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Preface

A keen observer might have noticed that the cover image is, in fact, not the Haringvlietbrug. The
image is generated by OpenAI’s DALL-E 2, a text-to-image AI system. DALL-E 2 uses OpenAI’s CLIP
neural networks to learn visual concepts from natural language supervision. Fundamental to data-
driven methods such as neural networks is the use of data. The Haringvlietbrug is not a bridge of
international renown. There are few images of the Haringvlietbrug compared to recognisable bridges,
such as the Erasmusbrug in Rotterdam. DALL-E 2 has difficulties in ”knowing” what the Haringvlietbrug
looks like due to a lack of data. This results in DALL-E 2 generating a generic bridge. Much like the
example with the Haringvlietbrug and DALL-E 2, this thesis will face challenges regarding what data to
use for analysis.

DALL-E 2 is just one of many inventions that take advantage of recent advances in data-driven sci-
ence and engineering. The methods in the field have the potential to help solve problems in many
engineering disciplines. There is no doubt that the field of Civil Engineering will benefit from these
advancements.

Snorri Þór Sigurðsson
Reykjavík, March 2023
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Abstract

Regular maintenance of civil engineering structures is essential for their safety. Current maintenance
regimes involve periodic inspections at regular time intervals. In the time between inspections, there
can be a critical development in the structural integrity of a structure, which can be expensive to repair
or could even lead to structural failure. A more robust maintenance approach would involve continuous
monitoring of the structure. This is the research area of Structural Health Monitoring (SHM). Vibration-
based monitoring, which is a subset of SHM, aims to provide new cost-effective maintenance solutions
that provide long-term life-safety benefits. Vibration-based monitoring uses vibration measurements
from sensors to assess the ”Health” of a structure. Damage in a structure will alter the structure’s
stiffness, mass and damping characteristics, which in turn will change the dynamic properties of the
system. This change can then be discovered in the vibration data. The growth of the field is partly due
to the significant advances in data-driven science and engineering in recent decades.

One of the issues in vibration-based monitoring is the presence of operational and environmental vari-
ability in the vibration data. With this variability present, it is challenging to determine from vibration data
the characteristics of the underlying dynamic system. The aim of this thesis is to use Robust Principal
Component Analysis (rPCA) to reduce or eliminate the operational variability from the traffic to allow for
environmental and damage detection. rPCA is a matrix factorisation method that decomposes a data
matrix into a low-rank matrix L and a sparse matrix S. The reconstructed low-rank matrix L contains
the main correlations in the data that are robust to outliers and corrupt data that are contained in the
sparse matrix S. By applying rPCA to the frequency representation of the vibration data, it is hoped
that the underlying coherent structure corresponding to the dynamic system can be recovered.

The vibration data used for this thesis is from two measurement campaigns conducted on the Har-
ingvlietbrug. The Haringvlietbrug is a steel box girder bridge in the Netherlands, and there are several
fatigue cracks present in the bridge. This presented an opportunity for damage detection. The goal of
the first measurement campaign is to conduct damage detection and discover if there is a difference
between vibration data from a damaged area with fatigue cracks and a ”healthy” reference area. In the
second measurement campaign, the goal was to extract the underlying dynamics of the structure at
different temperatures and see if it was possible to distinguish between the different structural states
at different temperatures. After applying the rPCA on the vibration data, (regular) principal component
analysis (PCA) is used to embed the data into the low-rank subspace of the PCs to distinguish between
the different structural states.

The rPCA was successful in extracting the coherent structures in the vibration data corresponding to
the underlying dynamic properties of the system. In the subsequent PCA, vibration data with underlying
different structural states had different scores in the first three PCs. In other words, it was possible to
distinguish between the different structural states based on the first three PCs, which correspond to
the main correlation within the data. For the first measurement campaign, this meant it was possible
to distinguish between vibration data in the damaged area and the ”healthy” reference area and detect
”damage”. However, there was a difference in the structural configuration between the two areas, so
it was not possible to conclude that the differences in vibration data were due to damage caused by
the fatigue cracks. In the second measurement campaign, the dynamic system properties at differ-
ent temperatures were recovered. With the low-rank vibration data from the rPCA, it was possible to
distinguish between vibration data with a 1°C difference in the first three PCs from the (regular) PCA.
This was not possible without lowering the regularisation parameter in the rPCA. Another method, the
Sparse Sensor Placement for Optimisation (SSPOC), was used to determine the locations in the fre-
quency spectrum that contained the largest differences between structural states. For both the first and
second measurement campaigns, these locations were at specific natural frequencies of the system.
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1
Introduction

The design and construction of civil engineering structures are only a fraction of the life cycle of a struc-
ture. Most of a structure’s lifetime will be spent in operational use and under various loads that can lead
to structural deficiencies. In order to prevent structural degradation and maintain an acceptable level
of safety, regular maintenance must be performed. As infrastructure becomes older and nears the end
of its lifetime, the importance of maintenance and retrofitting becomes even more critical. In the United
States of America, there are around 61700 bridges, 42 % of which are older than 50 years. Further-
more, 46,154 or 7.5 % of the total bridges are considered structurally deficient, with many elements
nearing the end of their service life, as stated in a report by the American Society of Civil Engineers [1].
The report continues with that the backlog of bridge repair is around 125 billion U.S. dollars, and at the
current level of investment into public infrastructure, it will take until 2071 to finish all the repairs that
are currently necessary, and this is excluding the repairs needed due to structural deterioration over
this period.

This problem isn’t localised to the U.S.A., and Iceland faces a similar problem. Yearly public funds
granted to the Icelandic Road and Coastal Administration towards the maintenance of infrastructure
is lower than what is required, further increasing the already established backlog of repairs [22]. The
Netherlands also has to maintain their infrastructure and might face similar problems. In order to main-
tain the safety and functionality of their infrastructure, these countries need to invest a substantial
amount of capital into maintenance. Failure to do so could increase the risk of tragic events such as
the collapse of the Morandi Bridge in Genoa, Italy. With the amount of funds that have to be invested
in infrastructure and the life safety implications if a failure occurs, there is a considerable incentive to
use new technology to make the maintenance of structures cheaper while ensuring a safer structure.

Current maintenance regimes of civil engineering structures usually involve periodic inspections at
regular time intervals. Personnel inspect any visible damage and may employ non-destructive testing
(NDE), such as acoustic or ultrasonic measurement techniques, to detect if there is any damage present
in the structure. However, these methods require a priori information about the location of damage and
require access to the section under investigation. This limits the effectiveness of these methods, as
they can only be used where access to the structure is readily available, such as its surface and outer
perimeter, and internal members of the structure might not be reachable. Another concern is that
in the time between maintenance inspections, damage can develop to critical levels that could cause
structural failure. However, these shortfalls are being tackled in Structural Health Monitoring (SHM), an
emerging field over the last two decades. Although still primarily a research topic, SHM has the potential
to offer cost-effective maintenance solutions and to ensure long-term life-safety benefits. The core of
SHM involves using sensors to observe a structure over a given time. The data from these sensors
can be used to extract information or features that are sensitive to damage and allow the identification
of damaged and undamaged states of a structure. Thus, it is possible to perform damage detection of
a particular structure and identify when there has been some deviation from a normal condition. This
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1.1. Problem Definition 2

method offers a continuous monitoring scheme and identifies damage when it occurs but not at the
next inspection.

Vibration-based monitoring is a subsection of SHM that uses the dynamic properties of a structural
system as a damage indicator, such as the natural frequencies and mode shapes. Damage changes
the stiffness, mass, damping characteristics, and boundary conditions of the structural system. All of
these affect the dynamic properties of the system [18]. By measuring the acceleration response of
a structure over a period of time in which there is stiffness degradation in one of its members, one
should be able to identify when damage occurs. However, this is not as straightforward. Although
it is intuitive to use the dynamic properties of a structural system, there are a number of problems
to overcome. Structures in operational use, such as bridges, experience a wide array of excitation
due to the variability in the traffic. This variability in traffic is part of the operational variability. The
dynamic properties of the structures are also affected by temperature changes during measurement;
these changes are part of the environmental variability. Both Environmental and Operational Variability
(EOV) combine to create a more complex problem.

In damage detection, the goal is to discern whether the state of the structure has deviated from an
undamaged state to a damaged state. When working with vibration data, one has to compare the
dynamic properties between the two different states. However, in most SHM applications, only the
response of the system is measured, which is a product of the excitation and the dynamic properties of
the system, which are affected by operational and environmental variability. Therefore, any deviation
in the measured response could be attributed to the EOV but not actual damage. This can lead to
false positives where the different environmental and operational conditions are classified as damage.
Ultimately, the EOV masks the variable of interest, the dynamic properties. The subject of this thesis
is to tackle the EOV in damage detection.

The field of Structural Health Monitoring has benefited from advances made in data-driven methods
and improvements in sensor technology over the last two decades. Data-driven methods can ”learn”
the relationship within the data and can be used to model and predict complex systems. For instance,
these methods can identify a deviation in the normal condition of a system, which can enable damage
detection. Structural Health Monitoring has seen an increase in research in data-driven methods by
employing Pattern Recognition (PR), Machine Learning (ML), and Deep Learning (DL) [2, 37]. This
thesis aims to explore emerging data methods for damage detection in Structural Health Monitoring.

1.1. Problem Definition
The structure that is the subject of this thesis is the Haringvliet bridge. It is a steel box-girder bridge
over the Haringvliet in the southeast of the Netherlands. The bridge’s total length is 1220 m, with ten
sections of around 106 m each. A moveable bridge in the north part of the bridge allows maritime traffic
to travel up and down the Haringvliet. The bridge consists of a steel deck with a rectangular hollow
section. Diagonal struts from the hollow section support the cantilever deck plate on either side of the
bridge. The bridge is an important logistical connection between the south of Holland and Zeeland via
the A29 highway. In 2019, the average daily number of vehicles that crossed the bridge was 644001.
Construction finished in 1964, and the bridge has been in service for nearly 60 years. Being a steel
box-girder bridge, it is susceptible to fatigue damage under dynamic loads in the welding connections
[42]. The bridge’s age, design and traffic load may have contributed to the formation of fatigue cracks
in some sections of the bridge between the transverse beams and the longitudinal stiffeners. These
fatigue cracks are a clear example of bridge damage and offer an opportunity to conduct damage
detection. The fatigue cracks are present only in some of the sections of the bridge, and the sections
have a similar structural configuration. Thus, it is possible to compare the vibration data of the damaged
area with the vibration data from the ”healthy” reference area and perform damage detection between
the two areas. This led to the Haringvlietbrug measurement campaign that installed accelerometers
and temperature sensors in these areas. This measurement campaign was concerned with detecting
damage from these fatigue cracks. After the conclusion of the first measurement campaign, a second
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1.2. Previous Research 3

measurement campaign was conducted on the bridge with a more dispersed sensor layout in a single
area to look at more global behaviour of the bridge. This thesis will use data from both campaigns
but with different goals for each campaign. Data from the first measurement campaign will be used to
detect damage from the fatigue cracks. However, as discovered in previous studies on the bridge, the
damage due to the fatigue cracks is not the only difference between the two comparison areas. Thus
the ”damage” detection is not solely detecting damage. Data from the second measurement campaign
will be used to investigate the environmental variability.

1.2. Previous Research
A vibration-based damage detection study has already been conducted on the data from the first mea-
surement campaign of the Haringvliet bridge [21]. In this study, a data-driven approach was taken to
identify the presence of damage. Before damage detection was conducted, the vibration data was pre-
processed with a method called similarity filtering. The method was first proposed by an SHM study
on the Zwartewaterbrug [32] and later used by another study on the same bridge [15]. Compared to
Haringvlietbrug, the Zwartewaterbrug is an arch bridge with an orthotropic bridge deck and a length
of 104 m. In these two studies on the Zwartewaterbrug, damage detection was performed. However,
there was no presence of actual damage. Instead, the damage was simulated with the introduction of
small masses under the bridge deck. This would alter the dynamic profile of the bridge, similar to stiff-
ness reduction with the formation of a crack. According to the two Zwartewaterbrug studies, similarity
filtering was successfully used to eliminate operational variability. However, similar filtering was not
successful in eliminating the operational variability in the previous study of the Haringvlietbrug. Along-
side this research on the Haringvlietbrug, there was another study on the Haringvlietbrug [25]. That
study concluded that similarity filtering does not work, and the successful results in the Zwartewater-
brug were due to false positives. For this research, instead of using similarity filtering, a promising
method called Robust Principal Component Analysis (RPCA) will be used [9]. The question is whether
it is possible with this method to reduce or eliminate the operational variability within the traffic, making
damage detection possible for the Haringvlietbrug data.

1.3. Research Question
The main research question of this thesis is formulated as follows:

”Is it possible to reduce the operational variability of the traffic with Robust Principal Component
analysis to enable the detection of either damage or changing environmental conditions.”

1.4. Thesis outline
The second chapter of this thesis is a general overview of SHM and data-driven methods, as well as
an introduction to sparsity and compressed sensing. Chapter 3 briefly goes over the two measurement
campaigns of the Haringvliet bridge. The theory for the methods used in the thesis is presented in
chapter 4. Chapter 5 involves the general preprocessing of the data and the application of Robust prin-
cipal component analysis (rPCA) on acceleration data. Chapter 6 is focused on detecting the damage
due to fatigue cracks with data from the first measurement campaign. On the other hand, chapter 7
presents the analysis of the effect of environmental variability on the dynamic properties with the data
from the second measurement campaign. Chapter 8 gives a more thorough analysis of the behaviour
of the Robust principal component analysis. Finally, conclusions and recommendations are presented
in chapter 9.
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2
Structural Health Monitoring &

Data-Driven Science

This chapter presents background on Structural Health Monitoring (SHM), the advantages that the
technology can bring, and the challenges faced within the field. It also presents an introduction to
data-driven methods and a discussion of sparsity and compressed sensing.

2.1. Structural Health Monitoring: Advantages & Challanges
Structural health monitoring (SHM) is an emerging multidisciplinary field with aerospace, mechanical
and civil engineering communities utilising SHM to solve problems in their respective fields. The civil
engineering community has employed vibration-based monitoring for bridges and buildings since the
1980s [17]. SHM is a rapidly growing field, as seen in the number of publications of SHM literature in
the past two decades in figure 2.1. Since 2010 there has been nearly a 100% increase in publications.
Although still mainly a research topic, it has the potential to offer cost-effective solutions and life-safety
benefits for the maintenance of civil engineering structures. The goal of any SHM project, as the name
implies, is to observe a structure and monitor its structural integrity over time and diagnose potential
issues with a structure before they become significant problems, allowing for timely and cost-effective
maintenance and repair. This can help prevent structural failures and improve overall safety and re-
liability. With the use of sensors, it is possible to collect data about the state of the structure under
investigation. Vibration-based monitoring is a subset of SHM that uses vibration data, such as accel-
eration recordings, for analysis. The idea of vibration-based monitoring is that damage will manifest
itself as a change in a structure’s stiffness, mass, damping properties, and boundary conditions. All of
these aforementioned properties affect the dynamic properties of a structure, the natural frequencies
and modal shapes. Thus the presence of damage will result in a different dynamic system than that
of a system prior to the introduction of damage. By comparing the dynamic properties of the system
before and after the introduction of damage, it is possible to identify if there has been a deviation in the
normal condition of a structure.

The growth of the Structural Health Monitoring field has been partly due to significant advances in data-
driven science and engineering, which has revolutionised how complex systems can be predicted and
modelled. Driving this advancement of data-driven science is the vast availability of data enabled by
the accessibility of affordable sensors, an increase in computational power, and improvements in data
transfer and storage solutions. So promising is data-driven discovery that it has been hailed as the
fourth paradigm of scientific discovery [23].

One of the major advantages of SHM is that it offers an alternative to time-based maintenance ap-
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Figure 2.1: The number of Structural Health monitoring publications in the last two decades. Source : Scopus. Data gathered
by searching ”Structural Health Monitoring”

proaches, where a structure is inspected at predetermined time intervals, regardless of the condition of
the structure. On the other hand, condition-based monitoring is where the sensing system continually
monitors the system and will notify operators of the structure if any damage has occurred. Compared to
time-based maintenance schemes, a condition-based approach allows for the early detection of struc-
tural issues and the ability to take action before the issue becomes critical and potentially causes a
major failure. This increases the structure’s safety and reliability and reduces the need for costly and
time-consuming inspections. Finally, much of the infrastructure built in the 20th century is reaching or
exceeding its initial design life. Due to economic pressures, these structures are in use despite the in-
creased risk associated with damage accumulation over the years. Therefore, monitoring the structural
state of these at-risk structures becomes even more critical. [18]

While SHM for civil engineering structures promises great benefits for the maintenance of structures,
there are major challenges for the field to overcome before the technology becomes commercially
viable. The physical size of civil engineering infrastructure can pose a challenge to the implementation
of an effective damage detection framework. Damage in a structure is generally a local phenomenon,
and its influence can be restricted to high-frequency local mode shapes and their corresponding natural
frequencies. The effect of damage might not be noticeable in the lower-frequency global modes of
the structure. This essentially implies that to be able to capture the effect of potential damage. The
sensors need to be optimised to higher-frequency local mode shapes. The local modes cover less area
of the structure than the global modes, and thus more sensors are required to provide comprehensive
coverage of the structure. A cost-effective SHM framework would minimise the number of sensors to
reduce costs [17]. However, the aforementioned problems make this difficult.

Civil engineering structures are subject to operational and environmental variability that poses a chal-
lenge for SHM. A robust damage detection scheme has to take this variability into account. Changing
operational and environmental conditions can alter the measured response of the system and can po-
tentially result in false positives for the damage detection framework, where different operational and
environmental conditions are misidentified as damage. Therefore it is imperative that the damage de-
tection framework is robust to this variability to avoid misidentifying it as damage [39]. Temperature is
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a typical example of an environmental condition that can influence the dynamic properties of a system.
Different types of vehicles, with different masses, travelling at various speeds over a bridge is an ex-
ample of operational variability. The excitation by these vehicles can be different, leading to a different
measured response.

A final remark on the challenges of SHM for civil infrastructure is that nearly every structure is unique.
Structures are not designed according to a single template. Even a group of similar structures, such
as bridges, exhibit variation in their designs according to design specifications. The damage detection
implementation has to be tailored to each structure. That means that there is no defined ”baseline” or
normal condition that can be shared between structures. In contrast, SHM for aerospace structures
can utilise data from different aircraft of the same model to determine a baseline for a given aircraft [18].
However, each civil engineering structure has to undergo long-term evaluation to determine its normal
conditions under various operational and environmental conditions [6].

2.1.1. Statistical Pattern recognition

The SHMprocess can be approached from a statistical pattern recognition perspective. Pattern recogni-
tion is the process of finding regularities or patterns within data. By referencing an already-established
database, it is possible to categorise data into groups. For example, it would be a trivial task for a
person to classify a group of images if they either included a cat or a dog (given that they have seen
both animals). That person would be referencing an internal database of past experiences to identify
if the image had a cat or a dog. The same principle can be applied to SHM, but the problem would be
to identify if there is damage present in a building. Similar to the cat and dog comparison, it would be
necessary to reference a database of what constitutes an undamaged and damaged structure. This
means that information of both states is required for damage detection. However, information on the
undamaged state or the normal condition of the structure is more readily available.

Pattern recognition for SHM is achieved by working with measurement data from sensors, such as ac-
celerometers, to identify the normal condition and potential damage. Unlike the cats and dogs example,
a person is not looking at the data to determine if it represents a damaged or undamaged structure.
Instead, pattern recognition for SHM can be done via machine learning algorithms. Machine learning
is a principled set of mathematical methods that enables the extraction of features and patterns from
data that can be exploited for decision-making. These methods ”learn” from data and make predictions
based on the data, making them data-driven methods.

The statistical pattern recognition approach for SHM can be split into four distinct processes [27]

1. Operational evaluation
2. Data acquisition
3. Feature extraction and selection
4. Statistical modelling for feature discrimination

Operational evaluation

Operational evaluation is a preliminary phase in the SHMprocess to determine the benefits and possible
problems with SHM on a given structure. The phase aims to answer four questions regarding the
implementation of SHM technology for a given structure. The first question is about assessing the
economic and life-safety benefits that SHM technology can bring. The second part is determining how
damage will be defined, the possible damage scenarios, and which of them is themost critical. The third
question is determining the possible operational and environmental variability present in the structure.
The final question is assessing the limitations of data acquisition on in situ structures.
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Data acquisition

This phase of the SHM process is to answer questions regarding the sensor configuration. It involves
selecting sensor types, their location and how many should be used. It also includes all auxiliary equip-
ment regarding data storage and transfer. To achieve a cost-effective damage detection framework, it
is crucial to consider the economic aspect of the selection of sensors. Ideally, an effective SHM should
minimise the number of sensors to limit costs.

Feature extraction and selection

Feature extraction involves selecting meaningful data from the raw measurement data that is sensitive
to damage, which allows for the comparison between damaged and undamaged states in the next
phase. There are many possible damage-sensitive features. For example, the features can be modal
properties, such as the natural frequencies. Likewise, the mode shape of the corresponding natural fre-
quencies can be used as features. One of the challenges in selecting a damage-sensitive feature is that
features sensitive to damage are also sensitive to changing operational and environmental conditions.

