
related question. Still, data can definitely provide useful insights if it is embedded in a good
theoretical framework.

Therefore, this study enhances a data- and theory-rich modeling approach. Data is used
to initialize themodel, and to gain insight and understanding of the relation between variables
and parameter of interest. But how the data is used in the model—the actual mechanics of
the system and its interrelations—is based on scientific theories and assumptions.

4.2. Underlying Principles
This section provides a brief description of the scope, structure and underlying ideas of the
proposed data-rich migration model component. To that extent, several principles are iden-
tified which served as a starting point. These principles are mainly related to the model
component for migration dynamics, but other elements of the model will also need to adhere
to these principles.

4.2.1. Principle of Freedom
The underlying idea of the model is that, like in the “real world”, migrants are (relatively)
free to travel between countries. That is, there are no pre-made routes forcing migrants
to travel in a certain direction. However, topographical hurdles, (partly) closed or difficult
border crossings, and other spatial obstacles will be represented in the model. These could
be implemented by means of a distribution matrix, where these elements are factored in. A
contiguity matrix is used in the model to define possible border crossings and the type of
border crossing (i.e. land or water contiguity). These implementations should not interfere
with the open nature of the model. That is, an open model structure should be preserved at
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all times.

4.2.2. Origin Tracking
The country of origin of migrants and refugees is tracked in the model. This means that, no
matter how far or long migrants travel, they retain their nationality. This implementation
leads to some interesting possibilities for the model:

• The attractiveness (a term used to indicate the tendency of migrants to relocate to a cer-
tain region, area, or country) can be unique for each origin-destination pair of countries.
As a consequence, diverging migratory preferences of migrants with different national-
ities can be taken into account. These “preferences” are determined by various factors
that can be both voluntary (e.g. level of similarity between country of origin and destina-
tion country, welfare, or number of migrants of the same nationality already in a certain
country) and involuntary (e.g. likelihood to get a residence permit, forced redistribution
of migrants in a certain region, or conflict). The underlying reason for migrating (e.g.
conflict, economic circumstances, or food/water scarcity) could also influence migra-
tory choices of migrants. Assuming that most migrants from a certain country migrate
for the same reason, this can also be taken into account.

• It allows for a more detailed mapping of spatial migrant flows than in traditional SD
migration models, where nationality is mostly not taken into account on this scale. By
tracking the nationality of migrants in all countries at all times, the migration routes
per nationality can be acquired and analyzed.

• In reception countries, a distinction can be made more easily between distressing cases
(e.g. conflict/political refugees) and less distressing cases (e.g. economic migrants).

4.2.3. Behavioral Principles for Migrant Distribution
Given the large number of countries that are taken into account, as well as the dynamic
character of migration and the situation in each country, it is not feasible to manually cre-
ate and/or check the distribution matrix. Therefore, a set of behavioral principles (rules)
should be devised that automatically translates the available data (at any point in time) into
a dynamically generated distribution matrix. One example of such a principle/rule would be
that it is relatively easier for a citizen of the European Union to travel across the EU than
for a non-EU citizen. Another example of such a principle is a language barrier, where peo-
ple would be more attracted to countries that have a similar main language as their native
language. A third example is mode of transport, where migrants from wealthy countries can
generally afford the fastest means of transport, but migrants from less wealthy countries are
forced into more cumbersome modes of transportation.

A good indication for attractiveness of each country for migrants should—at minimum—
include the following two important aspects. Firstly, it requires the specification of themutual
differences between country of origin of migrants, and their destination countries. Indicative
elements that could be compared to this extent are e.g. wealth, educational or professional
opportunities, life expectancy, or language similarities. Secondly, migrants (i.e. from coun-
tries with low income) do not necessarily travel to a country with the intent of settling in that
particular country. It could be that they only travel there because they were forced to leave
their country of origin to the most accessible neighboring country. Another option is that
migrants are traveling through countries with the intent of reaching other, more appealing
countries. In this respect, centrally placed countries with an advanced transportation in-
frastructure, might be more attractive for migrants than more isolated countries or countries
with a bad transportation infrastructure.

4.2.4. Multiple Migration Theories
Various theories exist regarding migration dynamics (e.g. the gravity model, the radiation
model, neoclassical theory of migration, network theory). The distribution matrix that de-
termines the migrant flows in the model could be adapted to fit several of these theories.
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This would provide the opportunity to compare the difference in model behavior given cer-
tain migration theories. The substantial difference between most of these theories lies in the
definition of the pull factors for migration (e.g. economics, labor markets, income differences,
or race and ethnicity). These pull factors could be modeled separately in an SD model, and
used to quantify the mechanisms of the migration model component.

4.2.5. Model Overview
The previous sub-sections introduced and discussed the main aspects and underlying ideas
that formed the basis for the model development in this study. Summarizing, this leads to the
following conditions and aspects that should be implemented and maintained in the model:

• Open model structure

• Spatial subdivision of environments

• Migrant flows

• Origin tracking

• Origin-specific migratory preferences

• Behavioral rules for migrant distribution

• Option for integration of multiple migration theories

• Multiple levels to define variables (multi-resolution model)

• Tolerable level of model manageability

4.3. Detailed Model Description
This section will provide a comprehensive description of the model component for migration
dynamics. It will discuss the implementation of each of the underlying ideas that were in-
troduced in the last section. Another important aspect that will be discussed here, is the
trade-off between these implementations and their corresponding computational limits. The
model was built in Vensim DSS, a software package for developing and analyzing System
Dynamics models that allows for external data connections. A simplified version of the mi-
gration model component can be found in Appendix A.

4.3.1. Open Model Structure
The open model structure manifests itself mainly in the implementation that—in principle—it
is possible for migrants to travel anywhere in the world. Of course, spatial constraints and
certain time limits will be used to reinforce or diminish certain types of migratory behav-
ior. However, the interconnectedness of the model still preserves the fact that, theoretically,
migrants have the option to travel to any country in the world by any route they would prefer.

This open model structure is established by ensuring that all countries are interconnected
in one giant network. That is, by mapping all countries and their contiguity to other coun-
tries, the resultant product enables all combinations of migrant origins, migrant destinations,
and migrant travel routes.

4.3.2. Spatial Subdivision of Environments
The spatial subdivision of environments entails the representation of differentiation in char-
acteristics between countries. Because it is not feasible to develop a specific model for each
country, this was implemented by developing one generic model for a country’s environment
and migration processes. A technique called subscripting allows for the simultaneous sim-
ulation of such a generic model for multiple entities. Each entity—in this case country—can
then be initialized with different values or processes. It should be noted that, while each en-
tity represents a unique spatial area, they do not possess a property or element that actually
defines their spatial location.
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4.3.3. Migrant Flows
This lack of inherent spatial information is resolved by representing contiguity between coun-
tries in 2-dimensional matrix-form—and the size of this matrix is thus equal to the number of
countries x the number of countries. This matrix provides information on whether a border ex-
ists between each unique pair of countries. The most elementary implementation would be a
simple 0 and 1 distinction, where a 1 represents a border, and a 0 represents no border. How-
ever, in this study, the distinction is made more elaborately. Borders not only vary in size,
difficulty of traverse, and visa requirements, but can also include the crossing of large bodies
of water. In addition, the difficulty of border crossings can be nationality-dependent. An
simple example is the use of planes: migrants from wealthier countries would not be forced
to travel by land, but simply fly to whatever country they want to migrate to. Therefore,
various indicators are utilized and combined to estimate the contiguity between countries
in more detail. The model takes the following aspects into account: type of border crossing
(land, water, or none), difficulty of traverse (number of highways between countries), and it
distinguishes between modes of transport (based on the origin of countries). The last aspect
is implemented by opening the borders directly to all countries for wealthier migrants.

The model uses the matrix to convert the outflow of each country to the respective inflows
for its neighboring countries. Since this matrix is used to specify border crossings, it allows
for the implementation of various policies related to e.g. (partial) border closings, accelerated
migrant transport, and artificial migrant redistribution by authorities. It is also possible to
distinguish between border crossings in different directions. That is, borders may be specified
to be more or less difficult to cross in opposite directions. The actual mechanisms and their
workings are discussed in more detail in Section 4.3.6.

4.3.4. Origin Tracking
Origin tracking is also implemented by means of a two-dimensional matrix. This matrix
allows for the tracking of number of migrants in each country by nationality. The size of
this matrix is thus equal to the number of countries x the number of countries. In addition, a
distinction is made between migrants that are in transit (on their way to another country),
and migrants that have reached their destination. The latter will no longer be able to migrate
to neighboring countries.

4.3.5. Origin-Specific Migratory Preferences
The attractiveness of countries can be different for migrants from different countries of origin.
This country-specific attractiveness can be dependent on, for instance, visa-requirements,
country similarity, number of countrymen in destination countries, and distance from coun-
try of origin. The origin-tracking functionality also brings the additional benefit of being able
to express these differences in the model.

In the model, this is currently only implemented by means of a two-dimensional language
similarity matrix, but it is straightforward to implement additional indicators. The languages
spoken in each country have been analyzed and transformed into a language similarity ma-
trix. Another factor that might be origin-specific is distance between country of origin and
reception country. However, since this is inherent to the model structure, this was not mod-
eled explicitly.

4.3.6. Migrant Distribution
The model distributes migrants across countries by utilizing a generalized decision process.
Even though this decision process leads to unique values for each country of origin, the
process itself is not country-specific. This migrant (re-)distribution takes into account both
pull- and push factors. Push factors affect the unique migration rate for each country. The
level of severity of root causes determines the fraction of people migrating because of each
root cause. On the other hand, pull factors determine the relative attractiveness of each
country for each nationality. Most of these pull factors are in fact inversely proportional
to the aforementioned root causes for migration. These factors are defined as residence
attractiveness. However, some pull factors are related to how useful a country is for migrants
to reach their country of destination. These factors are implemented as transit attractiveness,
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and they are dependent on the centrality and connectedness of each country within the global
country network. Network analysis was combined with several data sets (i.e. contiguity,
number of roads between country, and total connectedness of each country), to assign a
transit value to each country. The weights for transit- and residence attractiveness are part
of the uncertainty space of the model.

The implementation of migrant distribution is quite complex, due to the tracking of the
origin of migrants throughout the model. This means that a three-dimensional matrix is re-
quired for migrant distribution, which depends on the attractiveness of each country for each
nationality, and the relative attractiveness of neighboring countries of the current country of
residence. The actual inflow into a country of migrants from each nationality is the sum of
all the outflows of those migrants out of its neighboring countries—to that specific country.

The inflow of migrants into a country leads to societal stress within that country, if a
certain threshold is reached in terms of migrant numbers. This societal stress will then
decrease the attractiveness of that country, leading to less migrants traveling to that country.
However, the distribution is calculated on a relative scale, meaning that if the attractiveness
of neighboring countries also decreases due to societal stress, the actual number of new
migrants does not necessarily decrease.

4.3.7. Integration of Multiple Migration Theories
With the basic tracking and distribution mechanisms in place, the model allows for the im-
plementation of multiple migration theories. This can be achieved by adapting either or both
the distribution matrix and/or the country attractiveness matrix. Although the original idea
included the actual implementation of multiple theories, this has not been achieved due to
time constraints. Therefore, apart from noting that this implementation is definitely possible
and promising, this study does not further assess this element.

4.3.8. Multi-Resolution Model: Subscript Mapping
Model variables can be defined on multiple scales through the use of subscript mapping.
This technique allows for the definition of variables on a regional scale. Countries within that
region—or any subset of countries—then inherit the value of that variable. This technique
can also be used to implement policies for any set of countries. An example is the regional
policy that will be implemented in Chapter 5, where subscript mapping allows the European
Union to close its borders when a certain threshold of migrants is reached. This requires
the mapping of the region European Union onto the subrange of European Union countries,
and the mapping of the reception region of the European Union on the the reception subrange
of European Union countries. A step-wise overview of subscript mapping can be found in
Appendix B.

4.3.9. Model Manageability
As was already discussed thoroughly in the introduction, computational limits are an impor-
tant aspect of this study and need to be taken into account. The model in its current form
is the result of a thorough testing process, where multiple implementations were compared
in terms of simulation time, versatility, and manageability. In addition, several techniques
that greatly decrease simulation time have been employed. This section will present the main
findings of this process.

The first dilemma in this process was the choice of modeling software. The two main
options that were considered were a Python implementation and a Vensim implementation
of the migration model component. Both have several advantages and disadvantages.

A Python implementation would provide significantly more freedom in terms of model
development than a Vensim counterpart, but Python is a programming language that is not
specifically created for modeling and simulation. In addition, coupling a Python model to
data sources is straightforward, as multiple packages exist specifically for the purpose of data
processing and analysis. The model could then also more easily be combined with various
other modeling approaches, such as Agent-Based Modeling or Discrete Event Simulation,
since a variety of connectors are available for this purpose. However, due the scale and size
of the intended model, the viability of such a connection is doubtful.
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A Vensim implementation on the other hand provides much less freedom, as such a model
is bound to operate with the limits of the modeling program. But, since this software is
specifically developed for this purpose, this would definitely be the preferred choice in terms
of simulation time. An additional advantage of Vensim is that it also has a great variety
of models and model components available, which can easily be coupled to the migration
dynamics component. Input data for Vensim can be generated in Python (albeit in a very
specific manner), and output data from Vensim can be exported and analyzed in Python as
well.

Having said that, both implementations have been attempted in this study, and only the
latter was successful. The Python model that was developed in this study generated the cor-
rect behavior, but its simulation time was simply too long. The developed model component
in Vensim was more successful, but to that extent it required some specific equation defini-
tions and simulation techniques. The remainder of this section will shortly discuss these in
more detail.

By far the most important gain in simulation time was reached by using the compiled sim-
ulation option that Vensim offers. This is a technique that automatically translates a Vensim
model to a C-program, which greatly increases simulation speed. Although this technique is
generally only used for optimization purposes or sensitivity analyses, which includes numer-
ous simulations, the migration model component already benefits significantly in a single
run. It is safe to say that without compiled simulation the actual application of this model
component would have been impossible.

Another aspect that greatly affects simulation time is the used integrationmethod. Vensim
offers several of these, and the method determines how the program numerically integrates
the model’s differential equations. The trade-off between accuracy and simulation time that
this entails, is reinforced as models get bigger. In the case of the migration dynamics com-
ponent, some integration methods (i.e. Runge Kutta 4 Auto) do not even allow to simulate
the model, while others (i.e. Runge Kutta 4 fixed and Euler) simulate relatively fast.

The last aspect in terms of modeling techniques relates to the choice of functions that
Vensim offers. Some variables in the migration model component can be specified with vari-
ous Vensim functions, which result in the same outcomes. However, the number and nature
of underlying calculations that need to be made are significantly different. This difference
is caused by the fact that certain ‘smart’ functions, first determine which equations actu-
ally need to be solved. Since the migration model does not need to calculate migrant flows
between countries that are not contiguous, these elements can be neglected. The most im-
portant gain in this respect was using the VECTOR SELECT() function, rather than the SUM()
function.

An additional aspect that can significantly affect simulation time is number of countries
taken into account. This means that even when the model component would have proven
unable to take all countries into account, it could always be simulated for a smaller number
of countries. Since the model component initializes from external databases, the number of
unique entities taken into account does not affect the model mechanisms. This illustrates
the generic character of the migration dynamics model component, meaning that it is both
scale- and resolution-independent.

4.4. Data Acquisition
A number of the model elements that were discussed in the last section require a differenti-
ation between the various countries in terms of their state. For such a significant number
of countries this differentiation can only be made by utilizing various indicators in terms of
the conditions in those countries. Therefore, a crucial part of this study is acquiring these
indicators. The extraction and combination of various data sources is not a straightforward
process. Data sources may be incomplete, provide conflicting data, or can be formatted in
problematic ways. Several automated techniques were developed and compiled in Python
scripts to smoothen this procedure (Appendix D). This section will provide a short overview
of the developed data acquisition process and the data sources that were consulted.
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4.4.1. Country Name Database
The developed model component requires data input to be very specific. All data should be in
the exact same order and format. To this extent, an automated process is vital to obtain an
adequately sized dataset for the purpose of this study. Since the model mainly requires data
on a country level, data on that level should be easily translatable into a required format.
One of the major problems in acquiring data from different sources is that country names
may not be identical. For this reason, the first step in the data acquisition process is the
development of a country name database, that enables automatic translation of alternative
country names into the generically used names in this study.

This country name database was constructed in CountryNameDatabase.R (Appendix E),
and consecutively expanded in 01 - Country Names Database.ipynb (Appendix D). This database
was used throughout the remainder of the data acquisition process, and proved essential
for the quick extraction of multiple data sources. Figure 4.1 presents a small part of this
database.

Figure 4.1: The top part of the constructed Country Name Database (Appendix D and E).

4.4.2. Country Selection
Another important step in the data acquisition process is the selection of countries that
will be taken into account. To get an idea about data availability for various countries, this
selection process was initiated by comparing three major datasets that were assessed to have
significant relevance in this study. To this extent, the members of the United Nations General
Assembly were taken as a starting point.

The first source of which the included countries were assessed is the Correlates of War
Direct Contiguity dataset (v3.2). The use of this dataset is highly desirable in this study,
given its detailed character regarding the nature of country borders. It classifies country
borders on a scale from 0 to 5, where a 0 means no border, a 1 means direct border via land,
and 2 to 5 are used for water contiguity up to a certain distance (400 miles).

The second dataset that was taken into account for the selection of countries are the World
Development Indicators (WDI) of the World Bank. This is a very extensive dataset (both in
number of indicators and in number of countries for which these indicators are available),
and therefore it lends itself to assess which countries are absent in the other two datasets.

Figures 4.2, 4.3, 4.4, and 4.5 show the discrepancy in the Correlates of War- and World
Development Indicators datasets on comparison with the members of the United Nations
General Assembly. Correlates of War lacks Iceland, New Zealand, and Serbia. The first two
are absent because they simply have no contiguity to other countries within the specified
water contiguity boundary of 400 miles. The case of Serbia is interesting, because the Corre-
lates of War does include Yugoslavia. Since Serbia emanated from former Yugoslavia (and the
specified contiguity for Yugoslavia matches that of Serbia), it is assumed that the Correlates
of War entry of Yugoslavia is actually Serbia.

The World Development Indicators apparently distinguish between 24 more countries in
comparison with the UN General Assembly, and no countries are missing from the World
Bank data according to this comparison. The additional countries are mainly small islands,
and states of which its existence is not recognized by all countries in the world. This poses
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Figure 4.2: Countries that are in the Correlates of War dataset, but not part of the United Nations General Assembly.

Figure 4.3: Countries that are a member of the United Nations General Assembly, but are missing in the Correlates of War
dataset.

a dilemma: should these countries be taken into account? Due to the open model approach
in this study—and the potential future migration from contested or threatened areas—it is
deemed essential that the list of countries taken into account is as complete as possible. The
reason for this is twofold. Firstly, missing countries might compromise migratory behavior
since there are less options available than in reality. Secondly, several of these regions,
in particular the contested ones, are just those countries that can be expected to nurture
significant root causes that lead to significant migration waves.

Figure 4.4: Countries that are in the World Bank dataset, but are not a member of the United Nations General Assembly.

Figure 4.5: No members of the United Nations are missing in the World Bank dataset.

All in all, this leads to the selection of countries represented in the World Development
Indicators as a base list of countries that will be taken into account. Hence, missing data in
other datasets will have to be dealt with accordingly. This data will be either filled by data
cleaning algorithms, or it will be accounted for in the construction of the model.
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4.4.3. Overview of Data Sources

The country name database and the list of selected countries provided the starting point for
the remainder of the data gathering process. The databases that were used to initialize and
calibrate the model, and assess the correlation between variables are listed in Table 4.1. A
complete list of variables that were extracted from each data source can be found in the note-
books in Appendix D, which contains the Python scripts that were used to extract the data
from the various sources. The World Bank data was extracted using the Python package
wbdata (Sherouse, 2014).

Dataset Source Purpose(s)
Direct Contiguity (V3.2) (The Correlates of War Project, nd) Contiguity data

Border Crossings (Center for Geographic Analysis, nd) Contiguity data, transit attractiveness
International Migrant Stock: The 2017 Revision (United Nations, 2017b) Initialization, correlation, calibration

World Development Indicators (WDI) (The World Bank, ndb) Initialization, correlation, residence attractiveness
World Factbook (Central Intelligence Agency, nd) Initialization, residence attractiveness, language data

Fragile State Index (FSI) (The Fund for Peace, nd) Root causes, correlation
World Risk Index (Natural Disasters) (Bündnis Entwicklung Hilft, nd) Root causes, correlation
Exploring Climate and Development (The World Bank, nda) Root causes, correlation

Freedom in the World (Freedom House, nd) Root causes, correlation

Table 4.1: Overview of the data sources used for this study. The purpose(s) for which each dataset was used is given in the
rightmost column.

4.5. Coupling to Root Causes Model

The root causes model component that is used in this study wasmade available by courtesy of
dr. E. Pruyt. This model employs several of the datasets that were discussed in the previous
section to generate a range of future scenarios for root causes for migration (Fragile State
Index, World Risk Index). This model is connected to the migration dynamics component
through the migration rate for each country.

4.6. Model Verification and Calibration

Verification of the model requires an assessment of the correct implementation of the con-
ceptual model (Robinson, 1997). Two main verification tests have been conducted: a mass
balance on the entire model, and a mass balance on the leaving and entering country flows.

The mass balance test for the entire model was executed by setting both birth rate and
death rate to zero, meaning that total model population should be constant. This confirms
correct implementation of the model equations, and that no migrants are ’lost’ when traveling
to another country. The result of the mass balance test is presented in Figure 4.6.
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Figure 4.6: The mass balance test for the entire model. There are no births and deaths during simulation time, so the total
population in the model does not change. The limited fluctuation is due to small integration errors.

The mass balance test for the leaving and entering country flows is depicted in Figure 4.7.
The sum of the inflows is equal to the sum of the outflows for all countries of origin.

Figure 4.7: A mass balance test for the inflows and outflows of various countries of origin. The inflows and outflows match: the
test is successful.

In addition, the constructed contiguity matrix was assessed visually in Gephi to identify
any inconsistencies in terms of country borders. A visualization of the transit matrix can be
found in Figure 4.8. No anomalies were found.
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Figure 4.8: A visualization of the contiguity matrix in Gephi.

To provide accurate results, the model requires thorough calibration. Fine-tuning of the
mechanisms and relations between root causes and migration dynamics by comparing the
model behavior to historic data, is a vital prerequisite for realistic results. There are two main
aspects for which the model should be calibrated: the relation between out-of-country migra-
tion and root causes, and the relation between attractiveness of countries and the number
of migrants that travel there. However, data availability is a major issue in this regard. For
instance, only the net migration rate is available for the majority of countries. For proper
model calibration, the gross numbers are required. Nonetheless, the correlation between net
migration rate and the Fragile State Indices is shown in Figure 4.9. From this correlation, the
lower bound for out-of-country migration could be derived—but for determining the actual
relationship either more information is required, or more advanced data analysis techniques
need to be employed. The same holds true for the relation between attractiveness of coun-
tries and the number of migrants that travel there. Since this is outside of the scope of this
study, this issue is not further addressed. Still, even if the magnitude of the model output is
not correct, it does lend itself for a relative comparison of scenarios and policies—which can
provide useful insights.
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(a) C1: Security Apparatus (b) C2: Factionalized Elites (c) C3: Group Grievance

(d) E1: Economy (e) E2: Economic Inequality (f) E3: Human Flight and Brain Drain

(g) P1: State Legitimacy (h) P2: Public Services (i) P3: Human Rights

(j) S1: Demographic Pressures (k) S2: Refugees and IDPs (l) X1: External Intervention

Figure 4.9: Correlation between the Fragile State Indices and net migration rate on data from 2006 to 2016 for all countries.
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Results

This chapter will present the obtained model results. Section 5.1 will identify the variables of
interest and briefly discuss the uncertainty space of the model. Section 5.2 will explore this
uncertainty space and the corresponding outcomes to gain insight into the basic behavior
of the model. In Sections 5.3, 5.4, and 5.5, the results are presented for various policy
implementations on a global, regional, and national scale.

5.1. Uncertainty and Variables of Interest
This study uses Exploratory Modeling and Analysis to analyze the migration system. Ex-
ploratory Modeling and Analysis uses computational experiments to analyze complex sys-
tems while taking uncertainties into account (Bankes, 1993). To this extent, this study used
the Python library EMA Workbench (Kwakkel, nd).

The uncertainties that were taken into account for this study fall in three major categories:
uncertainties regarding the root causes, uncertainties regarding the extent to which people
respond to these root causes in terms of migration, and uncertainties regarding the migratory
preferences of migrants. A complete list of uncertainties—and policy settings—can be found
in Appendix C.

The main variables of interest are the number and location of migrants across the world
over time. This should allow for the identification of problematic areas, and the consequential
potential problems in transit and/or destination countries. The results will be presented for
sixteen spatially distributed countries, in order to assess the impact of policies on a global
scale. These countries are: Afghanistan, Aruba, Australia, Colombia, Germany, South Ko-
rea, Morocco, Myanmar, Netherlands, Nigeria, Russia, Saudi Arabia, Spain, Turkey, United
States, and Zimbabwe. A visual representation of the set of countries is given in Figure 5.1.
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Figure 5.1: The set of countries for which the results will be presented.
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5.2. Open Exploration
This section provides an overview of a selection of the results that were generated through
open exploration of the defined uncertainty space. A complete overview of these uncertainties
can be found in Appendix C. In Figure 5.2, a feature scoring for a select number of variables
is presented. This gives an overview of the influence of the input variables on the outcomes
of interest.

Figure 5.2: A feature scoring heat map based on the scenarios in the base ensemble. The total population is primarily influenced
by the birth rates, while the number of migrants is highly dependent on the fraction of the population in each country trying to
migrate due to conflict and violence. Note: the color scale is logarithmic.
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(a) Total population (b) Total number of migrants

(c) Total number of migrants in the European Union (d) Total number of migrants in Europe and Central Asia

Figure 5.3: Base ensemble of results. The outcomes for total population, number of migrants, and number of migrants in the
European Union and Europe and Central Asia for 500 distinct scenarios. There is significant variation in model outcomes. The
number of total migrants rises significantly in most scenarios, as does total population.
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(a) Afghanistan (b) Aruba

(c) Australia (d) Colombia

(e) Germany (f) South Korea

(g) Morocco (h) Myanmar

Figure 5.4: Base ensemble of results. The outcomes for total number of migrants in various countries for 500 distinct scenarios.
Most countries show similar behavior to the total number of migrants that was presented in Figure 5.3
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(a) Netherlands (b) Nigeria

(c) Russia (d) Saudi Arabia

(e) Spain (f) Turkey

(g) United States (h) Zimbabwe

Figure 5.5: Base ensemble of results. The outcomes for total number of migrants in various countries for 500 distinct scenarios.
Most countries show similar behavior to the total number of migrants that was presented in Figure 5.3
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5.3. Global Policy: Building Additional Shelters
This section provides an overview of the results that were obtained for various global policies.
These policies correspond to the location of shelters, either in low income countries, high
income countries, or both—to see whether it significantly affects migration behavior globally,
and in the previously selected countries. The following policies were implemented:

• Policy ‘None’: No improvement in shelters and migrant coping capabilities.

• Policy ‘High’: Shelters and migrant coping capabilities are improved in high- and
middle-high income countries

• Policy ‘Low’: Shelters and migrant coping capabilities are improved in low- and middle-
low income countries.

• Policy ‘LowHigh’: Shelters and migrant coping capabilities are improved in all coun-
tries.
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(a) Total population (b) Total number of migrants

(c) Total number of migrants in the European Union (d) Total number of migrants in Europe and Central Asia

Figure 5.6: Results for global policy model runs. The outcomes for total population, number of migrants, and number of migrants
in the European Union and Europe and Central Asia for 100 distinct scenarios. The number of total migrants in the European
Union, and in Europe and Central Asia are slightly lowered by the ’Low’ and the ’LowHigh’ policies.
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(a) Afghanistan (b) Aruba

(c) Australia (d) Colombia

(e) Germany (f) South Korea

(g) Morocco (h) Myanmar

Figure 5.7: Global policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios.
It can be observed that the ’LowHigh’ policy is not beneficial for Afghanistan and Myanmar. Both the ’Low’ and ’LowHigh’
policies decrease migrant numbers in Germany, while Aruba is negatively affected by these. The ’High’ policy does not seem to
significantly deviate from the ’None’ case.
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(a) Netherlands (b) Nigeria

(c) Russia (d) Saudi Arabia

(e) Spain (f) Turkey

(g) United States (h) Zimbabwe

Figure 5.8: Global policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios.
Again, there is no significant difference between no policy and the ’High’ scenario. This makes sense, as migrants are already
attracted to these countries without policy. The ’LowHigh’ policy significantly reduces migrant numbers in Russia, Saudi Arabia,
and Spain.
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5.4. Regional Policy: Closing the European Union
In this section, the influence of a regional policy in the European Union is assessed. In
this case, the European Union decides to close all of its borders when a certain threshold of
migrants is reached. This policy was implemented through subscript mapping (Appendix B),
which allows for changing variables dynamically for entire regions.

• Policy ‘None’: No closed borders.

• Policy ‘EU’: The European Union closes off its borders when a certain threshold of
migrants is exceeded. This threshold is random between 50 million and 100 million.
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(a) Total population (b) Total number of migrants

(c) Total number of migrants in the European Union (d) Total number of migrants in Europe and Central Asia

Figure 5.9: Results for regional policy model runs. The outcomes for total population, number of migrants, and number of
migrants in the European Union and Europe and Central Asia for 100 distinct scenarios. The total number of migrants in the
European Union in the ’EU’ policy case is slightly lowered.
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(a) Afghanistan (b) Aruba

(c) Australia (d) Colombia

(e) Germany (f) South Korea

(g) Morocco (h) Myanmar

Figure 5.10: Regional policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios.
Two countries are interesting: Germany and Morocco. The density of the number of migrants in Germany is affected slightly,
which is probably due to the travel time between the borders of the European Union and the German border. Morocco, being at
the other side of the European Union borders, is definitely affected by this policy. The density of the simulation outcomes shifts
upwards.
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(a) Netherlands (b) Nigeria

(c) Russia (d) Saudi Arabia

(e) Spain (f) Turkey

(g) United States (h) Zimbabwe

Figure 5.11: Regional policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios.
The ’EU’ policy seems very beneficial for Spain, as significantly less migrants travel there.



46 5. Results

5.5. National Policy: Managing Societal Stress, Improving Coping
Capacity, and Stimulating Transit

After global and regional policies in the previous sections, in this section the effect of national
policies will be tested. Four different policies are implemented for the Netherlands and sim-
ulated across 100 scenarios. This allows for analyzing the effect of national policies, both in
the country itself, and across the list of countries introduced in Section 5.2.

• Policy ‘None’: No policy implemented.

• Policy ‘Stress’: Societal stress is managed in the Netherlands. This means that there
will be less polarization and negative effects towards migrants. Therefore, the attrac-
tiveness of the country is less influenced by the number of migrants in the country.

• Policy ’Coping’: The Netherlands increases its coping capabilities, meaning that there
is more place for migrants. This increases the attractiveness of the country.

• Policy ’Forward’: This policy stimulates migrants to travel onwards to other countries.
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(a) Total population (b) Total number of migrants

(c) Total number of migrants in the European Union (d) Total number of migrants in Europe and Central Asia

Figure 5.12: National policy results. The outcomes for total population, number of migrants, and number of migrants in the
European Union and Europe and Central Asia for 100 distinct scenarios. All outcomes are unaffected by the Dutch policies.
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(a) Afghanistan (b) Aruba

(c) Australia (d) Colombia

(e) Germany (f) South Korea

(g) Morocco (h) Myanmar

Figure 5.13: National policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios. It
is clear that all countries are unaffected by the Dutch policies, even its direct neighboring country Germany.
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(a) Netherlands (b) Nigeria

(c) Russia (d) Saudi Arabia

(e) Spain (f) Turkey

(g) United States (h) Zimbabwe

Figure 5.14: National policy results. The outcomes for total number of migrants in various countries for 100 distinct scenarios.
All countries except the Netherlands are unaffected by the policies. The effects on the Netherlands itself are slight.





6
Discussion

This chapter will first discuss results that were presented in Chapter 5 in Section 6.1. After
that, it will reflect on the model and identify its shortcomings in Section 6.2. Subsequently,
the data acquisition process will be subjected to a critical assessment in Section 6.3. Then,
Section 6.4 will shortly discuss the model in relation to migration in general. Lastly, Section
6.5 will combine and convert the results and considerations into a policy advice.

6.1. Results
How useful are these results, and what do they actually indicate? This is one of the most
important considerations in this regard. The model output is extremely large, which tends
to a significant result overload. As such, it is difficult to analyze and interpret all results
simultaneously. This quickly leads to a selective approach in search of both positive and
negative extremes. Therefore, it is essential to reflect on the interpretation of the results.

Having said that, the results that were presented in the previous chapter are just a small
selection of the total model output. Still, significant differences in migratory behavior oc-
curred throughout various policies.

Upon implementation of the global policies, additional shelter and coping capabilities in
low-income countries resulted in more migrants in these countries throughout all scenarios,
while the same policy in high-income countries had no significant effect. The cause for this
may be that the general trend is that the origin of migrants are primarily these low-income
countries, and their preferred destinations are the higher income countries. Additional shel-
ters and coping capabilities in high-income countries, would therefore have no significant
effect on the route and destination of migrants. Moreover, since it was assumed that these
additional coping capabilities were distributed evenly across all countries of a certain type,
the relative difference in attractiveness of countries was not significantly affected. Another
interesting observation can be made with respect to the effect of the ‘LowHigh’ policy. In
this case, all countries improve their coping capabilities, which would basically result in a
better migration infrastructure, and less societal stress throughout the world. According to
the results, this would be beneficial for countries that play a central role in migrant transit
from low- to high income regions, such as Turkey and Thailand. Since the total number of
migrants are the same throughout the policies, this policy could very well lead to a more even
distribution of migrants across countries.