Another issue with the selection of features is their dimensions. Machine learning is employed to anal-
yse these features and identify potential damage. Crucial to the success of these machine learning
methods is the quality and the dimension of the features. If the features are not correlated with damage,
then the machine learning process will not be able to identify damage. Furthermore, the performance
of machine learning algorithms depends on the feature dimension. This is sometimes referred to as the
curse of dimensionality [4]. It can be stated as follows: As the number of features or dimensions grows,
the required amount of data to generalise the problem accurately grows exponentially. Increasing the
dimension leads to the volume of the space increasing faster, resulting in the data becoming sparse
in this space. To achieve the same level of statistical robustness as for lower dimensions, the space
needs to be sufficiently populated with data to fill the gaps, but that requires an unrealistic amount of
data. In order to circumvent this problem, the data can be embedded into a low-rank subspace, re-
ducing the dimensionality of the problem. For instance, instead of taking an entire frequency vector
as a feature, only a single index of a natural frequency can be taken, reducing the dimension to a sin-
gle scalar. Principal component analysis (PCA) is a common dimensionality reduction technique that
represents the data according to the maximum correlation within the data set.

Statistical modelling for feature discrimination

The final process of SHM concerns identifying and quantifying the damage using the selected features.
Machine learning algorithms can learn the relationships within the data and construct models that can
predict and classify new data. In the case of damage detection, machine learning algorithms can
create models based on selected features. This model can then predict whether new data is either part
of a damaged or undamaged system, automating the discovery of damage. These machine learning
algorithms fall into two categories: Supervised learning, where the model is trained on labelled data.
Here the state of the features is known whether they are part of the damaged or undamaged systems.
To be able to use supervised learning, data must be available from both the damaged and undamaged
systems. However, information regarding the damaged state is not readily available. The goal of SHM
is to detect when said damage occurs, which means that this data is unavailable when the machine
learning model is created. On the other hand, unsupervised learning has no labels given to the data,
and the goal is to find patterns within the data in a principled way to classify the data. However, in
SHM, the undamaged state is known and therefore, novelty detection is a more appealing method for
damage detection. Novelty detection involves detecting anomalies from a baseline condition. In the
case of SHM, the anomalies would be features that represent damage, while the baseline condition is
the normal condition of the structure.

The existence of damage is only a fraction of the damage state. Rytter [36] proposed a five-part hier-
archical damage detection framework seen below. Each subsequent question requires an increasing
level of knowledge of the damage state. The discussion in this thesis will be limited to the first question,
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which is the existence of damage. However, an ideal SHM system would have answers to all of these
questions.

1. Is there damage in the system (existence)?
2. Where is the damage in the system (location)?
3. What kind of damage is present (type)?
4. How severe is the damage (extent)?
5. How much useful (safe) life remains (prognosis)?

In summary, the statistical pattern recognition approach aims to extract and select damage-sensitive
features from measurement data and create models that can distinguish between damaged and un-
damaged features. This chapter is only a short overview of the statistical pattern recognition paradigm
for SHM. A more thorough discussion of the process can be found in [27].

2.1.2. Operational and Environmental Variability

One of the major challenges in implementing a successful damage detection framework for SHM for
in-service structures is the presence of operational and environmental variability [39]. The changes
in operational and environmental conditions can alter the measured response characteristics, which
can be falsely interpreted as damage. A robust damage detection framework should reduce or remove
the effect of this variability. Temperature is the most common environmental variability, and it can vary
throughout the day and between seasons which can alter a system’s dynamic properties.

Operational variability depends on the structure. For instance, wind turbines can have different opera-
tional conditions depending on the rotation speed of the blades, pitch angle and nacelle direction [24].
The operational variability encountered in bridges concerns the traffic loading on the bridge. Vehicles
can cause different excitations depending on their mass and speed. The weight of the vehicles can
also alter the system’s dynamic properties [14, 29].

The problem of this variability can be tackled to some extent [18, 39] but is still an issue for SHM. The
approach taken in this thesis will utilise the advancements in sparsity and compressed sensing [3, 16,
9] to limit this variability. The analysis of this thesis uses the acceleration recordings of several sensors.
These are output measurements of the system. Equation 2.1 shows the frequency representation
of a generalised dynamic system with input F(ω), output R(ω) and the transfer function H(ω). In the
analysis of this thesis, only the output or response is known. Any change to either the excitation
(input) or the system properties (transfer function) can lead to a different response. The introduction of
damage can alter the stiffness, mass and damping properties of a given system. This will be reflected
as a change in the transfer function. Operational and environmental variability can also potentially
cause a change in the transfer function, either due to temperature or added mass. Damage detection
is a comparison between two states; two different signal groups are compared. The environmental
and operational conditions need to be the same or similar in order to avoid misidentifying damage as
different operational and environmental conditions.

F(ω) · H(ω) = R(ω) (2.1)

However, there is also a significant variance in the input, which can be attributed to the operational
conditions that the bridge is subject to. Different vehicles have different masses and speeds that can
lead to varying input. This makes it difficult to quantify the dynamic properties and its transfer function
as only the measured output is available. Sparsity and Compressed sensing is a promising field in
data driven science and engineering that offers potential solutions to existing engineering problems.
This thesis will utilise concepts from this field, specifically the Robust Principal component analyis [11],
to reduce or limit the operational variability in the input. Sparsity and compressed sensing will be
discussed later in the chapter.
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Literature studies

There have been many studies on the effects of operational and environmental variability on bridges.
This section will review several papers on the topic.

Alamosa Canyon bridge in New Mexico, USA, exhibited daily variation in modal properties due to tem-
perature changes [12]. The bridge is oriented in the north-south direction, which results in the sun
heating the east side in the morning. This creates an east-west temperature differential across the
deck, which results in a 6% daily variation in the modal frequencies.

The Z24 bridge was a pre-stressed concrete bridge in Switzerland. The bridge was the subject of a va-
riety of experiments under the SIMCES project [35]. Over a span of a year, a monitoring campaign was
in place to measure the modal parameters of the bridge and environmental variables such as tempera-
ture and humidity. During this time, it was closed to traffic and was only under ambient loading. Before
it was demolished in 1998, it underwent a series of damage scenarios where damage was introduced to
the structure. From the data gathered from the bridge, a bilinear relationship was discovered between
ambient temperature and the natural frequencies [34]. When the ambient temperature dropped below
freezing, there was a significant change in the natural frequencies. This was attributed to an increase
in stiffness in the asphalt layer of the bridge.

Temperature variation can also alter the structural configuration of a bridge [20]. In this paper, the modal
properties of a composite bridge change dramatically in colder weather. The expansion bearings of
the bridge were partially constrained in cooler temperatures. This resulted in a nonlinear relationship
between temperature and the natural frequencies. The first three resonance frequencies of the bridge
decreased by 12.3 %, 16.8% and 9.0 %, respectively, when the temperature increased from -17.8 °C
to 15.6 °C. There was little change in the natural frequencies at temperatures higher than 15.6 °C.

The weight of the vehicles on the bridge can alter the dynamic properties of the bridge. The Tamar
bridge is a suspension bridge in the southwest of England. The bridge has been under long-term
monitoring, and research was conducted on three years of data [14]. The traffic loading or the number
of vehicle mass on the bridge was discovered to have a dominant effect on the daily fluctuation of the
natural frequencies. Similarly, it was found that seasonal variations in temperature affected the natural
frequencies. The second natural frequency of the bridge changed by 4.5 % over a temperature interval
of 20 °C. Finally, the wind affected the modal frequencies at high wind speeds and when the wind was
sideways to the bridge.

Another long-term monitoring campaign was on the D. Henrique Bridge in Porto, Portugal. It is a con-
crete arch bridge, and it was monitored over two years [29]. In the paper, the added vehicle mass
during the morning rush hour caused a small shift of the first natural frequency of the bridge. Further-
more, during the morning rush hour, there was a detected increase in the damping ratio of the second
natural frequency and was attributed to vehicle-bridge interaction.

There have also been literature reviews on the effect of environmental variability [41]. The research
concluded that the majority of reviewed studies show that the natural frequencies show a negative
correlation with temperature. As temperature increases, the resonance frequencies decrease. The
variation in the material modulus under different temperatures was considered to be the main reason for
the variation in the natural frequencies. The research also included a comparative laboratory study on
the temperature effect on different structural materials; steel, aluminium and reinforced concrete. The
natural frequencies of structures from different materials responded differently when the temperature
increased by a single centigrade. The natural frequencies of steel, aluminium and reinforced concrete
decreased by about 0.02 %, 0.03 % and 0.15 %, respectively. This change was independent of the
structural type and which mode was under investigation. Finally, for most bridge structures, there was
no significant change in the mode shapes, as there is little to no variation in the temperature in the
longitudinal direction of a bridge.

These papers are just a fraction of the available literature on the challenge of operational and envi-
ronmental variability faced in the field of SHM for civil engineering structures. However, they show
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that damage-sensitive features, such as the natural frequencies, are also sensitive to operational and
environmental variability and need to be considered in any damage detection framework.

2.2. Data Driven Science and Engineering
In recent decades there has been an increase in the usage of data-driven techniques to understand
and model complex systems in engineering. This is happening in all fields of engineering, including civil
engineering and SHM [2, 37]. This chapter is a brief introduction to machine learning and the concept
of sparsity and compressed sensing.

Machine Learning

Machine learning is the use of optimisation methods on data. Using a set of principal mathematical
methods makes it possible to create models that ”learn” from data and can subsequently make predic-
tions based on the data. This can, for instance, be the classification of data or the discovery of inherent
patterns in data. As mentioned before, there are two main categories of machine learning: Supervised
machine learning and unsupervised machine learning. In supervised machine learning, algorithms are
given information on the labels of the training data. The goal would then make predictions based on
the relationship between features and the labels of the data. In unsupervised machine learning, the
training data is not labelled. The goal is to find patterns or coherent structures in the data, which can
then be used to generate labels and predict data.

Crucial to machine learning is understanding if a constructed model is either over-fitting or under-fitting
the data. When a model is constructed, a data set must be split into training, validation and withholding
data sets. Overfitting occurs when a model is too complex and fits the training data too well that it
starts to follow detailed patterns in the data related to noise. The accuracy of the model on training
data will be high, but it will generalise poorly and have poor accuracy on unseen data from the withhold
set. Underfitting, on the other hand, is when the model complexity is simple and does not capture
the underlying patterns within the data. To overcome the issue of over-fitting it is necessary to use
cross-validation. Cross-validation is the act of splitting the data into random parts and training the
model on a single part of the data while testing on the other parts. This is then repeated k number
of times to obtain an average performance metric of the model. This leads to a more generalisation
of the problem. Another aspect of machine learning models is the creation of accurate models while
remaining parsimonious. That is, models with few parameters that are interpretable and generalise
well while remaining accurate.

Sparsity & compressed sensing

The mathematics of sparsity and compressed sensing is the foundation of the main method used in
this thesis, the robust principal component analysis. The viewpoint of sparsity is that complex systems
and phenomena can be described in sparse terms. The motion of classical mechanical systems, for
instance, can be described by a few major movements in the system. Sparsity can be used to promote
parsimonious models from data that have a minimal number of terms. It can be used to add robustness
with respect to outliers, as is done in the rPCA, via sparse optimisation. Compressed sensing aims to
reconstruct complex systems and signals from a few sparse measurements.

Two methods in this thesis are based on this theory, The rPCA [11] and the sparse sensor placement for
optimisation (SSPOC) [7]. These methods are promising and can potentially solve problems in SHM.
There are many other interesting methods that utilise sparsity and compressing that could possibly be
used in an SHM context. Sparse sensor placement for reconstruction [30] is an interesting method that
aims to reconstruct a signal by exploiting known patterns in data. Recently, these methods have been
successfully used in engineering applications [31]. In this research, an alternate approach to the main-
tenance of aircraft shims was proposed. rPCA and sparse sensor optimisation were used to optimise
the collection of data. This reduced the number of measurements required to accurately predict shim
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gaps in aircraft assembly. This approach was based on the fact that patterns in measurement data
exist in the shim distribution in an airframe that can be recovered. There is potential to apply these
methods to problems faced within SHM.



3
The Haringvlietbrug Measurement

Project

3.1. Introduction
The Haringvlietbrug is a steel box-girder bridge. Its total length is 1220 metres, with ten similar sections
that span 106 metres each and a section for a movable bridge in the north part of the bridge, allowing
maritime traffic to pass the Haringvliet. The bridge consists of a hollow box section under the bridge
that runs longitudinally along the bridge. Diagonal struts from the hollow section support the cantilever
deck plate on either side. Transverse beams are equally spaced along the length of the bridge sections
with stiffeners between them. Figure 3.2 shows a structural section of the bridge. The bridge has four
lanes of traffic, two in each direction, with an extra lane designated for local low-speed traffic. The road
surface consists of an asphalt layer on the bridge deck. The traffic, and thus the loading on the bridge,
is not symmetric over its width. The southbound traffic is situated on the westward cantilever deck plate
of the bridge, while the northbound traffic drives on the centre of the bridge. The local low-speed lane
is located on the east cantilever deck plate.

The bridge is located south of Rotterdam and connects South Holland with Zeeland via the A29 highway.
It is an important connection between the two regions for both daily commuters and cargo freight. The
average daily weekday traffic was 64400 vehicles in 2019, with around 20 % of the traffic being heavy
trucks 1. Traffic has increased over the years. Figure 3.3 shows the increase in traffic in the past
decade for both regular passenger cars and cargo trucks. In 2020 there was a decrease in passenger
cars, but in August 2021 renovation of the movable bridge started, and a speed restriction of 50 km/h
was put in place 2. In 2020 there was also a global pandemic. This could explain the sudden decrease
at that time. From 2014 to the peak traffic in 2019, there has been a 43 % increase in traffic with a 58
% increase in heavy trucks. The bridge was opened in 1964 it has been in service for nearly 60 years.
It can be assumed that there has been a considerable increase in traffic from its opening, something
it might not have been designed for. Given its age, increase in traffic load, and that steel box-girder
bridges are prone to fatigue damage in welding connections [42], it is not surprising that fatigue cracks
have been identified in the bridge.

In 2003 Rijkswaterstaat, which is responsible for the maintenance of main infrastructure facilities in the
Netherlands, launched the project Risk: Rijdek Inspectie Stalen Kunstwerken (Bridge Deck Inspection
of Steel Structures). The goal of the project was to monitor steel bridges in the Dutch national road net-
work for fatigue damage. In 2017 and 2018, the structural state of the Haringvlietbrug was investigated
by visual inspection. The work was carried out by the engineering consultancy Nebest, and a report

1Intensiteiten op Wegvakken - INWEVA Source
2A29: Renovation Haringvliet draw bridge - Rijkswaterstaat Source
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https://maps.rijkswaterstaat.nl/gwproj55/index.html?viewer=Inweva.Webviewer
https://www.rijkswaterstaat.nl/wegen/projectenoverzicht/a29-renovatie-haringvlietbrug-beweegbare-deel
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Figure 3.1: The Haringvlietbrug. Looking north at the drawn up moveable bridge. Source : Rijkswaterstaat

Figure 3.2: Crosssection of the Haringvlietbrug. Heavy traffic location highlighted in red.

was submitted to Rijkswaterstaat. In the report, there were 45 observations of fatigue cracks exceed-
ing the critical length between the stiffeners or bulb profiles and the transverse beams. However, this
amount of damage was not considered critical to the bridge’s safety and presented an opportunity for
an SHM project. The first step in such a project would be the acquisition of data for analysis through
a monitoring campaign. As mentioned earlier, traffic over the width of the bridge is not symmetric,
with southbound traffic mainly on the west deck plate cantilever. This is an area of concern, as it is
a cantilever that carries a considerable dynamic load. Several fatigue cracks were discovered in this
area between the stiffeners and the transverse beams. This area of the bridge is the subject of one of
the vibration monitoring campaigns and was the basis of the previous study of the Haringvlietbrug [21].
There have been several different monitoring campaigns on the Haringvlietbrug at the time of writing,
two of which are vibration-based monitoring campaigns that measure the acceleration response of the
structure at various locations. The data used for this study are mainly from these two vibration monitor-
ing campaigns. The accompanying chapters will go into the details of these measurement campaigns.
There have also been campaigns that measure the strain and temperature of the bridge at different
locations. These measurements were used in a study on the effect of temperature on the natural fre-
quencies of the Haringvlietbrug [26]. The main finding from that research was that the temperature of
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Figure 3.3: Traffic development of the Haringvlietbrug. Source INWEA

the asphalt had a major role in the dynamics of the bridge.

3.2. First Vibration Monitoring campaign

3.2.1. Goal

The first measurement campaign was initiated to acquire data to develop a robust damage detection
framework. The accelerometers are located in the west cantilever of the bridge in the vicinity of fa-
tigue cracks. To perform damage detection, comparable data had to be gathered in an undamaged or
”healthy” reference area to allow for comparison between undamaged and damaged vibration signals.
Thus, in another undamaged section of the bridge that is structurally similar to the damaged area, the
sensors are set in positions identical to those of the damaged area. This was the sensor setup in the
previous damage detection study of the Haringvlietbrug [21] and will be used again for this study, but
now a different preprocessing technique will be applied to reduce the operational variability. Instead of
similarity filtering as was done in the previous research, Robust Principal Component Analysis will be
used to reduce the operational variability.

3.2.2. Sensor Configuration

Sensors were installed in two areas, one damaged area in the presence of fatigue cracks and another
undamaged reference area that is structurally similar. In both cases, the sensors are located on the
west side of the bridge on the cantilever bridge deck that carries the traffic that is bound south to Zeeland
and Brabant. The sensors are also in the same section of the bridge that is in the midspan of section
4, which is the second span after the moveable bridge from the north. Figure 3.5 shows the location of
the two sensor areas. The baseline reference area is mirrored compared to the damaged area.
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Figure 3.4: Fatigue Cracks Number 21 and 22 between the stiffeners and the transverse beam

Figure 3.5: Baseline or ”healthy” area and the detection or damaged area. Bridge section 4. Taken from [21]

The goal of SHM is to create a functional and economically viable procedure to monitor the health of
structures. Sensors are vital for any SHM project, and the number of sensors used in SHM projects
should be minimised to reduce costs. However, to fully capture the nature of structural systems, many
sensors may be required. A single sensor can never provide comprehensive coverage of an entire
complex structure and cannot detect changes for every possible damage scenario. The number and
position of sensors is an optimisation problem that has to be tackled in any SHM project. For this
monitoring campaign, a total of 32 uni axial accelerometers are deployed for both areas, so 16 ac-
celerometers for each zone. These accelerometers measure acceleration in the time domain in a
single direction. They are positioned in a dense network around the fatigue cracks in the damaged
area and in ”identical” positions in the baseline reference area. The proximity of the accelerometers
to the fatigue cracks should increase the likelihood that the sensors would capture relevant data that
is sensitive to damage. An alternative would be a sensor setup that would capture modal parameters
of the bridge, such as the mode shapes. This would lead to a network of more distributed sensors to
capture the vibrational modes. However, as the first method of sensor setup is used, there is limited
information on the shapes of the vibration modes.

The accelerometers are uniaxial and thus can only measure acceleration in one direction. This makes
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the orientation of the sensors as crucial as their position to capture vibration data sensitive to damage.
Depending on the position and orientation of the accelerometer, the frequency content captured by the
sensor can be vastly different. For both the damaged and undamaged reference areas, the sensor
orientation is the same to allow direct comparison. Two accelerometers measure acceleration in the
direction parallel to the bridge, defined as the X-direction. These accelerometers are positioned on
the transverse beam and measure the out-of-plane movement of the beam and should capture the
high-frequency modes that have this out-of-plane movement. Another nine accelerometers are on
different stiffeners that measure the acceleration in the Y-direction, which is orthogonal to the bridge
in the west-east direction. These sensors also measure the out-of-plane movement of the stiffeners
and should capture the corresponding out-of-plane high-frequency modes of this element. Finally, five
accelerometers under the bridge deck measure the Z-direction, the vertical motion of the bridge. The
corresponding modes that these sensors capture should be low-frequency modes associated with the
bending of the bridge deck. Figure 3.6 shows the position of the sensors as well as the orientation of
each sensor.

Figure 3.6: Sensor layout of the damage area (top figure) and the Healthy reference area (bottom figure) . Taken from [21]

The accelerometers were installed in April 2020, and the monitoring campaign was active for approx-
imately one year. The accelerometers have a sampling rate of 1000 Hz. The sensors are active
throughout the day but only collect data for 15 minutes each hour. The aforementioned sampling rate
leads to a data vector of the size 21600000 for a single day for only a single sensor. After the sensors
retrieve the data, the data needs to be stored somewhere and await analysis. A cloud-based solu-
tion was used to move the data to a remote server via a 4G antenna. Twente University oversaw the
implementation of this system and the installation of sensors.
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3.3. Second Vibration monitoring campaign

3.3.1. Goal

The second vibration monitoring campaign repurposed the acceleration sensors from the first measure-
ment campaign. Instead of a comparison between two different areas, all sensors were installed in a
single section of the bridge. Prior to the launch of this monitoring campaign, it was deemed unsat-
isfactory to continue with the previous arrangement of sensor layout. The presence of fatigue cracks
between the undamaged and damaged areas is not the only difference between the two areas. The two
areas have slightly different structural configurations, meaning that if there is any detectable difference
in the vibration data of the two areas, it is not possible to conclude whether it is due to fatigue cracks
or different structural configurations. This was the conclusion of the previous damage detection study
on the Haringvlietbrug, and a different approach was taken with the subsequent second measurement
campaign. The goal of the second monitoring campaign was to gain more insight into the global be-
haviour of the bridge by looking at the mode shapes while also tracking the variation in the individual
modes due to environmental variability.