The regional policy that closed the European Union after a certain migrant threshold had
been reached resulted in significant differences for countries on both sides of the border (i.e.
Spain and Morocco). Surprisingly, this does not hold true for Turkey. That the effect was
far less for European countries further from the border, like Germany and the Netherlands,
was in line with the expectation. This can be explained by the significant delay for migrants
to reach those countries. When the threshold is reached, most of these additional migrants
have not yet traveled to their final destination—and most of these migrants tend to travel
towards the Western European countries. The delay effect in regional policy implementation
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should therefore not be underestimated.
The implementation of national policies for the Netherlands clearly showed the inertia of

the migration system. National policies—especially for smaller countries—hardly have any
effect on the global migration system. It is interesting to see that the number of migrants in
Germany is unaffected, but even the effects on the number of migrants in the Netherlands
itself are limited. In that regard, national policies are like trying to empty the ocean with a
thimble. Therefore, the results for the national policies support the notion that migration is
a global phenomenon and large-scale policies are required to regulate migrant flows.

Concluding, in terms of results, the model definitely provided useful insights. It was
shown that location of coping capabilities definitely affects migrant flows significantly, and,
at the very least, this shows the interdependence of countries in terms of addressing this
problem. That is, policies and decisions in one country can greatly affect the number and
origin of migrants in other countries. Delay effects for policies should be taken into account
as well, since it was shown that reactive policies may not give desirable results for all involved
countries. National policies proved to be relatively ineffective within the migration system,
even for the country itself.

6.2. Reflection on the Model
Although the model already led to some interesting insights in its current form, there is
still a significant number of improvements and adaptations that can be made. Admitting
that this indicates that the model is far from complete, the number—and nature—of these
improvements could also be seen as an indicator that shows the versatility of the model
component. This section will first discuss several of these additional implementations.

The most important aspect that should be addressed is model calibration. Due to time
constraints, the current form of the model required a significant number of assumptions in
terms of root causes, their effect on the migration mechanisms, and the interrelation and
feedback effects of the internal migration mechanisms themselves. More thorough model
calibration could severely decrease part of the uncertainty under which the model was sim-
ulated in this stage.

One of the other major considerations that should also be taken into account, is that
this model operates on a country level. By adhering to this resolution, the model does not
account for smaller, more delicate mechanisms and phenomena. However, these types of
generalizations and simplifications are inherent to using System Dynamics as a modeling
technique. Any complexification in terms of scope or resolution would rapidly lead to sub-
stantial problems in simulation and in result interpretation. On a lower level, it would be
interesting to add spatial internal migration mechanisms (IDPs), to identify population and
migrant density within countries.

Another aspect that could be taken into account is the distance that needs to be traveled
in each country, which could greatly affect the time migrants take to transit through a cer-
tain country. This is especially true for countries with a less-developed infrastructure. The
difficulty of border crossings has been implemented to some extent, but this could have been
done more thoroughly by taking more indicators into account (e.g. visa requirements).

In addition, the model does not take ethnicities into account, while this might be an
important factor in terms of migratory decisions. In some countries, only people with a certain
ethnicity are likely to migrate due to for instance oppression or political/social persecution.
On top of that, it might influence decisions these migrants make later on in the migration
process in terms of travel decisions.

Lastly, the distribution mechanisms required some severe simplifications. At present, the
residence attractiveness, transit attractiveness, and accessibility of each country are each
represented in a single number. Of course, this means that the weight that is given to each
of these factors is of utmost importance. Therefore, a proper identification and classification
of their actual effects—or a better distinction between them—could lead to significant gains
in terms of model utility. In the current model, the magnitude and weight of these factors
were part of the uncertainty space.
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6.3. Data
The model that was developed in this study relied heavily on data. While this definitely
provides benefits, there are also some issues that need to be taken into account. The first
issue that should be taken into account is data accuracy. While some of the indicators that
were used are hard, countable numbers (e.g. population, country borders, or GDP), others—
estimated indicators—are the result of complex calculations and data combinations (e.g. the
Fragile State Index, and the Freedom in the World dataset). The latter are based on estimates,
and it is sometimes hard to establish what they actually represent.

The second major issue concerning data is its completeness. Mostly, data sets can diverge
in terms of number of countries, but also within data sets not all data might be available.
To account for this lack of data, several methods were employed. These methods however,
do certainly not improve model reliability. Especially in the case of the previously mentioned
estimated indicators, this leads to an estimation of an estimation, and it should be considered
that these numbers may be highly inaccurate.

A specific case in terms of data is the language data. The languages spoken in each
country—and the percentage of the population that speaks it—were assessed and compared
to other countries, which resulted in a certain overlap between them. However, not all lan-
guages are fit for this purpose. For instance, while the official language in various countries
in South America is Spanish, these forms are significantly different to the version of Spanish
spoken in Spain. The current implementation does not take these differences in to account.

6.4. Migration in General
In this study, the global nature of the migration phenomenon has been emphasized on mul-
tiple occasions. The results have more than confirmed this belief, since effects of national
policies were hardly visible anywhere throughout the world.

This highlights the interconnectedness and complexity of this model. A solution to mi-
gration problems should not only be sought on a national or regional level, but should also
focus on the effects on a global scale. In addition, positive effects of migration on a global
scale should be taken into account. Migration might lead to significant progress and sub-
stantially equalize the distribution of resources and knowledge throughout the world. In fact,
one could even argue that migration should be fostered and stimulated for human progres-
sion. As such, migration could provide the solution to its own causes and problems: better
(economic) circumstances throughout the world, and more cultural and social understand-
ing.

6.5. Policy Advice
European countries are at present trying to solve the European migration problem, but they
are not addressing the actual causes of this problem. In fact, their focus lies on mitigating its
effects. The sustainability of this approach might be questioned, since such policies lead to
migrant overflows in relatively low-income countries. These policies may lead—in due time—
to even more migration, because it is unlikely that these countries are able to cope with these
numbers.

Therefore, the first advice from this study towards policy-makers is that it might be more
effective to address the root causes of migration, rather than just mitigating its detrimental
effects. At the very least, it should receive the same amount of attention and resources, since
these root causes form the basis of the problems that arise with migration.

In addition, the results showed the significant interdependence of countries regarding
migration problems. The inertia of the migration system requires globally aligned, large-
scale policy implementations to prevent and mitigate migration-related problems. The delay
in these policies should not be neglected, so it is important to identify potential problems as
early as possible and take appropriate action.





7
Conclusions and Recommendations

This study has developed the following innovations on a methodological level: a technique to
comprehensively implement spatial phenomena into System Dynamics, a method to create
multi-scale System Dynamics models through subscript mapping, and a semi-automated
data acquisition process to obtain and structure a great variety of data sets on a country
level. The nature of the developed model component is generic. That is, it can be used on
any scale and on any resolution. The number of unique entities taken into account does not
affect the basic model mechanisms. For instance, it could also be used to gain insight in
regional or national migration flows by simply changing the initialization parameters.

To improve the value of the model, several important aspects could be addressed. Firstly,
the biggest gain would result from more thorough model calibration. An improved assess-
ment of the actual relations between model parameters and variables could lead to more
realistic results. However, the actual relation between root causes and their corresponding
migration rates is hard to determine, since this requires a substantial amount of data that
is not trivially available. An example that could help with this dilemma is to use geospatial
data (for instance from Twitter), to track and quantify actual migrant flows. Secondly, to
more accurately assess the true spectrum of plausible future migration flows, several types
of migration mechanisms should be implemented. Such an approach would also allow for
the quantitative comparison of various theories regarding migration, which would also be a
quite interesting addition in itself.

Another area where there is definitely room for improvement is in the data acquisition
process. More advanced data analysis and processing techniques could greatly improve the
added value for the current model component.

In terms of policy advice, the model can be subjected to a more extensive exploration
of scenarios and the effect of a multitude of policies. A more country- or region-specific
approach could lend itself well for this purpose. As such, on the one hand it could be explored
what the effect is of regional or national policies on the global scale, but on the other hand it
could also be employed to determine the effects of events throughout the world specifically for
a country or region. The latter case would allow for the identification and testing of various
mitigation policies for e.g. immigration and naturalization services, national governments,
regional institutions, or NGOs.
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A
Migration Dynamics Model Component

The figure below shows a simplified version of themigration dynamicsmodel component. This
model component can be connected to any other Vensim model by specifying the variables
depicted in red. The variables depicted in cyan are initial values, and require data input.

Figure A.1: Model component for migration dynamics that tracks country of origin of migrants, and allows for separate migration
mechanisms for each nationality.
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B
Subscript Mapping

Subscripting with regions

• Step 1: Country subscript

– In Vensim: Click subscript click New.. (or Edit... when it already exists) enter name
of subscript add equation: GET XLS SUBSCRIPT(’name of datafile’, ’name of sheet ’
, ’named range of countries’ , ” )

– This will load all the countries into the Vensim model within the subscript country.
– Example: GET XLS SUBSCRIPT(’Data.xlsx’, ’Country Data’ , ’A2’ , ’A218’ , ” )

• Step 2: Creating subranges for countries in each region

– Make sure the countries in the Excel file are sorted by region, or that the named
ranges are correctly implemented. For each region, we have to define in Vensim
which countries belong to it.

– In Vensim: Click subscript click New.. (or Edit... when it already exists) enter the
name of the region add equation: GET XLS SUBSCRIPT(’name of datafile’, ’name of
sheet ’ , ’named range of countries’ , ” )

– Vensim now automatically creates a subrange containing the countries in the se-
lected cells. Repeat this process for each region.

– Example: GET XLS SUBSCRIPT(’Data.xlsx’, ’Country Data’ , ’A2’ , ’A218’ , ” )

• Step 3: Mapping the regions onto the subranges

– The regions are now defined as subranges of country. However, suppose we have a
value for a variable for an entire region [e.g. sheep birth rate is the same throughout
each region], we must first create another subscript range called regions.

– We retrieve the regions from the Excel-sheet and map them onto the subranges
of country like follows: GET XLS SUBSCRIPT(’name of datafile’, ’name of sheet ’ ,
’named range of regions’ , ”specify a prefix” ) -> (subcript countries: ’region subrange
1’, ’region subrange 2’, ’...’ )

– Example: GET XLS SUBSCRIPT(’Data.xlsx’, ’Regional Data’ , ’A2’ , ’A8’ , ’region’
) -> (country: ”East Asia and Pacific”,”Europe and Central Asia”,”Latin America
and Caribbean”,”Middle East and North Africa”, North America , South Asia ,”Sub
Saharan Africa”)

• Step 4: Defining the variables

– Now, to define a variable for an entire region, use the subscript range [region], and
to define a variable on country level, use [country].
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66 B. Subscript Mapping

• Step 5: Multiple subranges

– If multiple subranges exist, for instance origin and reception countries, a separate
regional subrange needs to be mapped on each corresponding subrange. If this is
done correctly, Vensim can make the distinction between these subranges.

– Example:
– Example: GET XLS SUBSCRIPT(’Data.xlsx’, ’Regional Data’ , ’A2’ , ’A8’ , ’region’
) -> (countries: ”East Asia and Pacific”,”Europe and Central Asia”,”Latin America
and Caribbean”,”Middle East and North Africa”, North America , South Asia ,”Sub
Saharan Africa”)

– Example: GET XLS SUBSCRIPT(’Data.xlsx’, ’Regional Data’ , ’A2’ , ’A8’ , ’recep-
tionregion’ ) -> (receptioncountries: ”East Asia and Pacific”,”Europe and Central
Asia”,”Latin America and Caribbean”,”Middle East and North Africa”, North Amer-
ica , South Asia ,”Sub Saharan Africa”)
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Uncertainties and Policies
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68 C. Uncertainties and Policies

Variable Lower Range Upper Range
pc of pop atR of conflict violence 0.2 0.95
pc of pop at risk of oppression 0.25 0.95
pop atRd2 conflict violence willing2 migrate 0.2 0.8
pc pop atR of oppression willing2 migrate 0.1 0.6
pc pop atRd2 disasters willing2 migrate 0.1 0.6
pc pop atRd2 economic or food scarcity willing2 migrate 0.1 0.6
pc pop atR of oppression willing2 migrate 0.1 0.6
fraction of popRd2 conflict violence RWA to migrate trying per year 0.1 0.6
pc overlap in pop atR willing and able2 migrate due to conflict and oppression 0.1 0.8
pc pop atR of conflict violence fysically and financially able to migrate faraway 0.05 0.65
pc pop atR of conflict violence oppression NOT even able to migrate to other country in region 0.05 0.6
pc pop atRd2 economic or food scarcity fysically and financially able to migrate faraway 0.05 0.75
fr extra autonomous development exposure 0.001 0.1
fraction of population able to afford advanced transportation high income 0.9 1
fraction of population able to afford advanced transportation upper middle income 0.4 0.7
fraction of population able to afford advanced transportation lower middle income 0.1 0.4
fraction of population able to afford advanced transportation low income 0 0.2
birth rate scale factor high income 0.5 1.5
birth rate scale factor upper middle income 0.5 1.5
birth rate scale factor lower middle income 0.5 1.5
birth rate scale factor low income 0.5 1.5
death rate scale factor high income 0.5 1.5
death rate scale factor upper middle income 0.5 1.5
death rate scale factor lower middle income 0.5 1.5
death rate scale factor low income 0.5 1.5
migration rate scale factor high income 0.2 1.1
migration rate scale factor upper middle income 0.2 1.1
migration rate scale factor lower middle income 0.2 1.1
migration rate scale factor low income 0.2 1.1
naturalization rate scale factor high income 0.001 0.02
naturalization rate scale factor upper middle income 0.001 0.02
naturalization rate scale factor lower middle income 0.001 0.02
naturalization rate scale factor low income 0.001 0.02
societal stress influence factor 1 10
societal stress threshold pc 0.4 0.9
transit weight 1 10
residence weight 1 10
interregion migration factor 0.5 5
migrant coping capacity growth rate per country scale factor 0.01 0.6
pc of current coping capacity scale factor 0.3 0.9
forward migration rate scale factor 0.1 0.9
fraction of migrants applying in most attractive country scale factor 0.3 1
close EU borders threshold 50000000 100000000

Table C.1: Overview of the uncertainty space for the model.

Policy None Low High LowHigh
SWITCH low income shelter increase policy 0 1 0 1
SWITCH high income shelter increase policy 0 0 1 1

Table C.2: Overview of global policy model settings.

Policy None EU
SWITCH close borders EU 0 1

Table C.3: Overview of regional policy model settings.

Policy None Stress Coping Forward
forward migration rate Netherlands 0.01 0.01 0.01 0.9
migrant coping capacity growth rate Netherlands 0 0 0.1 0
manage societal stress Netherlands 1 0.2 1 1

Table C.4: Overview of national policy model settings.
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01 - Country Names Database

August 15, 2018

1 Notebook 1 - Country Names Database

@author: Stefan Wigman, 2018

1.1 1.1 - Introduction

This notebook converts the country name database that was generated in the R script * Convert-
ForLoop.R to a directly importable CSV-file for Python. This CSV-file can then be imported as a dictio-
nary* in future Python notebooks.

1.2 1.2 - Importing the required Python packages

This notebook uses the Python packages Pandas, and csv.

In [1]: import pandas as pd
import csv

1.3 1.3 - Importing the Country Name Database

The first step is to import the ’alternative name’ database to a Pandas DataFrame:

In [2]: country_name_database = pd.read_csv("processed_data/CountryCodes/codelist.csv")

In [3]: country_name_database.head()

Out[3]: ar5 continent country.name.de country.name.de.regex \
1 ASIA Asia Afghanistan afghan
2 OECD1990 Europe Aland Islands åland
3 EIT Europe Albanien albanien
4 MAF Africa Algerien algerien
5 ASIA Oceania Amerikanisch-Samoa ˆ(?=.*amerik).*samoa

country.name.en country.name.en.regex cow.name cowc cown ecb \
1 Afghanistan afghan Afghanistan AFG 700.0 AF
2 Åland Islands åland NaN NaN NaN NaN
3 Albania albania Albania ALB 339.0 AL
4 Algeria algeria Algeria ALG 615.0 DZ
5 American Samoa ˆ(?=.*americ).*samoa NaN NaN NaN AS
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... cldr.variant.yav cldr.variant.yi \
1 ... Afkanistá
2 ... AX AX
3 ... Alpaní
4 ... Alselí DZ
5 ... Sámua u Amelíka AS

cldr.variant.yo cldr.variant.yo_bj \
1 Orílède Àfùgànístánì Orílède Àfùgànístánì
2 AX AX
3 Orílède Àlùbàníánì Orílède Àlùbàníánì
4 Orílède Àlùgèríánì Orílède Àlùgèríánì
5 Sámóánì ti Orílède Àméríkà Sámóánì ti Orílède Àméríkà

cldr.variant.yue cldr.variant.zgh cldr.variant.zh cldr.variant.zh_hant \
1
2 AX
3
4
5

cldr.variant.zh_hant_hk cldr.variant.zu
1 i-Afghanistan
2 i-Åland Islands
3 i-Albania
4 i-Algeria
5 i-American Samoa

[5 rows x 677 columns]

Each row in the resulting dataframe corresponds to a country. The dataframe has 677 columns,
which means that for each country, there are 677 alternative names. Apparently it also contains
more general information, such as ’continent’ and ’ar5’. These should be filtered out at some point.

1.4 1.4 Database: Conversion to Dictionary

In order to efficiently convert alternative country names into the ’generic’ country names used in
this model, a dictionary will have to be generated. To this extent, we first convert the country
name database to a dictionary of dictionaries:

In [4]: country_name_dic = country_name_database.to_dict('index')

Each country now has a dictionary of its own with all alternative names for that country:

In [5]: country_name_dic[167].values()

Out[5]: dict_values(['OECD1990', 'Europe', 'Niederlande', 'niederlande', 'Netherlands', 'ˆ(?!.*\\bant)(?!.*\\bcarib).*netherlands', 'Netherlands', 'NTH', 210.0, 'NL', 'Netherlands', 'EU', 'Eurocontrol', 'ESRA North-West', 'NL', 'Netherlands', 150.0, 'the Netherlands', 'NL', 'NETHERLANDS', 177.0, 'NETHERLANDS', 'NL', 'NLD', 528.0, 'EH', 'E', 138.0, 'NED', 'Netherlands', 'Netherlands (the)', 'Pays-Bas (les)', 'NL', 'NLD', 528.0, 'Netherlands', 'NTH', 210.0, 'Western Europe', 528.0, '', 'Netherlands', 'Países Bajos', 'Pays-Bas', '', '', 528.0, 'Netherlands', 'NLD', 'Netherlands', 'NL', 'NLD', 'Netherlands', 528.0, 'Netherlands', 'Nederland', 'Nedàlân', 'Ndland', '', '', '', '', 'NL', 'Uholandhi', 'Países Baxos', 'Niderland', '', 'lndi', '', 'NL', 'Huuholanzi', '', 'Peyiba', '', '', 'NL', 'Izelvroioù', '', 'Holandija', '', 'Països Baixos', '', 'Hoorandi', '', '', 'Nizozemsko', 'NL', 'Yr Iseldiroedd', 'Holland', 'Uholanzi', 'Niederlande', 'Niederlande', 'Niederlande', 'Hollandu', 'Niozemska', 'NL', 'NL', '', 'Netherlands nutome', '', 'Netherlands', 'Nederlando', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Holland', 'Herbehereak', 'Píbá', '', '', 'Nederlannda', 'Alankomaat', 'Netherlands', 'Niðurlond', 'Pays-Bas', 'Pays-Bas', 'Pays-Bas', 'Paîs bas', 'Nederlân', 'An Ísiltír', 'Na Tìrean Ìsle', 'Países Baixos', 'Holland', '', 'NL', 'Holan', 'Hlani', '', '', 'Nizozemska', 'Niozemska', 'Hollandia', '', 'Belanda', 'NL', 'NL', 'Holland', 'Paesi Bassi', '', 'NL', '', 'Timura-Yessakesren', 'Uholanzi', 'Uholanzi', 'Olanda', 'Hollandu', 'Uholanzi', '', 'NL', 'NL', 'Emetab Holand', '', '\u200c', '', '', 'NL', '', 'Uholanzi', 'kl k áz', 'de Nederläng', 'NL', '', 'holáanzi', 'Holland', 'Holandi', 'NL', 'Oland', '', 'NL', 'Nyderlandai', 'Oland', 'Netherlands', 'Uholanzi', 'Nderlande', 'Uholanzi', 'Holandi', 'Oland', 'Holanda', 'NL', 'NL', '', '\u200c', '', '', 'Belanda', 'in-Netherlands', 'Sr ma kas', '', '', 'Netherlands', 'Nederland', 'Netherlands', '', 'Nederland', 'Nedrland', 'Nederland', 'NL', 'NL', 'Hoorandi', 'NL', '', 'NL', '', 'NL', 'Holandia', '', 'Holanda', 'Países Baixos', 'Países Bajos', 'Pajais Bass', 'Ubuholandi', 'rile de Jos', 'rile de Jos', 'Uholanzi', '', '', 'NL', 'NL', 'Wuholansi', 'Vuolleeatnamat', 'Vuolleeatnamat', 'Holanda', 'Holände', '', 'hulanda', '', 'Holandsko', 'Nizozemska', 'Vuáládâhenâmeh', 'Netherlands', 'Netherlands', 'Holandë', '', '', '', '', 'Holandija', 'Holandija', 'Holandija', 'Holandija', 'Nederländerna', 'Uholanzi', 'Uholanzi', 'Uholanzi', '', '', 'Uholanzi', '', 'Hlani', 'Hollanda', 'Hollandu', 'Hulana', '', '', ' ', ' ', 'Niderlandiya', 'NL', '', ' ', 'Nidl', 'Hà Lan', 'Holand', 'Holandi', 'nitililáand', '', 'Orílède Nedalandi', 'Orílède Nedalandi', '', '', '', '', '', 'i-Netherlands', 'Nederland', 'Nedàlân', 'Ndland', '', '', '', '', 'NL', 'Uholandhi', 'Países Baxos', 'Niderland', '', 'lndi', '', 'Huuholanzi', '', 'Peyiba', '', '', 'NL', 'Izelvroioù', '', 'Holandija', '', 'Països Baixos', '', 'Hoorandi', '', '', 'Nizozemsko', 'Yr Iseldiroedd', 'Holland', 'Uholanzi', 'Niederlande', 'Niederlande', 'Niederlande', 'Hollandu', 'Niozemska', '', 'Netherlands nutome', '', 'Netherlands', 'Nederlando', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Holland', 'Herbehereak', 'Píbá', '', '', 'Nederlannda', 'Alankomaat', 'Netherlands', 'Niðurlond', 'Pays-Bas', 'Pays-Bas', 'Pays-Bas', 'Paîs bas', 'Nederlân', 'An Ísiltír', 'Na Tìrean Ìsle', 'Países Baixos', 'Holland', '', 'NL', 'Holan', 'Hlani', '', '', 'Nizozemska', 'Niozemska', 'Hollandia', '', 'Belanda', 'NL', 'Holland', 'Paesi Bassi', '', '', 'Timura-Yessakesren', 'Uholanzi', 'Uholanzi', 'Olanda', 'Hollandu', 'Uholanzi', '', 'Emetab Holand', '', '\u200c', '', '', '', 'Uholanzi', 'kl k áz', 'de Nederläng', '', 'holáanzi', 'Holland', 'Holandi', 'NL', 'Oland', '', 'NL', 'Nyderlandai', 'Oland', 'Netherlands', 'Uholanzi', 'Nderlande', 'Uholanzi', 'Holandi', 'Oland', 'Holanda', 'NL', '', '\u200c', '', '', 'Belanda', 'in-Netherlands', 'Sr ma kas', '', '', 'Netherlands', 'Nederland', 'Netherlands', '', 'Nederland', 'Nedrland', 'Nederland', 'Hoorandi', 'NL', '', 'NL', '', 'Holandia', '', 'Holanda', 'Países Baixos', 'Países Bajos', 'Pajais Bass', 'Ubuholandi', 'rile de Jos', 'rile de Jos', 'Uholanzi', '', '', 'NL', 'Wuholansi', 'Vuolleeatnamat', 'Vuolleeatnamat', 'Holanda', 'Holände', '', 'hulanda', '', 'Holandsko', 'Nizozemska', 'Vuáládâhenâmeh', 'Netherlands', 'Netherlands', 'Holandë', '', '', '', '', 'Holandija', 'Holandija', 'Holandija', 'Holandija', 'Nederländerna', 'Uholanzi', 'Uholanzi', 'Uholanzi', '', '', 'Uholanzi', '', 'Hlani', 'Hollanda', 'Hollandu', 'Hulana', '', '', ' ', ' ', 'Niderlandiya', '', ' ', 'Nidl', 'Hà Lan', 'Holand', 'Holandi', 'nitililáand', '', 'Orílède Nedalandi', 'Orílède Nedalandi', '', '', '', '', '', 'i-Netherlands', 'Nederland', 'Nedàlân', 'Ndland', '', '', '', '', '', 'Uholandhi', 'Países Baxos', 'Niderland', '', 'lndi', '', 'Huuholanzi', '', 'Peyiba', '', '', 'Izelvroioù', '', 'Holandija', '', 'Països Baixos', '', 'Hoorandi', '', '', 'Nizozemsko', 'Yr Iseldiroedd', 'Holland', 'Uholanzi', 'Niederlande', 'Niederlande', 'Niederlande', 'Hollandu', 'Niozemska', 'NL', '', 'Netherlands nutome', '', 'Netherlands', 'Nederlando', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Países Bajos', 'Holland', 'Herbehereak', 'Píbá', '', '', 'Nederlannda', 'Alankomaat', 'Netherlands', 'Niðurlond', 'Pays-Bas', 'Pays-Bas', 'Pays-Bas', 'Paîs bas', 'Nederlân', 'An Ísiltír', 'Na Tìrean Ìsle', 'Países Baixos', 'Holland', '', 'Holan', '', '', 'Nizozemska', 'Niozemska', 'Hollandia', '', 'Belanda', 'Holland', 'Paesi Bassi', '', 'NL', '', 'Timura-Yessakesren', 'Uholanzi', 'Uholanzi', 'Olanda', 'Hollandu', 'Uholanzi', '', 'Emetab Holand', '', '\u200c', '', '', '', 'Uholanzi', 'kl k áz', 'de Nederläng', '', 'holáanzi', 'Holland', 'Holandi', 'Oland', '', 'Nyderlandai', 'Oland', 'Netherlands', 'Uholanzi', 'Nderlande', 'Uholanzi', 'Holandi', 'Oland', 'Holanda', 'NL', '', '\u200c', '', '', 'Belanda', 'in-Netherlands', 'Sr ma kas', '', '', 'Netherlands', 'Nederland', 'Netherlands', '', 'Nederland', 'Nedrland', 'Nederland', 'NL', 'Hoorandi', '', '', 'Holandia', 'Holanda', 'Países Baixos', 'Países Bajos', 'Pajais Bass', 'Ubuholandi', 'rile de Jos', 'rile de Jos', 'Uholanzi', '', '', 'Wuholansi', 'Vuolleeatnamat', 'Vuolleeatnamat', 'Holanda', 'Holände', '', 'hulanda', '', 'Holandsko', 'Nizozemska', 'Vuáládâhenâmeh', 'Netherlands', 'Netherlands', 'Holandë', '', '', '', '', 'Holandija', 'Holandija', 'Holandija', 'Holandija', 'Nederländerna', 'Uholanzi', 'Uholanzi', 'Uholanzi', '', '', 'Uholanzi', '', 'Hlani', 'Hollanda', 'Hollandu', 'Hulana', '', '', ' ', ' ', 'Niderlandiya', '', ' ', 'Nidl', 'Hà Lan', 'Holand', 'Holandi', 'nitililáand', '', 'Orílède Nedalandi', 'Orílède Nedalandi', '', '', '', '', '', 'i-Netherlands'])
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In [6]: len(country_name_dic)

Out[6]: 272

In [7]: len(country_name_dic[1])

Out[7]: 677

The dictionary of dictionaries now contains 272 countries with 677 alternative names. However,
as mentioned earlier, some alternative names direct towards regions or organizations that coun-
tries are part of. These entries have been listed below, as the result of a Trial and Error approach.

In [8]: not_country_names = [
'continent',
'eurocontrol_pru',
'eurocontrol_statfor',
'region',
'ar5',
'icao_region',
'eu28',
# 'icao',
# 'ecb',
# 'fips',
]

In addition, a generic country name list should be selected to convert the country names to.
We’ll go with the country name in English:

In [9]: generic_name = 'country.name.en'

The code below converts the dictionary of dictionaries to a single dictionary that translates all
alternative names to the generic country name given above. Whenever it finds a conflicting entry
(that is, a name or abbrevation is already in the dictionary), it assesses whether the given alterna-
tive name should direct to multiple countries. If so, it adds it to the dictionary entry in the format
"MANUAL: Country X or Country Y".

In [10]: complete_dic = {}
counter = 0
for key in country_name_dic.keys():

country_dic = country_name_dic[key]
for key2 in country_dic.keys():

if (type(country_dic[key2]) == str
and key2 not in not_country_names

):
if country_dic[key2] in complete_dic and complete_dic[country_dic[key2]]!=country_dic[generic_name]:

old_country = complete_dic[country_dic[key2]]
new_country = country_dic[generic_name]
counter += 1
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if new_country in old_country:
counter -= 1
continue

elif 'MANUAL:' in old_country:
complete_dic[country_dic[key2]] = old_country + ' or ' + new_country

else:
complete_dic[country_dic[key2]] = "MANUAL: "+ old_country + ' or ' + new_country

print(counter, country_dic[key2], complete_dic[country_dic[key2]], '('+ key2 +')')
else:

complete_dic[country_dic[key2]] =country_dic[generic_name]

else:
continue

print("There are", counter, "alternative country names with multiple options.")
print("This is", round(counter/len(complete_dic)*100, 2), "%.")
print("Size of database:", len(complete_dic), "entries")

1 AQ MANUAL: American Samoa or Antarctica (ecb)
2 AG MANUAL: Algeria or Antigua & Barbuda (ecb)
3 AS MANUAL: American Samoa or Australia (fips)
4 AUS MANUAL: Australia or Austria (cowc)
5 AU MANUAL: Australia or Austria (fips)
6 BAH MANUAL: Bahamas or Bahrain (cowc)
7 BH MANUAL: Bahrain or Belize (fips)
8 BD MANUAL: Bangladesh or Bermuda (fips)
9 BO MANUAL: Belarus or Bolivia (ecb)
10 TN MANUAL: Aruba or Caribbean Netherlands (icao)
11 BA MANUAL: Bahrain or Bosnia & Herzegovina (ecb)
12 BN MANUAL: Benin or Brunei (ecb)
13 BRN MANUAL: Bahrain or Brunei (genc3c)
14 BG MANUAL: Bangladesh or Bulgaria (ecb)
15 BF MANUAL: Bahamas or Burkina Faso (ecb)
16 BY MANUAL: Belarus or Burundi (fips)
17 CHI MANUAL: Channel Islands or Chile (ioc)
18 Y MANUAL: Australia or Christmas Island (icao)
19 Y MANUAL: Australia or Christmas Island or Cocos (Keeling) Islands (icao)
20 CN MANUAL: China or Comoros (fips)
21 CF MANUAL: Central African Republic or Congo - Brazzaville (fips)
22 CK MANUAL: Cocos (Keeling) Islands or Cook Islands (ecb)
23 CI MANUAL: Chile or Côte dIvoire (ecb)
24 CW MANUAL: Cook Islands or Curaçao (ecb)
25 TN MANUAL: Aruba or Caribbean Netherlands or Curaçao (icao)
26 CZE MANUAL: Czechoslovakia or Czechia (genc3c)
27 CD MANUAL: Chad or Congo - Kinshasa (ecb)
28 CG MANUAL: Congo - Brazzaville or Congo - Kinshasa (fips)
29 MANUAL: Congo - Brazzaville or Congo - Kinshasa (cldr.name.kk)
30 DA MANUAL: Algeria or Denmark (fips)
31 TD MANUAL: Chad or Dominica (icao)
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32 DO MANUAL: Dominica or Dominican Republic (ecb)
33 EK MANUAL: Denmark or Equatorial Guinea (fips)
34 FK MANUAL: Cameroon or Falkland Islands (ecb)
35 EK MANUAL: Denmark or Equatorial Guinea or Faroe Islands (icao)
36 EF MANUAL: Åland Islands or Finland (icao)
37 FG MANUAL: Equatorial Guinea or French Guiana (fips)
38 FO MANUAL: Faroe Islands or Gabon (icao)
39 GA MANUAL: Gabon or Gambia (fips)
40 GB MANUAL: Gabon or Gambia (icao)
41 ET MANUAL: Ethiopia or German Democratic Republic (icao)
42 GM MANUAL: Gambia or Germany (fips)
43 BG MANUAL: Bangladesh or Bulgaria or Greenland (icao)
44 TF MANUAL: French Southern Territories or Guadeloupe (icao)
45 GQ MANUAL: Equatorial Guinea or Guam (fips)
46 GG MANUAL: Georgia or Guernsey (ecb)
47 EG MANUAL: Egypt or Guernsey (icao)
48 GV MANUAL: Cape Verde or Guinea (fips)
49 GU MANUAL: Guam or Guinea (icao)
50 GG MANUAL: Georgia or Guernsey or Guinea-Bissau (icao)
51 HA MANUAL: Ethiopia or Haiti (fips)
52 BI MANUAL: Burundi or Iceland (icao)
53 EG MANUAL: Egypt or Guernsey or Isle of Man (icao)
54 IS MANUAL: Iceland or Israel (fips)
55 EG MANUAL: Egypt or Guernsey or Isle of Man or Jersey (icao)
56 HK MANUAL: Hong Kong SAR China or Kenya (icao)
57 UA MANUAL: Kazakhstan or Kyrgyzstan (icao)
58 LA MANUAL: Albania or Laos (ecb)
59 LG MANUAL: Greece or Latvia (fips)
60 LB MANUAL: Bulgaria or Lebanon (ecb)
61 LI MANUAL: Italy or Liberia (fips)
62 GL MANUAL: Greenland or Liberia (icao)
63 LI MANUAL: Italy or Liberia or Liechtenstein (ecb)
64 LS MANUAL: Lesotho or Liechtenstein (fips)
65 LT MANUAL: Lesotho or Lithuania (ecb)
66 LH MANUAL: Hungary or Lithuania (fips)
67 MANUAL: Latvia or Lithuania (cldr.name.mzn)
68 EL MANUAL: Greece or Luxembourg (icao)
69 MG MANUAL: Guatemala or Madagascar (ecb)
70 FM MANUAL: Comoros or Madagascar (icao)
71 MW MANUAL: Cayman Islands or Malawi (ecb)
72 MY MANUAL: Bahamas or Malaysia (ecb)
73 MAD MANUAL: Madagascar or Maldives (cowc)
74 GA MANUAL: Gabon or Gambia or Mali (icao)
75 MT MANUAL: Haiti or Malta (ecb)
76 MH MANUAL: Honduras or Marshall Islands (ecb)
77 TF MANUAL: French Southern Territories or Guadeloupe or Martinique (icao)
78 MR MANUAL: Costa Rica or Mauritania (ecb)
79 GQ MANUAL: Equatorial Guinea or Guam or Mauritania (icao)
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80 MAS MANUAL: Malaysia or Mauritius (cowc)
81 MU MANUAL: Cuba or Mauritius (ecb)
82 FI MANUAL: Finland or Mauritius (icao)
83 FM MANUAL: Comoros or Madagascar or Mayotte (icao)
84 FM MANUAL: Comoros or Madagascar or Mayotte or Micronesia (Federated States of) (ecb)
85 MC MANUAL: Macau SAR China or Monaco (ecb)
86 MON MANUAL: Monaco or Mongolia (cowc)
87 MN MANUAL: Monaco or Mongolia (ecb)
88 MG MANUAL: Guatemala or Madagascar or Mongolia (fips)
89 MNG MANUAL: Mongolia or Montenegro (cowc)
90 LY MANUAL: Libya or Montenegro (icao)
91 MS MANUAL: El Salvador or Montserrat (ecb)
92 MH MANUAL: Honduras or Marshall Islands or Montserrat (fips)
93 MA MANUAL: Madagascar or Morocco (ecb)
94 MO MANUAL: Macau SAR China or Morocco (fips)
95 GM MANUAL: Gambia or Germany or Morocco (icao)
96 MZ MANUAL: Belize or Mozambique (ecb)
97 MM MANUAL: Mexico or Myanmar (Burma) (ecb)
98 BM MANUAL: Bermuda or Myanmar (Burma) (fips)
99 AN MANUAL: Andorra or Nauru (icao)
100 AN MANUAL: Andorra or Nauru or Netherlands Antilles (ecb)
101 NT MANUAL: French Polynesia or Netherlands Antilles (fips)
102 TN MANUAL: Aruba or Caribbean Netherlands or Curaçao or Netherlands Antilles (icao)
103 NC MANUAL: Cook Islands or New Caledonia (ecb)
104 MN MANUAL: Monaco or Mongolia or Nicaragua (icao)
105 NG MANUAL: Kiribati or Niger (fips)
106 DR MANUAL: Dominican Republic or Niger (icao)
107 NIG MANUAL: Niger or Nigeria (cowc)
108 NG MANUAL: Kiribati or Niger or Nigeria (ecb)
109 NI MANUAL: Nicaragua or Nigeria (fips)
110 Nigeri MANUAL: Niger or Nigeria (cldr.name.sq)
111 NU MANUAL: Nicaragua or Niue (ecb)
112 NE MANUAL: Niger or Niue (fips)
113 NI MANUAL: Nicaragua or Nigeria or Niue (icao)
114 NF MANUAL: Fiji or Norfolk Island (ecb)
115 Y MANUAL: Australia or Christmas Island or Cocos (Keeling) Islands or Norfolk Island (icao)
116 MP MANUAL: Mauritius or Northern Mariana Islands (ecb)
117 PG MANUAL: Guam or Northern Mariana Islands (icao)
118 EN MANUAL: Estonia or Norway (icao)
119 MU MANUAL: Cuba or Mauritius or Oman (fips)
120 PK MANUAL: Marshall Islands or Pakistan (ecb)
121 PT MANUAL: Micronesia (Federated States of) or Palau (icao)
122 PS MANUAL: Palau or Palestinian Territories (ecb)
123 LV MANUAL: Latvia or Palestinian Territories (icao)
124 MP MANUAL: Mauritius or Northern Mariana Islands or Panama (icao)
125 PG MANUAL: Guam or Northern Mariana Islands or Papua New Guinea (ecb)
126 AY MANUAL: Antarctica or Papua New Guinea (icao)
127 PA MANUAL: Panama or Paraguay (fips)
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128 PT MANUAL: Micronesia (Federated States of) or Palau or Portugal (ecb)
129 KR MANUAL: Kiribati or South Korea (ecb)
130 MD MANUAL: Dominican Republic or Moldova (ecb)
131 LU MANUAL: Luxembourg or Moldova (icao)
132 FM MANUAL: Comoros or Madagascar or Mayotte or Micronesia (Federated States of) or Réunion (icao)
133 LR MANUAL: Liberia or Romania (icao)
134 HR MANUAL: Croatia or Rwanda (icao)
135 BL MANUAL: Bolivia or St. Barthélemy (ecb)
136 TB MANUAL: Barbados or St. Barthélemy (fips)
137 TF MANUAL: French Southern Territories or Guadeloupe or Martinique or St. Barthélemy (icao)
138 KN MANUAL: North Korea or St. Kitts & Nevis (ecb)
139 LC MANUAL: Cyprus or St. Lucia (ecb)
140 MF MANUAL: Mayotte or Saint Martin (French part) (ecb)
141 TF MANUAL: French Southern Territories or Guadeloupe or Martinique or St. Barthélemy or Saint Martin (French part) (icao)
142 PM MANUAL: Panama or St. Pierre & Miquelon (ecb)
143 LF MANUAL: France or St. Pierre & Miquelon (icao)
144 ST MANUAL: St. Lucia or São Tomé & Príncipe (ecb)
145 FP MANUAL: French Polynesia or São Tomé & Príncipe (icao)
146 SA MANUAL: Argentina or Saudi Arabia (ecb)
147 SG MANUAL: Paraguay or Senegal (fips)
148 RS MANUAL: Russia or Serbia (ecb)
149 LY MANUAL: Libya or Montenegro or Serbia (icao)
150 SC MANUAL: St. Kitts & Nevis or Seychelles (ecb)
151 SE MANUAL: Ecuador or Seychelles (fips)
152 FS MANUAL: French Southern Territories or Seychelles (icao)
153 SL MANUAL: Bolivia or Sierra Leone (ecb)
154 GF MANUAL: French Guiana or Sierra Leone (icao)
155 SG MANUAL: Paraguay or Senegal or Singapore (ecb)
156 SN MANUAL: Senegal or Singapore (fips)
157 WS MANUAL: Samoa or Singapore (icao)
158 TN MANUAL: Aruba or Caribbean Netherlands or Curaçao or Netherlands Antilles or Sint Maarten (icao)
159 SK MANUAL: Colombia or Slovakia (ecb)
160 LO MANUAL: Austria or Slovakia (fips)
161 SLV MANUAL: El Salvador or Slovenia (cowc)
162 SLO MANUAL: Slovakia or Slovenia (ioc)
163 SB MANUAL: St. Pierre & Miquelon or Solomon Islands (ecb)
164 AG MANUAL: Algeria or Antigua & Barbuda or Solomon Islands (icao)
165 SO MANUAL: French Guiana or Somalia (ecb)
166 SF MANUAL: Falkland Islands or South Africa (fips)
167 SX MANUAL: Sint Maarten or South Georgia & South Sandwich Islands (fips)
168 ES MANUAL: El Salvador or Spain (ecb)
169 SP MANUAL: Peru or Spain (fips)
170 LE MANUAL: Lebanon or Spain (icao)
171 LK MANUAL: Czechia or Sri Lanka (ecb)
172 VC MANUAL: St. Vincent & Grenadines or Sri Lanka (icao)
173 NS MANUAL: American Samoa or Suriname (fips)
174 SM MANUAL: San Marino or Suriname (icao)
175 SV MANUAL: El Salvador or Svalbard & Jan Mayen (fips)
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176 EN MANUAL: Estonia or Norway or Svalbard & Jan Mayen (icao)
177 SE MANUAL: Ecuador or Seychelles or Sweden (ecb)
178 ES MANUAL: El Salvador or Spain or Sweden (icao)
179 SWZ MANUAL: Swaziland or Switzerland (cowc)
180 CH MANUAL: China or Switzerland (ecb)
181 SZ MANUAL: Swaziland or Switzerland (fips)
182 LS MANUAL: Lesotho or Liechtenstein or Switzerland (icao)
183 SY MANUAL: Guyana or Syria (ecb)
184 TJ MANUAL: Puerto Rico or Tajikistan (ecb)
185 VT MANUAL: Vatican City or Thailand (icao)
186 MAC MANUAL: Macau SAR China or Macedonia (cowc)
187 MK MANUAL: Jamaica or Macedonia (ecb)
188 TL MANUAL: St. Lucia or Timor-Leste (ecb)
189 TG MANUAL: Grenada or Togo (ecb)
190 TK MANUAL: St. Kitts & Nevis or Tokelau (ecb)
191 TL MANUAL: St. Lucia or Timor-Leste or Tokelau (fips)
192 TO MANUAL: Togo or Tonga (ecb)
193 TN MANUAL: Aruba or Caribbean Netherlands or Curaçao or Netherlands Antilles or Sint Maarten or Tonga (fips)
194 NF MANUAL: Fiji or Norfolk Island or Tonga (icao)
195 TT MANUAL: Timor-Leste or Trinidad & Tobago (ecb)
196 TD MANUAL: Chad or Dominica or Trinidad & Tobago (fips)
197 TN MANUAL: Aruba or Caribbean Netherlands or Curaçao or Netherlands Antilles or Sint Maarten or Tonga or Tunisia (ecb)
198 TR MANUAL: Montserrat or Turkey (ecb)
199 LT MANUAL: Lesotho or Lithuania or Turkey (icao)
200 TX MANUAL: Bermuda or Turkmenistan (fips)
201 UT MANUAL: Tajikistan or Turkmenistan (icao)
202 TK MANUAL: St. Kitts & Nevis or Tokelau or Turks & Caicos Islands (fips)
203 MB MANUAL: Martinique or Turks & Caicos Islands (icao)
204 TV MANUAL: St. Vincent & Grenadines or Tuvalu (ecb)
205 NG MANUAL: Kiribati or Niger or Nigeria or Tuvalu (icao)
206 UG MANUAL: Georgia or Uganda (ecb)
207 HU MANUAL: Hungary or Uganda (icao)
208 UA MANUAL: Kazakhstan or Kyrgyzstan or Ukraine (ecb)
209 OM MANUAL: Oman or United Arab Emirates (icao)
210 GB MANUAL: Gabon or Gambia or United Kingdom (ecb)
211 UK MANUAL: Ukraine or United Kingdom (eurostat)
212 EG MANUAL: Egypt or Guernsey or Isle of Man or Jersey or United Kingdom (icao)
213 BK MANUAL: Bosnia & Herzegovina or United Kingdom (cldr.short.az)
214 RU MANUAL: Russia or United Kingdom (cldr.short.br)
215 EB MANUAL: Belgium or United Kingdom (cldr.short.eu)
216 ZK MANUAL: North Korea or United Kingdom (cldr.short.sl)
217 OK MANUAL: Kuwait or United Kingdom (cldr.short.smn)
218 MB MANUAL: Martinique or Turks & Caicos Islands or United Kingdom (cldr.short.sq)
219 HT MANUAL: Haiti or Tanzania (icao)
220 SU MANUAL: Sudan or United States (cldr.short.br)
221 SAM MANUAL: Samoa or United States (cldr.short.ga)
222 SA MANUAL: Argentina or Saudi Arabia or United States (cldr.short.gd)
223 UM MANUAL: Belarus or United States Minor Outlying Islands (the) (ecb)
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224 SU MANUAL: Sudan or United States or Uruguay (icao)
225 UT MANUAL: Tajikistan or Turkmenistan or Uzbekistan (icao)
226 SV MANUAL: El Salvador or Svalbard & Jan Mayen or Venezuela (icao)
227 VN MANUAL: Nepal or Vietnam (ecb)
228 VM MANUAL: Macau SAR China or Vietnam (fips)
229 VG MANUAL: Bangladesh or British Virgin Islands (ecb)
230 TU MANUAL: Turkey or British Virgin Islands (icao)
231 VI MANUAL: British Virgin Islands or U.S. Virgin Islands (ecb)
232 VQ MANUAL: Bhutan or U.S. Virgin Islands (fips)
233 TI MANUAL: Tajikistan or U.S. Virgin Islands (icao)
234 NL MANUAL: Netherlands or Wallis & Futuna (icao)
235 EH MANUAL: Netherlands or Western Sahara (ecb)
236 GS MANUAL: South Georgia & South Sandwich Islands or Western Sahara (icao)
237 ZM MANUAL: Mongolia or Zambia (ecb)
238 ZA MANUAL: South Africa or Zambia (fips)
There are 238 alternative country names with multiple options.
This is 0.87 %.
Size of database: 27339 entries

The database now contains over 27,000 alternative country names! In addition, it is clear that
the conflicts mainly occur for two-letter and three-letter abbrevations. These will have to be as-
sessed manually.

Below is a list of manually added country conversions, that were not in the original database,
but proved to be necessary later on in the data preparation process.

In [11]: complete_dic['Libya']

Out[11]: 'Libya'

In [12]: complete_dic['DRV'] = 'Vietnam' # CoW
complete_dic["CÃťte d'Ivoire"]='Côte dIvoire' # WB
complete_dic["Korea, Dem. Peoples Rep."] = 'North Korea' # WB
complete_dic["Antigua And Barbuda"] = "Antigua & Barbuda" # CIA
complete_dic["Bosnia And Herzegovina"] = "Bosnia & Herzegovina" # CIA
complete_dic["Cote D'Ivoire"] = "Côte dIvoire" # CIA
complete_dic["Congo, Republic Of The"] = "Congo - Brazzaville" # CIA
complete_dic["Congo, Democratic Republic Of The"] = "Congo - Kinshasa" # CIA
complete_dic["Micronesia, Federated States Of"] = "Micronesia (Federated States of)" # CIA
complete_dic["Saint Kitts And Nevis"] = "St. Kitts & Nevis" # CIA
complete_dic["Saint Vincent And The Grenadines"] = "St. Vincent & Grenadines" # CIA
complete_dic["Sao Tome And Principe"] = "São Tomé & Príncipe" # CIA
complete_dic["Trinidad And Tobago"] = "Trinidad & Tobago" # CIA
complete_dic["Holy See (Vatican City)"] = "Vatican City" # CIA
complete_dic["Isle Of Man"] = "Isle of Man" # CIA
complete_dic["Turks And Caicos Islands"] = "Turks & Caicos Islands" # CIA
complete_dic["Saint Helena, Ascension, And Tristan Da Cunha"] = "St. Helena" # CIA
complete_dic["Saint Martin"] = "Sint Maarten" # CIA
complete_dic["Wallis And Futuna"] = "Wallis & Futuna" # CIA

9



complete_dic["Congo Democratic Republic"] = "Congo - Kinshasa" # FSI
complete_dic["Congo Republic"] = "Congo - Brazzaville" # FSI
complete_dic["Israel and West Bank"] = "Israel" # FSI
complete_dic["Micronesia"] = "Micronesia (Federated States of)" # FSI

complete_dic["Congo (Kinshasa)"] = "Congo - Kinshasa" # FSI
complete_dic["Congo (Brazzaville)"] = "Congo - Brazzaville" # FSI
complete_dic["The Gambia"] = 'Gambia' # FSI

complete_dic["Congo, DRC"] = 'Congo - Kinshasa' # Road Crossings
complete_dic["West Bank"] = "Palestinian Territories" # Road Crossings
complete_dic["Gaza Strip"] = "Palestinian Territories" # Road Crossings

complete_dic['Libyan Arab Jamahiriya'] = 'Libya' # World Risk Index

complete_dic['The Bahamas'] = 'Bahamas'
complete_dic['French Southern and Antarctic Lands'] = 'French Southern Territories'
complete_dic['Republic of the Congo'] = "Congo - Brazzaville"
complete_dic['Republic of Serbia'] = 'Serbia'

complete_dic["Cote d Ivoire"] = "Côte dIvoire"
complete_dic["Congo Republic"] = "Congo - Brazzaville"
complete_dic["Congo Democratic Republic"] = "Congo - Kinshasa"
complete_dic["Micronesia"] = "Micronesia (Federated States of)"
complete_dic['Bahamas The'] = 'Bahamas'
complete_dic['Macedonia FYR'] = 'Macedonia'
complete_dic['Korea Republic'] = 'South Korea'
complete_dic['Korea DPR'] = 'North Korea'
complete_dic['Macao SAR China'] = 'Macao SAR China'
complete_dic['St Lucia'] = 'St. Lucia'
complete_dic['St Kitts and Nevis'] = 'St. Kitts & Nevis'
# complete_dic[""] = ""

A significant number of conflicting entries involved the Correlates of War abbrevations. Since
this is a key dataset in this study, it is probably worthwile to create a dictionary specifically for
this dataset.

In [13]: cow_entries = [
'cow.name',
'cowc',
'cown'
]

In [14]: cow_dic = {}
for key in country_name_dic.keys():

country_dic = country_name_dic[key]
for key2 in country_dic.keys():

if (type(country_dic[key2]) == str
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and (key2 in cow_entries
)):
if country_dic[key2] in cow_dic and cow_dic[country_dic[key2]]!=country_dic['country.name.en']:

print(country_dic[key2], 'is already in the dictionary.')
print(key, key2, cow_dic[country_dic[key2]], country_dic[key2])

cow_dic[country_dic[key2]]=country_dic['country.name.en']
else:

continue

There is one abbrevation missing in this dictionary, so we add Vietnam manually:

In [15]: cow_dic['DRV'] = 'Vietnam'

In [16]: iso2_entry = ['iso2c']

In [17]: iso2_dic = {}
for key in country_name_dic.keys():

country_dic = country_name_dic[key]
for key2 in country_dic.keys():

if (type(country_dic[key2]) == str
and (key2 in iso2_entry

)):
if country_dic[key2] in iso2_dic and iso2_dic[country_dic[key2]]!=country_dic['country.name.en']:

print(country_dic[key2], 'is already in the dictionary.')
print(key, key2, iso2_dic[country_dic[key2]], country_dic[key2])

iso2_dic[country_dic[key2]]=country_dic['country.name.en']
else:

continue

1.5 1.5 Saving the Dictionaries to CSV

Now all that’s left is to save the dictionaries to csv files for later use.

In [18]: with open('processed_data/cow_name_dic.csv', 'w') as output_file:
fieldnames = ['cow', 'name']
dict_writer = csv.DictWriter(output_file, fieldnames)
dict_writer.writeheader()
data = [dict(zip(fieldnames, [k, v])) for k, v in cow_dic.items()]
dict_writer.writerows(data)

In [19]: with open('processed_data/country_name_dic.csv', 'w') as output_file:
fieldnames = ['alt_name', 'name']
dict_writer = csv.DictWriter(output_file, fieldnames)
dict_writer.writeheader()
data = [dict(zip(fieldnames, [k, v])) for k, v in complete_dic.items()]
dict_writer.writerows(data)

In [20]: with open('processed_data/iso2_name_dic.csv', 'w') as output_file:
fieldnames = ['iso2code', 'name']
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dict_writer = csv.DictWriter(output_file, fieldnames)
dict_writer.writeheader()
data = [dict(zip(fieldnames, [k, v])) for k, v in iso2_dic.items()]
dict_writer.writerows(data)

In [21]: energy = pd.read_excel("energydata-2.xlsx")

In [22]: energy = energy.set_index('country')

In [23]: for country in energy.index:
if country not in complete_dic.keys():

print(country)

St Martin
Virgin Islands
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02 - Country Selection

August 15, 2018

1 Notebook 2 - Country Selection

@author: Stefan Wigman

1.1 2.1 - Introduction

This notebook is used to generate an initial list of countries that will be taken into account in this
study. The available countries in the major datasets that are used are compared and assessed to
select an initial set of countries.

In order to efficiently compare available countries in different datasets, the ’country name
database’ that was generated in Notebook 1 is employed.

1.2 2.2 - Importing the required Python packages

This notebook uses Pandas, NumPy, and csv.

In [1]: import pandas as pd
import numpy as np
import csv

1.3 2.3 - Importing the country name database

We start by importing the previously generated alternative country name database.

In [2]: with open('processed_data/country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

For the Correlates of War dataset, we import the dictionary separately.

In [3]: with open('processed_data/cow_codes.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
cow_dict = {rows['cow']:rows['name'] for rows in reader}
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1.4 2.4 - United Nations: Members of General Assembly

As an initial list of countries, we take all members of the General Assembly of the United Nations.
This data was acquired from http://data.un.org/Data.aspx?q=membership&d=SDGs&f=series%3aSG_INT_MBRUNGA

In [4]: un_data = pd.read_csv("raw data/UNdata_MembershipOfGeneralAssembly.txt", sep = ';')

In [5]: un_data.head()

Out[5]: Reference Area Time Period Unit of measurement \
0 Developing regions (MDG) 2016 Percent
1 Developing regions (MDG) 2015 Percent
2 Developing regions (MDG) 2010 Percent
3 Developing regions (MDG) 2005 Percent
4 Developing regions (MDG) 2000 Percent

Nature Value
0 Global monitoring data 74.093264
1 Global monitoring data 74.093264
2 Global monitoring data 73.958333
3 Global monitoring data 74.345550
4 Global monitoring data 74.603175

This dataset also contains the proportion of developing countries currently in the general UN
assembly. This entry will have to be removed manually. A full list of unique countries in this
dataset is shown below:

In [6]: pd.DataFrame(un_data['Reference Area'].unique())

Out[6]: 0
0 Developing regions (MDG)
1 Afghanistan
2 Albania
3 Algeria
4 Andorra
5 Angola
6 Antigua and Barbuda
7 Argentina
8 Armenia
9 Australia
10 Austria
11 Azerbaijan
12 Bahamas
13 Bahrain
14 Bangladesh
15 Barbados
16 Belarus
17 Belgium
18 Belize
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19 Benin
20 Bhutan
21 Bolivia (Plurinational State of)
22 Bosnia and Herzegovina
23 Botswana
24 Brazil
25 Brunei Darussalam
26 Bulgaria
27 Burkina Faso
28 Burundi
29 CÃťte d'Ivoire
.. ...
164 Suriname
165 Swaziland
166 Sweden
167 Switzerland
168 Syrian Arab Republic
169 Tajikistan
170 Thailand
171 The former Yugoslav Republic of Macedonia
172 Timor-Leste
173 Togo
174 Tonga
175 Trinidad and Tobago
176 Tunisia
177 Turkey
178 Turkmenistan
179 Tuvalu
180 Uganda
181 Ukraine
182 United Arab Emirates
183 United Kingdom of Great Britain and Northern I...
184 United Republic of Tanzania
185 United States of America
186 Uruguay
187 Uzbekistan
188 Vanuatu
189 Venezuela (Bolivarian Republic of)
190 Viet Nam
191 Yemen
192 Zambia
193 Zimbabwe

[194 rows x 1 columns]

For comparison with other data sets, the list of countries is extracted from this Data Frame. In
addition, the ’Developing regions (MDG) is removed.

In [7]: un_data=un_data.set_index('Reference Area')
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In [8]: un_country_list = list(un_data.index.unique())

In [9]: un_country_list.remove('Developing regions (MDG)')

The variable un_country_list is now a list of all countries that are a mem-
ber of the General Assembly of the United Nations. According to Wikipedia
(https://en.wikipedia.org/wiki/United_Nations_General_Assembly) the UN has 193 mem-
bers. Therefore, the length of the list should be equal to 193.

In [10]: if len(un_country_list) == 193:
print('\x1b[1;31m'+"OK!"+'\x1b[0m'+" There are 193 countries in the list. You may proceed.")

else:
print('\x1b[1;31m'+"Uh oh!"+'\x1b[0m'+ "Something is not right. The list does not contain 193 countries. Please check the data.")

OK! There are 193 countries in the list. You may proceed.

Another check that needs to be executed is whether all countries in un_country_list are also in
the Country Name Database.

In [11]: counter = 0
for item in un_country_list: # If this cell does not create output,

if item not in country_name_dict: # all countries are accounted for in the country name database
print(item) # All output should be added to the country dictionary in Notebook 1
counter += 1

if counter == 0:
print('\x1b[1;31m'+"OK!"+'\x1b[0m'+ " All (alternative) country names are accounted for in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+"." )

else:
print('\x1b[1;31m'+"Uh oh!"+'\x1b[0m'+ "Some countries are not in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+". Please add them in "+'\x1b[1;31m'+"Notebook 01 - Country Names Database"+'\x1b[0m'+".")

OK! All (alternative) country names are accounted for in the Country Name Database.

This concludes the checks for the United Nations General Assembly country list. For comparison
with other datasets, we now convert the UN names to the English country names.

In [12]: un_country_list_english = [ country_name_dict.get(item,item) for item in un_country_list ]

1.5 2.5 - Correlates of War: Contiguity Data

The second source of which the included countries will be assessed is the Correlates of War Direct
Contiguity dataset (v3.2). The use of this dataset is highly desirable in this study, given its detailed
character regarding country borders. It classifies country borders on a scale from 0 to 5, where a
0 means no border, a 1 means direct border via land, and 2 to 5 are used for water contiguity up to a
certain distance (400 miles).

Countries that are not included in this dataset, will have to be added manually (or the conti-
guity of these countries will have to be added using another method (i.e. from a shapefile).

The dataset can be found here: http://www.correlatesofwar.org/data-sets/direct-contiguity.
The first step is to import the dataset using Pandas:
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In [13]: contiguity_df=pd.read_csv('raw data/correlates_of_war/DirectContiguity320/contdird.csv')

In [14]: contiguity_df.head()

Out[14]: dyad state1no state1ab state2no state2ab year conttype version
0 2020 2 USA 20 CAN 1920 1 3.2
1 2020 2 USA 20 CAN 1921 1 3.2
2 2020 2 USA 20 CAN 1922 1 3.2
3 2020 2 USA 20 CAN 1923 1 3.2
4 2020 2 USA 20 CAN 1924 1 3.2

For each existing border, there is a separate row in the dataset. There is a from country and a to
country, respectively in columns state1ab and state2ab. Let’s first check if the countries contained
in these two columns are the same, and how many countries are represented in this dataset.

In [15]: if list(sorted(contiguity_df.state1ab.unique()))==list(sorted(contiguity_df.state2ab.unique())):
print('\x1b[1;31m'+"OK!"+'\x1b[0m'+ " The countries in columns state1ab and state2ab match. Please continue.")

else:
print('\x1b[1;31m'+"Uh oh!"+'\x1b[0m'+ " The countries in columns state1ab and state2ab do not match! Please check!")

OK! The countries in columns state1ab and state2ab match. Please continue.

In [16]: print("This dataset contains", len(contiguity_df.state2ab.unique()), "unique countries.")

This dataset contains 215 unique countries.

Apparently, there are 215 countries countries represented in this dataset. However, it should
be taken into account that this data is given over time. Therefore, there might be "old" countries
in the dataset. Let’s first find out for which years we have data.

In [17]: print("This dataset contains data for the following years:", sorted(contiguity_df.year.unique()))

This dataset contains data for the following years: [1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1834, 1835, 1836, 1837, 1838, 1839, 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1852, 1853, 1854, 1855, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]

At this point, we are only interested in the latest contiguity data. Therefore, we select only the
most recent year (2016):

In [18]: contiguity_df_2016 = contiguity_df[contiguity_df.year==2016]

Let’s see how many countries are left:

In [19]: print("The dataset contains", len(contiguity_df_2016.state2ab.unique()), "unique countries for 2016.")

The dataset contains 193 unique countries for 2016.
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193 countries seems promising. In fact, it is exactly the same number of countries as in the UN
General Assembly data set. The countries in both data sets will be compared in section 2.7. First,
the country names will have to be converted to their English name. To that extent, we create a list
containing all the countries in the Correlates of War data set.

In [20]: cow_country_list = list(contiguity_df_2016.state1ab.unique())

Then we run the check to see whether all countries in the Correlates of War data set are ac-
counted for in the Country Name Database:

In [21]: counter = 0
for item in cow_country_list: # If this cell does not create output,

if item not in cow_dict: # all countries are accounted for in the country name database
print(item) # All output should be added to the cow dictionary in Notebook 1
counter += 1

if counter == 0:
print('\x1b[1;31m'+"OK!"+'\x1b[0m'+ " All (alternative) country names are accounted for in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+"." )

else:
print('\x1b[1;31m'+"Uh oh!"+'\x1b[0m'+ "Some countries are not in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+". Please add them in "+'\x1b[1;31m'+"Notebook 01 - Country Names Database"+'\x1b[0m'+".")

OK! All (alternative) country names are accounted for in the Country Name Database.

This concludes the checks for the Correlates of War country list. For comparison with other
datasets, we now convert the Correlates of War names to the corresponding English country names.

In [22]: cow_country_list_english = [cow_dict.get(item,item) for item in cow_country_list]

1.6 2.6 - World Bank Data (World Development Indicators)

The last data set that will be taken into account for the selection of countries are the World Devel-
opment Indicators (WDI) of the World Bank. This is a very extensive data set (both in number of
indicators and in number of countries for which these indicators are available), and therefore it
lends itself exellently to assess which countries are absent in the other two data sets.

A list of countries for which the WDI are available is contained in the Excel file "Regions.xlsx",
so the first step is to import that file to a Pandas Data Frame:

In [23]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [24]: countries_wb.head()

Out[24]: Country Data Region IncomeGroup
country
Afghanistan AFG South Asia Low income
Albania ALB Europe & Central Asia Upper middle income
Algeria DZA Middle East & North Africa Upper middle income
American Samoa ASM East Asia & Pacific Upper middle income
Andorra AND Europe & Central Asia High income
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The countries for which WDI data is available are in the country column. The number of coun-
tries is shown below:

In [25]: print("The World Development Indicators data set contains", len(countries_wb.index.unique()), "unique countries.")

The World Development Indicators data set contains 217 unique countries.

Apparently, the WDI data set is a bit more comprehensive and includes more countries than
the previous two data sets. We will assess the difference in available countries in section 2.7 Com-
parison of Different Datasets. For now we create a list containing all unique countries contained
in the data set.

In [26]: wb_country_list = list(countries_wb.index.unique())

Next, we run the fast check to see whether all World Bank names are accounted for in the
Country Name Database:

In [27]: counter = 0
for item in wb_country_list: # If this cell does not create output,

if item not in country_name_dict: # all countries are accounted for in the country name database
print(item) # All output should be added to the country dictionary in Notebook 1
counter += 1

if counter == 0:
print('\x1b[1;31m'+"OK!"+'\x1b[0m'+ " All (alternative) country names are accounted for in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+"." )

else:
print('\x1b[1;31m'+"Uh oh!"+'\x1b[0m'+ "Some countries are not in the "+'\x1b[1;31m'+"Country Name Database"+'\x1b[0m'+". Please add them in "+'\x1b[1;31m'+"Notebook 01 - Country Names Database"+'\x1b[0m'+".")

OK! All (alternative) country names are accounted for in the Country Name Database.

This concludes the checks for the World Development Indicators country list. For comparison
with the other datasets, we now convert the World Bank country names to the corresponding English
country names.

In [28]: wb_country_list_english = [ country_name_dict.get(item,item) for item in wb_country_list ]

1.7 2.7 Comparison of Countries in Different Datasets

All country entries should now have the same name throughout the lists, which makes it possible
to compare the lists.

The countries that are present in the Correlates of War dataset, but are not a member of the
United Nations General Assembly:

In [29]: counter = 0
for item in cow_country_list_english:

if item not in un_country_list_english:
counter += 1
print(counter, '\x1b[1;31m'+item+'\x1b[0m')

print("Number of countries in CoW, but not in UN:", '\x1b[1;31m'+str(counter)+'\x1b[0m')
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1 Yugoslavia
2 Kosovo
3 Taiwan
Number of countries in CoW, but not in UN: 3

The countries that are a member of the United Nations General Assembly, but are not in the
Correlates of War dataset:

In [30]: counter = 0
for item in un_country_list_english:

if item not in cow_country_list_english:
counter += 1
print(counter, '\x1b[1;31m'+item+'\x1b[0m')

print("Number of countries in UN, but not in CoW:", '\x1b[1;31m'+str(counter)+'\x1b[0m')

1 Iceland
2 New Zealand
3 Serbia
Number of countries in UN, but not in CoW: 3

Apparently, three countries are not included in the Correlates of War data set: Iceland, New
Zealand, and Serbia. However, these are countries of substantial size and importance and cannot
be omitted in this study.

As we saw previously, Yugoslavia is in the Correlates of War data set, and this could well be the
name used for Serbia in this data set. Iceland and New Zealand are both considerably isolated in
the middle of the ocean. As such, they might not be contiguous to any other countries in the data
set. These issues will be further adressed in Notebook 03a - Contiguity and Adjacency, Correlates of
War.