3.3.2. Sensor configuration

The accelerometers in the second measurement campaign are located in the third bridge section from
the north. The same 32 uniaxial sensors from the first measurement campaign are used again but are
nowmore dispersed in a single detection area. Of the 32 sensors, 30measure the bridge deck’s vertical
acceleration. The remaining two measure the horizontal acceleration of the two separate stiffeners.
Again, the sampling rate is 1000 Hz, and measurements are taken for 15 minutes every hour. These
sensors are located at the east-mid cross-section of the bridge that carries the northbound traffic. This
is different from the first measurement campaign, which had sensors under the west cantilever. Figure
3.7 shows the location of the sensors.

Figure 3.7: Top view of the accelerometer layout of the 2nd Measurement campaign. The vertical lines denote the stiffeners,
and the black horizontal lines denote the transverse beams. The figure shows the area within the midsection, that is, not the

cantilevers. The numbers in squares are the vertical accelerometers, while the numbers in circles are the horizontal
accelerometers.

Alongside these 32 accelerometers, there are also 16 temperature sensors spread over the bridge.
These temperature sensors are attached to the various structural components, such as the stiffeners
and transverse beams and measure the temperature of said components. There are also sensors
embedded into the asphalt layer of the road. Figure 3.8 shows the sensor layout of the temperature
sensors. They are spread out over the vertical height of the bridge’s midsection. The figure does not
include the location of the temperature sensors in the asphalt.
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Figure 3.8: Temperature sensor layout



4
Theory

This chapter presents the theory behind the methods utilised in the thesis. The goal of these methods is
to manipulate data in a meaningful way. The first half of these methods (Singular Value Decomposition
(SVD), Principal Component Analysis (PCA), and Robust Principal Component Analysis (rPCA)) aim
to recover the dominant patterns in the data. These patterns can contain relevant information about
the underlying dynamic system properties of vibration signals. Robust Principal Component Analysis
(rPCA) and Sparse Sensor Placement for Optimisation (SSPOC) are two methods that use sparsity-
promoting methods. In the rPCA, sparsity is used to robustify an existing algorithm PCA with respect
to outliers. Sparsity-promoting methods are used in the SSPOC to find the minimum number of points
in the data to adequately distinguish between data belonging to different groups. Finally, the last meth-
ods discussed in the chapter enable the classification of data into distinct groups or classes (Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM)).

The usage of the rPCA on noisy vibration data in this thesis is motivated by its promising results in
removing outliers in image data as was done in [11]. It is possible that the rPCA can be used to remove
noise or outliers within the vibration data and recover the underlying system properties. Similarly, the
use of the SPPOC on vibration data is motivated by its usage and effectiveness in other engineering
disciplines, as can be seen in the optimisation of aircraft maintenance regimes [31]. Both of these
methods utilise sparsity and compressed sensing which is a promising field that can benefit many
engineering disciplines.

4.1. Singular Value Decompisation (SVD)
Singular value decomposition (SVD) is a matrix factorisation method that decomposes a matrix into
dominant patterns that contain the most correlation within the data and is the foundation of many of
the methods in the chapter. It is a generalisation of the eigendecomposition for a square normal ma-
trix and is guaranteed to exist contrary to the eigendecomposition. The SVD can provide a low-rank
approximation to a matrix X by only considering the most dominant patterns that contain the highest
correlation within the data. High dimensionality is a common problem when working with data from
complex systems. For example, image and video data can be highly dimensional depending on the
image’s resolution, with each pixel being a single index in a data matrix. However, much of the rele-
vant information in an image may be represented in a lower-dimensional subspace. This enables the
compression of images, reducing the storage size while retaining the majority of the image information.
Complex physical systems, such as classical mechanical systems and fluid flows, can also exhibit high
dimensional behaviour, but there may be dominant patterns that describe the system. For example, the
majority motion of a classical mechanical system can be described by several mode shapes and their
corresponding natural frequencies. Using the SVD, these low-dimensional patterns can be systemati-

20
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cally uncovered from data. It is a powerful tool for dimensionality reduction. The SVD is a data-driven
method [8]. The patterns that it uncovers are solely based on the inputted data. It provides a basis
tailored to the inputted data. In contrast, the Fourier transform provides a generic basis, the frequency
domain.

Defination of the SVD

Consider a large data set X ∈ Cn×m :

X =

x1 x2 · · · xm

 (4.1)

The matrix consists of data that may be obtained with measurements from simulations or sensor equip-
ment. A single column xk ∈ Cn represents a single measurement. Examples of these measurements
would be images. An image can be reshaped into a column vector in which a single index represents
a pixel’s colour value. A data set of m images would form the data matrix X. These images could be
of cats and dogs, and the goal with the SVD would be to find the dominant features that distinguish
between these two types of animals. The column vectors can also represent the state of a physical
system that changes with time. Each column vector is then a snapshot of the system at a given time.
The SVD is a unique matrix decomposition that is guaranteed to exist for every complex-valued matrix
X ∈ Cn×m :

X = UΣV ∗ (4.2)

Where U ∈ Cn×n and V ∈ Cm×m are unitary matrices with orthonormal columns, and Σ ∈ Rn×m is a
real-valued non-negative rectangular diagonal matrix. V ∗ is the conjugate transpose V. For real-valued
matrices, the conjugate transpose defaults into a regular transpose. If X is real-valued, then U and V
are guaranteed to be real-valued orthonormal matrices. In this case, the SVD can be written as UΣV T .
The diagonal entries of Σ are the singular values of X and are ordered from the largest to the smallest,
and the number of non-zero singular values determines the rank of X. The columns of U are the left
singular vectors, and V are the right singular vectors of X.

The SVD offers a hierarchical low-rank approximation to a matrix X. The singular values in Σ and
corresponding column vectors in U and V are ordered according to the value of the singular value in Σ.
Keeping the most significant singular values and vectors and discarding the rest can retain most of the
information of the data while significantly reducing the dimension of the data. It is possible that only a
few singular values and vectors are needed adequately describe the data. This enables the reduction
of the size and dimension of the data, giving a manageable basis for visualisation and analysis of the
data. Furthermore, in the case of dynamical systems, the SVD provides a hierarchy of possible modes
in the data where column vectors represent these modes.

The columns of U and columns V capture the correlation within X. These columns are the eigenvectors
of the correlation matrices XX∗ and X∗X respectively. The SVD is connected to an eigenvalue problem
involving these two correlation matrices. The following equations are obtained if the SVD in equation
4.2 is inserted into these matrices:

XX∗ = U
[

Σ̂
0

]
V∗ V

[
Σ̂ 0

]
U∗ = U

[
Σ̂2 0
0 0

]
U∗ (4.3a)

X∗X = V
[
Σ̂ 0

]
U∗U

[
Σ̂
0

]
V∗ = VΣ̂2V∗ (4.3b)
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However, as U and V are unitary, U Σ and V will be solutions to the following eigenvalue problem:

XX∗U = U
[

Σ̂2 0
0 0

]
(4.4a)

X∗XV = VΣ̂2 (4.4b)

The non-zero singular values of X are a positive square root of an eigenvalue of XX∗ and of X∗X. Both
of the correlation matrices have the same non-zero eigenvalues. The columns of U and V can then be
interpreted as the eigenvectors of correlation matrices XX∗, and X∗X respectively. Since the singular
values are ordered from highest to lowest, the columns of U and V are similarly ordered by how much
correlation they capture in the columns and rows of X. The SVD and the correlation of data that it
captures will be utilised with the Principal component analysis (PCA).
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4.2. Principal Component Analysis (PCA)
Principal component analysis (PCA) is a data-driven method that transforms high-dimensional data into
a hierarchical coordinate system of principal components (PCs). The principal components are uncor-
related or orthogonal to each other but are directions of maximum variance in the data. In addition, the
principal components are ordered in the amount of variance they explain. This enables dimensionality
reduction of data by looking at the leading PCs and discarding the rest, increasing the interpretability
of data while preserving the maximum amount of variance within the data.

Definition

The PCA can be said to be a statistical interpretation of the SVD. The PCA pre-processes the data
by subtracting the mean and setting the variance to unity before applying an eigendecomposition or
Singular Value Decomposition. Consider a matrix X ∈ Cn×m that consists of n row measurements of
m length. These measurements could be images or acceleration recordings.

X =


x1

x2

...
xn

 (4.5)

First, the mean of all rows is computed and subtracted from the data matrix X.

x̄j =
1

n

n∑
i=1

Xij (4.6)

The mean matrix is:

X̄ =

 1
...
1

 x̄ (4.7)

The subtraction of the mean results in the mean-subtracted data B:

B = X− X̄ (4.8)

The covariance matrix is obtained by:

C =
1

n− 1
B̄∗B̄ (4.9)

The first principal component u1 is:

u1 = argmax
∥u1∥=1

u∗1 B
∗Bu1, (4.10)

u1 is an eigenvector of B∗B that corresponds to the largest eigenvalue. Comparing this to the SVD
and the correlation matrics in the previous section establishes that u1 is a right singular vector of B
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corresponding to the largest singular value. The principal components can be obtained by computing
the eigendecomposition of C:

CV = VD (4.11)

The eigendecomposition is guaranteed to exist, as C is a Hermitian matrix. D contains the eigenvalues
and V the eigenvectors. The principal components obtained with:

T = BV (4.12)

Where T are the principal components and here V are the eigenvectors or ”loadings”, which represent
how much each principal component contributes to each measurement. This is a ”classical” approach
to solving the PCA with eigendecomposition. However, the SVD can be used to compute the PCA.
Applying the SVD on B yields:

B = UΣV∗ (4.13)

As the right singular vectors are equivalent eigenvectors of B∗B, inserting the above equation into 4.12
yields:

T = UΣ (4.14)

The principal component can be constructed from the left singular vectors of B and multiplied by a
corresponding singular value. In practice the SVD is used to compute the PCA.

Example: Ovarian cancer

The PCA is a powerful tool to represent high-dimensional data in a low-rank subspace. From this low-
rank subspace of the principal components, patterns or clusters of the data can emerge, which can be
utilised for further analysis. To illustrate the power of the PCA, consider the ovarian cancer data set
from Matlab®. This data set contains genetic data from 216 patients, 121 of whom have ovarian cancer,
and 95 of whom are cancer free. The genetic data of each ”measurement” or patient consists of the
expression of 4000 genes, resulting in a data size of 216x4000. The high dimensionality of the gene
expression poses a problem for the interpretation of the data. However, the genetic data is suspected
to be highly correlated; patients share an overlap in the expression of these genes. Thus, most of
the gene expression variance within the population could be explained by some dominant patterns or
principal components. This is shown in figure 4.1, with singular values on the left and the total variance
explained by the leading r principal components on the right. A single principal component explains
around 80 % of the variance of the data. This implies that the gene expression of the patients is highly
correlated.

Recall that 121 of the patients have cancer, and it is expected that their expression in these 4000 genes
should be different. Figure 4.2 shows the principal component score of the patients in the subspace
of the first three principal components. It appears that the patients with cancer cluster separately from
cancer-free patients. The clustering of these two groups in the low-rank subspace of the principal
components presents an opportunity for machine-learning algorithms to diagnose new patients if they
have ovarian cancer.

Limitations of the SVD and PCA

While PCA and SVD are powerful methods, they cannot be used indiscriminately. It is essential to
prepare data with pre-processing before use. The SVD is based on the coordinate system in which the
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Figure 4.1: Singular values of the ovarian cancer data set and total variance explained of r leading principal components.

Figure 4.2: Low-rank repsentation of the patient gene data in the subspace of the first three Principal components.

data is represented. Data might require extensive pre-processing for the SVD to generate good results.
An example where the SVD and PCA would break down is when there is translation or rotation of the
data. For instance, a comparison between images of dogs, but all the mages are rotated by a random
amount. The SVD would not be able to find the dominant patterns explaining the correlation within
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dogs. This limitation can be seen in the example in the chapter on the Robust Principal Component
Analysis.

4.3. Robust Principal Component Analysis (rPCA)
One of the flaws of the PCA is it is highly susceptible to outliers and corrupted data. However, this
weakness has been addressed with the development of a robust principal component analysis (rPCA)
[11]. The rPCA aims to decompose a data matrix X into a low-rank matrix L and a sparse matrix S
containing the outliers:

X = L+ S (4.15)

The underlying problem that the rPCA aims to solve is rather complex. This is an inverse problem, and
it is not well-posed at all. It is completely ill-conditioned and underdetermined with n knowns and 2n
unknowns. There are infinitely many solutions to this problem. However, this ill-posed problem can
be solved with regularisation to promote a single solution. Mathematically the decomposition involves
minimising the rank of L, so it is well described by principal components, while S is a sparse matrix by
taking the ℓ0 norm. The principal components of L are robust to the outliers and corrupt data in S. L
and S can be found by satisfying the following equation:

min
L,S

rank (L) + ∥S∥0 subject to X = L+ S (4.16)

However, both the rank term and the ℓ0 norm are non-convex. Thus this is not a manageable optimisa-
tion problem. There is no guarantee that a computer will find a solution to this problem. Nevertheless,
it is possible to solve for the optimal L and S with high probability using convex relaxation [10, 16]:

min
L,S

∥L∥∗ + λ∥S∥1 subject to X = L+ S (4.17)

Here proxies are introduced for the non-convex terms. The proxy for rank is the nuclear norm ∥ · ∥∗
or the sum of singular values, and the ℓ0 norm is changed to the ℓ1 norm. λ =

√
max(n.m) is the

regularisation parameter, where n and m are the dimensions of X. The solution of 4.17 converges to
the solution of 4.16 with high probability if λ =

√
max(n.m), given that L and S satisfy the following

conditions:

• L is not sparse
• S is not Low-rank; we assume that the entries are randomly distributed so that they do not have
low-dimensional column space.

The optimisation problem in 4.17 is known as the principal component pursuit (PCP). The augmented
Lagrange multiplier (ALM) algorithm may be used to solve this problem. The Augmented Lagrangian
can be constructed as follows:

L(L,S,Y) = ∥L∥∗ + λ∥S∥1 + ⟨Y,X− L− S⟩+ µ

2
∥X− L− S∥2F (4.18)

Where ∥M∥F =
√∑

ij |mij |2 is the Frobenius norm. A general solution would solve for the Lk and Sk

that minimises L, update the Lagrange multipliers Yk+1 = Yk + µ(X − Lk − Sk) and iterate until the
solution converges. The code provided by the authors of the rPCA [11] uses the Alternating Directions
Method (ADM) to solve this optimisation problem [28, 43].
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Regularisation parameter

The authors of the rPCA recommend a value of λ = 1/
√
max(n,m) for the regularisation parameter

for practical problems. However, the authors state that the regularisation parameter can be changed
according to prior knowledge of the solution to improve the performance of the rPCA. For instance, if
it is known that S will be very sparse, then a higher regularisation parameter can be taken, which will
allow the recovery of a larger rank of L. Likewise, a lower regularisation parameter would yield a lower
rank of L.

The Robust Principal Component Analysis has been used to remove corruption in fluid flows and re-
cover coherent patterns [38]. In this study, fluid flow around a cylinder was simulated and corrupted
by salt-and-pepper corruption. By using the rPCA, the researchers were able to extract the dominant
coherent structures from corrupted fluid flows around a cylinder. They also experimented with different
values of the regularisation parameter λ. Lowering the parameter results in more aggressive filter-
ing of the rPCA, and higher-order coherent structures or eigen flows are incorrectly filtered out, and
only the first three modes remain. However, using a too-high value of the regularisation parameter λ
leads to the corruption not being filtered out. The researchers conclude that there needs to be a better
understanding of the selection of regularisation parameter λ for different scenarios in fluid mechanics.

Sparsity

The key to the rPCA is the concept of sparsity and how the ℓ0 and ℓ1 norms promote a sparse solution
to an undetermined system. As stated earlier, the SVD and PCA are fragile with respect to outliers as
they minimise the ℓ2 norm. The difference between least squares or the ℓ2 norm, and the ℓ1 norm is
relatively simple. Consider a vector:

x =


x1

x2

...
xn

 (4.19)

The ℓ2 norm is:

∥x∥2 =

√√√√ n∑
k=1

|xk|2 (4.20)

While the ℓ1 norm is:

∥x∥1 =

n∑
k=1

|xk| (4.21)

The ℓ2 norm is a squared summation of elements in vector x, while the ℓ1 norm is the summation of
absolute values in x. The ℓ2 norm is fragile to outliers because it computes the power of two for each
element, amplifying its relevance if it is an outlier. The ℓ0 norm is a pseudo-norm given by the number
of non-zero entries. It does not fulfil the definition of a norm. Consider now the system equations:

y = Θs (4.22)

This is an undetermined system of equations with y and Θ being known and s unknown. There are
infinitely many potential values of vectors s that satisfy this equation. A sparse solution means that only
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a few components in s would contribute to a solution. This sparsity criterion would also promote a single
solution to these systems of equations. To visualise the effect of sparsity, consider that s is only two
variables, s1 and s2. Figure 4.3 shows a plane of these two variables and a blue line representing the
infinitely many solutions, or combinations of s1 and s2, to the system of equations. The orange curves
represent the minimum required norm levels that intersect this blue line. These intersection points are
minimum norm points that are solutions to the system equations for different lp norm levels. The ℓ0
norm returns either a value of s1 or s2; it is always sparse. The ℓ1 norm is a summation of s1 and s2.
The ℓ2 norm shape is a circle, and the radius is always the minimum required norm level to satisfy the
solution. The ℓ0 and ℓ1 norm produces the sparsest solution with only one coordinate, s2 contributing
to the solution. In contrast, the ℓ2 norm uses all available coordinates; it does not produce a sparse
solution. An early version of this geometrical interpretation of the ℓ1 norm and how it promotes a sparse
solution was presented in Tibhirani’s 1996 paper on the Lasso algorithm (least absolute shrinkage and
selection operator) [40].

s1

s2

s1

s2

s1

s2

L0 L1 L2

Figure 4.3: The minimum norm point on a line for different ℓn nroms. The blue line represents the solution set of an
under-determined system of equations. The orange line represents the minimum norm level sets that intersect the blue line.

The ℓ0 and ℓ1 produce the sparsest solution with only one coordinate active.

This sparsity-promoting effect of the ℓ1 norm scales well with increasing dimensions as its corners ”stick
out” more [33]. The corners represent the sparse solutions, as was seen in figure 4.3.

Example - Video Surveillance

The decomposition of the rPCA into low-rank and sparse components has various applications. De-
pending on the problem, either the low-rank L or the sparse matrix S could be of interest. For example,
consider video surveillance of traffic, where cars appear in the video’s foreground while the background
is unchanged throughout the video. The majority of the video is characterised by the background. Any
deviation in the background image could be considered an outlier, such as the traffic. Said another way,
the cars in the foreground are not part of the statistical similarity of the background. Figure 4.4 shows
the rPCA decomposition of the frames of a traffic video. Each frame is 224x288 pixels and is reshaped
into a column vector before applying the rPCA. The length of the video is 30 seconds at 30 frames per
second, producing a total of 900 frames. The size of the data matrix X is 900x65412. In the video, cars
are travelling along a road. The rPCA effectively filters out these cars into the sparse matrix S; they
are not present in any of the frames in the low-rank matrix L. The low-rank L is reconstructed based
on the statistical similarity between frames: the background while excluding the outliers, the cars. The
low-rank frames appear to be at a lower resolution. This is because the camera was not completely
stationary during recording, and thus the background slightly changes between frames. The PCA and
the rPCA are fragile to the misalignment of the data. They depend on the coordinate system in which
the data is being represented. In this problem, it could be of interest to track the objects in the fore-
ground; the sparse matrix S is the variable of interest. A clear image of the background could also be
desired, such as getting a good image of a crowded tourist destination by removing undesired tourists.



4.4. Sparse sensor placement optimisation for classification (SSPOC) 29

(a) Original frame A (b) Low-rank frame A (c) Sparse frame A

(d) Original frame B (e) Low-rank frame B (f) Sparse frame B

(g) Original frame C (h) Low-rank frame C (i) Sparse frame C

Figure 4.4: Comparison between the Original, low-rank and Sparse data frames.

4.4. Sparse sensor placement optimisation for classification (SSPOC)
Sparse sensor placement optimisation for classification (SSPOC) [7] uses sparsity-promoting tech-
niques to determine sensor locations that contain the most discriminating information between n cat-
egories of data. The method is inspired by advances in compressed sensing [3, 16, 9], a framework
that enables the reconstruction of signals with few measurements. Consider a data matrix X with two
categories of data, c = 2, with r number of features Ψr (e.g. PCA modes). It is possible to identify a
discrimination vector w ∈ Rr ( e.g. LDA directions) in the subspace of Ψr that is most informative in dis-
criminating between the two different categories in X. A Sparse vector s that finds the measurements
that best reconstruct w is found by:

s = argmin
s′

∥s′∥1 , subject to ΨT
r s′ = w (4.23)

This is a convex optimisation problem, and the ℓ1 minimisation is used to find a sparse solution. s is
a sparse vector with most entries being zero, and it contains only r non-zero entries. These non-zero
entries in s are sensor locations that best recapture the discriminant projection vector Ψr. The method
can be expanded for data with more than two categories with the projection X to decision space, then
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independently solving equation X for each column in w. This approach, on the other hand, scales
poorly with c, with at most q = r(c − 1) learned sensor locations. Another approach is to solve for the
columns of s ∈ Rn×(c−1) simultaneously, where each column of s projects to a column w in feature
space. A penalty term λ is coupled with a norm that penalises the total number of non-zero rows in s
to reconstruct the c− 1 columns of w. This yields the following equation:

s =argmin
s′

{∥s′∥1 + λ ∥s′v∥1} ,

subject to
∥∥ΨT

r s′ −w
∥∥
F
≤ ε,

(4.24)

where v is a column vector of (c − 1) ones, ∥M∥1 =
∑

ij |mij |, ∥M∥F =
√∑

ij |mij |2 is the Frobenius
norm, and ϵ is the error tolerance.

An example method is shown in figure 4.5 and is generated by code provided by [7]. In this example,
the data matrix X contains images of cats and dogs, leading to two categories c = 2. The SSPOC
algorithm aims to find pixel locations in the images that most explain the difference between cats and
dogs. The figure shows the discriminant projection vector Ψrw and the optimised sensor locations in
red in a vector format and a matrix image format. The most discriminating features between cats and
dogs, according to SSPOC, appear to be the eyes, nose, mouth and ears.

1000 2000 3000 4000

Pixels

-0.5

0

0.5

1

Figure 4.5: (a) A visualisation of the discriminant projection vector Ψrw and sparse approximations s. (a) The discriminat
projection vector Ψrw reorganised into an image format and optimised sensor locations in red. Produced from code provided

by [7]

The researchers also conducted experiments on the Extended Yale Face Database B. The sensor
locations computed by the SSPOC algorithm that discriminated between three different faces were
around the eyes, nose, corners of the mouth and eyebrows. These locations are similar to those in
which humans look at faces to identify a person.
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4.5. Mahalanobis Distance
Mahalanobis distance is a measure of the distance between a point to the centroid of a distribution in
a multivariate space. The squared Mahalanobis distance from a vector x to a distribution with mean µ
and covariance Σ is as follows:

∆2 = (x− µ)TΣ−1(x− µ) (4.25)

The distance represents how far vector x is from the mean or centroid of the distribution in standard
deviations. The Mahalanobis distance essentially constructs a new coordinate system based on the
distribution of the data. Themethod works best for data that are approximately multivariate normal. The
Mahalanobis distance can be used in multivariate anomaly detection by reducing the dimensionality of
the problem.

4.6. Linear Discrimiant Analysis (LDA)
Linear Discriminant Analysis (LDA) was introduced by Fisher in 1936 [19]. It is one of the oldest su-
pervised methods for classification problems. The aim of LDA is to find an optimal low-dimensional
subspace that has a clear separation between different groups of labelled data. There are many pos-
sible subspaces in which the data can be represented. However, the goal of the LDA is to solve an
optimisation problem that finds an optimal subspace that exhibits a clear separation between the dif-
ferent classes of data. This optimal subspace will make classification easier. Figure 4.6 shows the
general idea of LDA. In this case, two possible subspaces or projections onto new bases are shown. In
the projection on the left, there is considerable overlap between the two groups of data. This projection
does not produce a clear separation between the data. However, the projection on the right produces
a better separation of data. Said another way, the means of the two distributions µ1 and µ2 have con-
siderable distance between them in this projection. The LDA aims to maximise this distance between
distributions of the different classes while minimising the intra-class data.

The distributions seen in the figure follow that of a normal distribution. The projection assumes the fea-
tures of the low-dimensional subspace follow a multivariate normal distribution. This is a fair assump-
tion, as the linear combination of the original features is approximately a normal distribution, according
to the central limit theorem.

Two Class LDA

A data set with a feature vector x ∈ RD can be projected to low-dimensional feature z ∈ RL with a
linear projection vector w:

z = wTx (4.26)

For an LDA with two classes C1 and C2 that have N1 and N2 number of points in the respective classes,
the mean vectors of the two classes are given by:

µ1 =
1

N1

∑
n∈C1

xn, µ2 =
1

N2

∑
n∈C2

xn, (4.27)

The projection of the mean of the classes onto the line w provides a simple measure of separation
between classes and is given by:

mk = wTµk (4.28)
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This projection can also be made for every data point, resulting in zn = wTxn, which can be used to
compute the variance of the projected points:

s2k =
∑
n∈Ck

(zn −mk)
2 (4.29)

The goal of LDA is to find a projection w that maximises the distance between data from different
classes while minimising the intra-class data. This is done by maximising the distance between the
means:

J(w) =
(µ2 − µ1)

2

s21 + s22
(4.30)

This equation can be rewritten in terms of w:

J(w) =
wTSBw
wTSWw (4.31)

Where SB is the between-class scatter matrix and SW is the within-class scatter matrix and are given
by:

SB = (µ2 − µ1)(µ2 − µ1)
T (4.32)

SW =
∑
n∈C1

(xn − µ1)(xn − µ1)
T +

∑
n∈C2

(xn − µ2)(xn − µ2)
T (4.33)
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When the function 4.31 is maximised, it yields a criterion commonly known as the generalised Rayleigh
quotient [8], and the solution can be found with a generalised eigenvalue problem:

SBw = λSWw (4.34)

The maximum eigenvalue lambda and the corresponding eigenvector give the projection basis. From
this projection basis, a discriminant can be constructed by choosing a threshold z. New data from the
test set will be classified depending on where it falls into the low-dimensional subspace and the chosen
threshold value. For example, data fulfilling z(x) ≥ z0 could be classified as belonging to class C1
while data that does not fulfil this condition would belong to class C2. The class-conditional densities
are assumed to be normally distributed, and the parameters of said distributions can be extracted and
used to find the optimal threshold.

Multiclass and multidimensional case

The LDA can be extended to include more than two classes K > 2 and higher dimensions. It is
assumed that the dimensionality of the input space D is larger than the number of classes. The goal is
to find a projection matrixW that maps from D, the input feature dimension, to L, the low-dimensional
feature. D′ > 1 linear ”features” zk = wT

k x are introduced where k = 1, ..., D′. Both the features and
the projections can be grouped together to form vector z and matrixW respectively:

z = WTx (4.35)

Similar to the previous case, a projection matrix can be found by maximising:

J(W) =
|WTΣBW|
|WTΣWW|

(4.36)

Where the between-class and within-class covariance matrices are, respectively:

ΣB =
∑
k

Nk

N
(µk − µ)(µk − µ)T (4.37a)

ΣW =
∑
k

Nk

N
Σk (4.37b)

Σk =
1

Nk

∑
n∈Ck

(xn − µk)(xn − µk)
T

(4.37c)

Nk is the number of data points in a given class Ck, and N =
∑

k Nk is the total number of data points
in the whole data set. The means are defined as:

µk =
1

Nk

∑
n∈C1

xn, µ =
1

N

K∑
k=1

Nkµk, (4.38)

The solution to equation 4.36 can be found by an eigenvalue problem and yields the projection:

W = Σ
− 1

2

W U (4.39)

Where U are the L leading eigenvectors of Σ− 1
2

W ΣBΣ
− 1

2 . The projectionW can thus be computed.
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4.7. Support Vector Machines (SVM)
Support vector machines (SVM) is a supervised machine learning algorithm that finds a hyperplane
that splits data into distinct categories based on training data. Many possible hyperplanes exist that
can separate the data, and the SVM is an optimisation to find the optimal hyperplane that separates the
data groups according to their labels. This optimisation problem involves finding a decision line which
minimises the labelling errors of the data while maximising the margin between the data. The method
was developed in the 20th century, and the current ”standard” approach (soft margin) was introduced
by Cortes and Vapnik [13].

w

w · x + b = 0   

w · x + b < 0   

w · x + b > 0   w · x + b > 0   

w · x + b < 0   w · x + b = 0   

w

2

w 2

w

Figure 4.7: Two possible hyperplanes for the SVM.

The aim of the linear SVM method is to construct a hyperplane:

w · x+ b = 0 (4.40)

The vector w and constant b parameterise the hyperplane. Figure 4.7 shows two possible hyperplanes
with different values of w and b to split the same data set. The SVM is an optimisation to find the optimal
hyperplane that separates the data. This optimisation problem involves finding a decision line which
minimises the labelling errors of the data while maximising the margin between the data. The margin
is shown in grey in the figure. The support vectors are the vectors that determine the boundaries of the
margin, located at the edge of the margin in figure 4.7. After defining a hyperplane, new data points
xj can be classified based on which side the points are to the hyperplane by computing the sign of
(w · xj + b). This will produce classification labels yj ∈ ±1 depending on which side the data points
are in relation to the hyperplane. Now the optimisation objective can be assembled. The goal of the
optimisation is to minimise labelling errors. This can be done by defining a loss function:

ℓ
(
yj , yj

)
= ℓ (yj , sign (w · xj + b)) =

{
0 if yj = sign (w · xj + b)

+1 if yj ̸= sign (w · xj + b)
(4.41)

That is the loss function, either 0 if the data is correctly labelled or +1 if the data is incorrectly labelled.
Each mislabelled point produces a loss of unity. The total training error is the sum of the loss function
ℓ(yj ȳj). The optimisation problem also involves maximising the margin. The optimisation objective
function can then be framed as follows:

argmin
w,b

m∑
j=1

ℓ
(
yj , yj

)
+

1

2
∥w∥2 subject to min

j
|xj ·w| = 1. (4.42)
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However, the loss function is discrete and assembled from binary values. This makes it difficult for opti-
misation algorithms based on gradient descent to function as they require a smooth objective function
in order in order to update the solution. A Hinge loss function H(z) = max(0, 1− z) can be introduced
to create a smooth objective function.

argmin
w,b

m∑
j=1

H
(
yj , yj

)
+

1

2
∥w∥2 subject to min

j
|xj ·w| = 1 (4.43)

The Hinge loss function allows for piecewise differentiation, which enables optimisations based on
gradient descent to be used. The optimal linear hyperplane can now be found to separate two classes
of data. A more thorough discussion of SVM and an explanation of the multiclass SVM can be found
at [33, 5].
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“An oil painting in the style of starry night of De Hef bridge” by Dall-E 2



5
Preprocessing

5.1. Data Examination
Data Sampling

Before the data from the accelerometers is manipulated in any meaningful way, it is beneficial to inspect
these acceleration signals. Table 5.1 shows the data used for this research. A single day of data is
available for the first measurement campaign, while data from the second measurement campaign con-
sists of two days under different temperature conditions. The data consists of acceleration recordings
from 32 sensors in each campaign. The accelerometers are active during a 15-minute period each
hour. Figure 5.1 shows a 15-minute time series of two vertical sensors, each from the two different
measurement campaigns. In both measurements, many ”spikes” are present in the time series signal.
It seems as if there is an impulse in the measured response. It is a reasonable assumption that these
”spikes” are due to the traffic on the bridge. The bridge is under both loading from both the traffic and
ambient vibrations. However, it can be assumed that the traffic produces a higher amplitude in the
measured response. The occurrence of these ”spikes” also seems to be characteristic of traffic. The
time between spikes seems to be in the range of 2-3 seconds. This can be seen in figure 5.2. Two to
three seconds is the recommended clearance between vehicles 1. However, there are instances where
the time between impulses goes as low as one second. This could indicate a reckless driving culture
on the Haringvlietbrug or the presence of multiple lanes. Vehicles can drive parallel to one another on
different lanes, resulting in a lower time between impulses than the recommended clearance between
vehicles. There are a total of 5 lanes of traffic on the Haringvliet bridge. Two are northbound to Holland,
and two are southbound to Zeeland. There is also a lane for local low-speed traffic. In the first mea-
surement campaign, the accelerometers are located on the west cantilever that carries two lanes of
traffic headed south. The sensors are positioned between these two lanes and should mainly capture
the acceleration caused by vehicles on these two lanes. They could also be capturing the acceleration
of the northbound traffic on two lanes at the centre of the bridge.

Table 5.1: Measurement data used in the analysis of this thesis.

Campaign ID Date Start time End time Temperature range

1st Campaign 516 - 539 21-05-2020 00:25:37 23:25:37 XXX C

2nd Campaign
09762 - 09785 18-10-2021 00:14:57 23:29:57 11.5-17.5 C

10147 - 10170 03-11-2021 00:17:01 23:32:01 7.9 - 12.5 C

1Samgöngustofa Source

37

https://www.samgongustofa.is/umferd/fraedsla-og-oryggi/fraedsla/bifreidar-og-almenn-fraedsla/bil-a-milli-bila
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Figure 5.1: Time series acceleration output of vertical sensors over a 15-minute interval during the afternoon rush hour. (a)
Vertical sensor 3, located in the ”Healthy” area from the 1st measurement campaign. Measurement number: 00532 (b) Vertical

sensor 17 from the second measurement campaign. Measurement number: 09775

These observations provide a foundation for the data segmentation necessary for further analysis. At
each of these impulses caused by a possible vehicle, energy is inputted into the structural system,
and the accelerometers capture the response due to this force. Each vehicle can potentially excite
the structural system differently. However, the input force is amplified by the dynamic properties of the
bridge at the location of a sensor. The dynamic properties can potentially be the same between different
vehicle passings, given that the operational and environmental conditions do not change. Thus a data
set of different vehicle passings can contain information about the same system, while the vehicles
can all potentially cause a different excitation. The excitation due to the traffic can be considered
a random process, while the dynamic system properties are a deterministic quantity in this scheme.
The measured response is a product of the random process of the traffic and the dynamic properties,
and thus the response is also a random process. However, each realisation of the response contains
information regarding the dynamic properties. It contains a piece of the puzzle on the characteristics
of the dynamic system. By sampling the excitation caused by many different vehicles, it is possible
to obtain statistical knowledge of the coherent structures in the response, which correspond to the
dynamic properties. It is the goal of the robust principal component analysis (rPCA) to discover the
coherent patterns within the data.

The goal now is to create samples that capture the random process of the traffic. It is important to create
many samples of the random process to encompass its entire behaviour. The lowest denominator of
the traffic is the excitation caused by a single vehicle. A simple and elegant approach would be to
create samples with excitation from a single vehicle. As mentioned before, the impulses seen in the
time series seem to follow guidelines regarding the clearance between vehicles of two seconds. Thus
a two-second time window can be taken around these peaks. Each time window or sample would
then ideally contain energy from a single vehicle passing. However, there are multiple lanes, and
vehicles can drive side by side and in opposite directions. Each sample does not necessarily contain
an excitation from a single vehicle. This condition depends on the traffic intensity of the bridge. With
more traffic, there is a higher probability that vehicles are driving parallel to each other, and there are
more ”meetings” between vehicles driving in opposite directions.

Figure 5.2 shows how a sample is created in the time domain. The red box is a time window around
peaks in the time series, and each of them represents a single sample. The two figures show different
scenarios regarding traffic intensity. In figure 5.2a, there is low traffic, and the peaks are well separated.
In contrast, the traffic intensity in figure 5.2b is much higher, and the time window between different
samples intersects on multiple occasions. In these cases, the distance between peaks is less than 2
seconds. This choice of a time window of 2 seconds for each sample leads to a frequency resolution
of 0.5 Hz in the frequency domain.
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Figure 5.2: Creation of samples of the time series data. The red box indicates the time window taken around each sample,
which is 2 seconds. Note that the samples can share time series data with adjacent samples. This happens when the

assumption distance between the maxmium amplitude of each sample is not less than 2 seconds. (a) Vertical sensor 3, located
in the ”Healthy” area from the 1st measurement campaign. Measurement number: 00532 (b) Vertical sensor 17 from the

second measurement campaign. Measurement number: 09775

Truncation

This approach to data segmentation also enables the filtering of samples. There is a considerable
variation in the amplitude of these impulses in the time series. This could indicate that vehicles driving
on the Haringvliet bridge are driving at various speeds and have different masses. It is known that
around 20 % of traffic consists of cargo trucks, as seen in figure 3.3 according to data from INWEVA.
It seems likely that these trucks can potentially cause a higher excitation. To better visualise that the
samples have varying amplitude, a histogram of the ℓ2 norm or the energy of each sample is plotted in
figure 5.3a. The figure contains data from both days in the second measurement campaign, specifically
from sensor 31. Higher amplitude signals should have higher energy. The ℓ2 norm or energy of the
sample is used here as, according to Parseval’s theorem, the energy is preserved when performing
the Fourier transformation B.3. The ℓ2 norm is invariant to the Fourier transformation. This is important
when the samples are transformed to the frequency domain.

The histogram reveals that there seem to be two distinct distributions of the energy of each sample.
These distributions seem to follow that of normal distribution. These two distributions can possibly be
correlated with the different types of vehicles on the road. The distribution with the lower mean energy
could consist of excitation from smaller passenger cars, while the higher mean energy distribution could
be connected to cargo trucks on the road. To better support this claim, a comparison can be made by
comparing the cumulative distribution function in figure 5.3b with the ratio of passenger cars and cargo
trucks in figure 3.3, which contains data from INWEA. The tail end of the low-energy mean normal
distribution ends around 1 m/s2. The cumulative number of samples at this point is around 80 %, so
the passenger cars should correspond to 80 % of the total traffic. This is in accordance with the data
from INWEVA, where the percentage of passenger cars is also around 80 %.

As the goal is to reduce or eliminate operational variability within the traffic, there is an incentive to
discard samples from either distribution to simplify the data set. The ”passenger car” distribution has
much more samples than the ”cargo truck” distribution and has less variance. Thus the ”cargo truck”
samples can be discarded to simplify and reduce the variance within the data set. This truncation is
done per sensor for both measurement campaigns. For each sensor 20 % of the samples with the
highest energy are discarded, similar to what was described above. The truncation is performed
on the time domain data, but most of the subsequent analysis is done in the frequency domain. How-
ever, this is not an issue as, according to Parseval’s theorem, the energy is invariant to the Fourier
transformation, which means that the truncation of samples according to their energy is the same in
the time and frequency domains.
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Figure 5.3: Distribution of the ℓ2 norm of each sample or energy within each sample. (a) Histogram of ℓ2 norm of each sample.
Notice the two different normal distributions with different means and variances. The lower amplitude distribution should
represent the passenger cars while the other should correlate to the cargo trucks (b) Cumulative probability function of the

Histogram.

A note should be made about the differences in traffic between the two measurement campaigns. In
August 2021, maintenance of the draw bridge started, and the maximum speed limit on the bridge was
reduced from 90 km/h to 50 km/h, and the width of the lanes was reduced 2. Therefore the speed limit is
90 km/h for the first measurement campaign and 50 km/h for the secondmeasurement campaign. While
the speed limit decreased, that does not necessarily mean the daily number of vehicles decreased.
It can be assumed that during this lower speed limit period, there will be higher traffic intensity and
congestion as daily commuters before and after this change can potentially be the same. This means
that vehicles are potentially more ”packed”, and the clearance between them is generally lower. This
translates to more densely populated peaks in the measured acceleration response. An indication of
this can be seen in figure 5.2b. There is a higher probability that samples will intersect, containing
energy from different vehicle passings. The lower speed limit also means that the vehicles’ speed is
lower, and thus the energy input into the system by these vehicles might be lower.

The speed limit was not the only aspect that was changed in the operational conditions of the bridge
during this maintenance period. The road width was reduced with concrete barricades, thereby altering
the traffic path, so the excitation is spatially different. This also changed the mass distribution of the
structure as concrete barriers on the bridge deck were moved to redirect the traffic, which can alter the
dynamic characteristics of the bridge. Both of these points can potentially lead to different response
measurements, which can be identified as damage as the ”normal” conditions have changed. However,
in the case of this study, there is no comparison between data from the first and second measurement
campaigns, so this operational variability is not present in any of the analyses. Still, it illustrates the
difficulties of implementing a robust SHM framework.

Visualisation

In order for the robust principal component analysis to be of any use, the data needs to be on a Fourier
basis. This means moving the time domain samples to the frequency domain via a discrete Fourier
transform or, more specifically, the Fast Fourier transform. The sampling rate is 1000 Hz or 1000
samples per second, and according to the Nyquist–Shannon sampling theorem, the perfect signal
recovery requires a sampling rate twice that of the highest frequency present in a signal. Therefore the
highest detectable frequency for a sampling rate of 1000 Hz is 500 Hz. The ”default” time window for
each sample in the time domain is two seconds, which translates to a frequency resolution of 0.5 Hz.

2A29: Renovation Haringvliet draw bridge - Rijkswaterstaat Source

https://www.rijkswaterstaat.nl/wegen/projectenoverzicht/a29-renovatie-haringvlietbrug-beweegbare-deel


5.1. Data Examination 41

This time window size will be mainly used in the upcoming analysis, but there are occasions where a
higher frequency resolution is required, which requires a larger time window.

Figure 5.4 shows the frequency spectrum of six random samples from horizontal sensor 31 from the
second measurement campaign. This sensor is located on one of the stiffeners and captures the out-
of-plane motion of the stiffener. The absolute value of the Fourier representation of the data is taken,
which is the complex magnitude. Even at this stage, there is some hint of a dynamic system with peaks
at around 190 Hz, 270 Hz and 450 Hz, although the signals are particularly noisy. Given that we see
these peaks, there has to be energy from the excitation at these frequencies. There is considerable
variance in the amplitude of the peaks between samples, both in the total amount of energy present
in the frequency domain and at what frequencies the ”energy” is present. This can be seen in the
varying amplitudes of the different peaks between the samples. A notable example is a comparison
between the top middle and top right plots, where the peak at 200 Hz is the largest in the top middle
plot, but all the peaks in the top right figure have equivalent amplitudes. These two plots also have the
most ”energy” with much higher amplitudes than the other four samples. These samples are part of
the truncated data set where 20 % of the highest energy samples are filtered out. Even then, there is
still some variance present in the energy of the samples. Broadly speaking, it seems that the random
process of the traffic is a broadband phenomenon. However, the ”energy” over this frequency band
seems to vary in magnitude between samples and the distribution of ”energy” over this frequency band
varies between samples. This seems to indicate that the random process of the traffic is broadband,
but it is definitely not as simple as white noise.
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Figure 5.4: Frequency spectrum of 6 random samples from horizontal sensor 31 from the 2nd Measurement Campaign. There
seems to be peaks located at 190 Hz, 270 Hz and 450 Hz. Note that the amplitude between the samples is different.