The countries that are present in the World Bank dataset, but are not a member of the United
Nations General Assembly:

In [31]: counter = 0
for item in wb_country_list_english:

if item not in un_country_list_english:
counter += 1
print(counter, '\x1b[1;31m'+item+'\x1b[0m')

print("Number of countries in WB, but not in UN:", '\x1b[1;31m'+str(counter)+'\x1b[0m')

1 American Samoa
2 Aruba
3 Bermuda
4 British Virgin Islands
5 Cayman Islands
6 Channel Islands
7 Curaçao
8 Faroe Islands
9 French Polynesia
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10 Gibraltar
11 Greenland
12 Guam
13 Hong Kong SAR China
14 Isle of Man
15 Kosovo
16 Macau SAR China
17 New Caledonia
18 Northern Mariana Islands
19 Puerto Rico
20 Sint Maarten
21 Saint Martin (French part)
22 Turks & Caicos Islands
23 U.S. Virgin Islands
24 Palestinian Territories
Number of countries in WB, but not in UN: 24

Vice versa, the countries that are members of the United Nations General Assembly, but are
not in the World Bank dataset:

In [32]: counter = 0
for item in un_country_list_english:

if item not in wb_country_list_english:
counter += 1
print(counter, '\x1b[1;31m'+item+'\x1b[0m')

print("Number of countries in UN, but not in WB:", '\x1b[1;31m'+str(counter)+'\x1b[0m')

Number of countries in UN, but not in WB: 0

1.8 2.8 - Country Selection

This section will discuss the country selection process.
The criteria for country selection are: - Data availability - (Additional) Complexity - Model

Completeness

In [33]: country_list_final = un_country_list_english

In [34]: countries = pd.DataFrame(country_list_final)

In [35]: countries=countries.set_index(0)

In [36]: countries.index.rename('country', inplace=True)

In [37]: writer = pd.ExcelWriter('processed_data/country_list.xlsx')
countries.to_excel(writer,'country')
writer.save()
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03a - Contiguity and Adjacency, Correlates of War

August 15, 2018

1 Notebook 3a - Contiguity and Adjacency, Correlates of War

@author: Stefan Wigman

1.1 3a.1 - Introduction

1.2 3a.2 - Importing the required Python packages

In [1]: import pandas as pd
import numpy as np
import csv
import os

In [2]: os.getcwd()

Out[2]: '/Users/stefanwigman/Desktop/Migration Thesis/03 - Data'

In [3]: contiguity_df=pd.read_csv('raw data/correlates_of_war/DirectContiguity320/contdird.csv')

In [4]: contiguity_df_2016=contiguity_df[contiguity_df['year']==2016]

In [5]: set(contiguity_df_2016['state1ab'].unique())==set(contiguity_df_2016['state2ab'].unique())

Out[5]: True

In [6]: contiguity_df_2016.loc[96]

Out[6]: dyad 2020
state1no 2
state1ab USA
state2no 20
state2ab CAN
year 2016
conttype 1
version 3.2
Name: 96, dtype: object

In [7]: contiguity_matrix=pd.DataFrame(columns=set(contiguity_df_2016['state1ab']), index=set(contiguity_df_2016['state2ab']))
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In [8]: for row in contiguity_df_2016.index:
# print(contiguity_df_2016.loc[row]['state1ab'])

contiguity_matrix[contiguity_df_2016.loc[row]['state1ab']][contiguity_df_2016.loc[row]['state2ab']]=contiguity_df_2016.loc[row]['conttype']

In [9]: filled_matrix = contiguity_matrix.fillna(0)

In [11]: filled_matrix['YUG']['DEN']

Out[11]: 0

In [12]: countries=pd.read_excel('processed_data/country_list.xlsx', index_col = 'country')

In [13]: with open('processed_data/cow_codes.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
cow_dict = {rows['cow']:rows['name'] for rows in reader}

In [14]: filled_matrix = filled_matrix.rename(columns=cow_dict, index=cow_dict)

In [15]: filled_matrix = filled_matrix.rename(columns = {"Yugoslavia":"Serbia"}, index = {"Yugoslavia":"Serbia"})

In [16]: filled_matrix[filled_matrix['Serbia']!=0].index.values.astype(str)

Out[16]: array(['Bulgaria', 'Hungary', 'Montenegro', 'Macedonia',
'Bosnia & Herzegovina', 'Romania', 'Croatia', 'Kosovo'],

dtype='<U20')

In [17]: filled_matrix['Iceland']=0
filled_matrix['New Zealand']=0
filled_matrix.loc['Iceland']=0
filled_matrix.loc['New Zealand']=0

In [18]: filled_matrix.drop(labels=['Kosovo', 'Taiwan'], inplace=True)

In [19]: filled_matrix.drop(['Kosovo', 'Taiwan'], 1, inplace=True)

In [20]: filled_matrix['New Zealand']['Australia']=1/5
filled_matrix['Australia']['New Zealand']=1/5
filled_matrix['Iceland']['United Kingdom']=1/5
filled_matrix['United Kingdom']['Iceland']=1/5

In [21]: writer = pd.ExcelWriter('contiguity_data.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$194')
filled_matrix.to_excel(writer)
writer.save()

In [22]: for country in filled_matrix.index:
if country not in countries.index:

print(country)
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In [23]: filled_matrix = filled_matrix.reindex_axis(countries.index, axis=0)
filled_matrix = filled_matrix.reindex_axis(countries.index, axis=1)

In [26]: replace_value_dic={5:1/5,
4:1/4,
3:1/3,
2:1/2}

In [27]: filled_matrix.replace(to_replace=replace_value_dic, value=None, inplace=True)

In [56]: # filled_matrix

In [29]: writer = pd.ExcelWriter('processed_data/contiguity_data.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$194')
filled_matrix.to_excel(writer)
writer.save()

In [30]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [31]: with open('processed_data/country_name_dic.csv', encoding='UTF-8') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [32]: countries_wb_sort = countries_wb.sort_values(['Region', 'Country Data'], axis=0)
countries_wb_sort = countries_wb_sort.rename(index=country_name_dict)

In [33]: wb_contiguity_df = pd.DataFrame(index=countries_wb_sort.index, columns=countries_wb_sort.index)

In [36]: for country in filled_matrix.index:
if country not in wb_contiguity_df.index:

print(country)

In [37]: filled_matrix = filled_matrix.rename(index={'CÃťte dâIvoire': 'Côte dIvoire',
'SÃčo TomÃľ & PrÃŋncipe': 'São Tomé & Príncipe'})

In [57]: # for country in wb_contiguity_df.index:
# if country not in filled_matrix.index:
# print(country)

In [40]: for column in wb_contiguity_df.columns:
try:

wb_contiguity_df[column]=filled_matrix[column]
except KeyError:

continue

In [58]: # wb_contiguity_df
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In [42]: # American Samoa
wb_contiguity_df['American Samoa'] = wb_contiguity_df['Samoa']
wb_contiguity_df.loc['American Samoa'] = wb_contiguity_df.loc['Samoa']

wb_contiguity_df.at['Samoa', 'American Samoa'] = 1/2
wb_contiguity_df.at['American Samoa', 'Samoa'] = 1/2

# Guam
wb_contiguity_df['Guam'] = wb_contiguity_df['Micronesia (Federated States of)']
wb_contiguity_df.loc['Guam'] = wb_contiguity_df.loc['Micronesia (Federated States of)']

wb_contiguity_df.at['Micronesia (Federated States of)', 'Guam'] = 1/2
wb_contiguity_df.at['Guam', 'Micronesia (Federated States of)'] = 1/2

# Hong Kong SAR China
wb_contiguity_df.at['Hong Kong SAR China', 'China'] = 1
wb_contiguity_df.at['China', 'Hong Kong SAR China'] = 1

# Macau SAR China
wb_contiguity_df.at['Macau SAR China', 'China'] = 1
wb_contiguity_df.at['China', 'Macau SAR China'] = 1

wb_contiguity_df.at['Macau SAR China', 'Hong Kong SAR China'] = 1/2
wb_contiguity_df.at['Hong Kong SAR China', 'Macau SAR China'] = 1/2

# Northern Mariana Islands
wb_contiguity_df['Northern Mariana Islands'] = wb_contiguity_df['Micronesia (Federated States of)']
wb_contiguity_df.loc['Northern Mariana Islands'] = wb_contiguity_df.loc['Micronesia (Federated States of)']

wb_contiguity_df.at['Micronesia (Federated States of)', 'Northern Mariana Islands'] = 1/2
wb_contiguity_df.at['Northern Mariana Islands', 'Micronesia (Federated States of)'] = 1/2

wb_contiguity_df.at['Guam', 'Northern Mariana Islands'] = 1/2
wb_contiguity_df.at['Northern Mariana Islands', 'Guam'] = 1/2

# New Caledonia
wb_contiguity_df['New Caledonia'] = wb_contiguity_df['Vanuatu']
wb_contiguity_df.loc['New Caledonia'] = wb_contiguity_df.loc['Vanuatu']

wb_contiguity_df.at['New Caledonia', 'Vanuatu'] = 1/2
wb_contiguity_df.at['Vanuatu', 'New Caledonia'] = 1/2

# French Polynesia
wb_contiguity_df['French Polynesia'] = wb_contiguity_df['American Samoa']
wb_contiguity_df.loc['French Polynesia'] = wb_contiguity_df.loc['American Samoa']

wb_contiguity_df.at['French Polynesia', 'American Samoa'] = 1/2
wb_contiguity_df.at['American Samoa', 'French Polynesia'] = 1/2
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# Channel Islands
wb_contiguity_df.at['Channel Islands', 'France'] = 1/2
wb_contiguity_df.at['France', 'Channel Islands'] = 1/2

wb_contiguity_df.at['Channel Islands', 'United Kingdom'] = 1/2
wb_contiguity_df.at['United Kingdom', 'Channel Islands'] = 1/2

# Faroe Islands
wb_contiguity_df.at['Faroe Islands', 'United Kingdom'] = 1/5
wb_contiguity_df.at['United Kingdom', 'Faroe Islands'] = 1/5

wb_contiguity_df.at['Faroe Islands', 'Iceland'] = 1/5
wb_contiguity_df.at['Iceland', 'Faroe Islands'] = 1/5

wb_contiguity_df.at['Faroe Islands', 'Norway'] = 1/5
wb_contiguity_df.at['Norway', 'Faroe Islands'] = 1/5

# Gibraltar
wb_contiguity_df.at['Gibraltar', 'Spain'] = 1
wb_contiguity_df.at['Spain', 'Gibraltar'] = 1

wb_contiguity_df.at['Gibraltar', 'Morocco'] = wb_contiguity_df.at['Spain', 'Morocco']
wb_contiguity_df.at['Morocco', 'Gibraltar'] = wb_contiguity_df.at['Morocco', 'Spain']

# Greenland
wb_contiguity_df.at['Greenland', 'Canada'] = 1/5
wb_contiguity_df.at['Canada', 'Greenland'] = 1/5

wb_contiguity_df.at['Greenland', 'Iceland'] = 1/5
wb_contiguity_df.at['Iceland', 'Greenland'] = 1/5

# Isle of Man
wb_contiguity_df.at['Isle of Man', 'United Kingdom'] = 1/2
wb_contiguity_df.at['United Kingdom', 'Isle of Man'] = 1/2

wb_contiguity_df.at['Isle of Man', 'Ireland'] = 1/2
wb_contiguity_df.at['Ireland', 'Isle of Man'] = 1/2

# Kosovo
wb_contiguity_df.at['Kosovo', 'Serbia'] = 1
wb_contiguity_df.at['Serbia', 'Kosovo'] = 1

wb_contiguity_df.at['Kosovo', 'Albania'] = 1
wb_contiguity_df.at['Albania', 'Kosovo'] = 1

wb_contiguity_df.at['Kosovo', 'Montenegro'] = 1
wb_contiguity_df.at['Montenegro', 'Kosovo'] = 1
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wb_contiguity_df.at['Kosovo', 'Macedonia'] = 1
wb_contiguity_df.at['Macedonia', 'Kosovo'] = 1

# Aruba
wb_contiguity_df.at['Aruba', 'Venezuela'] = 1/2
wb_contiguity_df.at['Venezuela', 'Aruba'] = 1/2

wb_contiguity_df.at['Aruba', 'Colombia'] = 1/2
wb_contiguity_df.at['Colombia', 'Aruba'] = 1/2

# Curaçao
wb_contiguity_df.at['Curaçao', 'Venezuela'] = 1/2
wb_contiguity_df.at['Venezuela', 'Curaçao'] = 1/2

wb_contiguity_df.at['Curaçao', 'Colombia'] = 1/2
wb_contiguity_df.at['Colombia', 'Curaçao'] = 1/2

# Cayman Islands
wb_contiguity_df['Cayman Islands'] = wb_contiguity_df['Jamaica']
wb_contiguity_df.loc['Cayman Islands'] = wb_contiguity_df.loc['Jamaica']

wb_contiguity_df.at['Cayman Islands', 'Jamaica'] = 1/2
wb_contiguity_df.at['Jamaica', 'Cayman Islands'] = 1/2

# Saint Martin (French part)
wb_contiguity_df['Saint Martin (French part)'] = wb_contiguity_df['St. Kitts & Nevis']
wb_contiguity_df.loc['Saint Martin (French part)'] = wb_contiguity_df.loc['St. Kitts & Nevis']

wb_contiguity_df.at['Saint Martin (French part)', 'St. Kitts & Nevis'] = 1/2
wb_contiguity_df.at['St. Kitts & Nevis', 'Saint Martin (French part)'] = 1/2

# Puerto Rico
wb_contiguity_df['Puerto Rico'] = wb_contiguity_df['Dominican Republic']
wb_contiguity_df.loc['Puerto Rico'] = wb_contiguity_df.loc['Dominican Republic']

wb_contiguity_df.at['Puerto Rico', 'Dominican Republic'] = 1/2
wb_contiguity_df.at['Dominican Republic', 'Puerto Rico'] = 1/2

# Sint Maarten
wb_contiguity_df['Sint Maarten'] = wb_contiguity_df['Saint Martin (French part)']
wb_contiguity_df.loc['Sint Maarten'] = wb_contiguity_df.loc['Saint Martin (French part)']

wb_contiguity_df.at['Sint Maarten', 'Saint Martin (French part)'] = 1
wb_contiguity_df.at['Saint Martin (French part)', 'Sint Maarten'] = 1

# Turks & Caicos Islands
wb_contiguity_df['Turks & Caicos Islands'] = wb_contiguity_df['Bahamas']
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wb_contiguity_df.loc['Turks & Caicos Islands'] = wb_contiguity_df.loc['Bahamas']

wb_contiguity_df.at['Turks & Caicos Islands', 'Bahamas'] = 1/2
wb_contiguity_df.at['Bahamas', 'Turks & Caicos Islands'] = 1/2

# British Virgin Islands
wb_contiguity_df['British Virgin Islands'] = wb_contiguity_df['Puerto Rico']
wb_contiguity_df.loc['British Virgin Islands'] = wb_contiguity_df.loc['Puerto Rico']

wb_contiguity_df.at['British Virgin Islands', 'Puerto Rico'] = 1/2
wb_contiguity_df.at['Puerto Rico', 'British Virgin Islands'] = 1/2

# U.S. Virgin Islands
wb_contiguity_df['U.S. Virgin Islands'] = wb_contiguity_df['Puerto Rico']
wb_contiguity_df.loc['U.S. Virgin Islands'] = wb_contiguity_df.loc['Puerto Rico']

wb_contiguity_df.at['U.S. Virgin Islands', 'Puerto Rico'] = 1/2
wb_contiguity_df.at['Puerto Rico', 'U.S. Virgin Islands'] = 1/2

# Palestinian Territories
wb_contiguity_df.at['Palestinian Territories', 'Israel'] = 1
wb_contiguity_df.at['Israel', 'Palestinian Territories'] = 1

wb_contiguity_df.at['Palestinian Territories', 'Egypt'] = 1
wb_contiguity_df.at['Egypt', 'Palestinian Territories'] = 1

# Bermuda
wb_contiguity_df.at['Bermuda', 'United States'] = 1/5
wb_contiguity_df.at['United States', 'Bermuda'] = 1/5

In [59]: # wb_contiguity_df.sum(axis=1)

In [60]: # wb_contiguity_df.sum()

In [45]: x=pd.DataFrame(wb_contiguity_df.sum())

In [61]: # x

In [47]: %matplotlib inline

In [48]: wb_contiguity_df.sum().hist(bins=40)

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x116dfdb00>
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In [49]: from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)

In [50]: import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
import numpy as np # for generating random data

data = [go.Histogram(x=x[0])]

layout = go.Layout(
title='Contiguity Histogram',
xaxis=dict(

title='Value'
),
yaxis=dict(

title='Count'
),
bargap=0.2,
bargroupgap=0.1

)
fig = go.Figure(data=data, layout=layout)
# IPython notebook
py.iplot(fig)
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Out[50]: <plotly.tools.PlotlyDisplay object>

In [52]: wb_contiguity_df.at['Iceland', 'United Kingdom']

Out[52]: 0.0

In [53]: wb_contiguity_df.fillna(0, inplace=True)

In [54]: writer = pd.ExcelWriter('processed_data/contiguity_data_wb.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$'+str(len(wb_contiguity_df)+1))
wb_contiguity_df.to_excel(writer)
writer.save()
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04 - United Nations Migrant Data

August 15, 2018

1 Notebook 4 - United Nations Migrant Data

@author: Stefan Wigman

1.1 4.1 - Introduction

In [1]: import pandas as pd
import numpy as np
import csv

In [2]: xl = pd.ExcelFile("raw data/UN Migrant Data/UN_MigrantStockByOriginAndDestination_2017.xlsx")

In [3]: countries = pd.ExcelFile("country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [4]: df = xl.parse("Table 1", skiprows=15)

In [5]: df.columns

Out[5]: Index(['Unnamed: 0', 'Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4',
'Unnamed: 5', 'Total', 'Other North', 'Other South', 'Afghanistan',
...
'Uruguay', 'Uzbekistan', 'Vanuatu',
'Venezuela (Bolivarian Republic of)', 'Viet Nam',
'Wallis and Futuna Islands', 'Western Sahara', 'Yemen', 'Zambia',
'Zimbabwe'],

dtype='object', length=241)

In [6]: df.rename(columns = {'Unnamed: 0':'Year',
'Unnamed: 1':'SortOrder',
'Unnamed: 2': 'Country',
'Unnamed: 3': 'Notes',
'Unnamed: 4': 'Code',
'Unnamed: 5': 'TypeOfData'
}, inplace = True)
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In [7]: with open('country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [8]: df.set_index('Country', inplace = True)

In [9]: countries_list = list(countries)

In [10]: df = df.rename(columns=country_name_dict, index=country_name_dict)

In [11]: df_2017 = df[df['Year']==2017]

In [12]: df_2017 = df_2017.loc[list(countries.index), list(countries.index)]

In [13]: df_2017 = df_2017.replace('..', 0).fillna(0)

In [14]: df_2017.loc['Switzerland', 'Portugal']

Out[14]: 213555

In [15]: countries=pd.read_excel('processed_data/country_list.xlsx', index_col = 'country')

In [16]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [17]: countries_wb.rename(index = country_name_dict, inplace = True)

In [18]: countries_wb = countries_wb.sort_values(["Region", "Country Data"])

In [19]: df_2017_wb = df_2017.loc[list(countries_wb.index), list(countries_wb.index)]

In [20]: df_2017_wb = df_2017_wb.replace('..', 0).fillna(0)

In [21]: writer = pd.ExcelWriter('migrant_stock_data.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$194')
df_2017.to_excel(writer)
writer.save()

In [22]: writer = pd.ExcelWriter('processed_data/migrant_stock_data.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$194')
df_2017_wb.to_excel(writer)
writer.save()
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In [23]: from bokeh.palettes import Spectral11
from bokeh.plotting import figure, show, output_file
output_file('temp.html')

numlines=len(df.loc['WORLD'].columns)
mypalette=Spectral11[0:numlines]

p = figure(width=500, height=300, x_axis_type="datetime")
p.multi_line(xs=[df.index.values]*numlines,

ys=[df[name].values for name in df],
line_color=mypalette,
line_width=5)

show(p)

/anaconda3/lib/python3.6/site-packages/bokeh/models/sources.py:137: BokehUserWarning: ColumnDataSource's columns must be of the same length. Current lengths: ('line_color', 11), ('xs', 240), ('ys', 240)
"Current lengths: %s" % ", ".join(sorted(str((k, len(v))) for k, v in data.items())), BokehUserWarning))

In [25]: df.loc['WORLD'].T.plot()

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x116a9ca58>

In [28]: plotlist=list(countries_wb.index)

In [29]: plotlist.append('Year')

In [30]: %matplotlib inline
ax = df.loc['WORLD', plotlist].plot(x='Year', legend=False, title='Total Migration Per Country')
ax.set_xlabel("Year")
ax.set_ylabel("Number of Migrants")

Out[30]: <matplotlib.text.Text at 0x113d8b630>
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In [31]: df_ned = df.loc['Netherlands', plotlist]

df_ned = df_ned[(df_ned.T != '..').any()]

In [32]: df_ned = df_ned.T.dropna(how='all')

In [37]: # df_ned[(df_ned.T > 100000).all()]

In [38]: # df_ned.T>=100

In [39]: # df.loc['WORLD', list(countries_wb.index)]

In [36]: countries_wb.index

Out[36]: Index(['American Samoa', 'Australia', 'Brunei', 'China', 'Fiji',
'Micronesia (Federated States of)', 'Guam', 'Hong Kong SAR China',
'Indonesia', 'Japan',
...
'São Tomé & Príncipe', 'Swaziland', 'Seychelles', 'Chad', 'Togo',
'Tanzania', 'Uganda', 'South Africa', 'Zambia', 'Zimbabwe'],

dtype='object', name='country', length=217)
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05 - World Bank Data

August 15, 2018

1 5 - World Bank Data

@author: Stefan Wigman

1.1 5.1 - Introduction

In [1]: from DataFunctions import *
import datetime
import pandas as pd
import wbdata
import numpy as np
import csv

In [32]: # wbdata.get_source()

In [33]: # x=wbdata.get_indicator(source=2)

In [4]: type(x)

Out[4]: NoneType

In [5]: wbdata.search_indicators('urban', source=32)

In [6]: countries=pd.read_excel("Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],
parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [7]: indicator_dataframe, indicators, tabnames=GetIndicatorsWB(file='Selected_Indicators.xlsx', sheet='Blad1')

In [8]: tabnames['Country Data']='Country Data'
tabnames['IncomeGroup']='IncomeGroup'
tabnames['Region']='Region'

In [9]: indicators = {
'NY.GDP.MKTP.CD': 'GDP (current US$)',
'SP.DYN.CBRT.IN': 'Birth rate, crude (per 1,000 people)',
'SP.DYN.LE00.IN': 'Life expectancy at birth, total (years)',
'SP.DYN.TFRT.IN': 'Fertility rate, total (births per woman)',
'SP.POP.TOTL': 'Population, total',
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'SP.POP.TOTL.FE.IN': 'Population, female',
'SP.POP.TOTL.MA.IN': 'Population, male',
'SP.URB.GROW': 'Urban population growth (annual %)',
'SP.URB.TOTL.IN.ZS': 'Urban population (% of total)'}

In [10]: wbdata = GetDataWB(indicators, 2010, 2016)

/Users/stefanwigman/Desktop/Migration Thesis/03 - Data/DataFunctions.py:98: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
df_filled[column_source][df_filled[column].notnull()] = 'WB data ' + str(year2)

In [34]: # wbdata.head()

In [12]: source_cols=[col for col in wbdata.columns if 'source' in col]
cols=wbdata.columns[~wbdata.columns.isin(source_cols)]

In [13]: (1-(wbdata[cols].isnull().sum().sum())/(264*74))*100

Out[13]: 99.3140868140868

In [14]: regions=GetRegionIncomeDataWB()

In [15]: wb_data_regions = regions.join(wbdata, how='inner')

In [16]: countries = pd.ExcelFile("country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [17]: with open('processed_data/country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [18]: wb_data_regions = wb_data_regions.rename(index=country_name_dict)

In [19]: wb_data_regions = countries.join(wb_data_regions, how='inner')

In [20]: for country in countries.index:
if country not in wb_data_regions.index:

print(country)

In [21]: countries.index

Out[21]: Index(['Afghanistan', 'Albania', 'Algeria', 'Andorra', 'Angola',
'Antigua & Barbuda', 'Argentina', 'Armenia', 'Australia', 'Austria',
...
'Tanzania', 'United States', 'Uruguay', 'Uzbekistan', 'Vanuatu',
'Venezuela', 'Vietnam', 'Yemen', 'Zambia', 'Zimbabwe'],

dtype='object', name='country', length=193)
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In [22]: wb_data_regions.index

Out[22]: Index(['Afghanistan', 'Albania', 'Algeria', 'Andorra', 'Angola',
'Antigua & Barbuda', 'Argentina', 'Armenia', 'Australia', 'Austria',
...
'Tanzania', 'United States', 'Uruguay', 'Uzbekistan', 'Vanuatu',
'Venezuela', 'Vietnam', 'Yemen', 'Zambia', 'Zimbabwe'],

dtype='object', name='country', length=193)

In [23]: region_income_data=FillByRegionAndIncomeWB(wb_data_regions)

In [24]: income_data=FillByIncomeWB(region_income_data)

In [25]: region_data=FillByRegionWB(income_data)

In [26]: mean_data=FillWithMeanWB(region_data)

In [28]: def WriteToExcelWB(dataframe, tabnames, filename='testdata1.xlsx'):
"""
Function that writes the (complete) dataframe to Excel in the correct
format, with a separate tab for each indicator.

------
Inputs
------
dataframe: The dataframe to write to Excel
tabnames: The dictionary that contains the tabnames of the indicators
filename: The name of the resulting Excel file

-------
Outputs
-------
An Excelfile with a separate sheet for each indicator.
Each sheet contains a list of the countries with their values, and
a column containing the source of each value.

"""

writer = pd.ExcelWriter(filename)
dont_include = ['Country Data', 'Region', 'IncomeGroup', 'Population0to14',

'Population15to34','Population35to64','PopulationOver65']

source_cols=[col for col in dataframe.columns if 'source' in col]
dataframe1=dataframe.drop(source_cols, axis=1)

region_list=["East Asia and Pacific",
'Europe and Central Asia',
"Latin America and Caribbean",

3



"Middle East and North Africa",
"North America",
"South Asia",
"Sub Saharan Africa"]

regional_data=pd.DataFrame(region_list)
regional_data.set_index(0)

regional_data.index.rename("Region")
print(regional_data)

regional_data.to_excel(writer, 'Regional Data')

for column in dataframe1.columns:
if column in dont_include:

df_to_write=pd.DataFrame(dataframe1[column])
df_to_write.to_excel(writer, tabnames[column][:31])

else:
df_to_write = dataframe[[column,column+" source"]]
df_to_write.to_excel(writer, tabnames[column][:31])

In [30]: WriteToExcelWB(mean_data, tabnames, filename='processed_data/WB_data.xlsx')

0
0 East Asia and Pacific
1 Europe and Central Asia
2 Latin America and Caribbean
3 Middle East and North Africa
4 North America
5 South Asia
6 Sub Saharan Africa
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06 - CIA World Factbook

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np

In [2]: countries = pd.ExcelFile("processed_data/country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [3]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [4]: with open('processed_data/country_name_dic.csv', encoding='UTF-8') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [5]: json1_file = open('raw data/CIA World Factbook/2018-04-30_factbook.json')
json1_str = json1_file.read()

In [6]: json1_data = json.loads(json1_str)

In [7]: type(json1_data)

Out[7]: dict

In [8]: len(json1_data)

Out[8]: 2

In [83]: # print(json1_data["countries"]["zambia"]["data"]["people"].keys())

In [82]: # print(json1_data["countries"]["curacao"]["data"]["economy"]['gdp'])

In [11]: print(json1_data["countries"]["germany"]["data"]["people"]["population"])

{'total': 80594017, 'global_rank': 19, 'date': '2017-07-01'}
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In [12]: df = pd.DataFrame.from_dict({(i,j): json1_data[i][j]
for i in json1_data.keys()
for j in json1_data[i].keys()})

In [13]: df["countries"]["afghanistan"]

Out[13]: data {'name': 'Afghanistan', 'introduction': {'back...
metadata {'date': '2018-04-24', 'source': 'https://web...
Name: afghanistan, dtype: object

In [14]: df.loc["data"]["countries"]["afghanistan"]["name"]

Out[14]: 'Afghanistan'

In [15]: df1=df.loc["data"]["countries"]

In [80]: # data_dict = {}
# for country in df1.index:
# # print(df1[country]["name"])
# # print(country)
# df1.rename(index={country : df1.loc[country]["name"]}, inplace=True)

In [20]: df1 = pd.DataFrame(df1.rename(index=country_name_dict))

In [21]: for country in countries.index:
if country not in df1.index:

print(country)

In [81]: # for country in df1.index:
# if country not in country_name_dict.keys():
# print(country)

In [23]: df1.loc[country]['data']['people']['youth_unemployment']['total']['value']

Out[23]: 16.5

In [24]: data_dic = {

# GEOGRAPHY
"area total" :
"df1.loc[country]['data']['geography']['area']['total']['value']",

"area land" :
"df1.loc[country]['data']['geography']['area']['land']['value']",

"area water" :
"df1.loc[country]['data']['geography']['area']['land']['value']",

"latitude" :
"df1.loc[country]['data']['geography']['geographic_coordinates']['latitude']['degrees']",
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"longitude" :
"df1.loc[country]['data']['geography']['geographic_coordinates']['longitude']['degrees']",

"total length of land boundaries":
"df1.loc[country]['data']['geography']['land_boundaries']['total']['value']",

"total length of coastline" :
"df1.loc[country]['data']['geography']['coastline']['value']",

"highest point elevation" :
"df1.loc[country]['data']['geography']['elevation']['highest_point']['elevation']['value']",

"lowest point elevation" :
"df1.loc[country]['data']['geography']['elevation']['lowest_point']['elevation']['value']",

"mean elevation" :
"df1.loc[country]['data']['geography']['elevation']['mean_elevation']['value']",

"land use agricultural land arable" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['agricultural_land_arable_land']['value']",

"land use agricultural land permananent crops" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['agricultural_land_permanent_crops']['value']",

"land use agricultural land permanent pasture" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['agricultural_land_permanent_pasture']['value']",

"land use agricultural land total" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['agricultural_land_total']['value']",

"land use forest land" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['forest']['value']",

"land use other land" :
"df1.loc[country]['data']['geography']['land_use']['by_sector']['other']['value']",

"land use source year":
"df1.loc[country]['data']['geography']['land_use']['date']",

"irrigated land" :
"df1.loc[country]['data']['geography']['irrigated_land']['value']",

"irrigated land source year" :
"df1.loc[country]['data']['geography']['irrigated_land']['date']",

# PEOPLE AND SOCIETY
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"population":
"df1.loc[country]['data']['people']['population']['total']",

"population source year":
"df1.loc[country]['data']['people']['population']['date']",

"population 0 to 14 female" :
"df1.loc[country]['data']['people']['age_structure']['0_to_14']['females']",

"population 0 to 14 male" :
"df1.loc[country]['data']['people']['age_structure']['0_to_14']['males']",

"population 0 to 14 percent" :
"df1.loc[country]['data']['people']['age_structure']['0_to_14']['percent']",

"population 15 to 24 female" :
"df1.loc[country]['data']['people']['age_structure']['15_to_24']['females']",

"population 15 to 24 male" :
"df1.loc[country]['data']['people']['age_structure']['15_to_24']['males']",

"population 15 to 24 percent" :
"df1.loc[country]['data']['people']['age_structure']['15_to_24']['percent']",

"population 25 to 54 female" :
"df1.loc[country]['data']['people']['age_structure']['25_to_54']['females']",

"population 25 to 54 male" :
"df1.loc[country]['data']['people']['age_structure']['25_to_54']['males']",

"population 25 to 54 percent" :
"df1.loc[country]['data']['people']['age_structure']['25_to_54']['percent']",

"population 55 to 64 female" :
"df1.loc[country]['data']['people']['age_structure']['55_to_64']['females']",

"population 55 to 64 male" :
"df1.loc[country]['data']['people']['age_structure']['55_to_64']['males']",

"population 55 to 64 percent" :
"df1.loc[country]['data']['people']['age_structure']['55_to_64']['percent']",

"population 65 and over female" :
"df1.loc[country]['data']['people']['age_structure']['65_and_over']['females']",

"population 65 and over male" :
"df1.loc[country]['data']['people']['age_structure']['65_and_over']['males']",
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"population 65 and over percent" :
"df1.loc[country]['data']['people']['age_structure']['65_and_over']['percent']",

"population distribution source year" :
"df1.loc[country]['data']['people']['age_structure']['date']",

"elderly dependency ratio" :
"df1.loc[country]['data']['people']['dependency_ratios']['ratios']['elderly_dependency_ratio']['value']",

"potential support ratio" :
"df1.loc[country]['data']['people']['dependency_ratios']['ratios']['potential_support_ratio']['value']",

"total dependency ratio" :
"df1.loc[country]['data']['people']['dependency_ratios']['ratios']['total_dependency_ratio']['value']",

"youth dependency ratio" :
"df1.loc[country]['data']['people']['dependency_ratios']['ratios']['youth_dependency_ratio']['value']",

"dependency ratios source year":
"df1.loc[country]['data']['people']['dependency_ratios']['date']",

"median age female" :
"df1.loc[country]['data']['people']['median_age']['female']['value']",

"median age male" :
"df1.loc[country]['data']['people']['median_age']['male']['value']",

"median age total" :
"df1.loc[country]['data']['people']['median_age']['total']['value']",

"median age source year" :
"df1.loc[country]['data']['people']['median_age']['date']",

"population growth rate" :
"df1.loc[country]['data']['people']['population_growth_rate']['growth_rate']",

"population growth rate source year" :
"df1.loc[country]['data']['people']['population_growth_rate']['date']",

"birth rate per 1000 population" :
"df1.loc[country]['data']['people']['birth_rate']['births_per_1000_population']",

"birth rate per 1000 population source year" :
"df1.loc[country]['data']['people']['birth_rate']['date']",

"death rate per 1000 population" :
"df1.loc[country]['data']['people']['death_rate']['deaths_per_1000_population']",
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"death rate per 1000 population source year" :
"df1.loc[country]['data']['people']['death_rate']['date']",

"net migration rate per 1000" :
"df1.loc[country]['data']['people']['net_migration_rate']['migrants_per_1000_population']",

"net migration rate per 1000 source year" :
"df1.loc[country]['data']['people']['date']",

"urbanization rate" :
"df1.loc[country]['data']['people']['urbanization']['rate_of_urbanization']['value']",

"urban population pc" :
"df1.loc[country]['data']['people']['urbanization']['urban_population']['value']",

"urban population pc source year" :
"df1.loc[country]['data']['people']['urbanization']['urban_population']['date']",

"mothers mean age at first birth" :
"df1.loc[country]['data']['people']['mothers_mean_age_at_first_birth']['age']",

"mothers mean age at first birth source year" :
"df1.loc[country]['data']['people']['mothers_mean_age_at_first_birth']['date']",

"maternal mortality rate (per 100k)" :
"df1.loc[country]['data']['people']['maternal_mortality_rate']['deaths_per_100k_live_births']",

"maternal mortality rate (per 100k) source year" :
"df1.loc[country]['data']['people']['maternal_mortality_rate']['date']",