Each of the accelerometers capture different modal properties and corresponding natural frequencies
of the bridge depending on their location. For instance, there is quite some difference between the
vertical and horizontal sensors. Figure 5.5 shows samples from vertical sensor number 17 from the
second measurement campaign. This sensor is located under the bridge deck and captures its vertical
motion. The ”energy” content of this sensor is much different from that of sensor 31, with the ”energy”
concentrated at the lower frequencies. These sensors are, in fact, capturing the different mode shapes
and their corresponding frequencies. Vertical sensor number 17 on the bottom of the bridge deck is
possibly capturing a low-frequency mode of the bending motion of the bridge deck. Horizontal sensor
number 31 captures higher-frequency modes associated with the out-of-plane bending motion of the
stiffener. It also reveals that ”energy” from the random process of the traffic is present at both low and
high frequencies.

In both cases, the samples have a high amount of noise due to the random process of the traffic. A
straightforward filtering technique to remove the noise is simply to take the average of the samples in
the frequency domain. Caution should be taken in which samples are averaged. Temperature alters
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Figure 5.5: Frequency spectrum of 6 random samples from horizontal sensor 17 from the 2nd Measurement Campaign. There
seems to be a peak located at 10 Hz. Note that the amplitude between the samples is different.

the dynamic properties of the structural system and is reflected as a change in the frequency spectrum.
Thus to obtain the mean response for a given system, the average sample set should have minimal
variance in the environmental conditions. The temperature should be the same for every sample. The
approach taken here is to group all samples within a single centigrade, so there is minimal
variance in the environmental conditions and the underlying dynamic properties.

The samples contain not only energy from the random process of the traffic but also from the ambient
vibrations. In figure 5.2, there is a constant low amplitude in the acceleration around 0.15 m/s2 in the
time series. These two input forces are two different stochastic processes that can have different char-
acteristics in their frequency content. For instance, the ambient vibrations are generally approximated
as white noise. The amplitude of these two processes is also completely different. There is hardly any
variation in the ambient vibrations. However, as seen in figure 5.3a, there is considerable variance in
the amount of energy in the random process of the traffic. Lower energy samples should have a higher
relative contribution from the ambient vibrations as there is variation in the amplitude of the random
process of the traffic but not so much in the ambient vibrations.

Another aspect to consider is potential non-physical ”modes” or ”natural frequencies” due to the input
force. The stochastic processes can be potentially narrow-banded at specific frequencies. There could
be a peak in the frequency spectrum that is not connected to the system’s dynamics but rather due to
the similarity in the input force between samples. As only the response is measured, it can be difficult to
discern whether a given peak is an operational mode or physical mode. In this research, an anomalous
peak is present in most signals that is not part of the system dynamics. Details are given in appendix
A, and these peaks will be discussed further in upcoming chapters.

Figure 5.6 shows the average frequency spectrum of the samples that fall within a temperature range
of 12 ° C to 13 ° C over a period of two days. There are a total of 2270 samples for each sensor. There
is little noise in the mean response, revealing a dynamical system with clear natural frequencies. Even
with simple averaging, it is possible to get a decent picture of the dynamic system. This could indicate
that the response data follows some ”simple” statistical distribution. Figure 5.7a shows the histogram
of the amplitude over several frequency indexes. It shows that the amplitude of this sample set at
these frequency indexes seems to adhere to a skewed normal distribution. Each frequency index has
a similar distribution which changes depending on the location of the frequency index. At the location
of the natural frequencies, for example, at 190 Hz, there is a higher degree of variance compared to the
other frequency indexes. It seems that the natural frequencies are amplifying the excitation at these
locations, which leads to a higher degree of variance of the response at the location of the natural
frequencies. This can be better seen in figure 5.8, which shows the variance of the sample set for each
frequency index for both sensors. Again, there is a higher degree of variance at the natural frequencies.
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The variance itself can serve as an indication of the location of natural frequencies.

Another detail to consider is that the truncation of the higher energy samples could be simplifying the
distribution by removing the samples at the tail end of the distribution. This is shown in figure 5.7 with
the comparison between the two figures. It appears that the frequency spectrum is composed of normal
variables with this data. It could explain why simply taking the mean provides a decent picture of the
dynamic system.
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Figure 5.6: Average frequency spectrum of the samples within temperature range of 12 °C to 13 °C. (a) Average of samples
from horizontal sensor 31. (b) Average of samples from vertical sensor 17.

(a) Truncated data set (b) UnTruncated data set

Figure 5.7: Distribution of the amplitude of specfic frequency indexes with a 5 Hz interval. There is a natural frequency around
190 Hz (a) Truncated data set. The tail end has been removed from the distributions. (b) Untruncated data set. There is a large

tail end on all distributions.
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Figure 5.8: Variance at each frequency index of data within temperature range of 12 °C to 13 °C. (a) Variance at each
frequency from horizontal sensor 31. Variance at each frequency from vertical sensor 17.

5.2. Application of Robust Principal Component Analysis
Now that a basic understanding of the data has been established, the next step is to explore how robust
principal component analysis (rPCA), which was detailed in chapter 4.3, performs on the vibration data.

In chapter 4 on the rPCA, there was an example illustrating the power of rPCA by removing objects in
the foreground in video surveillance. In this example, the data consists of many frames from a video.
Most of the frames consist of a background, but some frames have cars moving in the foreground.
These cars are outliers to the statistical similarity of the background between frames. Thus the rPCA
can ”remove” them and reconstruct the background without any cars with the low-rank matrix. Here
the problem with the vibration data is different, but the principles are the same. Every sample of the
vibration data has some ”corruption” or noise within them. However, the samples from a single sensor
all share the same underlying dynamic system, given that operational and environmental conditions are
the same. They share the statistical knowledge of the dynamic system even with the variance present
in the traffic. Therefore, the rPCA can reconstruct a low-rank matrix that corresponds to the main
correlation within the data, which is robust towards outliers. The low-rank matrix would then contain
the dynamic properties of the structure, while the sparse matrix contains the noise and outliers. With
the operational variability reduced, it is then possible to proceed with damage detection and compare
damaged and undamaged samples to see if there are statistical differences between the set of samples.

The rPCA needs to be applied to data in the correct domain. The vibration data needs to be ordered so
that statistical similarities fall into the same indexes between sample vectors. In the frequency domain,
a natural frequency at 20 Hz will be at the same index for all samples, given that the sampling rate
and frequency resolution between samples remains the same. The same cannot be said for time-
domain vibration data. Thus the rPCA needs to be on a Fourier basis in order to yield adequate results.
Representing the vibration data on a Fourier basis also eliminates any difficulties with data alignment.
Consider the example in chapter 4.3 of application rPCA on the video surveillance data. In this example,
a video is taken of traffic on the road. During the video, the camera is not perfectly still. It translates
and rotates, resulting in the background being at different locations for the pixels of each frame. The
bottom frame in figure 4.4 has moved to the right compared to the other two frames. This misalignment
of the data results in the background becoming ”blurry”. This is because the SVD, which the rPCA
and PCA use, depends on the coordinate system in which the data is represented. The SVD cannot
capture translations or rotations in the data. However, representing the data on a Fourier results in a
”stable” coordinate system that cannot translate or rotate.

Another criterion to fulfil for effective usage of rPCA is that the dynamic system should be the same
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between the samples. This means that samples should be grouped according to similar operational
and environmental conditions before rPCA is applied. In this research, that means grouping samples
together according to their temperature.

With these criteria in place, a general procedure can be established when using rPCA to reduce the
operational variance of the traffic and perform subsequent damage detection. The data assembly
procedure continues from that of the previous chapter, with samples created around the excitation in
the time domain and 20 % of the highest energy samples removed from the sample set. The rPCA is
then applied to the frequency representation of the data with the same operational and environmental
conditions. This process is then repeated for another data set to allow for comparison between two
different structural states and perform damage detection.

To demonstrate the power of the method, rPCA is applied to a data set of samples from sensor 31 from
the second measurement campaign. The data set is a subset of the data set from table 5.1, and it only
contains samples within the temperature range of 10 ° C - 11 ° C. The time window is two seconds
for each sample, which gives a frequency resolution of 0.5 Hz. With this sampling and the truncation
previously described, this data set contains a total of 2532 samples. Grouping samples within a single
centigrade should ensure that the dynamic properties are roughly similar between the samples. Thus
the rPCA should find the dynamic system as the samples share that information.

0 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

-1

0

1

2

3

4

5

6

7

8

A
m

p
lit

u
d
e

Raw Sample [X]

Low rank [L]

Sparse [S]

Figure 5.9: Decomposition of a single sample vector into its low-rank and sparse vectors.

Figure 5.9 shows a single sample and its sparse and reconstructed low-rank vectors. The low-rank
vector has a more distinct shape similar to that of a transfer function with clearly defined natural fre-
quencies, more so than the ”raw” discrete Fourier transform. While it was possible to make a rough
estimate of the natural frequencies with only the discrete Fourier transform, such as in Figure 5.4, it
is much more clear where the natural frequencies lie with the low-rank vector. Essentially, the noise
within this sample has been reduced. The low-rank vector now contains mostly information regarding
the coherent structure of the dynamical system due to the statistical similarity between samples. The
low-rank vector contains information about the entire data set, all of the 2532 samples used in this
rPCA. The low-rank vector is reconstructed from the principal components of the data set, which con-
tain information about the fundamental aspect of the data set. This fundamental aspect is the similarity
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between samples. The measured response signal is a product of the random process of the traffic
load and the deterministic physical dynamic system. All of the samples then have information about
the physical system, but each of the samples only has a piece of the puzzle. With enough samples,
it is possible to get a picture of the dynamic system and reconstruct it with rPCA. On the other hand,
the sparse component contains the deviation in the sample to this shared coherent structure of the
samples. The amplitude of the sparse part appears to be highest around the natural frequencies.

In this analysis, the default parameters recommended by the authors of the rPCA [11] were used. The
most notable among them is the regularisation parameter. This is a penalty term in the optimisation
problem of 4.17 and is a key to promoting a single unique solution for ill-conditioned problems. The
recommended value is λ = 1/

√
max(n,m), where n and m are the dimensions of the original data

matrix X. The solution of equation 4.17 should converge with textithigh probability to equation 4.16
for this recommended regularisation value. This recommended value will be primarily used throughout
this study unless stated otherwise.

However, changing this regularisation parameter can yield interesting results, as discussed in chapter
4.3 on the rPCA. In the research on the removal of corruption from the fluid flowwith rPCA [38], changing
the regularisation parameter had a major effect on the results. The regularisation parameter λ can
also be changed for the vibration data. In the vibration data in this thesis, there should only be a
single coherent structure in the data. Only one frequency vector corresponds to the system, given
that operational and environmental conditions remain the same. Looking at figure 5.9, there is still
some ”noise” present in the low-rank frequency vector. There are some low amplitude fluctuations in
the low-rank frequency vector. By lowering the regularisation parameter, this noise can be potentially
removed.

Figure 5.10 shows the comparison between two rPCAs with different regularisation parameters, one
with a default value of λ = 1/

√
max(n,m) and another rPCA with a regularisation value of λ =

1/
√

2 ·max(n,m). The maximum dimension is multiplied by two within the square root. This value
is arbitrarily chosen. In this figure, the same data set was used as in the previous example; a total
of 2532 samples are in this data set. The dimension of the data matrix is X, then 2532x1000, as the
length of the frequency vector is 1000. The resulting regularisation values are then λ = 0.0199 and
λ = 0.0141 for the default value regularisation and the ”lower” value regularisation, respectively. What
can be seen in the figure is that the low-rank frequency vector with the lower regularisation value has
an even more ”smoother” profile. This is because it has a lower rank; it consists of fewer principal
components. The difference in rank between the low-rank matrices is 594 and 111. The more ”noisy”
low-rank term is being described by more principal components, some of which do not describe the
dynamic system properties but rather some noise within the data set. Essentially, the more ”smooth”
low-rank frequency vector has a higher concentration of information regarding the dynamic system with
its 111 principal components. Keep in mind that the figure only shows a single sample, but the low-rank
frequency vector in the figure has information from the entire data set. A final remark on the lower
regularisation parameter is that the rPCA took significantly longer to converge to a solution than with
the default regularisation parameter.

More aggressive filtering is possible with the rPCA by lowering the regularisation parameter even more
and potentially removing even more noise. However, caution should be taken in not removing informa-
tion about the system. There should be a single coherent structure or a single principal component in
vibration data that characterises the system. Most of the variance within the data set can be explained
by the first principal component. However, it is not known if higher-order principal components beyond
the first one contain information on the dynamic system or just noise. These can potentially be filtered
out with a lower regularisation parameter. To stay on the safe side, the regularisation parameter used
in the analysis in this thesis will not go lower than the previous example. However, just like in the
research of the rPCA on corrupted fluid flows, there needs to be an understanding of the selection of
the regularisation parameter for vibration data. This thesis will primarily use the default regularisation
value, which proved to be adequate in most problems. In some cases, a lower regularisation parameter
will be used.

In the previous example, only a single sample was observed and examined, but here it is the perfor-
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Figure 5.10: Effect of the regularisation parameter on the low-rank and sparse components. The Low-rank with a lower
regulation value is smoother as there are fewer principal components (a) Default value of the regularisation parameter

λ = 0.0199. Rank of low rank: 594 (b) ”Double” value of the regularisation parameter λ = 0.0199. Rank of low-rank : 111

mance of the whole data set that is of interest. The goal of rPCA is to reduce the variance within a
data set. The variance explained by the principal components can be used to quantify the variance
in a data set. If most of the variance within the data set is explained by a few principal components,
then a few coherent structures explain the majority of the data. To measure the effectiveness of the
rPCA, a comparison can be made on the total variance explained by the principal components of the
raw and low-rank data sets. Figure 5.11 shows the singular values or, more precisely, the eigenvalues
of the covariance matrix of the raw truncated data X and the low-rank matrix L for two different regu-
larisation parameters as previously defined. More importantly, it shows the total variance explained by
the principal components for both the raw truncated data and low-rank data. Comparing the low-rank
data and the raw data reveals a massive difference in the total variance explained of the principal com-
ponents, particularly in the variance explained of the first principal component of both data sets. The
total variance explained by the first principal component is 42% for the raw truncated data set, while it
is 85 % for the low-rank data set with the default regularisation parameter. The variance explained by
the first principal component doubled with the application of rPCA. This means that most of the under-
lying data within the low-rank data set can be described by this principal component, a single vector.
This vector represents the similarity between samples and should correspond to the dynamic system.
Higher-order principal components explain the remaining variance within the data, and those PCs can
correspond to noise within the data or other minor coherent structures in the data. The second PC of
the raw truncated and low-rank data sets explain much less than the first PC or around 5.3 % for the
raw truncated and 3.8 % for the low-rank data. While they explain a low amount of variance in the
data compared to the first PC, they could contain information about the dynamic system. When using
a lower regularisation parameter λ = 1/

√
2 ·max(n,m), then the variance explained by the first PC

becomes even higher or around 95 %. This single principal component can explain nearly the entirety
of the data as the rPCA has discarded higher-order PCs with this lower regularisation parameter.

Another observation is that the singular values suddenly drop around vector numbers 594 and 111 for
the low-rank data set with the default and lower regularisation parameters, respectively. This corre-
sponds to the rank of these low-rank matrices or the number of linearly independent vectors. The rank
of the raw truncated data is equal to the vector’s length, which is 1000. This means that the vectors
of the raw truncated data span the entire vector space. With the rPCA, the data is reconstructed with
PCs that explain most of the data within the data set. The PCs are orthogonal to each other but are
directions of maximum variance in the data. The optimisation problem of the rPCA is to minimise the
rank of the low-rank L. This results in the aforementioned rank of the low-rank matrices. Keep in mind
that the number of samples in the low-rank matrices is the same as in the raw truncated data set. In
this example, it is 2532 samples. The difference is that only 594 or 111 linearly independent vectors
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(b) Low rank data set. Default λ
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(c) Low rank data set. Lower λ

Figure 5.11: Singular values and total variance explained of each of the principal components. The total variance explained of
the first principal component is first entry in the graph to right in each respective data set.

are needed to describe these 2532 vectors instead of 1000, as is the case with the raw truncated data.

Figure 5.12a shows the first principal component for both raw truncated and low-rank data sets as well
as the mean value of the raw truncated data set. The mean has been normalised to allow for better
comparison with the PCs by setting the value of the natural frequency at 190 Hz equal to the 1st PC of
the raw data. Interestingly, the principal components and the mean are all fairly similar. The similarity
between the PCs and mean could be connected to the fact that the raw truncated data follows a normal
distribution. Another question to consider is why there is such a difference in the total variance that the
PCs explain in their corresponding data set. A potential answer is that redundant information related
to traffic noise was filtered out in the low-rank data set, thus increasing the relative variance of the first
principal component in the low-rank data set. The information regarding the dynamic system is present
in all data sets, but its relative contribution is much more in the low-rank data set.
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Figure 5.12

The variance within the data can be visualised with indicators other than the variance explained by the
principal components. For example, computing the variance of the samples for each frequency index
yields figure 5.12b. Here, the variance at each frequency is much less for the low-rank data set with
the default regularisation parameter than the original ”raw” data set.



6
1st Measurement campaign - Damage

detection

It has now been established that the rPCA can reduce the variance due to the operational variability of
the traffic. The next step is now to perform damage detection. This requires comparing two different
data sets, each representing a different structural state. The rPCA would need to be applied to each
data set independently before being compared. For data from the first measurement campaign, that
would mean comparing the measured response from sensors in the undamaged and damaged areas.
The damaged area has two fatigue cracks between the stiffeners and a transverse beam, while the
undamaged area is a reference area that is structurally similar. The rPCA can reduce the operational
variability within the data sets to allow for comparison to measure if there is any significant difference
between the two that could be attributed to the difference in the damage states between the two areas.

There are 16 sensors in each of the areas. For both areas, the sensors are located on the west side of
the bridge on the cantilever bridge deck that carries the traffic southbound. The two areas are nearly
identical in their structural configuration. This makes it feasible to compare the output of sensor pairs,
which occupy the same spot in the ”healthy” reference area and damaged area. In total, there are then
16 sensor pairs which translates to 16 possible damage comparisons. The underlying dynamic system
of the sensor pair should be the same, except for the damage due to the fatigue cracks. However, this
is not entirely true, as there are other differences in the structural configuration, such as the presence of
a flange discontinuity and a coupling plate in the ”healthy” reference area. A more thorough discussion
on this topic will be at the end of the chapter.

A single day of data from the first measurement campaign is used for the damage detection analysis.
The data set will be further reduced in order to minimise the effect of environmental variability. This
is achieved by only using a single 15-minute time series recording for the analysis. It is not
expected that there will be significant temperature shifts in 15 minutes. However, this does not produce
a significant amount of samples, but it is necessary to maintain the low variability in the temperature so
as not to classify temperature change as structural damage

After applying the pre-processing in the previous chapter, the rPCA can be applied. Damage detection
is a comparison between two structural states, so two different rPCA are conducted, one on the data
from the damaged area and another on the data from the healthy area. This gives two low-rank matri-
ces for each area. The default regularisation parameter of λ = 1/

√
max(n,m) is used for all analyses

in the damage detection analysis. Afterwards, the (regular) PCA is applied to the combined data set
containing both of these Low-rank matrices. The PCA will find the largest correlation or Principal Com-
ponents (PCs) within the new combined data set, and the data can be represented in the subspace
of these PCs. The difference between the two data sets from the damaged and ”Healthy” areas can
correspond to the PCs, and data from the two areas can form distinct clusters in the subspace of these
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PCs, which allows distinguishing between the different data from both areas.

Applying the PCA to the combined data reduces the dimensionality of the problem. The ”default” length
of the frequency vector is 1000. This is due to the 1000 Hz sampling rate and time window of 2 seconds
for each sample, which gives a 0.5 Hz frequency resolution and a maximum frequency of 500 Hz. This,
in turn, yields a 1000-length frequency vector. It would be difficult for machine learning algorithms to
work with data with such a high dimension. As the dimension increases, the required amount of data
to generalise the problem accurately grows exponentially. Data will be sparse in this high-dimensional
space without an unrealistic amount of data. However, to overcome this problem, the data can be
embedded into a low-rank subspace, as is done with the PCA. Machine learning algorithms can then
be applied with data embedded into the subspace of the PCs.

Another question is, what portion of the frequency spectrum should be used? Damage will manifest
itself as changes in the natural frequencies of the system. Should only portions of the frequency spec-
trum where there is resonance activity be taken and used? The frequency content of the sensors can
vary considerably. Some sensors have resonance activity over a broad frequency band, as seen in the
previous chapter. There are also sensors that mainly have low-frequency content. These are mainly
sensors capturing the vertical motion of the bridge. The approach taken in this research is to take the
entire frequency vector when there is high-frequency content over a wide band. When the majority of
the frequency content is situated in a localised frequency band, as is the case with the low-frequency
content sensors, then only that narrow band is considered for analysis.

This brings up another issue regarding the low-frequency content. There needs to be an adequate
frequency resolution to be able to spot changes in the natural frequencies due to damage. This is
always an issue regardless of the value of the frequency, but assuming damagewill lead to a percentage
change in the natural frequencies, the absolute value of shifts in lower-value frequencies will be less
than those of higher frequencies. Thus higher frequency resolution might be required to spot changes
in the lower frequencies. When working with sensors that primarily consist of low-frequency content,
a frequency resolution of 0.125 Hz is used, which translates to a time window of 8 seconds for each
sample.