"infant mortality rate per 1000 births total" :
"df1.loc[country]['data']['people']['infant_mortality_rate']['total']['value']",

"infant mortality rate per 1000 births male" :
"df1.loc[country]['data']['people']['infant_mortality_rate']['male']['value']",

"infant mortality rate per 1000 births female" :
"df1.loc[country]['data']['people']['infant_mortality_rate']['female']['value']",

"infant mortality rate per 1000 births source year" :
"df1.loc[country]['data']['people']['infant_mortality_rate']['date']",

"life expectancy at birth":
"df1.loc[country]['data']['people']['life_expectancy_at_birth']['total_population']['value']",

"life expectancy at birth male":
"df1.loc[country]['data']['people']['life_expectancy_at_birth']['male']['value']",
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"life expectancy at birth female":
"df1.loc[country]['data']['people']['life_expectancy_at_birth']['female']['value']",

"life expectancy at birth source year" :
"df1.loc[country]['data']['people']['life_expectancy_at_birth']['date']",

"total fertility rate (children born per woman)" :
"df1.loc[country]['data']['people']['total_fertility_rate']['children_born_per_woman']",

"total fertility rate (children born per woman) source year" :
"df1.loc[country]['data']['people']['total_fertility_rate']['date']",

"contraceptive prevalence rate pc" :
"df1.loc[country]['data']['people']['contraceptive_prevalence_rate']['value']",

"contraceptive prevalence rate pc source year" :
"df1.loc[country]['data']['people']['contraceptive_prevalence_rate']['date']",

"health expenditures pc of gdp" :
"df1.loc[country]['data']['people']['health_expenditures']['percent_of_gdp']",

"health expenditures pc of gdp (source year)" :
"df1.loc[country]['data']['people']['health_expenditures']['date']",

"physicians density per 1000" :
"df1.loc[country]['data']['people']['physicians_density']['physicians_per_1000_population']",

"physicians density per 1000 source year" :
"df1.loc[country]['data']['people']['physicians_density']['date']",

"hospital beds density per 1000" :
"df1.loc[country]['data']['people']['hospital_bed_density']['beds_per_1000_population']",

"hospital beds density per 1000 source year" :
"df1.loc[country]['data']['people']['hospital_bed_density']['date']",

"drinking water source improved rural" :
"df1.loc[country]['data']['people']['drinking_water_source']['improved']['rural']['value']",

"drinking water source improved urban" :
"df1.loc[country]['data']['people']['drinking_water_source']['improved']['urban']['value']",

"drinking water source improved total" :
"df1.loc[country]['data']['people']['drinking_water_source']['improved']['total']['value']",

"drinking water source unimproved rural" :
"df1.loc[country]['data']['people']['drinking_water_source']['unimproved']['rural']['value']",
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"drinking water source unimproved urban" :
"df1.loc[country]['data']['people']['drinking_water_source']['unimproved']['urban']['value']",

"drinking water source unimproved total" :
"df1.loc[country]['data']['people']['drinking_water_source']['unimproved']['total']['value']",

"drinking water source source year" :
"df1.loc[country]['data']['people']['drinking_water_source']['date']",

"sanitation facility access improved rural" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['improved']['rural']['value']",

"sanitation facility access improved urban" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['improved']['urban']['value']",

"sanitation facility access improved total" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['improved']['total']['value']",

"sanitation facility access unimproved rural" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['unimproved']['rural']['value']",

"sanitation facility access unimproved urban" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['unimproved']['urban']['value']",

"sanitation facility access unimproved total" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['unimproved']['total']['value']",

"sanitation facility access source year" :
"df1.loc[country]['data']['people']['sanitation_facility_access']['date']",

"hiv aids adult prevalence rate pc of adults" :
"df1.loc[country]['data']['people']['hiv_aids']['adult_prevalence_rate']['percent_of_adults']",

"hiv aids adult prevalence rate pc of adults source year" :
"df1.loc[country]['data']['people']['hiv_aids']['adult_prevalence_rate']['date']",

"hiv aids deaths" :
"df1.loc[country]['data']['people']['hiv_aids']['deaths']['total']",

"hiv aids deaths source year" :
"df1.loc[country]['data']['people']['hiv_aids']['deaths']['date']",

"people living with hiv aids" :
"df1.loc[country]['data']['people']['hiv_aids']['people_living_with_hiv_aids']['total']",

"people living with hiv aids source year" :
"df1.loc[country]['data']['people']['hiv_aids']['people_living_with_hiv_aids']['date']",
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"obesity pc of adults" :
"df1.loc[country]['data']['people']['adult_obesity']['percent_of_adults']",

"obesity pc of adults source year" :
"df1.loc[country]['data']['people']['adult_obesity']['date']",

"underweight children under age of five pc" :
"df1.loc[country]['data']['people']['underweight_children']['percent_of_children_under_the_age_of_five']",

"underweight children under age of five pc source year" :
"df1.loc[country]['data']['people']['underweight_children']['date']",

"education expenditures pc of gdp" :
"df1.loc[country]['data']['people']['education_expenditures']['percent_of_gdp']",

"education expenditures pc of gdp (source year)" :
"df1.loc[country]['data']['people']['education_expenditures']['date']",

"school life expectancy total":
"df1.loc[country]['data']['people']['school_life_expectancy']['total']['value']",

"school life expectancy male":
"df1.loc[country]['data']['people']['school_life_expectancy']['male']['value']",

"school life expectancy female":
"df1.loc[country]['data']['people']['school_life_expectancy']['female']['value']",

"school life expectancy source year":
"df1.loc[country]['data']['people']['school_life_expectancy']['date']",

"youth unemployment total":
"df1.loc[country]['data']['people']['youth_unemployment']['total']['value']",

"youth unemployment male":
"df1.loc[country]['data']['people']['youth_unemployment']['male']['value']",

"youth unemployment female":
"df1.loc[country]['data']['people']['youth_unemployment']['female']['value']",

"youth unemployment source year":
"df1.loc[country]['data']['people']['youth_unemployment']['date']",

# GOVERNMENT

"suffrage (age)":
"df1.loc[country]['data']['government']['suffrage']['age']",
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"suffrage (compulsory)":
"df1.loc[country]['data']['government']['suffrage']['compulsory']",

# ECONOMY

"gdp purchasing power parity" :
"df1.loc[country]['data']['economy']['gdp']['purchasing_power_parity']['annual_values'][0]['value']",

"gdp purchasing power source year" :
"df1.loc[country]['data']['economy']['gdp']['purchasing_power_parity']['annual_values'][0]['date']",

"gdp official exchange rate usd" :
"df1.loc[country]['data']['economy']['gdp']['official_exchange_rate']['USD']",

"gdp official exchange rate usd source year" :
"df1.loc[country]['data']['economy']['gdp']['official_exchange_rate']['date']",

"gdp real growth rate pc" :
"df1.loc[country]['data']['economy']['gdp']['real_growth_rate']['annual_values'][0]['value']",

"gdp real growth rate pc source year" :
"df1.loc[country]['data']['economy']['gdp']['real_growth_rate']['annual_values'][0]['date']",

"gdp per capita purchasing power parity usd" :
"df1.loc[country]['data']['economy']['gdp']['per_capita_purchasing_power_parity']['annual_values'][0]['value']",

"gdp per capita purchasing power parity usd source year" :
"df1.loc[country]['data']['economy']['gdp']['per_capita_purchasing_power_parity']['annual_values'][0]['date']",

"gross national saving pc of gdp" :
"df1.loc[country]['data']['economy']['gross_national_saving']['annual_values'][0]['value']",

"gross national saving pc of gdp source year" :
"df1.loc[country]['data']['economy']['gross_national_saving']['annual_values'][0]['date']",

"gdp composition by end use exports of goods and services" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['exports_of_goods_and_services']['value']",

"gdp composition by end use government consumption" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['government_consumption']['value']",

"gdp composition by end use household consumption" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['household_consumption']['value']",

"gdp composition by end use imports of goods and services" :
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"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['imports_of_goods_and_services']['value']",

"gdp composition by end use investment in fixed capital" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['investment_in_fixed_capital']['value']",

"gdp composition by end use investment in inventories" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['end_uses']['investment_in_inventories']['value']",

"gdp composition by end use source year" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_end_use']['date']",

"gdp composition by sector of origin agriculture" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_sector_of_origin']['sectors']['agriculture']['value']",

"gdp composition by sector of origin industry" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_sector_of_origin']['sectors']['industry']['value']",

"gdp composition by sector of origin services" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_sector_of_origin']['sectors']['services']['value']",

"gdp composition by sector of origin source year" :
"df1.loc[country]['data']['economy']['gdp']['composition']['by_sector_of_origin']['date']",

"industrial production growth rate annual pc" :
"df1.loc[country]['data']['economy']['industrial_production_growth_rate']['annual_percentage_increase']",

"industrial production growth rate annual pc source year" :
"df1.loc[country]['data']['economy']['industrial_production_growth_rate']['date']",

"labor force total size" :
"df1.loc[country]['data']['economy']['labor_force']['total_size']['total_people']",

"labor force total size source year" :
"df1.loc[country]['data']['economy']['labor_force']['total_size']['date']",

"unemployment rate pc" :
"df1.loc[country]['data']['economy']['unemployment_rate']['annual_values'][0]['value']",

"unemployment rate pc source year" :
"df1.loc[country]['data']['economy']['unemployment_rate']['annual_values'][0]['date']",

"population below poverty line pc" :
"df1.loc[country]['data']['economy']['population_below_poverty_line']['value']",

"population below poverty line pc source year" :
"df1.loc[country]['data']['economy']['population_below_poverty_line']['date']",

"pc household income or consumption by highest 10 pc" :
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"df1.loc[country]['data']['economy']['household_income_by_percentage_share']['highest_ten_percent']['value']",

"pc household income or consumption by lowest 10 pc" :
"df1.loc[country]['data']['economy']['household_income_by_percentage_share']['lowest_ten_percent']['value']",

"pc household income or consumption by lowest 10 pc source year" :
"df1.loc[country]['data']['economy']['household_income_by_percentage_share']['date']",

"distribution of family income gini index" :
"df1.loc[country]['data']['economy']['distribution_of_family_income']['annual_values'][0]['value']",

"distribution of family income gini index source year" :
"df1.loc[country]['data']['economy']['distribution_of_family_income']['annual_values'][0]['date']",

"budget expenditures usd" :
"df1.loc[country]['data']['economy']['budget']['expenditures']['value']",

"budget revenues usd" :
"df1.loc[country]['data']['economy']['budget']['revenues']['value']",

"budget usd source year" :
"df1.loc[country]['data']['economy']['budget']['date']",

"taxes and other revenues pc of gdp" :
"df1.loc[country]['data']['economy']['taxes_and_other_revenues']['percent_of_gdp']",

"taxes and other revenues pc of gdp source year" :
"df1.loc[country]['data']['economy']['taxes_and_other_revenues']['date']",

"budget surplus or deficit pc of gdp" :
"df1.loc[country]['data']['economy']['budget_surplus_or_deficit']['percent_of_gdp']",

"budget surplus or deficit pc of gdp source year" :
"df1.loc[country]['data']['economy']['budget_surplus_or_deficit']['date']",

"public debt pc of gdp" :
"df1.loc[country]['data']['economy']['public_debt']['annual_values'][0]['value']",

"public debt pc of gdp source year" :
"df1.loc[country]['data']['economy']['public_debt']['annual_values'][0]['date']",

"inflation rate consumer prices" :
"df1.loc[country]['data']['economy']['inflation_rate']['annual_values'][0]['value']",

"inflation rate consumer prices source year" :
"df1.loc[country]['data']['economy']['inflation_rate']['annual_values'][0]['date']",

"central bank discount rate" :
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"df1.loc[country]['data']['economy']['central_bank_discount_rate']['annual_values'][0]['value']",

"central bank discount rate source year" :
"df1.loc[country]['data']['economy']['central_bank_discount_rate']['annual_values'][0]['date']",

"commercial bank prime lending rate" :
"df1.loc[country]['data']['economy']['commercial_bank_prime_lending_rate']['annual_values'][0]['value']",

"commercial bank prime lending rate source year" :
"df1.loc[country]['data']['economy']['commercial_bank_prime_lending_rate']['annual_values'][0]['date']",

"stock of narrow money" :
"df1.loc[country]['data']['economy']['stock_of_narrow_money']['annual_values'][0]['value']",

"stock of narrow money source year" :
"df1.loc[country]['data']['economy']['stock_of_narrow_money']['annual_values'][0]['date']",

"stock of broad money" :
"df1.loc[country]['data']['economy']['stock_of_broad_money']['annual_values'][0]['value']",

"stock of broad money source year" :
"df1.loc[country]['data']['economy']['stock_of_broad_money']['annual_values'][0]['date']",

"stock of domestic credit" :
"df1.loc[country]['data']['economy']['stock_of_domestic_credit']['annual_values'][0]['value']",

"stock of domestic credit source year" :
"df1.loc[country]['data']['economy']['stock_of_domestic_credit']['annual_values'][0]['date']",

"market value of publicly traded shares" :
"df1.loc[country]['data']['economy']['market_value_of_publicly_traded_shares']['annual_values'][0]['value']",

"market value of publicly traded shares source year" :
"df1.loc[country]['data']['economy']['market_value_of_publicly_traded_shares']['annual_values'][0]['date']",

"current account balance" :
"df1.loc[country]['data']['economy']['current_account_balance']['annual_values'][0]['value']",

"current account balance source year" :
"df1.loc[country]['data']['economy']['current_account_balance']['annual_values'][0]['date']",

"exports total value" :
"df1.loc[country]['data']['economy']['exports']['total_value']['annual_values'][0]['value']",

"exports total value source year" :
"df1.loc[country]['data']['economy']['exports']['total_value']['annual_values'][0]['date']",

"imports total value" :
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"df1.loc[country]['data']['economy']['imports']['total_value']['annual_values'][0]['value']",

"imports total value source year" :
"df1.loc[country]['data']['economy']['imports']['total_value']['annual_values'][0]['date']",

"reserves of foreign exchange and gold" :
"df1.loc[country]['data']['economy']['reserves_of_foreign_exchange_and_gold']['annual_values'][0]['value']",

"reserves of foreign exchange and gold source year" :
"df1.loc[country]['data']['economy']['reserves_of_foreign_exchange_and_gold']['annual_values'][0]['date']",

"external debt" :
"df1.loc[country]['data']['economy']['external_debt']['annual_values'][0]['value']",

"external debt source year" :
"df1.loc[country]['data']['economy']['external_debt']['annual_values'][0]['date']",

"stock of direct foreign investment abroad usd" :
"df1.loc[country]['data']['economy']['stock_of_direct_foreign_investment']['abroad']['annual_values'][0]['value']",

"stock of direct foreign investment abroad usd source year" :
"df1.loc[country]['data']['economy']['stock_of_direct_foreign_investment']['abroad']['annual_values'][0]['date']",

"stock of direct foreign investment at home usd" :
"df1.loc[country]['data']['economy']['stock_of_direct_foreign_investment']['at_home']['annual_values'][0]['value']",

"stock of direct foreign investment at home usd source year" :
"df1.loc[country]['data']['economy']['stock_of_direct_foreign_investment']['at_home']['annual_values'][0]['date']",

# ENERGY - ELECTRICITY

"total electrification pc of pop" :
"df1.loc[country]['data']['energy']['electricity']['access']['total_electrification']['value']",

"rural electrification pc of rural pop" :
"df1.loc[country]['data']['energy']['electricity']['access']['rural_electrification']['value']",

"urban electrification pc of urban pop" :
"df1.loc[country]['data']['energy']['electricity']['access']['urban_electrification']['value']",

"electrification pc of pop source year" :
"df1.loc[country]['data']['energy']['electricity']['access']['date']",

"electricity production kWh" :
"df1.loc[country]['data']['energy']['electricity']['production']['kWh']",

"electricity production kWh source year":
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"df1.loc[country]['data']['energy']['electricity']['production']['date']",

"electricity consumption kWh" :
"df1.loc[country]['data']['energy']['electricity']['consumption']['kWh']",

"electricity consumption kWh source year":
"df1.loc[country]['data']['energy']['electricity']['consumption']['date']",

"electricity exports kWh" :
"df1.loc[country]['data']['energy']['electricity']['exports']['kWh']",

"electricity exports kWh source year":
"df1.loc[country]['data']['energy']['electricity']['exports']['date']",

"electricity imports kWh" :
"df1.loc[country]['data']['energy']['electricity']['imports']['kWh']",

"electricity imports kWh source year":
"df1.loc[country]['data']['energy']['electricity']['imports']['date']",

"electricity installed generating capacity kW" :
"df1.loc[country]['data']['energy']['electricity']['installed_generating_capacity']['kW']",

"electricity installed generating capacity kW source year":
"df1.loc[country]['data']['energy']['installed_generating_capacity']['exports']['date']",

"electricity from fossil fuels pc of total installed capacity":
"df1.loc[country]['data']['energy']['electricity']['by_source']['fossil_fuels']['percent']",

"electricity from fossil fuels pc of total installed capacity source year":
"df1.loc[country]['data']['energy']['electricity']['by_source']['fossil_fuels']['date']",

"electricity from nuclear fuels pc of total installed capacity":
"df1.loc[country]['data']['energy']['electricity']['by_source']['nuclear_fuels']['percent']",

"electricity from nuclear fuels pc of total installed capacity source year":
"df1.loc[country]['data']['energy']['electricity']['by_source']['nuclear_fuels']['date']",

"electricity from hydroelectric plants pc of total installed capacity":
"df1.loc[country]['data']['energy']['electricity']['by_source']['hydroelectric_plants']['percent']",

"electricity from hydroelectric plants pc of total installed capacity source year":
"df1.loc[country]['data']['energy']['electricity']['by_source']['hydroelectric_plants']['date']",

"electricity from other renewable sources pc of total installed capacity":
"df1.loc[country]['data']['energy']['electricity']['by_source']['other_renewable_sources']['percent']",

"electricity from other renewable sources pc of total installed capacity source year":
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"df1.loc[country]['data']['energy']['electricity']['by_source']['other_renewable_sources']['date']",

# ENERGY - OIL

"crude oil production bbl per day" :
"df1.loc[country]['data']['energy']['crude_oil']['production']['bbl_per_day']",

"crude oil production bbl per day source year" :
"df1.loc[country]['data']['energy']['crude_oil']['production']['date']",

"crude oil exports bbl per day" :
"df1.loc[country]['data']['energy']['crude_oil']['exports']['bbl_per_day']",

"crude oil exports bbl per day source year" :
"df1.loc[country]['data']['energy']['crude_oil']['exports']['date']",

"crude oil imports bbl per day" :
"df1.loc[country]['data']['energy']['crude_oil']['imports']['bbl_per_day']",

"crude oil imports bbl per day source year" :
"df1.loc[country]['data']['energy']['crude_oil']['imports']['date']",

"crude oil proved reserves bbl" :
"df1.loc[country]['data']['energy']['crude_oil']['proved_reserves']['bbl']",

"crude proved reserves bbl source year" :
"df1.loc[country]['data']['energy']['crude_oil']['proved_reserves']['date']",

# ENERGY - REFINED PETROLEUM PRODUCTS

"refined petroleum products production bbl per day":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['production']['bbl_per_day']",

"refined petroleum products production bbl per day source year":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['production']['date']",

"refined petroleum products consumption bbl per day":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['consumption']['bbl_per_day']",

"refined petroleum products consumption bbl per day source year":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['consumption']['date']",

"refined petroleum products exports bbl per day":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['exports']['bbl_per_day']",

"refined petroleum products exports bbl per day source year":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['exports']['date']",
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"refined petroleum products imports bbl per day":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['imports']['bbl_per_day']",

"refined petroleum products imports bbl per day source year":
"df1.loc[country]['data']['energy']['refined_petroleum_products']['imports']['date']",

# ENERGY - NATURAL GAS

"natural gas production cubic meters" :
"df1.loc[country]['data']['energy']['natural_gas']['production']['cubic_metres']",

"natural gas production cubic meters source year" :
"df1.loc[country]['data']['energy']['natural_gas']['production']['date']",

"natural gas consumption cubic meters" :
"df1.loc[country]['data']['energy']['natural_gas']['consumption']['cubic_metres']",

"natural gas consumption cubic meters source year" :
"df1.loc[country]['data']['energy']['natural_gas']['consumption']['date']",

"natural gas exports cubic meters" :
"df1.loc[country]['data']['energy']['natural_gas']['exports']['cubic_metres']",

"natural gas exports cubic meters source year" :
"df1.loc[country]['data']['energy']['natural_gas']['exports']['date']",

"natural gas imports cubic meters" :
"df1.loc[country]['data']['energy']['natural_gas']['imports']['cubic_metres']",

"natural gas imports cubic meters source year" :
"df1.loc[country]['data']['energy']['natural_gas']['imports']['date']",

"natural gas proved reserves cubic meters" :
"df1.loc[country]['data']['energy']['natural_gas']['proved_reserves']['cubic_metres']",

"natural gas proved reserves cubic meters source year" :
"df1.loc[country]['data']['energy']['natural_gas']['proved_reserves']['date']",

# ENERGY - CARBON DIOXIDE EMISSIONS

"carbon dioxide emissions from energy consumption Mt":
"df1.loc[country]['data']['energy']['carbon_dioxide_emissions_from_consumption_of_energy']['megatonnes']",

"carbon dioxide emissions from energy consumption Mt source year":
"df1.loc[country]['data']['energy']['carbon_dioxide_emissions_from_consumption_of_energy']['date']",

# COMMUNICATIONS
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"telephones fixed lines total subscriptions" :
"df1.loc[country]['data']['communications']['telephones']['fixed_lines']['total_subscriptions']",

"telephones fixed lines subscriptions per one hundred inhabitants" :
"df1.loc[country]['data']['communications']['telephones']['fixed_lines']['subscriptions_per_one_hundred_inhabitants']",

"telephones fixed lines source year" :
"df1.loc[country]['data']['communications']['telephones']['fixed_lines']['date']",

"telephones mobile cellular total subscriptions" :
"df1.loc[country]['data']['communications']['telephones']['mobile_cellular']['total']",

"telephones mobile cellular subscriptions per one hundred inhabitants" :
"df1.loc[country]['data']['communications']['telephones']['mobile_cellular']['subscriptions_per_one_hundred_inhabitants']",

"telephones mobile cellular source year" :
"df1.loc[country]['data']['communications']['telephones']['mobile_cellular']['date']",

"internet users total":
"df1.loc[country]['data']['communications']['internet']['users']['total']",

"internet users pc of pop":
"df1.loc[country]['data']['communications']['internet']['users']['percent_of_population']",

"internet users source year":
"df1.loc[country]['data']['communications']['internet']['users']['date']",

# TRANSPORTATION

"national air transport nr of registered air carriers":
"df1.loc[country]['data']['transportation']['air_transport']['national_system']['number_of_registered_air_carriers']",

"national air transport inventory of registered air carriers":
"df1.loc[country]['data']['transportation']['air_transport']['national_system']['inventory_of_registered_aircraft_operated_by_air_carriers']",

"national air transport annual passenger traffic":
"df1.loc[country]['data']['transportation']['air_transport']['national_system']['annual_passenger_traffic_on_registered_air_carriers']",

"national air transport annual freight traffic":
"df1.loc[country]['data']['transportation']['air_transport']['national_system']['annual_freight_traffic_on_registered_air_carriers']",

"total number of airports":
"df1.loc[country]['data']['transportation']['air_transport']['airports']['total']['airports']",

"total number of airports source year":
"df1.loc[country]['data']['transportation']['air_transport']['airports']['total']['date']",

"number of airports with paved runways":
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"df1.loc[country]['data']['transportation']['air_transport']['airports']['paved']['total']",

"number of airports with unpaved runways":
"df1.loc[country]['data']['transportation']['air_transport']['airports']['unpaved']['total']",

"total length of railways km":
"df1.loc[country]['data']['transportation']['railways']['total']['length']",

"total length of railways km source year":
"df1.loc[country]['data']['transportation']['railways']['date']",

"total length of roadways km":
"df1.loc[country]['data']['transportation']['roadways']['total']['value']",

"total length of roadways paved km":
"df1.loc[country]['data']['transportation']['roadways']['paved']['value']",

"total length of roadways unpaved km":
"df1.loc[country]['data']['transportation']['roadways']['unpaved']['value']",

"total length of roadways km source year":
"df1.loc[country]['data']['transportation']['roadways']['date']",

"total length of waterways km":
"df1.loc[country]['data']['transportation']['waterways']['value']",

"total length of waterways km source year":
"df1.loc[country]['data']['transportation']['waterways']['date']",

"merchant marine total":
"df1.loc[country]['data']['transportation']['merchant_marine']['total']",

"merchant marine total source year":
"df1.loc[country]['data']['transportation']['merchant_marine']['date']",

# MILITARY EXPENDITURES

"military expenditures pc of gdp":
"df1.loc[country]['data']['military_and_security']['expenditures']['annual_values'][0]['value']",

"military expenditures pc of gdp source year":
"df1.loc[country]['data']['military_and_security']['expenditures']['annual_values'][0]['date']"

}

In [25]: str_data_dic = {
"residency requirement for naturalization in years":
"df1.loc[country]['data']['government']['citizenship']['residency_requirement_for_naturalization']",
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"suffrage (universal)":
"df1.loc[country]['data']['government']['suffrage']['universal']",

}

In [26]: df1.loc[country]['data']['government']['suffrage']

Out[26]: {'age': 18, 'compulsory': False, 'universal': True}

In [27]: df1.loc[country]['data']['communications']['telephones']['mobile_cellular']

Out[27]: {'date': '2016-07-01',
'global_rank': 72,
'subscriptions_per_one_hundred_inhabitants': 89,
'total': 12878926}

In [28]: df1.loc['United States']['data']['transportation']['merchant_marine']

Out[28]: {'by_type': [{'count': 5, 'type': 'bulk carrier'},
{'count': 61, 'type': 'container ship'},
{'count': 114, 'type': 'general cargo'},
{'count': 66, 'type': 'oil tanker'},
{'count': 3365, 'type': 'other'}],

'date': '2017',
'global_rank': 5,
'total': 3611}

In [29]: eval("df1.loc[country]['data']['government']['citizenship']['residency_requirement_for_naturalization']")

Out[29]: '5 years'

In [30]: df1.loc[country]['data']['people']['maternal_mortality_rate']['deaths_per_100k_live_births']

Out[30]: 443

In [31]: df1.loc['United States']['data']['people']['birth_rate']

Out[31]: {'births_per_1000_population': 12.5, 'date': '2017', 'global_rank': 158}

In [70]: # data_dic.keys()

In [33]: counter=0
missing_data_df = pd.DataFrame(columns=data_dic.keys())
missing_data_df.loc["number of countries without data"]=0
for data in data_dic.keys():

counter+=1
if counter%20==0:

print(round(counter/len(data_dic.keys())*100,1), "%")
missing_data_df.loc["number of countries without data"][data]=0

countries[data]=np.nan
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for country in countries.index:
try:

value = eval(data_dic[data])
countries.loc[country][data]=value

except (KeyError, TypeError) as e:
missing_data_df[data] += 1

print("100%")

7.5 %
15.1 %
22.6 %
30.2 %
37.7 %
45.3 %
52.8 %
60.4 %
67.9 %
75.5 %
83.0 %
90.6 %
98.1 %
100%

In [34]: counter=0
missing_data_df = pd.DataFrame(columns=str_data_dic.keys())
missing_data_df.loc["number of countries without data"]=0
for data in str_data_dic.keys():

counter+=1
if counter%20==0:

print(round(counter/len(data_dic.keys())*100,1), "%")
missing_data_df.loc["number of countries without data"][data]=0

countries[data]=np.dtype('|S1')
for country in countries.index:

try:
value = eval(str_data_dic[data])
countries.loc[country][data]=value

except (KeyError, TypeError) as e:
countries.loc[country][data]=None
missing_data_df[data] += 1

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
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See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [35]: countries_wb.rename(index=country_name_dict, inplace=True)

In [36]: wb_df = pd.DataFrame(index=countries_wb.index)

In [37]: counter=0
missing_data_df = pd.DataFrame(columns=data_dic.keys())
missing_data_df.loc["number of countries without data"]=0
for data in data_dic.keys():

counter+=1
if counter%20==0:

print(round(counter/len(data_dic.keys())*100,1), "%")
missing_data_df.loc["number of countries without data"][data]=0

wb_df[data]=np.nan
for country in wb_df.index:

try:
value = eval(data_dic[data])
wb_df.loc[country][data]=value

except (KeyError, TypeError) as e:
missing_data_df[data] += 1

print("100%")

7.5 %
15.1 %
22.6 %
30.2 %
37.7 %
45.3 %
52.8 %
60.4 %
67.9 %
75.5 %
83.0 %
90.6 %
98.1 %
100%

In [38]: countries_wb.head()
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Out[38]: Country Data Region IncomeGroup
country
Afghanistan AFG South Asia Low income
Albania ALB Europe & Central Asia Upper middle income
Algeria DZA Middle East & North Africa Upper middle income
American Samoa ASM East Asia & Pacific Upper middle income
Andorra AND Europe & Central Asia High income

In [39]: wb_df['Region'] = countries_wb['Region']
wb_df['IncomeGroup'] = countries_wb['IncomeGroup']
wb_df['Country Code'] = countries_wb['Country Data']

In [40]: wb_df = wb_df.sort_values(['Region', 'Country Code'], axis=0)

In [71]: # wb_df.corr()['net migration rate per 1000'].sort_values()

In [73]: # for column in wb_df.columns:
# print(column)

In [43]: %matplotlib inline

indicator1 = 'urbanization rate'
indicator2 = 'urban population pc'

df_to_plot =wb_df[np.abs(wb_df[indicator1]-wb_df[indicator1].mean())<=(3*wb_df[indicator1].std())]
df_to_plot = df_to_plot[np.abs(df_to_plot[indicator2]-df_to_plot[indicator2].mean())<=(3*df_to_plot[indicator2].std())]

corr = df_to_plot[indicator1].corr(df_to_plot[indicator2])
print(corr)

df_to_plot.plot.scatter(x=indicator1 , y=indicator2,
#c='internet users total',
#colormap='viridis'
)

-0.517487147171

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x113d7f978>
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In [44]: def get_corrs(df):
col_correlations = df.corr()
col_correlations.loc[:, :] = np.tril(col_correlations, k=-1)
cor_pairs = col_correlations.stack()
return cor_pairs.to_dict()

my_corrs = get_corrs(wb_df)

In [74]: # my_corrs

In [46]: for country in countries.index:
if country not in countries_wb.index:

print(country)

In [75]: # for country in countries_wb.index:
# if country not in countries.index:
# print(country)

In [48]: countries['Region'] = countries_wb['Region']
countries['IncomeGroup'] = countries_wb['IncomeGroup']
countries['Country Data'] = countries_wb['Country Data']

In [49]: countries.sort_values(['Region', 'Country Data'], axis=0, inplace=True)

In [51]: (1-countries.isnull().sum().sum()/(193*267))*100
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Out[51]: 86.39265684733462

In [76]: # countries.head()

In [77]: # countries.tail()

In [55]: import xlsxwriter

In [56]: source_cols = [col for col in countries.columns if 'source year' in col]

In [78]: # countries.columns[~countries.columns.isin(source_cols)]

In [58]: LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def colToExcel(col): # col is 1 based
excelCol = str()
div = col
while div:

(div, mod) = divmod(div-1, 26) # will return (x, 0 .. 25)
excelCol = chr(mod + 65) + excelCol

return excelCol

In [59]: wb_df=wb_df.fillna(0.4242)

In [60]: writer = pd.ExcelWriter('processed_data\cia_world_factbook_data_wb_countries.xlsx', engine='xlsxwriter')
workbook = writer.book

source_cols = [col for col in wb_df.columns if 'source year' in col]

wb_df[wb_df.columns[~wb_df.columns.isin(source_cols)]].to_excel(writer, sheet_name='data')

wb_df[source_cols].to_excel(writer, sheet_name='source')

counter = 1
for column in wb_df.columns[~wb_df.columns.isin(source_cols)]:

counter+=1
excel_col=colToExcel(counter)
excel_range = '=data!$'+excel_col+'$2:$'+excel_col+'$'+str(len(wb_df)+1)
column_name = column.replace(" ", "_").replace("(", "").replace(")","")
workbook.define_name(column_name , excel_range)

# # Get the xlsxwriter objects from the dataframe writer object.
# workbook = writer.book
# worksheet = writer.sheets['data']

In [61]: writer.close()
workbook.close()

In [62]: countries = countries.fillna(0.4242)
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In [64]: # writer = pd.ExcelWriter('processed_data/cia_world_factbook_data.xlsx', engine='xlsxwriter')
# workbook = writer.book

# source_cols = [col for col in countries.columns if 'source year' in col]

# countries[countries.columns[~countries.columns.isin(source_cols)]].to_excel(writer, sheet_name='data')

# countries[source_cols].to_excel(writer, sheet_name='source')

# counter = 1
# for column in countries.columns[~countries.columns.isin(source_cols)]:
# counter+=1
# excel_col=colToExcel(counter)
# excel_range = '=data!$'+excel_col+'$2:$'+excel_col+'$'+str(len(countries)+1)
# column_name = column.replace(" ", "_").replace("(", "").replace(")","")
# workbook.define_name(column_name , excel_range)

# # Get the xlsxwriter objects from the dataframe writer object.
# workbook = writer.book
# worksheet = writer.sheets['data']

In [65]: missing_data_df.loc["number of countries without data"]=0

In [66]: %matplotlib inline

In [79]: # missing_data_df.T

In [68]: max(missing_data_df)

Out[68]: 'youth unemployment total'

In [69]: from bokeh.charts import Histogram, output_file, show
from bokeh.sampledata.autompg import autompg as df

p = Histogram(missing_data_df.T['number of countries without data'], title="Missing Data - CIA World Factbook")

output_file("histogram.html",)

show(p)

/anaconda3/lib/python3.6/site-packages/bokeh/util/deprecation.py:34: BokehDeprecationWarning:
The bokeh.charts API has moved to a separate 'bkcharts' package.