These points and the discussion in the previous chapter give the foundation of the damage detection
framework, and is visualised in figure 6.1 and can be summarised as follows:

1. Create samples by taking a time window around peaks in the time series of a single sensor
2. Discard 20 % of the highest energy samaples for each sensor
3. Apply discrete Fourier transform to the samples
4. Take the absolute of the fourier transform
5. Obtain a low-rank matrix by performing rPCA on a sample set within a particular temperature

interval. Default regularisation parameter of λ = 1/
√
max(n,m) is used for the analysis.

6. Compute (regular) PCA on the combined low-rank with data from both damaged and ”Healthy”
areas

7. Conduct feature discrimination with the score of the samples in the PCs as features.
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Figure 6.1: General preprocessing procedure. Samples are created around excitation in the time domain and the Fourier
transformed applied. Afterwards samples are grouped according to temperature and the rPCA is applied

6.1. Sensor Comparison

6.1.1. Sensors 7 and 23

The first sensor pair under analysis are sensors 7 and 23. Sensor 7 is located in the healthy reference
area, while sensor 23 is in the damaged area. These accelerometers measure the horizontal acceler-
ation or the out-of-plane movement of one of the stiffeners. The damaged area has a crack between
this stiffener and the transverse beam. This damage should result in a different dynamical system
compared to that of the reference area. The data for these sensors consists of 413 samples that are
generated with the sampling and truncation scheme defined in the previous chapter. Each sample is a
1000-length frequency vector with a frequency resolution of 0.5 Hz and a range of up to 500 Hz. Like
all the samples used for the damage detection analysis, they are generated during a 15-minute period
during the evening rush hour. This ensures that environmental variability is kept to a minimum. 190 of
the samples are from sensor 7, while the remaining 223 are from sensor 23. Interestingly the num-
ber of samples generated by the sample algorithm is not the same for the sensors. The sensors are
both located at the west cantilever of the bridge that carries southbound traffic but at different sections
of the bridge. This means the same vehicles drive over both sensors. However, this does not mean
the vehicles will generate the same excitation. For example, the vehicles can be at different speeds,
and the clearance between vehicles can differ. The excitation due to the traffic is a random process
that is dependent on many various unknowns.

Nevertheless, there is a consistent theme for nearly all sensor pairs regarding the number of samples
in healthy and undamaged areas. Nearly all sensors in the damaged area have a higher number
of samples than the corresponding pair in the undamaged area. A possible explanation is that the
damaged area has reduced stiffness, and therefore the measured response is greater given the ”same”
excitation. This would mean more samples are created with the sample generation algorithm as more
vehicles generate an excitation above the minimum threshold. The minimum threshold is based on
the amplitude of the ambient vibrations. Without the minimum threshold, the samples could consist of
just ambient vibrations. This brings in another topic that not all vehicles generate a signal above the
amplitude of the ambient vibrations. According to INWEA, the average daily number of vehicles that
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drive over the Haringvliet bridge is 55000 vehicles in 2020 1. However, the number of samples from a
single day is 2273 from sensor 23. When normalised with the measurement period of 15 minutes, the
number of ”detected” vehicles is 9092 over the day. Even if the detected vehicles would only come from
a single lane, which is probably not the case, then there is a deficit of around 4658 vehicles compared
to the average daily vehicles from INWEA. This is an extremely crude estimation as there is only data
from a single day, but it hints that not all vehicles cause an excitation higher than the amplitude of the
ambient vibrations.
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Figure 6.2: Mean frequency vectors of sensors 7 in the undamaged area and sensor 23 in the damaged area.

Before performing the damage detection, the mean vectors of the raw truncated samples from the two
sensors can be compared. They are on display in figure 6.2. Even by looking at mean vectors, it is clear
that these two sensors have two different responses. It seems unlikely that changes in the stochastic
process of the traffic would be responsible for this magnitude of a difference in the mean response.
This difference is likely due to the different underlying dynamic systems that the sensors capture. That
would mean that by simply looking at the mean response of the raw truncated samples, the underlying
dynamics can be seen. For both sensors, there appear to be three primary natural frequencies. Sensor
7 in the ”healthy” area has resonance frequencies at 190 Hz, 260 Hz and 380 Hz, while sensor 23 in
the damaged area has natural frequencies at 190 Hz, 240 Hz and 330 Hz.

The differences in the natural frequencies between the sensors aligns with the idea that damage, such
as the fatigue cracks, will result in a reduction of stiffness. This, in turn, will lower the natural frequencies
due to the reduction in stiffness. Two of the resonance frequencies of sensor 23 at 240 Hz and 330
Hz are lower than the ”corresponding” frequencies of sensor 7 at 260 Hz and 380 Hz. It appears that
the natural frequency at 190 Hz is unaffected by the differences in stiffness characteristics of the two
areas, as this frequency is the same for the two sensors. Another indication that the damaged area
has reduced stiffness is the higher amplitude of the mean response of sensor 23. A less stiff structure
would respond with a higher amplitude to the same level of force. It is possible that this difference is
due to the random process of the traffic. However, the exact same vehicles drive over the two areas
and generate the samples. It seems unlikely that the random process of the traffic is responsible for

1Intensiteiten op Wegvakken - INWEVA Source

https://maps.rijkswaterstaat.nl/gwproj55/index.html?viewer=Inweva.Webviewer
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this change. This difference in amplitude is a consistent theme in the comparison between sensors in
the ”healthy” and damaged areas. Another possible reason for this difference in amplitude could be
due to the different damping characteristics of the two zones. Increased damping would lead to less
amplification. The amplitude of the response would also lower as a result.

(a) Raw Data set (b) Raw truncated data set (c) Low rank data set

Figure 6.3: Principal component score of samples from sensors 7 and 23 for the first three principal components.

The next step in the damage detection process is to apply the rPCA independently on the samples
from the two sensors. That is, it is applied once on the 190 samples from sensor 7 and again on the
223 samples from sensor 23. This produces two sets of low-rank matrices, each containing the original
amount of samples. Each sample has been reconstructed according to coherent structures in their
respective sample set. The low-rank samples from sensor 7 should now contain minimum noise and
correspond to the underlying dynamic system that the sensor captures. The same applies to low-rank
samples from sensor 23 but now with a different dynamical system. Now, these two low-rank sample
sets from both sensors are combined, and PCA is applied to the data. This creates a new ”basis” for
the data. The samples are then represented in the first three principal components (PCs), which are
shown in figure 6.3. The figure shows the three PCAs with different data, raw untruncated samples,
raw truncated samples and the low-rank truncated samples. The ideal condition here is that the data
will form separate clusters in the low-rank representation of the first three PCs to allow for subsequent
damage detection. In all cases, there seem to be two separate clusters forming, and the separation
between them becomes more evident with truncation and the application of the rPCA. Even without
performing any truncation, there is some degree of separation between the clusters. By applying the
truncation scheme defined in the previous chapter, there is nearly a clear separation between the two
clusters. The separation becomes even better with the low-rank data from the rPCA.What is happening
here is that the data from sensors 7 and 23 have different ”scores” or contributions from the first three
PCs. The PCs are the direction of maximum variance within the data and are ordered in the amount
of variance they explain. This implies there is some fundamental difference between the two data sets
that form these clusters.
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(b) Raw truncated data set
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(c) Low rank data set

Figure 6.4: Singular values and total variance explained of each of the principal components. Data from sensors 7 and 23.

Another way to see the effectiveness of rPCA is to look at the principal components and the variance
that they explain. Figure 6.4 shows the singular values and the total variance explained by each PC.
Comparing the total variance explained between the three data sets reveals quite a difference. The total
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variance explained by the first PC is 42 %, 18 % and 53 % for the raw untruncated, raw truncated and
truncated low-rank datasets, respectively. There is a considerable increase in the variance explained
by the first PC with the application of rPCA, as seen in the difference between the raw truncated and
low-rank data. The rPCA has filtered out much of the noise within the data resulting in a higher relative
variance explained by the first PC.

It can be seen in figure 6.3 that the clusters are separating the PC 1 and PC 2 plane. It is possible
to draw a line in this plane between the two clusters and completely separate them for the low-rank
data. PC 1 and PC 2 explain the most variance within the data and contain information regarding
the difference between the two sample groups. These PCs are shown in figure 6.5. They can be
compared to the mean vector of the sensors in figure 6.2. There is some similarity in the 1st PC with
the mean response of sensor 23 with the same natural frequencies at 240 Hz and 330 Hz. However,
the similarities end there. The PCs are rather the subtraction of two mean vectors. PC 1 appears to
be the mean vector from sensor 23, with the mean from sensor 7 subtracted from it. Likewise, PC 2
seems to be the opposite; the mean vector from sensor 7 has the mean from sensor 23 subtracted
from it. This can be seen in the ”valleys” at the natural frequencies for sensor 23, at 240 Hz and 330
Hz. It is the ”score” of the samples in these two PCs that separates the two groups. It also seems that
these PCs represent the variance in the data that corresponds to the difference between the ”healthy”
and damaged samples. So the data is being separated into distinct clusters based on the variance that
corresponds to the difference in the ”healthy” and damaged data sets.

This ”subtraction” between the data of the two sensors becomes apparent when looking at the anoma-
lous ”spikes”. These are the sudden spikes in amplitude in the frequency spectrum around 85 and 100
Hz. They can be seen in the mean frequency vector in 6.2. The spike at 85 Hz is part of the data
from sensor 23, and the spike at 100 Hz is part of the data from sensor 7. These spikes are present
in the PCs and are always opposite of each other in either PC. This gives an additional indication that
these two PCs explain the variance that corresponds to the difference between data in sensors 7 and
23. These ”spikes” are not part of the structural response of the system. The hypothesis is that these
”spikes” are due to the sensor system and auxiliary equipment. A more detailed analysis of these peaks
can be found in Appendix A. These ”spikes” pose a challenge for the damage detection process as they
add a false-positive bias, as will be revealed later in the chapter.
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Figure 6.5: Second and first principal components of the raw truncated and low-rank data sets. Data from sensors 7 and 23.

Another observation on the first two principal components is that there is hardly any difference in the
principal components between the raw truncated and low-rank data sets, even though for the low-rank
data, these principal components explain much more of the total variance within their respective data
sets. Both the raw truncated and low-rank data sets are separated based on the same variation within
the data. In the case of the raw truncated data set, this variation is only a fraction of the total variance
within the data set. For the low-rank data set, most of the variance can be explained by these two
principal components. The two low-rank PCs have a higher relative information content of the data set
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as much of the noise has been removed. This could explain why the degree of separation of the two
groups in these two PCs is much better for the low-rank data, as seen in figure 6.3c.

To summarise the comparison between data from sensors 7 and 23, there is a clear separation between
samples from the ”healthy” and damaged areas in the low-rank subspace of the first three PCs. This
separation seems to be based on the variation in the data that corresponds to the difference between
the two data sets. The ”score” of the samples in these PCs is an ideal feature to work for automated
damage detection.

6.1.2. Sensors 13 and 29

The next step is to conduct comparisons between other sensor pairs to see if this degree of separability
between clusters of sensors 7 and 23 is present in other sensor pairs. Sensors 7 and 23 were located
on the stiffener that had a fatigue crack between the stiffener and the transverse beam. The influence
of the damage on these sensors is likely to be the highest of all sensors in the campaign. Sensors 13
and 29 are positioned on the stiffener on the opposite side of the crack. There is no crack between
the transverse beam and this stiffener. The effect of damage on the dynamical properties at this
sensor’s location is likely less than for sensors 7 and 23 as it is further from the damage. There
are a total of 411 samples for this analysis, 202 from sensor 13 in the ”healthy” area and 209 from
sensor 29 in the damaged area. The frequency resolution of the samples is the same as before at 0.5
Hz. Figure 6.6 shows the mean frequency vectors of samples from sensors 13 and 29. It is clear that
the signals from these sensors are different, but there is considerable similarity between the signals.
According to the mean response, sensor 13 seems to have natural frequencies at 220 Hz, 275 Hz, 345
Hz and 375 Hz. Sensor 29 appears to have natural frequencies at 220 Hz, 270 Hz and 355 Hz. It also
appears that the mean amplitude of sensor 29 in the damaged area is higher than that of sensor 13.
This could be due to the damaged area being less stiff.
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Figure 6.6: Mean frequency vectors of sensors 13 in the undamaged area and sensor 29 in the damaged area.

Figure 6.7 shows data from sensors 13 and 29 represented in the first three PCs. The truncated raw
data seems to form two clusters. However, there is an intersection of the two clusters, making it difficult
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to classify which group the samples belong to. On the other hand, there is a clear separation between
groups with the low-rank data from the rPCA, making it easy to distinguish which group the samples
belong to.

(a) Raw truncated data set (b) Low rank data set

Figure 6.7: Principal component score of samples from sensors 13 and 29 for the first three principal components.

Similar to before, the first PCs of the low-rank data explain more of the variance within the data set
compared to the raw truncated data, as seen in figure 6.8. The first three PCs of the low-rank data
explain most of the variance within the data set. After the third principal component, the remaining PCs
seem to explain the same amount of variance. The first three PCs appear to be significant in the amount
of variance they explain. These PCs explain variance that most likely corresponds to the differences
between data sets as there is a separation between the groups in the subspace of these PCs. A plane
can be drawn in the space of these three PCs to separate the two groups. The PCs are shown in
figure 6.9, and the PCs exhibit the same behaviour as in the previous analysis of sensors 7 and 23.
The PCs are the difference between the signals of sensors 13 and 29. There are corresponding peaks
and valleys where the natural frequencies are located. This difference between the signals of the two
sensors is best seen when looking at the spikes; they are always opposite as they belong to different
sensors.

200 400

r

10
-2

10
-1

10
0

S
in

g
u
la

r 
v
a
lu

e
s

200 400

r

0

0.2

0.4

0.6

0.8

1

T
o
ta

l 
v
a
ri
a
n
c
e
 e

x
p
la

in
e
d

(a) Raw truncated Data set
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(b) Low rank data set

Figure 6.8: Singular values and total variance explained of each of the principal components. Data from sensors 13 and 29.

In the case of this sensor pair, the raw truncated data set performed worse than for sensor pairs 7 and
23, as the two sample groups are not completely separated in the subspace of the first three PCs. This
could be due to the difference between the samples of sensors 13 and 29 being less than in sensors
7 and 23. However, there was a separation between the sample groups for the low-rank data for both
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sensor pairs.
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(a) First Principal Component
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(b) Second Principal Component
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(c) Third Principal Component

Figure 6.9: First three Principal Component. Low-rank data set

6.1.3. Sensors 3 and 19

Entire frequency vector - frequency resolution 0.5 Hz

Up to this point, two sensor pairs have been considered. In both cases, the sensors have been mea-
suring the horizontal motion of the stiffeners and are capturing high-frequency content with natural
frequencies at 200 Hz and higher. The vertical motion can also be analysed. Consider sensors 3 and
19, which are positioned on the bottom of the deck plate and measure the vertical motion of the deck.
The natural frequencies of the signals of these sensors are lower compared to the horizontal sensors.
This can be seen in figure 6.10, which shows the mean frequency vector of all observations. The fre-
quency content of these sensors seems to be more ”chaotic”. The natural frequencies are not as well
defined as was the case with the other two sensor pairs. However, as was seen in the two previous
comparisons, the mean amplitude of the samples from the sensor in the damaged area is higher.
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Figure 6.10: Mean frequency vectors of sensors 3 in the undamaged area and sensor 19 in the damaged area.
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A frequency resolution of 0.5 Hz is chosen for the analysis. A lower frequency resolution could be
required for the low-frequency content, especially for low frequencies such as the natural frequencies
at 10 Hz in figure 6.10. However, given the level of difference between the data groups below 100 Hz,
as seen in figure 6.10, a high-frequency resolution is not required to detect the differences between the
data groups. Increasing the frequency resolution lowers the amount of data available, which can have
a negative effect on the performance of the rPCA and PCA. With a frequency resolution of 0.5 Hz, the
total number of samples for this analysis is 495, with 244 from sensor 3 and 251 from sensor 19.

The same procedure as before is performed, that is computing the PCA of the entire data set of both
sensors and visualising the data in the first three PCs, which can be seen in figure 6.11. Here, the
separation of the raw truncated data from the two sample groups is worse than before. There is a
significant overlap of the data in the PCs. These PCs do not have complete information that distin-
guishes between these two groups. However, for the low-rank data, there is a clear separation of the
two groups with the first three PCs. It seems that there is no trouble in separating the groups of signals
with the low-rank data set. Again, the total variance explained by the first principal components of the
low-rank data is higher than for the raw data set as indicated by figure 6.12.

(a) Raw truncated data set (b) Low rank data set

Figure 6.11: Principal component score of samples from sensors 3 and 19 for the first three principal components.
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(a) Raw truncated data set
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(b) Low rank data set

Figure 6.12: Singular values and total variance explained of each of the principal components. Data from sensors 3 and 19.

For the low-rank data, the two signal groups are separated by the first three PCs, but their separation
is mainly in the 2nd and 3rd PCs. A line can be drawn in the 2nd and 3rd PC to separate the two data
groups. Figure 6.13 shows the first three PCs. It is harder to interpret these PCs compared to previous
PCs from the other analysis of the other sensor pairs. The 1st PC seems to be a combination of the
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mean frequency vectors of the two sensors. No particular pattern can be observed with the 2nd and
3rd PCs. Similar to the other analysis, these two PCs contain information on the difference between
the signal groups as the groups are being separated by these PCs. However, it is more difficult to see
that this difference is due to the differences in structural systems compared to the other two sensor
pairs.
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(b) Second Principal Component

0 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
m

p
lit

u
d
e

(c) Third Principal Component

Figure 6.13: First three Principal Component. Low-rank data set
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Below 100 Hz - frequency resolution 0.5 Hz

For all the analyses conducted, the entire frequency vector has been taken. This is suitable when
natural frequencies occur over the entire spectrum or when changes in the signal can occur over the
entire spectrum between the two sensors. However, in the case of sensors 3 and 19, most of the
frequency content is below 100 Hz. If the dynamic system changes due to damage, it would most
likely be at these frequencies. It could be redundant or even harmful for the analysis to use the entire
frequency spectrum for a signal with low-frequency content like these sensors. There is little to no
information on the dynamic system at these higher frequencies. A simple solution would be only to
take the natural frequencies below 100 Hz. The resulting principal score of the observations in the first
three PCs is shown in figure 6.14. Once more, there is a separation of the two groups. The signals of
the two sensors are different below 100 Hz. The separation between the groups is not due to some
irrelevant data at high frequencies but rather due to changes in the dynamic system at low frequencies.
However, the separation between the data groups for low-rank data is better when the entire frequency
vector is considered, but that could be due to irrelevant information in the higher frequencies.

(a) Raw truncated Data set (b) Low rank data set

Figure 6.14: Principal component score of samples from sensors 3 and 19 for the first three principal components. Only
includes data below 100 Hz. Frequency resolution: 0.5 Hz
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(a) Raw truncated data set
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(b) Low rank data set

Figure 6.15: Singular values and total variance explained of each of the principal components. Data from sensors 3 and 19.
Only includes data below 100 Hz. Frequency resolution: 0.5 Hz

The first three PCs are shown in figure 6.16. The two data groups are separated mainly in their different
scores in the 2nd and 1st PCs. It is difficult to interpret these PCs, but they contain information about
the differences between the data groups, which should correspond to the underlying differences in
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dynamic properties. Another observation is in figure 6.15, which shows the total variance explained
by the PCs. In the previous analysis, after the third PC, there was a significant drop in the variance
explained by the PCs. However, here the variance drops after the fifth PC. The fourth and fifth PCs
could also contain relevant information regarding the differences in the dynamic properties between
the data groups.
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(b) Second Principal Component
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(c) Third Principal Component

Figure 6.16: First three Principal Component. Low-rank data set

Below 100 Hz - frequency resolution 0.125 Hz

Due to the level of difference between the data groups, it seems sufficient to use a frequency resolution
of 0.5 Hz to separate the two different data groups in the subspace of the first three PCs. However, the
analysis can be repeated with a higher frequency resolution of 0.125 Hz to compare with the previous
analysis. As previously stated, this will lower the number of samples in the analysis and also increase
the size of the frequency vector. The sample-to-feature-length ratio has an effect on the performance
of the rPCA. Too few samples and the rPCA cannot discover the underlying dynamic system properties.
With the frequency resolution of 0.125 Hz, the number of samples for the analysis drops to 183, 93 from
sensor 3 and 90 from sensor 90.

(a) Raw truncated Data set (b) Low rank data set

Figure 6.17: Principal component score of samples from sensors 3 and 19 for the first three principal components. Only
includes data below 100 Hz. Frequency resolution: 0.125 Hz

Figure 6.17 shows the data in the subspace of the first three PCs. For both the raw truncated samples
and the low-rank there is a separation of the data groups in the PCs. It is an improvement compared
to the previous analysis. For the low-rank data, the separation is exclusively in the 1st and 2nd PCs.
Looking at figure 6.18, these two PCs explain most of the variance in the data set, and after the second
PC, there is a sharp decrease in the total variance explained by the PCs. The PCs of the low-rank data
are shown in figure 6.19. PCs 1 and 2 contain information regarding the differences between the two
data groups. It can be seen that these PCs contain anomalous ”spikes” at around 90 Hz, and they are
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(a) Raw truncated data set
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(b) Low rank data set

Figure 6.18: Singular values and total variance explained of each of the principal components. Data from sensors 3 and 19.
Only includes data below 100 Hz. Frequency resolution: 0.125 Hz

opposite to each other in these PCs, which is similar to what has been seen in the previous analyses.
It is difficult to interpret these PCs in relation to the dynamic system properties. It could be that these
Pcs contain information regarding the underlying differences in the dynamic system, but it could also
be due to differences in the level of noise between the two data sets. Caution should be taken when
interpreting these results.
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(a) First Principal Component
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(b) Second Principal Component
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(c) Third Principal Component

Figure 6.19: First three Principal Component. Low-rank data set

Three sensor pairs have been considered, but there are a total of 16 sensor comparisons possible.
For all valid sensors (sensors that generate a detectable vibration), there is a statistical difference
between all sensor pairs for the low-rank data set. There is a separation of the two signal groups in
the first three PCs. The rPCA is able to remove the noise within the samples and reveal the underlying
dynamic properties.

6.2. Points of maximum difference
With the PCA, the combined data of two sensors have been embedded into a low-rank subspace of the
PCs. The PCs explain the correlation within the data and are orthogonal to each other. They contain
information about the entire feature or frequency vector, and the samples are clustering according to
information in the entire vector. However, it could be of interest to find which frequency is contributing
most to the separation between the two sample groups. Here the Sparse sensor placement optimisation
for classification (SSPOC) [7] can be used to find the points in the frequency vector that contains the
most discriminating information between two categories of the data. Out of a 1000-length frequency
vector which points contain the most discriminatory information between two groups of data? When
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comparing two categories, the method can find locations in the frequency vector up to the number of
features. Here in the previous analysis, the number of features is 3, corresponding to the three PCs.
There is a requirement that the categories of data form distinct clusters in the subspace of the features
to allow classification algorithms, in this case, the Linear Discriminant Analysis, to function correctly.

Here any N number of features or PCs can be selected and used with the method. However, as was
discovered in the previous analysis, the two sample groups of damaged and undamaged samples are
separating in the first three PCs. These PCs are selected and used with the method. Figure 6.20 shows
the three locations in the frequency vector that contains the most discriminatory information between
low-rank data from sensors 7 and 23. The left figure contains the discriminant projection vector, and
the red line shows the three sparse locations. The value of the sparse locations dictates the relative
discrimination of each of the three points. A better view is to look at the sparse locations overlayed on
the mean frequency vectors of sensors 7 and 23, which is shown in the right figure.
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Figure 6.20: Sparse sensor locations for Low-rank data of sensors 7 and 23. (a) Discriminant projection vector with the sparse
sensor locations marked in red. (b) Mean vector of sensors 7 and 23

Here it can be seen that the locations that contain the most discriminatory information between the
sample groups are at the natural frequencies. However, the point in the frequency vector that holds
the maximum amount of difference between the sample groups is the anomalous ”spike”. This is not
that unexcepted, as these spikes are different for the two sample groups and inhabit only a single
frequency index. Furthermore, these anomalous ”spikes” are always the same within their respective
sample group. These anomalous ”spikes” practically function as a dimensionality reduction for the
problem. Only these two points can be followed, and that would give enough information to categorise
the data. However, the anomalous ”spikes” are not part of the dynamics of the system but are likely
due to the sensors and auxiliary equipment. These anomalous ”spikes” are then adding a false-positive
bias to the data. In fact, the ”spikes” are the location of the maximum difference between the data sets,
at least for data from sensors 7 and 23.

This leads to the question of whether the separation in the data in the first three PCs is due to
the false positive of the anomalous ”spikes”. The PCA of the combined data set of two sensors
can be performed again, but this time excluding the frequency range where the anomalous ”spikes”
appear. Figure 6.21 shows the low-rank samples from sensors 7 and 23 in the first three PCs but only
in the frequency range of 110 Hz to 500 Hz. Here there is still a separation between the two sample
groups, even when excluding the anomalous ”spikes”. The separation of the data in the first PCs
is not solely due to these anomalous ”spikes”. The same occurs for the other sensor pairs. However, it
is not possible to take this approach to filter out the anomalous ”spikes” when natural frequencies are
in the same band as these anomalous ”spikes”.

While the anomalous ”spikes” are locations that contain the most discriminatory information between
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(a) Raw truncated data set (b) Low rank data set

Figure 6.21: Total variance explained for the ”raw” and low-rank data sets excluding the anmalous ”spikes”. Reduced length of
the frequency vector from 110 Hz to 500 Hz.
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(a) Raw truncated data set
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(b) Low rank data set

Figure 6.22: PCA score in the first three principal components excluding the anmalous ”spikes”. Reduced length of the
frequency vector from 110 Hz to 500 Hz.

the sample groups, that does not mean that the data only depends on these locations. The anomalous
”spikes” occur just at a single frequency index. There are also other points in the frequency vector, such
as the natural frequencies, that contain information regarding the difference between the two groups.
However, this information on the natural frequencies is spread out over more frequency indexes than
the anomalous ”spikes”. This leads to each of the indexes containing less relative information about
the difference between the two groups compared to the anomalous ”spikes”. While the anomalous
”spikes” contain the most discriminatory information between the sample groups, that does not nec-
essarily mean that they dictate the entire difference of the vectors. However, the problem that these
anomalous ”spikes” pose to the damage detection process becomes more critical when the overall dif-
ference between two dynamical systems becomes less. Then the relative contribution of the anomalous
”spikes” to the difference between sample groups becomes more and can start dictating the difference
between sample groups.
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6.3. Novelty detection
The next step in the damage detection process is to identify if there is actual damage present in the
signals. In the previous analyses, only a visual confirmation has been made so far on the division
between undamaged and damaged sample groups in the subspace of the first PCs. However, a more
robust approach than visual identification is needed to automate the damage detection process. Setting
up the damage detection problem as unsupervised novelty detection would be ideal. The problem here
is to answer whether there is a presence of damage in the structure, that is, whether there has been
a deviation in the normal ”healthy” condition of the structure. The damage comparison is always a
comparison between two states. Here this is the comparison between sensors in the damaged and
undamaged areas for each of the sensor pairs.

In the previous analysis, it was found that the low-rank data from the different sample groups formed
distinct clusters in the first PCs. The features are the ”score” of the samples in these PCs. There is a
considerable distance between the features belonging to the damaged and undamaged sample groups.
This can be exploited to automatically detect a deviation in the normal condition. If the ”distance” is too
great, that would indicate deviation in the normal condition. This assumes that the subspace of these
PCs corresponds to variance related to the differences in the underlying structural system of the two
sample groups. It could be that the sample groups are separating the subspace of the PCs, but those
PCs would not be connected to the variance in the different underlying structural systems but rather
differences in the level of noise in the sample groups. For instance, the data could be forming clusters
in the subspace of the PCs due to the anomalous ”spikes”. Therefore, it has to be certain that the PCs
are connected to the variance that explains the difference in dynamic systems.

Mahalanobis distance, outlined in chapter 4.5, will be used tomeasure the distance between samples. It
measures the distance between the features and a given distribution. Here the distance of the samples
can be measured relative to the distribution corresponding to the undamaged state, which represents
the normal condition of the bridge. Since there is a separation between the undamaged and damaged
samples in the subspace of the PCs, that means that the damaged samples are further away from the
undamaged distribution. If the distance between the two distributions is significant, that would mean
that the two distributions have different ”scores” in the PCs and are therefore different. This would
imply that there is damage present causing this deviation. If the distance is the same between the two
distributions, that would mean that the two distributions have the same ”scores” in the PCs, and there
is no difference between them, at least according to these PCs.

(a) Raw Data set (b) Low rank data set

Figure 6.23: Mahalnobis distance

Figure 6.23 shows the distribution of Mahalanobis distance for the undamaged or ”training” data and
the damaged or ”test” data. Data is from sensors 3 and 19. When the raw truncated data is used, there
was no separation of the data in the first three PCs, as seen in figure 6.11. The samples from both
groups inhabit the same area in the PC subspace; there is no difference between them according to
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the first three PCs. The distribution of the Mahalanobis distance is nearly the same for the two groups.
However, when the low-rank data is used, there is a separation of the sample groups in the subspace
of the first PCs. This leads to the distribution of the Mahalanobis distance for the two groups being
completely different, as the damaged sample group is far from the ”healthy” sample group.

This then enables the identification of whether samples deviate from the normal condition of the bridge
by only looking at theMahalanobis distance. For the low-rank data, themaximumMahalanobis distance
in the undamaged data can be taken as a threshold. Any sample that has a higher Mahalanobis
distance to the undamaged distribution than this threshold could be said to be deviating from the normal
condition of the bridge. This is the case for nearly all samples from the damaged data set for the low-
rank data. They can be classified as a novelty.

This is a rather crude approach to picking this threshold value. Ideally, it should be based on an ex-
tensive statistical analysis of the data. However, since there is such a large difference in the score of
the samples in the PCs, simply taking the maximum Mahalanobis distance in the undamaged data is
enough to classify the data. This brings another point regarding comparing the undamaged and dam-
aged signals. The damage signals are from an area where damage has already developed to quite
some extent with the presence of two fatigue cracks. The damaged area also has a different structural
configuration compared to the ”healthy” reference area. Both of these points mean that the damaged
signals differ considerably from the undamaged ones. The goal of robust damage detection would be
to detect damage before it reaches this level of damage development, such as at the early stages of
fatigue crack formation. This would mean a more challenging problem as the underlying difference in
dynamical systems between the healthy and damaged areas would be less, and it is not certain if the
damaged and undamaged signals would separate in the PCs.

6.4. Conclusions
rPCA significantly improves the results of the damage detection process. Using the rPCA on vibration
data reduces the noise, and coherent structures within the data are revealed. The low-rank data has
information regarding the underlying dynamics that the sensor captures. When the PCA is performed
on the combined low-rank data set of two sensors, there is a clear separation between the damaged
and undamaged samples. Without the use of the low-rank data from the rPCA, it would not be possible
to determine that there has been a deviation in the normal condition of the structure.

For all valid comparisons between sensor pairs, there is a statistical difference between damaged and
undamaged signals beyond that of the randomness of the traffic. This indicates that the sensors in the
damaged area have a different dynamical system than those in the undamaged area. The difference
in the dynamical system can be rather significant, with entire natural frequencies shifting considerably
in the frequency spectrum. However, as alluded to at the beginning of the section, the difference
in dynamical systems is not necessarily due to the damage caused by the fatigue cracks. The
structural configuration of the undamaged and damaged areas is not completely the same. In the
damaged area on one of the stiffeners, there is a flange discontinuity. In addition, there is a coupling
plate and a strut in the vicinity. These two structural components are located slightly differently than
the equivalent coupling plate and strut in the undamaged area. Essentially the structural configuration
of the two areas is different, and it is not possible to claim the difference is actually due to the damage
caused by the fatigue cracks.

However, there are indications that the difference in the signals between the two areas is due
to stiffness reduction. The distribution of energy within each sample differs between sensors in the
undamaged and the corresponding sensor in the damaged area. The mean energy of the samples is
higher for sensors located in the damaged area. It is unlikely this is due to the randomness of the traffic,
as the exact same vehicles drive over both areas. Reduced stiffness will result in a higher response
given the same amount of force. Damage such as the fatigue cracks can reduce the stiffness of the
structure and could be responsible for this behaviour. However, the same could be said for the different
structural configurations; it can lead to a reduction in stiffness compared to the baseline area.
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Even though it is not possible to determine that the difference in signals between the sensors of the two
areas is due to damage, it is comforting that the difference between the signals is that great. Consider
the alternative. If there was no fundamental difference between signals of the two areas, even with
the presence of fatigue cracks and a different structural configuration, it would bode ill for SHM. How
would then damage or structural distortions of less magnitude be detected? The fatigue cracks have
already developed to a significant length. The goal of SHM would be to discover these cracks before
they become an issue.

The rPCA is not required to produce a division between data from sensors 7 and 23 in the subspace
of the PCs. For these two sensors, the performance of the raw truncated data set was on par with the
low-rank data set. The aim of the rPCA is to create a low-rank matrix that is robust to outliers within the
original data. Regular PCA, which is used when two sensors are compared, is not robust to outliers and
is best suited for data that follow a Gaussian distribution. If the performance of the comparison is the
same for the raw truncated data set and low-rank data set, that could indicate that there are no or few
outliers within the raw truncated data set. Several pre-processing steps have been taken to simplify
the data. Samples with high energy were removed and thus simplified the distribution of samples. This
could explain the good performance of the raw truncated data set. However, this does not explain
why the raw truncated data performs so particularly well for sensors 7 and 23. It could be due to the
significant difference between the two signals. This sensor pair exhibits the largest difference in the
mean frequency vectors of all sensor pairs. Only the first three PCs are considered, and the PCs are
ordered in the amount of variance that they explain. The first PCs explain more of the variance in the
data relative to other higher PCs. It could be that the difference between the signals is so large for
sensors 7 and 23 that it results in these first PCs capturing this variance through all the noise within
the data.

The number of samples used in the analysis, or rather the ratio between samples and the length of
the frequency vector, is something to consider when working with the rPCA. This was observed in the
analysis of the low-frequency content below 100 Hz. When the frequency resolution was increased
to 0.125 Hz, it resulted in fewer samples compared to the previous analysis. The separation of the
damaged and undamaged samples in the first PCs was better in the data set with fewer samples. This
was the case for both the raw truncated data and the low-rank data. Introducing more samples means
more realisations of the random process of the input force, which in turn leads to more measurement
noise in the data set. It could be that due to the lower noise within the data, the differences between the
damaged and undamaged samples have a higher relative significance in the data set, and thus, fewer
samples give a better separation between the damaged and undamaged samples in the PCs. However,
this would also mean fewer amount of samples would not encompass the entire random process of the
input force. The comparison between damaged and undamaged samples could then be comparing
different levels of noise in the damaged and undamaged sample sets in addition to the differences in
the dynamic properties.



7
2nd Measurement Campaign

After it was discovered that there was a difference in the structural configuration between the undam-
aged and damaged area in the first measurement campaign, a different approach was taken with the
second measurement campaign. Instead of comparing two areas, all 32 sensors are installed in the
same area. In addition to these accelerometers, several temperature sensors were installed on the vari-
ous bridge components, such as in the asphalt, under the bridge deck, and on the stiffeners. This allows
for studying the effect of temperature on the dynamic system of the bridge. Compared to the damage
detection in the previous measurement campaign, environmental detection has several advantages.
Firstly, there is no need for actual damage. Temperature changes will always occur throughout the
day. It should always be possible to perform environmental detection. Furthermore, the output of the
same accelerometer can be compared at different temperatures. Thus, only environmental changes
take place. The structural configuration of this sensor will not change, as was the case in the previous
measurement campaign when comparing two sensors in two different areas. The intended goal of SHM
is to measure damage but is knowledgeable to see if it is possible to detect changing environmental
conditions and how the system properties look at a given temperature.

Accelerometer data from 32 sensors over two days will be used for this analysis. The measurements’
id, date, and temperature range are displayed in table 7.1. Note that the temperature range of these
two days barely intersects. Of the 32 accelerometers, 30 measure the vertical acceleration of the deck
plate, while the remaining two measure the horizontal acceleration at the stiffeners. As was seen in the
previous measurement campaign, these two types of accelerometers have fairly different frequency
content. The vertical accelerometers on the deck mainly capture low-frequency content, while it is
the opposite for the horizontal accelerometers on the stiffeners, which capture mostly high-frequency
content. These two dynamic systems might respond to changing environmental conditions in different
ways.

Table 7.1: Measurement data - 2nd Measurement Campaign

ID Date Start time End time Temperature range
09762 - 09785 18-10-2021 00:14:57 23:29:57 11.5-17.5 C
10147 - 10170 03-11-2021 00:17:01 23:32:01 7.9 - 12.5 C

The rPCA can be used again to reduce operational variability within the data. However, rPCA should
be used when the underlying dynamic system is the same within a data set. It should only be applied
to samples that share the same temperature. Here, rPCA will be applied to samples within a single
centigrade. This should limit the environmental variability within the rPCA so that the underlying dy-
namic system is similar for all samples while also providing an adequate amount of samples for each
rPCA. The distribution of samples over the temperature range is shown in figure 7.1. The samples are
generated from accelerometer number 31 with a frequency resolution of 0.5 Hz and with data from the
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two days. The samples are categorised according to temperature sensor 6, which is located on the
same stiffener as accelerometer number 31. The uneven distribution of samples can be attributed to
the varying traffic flow throughout the day, with more traffic during the rush hours and assuming that
the temperature is a function of the time of the day.

Figure 7.1: Histogram of the number of samples in each of centigrade for the two measurement days. Data from sensor 31.
Samples have a frequency resolution of 0.5 Hz

Overall the procedure is similar to what was done in the damage detection in chapter 6. The procedure
can be summarised as follows:

1. Create samples by taking a time window around peaks in the time series of a single sensor
2. Discard 20 % of the highest energy samaples for each sensor
3. Apply discrete Fourier transform to the samples
4. Take the absolute of the fourier transform
5. Obtain a low-rank matrix by performing rPCA on a sample set within a particular temperature inter-

val. Default regularisation parameter of λ = 1/
√
max(n,m) and a lower regularisation parameter

of λ = 1/
√
2 ∗max(n,m) is used for the analysis.

6. Compute (regular) PCA on the combined low-rank with data from two different temperature inter-
vals.

7. Conduct feature discrimination with the score of the samples in the PCs as features.

The chapter is divided into three parts. The first part investigates the temperature of the bridge over the
day and the temperature gradients in the bridge. The second part investigates the temperature effect on
the dynamic properties of a single resonance frequency. Finally, in the third part, the whole frequency
vector is analysed in relation to temperature changes. The Sparse Sensor Placement Optimisation for
Classification (SSPOC) will also be used to find the locations in the frequency vector that contain the
largest difference between the data for different temperatures.
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Figure 7.2: General preprocessing procedure. Samples are created around excitation in the time domain and the Fourier
transformed applied. Afterwards samples are grouped according to temperature and the rPCA is applied

7.1. Temperature Sensors
A total of 16 temperature sensors are present on the bridge. These sensors are positioned at different
locations of the bridge and measure the temperature of the different structural components. Figure
3.8 in chapter 3.3 shows the layout of the sensors (Note that the temperature sensors in the asphalt
are missing, sensors 9 - 12). These sensors span the entire height of the bridge with temperature
sensors in the asphalt, under the bridge deck, on the stiffeners, on the east wall, and finally on the
lower transverse beam. These temperature sensors give an idea of the overall temperature profile of
the bridge.

Each day the temperature will rise over the day and then fall in the evening and afternoon. Figure 7.3
shows the temperature of four sensors over four and half days. All of the sensors follow the same
fundamental pattern: a rise in temperature followed by a decrease in temperature, and this process
repeats each day. However, there is a difference in the temperature of each sensor, indicating that
there is a temperature gradient in the bridge. Figure 7.3 contains temperature measurements from
sensors that form a vertical line in the bridge. It can be seen that during the day, when the temperature
is at its highest, the temperature at the top part of the bridge in the asphalt is highest. The temperature
progressively drops as you go down the height of the bridge. The opposite happens during the evening
and at night. Then the temperature at the top is lowest while it is highest at the bottom of the bridge.
This would suggest that there is a vertical temperature gradient in the bridge.

Another observation is the phase lag between the peaks of the temperature of the asphalt and the stiff-
ener. The asphalt warms up and cools down faster than the stiffener; it is more sensitive to temperature
changes than other parts of the bridge. The inner layer where the stiffener is located retains its thermal
energy for a longer duration. There is also a difference in the absolute value of temperature that the
sensors measure. Asphalt undergoes the most extreme temperature shifts; it has both the highest and
lowest temperature measurements. The lower transverse beam, on the contrary, undergoes minimal
temperature changes. The top part of the bridge is exposed to solar radiation during the day. The lower
side of the bridge could be exposed to warmer air from the Haringvliet.

There should also be a temperature gradient in the transverse direction of the bridge. However, the
temperature sensors here are insufficient to capture the bridge’s entire transverse length. There are
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only sensors within the box girder, but none on the cantilevers. Fortunately, this has already been
researched by Kortendijk [26] on the Haringvlietbrug. More temperature sensors were available for his
research, and they covered a wider area of the bridge. It was discovered that the temperature of the
outer part of the bridge deck, that is, the cantilevers was lower than in the inner part of the bridge deck
when the temperature was at its highest. During the night, when the temperature is at its lowest, the
outer cantilevers have a lower temperature than the inner part. The inner part of the bridge retained its
heat better at night than the outer part. Kortendijk also found no evidence of a temperature gradient
along the longitudinal length of the bridge.
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Figure 7.3: Temperature measurements of four sensors. Over a period of four and half days.

There are then two major temperature gradients in the bridge, which occur daily. This makes it more
challenging to assess the effect of the temperature change on the dynamic properties of the system.
A single temperature sensor cannot capture the entire temperature profile of the bridge; many sensors
would be required to do so. However, connecting the information of many different temperature sensors
to the acceleration data is much more complicated than just using a single temperature sensor. The
simplest approach is to see how dynamic properties change with a single temperature sensor. Using
many sensors would create many more temperature scenarios compared to using a single sensor.

However, as can be seen in figure 7.3, the temperature follows a reoccurring pattern. It could be that
the temperature profile of the bridge undergoes the same pattern each day with slight deviations. It
might be close enough to follow a single sensor, as this sensor is part of the profile. The sensors all
have the same relation between the different days. A single temperature measurement should be part
of the whole.