This compatibility shim will remain until Bokeh 1.0 is released.
After that, if you want to use this API you will have to install
the bkcharts package explicitly.

warn(message)
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E-1010 (CDSVIEW_SOURCE_DOESNT_MATCH): CDSView used by Glyph renderer must have a source that matches the Glyph renderer's data source: GlyphRenderer(id='03d5b90d-ce47-4884-9db7-7aad934c8b18', ...)
E-1010 (CDSVIEW_SOURCE_DOESNT_MATCH): CDSView used by Glyph renderer must have a source that matches the Glyph renderer's data source: GlyphRenderer(id='1d769a41-fce9-4998-9791-b02b4853daa3', ...)
E-1010 (CDSVIEW_SOURCE_DOESNT_MATCH): CDSView used by Glyph renderer must have a source that matches the Glyph renderer's data source: GlyphRenderer(id='b0181f81-3d30-44c3-989e-1d0602f2a46c', ...)
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140 D. Python Scripts

D.7. Fragile State Index



07 - Fragile State Index

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np
import sys

In [2]: countries = pd.ExcelFile("processed_data/country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [3]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [4]: with open('processed_data/country_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [5]: countries_wb_sort = countries_wb.sort_values(['Region', 'Country Data'], axis=0)
countries_wb_sort = countries_wb_sort.rename(index=country_name_dict)

In [6]: fsi_data = countries_wb_sort

In [7]: for year in range(2006, 2019, 1):
file_loc = "raw data/Fragile State Index/fsi-"+str(year)+".xlsx"
year_df = pd.ExcelFile(file_loc)
year_df = year_df.parse()
year_df.set_index('Country', inplace=True)
col_list = year_df.columns
year_dict={}
for column in year_df.columns:

year_dict[column]=column + " "+str(year)
year_df = year_df.rename(index=country_name_dict, columns=year_dict)
fsi_data = pd.concat([fsi_data, year_df], axis=1, join_axes=[fsi_data.index])

In [8]: def func(x):
if x.values[0] is None:

return None
else:

return index_df.loc[x.name, x.values[0]]
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In [9]: index_dict = {}

for column in col_list:
index_df=None
index_cols = [col for col in fsi_data.columns if column in col]

index_df = fsi_data[fsi_data.columns[fsi_data.columns.isin(index_cols)]]
index_df = index_df.T.drop_duplicates().T

most_recent_value_colname = column + " Most Recent Value"

index_df[most_recent_value_colname] = pd.DataFrame(index_df.apply(lambda x: x.last_valid_index(), axis=1)).apply(func,axis=1)

index_df['Region'] = fsi_data['Region']
index_df['Country Code'] = fsi_data['Country Data']

index_df = index_df.sort_values(['Region', 'Country Code'], axis=0)

index_df.fillna(0.4242, inplace=True)

cols = index_df.columns.tolist()
cols.insert(0, cols.pop(cols.index('Region')))
cols.insert(0, cols.pop(cols.index('Country Code')))
cols.insert(0, cols.pop(cols.index(most_recent_value_colname)))
index_df = index_df.reindex(columns= cols)

index_dict[column] = index_df

In [10]: # index_dict['C1: Security Apparatus']

In [11]: index_dict.keys()

Out[11]: dict_keys(['Year', 'Rank', 'Total', 'C1: Security Apparatus', 'C2: Factionalized Elites', 'C3: Group Grievance', 'E1: Economy', 'E2: Economic Inequality', 'E3: Human Flight and Brain Drain', 'P1: State Legitimacy', 'P2: Public Services', 'P3: Human Rights', 'S1: Demographic Pressures', 'S2: Refugees and IDPs', 'X1: External Intervention'])

In [12]: for country in year_df.index:
if country not in country_name_dict.keys():

print(country)

In [13]: for country in countries.index:
if country not in year_df.index:

print(country)

Andorra
Dominica
Kiribati
Liechtenstein
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Marshall Islands
Monaco
Nauru
Palau
St. Kitts & Nevis
St. Lucia
St. Vincent & Grenadines
San Marino
Tonga
Tuvalu
Vanuatu

In [14]: for country in year_df.index:
if country not in countries.index:

print(country)

In [15]: (1-fsi_data.isnull().sum().sum()/(193*195))*100

Out[15]: 76.40494220805103

In [16]: import xlsxwriter

In [17]: LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def colToExcel(col): # col is 1 based
excelCol = str()
div = col
while div:

(div, mod) = divmod(div-1, 26) # will return (x, 0 .. 25)
excelCol = chr(mod + 65) + excelCol

return excelCol

In [18]: index_dict=None
for year in range(2006, 2019, 1):

file_loc = "raw data/Fragile State Index/fsi-"+str(year)+".xlsx"

year_df = pd.ExcelFile(file_loc)
year_df = year_df.parse()
year_df.set_index('Country', inplace=True)

if index_dict!=None:
pass

else:
index_dict={}
for column in year_df.columns:

index_dict[column]=pd.DataFrame(index=year_df.index)

year_dict={}
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for column in year_df.columns:
year_dict[column]=column + " "+str(year)

new_df = pd.concat([index_dict[column], year_df], axis=1, join_axes=[index_dict[column].index])
index_dict[column] = new_df

year_df = year_df.rename(index=country_name_dict, columns=year_dict)
fsi_data = pd.concat([fsi_data, year_df], axis=1, join_axes=[fsi_data.index])

In [19]: index_dict.keys()

Out[19]: dict_keys(['Year', 'Rank', 'Total', 'C1: Security Apparatus', 'C2: Factionalized Elites', 'C3: Group Grievance', 'E1: Economy', 'E2: Economic Inequality', 'E3: Human Flight and Brain Drain', 'P1: State Legitimacy', 'P2: Public Services', 'P3: Human Rights', 'S1: Demographic Pressures', 'S2: Refugees and IDPs', 'X1: External Intervention'])

In [20]: def whatisthis(s):
if isinstance(s, str):

print("ordinary string")
elif isinstance(s, unicode):

print("unicode string")
else:

print("not a string")

In [28]: try:
writer.close()

except (NameError, AttributeError):
pass

writer = pd.ExcelWriter('processed_data/fragile_state_index_data.xlsx', engine='xlsxwriter')
workbook = writer.book

for index in index_dict.keys():

sheet_name=_name = index.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace('C1_', "").replace("C2_","").replace("C3_","")
# print(sheet_name)
# whatisthis(sheet_name)
# print(sheet_name)

df_to_write = index_dict[index].copy()
df_to_write.rename(columns=lambda x: int(x[-4:]) if x[-4]=='2' else x , inplace=True)
df_to_write.to_excel(writer, sheet_name=sheet_name)

counter = 1+3

for column in index_dict[index].columns:
if (column == 'Region' or column == 'Country Code'):

continue
elif " Most Recent Value" in column:

excel_range = '='+sheet_name+'!$B$2:$B$'+str(len(index_dict[index])+1)
# whatisthis(excel_range)

column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace(":","").replace('C1_', "").replace("C2_","").replace("C3_","")
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# whatisthis(column_name)
# print(column_name, excel_range)

workbook.define_name(column_name, excel_range)
else:

counter+=1
excel_col = colToExcel(counter)
excel_range = '='+sheet_name+'!$'+excel_col+'$2:$'+excel_col+'$'+str(len(index_dict[index])+1)

# whatisthis(excel_range)
column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace(":","").replace('C1_', "").replace("C2_","").replace("C3_","")

# whatisthis(excel_range)
# print(column_name, excel_range)

workbook.define_name(column_name, excel_range)

# fsi_data.to_excel(writer, sheet_name='data')

writer.save()

# counter = 1
# for column in fsi_data.columns:
# counter+=1
# excel_col=colToExcel(counter)
# excel_range = '=data!$'+excel_col+'$2:$'+excel_col+'$'+str(len(fsi_data)+1)
# column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","")
# print(column_name)
# workbook.define_name(column_name , excel_range)

In [29]: # index_dict["C1: Security Apparatus"].head()

In [30]: index_dict.keys()

Out[30]: dict_keys(['Year', 'Rank', 'Total', 'C1: Security Apparatus', 'C2: Factionalized Elites', 'C3: Group Grievance', 'E1: Economy', 'E2: Economic Inequality', 'E3: Human Flight and Brain Drain', 'P1: State Legitimacy', 'P2: Public Services', 'P3: Human Rights', 'S1: Demographic Pressures', 'S2: Refugees and IDPs', 'X1: External Intervention'])

In [31]: writer.close()
workbook.close()
writer = pd.ExcelWriter('processed_data/fragile_state_index_data.xlsx', engine='xlsxwriter')
workbook = writer.book
index_dict['C1: Security Apparatus'].to_excel(writer, sheet_name='1_Security_Apparatus')

for column in index_dict['C1: Security Apparatus'].columns:
if (column == 'Region' or column == 'Country Code'):

continue
if " Most Recent Value" in column:

excel_range = '='+sheet_name+'!$B$2:$B$'+str(len(index_dict[index])+1)
column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace("C", "")
workbook.define_name(column_name, excel_range)
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continue
counter+=1
excel_col = colToExcel(counter)

# print(excel_col)
excel_range = '='+'1_Security_Apparatus'+'!$'+excel_col+'$2:$'+excel_col+'$'+str(len(index_dict[index])+1)
column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","")

# print(column_name, excel_range)
workbook.define_name(column_name, excel_range)

writer.save()

In [32]: try:
writer.close()
workbook.close()

except (NameError, AttributeError):
pass

writer = pd.ExcelWriter('processed_data/fragile_state_index_data.xlsx', engine='xlsxwriter')
workbook = writer.book

for index in ['C1: Security Apparatus', 'C2: Factionalized Elites', 'C3: Group Grievance']:

sheet_name=_name = index.replace(" ", "_").replace("(", "").replace(")","").replace(":","")
# print(sheet_name)

counter = 1+3

for column in index_dict[index].columns:
if (column == 'Region' or column == 'Country Code'):

continue
if " Most Recent Value" in column:

excel_range = '='+sheet_name+'!$B$2:$B$'+str(len(index_dict[index])+1)
column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","")
workbook.define_name(column_name, excel_range)
continue

counter+=1
excel_col = colToExcel(counter)

# print(excel_col)
excel_range = '='+sheet_name+'!$'+excel_col+'$2:$'+excel_col+'$'+str(len(index_dict[index])+1)
column_name = column.replace(" ", "_").replace("(", "").replace(")","").replace(":","")

# print(column_name, excel_range)
workbook.define_name(column_name, excel_range)

for index in ['C1: Security Apparatus', 'C2: Factionalized Elites', 'C3: Group Grievance']:
sheet_name=_name = index.replace(" ", "_").replace("(", "").replace(")","").replace(":","")
index_dict[index].to_excel(writer, sheet_name=sheet_name )

# fsi_data.to_excel(writer, sheet_name='data')
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workbook.close()
writer.save()
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08 - Political Instability Task Force

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np

In [2]: countries = pd.ExcelFile("country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [3]: with open('processed_data/country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [4]: pitf_data = pd.ExcelFile("raw data/Political Instability Task Force/pitf.world.20160101-20170930.xlsx", header=2)
pitf_data = pitf_data.parse()

In [5]: pitf_data.head()

Out[5]: "Disclaimer: This research was conducted for the Political Instability Task Force (PITF). The PITF is funded by the Central Intelligence Agency (CIA). The views expressed herein are the authors' alone and do not necessarily represent the views of the Task Force or the U.S. Government.\n \
0 EVENT TYPE AND REPORTING
1 Event Type
2 Incident
3 Incident
4 Incident

Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 \
0 NaN NaN EVENT DATE NaN
1 Campaign Identifier Event Reporting Start Day Start Month
2 NaN Eyewitness Account 6 1
3 NaN Eyewitness Account 17 1
4 NaN Eyewitness Account 20 1

Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 ... \
0 NaN NaN NaN NaN EVENT LOCATION ...
1 Start Year End Day End Month End Year Country ...
2 2016 99 99 9999 AFG ...
3 2016 99 99 9999 AFG ...
4 2016 99 99 9999 AFG ...
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Unnamed: 63 Unnamed: 64 Unnamed: 65 \
0 LINK DATA SOURCE NaN
1 Link Primary Source Type Primary Source
2 NaN BBC International
3 NaN BBC, AFP, Reuters, NYT International
4 NaN BBC, AFP, Reuters, AP International

Unnamed: 66 Unnamed: 67 \
0 NaN NaN
1 Secondary Source Type Secondary Source
2 Afghan Islamic Press news agency, Peshawar Local
3 Shamshad TV, Kabul, Afghan Channel One (1TV), ... Local
4 Tolo TV, Kabul, Tolo News, Kabul, Voice of Jih... Local

Unnamed: 68 Unnamed: 69 \
0 NaN NaN
1 Contesting Source Type Contesting Source
2 NaN None
3 NaN None
4 NaN None

Unnamed: 70 Unnamed: 71 Unnamed: 72
0 NaN COMMENTS NaN
1 Citation Comments Coder
2 BBCSAP0020160107ec170025t NaN PAS
3 BBCMNF0020160117ec1h000rv, AFPR000020160117ec1... NaN PAS
4 BBCMNF0020160120ec1k003e9, BBCMNF0020160120ec1... NaN PAS

[5 rows x 73 columns]
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D.9. Climate Data: Climate Research Unit



09 - Climate Data

August 15, 2018

In [ ]: import json
import pandas as pd
import csv
import numpy as np
import io
import requests
from bs4 import BeautifulSoup
from io import StringIO
import re

In [ ]: countries = pd.ExcelFile("country_list.xlsx")
countries = countries.parse()
countries.set_index('country', inplace=True)

In [ ]: with open('processed_data/country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [ ]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [ ]: climate_data_df = pd.ExcelFile("raw data/Climate Data/Climate_country_table.xlsx")
climate_data_df = climate_data_df.parse(header=None)

In [ ]: climate_data_df.columns = ['country','mean','tmp','pre','cld','dtr','vap']

In [ ]: climate_data_df.set_index('country', inplace=True)

In [ ]: climate_data_dic = {}

for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url="https://crudata.uea.ac.uk/~timm/cty/obs/data/obs."+country_url+".htm"

res = requests.get(url)
urlData = requests.get(url).content
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soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)

for t in texts:
newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

list_text = list(texts)
new_list = []

for i in range(len(list_text)):
my_list = list_text[i].split(",")
new_list.append(my_list)

for i in range(4, 8, 1):
new_list[i][0:2] = [''.join(new_list[i][0:2])]

new_list[3]=['var',
'ann',
'MAM',
'JJA',
'SON',
'DJF' ,
'Jan', 'Feb','Mar','Apr','May','Jun','Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

df = pd.DataFrame(new_list[4:len(new_list)], columns = new_list[3])
df.set_index('var', inplace=True)

str_country = str(country)

create_dic_expression = 'climate_data_dic["'+str_country+'"]=df'
exec(create_dic_expression)

In [ ]: climate_data_dic['Actaeon Group'].loc['Tmean']

In [ ]: climate_data_df.head()

In [ ]: tmp_dic = {}
for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url = "https://crudata.uea.ac.uk/~timm/cty/scen/data/tyn_cy_3_0."+country_url+".tmp.per"

# print(url)
res = requests.get(url)
urlData = requests.get(url).content
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soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)
for t in texts:

newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

new_list = []

for i in range(len(texts)):
my_list = texts[0].split(",")
new_list.append(my_list)

scen_index = new_list[0].index('SCEN')
ann_index = new_list[0].index('ANN')

nr_columns = int(len(new_list[0][scen_index:ann_index+1]))
nr_rows = int(len(new_list[0][ann_index+1:])/nr_columns)

tmp = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

tmp.set_index('SCEN', inplace=True)

str_country = str(country)

create_dic_expression = 'tmp_dic["'+str_country+'"]=tmp'
exec(create_dic_expression)

In [ ]: pre_dic = {}
for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url = "https://crudata.uea.ac.uk/~timm/cty/scen/data/tyn_cy_3_0."+country_url+".pre.per"

# print(url)
res = requests.get(url)
urlData = requests.get(url).content
soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)
for t in texts:

newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
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newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

new_list = []

for i in range(len(texts)):
my_list = texts[0].split(",")
new_list.append(my_list)

scen_index = new_list[0].index('SCEN')
ann_index = new_list[0].index('ANN')

nr_columns = int(len(new_list[0][scen_index:ann_index+1]))
nr_rows = int(len(new_list[0][ann_index+1:])/nr_columns)

pre = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

pre.set_index('SCEN', inplace=True)

str_country = str(country)

create_dic_expression = 'pre_dic["'+str_country+'"]=pre'
exec(create_dic_expression)

In [ ]: cld_dic = {}
for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url = "https://crudata.uea.ac.uk/~timm/cty/scen/data/tyn_cy_3_0."+country_url+".cld.per"

# print(url)
res = requests.get(url)
urlData = requests.get(url).content
soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)
for t in texts:

newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

new_list = []
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for i in range(len(texts)):
my_list = texts[0].split(",")
new_list.append(my_list)

scen_index = new_list[0].index('SCEN')
ann_index = new_list[0].index('ANN')

nr_columns = int(len(new_list[0][scen_index:ann_index+1]))
nr_rows = int(len(new_list[0][ann_index+1:])/nr_columns)

cld = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

cld.set_index('SCEN', inplace=True)

str_country = str(country)

create_dic_expression = 'cld_dic["'+str_country+'"]=cld'
exec(create_dic_expression)

In [ ]: dtr_dic = {}
for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url = "https://crudata.uea.ac.uk/~timm/cty/scen/data/tyn_cy_3_0."+country_url+".dtr.per"

# print(url)
res = requests.get(url)
urlData = requests.get(url).content
soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)
for t in texts:

newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

new_list = []

for i in range(len(texts)):
my_list = texts[0].split(",")
new_list.append(my_list)
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scen_index = new_list[0].index('SCEN')
ann_index = new_list[0].index('ANN')

nr_columns = int(len(new_list[0][scen_index:ann_index+1]))
nr_rows = int(len(new_list[0][ann_index+1:])/nr_columns)

dtr = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

dtr.set_index('SCEN', inplace=True)

str_country = str(country)

create_dic_expression = 'dtr_dic["'+str_country+'"]=dtr'
exec(create_dic_expression)

In [ ]: vap_dic = {}
for country in climate_data_df.index:
# print(country)

country_url = country.replace(" ", "_").replace(".","")
url = "https://crudata.uea.ac.uk/~timm/cty/scen/data/tyn_cy_3_0."+country_url+".vap.per"

# print(url)
res = requests.get(url)
urlData = requests.get(url).content
soup = BeautifulSoup(urlData, 'html.parser')
texts = soup.find_all(text=True)
for t in texts:

newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

new_list = []

for i in range(len(texts)):
my_list = texts[0].split(",")
new_list.append(my_list)

scen_index = new_list[0].index('SCEN')
ann_index = new_list[0].index('ANN')

nr_columns = int(len(new_list[0][scen_index:ann_index+1]))
nr_rows = int(len(new_list[0][ann_index+1:])/nr_columns)

6



vap = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

vap.set_index('SCEN', inplace=True)

str_country = str(country)

create_dic_expression = 'vap_dic["'+str_country+'"]=vap'
exec(create_dic_expression)

In [ ]: print(nr_rows, nr_columns)

In [ ]: 288/16

In [ ]: tmp = pd.DataFrame(np.array(new_list[0][ann_index+1:]).reshape(nr_rows, nr_columns), columns = new_list[0][scen_index:ann_index+1])

In [ ]: tmp.head()

In [ ]: url="https://crudata.uea.ac.uk/~timm/cty/scen/scaler.ann"

In [ ]: res = requests.get(url)

In [ ]: urlData = requests.get(url).content

In [ ]: soup = BeautifulSoup(urlData, 'html.parser')

In [ ]: texts = soup.find_all(text=True)

In [ ]: for t in texts:
newtext = t.replace("&nbsp", "")
newtext = t.replace("\n","")
newtext = t.replace("\xa0","")
newtext = t.replace("\r","")
newtext = re.sub("\s+", ",", t.strip())
t.replace_with(newtext)

texts = soup.find_all(text=True)

In [ ]: new_list = []

for i in range(len(texts)):
my_list = texts[i].split(",")
new_list.append(my_list)

In [ ]: nr_columns = int(len(new_list[0][36:53]))
nr_rows = int(len(new_list[0][53:])/len(new_list[0][36:53]))

In [ ]: print(nr_columns, nr_rows)

In [ ]: scalers = pd.DataFrame(np.array(new_list[0][53:]).reshape(nr_rows, nr_columns), columns = new_list[0][36:53])
scalers.set_index("YEAR", inplace=True)
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In [ ]: scalers

In [ ]: GCM_SRES_scenario_dic = {
"CGCM2a1" : 1,
"CGCM2a2" : 2,
"CGCM2b1" : 4,
"CGCM2b2" : 3,
"CSIRO2a1" : 5,
"CSIRO2a2" : 6,
"CSIRO2b1" : 8,
"CSIRO2b2" : 7,
"HadCM3a1" : 9,
"HadCM3a2" : 10,
"HadCM3b1" : 12,
"HadCM3b2" : 11,
"PCMa1" : 13,
"PCMa2" : 14,
"PCMb1" : 16,
"PCMb2" : 15

}

In [ ]: scalers['PCMb2']

In [ ]: test_df = tmp_dic['Albania']

In [ ]: test_df.loc['1']

In [ ]: test_df.iloc[GCM_SRES_scenario_dic['PCMb2']]

In [ ]: scalers['PCMb2']

In [ ]: # for country in tmp_dic.keys():
# # print(country)
# country_df = tmp_dic[country]
# for scenario in GCM_SRES_scenario_dic.keys():
# x, y = None, None
# x=country_df.loc[str(GCM_SRES_scenario_dic[scenario])].convert_objects(convert_numeric=True)
# y=scalers[scenario].convert_objects(convert_numeric=True)
# temp_df=None
# temp_df = pd.DataFrame(np.multiply.outer(y,x), columns = country_df.loc[str(GCM_SRES_scenario_dic[scenario])].index, index=scalers.index)

# z=climate_data_dic[country].loc['Tmean'].convert_objects(convert_numeric=True)

# z.index = z.index.str.upper()
# z = z.reindex(index = x.index)

# temp_df = temp_df + z

# for year in temp_df.index:
# for month in temp_df.columns:
# final_df.loc(axis=0)[country, year, month][scenario] = temp_df.loc[year][month]
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In [ ]: scenario = 'CGCM2a1'

In [ ]: %matplotlib inline

In [ ]: # final_df.unstack(level=1)['CGCM2a1'].unstack(level=1)

In [ ]: # df2 = final_df.reset_index()

In [ ]: # new_df = final_df.unstack()['CGCM2a1'].unstack(level=1)

In [ ]: # final_df.index.get_level_values(2)

In [ ]: # final_df.columns

In [ ]: month_cols = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL","AUG","SEP","OCT","NOV","DEC"]

In [ ]: # df3 = pd.DataFrame(final_df['CGCM2a1']).unstack(level=0).swaplevel(0, 1, axis=0).T[month_cols].T.swaplevel(0,1, axis=0)

In [ ]: # df3.head()

In [ ]: # df4 = df3.reset_index()

In [ ]: # tmp_dic.keys()

In [ ]: for country in tmp_dic.keys():
if country not in country_name_dict.keys():

print(country)

In [ ]: df_key = pd.DataFrame(list(tmp_dic.keys()))
df_key.set_index(0, inplace=True)
df_key.rename(index=country_name_dict, inplace=True)
countries_wb.rename(index=country_name_dict, inplace=True)
for country in countries_wb.index:

if country not in df_key.index:
print(country)

In [ ]: countries_wb.index

In [ ]: # df4.index

In [ ]: # df4.rename(index = country_name_dict)

In [ ]: # df4.index

In [ ]: # df4.index

In [ ]: # scenario_dic_dfs = {}

# for scenario in GCM_SRES_scenario_dic.keys():

# df3 = pd.DataFrame(final_df[scenario]).unstack(level=0).swaplevel(0, 1, axis=0).T[month_cols].T.swaplevel(0,1, axis=0)
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# df4 = df3.reset_index()
# df4["Date"] = df4["Month"] + " " +df4["Year"].map(str)
# df4["Month Time"]=df4["Month"]
# df4.replace({"Month Time" : model_time_dic}, inplace=True)
# df4["Year"]=pd.to_numeric(df4["Year"])
# print(type(df4["Year"]), type(df4["Month Time"]))
# df4["Model Time"] = df4["Year"]+df4["Month Time"]

# df4 = df4.T

# df4.rename(index = country_name_dict, inplace=True)

# df4['Region'] = countries_wb['Region']
# df4['Country Code'] = countries_wb['Country Data']

# df4 = df4.sort_values(['Region', 'Country Code'], axis=0)

# scenario_dic_dfs[scenario] = df4

In [ ]: # df4.sort_values(by='Country')

In [ ]: scenario_dic_dfs.keys()

In [ ]: country_name_dict['USA']

In [ ]: # scenario_dic_dfs['CGCM2a2']

In [ ]: # df5 = df4.sort_values('Model Time').T

In [ ]: # df5.head()

In [ ]: model_time_dic = {"JAN": 0+0.5*(1/12),
"FEB":1/12+0.5*(1/12),
"MAR":2/12+0.5*(1/12),
"APR":3/12+0.5*(1/12),
"MAY":4/12+0.5*(1/12),
"JUN":5/12+0.5*(1/12),
"JUL":6/12+0.5*(1/12),
"AUG":7/12+0.5*(1/12),
"SEP":8/12+0.5*(1/12),
"OCT":9/12+0.5*(1/12),
"NOV":10/12+0.5*(1/12),
"DEC":11/12+0.5*(1/12),
"MAM": 0,

"JJA":0,
"SON":0,
"DJF":0,
"ANN":0}

10



In [ ]: # type(df2["Year"][0])

In [ ]: # df2["Date"] = df2["Month"] + " " +df2["Year"].map(str)
# df2["Month Time"]=df2["Month"]
# df2.replace({"Month Time" : model_time_dic}, inplace=True)
# df2["Year"]=pd.to_numeric(df2["Year"])
# print(type(df2["Year"]), type(df2["Month Time"]))
# df2["Model Time"] = df2["Year"]+df2["Month Time"]

In [ ]: # df2.pivot(columns='Country')

In [ ]: # pd.to_numeric(df2["Year"]).values

In [ ]: # df2.head

In [ ]: # plot_df = pd.DataFrame(final_df["CGCM2a1"].loc[:,:,"ANN"])

In [ ]: # plot_df2 = plot_df.unstack(level=0)

In [ ]: # plot_df2.T.head()

In [ ]: # plot_df2['CGCM2a1'].loc['2001'].sort_values(axis=0)

In [ ]: # plot_df2['CGCM2a1'].loc['2100'].sort_values(axis=0)

In [ ]: # plot_df2.plot(x=plot_df2.index, y=plot_df2.columns, legend=False)

In [ ]: # final_df.loc[:,:,slice("AUG")]

In [ ]: # plot_df.loc["JAN"]

In [ ]: import matplotlib as plt
plt.rcParams['savefig.facecolor'] = "0.8"

In [ ]: # plot_df.plot(x=plot_df.index, y=plot_df.columns, legend=False)

In [ ]: # final_df.loc["Zimbabwe"]

In [ ]: # df_afgh.loc['2001']['JAN']

In [ ]: # country_df = tmp_dic['Afghanistan']

In [ ]: # country_df.iloc[GCM_SRES_scenario_dic[scenario]]["JAN":"DEC"]

In [ ]: # x=country_df.iloc[GCM_SRES_scenario_dic[scenario]].convert_objects(convert_numeric=True)

In [ ]: y=scalers[scenario].convert_objects(convert_numeric=True)

In [ ]: z=climate_data_dic['Afghanistan'].loc['Tmean'].convert_objects(convert_numeric=True)

In [ ]: type(z)
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In [ ]: z.index = z.index.str.upper()
z = z.reindex(index = x.index)

In [ ]: z.head()

In [ ]: df_afgh = pd.DataFrame(np.multiply.outer(y,x), columns = country_df.iloc[GCM_SRES_scenario_dic[scenario]].index, index=scalers.index)

In [ ]: climate_data_dic['Afghanistan'].loc['Tmean']

In [ ]: (df_afgh+z).head()

In [ ]: %matplotlib inline

In [ ]: df_afgh.head()

In [ ]: df_afgh.plot(x=df_afgh.index, y='AUG')

In [ ]: idx = pd.MultiIndex.from_product([climate_data_df.index,
scalers.index,

country_df.iloc[GCM_SRES_scenario_dic[scenario]].index],
names=['Country', 'Year','Month'])

cols = GCM_SRES_scenario_dic.keys()

In [ ]: country_df.iloc[GCM_SRES_scenario_dic[scenario]].index

In [ ]: final_df = pd.DataFrame(pd.DataFrame(np.nan, idx, cols))

In [ ]: scalers.index

In [ ]: final_df.loc(axis=0)['Afghanistan','2001','JAN']['CGCM2a1'] = -10

In [ ]: final_df.loc(axis=0)['Afghanistan', '2001']

In [ ]: climate_data_dic['Afghanistan'].loc['Tmean']
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10 - Climate Data World Bank

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np
import wbpy

In [2]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [3]: c_api = wbpy.ClimateAPI()

c_api.ARG_DEFINITIONS["instrumental_types"]

Out[3]: {'pr': 'Precipitation (rainfall and assumed water equivalent), in millimeters',
'tas': 'Temperature, in degrees Celsius'}

In [4]: c_api.ARG_DEFINITIONS["instrumental_intervals"]

Out[4]: ['year', 'month', 'decade']

In [5]: c_api.ARG_DEFINITIONS["modelled_types"]

Out[5]: {'ppt_days': 'Number of days with precipitation > 0.2mm',
'ppt_days10': 'Number of days with precipitation > 10mm',
'ppt_days2': 'Number of days with precipitation > 2mm',
'ppt_days90th': "Number of days with precipitation > the control period's 90th percentile",
'ppt_dryspell': 'Average number of days between precipitation events',
'ppt_means': 'Average daily precipitation',
'pr': 'Precipitation (rainfall and assumed water equivalent), in millimeters',
'tas': 'Temperature, in degrees Celsius',
'tmax_days10th': "Number of days with max temperature below the control period's 10th percentile (cool days)",
'tmax_days90th': "Number of days with max temperature above the control period's 90th percentile (hot days)",
'tmax_means': 'Average daily maximum temperature, Celsius',
'tmin_days0': 'Number of days with min temperature below 0 degrees Celsius',
'tmin_days10th': "Number of days with min temperature below the control period's 10th percentile (cold nights)",
'tmin_days90th': "Number of days with min temperature above the control period's 90th percentile (warm nights)",
'tmin_means': 'Average daily minimum temperature, Celsius'}
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In [6]: c_api.ARG_DEFINITIONS["modelled_intervals"]

Out[6]: {'aanom': 'Average annual change (anomaly).',
'aavg': 'Annual average',
'annualanom': 'Average annual change (anomaly).',
'annualavg': 'Annual average',
'manom': 'Average monthly change (anomaly).',
'mavg': 'Monthly average'}

In [7]: countries = list(countries_wb['Country Data'].values)

In [8]: countries1=countries[0:10]

In [9]: for country in countries1:
print(country)
modelled_dataset = c_api.get_modelled("tas", "mavg", [country])

AFG
ALB
DZA
ASM
AND
AGO
ATG
ARG
ARM
ABW

In [10]: model_list = list(modelled_dataset.as_dict().keys())
scenario_list = ["a2","b2"]

In [11]: countries1=["AFG","CHI"]

In [14]: wb_dict = countries_wb['Country Data'].to_dict()

reverse_dict={}
for key in wb_dict.keys():

reverse_dict[wb_dict[key]] = key

In [15]: time = np.linspace(1939+1/12/2, 2100-1/12/2, (2100-1939)*12)

full_results_dic = {}
for scenario in scenario_list:

full_results_dic[scenario] = {}
for scenario in scenario_list:

for model in model_list:
full_results_dic[scenario][model] = pd.DataFrame(columns=time)
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for country in countries1:
print(country)
try:

modelled_dataset = c_api.get_modelled("tas", "mavg", [country])
except ValueError:

new_df = pd.DataFrame(index=range(12), columns=range(1939, 2100))
inter_df = new_df
inter_df=inter_df.melt().T
inter_df.columns = time
inter_df = inter_df.drop('variable')
inter_df.rename(index={'value': country}, inplace=True)
inter_df = inter_df.fillna(0.4242)
for model in model_list:

for scenario in scenario_list:
full_results_dic[scenario][model] = full_results_dic[scenario][model].append(inter_df)

continue
for model in model_list:

for scenario in scenario_list:
model_df = pd.DataFrame(pd.DataFrame(modelled_dataset.as_dict(scenario)).loc[country][model])
new_df = pd.DataFrame(index=range(12), columns=range(1939, 2100))

model_df.columns= model_df.columns.astype(str)
new_df.columns = new_df.columns.astype(str)
new_df = pd.merge(new_df,model_df, how = 'right')

new_df.columns = new_df.columns.astype(float)
new_df = new_df.astype(float)

new_df.interpolate(axis=0, method='time')
trans_df = new_df.T
inter_df = trans_df.interpolate().T
inter_df=inter_df.melt().T

inter_df.columns = time

inter_df = inter_df.drop('variable')
inter_df.rename(index={'value': country}, inplace=True)
full_results_dic[scenario][model] = full_results_dic[scenario][model].append(inter_df)

for model in model_list:
for scenario in scenario_list:

full_results_dic[scenario][model]=full_results_dic[scenario][model].rename(index=reverse_dict)
full_results_dic[scenario][model]['Region'] =countries_wb['Region']
full_results_dic[scenario][model]['Country Code'] =countries_wb['Country Data']
full_results_dic[scenario][model]['Income Level'] =countries_wb['IncomeGroup']

cols=list(full_results_dic[scenario][model].columns)
cols.insert(0, cols.pop(cols.index('Region')))

3



cols.insert(0, cols.pop(cols.index('Country Code')))
cols.insert(0, cols.pop(cols.index('Income Level')))
full_results_dic[scenario][model] = full_results_dic[scenario][model].loc[:, cols].sort_values(['Region', 'Country Code'], axis=0)

AFG
CHI

In [17]: # writer.close()

# writer = pd.ExcelWriter('processed_data/climate_data_wb_temp.xlsx')

# for scenario in scenario_list:
# for model in model_list:
# print(scenario, model)
# tabname = scenario +"_"+model
# df_to_write = full_results_dic[scenario][model]
# df_to_write.to_excel(writer, tabname)

In [18]: # writer.save()

In [19]: len(full_results_dic['a2'].keys())

Out[19]: 18

In [21]: # full_results_dic['a2']['bccr_bcm2_0']

In [22]: #precipitation

time = np.linspace(1939+1/12/2, 2100-1/12/2, (2100-1939)*12)

full_results_dic_precipitation = {}
for scenario in scenario_list:

full_results_dic_precipitation[scenario] = {}
for scenario in scenario_list:

for model in model_list:
full_results_dic_precipitation[scenario][model] = pd.DataFrame(columns=time)

for country in countries1:
print(country)
try:

modelled_dataset = c_api.get_modelled("pr", "mavg", [country])
except ValueError:

new_df = pd.DataFrame(index=range(12), columns=range(1939, 2100))
inter_df = new_df
inter_df=inter_df.melt().T
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inter_df.columns = time
inter_df = inter_df.drop('variable')
inter_df.rename(index={'value': country}, inplace=True)
inter_df = inter_df.fillna(0.4242)
for model in model_list:

for scenario in scenario_list:
full_results_dic_precipitation[scenario][model] = full_results_dic_precipitation[scenario][model].append(inter_df)

continue
for model in model_list:

for scenario in scenario_list:
model_df = pd.DataFrame(pd.DataFrame(modelled_dataset.as_dict(scenario)).loc[country][model])
new_df = pd.DataFrame(index=range(12), columns=range(1939, 2100))

model_df.columns= model_df.columns.astype(str)
new_df.columns = new_df.columns.astype(str)
new_df = pd.merge(new_df,model_df, how = 'right')

new_df.columns = new_df.columns.astype(float)
new_df = new_df.astype(float)

new_df.interpolate(axis=0, method='time')
trans_df = new_df.T
inter_df = trans_df.interpolate().T
inter_df=inter_df.melt().T

inter_df.columns = time

inter_df = inter_df.drop('variable')
inter_df.rename(index={'value': country}, inplace=True)
full_results_dic_precipitation[scenario][model] = full_results_dic_precipitation[scenario][model].append(inter_df)

for model in model_list:
for scenario in scenario_list:

full_results_dic_precipitation[scenario][model]=full_results_dic_precipitation[scenario][model].rename(index=reverse_dict)
full_results_dic_precipitation[scenario][model]['Region'] =countries_wb['Region']
full_results_dic_precipitation[scenario][model]['Country Code'] =countries_wb['Country Data']
full_results_dic_precipitation[scenario][model]['Income Level'] =countries_wb['IncomeGroup']

cols=list(full_results_dic_precipitation[scenario][model].columns)
cols.insert(0, cols.pop(cols.index('Region')))
cols.insert(0, cols.pop(cols.index('Country Code')))
cols.insert(0, cols.pop(cols.index('Income Level')))
full_results_dic_precipitation[scenario][model] = full_results_dic_precipitation[scenario][model].loc[:, cols].sort_values(['Region', 'Country Code'], axis=0)

AFG
CHI
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In [23]: # writer.close()

# writer = pd.ExcelWriter('processed_data/climate_data_wb_precipitation.xlsx')

# for scenario in scenario_list:
# for model in model_list:
# print(scenario, model)
# tabname = scenario +"_"+model
# df_to_write = full_results_dic_precipitation[scenario][model]
# df_to_write.to_excel(writer, tabname)

6



D.11. Ethnic Groups 171

D.11. Ethnic Groups



11 - Ethnic Groups

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np
import wbpy
import io
import requests
import bs4
from bs4 import BeautifulSoup
import math
from itertools import combinations, product

In [2]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [3]: with open('processed_data/iso2_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
iso2_name_dict = {rows['iso2code']:rows['name'] for rows in reader}

In [4]: with open('processed_data/country_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [5]: json1_file = open('raw data/CIA World Factbook/2018-04-30_factbook.json')
json1_str = json1_file.read()

In [6]: json1_data = json.loads(json1_str)

In [8]: # json1_data["countries"]["Congo"]["data"]['people']['ethnic_groups']['ethnicity']

In [9]: df = pd.DataFrame.from_dict({(i,j): json1_data[i][j]
for i in json1_data.keys()
for j in json1_data[i].keys()})

In [10]: df1=df.loc["data"]["countries"]

In [11]: for country in df1.index:
# print(df1[country]["name"])
# print(country)

df1.rename(index={country : df1.loc[country]["name"]}, inplace=True)
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In [12]: df1 = pd.DataFrame(df1.rename(index=country_name_dict))

In [13]: countries_wb = countries_wb.sort_values(['Region', 'Country Data'])

In [14]: countries_wb.rename(index=country_name_dict, inplace=True)

In [15]: ethnicity_df = pd.DataFrame(index = countries_wb.index)

In [16]: for country in countries_wb.index:
if country not in df1.index:

print(country)

Channel Islands
Saint Martin (French part)
U.S. Virgin Islands

In [17]: df1.loc["Gabon"]['data']['people']['ethnic_groups']['ethnicity']

Out[17]: [{'name': 'Bantu tribes'},
{'name': 'including four major tribal groupings ; other Africans and Europeans',
'note': 'Fang, Bapounou, Nzebi, Obamba'},

{'percent': 154},
{'percent': 0},
{'name': 'including', 'percent': 10},
{'name': 'French and', 'percent': 11},
{'name': 'persons of dual nationality', 'percent': 0}]

In [18]: df1.loc['Gabon']['data']['people']['ethnic_groups']['ethnicity']

Out[18]: [{'name': 'Bantu tribes'},
{'name': 'including four major tribal groupings ; other Africans and Europeans',
'note': 'Fang, Bapounou, Nzebi, Obamba'},

{'percent': 154},
{'percent': 0},
{'name': 'including', 'percent': 10},
{'name': 'French and', 'percent': 11},
{'name': 'persons of dual nationality', 'percent': 0}]

In [19]: df1.loc['Gabon']['data']['people']['ethnic_groups']['ethnicity']=[x for x in df1.loc['Gabon']['data']['people']['ethnic_groups']['ethnicity'] if ('name' in x)]

In [20]: for country in ethnicity_df.index:
try:

for ethnicity in df1.loc[country]['data']['people']['ethnic_groups']['ethnicity']:

if ethnicity['name'] not in ethnicity_df.columns:
ethnicity_df[ethnicity['name']] = None

if 'percent' in ethnicity:
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ethnicity_df.loc[country][ethnicity['name']]=ethnicity['percent']
#print(country)

else:
#print(language)
ethnicity_df.loc[country][ethnicity['name']] = 100/len(df1.loc[country]['data']['people']['ethnic_groups']['ethnicity'])

except KeyError:
pass

for country in ethnicity_df.index:

total_sum = ethnicity_df.loc[country].sum()

if 95.0 <= total_sum <= 105.0:
continue

elif math.isnan(total_sum):
print("No data for:", country)

else:
specified_percentages = 0
ethnicities_wo_percentage = []

df1.loc[country]['data']['people']['ethnic_groups']['ethnicity']=[x for x in df1.loc[country]['data']['people']['ethnic_groups']['ethnicity'] if ('name' in x)]

for ethnicity in df1.loc[country]['data']['people']['ethnic_groups']['ethnicity']:
if 'percent' in ethnicity:

if ethnicity['percent']>100:
print(country)
print('Value for', ethnicity['name'], 'in', country, 'is over 100%. Scaling down in process......')
ethnicities_wo_percentage.append(ethnicity['name'])

else:
specified_percentages += ethnicity['percent']

else:
ethnicities_wo_percentage.append(ethnicity['name'])

# print(country, counter, languages_wo_percentage, specified_percentages)

if (specified_percentages <=95 and len(ethnicities_wo_percentage)==0):
for ethnicity in df1.loc[country]['data']['people']['ethnic_groups']['ethnicity']:

ethnicity_df.loc[country][ethnicity['name']] = (ethnicity['percent']/specified_percentages)*100

for ethnicity in ethnicities_wo_percentage:
ethnicity_df.loc[country][ethnicity] = (100-specified_percentages)/len(ethnicities_wo_percentage)

No data for: Channel Islands
Portugal
Value for 000; since in Portugal is over 100%. Scaling down in process...
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No data for: Saint Martin (French part)
No data for: Sint Maarten
No data for: U.S. Virgin Islands
No data for: Palestinian Territories
Congo - Kinshasa
Value for over African ethnic groups of which the majority are Bantu; the four largest tribes - Mongo in Congo - Kinshasa is over 100%. Scaling down in process...

In [21]: # ethnicity_df

In [22]: # No data for: Channel Islands
# No data for: Saint Martin (French part)
# No data for: Sint Maarten
# No data for: U.S. Virgin Islands
# No data for: Palestinian Territories

ethnicity_df.loc['Channel Islands']['French'] = 50
ethnicity_df.loc['Channel Islands']['English'] = 50
ethnicity_df.loc['Saint Martin (French part)']['French'] = 10
ethnicity_df.loc['Saint Martin (French part)']['Afro-Caribbean'] = 90
ethnicity_df.loc['Sint Maarten']['Dutch'] = 10
ethnicity_df.loc['Sint Maarten']['Afro-Caribbean'] = 90
ethnicity_df.loc['U.S. Virgin Islands']['black/African American'] = 76
ethnicity_df.loc['U.S. Virgin Islands']['American'] = 15.7
ethnicity_df.loc['U.S. Virgin Islands']['Asian'] = 1.4
ethnicity_df.loc['Palestinian Territories']['Arab'] = 78.5
ethnicity_df.loc['Palestinian Territories']['Jewish'] = 21.5

In [23]: [col for col in ethnicity_df.columns if 'Jew' in col]

Out[23]: ['Jewish', 'Jewish minorities', 'non-Jewish', 'Jewish and other']

In [24]: ethnicity_df1 = ethnicity_df.copy()

In [25]: test_list = ['Native', 'Hawaiian', 'or', 'other', 'Pacific', 'Islander']

In [26]: def merge(x):
tmp = []
for i in range(len(x)):

if (x[i][0].isupper and x[i+1][0].isupper):
print('yes')
yield ' '.join(tmp)
tmp = []
tmp.append(x[i] +" "+ x[i+1])
print(tmp)

if len(tmp):
yield ' '.join(tmp)

In [27]: test_list
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Out[27]: ['Native', 'Hawaiian', 'or', 'other', 'Pacific', 'Islander']

In [29]: # merge_list(test_list)

In [30]: def merge_list(input_list):
new_list = []
counter = 0
for i in input_list[:-1]:

index_i = input_list.index(i)
# print(i)

if index_i != 0:
# print(i in new_list[index_i-1-counter])

if i in input_list[index_i-1-counter]:
# print('yes')

continue
if (i[0].isupper() and input_list[index_i+1][0].isupper()):

combined_string=input_list[index_i]+" "+input_list[index_i+1]
new_list.append(combined_string)
counter+=1

else:
new_list.append(i)

if len(new_list) == 0:
print("now")
new_list.append(input_list[-1])

to_remove=[]
for i in new_list:

if not i[0].isupper():

to_remove.append(i)
for i in to_remove:

new_list.remove(i)

return new_list

In [31]: for column in ethnicity_df1.columns:
counter = 0
if len(column.split())>1:

column_list = column.split()
# print(1, column_list)

new_list = merge_list(column_list)
# print(2, new_list)

# ethnicity_list = []
# for item in column_list:
# if item[0].isupper() and item in language_df1.columns:
# counter+=1
# language_list.append(item)
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# for language in language_list:
# print(language, "-", column)
# language_df1[language] = language_df1[language]+(language_df1[column]/len(language_list))

# if counter!=0:
# language_df1.drop(column, axis=1, inplace = True)

# for column in language_df1.columns:
# if column[0].islower():
# language_df1.drop(column, axis=1, inplace = True)
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12 - Language Data

August 15, 2018

In [1]: import json
import pandas as pd
import csv
import numpy as np
import wbpy
import io
import requests
import bs4
from bs4 import BeautifulSoup
import math
from itertools import combinations, product

In [2]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [3]: with open('processed_data/iso2_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
iso2_name_dict = {rows['iso2code']:rows['name'] for rows in reader}

In [4]: with open('processed_data/country_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [5]: json1_file = open('raw data/CIA World Factbook/2018-04-30_factbook.json')
json1_str = json1_file.read()

In [6]: json1_data = json.loads(json1_str)

In [7]: json1_data["countries"]["zambia"]["data"]['people']['languages']

Out[7]: {'date': '2010',
'language': [{'name': 'Bemba', 'percent': 33.4},
{'name': 'Nyanja', 'percent': 14.7},
{'name': 'Tonga', 'percent': 11.4},
{'name': 'Lozi', 'percent': 5.5},
{'name': 'Chewa', 'percent': 4.5},
{'name': 'Nsenga', 'percent': 2.9},
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{'name': 'Tumbuka', 'percent': 2.5},
{'name': 'Lunda', 'note': 'North Western', 'percent': 1.9},
{'name': 'Kaonde', 'percent': 1.8},
{'name': 'Lala', 'percent': 1.8},
{'name': 'Lamba', 'percent': 1.8},
{'name': 'English', 'note': 'official', 'percent': 1.7},
{'name': 'Luvale', 'percent': 1.5},
{'name': 'Mambwe', 'percent': 1.3},
{'name': 'Namwanga', 'percent': 1.2},
{'name': 'Lenje', 'percent': 1.1},
{'name': 'Bisa', 'percent': 1},
{'name': 'other', 'percent': 9.7},
{'name': 'unspecified', 'percent': 0.2}],

'note': "Zambia is said to have over 70 languages, although many of these may be considered dialects; all of Zambia's major languages are members of the Bantu family"}

In [51]: # json1_data['countries'].keys()

In [9]: df = pd.DataFrame.from_dict({(i,j): json1_data[i][j]
for i in json1_data.keys()
for j in json1_data[i].keys()})

In [10]: df1=df.loc["data"]["countries"]

In [52]: for country in df1.index:
# print(df1[country]["name"])
# print(country)

df1.rename(index={country : df1.loc[country]["name"]}, inplace=True)

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
2482 try:

-> 2483 return libts.get_value_box(s, key)
2484 except IndexError:

pandas/_libs/tslib.pyx in pandas._libs.tslib.get_value_box (pandas/_libs/tslib.c:18843)()

pandas/_libs/tslib.pyx in pandas._libs.tslib.get_value_box (pandas/_libs/tslib.c:18477)()

TypeError: 'str' object cannot be interpreted as an integer

During handling of the above exception, another exception occurred:
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KeyError Traceback (most recent call last)

<ipython-input-52-92ad6499776e> in <module>()
2 # print(df1[country]["name"])
3 # print(country)

----> 4 df1.rename(index={country : df1.loc[country]["name"]}, inplace=True)

/anaconda3/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key)
599 key = com._apply_if_callable(key, self)
600 try:

--> 601 result = self.index.get_value(self, key)
602
603 if not is_scalar(result):

/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
2489 raise InvalidIndexError(key)
2490 else:

-> 2491 raise e1
2492 except Exception: # pragma: no cover
2493 raise e1

/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
2475 try:
2476 return self._engine.get_value(s, k,

-> 2477 tz=getattr(series.dtype, 'tz', None))
2478 except KeyError as e1:
2479 if len(self) > 0 and self.inferred_type in ['integer', 'boolean']:

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
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KeyError: 'name'

In [12]: df1 = pd.DataFrame(df1.rename(index=country_name_dict))

In [13]: countries_wb = countries_wb.sort_values(['Region', 'Country Data'])

In [14]: countries_wb.rename(index=country_name_dict, inplace=True)

In [15]: language_df = pd.DataFrame(index = countries_wb.index)

In [16]: for country in countries_wb.index:
if country not in df1.index:

print(country)

Channel Islands
Saint Martin (French part)
U.S. Virgin Islands

In [17]: for country in language_df.index:
try:

for language in df1.loc[country]['data']['people']['languages']['language']:

if language['name'] not in language_df.columns:
language_df[language['name']] = None

if 'percent' in language:
language_df.loc[country][language['name']]=language['percent']
#print(country)

else:
#print(language)
language_df.loc[country][language['name']] = 100/len(df1.loc[country]['data']['people']['languages']['language'])

except KeyError:
pass

for country in language_df.index:

total_sum = language_df.loc[country].sum()

if 95.0 <= total_sum <= 105.0:
continue

elif math.isnan(total_sum):
print("No data for:", country)

else:

4



specified_percentages = 0
languages_wo_percentage = []
for language in df1.loc[country]['data']['people']['languages']['language']:

if 'percent' in language:
if language['percent']>100:

print('Value for', language['name'], 'in', country, 'is over 100%. Scaling down in process......')
languages_wo_percentage.append(language['name'])

else:
specified_percentages += language['percent']

else:
languages_wo_percentage.append(language['name'])

# print(country, counter, languages_wo_percentage, specified_percentages)

if (specified_percentages <=95 and len(languages_wo_percentage)==0):
for language in df1.loc[country]['data']['people']['languages']['language']:

language_df.loc[country][language['name']] = (language['percent']/specified_percentages)*100

for language in languages_wo_percentage:
language_df.loc[country][language] = (100-specified_percentages)/len(languages_wo_percentage)

Value for indigenous languages in Solomon Islands is over 100%. Scaling down in process...
No data for: Channel Islands
Value for Aranese along with Catalan, speakers in Spain is over 100%. Scaling down in process...
No data for: Saint Martin (French part)
No data for: Sint Maarten
No data for: U.S. Virgin Islands
No data for: Palestinian Territories
Value for other , Fang, Bubi census in Equatorial Guinea is over 100%. Scaling down in process...
Value for over additional indigenous languages in Nigeria is over 100%. Scaling down in process...
Value for more than different languages and dialects in Chad is over 100%. Scaling down in process...

In [18]: len(df1.loc["Brunei"]['data']['people']['languages']['language'])

Out[18]: 3

In [19]: df1.loc["Guam"]['data']['people']['languages']['language']

Out[19]: [{'name': 'English', 'percent': 43.6},
{'name': 'Filipino', 'percent': 21.2},
{'name': 'Chamorro', 'percent': 17.8},
{'name': 'other Pacific island languages', 'percent': 10},
{'name': 'Asian languages', 'percent': 6.3},
{'name': 'other', 'percent': 1.1}]

In [20]: df1.loc["Somalia"]['data']['people']['languages']['language']
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Out[20]: [{'name': 'Somali',
'note': 'official, according to the 2012 Transitional Federal Charter'},

{'name': 'Arabic',
'note': 'official, according to the 2012 Transitional Federal Charter'},

{'name': 'Italian'},
{'name': 'English'}]

In [ ]: # language_df.head()

In [22]: language_df.loc['Zambia'].sum()

Out[22]: 99.9

In [ ]: # language_df.loc['Equatorial Guinea']

In [ ]: # language_df.sum(axis=1)

In [ ]: # language_df.loc["New Caledonia"]

In [26]: # No data for: Channel Islands
# No data for: Saint Martin (French part)
# No data for: Sint Maarten
# No data for: U.S. Virgin Islands
# No data for: Palestinian Territories

language_df.loc['Channel Islands']['French'] = 50
language_df.loc['Channel Islands']['English'] = 50
language_df.loc['Saint Martin (French part)']['English'] = 100
language_df.loc['Sint Maarten']['English'] = 100
language_df.loc['U.S. Virgin Islands']['Spanish'] = 17
language_df.loc['U.S. Virgin Islands']['English'] = 100-17
language_df.loc['Palestinian Territories']['Arabic']=100

In [27]: language_matrix = pd.DataFrame(index = language_df.index, columns = language_df.index)

In [28]: language_df = language_df.fillna(0)

In [29]: language_df1 = language_df.copy()

In [30]: for column in language_df1.columns:
counter = 0
if len(column.split())>1:

column_list = column.split()

language_list = []
for item in column_list:

if item[0].isupper() and item in language_df1.columns:
counter+=1
language_list.append(item)

for language in language_list:
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print(language, "-", column)
language_df1[language] = language_df1[language]+(language_df1[column]/len(language_list))

if counter!=0:
language_df1.drop(column, axis=1, inplace = True)

for column in language_df1.columns:
if column[0].islower():

language_df1.drop(column, axis=1, inplace = True)

Chinese - Chinese dialects
Chinese - Standard Chinese or Mandarin
Mandarin - Standard Chinese or Mandarin
Chinese - other Chinese dialects
Chinese - Northern Chinese
Filipino - Filipino and English ; eight major dialects - Tagalog
English - Filipino and English ; eight major dialects - Tagalog
Tagalog - Filipino and English ; eight major dialects - Tagalog
English - English and Tongan
Tongan - English and Tongan
French - some French
Khmer - and Khmer
German - German less than
Castilian - Castilian Spanish
Spanish - Castilian Spanish
German - German widely spoken
Russian - Russian widely used in government and business
French - French patois
Maya - Maya languages
Creole - Guyanese Creole
English - English patois
Spanish - Spanish only
Spanish - Spanish and indigenous languages
English - Panamanian English Creole
Creole - Panamanian English Creole
French - French Creole
Creole - French Creole
Hindustani - Caribbean Hindustani
Creole - Trinidadian Creole English
English - Trinidadian Creole English
Creole - Tobagonian Creole English
English - Tobagonian Creole English
Creole - Trinidadian Creole French
French - Trinidadian Creole French
Berber - Berber or Tamazight ; dialects include Kabyle Berber
Berber - Berber or Tamazight ; dialects include Kabyle Berber
Berber - Shawiya Berber

7



Berber - Mzab Berber
Berber - Tuareg Berber
English - English and French widely understood by educated classes
French - English and French widely understood by educated classes
Azeri - Azeri Turkic and Turkic dialects
Turkic - Azeri Turkic and Turkic dialects
Turkic - Azeri Turkic and Turkic dialects
Armenian - and Armenian are official in areas where native speakers of these languages constitute a majority of the population
English - English widely spoken
English - English ; Berber
Berber - English ; Berber
Berber - Berber languages , Tachelhit, Tarifit
English - English commonly used as a second language
Persian - Afghan Persian or Dari
French - French <.5% each
Kirundi - Kirundi and other language
French - French and French and other language
French - French and French and other language
Swahili - Swahili and Swahili and other language
Swahili - Swahili and Swahili and other language
English - English and English and other language
English - English and English and other language
Yoruba - Fon and Yoruba
Lingala - Lingala and Monokutuba
French - French <.1
English - English <.1
Swahili - Swahili <.1
Creole - Seychellois Creole
Ewe - Ewe and Mina
Dagomba - Kabye and Dagomba
Kiswahili - Kiswahili or Swahili
Swahili - Kiswahili or Swahili

In [ ]: # for column in sorted(language_df.columns):
# print(column)

In [32]: (language_df1.loc['Argentina']*language_df1.loc['United States']/(100**2)).sum()

Out[32]: 0.15333333333333335

In [33]: for combo in product(language_df1.index, repeat = 2):
country1, country2 = combo
language_matrix.at[country1, country2] = ((language_df1.loc[country1]*language_df1.loc[country2])/(language_df1.loc[country1]**2).sum()).sum()

In [53]: # language_matrix

In [35]: counter = 0
for country in language_df1.index:
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counter+=(language_df1.loc["American Samoa"]*language_df1.loc[country]).sum()/(language_df1.loc["American Samoa"]**2).sum()

In [36]: (language_df1.loc["American Samoa"]*language_df1.loc['American Samoa']).sum()/(language_df1.loc["American Samoa"]**2).sum()

Out[36]: 1.0

In [37]: counter

Out[37]: 3.6563588461427265

In [38]: language_matrix['United Kingdom'].sum()

Out[38]: 94.38853573098004

In [39]: language_matrix['United States'].sum()

Out[39]: 78.1116379786224

In [40]: language_matrix["Spain"].sum()

Out[40]: 11.179142474701631

In [54]: # language_matrix['Marshall Islands']

In [42]: df1.loc["Mali"]['data']['people']['languages']['language']

Out[42]: [{'name': 'French', 'note': 'official'},
{'name': 'Bambara', 'percent': 46.3},
{'name': 'Peul/Foulfoulbe', 'percent': 9.4},
{'name': 'Dogon', 'percent': 7.2},
{'name': 'Maraka/Soninke', 'percent': 6.4},
{'name': 'Malinke', 'percent': 5.6},
{'name': 'Sonrhai/Djerma', 'percent': 5.6},
{'name': 'Minianka', 'percent': 4.3},
{'name': 'Tamacheq', 'percent': 3.5},
{'name': 'Senoufo', 'percent': 2.6},
{'name': 'Bobo', 'percent': 2.1},
{'name': 'unspecified', 'percent': 0.7},
{'name': 'other', 'percent': 6.3}]

In [43]: df1.loc["Seychelles"]['data']['people']['languages']['language']

Out[43]: [{'name': 'Seychellois Creole', 'note': 'official', 'percent': 89.1},
{'name': 'English', 'note': 'official', 'percent': 5.1},
{'name': 'French', 'note': 'official', 'percent': 0.7},
{'name': 'other', 'percent': 3.8},
{'name': 'unspecified', 'percent': 1.4}]

In [55]: # language_matrix.sum(axis=1)
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In [56]: # language_matrix.sum(axis=0)

In [46]: language_matrix.loc['Guam']['United States']

Out[46]: 1.2724377800681952

In [57]: # language_matrix

In [48]: for country in language_matrix.index:
language_matrix.at[country,country]=0

In [58]: # language_matrix

In [50]: writer = pd.ExcelWriter('processed_data/language_data_wb.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$'+str(len(language_matrix)+1))
language_matrix.to_excel(writer)
writer.save()
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13 - Freedom in the World

August 15, 2018

In [1]: import pandas as pd
import csv
import numpy as np

In [2]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [3]: with open('processed_data/iso2_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
iso2_name_dict = {rows['iso2code']:rows['name'] for rows in reader}

In [4]: with open('processed_data/country_name_dic.csv', encoding = "UTF-8") as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [5]: freedom_df = pd.read_excel("raw data/Country and Territory Ratings and Statuses FIW1973-2018.xlsx", sheetname="Country Ratings, Statuses ",skiprows=1)

In [6]: freedom_df.at[0, 'Year(s) Under Review'] = 'data'

In [7]: columns = list(freedom_df.columns)

In [8]: unnamed_1 = list(range(2, len(freedom_df.columns), 3))
unnamed_2 = list(range(3, len(freedom_df.columns), 3))

In [9]: for i in range(1,len(columns)):
if i in unnamed_1:

columns[i] = str(columns[i-1])+' CL'
elif i in unnamed_2:

columns[i] = str(columns[i-2])+' Status'

In [10]: freedom_df.columns = columns

In [11]: freedom_df.set_index('Year(s) Under Review', inplace=True)

In [12]: # freedom_df

In [13]: pr_cols = freedom_df.loc['data']=='PR'

In [14]: pr_df = freedom_df[pr_cols.index[pr_cols]]
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In [15]: # freedom_df[pr_cols.index[pr_cols]]

In [16]: years = list(range(1990, 2018))

In [17]: pr_df = pr_df[years]

In [18]: pr_df = pr_df.rename(index=country_name_dict)

In [19]: pr_df_wb = countries_wb.sort_values(['Region', 'Country Data'])

In [20]: pr_df_wb = pr_df_wb.rename(index=country_name_dict)

In [21]: final_pr_df = pd.concat([pr_df_wb, pr_df], axis=1,join_axes=[pr_df_wb.index])

In [22]: len(final_pr_df)

Out[22]: 217

In [23]: final_pr_df = final_pr_df.fillna(0.4242)

In [24]: def func_pr(x):
if x.values[0] is None:

return None
else:

return final_pr_df.loc[x.name, x.values[0]]

In [25]: most_recent_value_colname = 'Most Recent Value'
final_pr_df[most_recent_value_colname] = pd.DataFrame(final_pr_df.apply(lambda x: x.last_valid_index(), axis=1)).apply(func_pr,axis=1)
cols = final_pr_df.columns.tolist()
cols.insert(0, cols.pop(cols.index('Region')))
cols.insert(0, cols.pop(cols.index('Country Data')))
cols.insert(0, cols.pop(cols.index(most_recent_value_colname)))
final_pr_df = final_pr_df.reindex(columns= cols)

In [26]: mapping = {'-' : 0.4242}

final_pr_df = final_pr_df.replace(mapping)

In [27]: results_dic = {}

In [28]: results_dic['PR'] = final_pr_df

In [29]: cl_cols = freedom_df.loc['data']=='CL'

In [30]: cl_df = freedom_df[cl_cols.index[cl_cols]]

In [31]: old_columns = cl_df.columns

In [32]: old_columns
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Out[32]: Index(['2009 CL', '2010 CL', '2011 CL', '2012 CL', '2013 CL', '2014 CL',
'2015 CL', '2016 CL', '2017 CL'],

dtype='object')

In [33]: new_cols = [int(s.strip(' CL')) for s in old_columns]

In [34]: cl_df.columns = new_cols

In [35]: cl_df = cl_df.rename(index=country_name_dict)

In [36]: cl_df_wb = countries_wb.sort_values(['Region', 'Country Data'])

In [37]: cl_df_wb = cl_df_wb.rename(index=country_name_dict)

In [38]: final_cl_df = pd.concat([cl_df_wb, cl_df], axis=1,join_axes=[cl_df_wb.index])

In [39]: final_cl_df = final_cl_df.fillna(0.4242)

In [40]: def func_cl(x):
if x.values[0] is None:

return None
else:

return final_cl_df.loc[x.name, x.values[0]]

In [41]: most_recent_value_colname = 'Most Recent Value'
final_cl_df[most_recent_value_colname] = pd.DataFrame(final_cl_df.apply(lambda x: x.last_valid_index(), axis=1)).apply(func_cl,axis=1)
cols = final_cl_df.columns.tolist()
cols.insert(0, cols.pop(cols.index('Region')))
cols.insert(0, cols.pop(cols.index('Country Data')))
cols.insert(0, cols.pop(cols.index(most_recent_value_colname)))
final_cl_df = final_cl_df.reindex(columns= cols)

In [42]: mapping = {'-' : 0.4242}

final_cl_df = final_cl_df.replace(mapping)

In [43]: results_dic['CL'] = final_cl_df

In [44]: # results_dic['CL']

In [45]: st_cols = freedom_df.loc['data']=='Status'

In [46]: st_df = freedom_df[st_cols.index[st_cols]]

In [47]: old_columns = st_df.columns

In [48]: new_cols = [int(s.strip(' Status')[-4:]) for s in old_columns]

In [49]: st_df.columns = new_cols

In [50]: st_df = st_df[years]
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In [51]: st_df = st_df.rename(index=country_name_dict)

In [52]: st_df_wb = countries_wb.sort_values(['Region', 'Country Data'])

In [53]: st_df_wb = st_df_wb.rename(index=country_name_dict)

In [54]: final_st_df = pd.concat([st_df_wb, st_df], axis=1,join_axes=[st_df_wb.index])

In [55]: final_st_df = final_st_df.fillna(0.4242)

In [56]: def func_st(x):
if x.values[0] is None:

return None
else:

return final_st_df.loc[x.name, x.values[0]]

In [57]: most_recent_value_colname = 'Most Recent Value'
final_st_df[most_recent_value_colname] = pd.DataFrame(final_st_df.apply(lambda x: x.last_valid_index(), axis=1)).apply(func_st,axis=1)
cols = final_st_df.columns.tolist()
cols.insert(0, cols.pop(cols.index('Region')))
cols.insert(0, cols.pop(cols.index('Country Data')))
cols.insert(0, cols.pop(cols.index(most_recent_value_colname)))
final_st_df = final_st_df.reindex(columns= cols)

In [58]: mapping = {'F': 1, 'PF': 2, 'NF': 3 , '-' : 0.4242}

final_st_df = final_st_df.replace(mapping)
final_st_df = final_st_df.fillna(0.4242)

In [59]: final_st_df.loc['Micronesia (Federated States of)'][1990]

Out[59]: 0.42420000000000002

In [60]: # final_st_df

In [61]: results_dic['ST'] = final_st_df

In [62]: # results_dic['ST']

In [63]: for country in pr_df.index:
if country not in pr_df_wb.index:

print(country)

data
Czechoslovakia
Germany, E.
Germany, W.
Northern Cyprus
Taiwan
USSR
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Vietnam, N.
Vietnam, S.
Yemen, N.
Yemen, S.
Yugoslavia
Yugoslavia (Serbia & Montenegro)

In [64]: for country in pr_df_wb.index:
if country not in pr_df.index:

print(country)

American Samoa
Guam
Hong Kong SAR China
Macau SAR China
Northern Mariana Islands
New Caledonia
French Polynesia
Channel Islands
Faroe Islands
Gibraltar
Greenland
Isle of Man
Aruba
Curaçao
Cayman Islands
Saint Martin (French part)
Puerto Rico
Sint Maarten
Turks & Caicos Islands
British Virgin Islands
U.S. Virgin Islands
Palestinian Territories
Bermuda

In [65]: LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def colToExcel(col): # col is 1 based
excelCol = str()
div = col
while div:

(div, mod) = divmod(div-1, 26) # will return (x, 0 .. 25)
excelCol = chr(mod + 65) + excelCol

return excelCol

In [66]: try:
writer.close()
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except (NameError, AttributeError):
pass

writer = pd.ExcelWriter('processed_data/freedom_in_the_world.xlsx', engine='xlsxwriter')
workbook = writer.book

for index in results_dic.keys():
print(index)
sheet_name = index.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace('C1_', "").replace("C2_","").replace("C3_","")

df_to_write = results_dic[index].copy()
df_to_write.to_excel(writer, sheet_name=sheet_name)

counter = 1+3

for column in results_dic[index].columns:
if (column == 'Region' or column == 'Country Data'):

continue
elif column == "Most Recent Value":

excel_range = '='+sheet_name+'!$B$2:$B$'+str(len(results_dic[index])+1)
column_name = index +"_"+ column.replace(" ", "_").replace("(", "").replace(")","").replace(":","").replace(":","").replace('C1_', "").replace("C2_","").replace("C3_","")
print(column_name, excel_range)
workbook.define_name(column_name, excel_range)

else:
counter+=1
excel_col = colToExcel(counter)
excel_range = '='+sheet_name+'!$'+excel_col+'$2:$'+excel_col+'$'+str(len(results_dic[index])+1)

column_name = index + "_" + str(column)
workbook.define_name(column_name, excel_range)

writer.save()

PR
PR_Most_Recent_Value =PR!$B$2:$B$218
CL
CL_Most_Recent_Value =CL!$B$2:$B$218
ST
ST_Most_Recent_Value =ST!$B$2:$B$218
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196 D. Python Scripts

D.14. Number of Border Crossings Between Countries



14 - Number of Border Crossings Between Countries

August 15, 2018

In [1]: import pandas as pd
import numpy as np
import csv
import os

In [2]: border_crossings_df = pd.read_excel('raw data/border_crossings_phv-2.xls')

In [3]: # border_crossings_df

In [4]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [5]: with open('processed_data/country_name_dic.csv', encoding='UTF-8') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [6]: countries_wb_sort = countries_wb.sort_values(['Region', 'Country Data'], axis=0)
countries_wb_sort = countries_wb_sort.rename(index=country_name_dict)

In [7]: border_crossings_wb = pd.DataFrame(index = countries_wb_sort.index, columns = countries_wb_sort.index)

In [8]: border_crossings_df['CNTRY_NAME'] = border_crossings_df.CNTRY_NAME.replace(country_name_dict)

In [9]: border_crossings_df['CNTRY_BORD'] = border_crossings_df.CNTRY_BORD.replace(country_name_dict)

In [10]: border_crossings_wb.fillna(0, inplace=True)

In [11]: for row in border_crossings_df.index:
country1 = border_crossings_df.loc[row]['CNTRY_NAME']
country2 = border_crossings_df.loc[row]['CNTRY_BORD']

if (country1 in border_crossings_wb.index) and (country2 in border_crossings_wb.index):
border_crossings_wb.at[country1, country2] += 1

else:
print(country1, country2)
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Morocco Western Sahara
Western Sahara Morocco
Italy Vatican City
Italy Vatican City
Vatican City Italy
Vatican City Italy

In [12]: border_crossings_wb.loc['India']['Nepal']

Out[12]: 6

In [13]: # (border_crossings_wb/(border_crossings_wb.max()))

In [14]: dfmax = border_crossings_wb.max()

In [15]: border_crossing_wb = border_crossings_wb.divide(dfmax, axis=0)

In [16]: border_crossing_wb.fillna(0, inplace=True)

In [17]: writer = pd.ExcelWriter('processed_data/road_contiguity_data_wb.xlsx')
# writer.define_name('countries', '=Sheet1!$A$2:$A$194')
workbook=writer.book
workbook.define_name('countries', '=Sheet1!$A$2:$A$'+str(len(border_crossings_wb)+1))
border_crossing_wb.to_excel(writer)
writer.save()
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D.15. World Risk Index: Natural Disasters



15 - World Risk Index (Natural Disaster)

August 15, 2018

In [1]: import pandas as pd
import csv
import numpy as np

In [2]: with open('processed_data/country_name_dic.csv') as csvfile:
reader = csv.DictReader(csvfile, delimiter = ',')
country_name_dict = {rows['alt_name']:rows['name'] for rows in reader}

In [3]: countries_wb=pd.read_excel("raw data/Regions.xlsx", sheetname='Countries', header=0, skiprows=None, skip_footer=0, index_col='country',
names=['Country Data','Region','IncomeGroup'],

parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False)

In [4]: countries_wb.rename(index = country_name_dict, inplace = True)

In [5]: countries_wb = countries_wb.sort_values(["Region", "Country Data"])

In [6]: risk_data=pd.read_excel("raw data/Table_WorldRiskIndex-2012-2016-Average.xlsx", sheetname = "Tabelle1")

In [7]: risk_data.set_index('Country', inplace = True)

In [8]: for country in risk_data.index:
if country not in country_name_dict:

print(country)

In [9]: risk_data.rename(index = country_name_dict, inplace = True)

In [10]: risk_data_wb = pd.DataFrame(index=countries_wb.index)

In [11]: for column in risk_data.columns:
risk_data_wb[column] = risk_data[column]

In [12]: risk_data_wb.fillna(0.4242, inplace = True)

In [13]: risk_data_wb.columns

Out[13]: Index(['Rank', 'Risk Ø', 'Exposure 2012-2016', 'Vulnerability Ø',
'Susceptibility Ø', 'Lack of coping capacities Ø',
'Lack of adaptive capacities Ø'],

dtype='object')
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In [14]: import xlsxwriter

In [15]: LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def colToExcel(col): # col is 1 based
excelCol = str()
div = col
while div:

(div, mod) = divmod(div-1, 26) # will return (x, 0 .. 25)
excelCol = chr(mod + 65) + excelCol

return excelCol

In [16]: writer = pd.ExcelWriter('processed_data/world_risk_index.xlsx', engine='xlsxwriter')
workbook = writer.book

risk_data_wb.to_excel(writer, sheet_name='data')

counter = 1
for column in risk_data_wb.columns:

counter+=1
excel_col=colToExcel(counter)
excel_range = '=data!$'+excel_col+'$2:$'+excel_col+'$'+str(len(risk_data_wb)+1)
column_name = column.replace(" Ø", "").replace("-", "_").replace(" ", "_")
workbook.define_name(column_name , excel_range)

In [17]: risk_data_wb.columns

Out[17]: Index(['Rank', 'Risk Ø', 'Exposure 2012-2016', 'Vulnerability Ø',
'Susceptibility Ø', 'Lack of coping capacities Ø',
'Lack of adaptive capacities Ø'],

dtype='object')
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202 D. Python Scripts

D.16. Exploratory Modeling and Analysis



MigrationModel_Multiprocessing_EMA

August 15, 2018

1 EMA Experimentation Multiprocessing

This notebook allows for experimentation with EMA workbench.
The model also requires the data files to be in the folder of this notebook and the model.

1.1 1. Importing the required Python packages

In [1]: from ema_workbench import(Model, RealParameter,Constant,IntegerParameter,CategoricalParameter, TimeSeriesOutcome, Policy, load_results, perform_experiments, ema_logging, save_results)
from ema_workbench.connectors.vensim import VensimModel
from ema_workbench.em_framework.evaluators import LHS, SOBOL
import timeit
from ema_workbench import MultiprocessingEvaluator
from ema_workbench.analysis.plotting import envelopes

from ema_workbench.analysis.plotting_util import KDE
import pandas as pd
import numpy as np

C:\Users\LocalAdmin\Anaconda3\lib\site-packages\ema_workbench\em_framework\optimization.py:29: ImportWarning: platypus based optimization not available
warnings.warn("platypus based optimization not available", ImportWarning)

C:\Users\LocalAdmin\Anaconda3\lib\site-packages\ema_workbench\connectors\__init__.py:18: ImportWarning: netlogo connector not available
warnings.warn("netlogo connector not available", ImportWarning)

C:\Users\LocalAdmin\Anaconda3\lib\site-packages\ema_workbench\connectors\__init__.py:23: ImportWarning: pysd connector not available
warnings.warn("pysd connector not available", ImportWarning)

C:\Users\LocalAdmin\Anaconda3\lib\importlib\_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__
return f(*args, **kwds)

1.2 2. Loading the Vensim model

In this step, we specify the working directory (this should be the location of this notebook and the
Vensim model file), and import the Vensim model into our workspace. Note that the model file
needs to have a .vpm extension, which can be created by using the publish function in Vensim.

In addition, the Vensim dll can be specified if required. This defaults to ’vendll32.dll’ for
the normal vensimdll, but if double precision is installed and required, change this to ’vdpdll32’.
[Note: Since only one model can be loaded per dll file, this also allows for two models to be loaded
at the same time.]
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We can also specify a name for the .vdf file in which we want Venpy to store the intermediate
results. Note that this file should not be in use by any other program. This defaults to ’Curren-
tRun’.

In [2]: wd =r'.\migrationmodel'
model = VensimModel('WorldMigrationModel', wd = wd , model_file=r'D:\Migration\MigrationDynamicsFinal.vpm')

In [3]: ema_logging.log_to_stderr(ema_logging.INFO) # we want to see what EMA is doing

Out[3]: <Logger EMA (DEBUG)>

In [4]: names = pd.read_excel('contiguity_data.xlsx', 'Sheet1')

In [5]: names.set_index('country', inplace = True)

In [6]: country_list = list(names.index)

1.3 3. Specify uncertainties and outcomes

Here we will specify the uncertainties and outcomes. The subscript of a variable is simply placed
between square brackets.

In [7]: uncertainties = [CategoricalParameter('SWITCH min0 smth1 max2 stickyrndm3 pinkrndm4', [0,1,2,3,4]),
RealParameter('pc of pop atR of conflict violence', 0.2 , 0.95), # 0.03
RealParameter('pc of pop at risk of oppression', 0.25, 0.95), #0.038
RealParameter('pc pop atRd2 conflict violence willing2 migrate', 0.2, 0.8), #0.01
RealParameter('pc pop atR of oppression willing2 migrate', 0.1, 0.6), # 0.018
RealParameter('pc pop atRd2 disasters willing2 migrate', 0.1, 0.6), # 0.0
RealParameter('pc pop atRd2 economic or food scarcity willing2 migrate', 0.1, 0.6), # 0.0
RealParameter('pc pop atR of oppression willing2 migrate', 0.1, 0.6), # 0.0
RealParameter('fraction of popRd2 conflict violence RWA to migrate trying per year', 0.1, 0.6), # 0.0
RealParameter('pc overlap in pop atR willing and able2 migrate due to conflict and oppression', 0.1, 0.8), # 0.0
RealParameter('pc pop atR of conflict violence fysically and financially able to migrate faraway', 0.05, 0.65), # 0.0
RealParameter('pc pop atR of conflict violence oppression NOT even able to migrate to other country in region', 0.05, 0.6), # 0.0
RealParameter('pc pop atRd2 economic or food scarcity fysically and financially able to migrate faraway', 0.05, 0.75), # 0.0
RealParameter('fr extra autonomous development exposure', 0.001, 0.1), # 0.0

RealParameter('fraction of population able to afford advanced transportation high income',0.9,1),
RealParameter('fraction of population able to afford advanced transportation upper middle income',0.4,0.7),
RealParameter('fraction of population able to afford advanced transportation lower middle income',0.1,0.4),
RealParameter('fraction of population able to afford advanced transportation low income',0,0.1),

RealParameter('birth rate scale factor high income',0.5,1.5),
RealParameter('birth rate scale factor upper middle income',0.5,1.5),
RealParameter('birth rate scale factor lower middle income',0.5,1.5),
RealParameter('birth rate scale factor low income',0.5,1.5),

RealParameter('death rate scale factor high income',0.5,1.5),
RealParameter('death rate scale factor upper middle income',0.5,1.5),
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RealParameter('death rate scale factor lower middle income',0.5,1.5),
RealParameter('death rate scale factor low income',0.5,1.5),

RealParameter('migration rate scale factor high income',0.2,1.1),
RealParameter('migration rate scale factor upper middle income',0.2,1.1),
RealParameter('migration rate scale factor lower middle income',0.2,1.1),
RealParameter('migration rate scale factor low income',0.2,1.1),

RealParameter('naturalization rate scale factor high income',0.001,0.02),
RealParameter('naturalization rate scale factor upper middle income',0.001,0.02),
RealParameter('naturalization rate scale factor lower middle income',0.001,0.02),
RealParameter('naturalization rate scale factor low income',0.001,0.02),

RealParameter('societal stress influence factor',1,10),
RealParameter('societal stress threshold pc', 0.4, 0.9), # 0.0

RealParameter('transit weight', 1, 10), # 0.0
RealParameter('residence weight', 1, 10), # 0.0

RealParameter('interregion migration factor', 0.5, 5), # 0.0

RealParameter('migrant coping capacity growth rate per country scale factor', 0.01, 0.6), # PER COUNTRY
RealParameter('pc of current coping capacity scale factor', 0.3, 0.9), # PER COUNTRY
RealParameter('forward migration rate scale factor', 0.1, 0.9), # PER COUNTRY
RealParameter('fraction of migrants applying in most attractive country scale factor', 0.3,1),# 0.0
RealParameter('close EU borders threshold', 50000000,100000000),
RealParameter('close ECA borders threshold', 130000000,250000000),

]

In [8]: outcomes = [TimeSeriesOutcome('total population in model'),
TimeSeriesOutcome('total migrants'),
TimeSeriesOutcome('total migrants in EU[EU]'),
TimeSeriesOutcome('total migrants in ECA[Europe and Central Asia]')]

In [9]: for country in country_list:
outcomes.append(TimeSeriesOutcome('population to other country['+country+']'))
outcomes.append(TimeSeriesOutcome('total migrants in country['+country+']'))
outcomes.append(TimeSeriesOutcome('population per country['+country+']'))
outcomes.append(TimeSeriesOutcome('total naturalizations['+country+']'))
outcomes.append(TimeSeriesOutcome('returnees['+country+']'))
outcomes.append(TimeSeriesOutcome('internal migration total['+country+']'))
outcomes.append(TimeSeriesOutcome('societal stress in country due to migrants['+country+']'))

In [10]: model.uncertainties = uncertainties
model.outcomes = outcomes
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1.4 4.1 Base Ensemble

In [11]: nr_scenarios = 500
seed = 50
np.random.seed(seed) # fix seed

In [12]: start_time = timeit.default_timer()

with MultiprocessingEvaluator(model) as evaluator:
policy_results = evaluator.perform_experiments(scenarios=nr_scenarios)# policies=policies

elapsed = timeit.default_timer() - start_time

print("Total time in minutes:", elapsed/60, "-- Time per run in seconds:", elapsed/(nr_scenarios))

[MainProcess/INFO] pool started
[MainProcess/INFO] performing 500 scenarios * 1 policies * 1 model(s) = 500 experiments
[MainProcess/INFO] 50 cases completed
[MainProcess/INFO] 100 cases completed
[MainProcess/INFO] 150 cases completed
[MainProcess/INFO] 200 cases completed
[MainProcess/INFO] 250 cases completed
[MainProcess/INFO] 300 cases completed
[MainProcess/INFO] 350 cases completed
[MainProcess/INFO] 400 cases completed
[MainProcess/INFO] 450 cases completed
[MainProcess/INFO] 500 cases completed
[MainProcess/INFO] experiments finished
[MainProcess/INFO] terminating pool
[SpawnPoolWorker-4/INFO] finalizing
[SpawnPoolWorker-2/INFO] finalizing
[SpawnPoolWorker-3/INFO] finalizing
[SpawnPoolWorker-1/INFO] finalizing

Total time in minutes: 111.57994722596125 -- Time per run in seconds: 13.389593667115351

In [13]: ## In case you want to save the outputs in a file:

save_results(policy_results, r'D:\Migration\Results\BaseEnsemble500Scenarios.tar.gz')

[MainProcess/INFO] results saved successfully to D:\Migration\Results\BaseEnsemble500Scenarios.tar.gz

In [ ]: policy_results = load_results( r'D:\Migration\Results\BaseEnsemble500Scenarios.tar.gz')

In [16]: ## Import specific plotting commands:
import matplotlib.pyplot as plt
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from ema_workbench.analysis.plotting import lines, plot_lines_with_envelopes
from ema_workbench.analysis.plotting_util import KDE, HIST, VIOLIN, BOXPLOT
import seaborn as sns
import ema_workbench.analysis.pairs_plotting as pairs
import ema_workbench.analysis.plotting as emaplt

In [ ]: %matplotlib inline

fig = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE) #group_by='policy
fig[0].savefig(r'Plots\BaseEnsemble\total_population_base_ensemble.png')
fig = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE) #group_by='policy
fig[0].savefig(r'Plots\BaseEnsemble\total_migrants_base_ensemble.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE)
fig[0].savefig(r'Plots\BaseEnsemble\total_migrantsECA_base_ensemble.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE)
fig[0].savefig(r'Plots\BaseEnsemble\total_migrantsEU_base_ensemble.png')

for country in country_list:
outcome = 'total migrants in country['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+".png")

outcome = 'population to other country['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')

outcome='population per country['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')

outcome='total naturalizations['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')

outcome='returnees['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')

outcome='internal migration total['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')

outcome='societal stress in country due to migrants['+country+']'
fig = lines(policy_results, outcomes_to_show=outcome, density=KDE)
fig[0].savefig(r"Plots\BaseEnsemble\base_"+outcome+'.png')
plt.close('all')

In [ ]: fig[0]
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In [ ]: from ema_workbench.analysis import pairs_plotting

In [ ]: # fig, axes = pairs_plotting.pairs_scatter(policy_results, legend=False) # don't run

In [ ]: !pip install mpldatacursor

In [ ]: experiments, outcomes = policy_results

In [ ]: outcomes_list = ['total population in model', 'total migrants', 'total migrants in EU[EU]', "total migrants in country[Netherlands]", "total migrants in country[Turkey]"]

In [ ]: outcomes.keys()

In [ ]: outcomes_feature_scoring = {}

for i in outcomes_list:
outcomes_feature_scoring[i]=outcomes[i]

In [ ]: from ema_workbench.analysis import feature_scoring
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
import seaborn as sns

fig,ax = plt.subplots(figsize=(10,10))

x=experiments
y=outcomes_feature_scoring

fs = feature_scoring.get_feature_scores_all(x,y)
fs=fs.drop('model').drop('policy')
sns.heatmap(fs, cmap='viridis', norm=LogNorm(vmin=0, vmax=1), annot=True)
plt.savefig('GlobalPoliciesFeatureScoring.png', bbox_inches='tight')

1.5 4.2 Global Policies

In [ ]: policies = [Policy('None', **{"SWITCH low income shelter increase policy":0,
'SWITCH high income shelter increase policy':0}),

Policy('Low', **{'SWITCH low income shelter increase policy':1,
'SWITCH high income shelter increase policy':0}),

Policy('High', **{'SWITCH low income shelter increase policy':0,
'SWITCH high income shelter increase policy':1}),

Policy('LowHigh', **{'SWITCH low income shelter increase policy':1,
'SWITCH high income shelter increase policy':1})]

In [ ]: nr_scenarios = 100
seed = 50
np.random.seed(seed) # fix seed
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In [ ]: start_time = timeit.default_timer()

with MultiprocessingEvaluator(model) as evaluator:
policy_results = evaluator.perform_experiments(scenarios=nr_scenarios, policies = policies)# policies=policies

elapsed = timeit.default_timer() - start_time

print("Total time in minutes:", elapsed/60, "-- Time per run in seconds:", elapsed/(nr_scenarios*len(policies)))

In [ ]: ## In case you want to save the outputs in a file:

save_results(policy_results, r'D:\Migration\Results\GlobalPolicies100scenarios.tar.gz')

In [ ]: fig = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE,group_by='policy') #group_by='policy
fig[0].savefig(r'Plots\GlobalPolicies\total_population_global.png')
fig = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE,group_by='policy') #group_by='policy
fig[0].savefig(r'Plots\GlobalPolicies\total_migrants_global.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE,group_by='policy')
fig[0].savefig(r'Plots\GlobalPolicies\total_migrantsECA_global.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE,group_by='policy')
fig[0].savefig(r'Plots\GlobalPolicies\total_migrantsEU_global.png')

In [ ]: %matplotlib inline

fig1 = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE, group_by='policy') #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE, group_by='policy') #group_by='policy
fig1 = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Germany]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Turkey]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Morocco]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Zimbabwe]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Guinea]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Greece]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Spain]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Netherlands]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Luxembourg]'), density=KDE, group_by='policy')

In [ ]: # policy_results = load_results(r'D:\Migration\Results\RegionalPolicies.tar.gz')

In [ ]: import tarfile
tar = tarfile.open(r'D:\Migration\Results\GlobalPolicies.tar.gz', "r:gz")
for member in tar.getmembers():

f = tar.extractfile(member)
if f is not None:

content = f.read()

In [ ]: content
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1.6 4.3 Regional Policies

In [ ]: policy_results = None

In [ ]: policies = [Policy('None', **{"SWITCH close borders":0,
'SWITCH close borders EU':0,
'SWITCH close borders Europe and Central Asia':0 }),

Policy('EU', **{"SWITCH close borders":1,
'SWITCH close borders EU':1,
'SWITCH close borders Europe and Central Asia':0 }),

]

# Policy('ECA', **{"SWITCH close borders":1,
# 'SWITCH close borders EU':0,
# 'SWITCH close borders Europe and Central Asia':1 }

In [ ]: nr_scenarios = 100
seed = 50
np.random.seed(seed) # fix seed

In [ ]: start_time = timeit.default_timer()

with MultiprocessingEvaluator(model) as evaluator:
policy_results = evaluator.perform_experiments(scenarios=nr_scenarios, policies = policies)# policies=policies

elapsed = timeit.default_timer() - start_time

print("Total time in minutes:", elapsed/60, "-- Time per run in seconds:", elapsed/(nr_scenarios*len(policies)))

In [ ]: ## In case you want to save the outputs in a file:

save_results(policy_results, r'D:\Migration\Results\RegionalPolicies10Scenarios.tar.gz')

In [ ]: %matplotlib inline

fig1 = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE, group_by='policy') #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE, group_by='policy') #group_by='policy
fig1 = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Germany]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Turkey]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Morocco]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Zimbabwe]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Guinea]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Greece]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Spain]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Netherlands]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Luxembourg]'), density=KDE, group_by='policy')
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1.7 4.4 National Policies

In [11]: policies = [Policy('None', **{"COUNTRY POLICY forward migration rate scale factor[Netherlands]":0.01, #increase forward migration
'COUNTRY POLICY migrant coping capacity growth rate[Netherlands]':0, #increase factor

'COUNTRY POLICY manage societal stress[Netherlands]':1}), #downscaling
Policy('Stress', **{"COUNTRY POLICY forward migration rate scale factor[Netherlands]":0.01, #increase forward migration

'COUNTRY POLICY migrant coping capacity growth rate[Netherlands]':0, #increase factor
'COUNTRY POLICY manage societal stress[Netherlands]':0.2}),

Policy('Coping', **{"COUNTRY POLICY forward migration rate scale factor[Netherlands]":0.01, #increase forward migration
'COUNTRY POLICY migrant coping capacity growth rate[Netherlands]':0.1, #increase factor

'COUNTRY POLICY manage societal stress[Netherlands]':1}),
Policy('Forward', **{"COUNTRY POLICY forward migration rate scale factor[Netherlands]":0.9, #increase forward migration

'COUNTRY POLICY migrant coping capacity growth rate[Netherlands]':0, #increase factor
'COUNTRY POLICY manage societal stress[Netherlands]':1})]

In [12]: nr_scenarios = 100
seed = 50
np.random.seed(seed) # fix seed

In [13]: start_time = timeit.default_timer()

with MultiprocessingEvaluator(model) as evaluator:
policy_results = evaluator.perform_experiments(scenarios=nr_scenarios, policies = policies)# policies=policies

elapsed = timeit.default_timer() - start_time

print("Total time in minutes:", elapsed/60, "-- Time per run in seconds:", elapsed/(nr_scenarios*len(policies)))

[MainProcess/INFO] pool started
[MainProcess/INFO] performing 100 scenarios * 4 policies * 1 model(s) = 400 experiments
[MainProcess/INFO] 40 cases completed
[MainProcess/INFO] 80 cases completed
[MainProcess/INFO] 120 cases completed
[MainProcess/INFO] 160 cases completed
[MainProcess/INFO] 200 cases completed
[MainProcess/INFO] 240 cases completed
[MainProcess/INFO] 280 cases completed
[MainProcess/INFO] 320 cases completed
[MainProcess/INFO] 360 cases completed
[MainProcess/INFO] 400 cases completed
[MainProcess/INFO] experiments finished
[MainProcess/INFO] terminating pool
[SpawnPoolWorker-1/INFO] finalizing
[SpawnPoolWorker-3/INFO] finalizing
[SpawnPoolWorker-4/INFO] finalizing
[SpawnPoolWorker-2/INFO] finalizing

Total time in minutes: 95.08389314211 -- Time per run in seconds: 14.2625839713165
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In [14]: ## In case you want to save the outputs in a file:

save_results(policy_results, r'D:\Migration\Results\NationalPolicies10Scenarios.tar.gz')

[MainProcess/INFO] results saved successfully to D:\Migration\Results\NationalPolicies10Scenarios.tar.gz

In [17]: fig = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE,group_by='policy') #group_by='policy
fig[0].savefig(r'Plots\NationalPolicies\total_population_national.png')
fig = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE,group_by='policy') #group_by='policy
fig[0].savefig(r'Plots\NationalPolicies\total_migrants_national.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE,group_by='policy')
fig[0].savefig(r'Plots\NationalPolicies\total_migrantsECA_national.png')
fig = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE,group_by='policy')
fig[0].savefig(r'Plots\NationalPolicies\total_migrantsEU_national.png')

In [ ]: %matplotlib inline

fig1 = lines(policy_results, outcomes_to_show=('total population in model'), density=KDE, group_by='policy') #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total migrants'), density=KDE, group_by='policy') #group_by='policy
fig1 = lines(policy_results, outcomes_to_show=('total migrants in ECA[Europe and Central Asia]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in EU[EU]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Germany]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Turkey]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Morocco]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Zimbabwe]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Guinea]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Greece]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Spain]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Netherlands]'), density=KDE, group_by='policy')
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Luxembourg]'), density=KDE, group_by='policy')

1.8 5. Visualization of the results

In [ ]: ## Import specific plotting commands:
import matplotlib.pyplot as plt
from ema_workbench.analysis.plotting import lines, plot_lines_with_envelopes
from ema_workbench.analysis.plotting_util import KDE, HIST, VIOLIN, BOXPLOT
import seaborn as sns
import ema_workbench.analysis.pairs_plotting as pairs
import ema_workbench.analysis.plotting as emaplt

In [ ]: experiments, outcomes = policy_results

In [ ]: for outcome in outcomes.keys():
print(outcome)
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1.8.1 Specified Policies

In [ ]: %matplotlib inline

fig1 = lines(policy_results, outcomes_to_show=('total population in model'), group_by='policy', density=KDE) #group_by='policy
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Germany]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Turkey]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Morocco]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Zimbabwe]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Guinea]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Greece]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Spain]'),group_by='policy', density=KDE)
fig1 = lines(policy_results, outcomes_to_show=('total migrants in country[Netherlands]'),group_by='policy', density=KDE)
fig2 = lines(policy_results, outcomes_to_show=('total migrants'),group_by='policy', density=KDE) #group_by='policy

# fig2 = lines(policy_results, outcomes_to_show=('pop per region[regionEast Asia and Pacific]'), group_by='policy', density=KDE)

In [ ]: fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Turkey]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Japan]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Australia]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[South Africa]'),group_by='policy', density=KDE) #group_by='policy

In [ ]: fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Guinea]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Ethiopia]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[India]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Thailand]'),group_by='policy', density=KDE) #group_by='policy
fig2 = lines(policy_results, outcomes_to_show=('total naturalizations[Bolivia]'),group_by='policy', density=KDE) #group_by='policy

In [ ]: experiments, outcomes = policy_results

In [ ]: germany_outcomes = {k:v for k,v in outcomes.items() if 'migrants in destination country[Germany,' in k}

In [ ]: germany_outcomes.keys()

In [ ]: country_list=['Germany', 'Turkey', 'Uganda', 'United States', 'Argentina', 'China', 'Australia']
variable = 'migrants in destination country'

for country in country_list:
x=pd.DataFrame(index=[country])
country_outcomes = {k:v for k,v in outcomes.items() if variable+'['+country+',' in k}
for origin in country_outcomes.keys():

if country_outcomes[origin].mean()>50000:
origin_country = origin.strip('migrants in destination country['+country+',').strip(']')
x[origin_country]=country_outcomes[origin].mean()

x.plot.bar(title = 'Migrants in '+country+' by Country of Origin', colormap='viridis').legend(bbox_to_anchor=(1, 1), ncol=2)

In [ ]: x.plot.bar(title = 'Migrants in Germany by Country of Origin').legend(bbox_to_anchor=(1, 1), ncol=2)

In [ ]: list(x.columns)

In [ ]: help(plotly.offline.iplot)

In [ ]: outcomes.keys()
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E
R Scripts

E.1. Conversion of Country Name Data
l ibrary ( readxl )
cowcdata <− read_excel ( ”/Users/stefanwigman/Desktop/
Migration Thesis/03 − Data/CountryCode Conversion R
/COW_Countries . xlsx ” , 1)

countrydata <− data . frame ( country .name =
countrycode ( cowcdata$cow_code , ”cowc” , ” country .name” ) )
countrydata$country .name.de <−
countrycode ( countrydata$country .name, ” country .name” , ” country .name.de ” )
countrydata$cowc <−
countrycode ( countrydata$country .name, ” country .name” , ”cowc ” )
countrydata$cown <−
countrycode ( countrydata$country .name, ” country .name” , ”cown” )
countrydata$ecb <−
countrycode ( countrydata$country .name, ” country .name” , ”ecb ” )
countrydata$eurostat <−
countrycode ( countrydata$country .name, ” country .name” , ” eurostat ” )
countrydata$fao <−
countrycode ( countrydata$country .name, ” country .name” , ” fao ” )
countrydata$fips <−
countrycode ( countrydata$country .name, ” country .name” , ” f ips ” )
countrydata$gaul <−
countrycode ( countrydata$country .name, ” country .name” , ” gaul ” )
countrydata$genc2c <−
countrycode ( countrydata$country .name, ” country .name” , ”genc2c ” )
countrydata$genc3c <−
countrycode ( countrydata$country .name, ” country .name” , ”genc3c ” )
countrydata$genc3n <−
countrycode ( countrydata$country .name, ” country .name” , ”genc3n ” )
countrydata$imf <−
countrycode ( countrydata$country .name, ” country .name” , ” imf ” )
countrydata$ioc <−
countrycode ( countrydata$country .name, ” country .name” , ” ioc ” )
countrydata$iso2c <−
countrycode ( countrydata$country .name, ” country .name” , ” iso2c ” )
countrydata$ico3c <−
countrycode ( countrydata$country .name, ” country .name” , ” iso3c ” )
countrydata$iso2n <−
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countrycode ( countrydata$country .name, ” country .name” , ” iso2n ” )
countrydata$ico3n <−
countrycode ( countrydata$country .name, ” country .name” , ” iso3n ” )
countrydata$p4n <−
countrycode ( countrydata$country .name, ” country .name” , ”p4n” )
countrydata$p4c <−
countrycode ( countrydata$country .name, ” country .name” , ”p4c ” )
countrydata$un <−
countrycode ( countrydata$country .name, ” country .name” , ”un” )
countrydata$unpd <−
countrycode ( countrydata$country .name, ” country .name” , ”unpd” )
countrydata$wb <−
countrycode ( countrydata$country .name, ” country .name” , ”wb” )
countrydata$wvs <−
countrycode ( countrydata$country .name, ” country .name” , ”wvs ” )

countrydata$ar5 <−
countrycode ( countrydata$country .name, ” country .name” , ”ar5 ” )
countrydata$continent <−
countrycode ( countrydata$country .name, ” country .name” , ” continent ” )
countrydata$cow .name <−
countrycode ( countrydata$country .name, ”cowc” , ”cow.name” )
countrydata$ecb .name <−
countrycode ( countrydata$country .name, ” country .name” , ”ecb .name” )
countrydata$eurocontrol_pru <−
countrycode ( countrydata$country .name, ” country .name” , ” eurocontrol_pru ” )
countrydata$eurocontrol_statfor <−
countrycode ( countrydata$country .name, ” country .name” , ” eurocontrol_statfor ” )
countrydata$eu28 <−
countrycode ( countrydata$country .name, ” country .name” , ”eu28 ” )
countrydata$fao .name <−
countrycode ( countrydata$country .name, ” country .name” , ” fao .name” )
countrydata$fips .name <−
countrycode ( countrydata$country .name, ” country .name” , ” f ips .name” )
countrydata$genc .name <−
countrycode ( countrydata$country .name, ” country .name” , ”genc .name” )
countrydata$icao .name <−
countrycode ( countrydata$country .name, ” country .name” , ” icao .name” )
countrydata$icao_region <−
countrycode ( countrydata$country .name, ” country .name” , ” icao_region ” )
countrydata$ioc .name <−
countrycode ( countrydata$country .name, ” country .name” , ” ioc .name” )
countrydata$iso .name.en <−
countrycode ( countrydata$country .name, ” country .name” , ” iso .name.en ” )
countrydata$iso .name. f r <−
countrycode ( countrydata$country .name, ” country .name” , ” iso .name. f r ” )
countrydata$p4 .name <−
countrycode ( countrydata$country .name, ” country .name” , ”p4.name” )
countrydata$region <−
countrycode ( countrydata$country .name, ” country .name” , ” region .name” )
countrydata$un .name. ar <−
countrycode ( countrydata$country .name, ” country .name” , ”un.name. ar ” )
countrydata$un .name.en <−
countrycode ( countrydata$country .name, ” country .name” , ”un.name.en ” )
countrydata$un .name. f r <−
countrycode ( countrydata$country .name, ” country .name” , ”un.name. f r ” )
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countrydata$un .name. ru <−
countrycode ( countrydata$country .name, ” country .name” , ”un.name. ru ” )
countrydata$un .name. zh <−
countrycode ( countrydata$country .name, ” country .name” , ”un.name. zh ” )
countrydata$unpd .name <−
countrycode ( countrydata$country .name, ” country .name” , ”unpd.name” )
countrydata$wvs .name <−
countrycode ( countrydata$country .name, ” country .name” , ”wvs .name” )
# countrydata$cldr . * <−
countrycode ( countrydata$cldr , ” country .name” , ” cldr . * ” )

codelist1 <− codel ist

l ibrary ( readxl )
cowcdata <− read_excel ( ”/Users/stefanwigman/Desktop/Migration Thesis
/03 − Data/CountryCode Conversion R/COW_Countries . xlsx ” , 1)

countrydata <−
data . frame ( country .name = countrycode ( cowcdata$cow_code , ”cowc” , ” country .name” ) )

for ( code in names( codel ist ) ) { countrydata$code <−
countrycode ( countrydata$country .name, ” country .name” , code ) }

l ibrary ( countrycode )
codelist2<−codel ist
write . table ( codelist2 , ” codel ist . txt ” , sep =” , ” )
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