The most relevant temperature sensors should be those closest to the accelerometers. The accelerom-
eters capture natural frequencies and corresponding vibration modes that vibrate at the sensor location.
These dynamic quantities gain their characteristics from the surrounding material. This also includes
the temperature of said material. Temperature sensors near the accelerometers should be more im-
portant than those farther away from the accelerometers. However, this does not mean that the tem-
perature of material further away has no effect on the dynamic properties but rather that the relative
contribution should be less. The temperature sensors of interest are then temperature sensors in the
asphalt, under the bridge deck, and on the stiffeners. These temperature sensors are closest to the
accelerometers. The temperature from these sensors will be mainly used in the analysis.

7.2. Single resonance peak
In order to better understand how temperature affects the dynamic properties of the system, a single
resonance frequency can be investigated in relation to environmental variability. A single index of
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the resonance frequency will be used, that is, the peak of the natural frequency where the highest
amplification occurs. This greatly simplifies the problem as the whole frequency vector is reduced to a
single variable. It also has the added benefit of limiting the analysis to a single natural frequency and
how it responds to changing environmental conditions.

Data from two accelerometers will be considered. One measures the deck plate’s vertical accelera-
tion, and another measures the horizontal acceleration of one of the stiffeners. These are sensors 17
and 31, respectively. The frequency content of these sensors varies greatly, with the vertical sensor
capturing mostly low-frequency content and the horizontal sensor that captures mainly high-frequency
content. A single resonance frequency from both of these sensors will then be analysed with respect
to the changing environmental conditions. In both cases, the accelerometers will be paired with the
temperature sensor on the stiffener, that is, temperature sensor number 6.

7.2.1. Horizontal sensor - High natural frequency

Sensor 31 has high-frequency content, which can be seen in figure 7.4. The figure shows the mean
frequency vector of all the temperature intervals, which was previously established in figure 7.1. There
are a total of 9749 samples in the 14 temperature intervals available for analysis. The frequency resolu-
tion is 0.5 Hz for all samples. Here, the only major preprocessing step is the removal of the heavy-truck
observations, as was outlined in chapter 5, and no rPCA has been applied to the data. The shape of
the spectrum is almost the same between the different temperature intervals. However, there is a slight
difference in amplitude, and the overall shape seems to shift with temperature. As mentioned before,
instead of making a comparison between the whole frequency vectors, only the peak around 190 Hz
is considered. That is, only this natural frequency is examined and how it changes with temperature.
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Figure 7.4: Mean frequency vectors of each of the temperature intervals. Raw truncated data from sensor 31. Frequency
resolution of 0.5 Hz.

A simple way to visualise the effect of temperature on the natural frequency is to use the mean value
of each temperature interval. Figure 7.5 shows the mean amplitude and frequency value for each
temperature interval with respect to temperature. The data is from the raw truncated samples. There
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seems to be a negative linear correlation between the temperature and the other two variables. If the
temperature is lowered, the mean amplitude and frequency of the natural frequency increase. The
negative temperature correlation to these variables is visible without using the rPCA.

Instead of only working with the mean, the whole distribution of the samples can be considered. Figure
7.6a shows a histogram with the number of samples for each given temperature interval and frequency
of the resonance frequency. The natural frequency at around 190 Hz is being tracked for each sample
in the data set. As the number of samples is uneven for the different temperature bins, it is necessary
to normalise each temperature interval with respect to the number of samples in each interval. This
allows for a comparison between distributions of different temperature intervals.
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Figure 7.5: (a) Relationship between temperature and amplitude. (b) Realtionship between temperature and frequency. In
both cases the variables have a negative linear correlation with temperature. Raw truncated data from sensor 31.

Within each temperature interval, there is a hint of a normal distribution. This distribution shifts with
temperature, which can be better seen in the boxplot in figure 7.8. There seems to be a negative
correlation between temperature and the distribution. The mean in the previous example serves as
a decent indicator of the correlation between temperature frequency as the distribution within each
temperature bin follows that of a normal distribution. Figure 7.6b shows a data set in which rPCA has
been applied to samples in each temperature interval. The variance within each temperature interval
has been reduced. However, the centre of mass of these distributions is similar to before, and thus the
mean remains similar.

The distribution of the amplitude over the temperature intervals can also be examined and is shown in
figure 7.7 for both the raw truncated data and the low-rank data from the rPCA. Here the data within each
temperature interval seems to follow that of a skewed normal distribution. The shift of the distribution
over the temperature interval can be seen when looking at the centre of mass of the distribution. Since
this distribution is not a simple normal distribution, then the mean will not be at the centre of mass of the
distribution; the mean, median and mode are not the same. There is then the question of how sound
it is to interpret the shift in the mean as in figure 7.5b. Like before, the low-rank data has less variance
than the raw truncated data set.

The negative correlation between temperature and frequency of a resonance frequency is established
in the literature, as was discussed in chapter 2. However, the same cannot be said for the negative
correlation between temperature and amplitude of a natural frequency. One speculation is that the
vibration mode of this natural frequency is shifting in space. The accelerometer occupies the same
location throughout all the measurements. However, the vibration mode could shift in space due to
temperature changes. This could lead to the sensor no longer measuring the same spot of the vibration
mode, leading to a different amplification level. Another possible reason could be that the damping
characteristics change with temperature, which leads to a different level of amplification of the natural
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(a) (b)

Figure 7.6: Distribution of the frequency value of the natural frequency for each sample. (a) Raw truncated data set (b)
Low-rank data set. Data from sensor 31.

(a) (b)

Figure 7.7: Distribution of the amplitude value of the natural frequency for each sample. (a) Raw truncated data set (b)
Low-rank data set. Data from sensor 31.
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Figure 7.8: Boxplot (a) Raw truncated data set (b) Low-rank data set. Data from sensor 31.
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frequencies.

7.2.2. Vertical sensor - Low natural frequency

So far, the analysis of the effect of environmental variability has only been carried out on horizontal sen-
sor number 31. This sensor captures higher-order modes at a relatively high frequency. The resonance
frequency at 190 Hz is well defined with apparent rise and fall in amplification; it is a textbook natural
frequency. However, the natural frequencies of the accelerometers capturing the vertical acceleration
of the deck plate are quite different, as seen in figure 7.9b, which shows the mean frequency vector of
each of the temperature intervals for sensor 17. The sensor’s frequency content is at low frequencies,
below 100 Hz. The resonance frequencies are also more ”sharp”. There is a sudden rise and drop
in the natural frequencies. The effect of temperature on the natural frequency at around 10 Hz will
be analysed. The temperature sensor from the previous example will be used again to categorise the
vibration data, that is, temperature sensor six, which is located on the adjacent stiffener.
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Figure 7.9: Histogram and mean of the temperature intervals for sensor 17. Data categorised according to temperature sensor
6. Samples have a 0.125 Hz frequency resolution (a) Histogram of the number of samples in each of centigrade for the two

measurement days. (b) Mean frequency vectors of each of the temperature intervals.

There are some challenges with using low-frequency content data compared to high-frequency content,
mainly the frequency resolution. To be able to capture the shift in natural frequencies due to tempera-
ture, the frequency resolution has to have sufficient accuracy. This is more important in the case of low
frequencies, as the shift in temperature is based on the value of the frequency [41]. So, a one % shift
for a 100 Hz frequency is 1 Hz but 0.1 Hz for a 10 Hz frequency. Therefore the frequency resolution
in this analysis is taken as 0.125 Hz. It was previously 0.5 Hz. However, this requires that the time
window of the samples increases to eight seconds. This results in a lower amount of samples or 3562
samples for all 14 temperature intervals. The distribution of the samples over the temperature intervals
can be seen in figure 7.9a

The same procedure is followed as in the previous analysis. First, the mean value of the natural fre-
quency is calculated for each temperature interval. Figure 7.10 shows the mean value of the frequency
and the amplitude of the resonance frequency at 10 Hz in figure 7.9b. The linear regression line has
been omitted due to the presence of outliers. Compared to the high natural frequency of the previous
analysis, there is less of a clear relationship between the variables. This could suggest that this low
natural frequency is less sensitive to temperature changes compared to the high natural frequency
from the previous analysis. However, there is a hint of a possible negative linear correlation between
temperature and frequency. There are two ”lines” of data points at 11.35 and 11.48 Hz. They have
the same value of frequency over a wide temperature interval. Although completely ignoring the other
data points is inaccurate, it reveals a negative correlation between temperature and frequency. The
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Figure 7.10: (a) Relationship between temperature and amplitude. (b) Relationship between temperature and frequency. Raw
truncated data from sensor 17.

data is from two separate days and these two days had completely different temperatures, as seen in
table 7.1. These two ”lines” of data points are from two separate days. Within each day, the frequency
values are the same (ignoring the other data points). It is almost as if the frequency is a function of
the day of measurement. There could be a difference in the environmental conditions between these
two days that are not captured by a single temperature sensor. For instance, it could be that the tem-
perature profile between these two days is different, which leads to this change in frequency. A single
temperature sensor cannot capture the entire temperature profile of the bridge. This is a relatively lib-
eral interpretation of the data. However, in the coming sections, more evidence will be presented to
reinforce this claim that there is a higher difference in the environmental conditions of the bridge that
measurements of a single sensor cannot capture.

(a) (b)

Figure 7.11: Distribution of the frequency value of the natural frequency for each sample. (a) Raw truncated data set (b)
Low-rank data set. Data from sensor 17.

The distribution of the samples for the temperature interval and frequency are shown in figure 7.11.
This distribution seems to follow that of a skewed normal distribution. There is a massive difference
between the raw truncated data set and the low-rank data set, with the variance within the data set
greatly reduced. For the raw truncated data, the peak of the natural frequency can take many different
frequency values, but for the low-rank data, most of the samples fall within a single bin. There is a shift
in the distributions when the temperature bins contain data from different days at around 12 °C. This is
better seen with the low-rank data in figure 7.11b and mirrors what was discovered when investigating
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the mean values of the frequency. The frequency value of the natural frequency seems to depend on
which day the data is from.

Looking at the distribution of the amplitude of the samples in figure 7.12, there doesn’t seem to be any
particular pattern. However, the variance with the data set is significantly reduced with the application
of rPCA.

(a) (b)

Figure 7.12: Distribution of the amplitude value of the natural frequency for each sample. (a) Raw truncated data set (b)
Low-rank data set. Data from sensor 17.

It is more challenging to capture the change in the natural frequency at 10 Hz due to temperature
compared to the higher natural frequency at 190 Hz. This could be due to the temperature having less
effect on the lower natural frequencies. Another reason could be that the frequency resolution of 0.125
Hz is insufficient to capture the change in the natural frequency due to temperature. The frequency
resolution needs to be 0.02 Hz for the 10 Hz natural frequency to have the same level of accuracy
as in the analysis of the 190 Hz natural frequency with a frequency resolution of 0.5 Hz. However,
this frequency resolution would result in a time window of 40 seconds for each sample, which would
produce a few samples for analysis. This frequency resolution would be impractical with the data size
used in this analysis, which is only two days. Nevertheless, even if a frequency resolution of 0.125 Hz,
there is some indication of a negative linear correlation between temperature and the location of the
natural frequency at 10 Hz.

7.3. Full vector analysis

7.3.1. Horizontal sensor 31

In the previous investigation, the effect of environmental variability on the vibrational data was explored
by looking only at a single data point for each sample frequency vector. By only looking at a single nat-
ural frequency and how it changes with temperature, it was possible to reduce the dimensionality of the
problem and see a relationship between temperature change and frequency shift. Another approach is
to follow the same procedure as in the damage detection from the first measurement campaign, as was
outlined at the beginning of chapter 6. That is, use principal component analysis (PCA) and only look
at data the in the relevant principal components but now the different structural states are connected to
the different environmental conditions instead of damage. The whole frequency vector is considered
with PCA, so the information of the entire dynamic system is present, not just one natural frequency,
as was the case in the previous investigation.

However, if the raw data set were used, the operational variability due to the traffic would still be present
in the data. Here, Robust Principal Component Analysis (rPCA) can be used to reduce the operational
variability for samples within the same temperature interval and help discover any patterns or relation-
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ships concerning the environmental variability. Note that there is an uneven amount of samples in each
of the temperature intervals, which means the performance of the rPCA can vary between temperature
intervals. The ability of the rPCA to extract the coherent patterns that correspond to the dynamic sys-
tem can differ between temperature intervals. After the application of the rPCA, the PCA is applied to
data from multiple temperature intervals. There needs to be an even representation of the data from
the different temperature intervals to ensure that the PCA is capturing the correlation between the data
from the different temperature intervals and not the correlation of the data within each temperature
interval. This means that the same amount of low-rank samples from the rPCA are taken from each
temperature interval or 200 for the upcoming analyses.

In the damage detection of the first measurement campaign, there was a comparison between two
states, damaged and undamaged. The same can be done for environmental detection, that is, com-
paring samples from different temperatures to see if there is any statistical difference between the two
groups. However, the environmental state of the bridge is not binary. The structure undergoes a wide
range of temperatures. Therefore, instead of comparing just two temperature intervals, several or all
of the temperature intervals can be compared to see if there is any separation of the samples of the
different temperature intervals in the PC space.

Also, in the damage detection in the previous measurement campaign, there was a considerable dif-
ference between the damaged and undamaged signals, which made the rPCA unnecessary in some
cases to measure the difference. Entire natural frequencies shifted considerably in the frequency do-
main between the damaged and undamaged signals. The same degree of change is not present in the
mean frequency vectors of the different temperature intervals, as seen in figure 7.4. It should be more
challenging to distinguish between the dynamic properties of the system under different temperatures
compared to the damage detection in the previous chapter.

Three classes, or in this case, samples from three temperature intervals, will be compared. Three
comparison scenarios based on how close the temperature intervals are to each are considered. These
are a 4°C difference, 2°C and finally, a single centigrade. It should be more challenging to distinguish
between the temperature groups the closer they are together. This process will be done for both low
and high-frequency sensors.

4°C Difference

Figure 7.13 shows the PC score of 600 samples, 200 from each temperature interval, in the first three
PCs. The data is from sensor 31, which is located on one of the stiffeners and measures the horizontal
acceleration. The three temperature intervals are 6-7 °C, 10-11 °C and 14-15 °C. A four-degree Celcius
difference is between the samples. Temperature measurements are from temperature sensor number 6
at the stiffener. Two hundred samples are selected to provide an even representation for all temperature
intervals. The figure shows the PC score of the samples for both the raw truncated data set and the
low-rank data set. With the raw truncated data set, there seems to be no particular division of the
samples for the different temperature groups. Most samples of the temperature groups intersect in the
PC space, but there appears to be a correlation between the temperature groups and PC3. The lower
the temperature, the higher the score of the samples. Similar to the previous measurement campaign,
the PCA of the low-rank data performs much better. There is a clear division between the temperature
groups. Figures 7.13c and 7.13d show only the score of the samples in principal components 2 and
3. Here the division of the data according to the temperature groups is evident for the low-rank data.
There also appears to be a negative linear correlation between temperature with these two PCs.

Figure 7.15 shows a notched boxplot for PCs 2 and 3 for the different temperature intervals. This gives
a better visualisation of how these PCs change with temperature. Both PCs show a negative correlation
with temperature. Furthermore, the notches in the boxplot display the median between samples. If the
notches of the different temperature groups do not overlap, then those groups have different medians at
the 5 % significant levels. Comparing the medians in such a way is comparable to a visual hypothesis
test. Finally, the total variance explained by the first PCs of the low-rank data is much higher than that
of the raw truncated data set, which indicates that there is less variance in the low-rank. This can be
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(a) Raw truncated data (b) Low-rank data
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Figure 7.13: Principal component score of the samples in the PCs for data in three temperature intervals with a 4° difference.
Data from sensor 31. (a) Raw truncated data. First three PCs. (b) Low-rank data. First three PCs. (c) Raw truncated data.

PCs 2 and 3. (d) Low-rank data. PCs 2 and 3.

seen in figure 7.14. This is in agreement with the previous analysis when the rPCA was used in the
damage detection.

The first three PCs of the low-rank data are shown in figure 7.16. These PCs explain most of the
variance within the low-rank data. The first PC resembles that of the mean frequency vector of one of
the temperature intervals of sensor 31 in figure 7.4. This PC is the dynamic properties of the system
at this sensor location. However, it is PCs 2 and 3 that are of interest as these are the PCs in which
the data is being separated. PCs 2 and 3 contain information about the differences between samples
from the different temperature intervals. Both PCs exhibit a sawtooth pattern at the location of the
higher natural frequencies at 190 Hz, 250 Hz and 460 Hz. The sawtooth pattern arises due to the shift
in natural frequencies with temperature. In the previous analysis, it was discovered that the natural
frequency at 190 Hz had a negative linear correlation with temperature. It seems reasonable that this
is also the case for other the higher natural frequencies. Subtraction between two dynamic systems with
shifted natural frequencies yields the sawtooth pattern. Figure 7.17 shows the subtraction of the mean
frequency vector of the temperature interval 6-7 °C with the mean frequency vector of temperature
interval 10-11 °C, which shows the saw tooth pattern. This figure shows the difference between these
two intervals.

The anomalous ”spikes” are also present in PCs 2 and 3 at around 80 Hz. They were also present
in the PCs in the damage detection in the first measurement. These anomalous ”spikes” change with
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(a) Raw truncated data.
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(b) Low-rank data.

Figure 7.14: Singular values and total variance explained by the PCs.
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(b) PC 3

Figure 7.15: Boxplox of the PC score of the low-rank data from temperature intervals with a 4°C difference. Data from sensor
31.
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(a) First Principal Component
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(b) Second Principal Component
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(c) Third Principal Component

Figure 7.16: First three Principal Components. Data from three temperature intervals with a 4 °C difference. Low-rank data set

temperature but are not part of the dynamic properties but rather due to the sensors and auxiliary equip-
ment. The location of the anomalous ”spikes” is the same within each temperature interval but different
between intervals. The PCs capture this difference between the data from the different temperature
intervals as the signs of the ”spikes” is opposite in these two PCs. A more thorough discussion of the
anomalous ”spikes” can be found in appendix A.
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Figure 7.17: Difference in mean frequency vectors of samples from temperature interval 6-7 °C and 10-11°C. Raw truncated
data from sensor 31. Resembles the patterns seen in PCs 2 and 3.

PCs 2 and 3 contain the underlying differences between data from the different temperature intervals.
The different combinations of PCs 2 and 3 are enough to separate data according to their temperature
group. It seems that this difference is connected to the differences in dynamic properties but also
connected to the anomalous ”spikes”.
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2°C Difference

Now that it has been established that it is possible to distinguish between structural systems that have a
4-degree Celcius difference, the next step is then to lower the difference and see if there is still a division
or a relationship between the temperature groups in the PC space. The temperature difference between
the temperature groups is now 2°C and the temperature intervals under investigation are now 10-11
°C, 12-13 °C and 14-15 °C. Temperature sensor 6 is used again for this analysis. Since the results of
the raw truncated data were not satisfactory in the previous analysis, it is a fair assumption that the
quality will not improve by lowering the temperature difference and thereby increasing the difficulty of
the problem. Thus only the low-rank of the rPCA is considered in the remaining analysis.

Figure 7.18 shows the PC score of the samples in the first PCs for three temperature groups with a 2°C
difference. Again 200 samples for each temperature interval are used for analysis. Here the division
of the temperature groups in the PC space is worse than before. The two temperature groups of 10-11
°C and 12-13 °C occupy most of the same area in the PC space. On the other hand, the 14-15 °C
temperature group is completely separated from the other two temperature groups. The data is from
two separate days and the temperature on these days only intersects in the temperature interval of
10-13 °C. Thus the two lower temperature intervals of 10-11 °C and 12-13°C consist of data from both
18th of October and the 3rd of November, while the temperature interval 14-15°C consists only of data
from the 18th of October. This can be seen by looking at the distribution of samples in figure 7.1.
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Figure 7.18: Principal component score of the samples in the PCs for data in three temperature intervals with a 2°C difference.
The 10-11°C and 12-13°C temperature intervals contain data from both measurement days but the temperature interval

14-15°C only contains data from 18th of October. Data from sensor 31. (a) Low-rank data. First three PCs. (b) Low-rank data.
PCs 2 and 3.

A possible explanation for this behaviour is that the acceleration samples are grouped into these tem-
perature intervals by a single temperature sensor. This single temperature sensor does not capture the
full temperature profile of the bridge. So while there is a 2°C difference between the temperature inter-
vals according to this sensor, the actual temperature profile of the bridge could be potentially different
between the different days. This, in turn, means that there is a difference in the dynamic properties,
which is not explained by this single temperature sensor. The ”extra” difference in the dynamic proper-
ties between the two different days could also be due to changes in other operational and environmental
conditions. For instance, it might have been raining on one of the days, which led to an increase in the
mass of the structure, thereby altering the dynamic properties. During the measurement period, there
was ongoing maintenance of the drawbridge. The position of concrete barriers on the road might have
been moved between the days due to maintenance, thus altering the dynamic properties. There is also
the consideration that the relationship between the dynamic properties and temperature is nonlinear.
However, at least it seems that a single temperature sensor is not capturing the cause of this difference
between the days.
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Even though it is hard to distinguish between the two lower temperature groups, there still appears to
be a correlation between the temperature and the 2nd and 3rd PC scores of the samples. Figure 7.19
shows a notched boxplot of the samples for the different temperature intervals. There is no distinct
difference in the score of the samples in the 2nd PC for the two lower temperature intervals. However,
there is a change in the median of the highest temperature interval. For the score in the 3rd PC, there is
a negative shift in the median of all the temperature groups. This would suggest a negative correlation
between temperature and this PC.

10-11 °C 12-13 °C 14-15 °C

-4

-2

0

2

4

6

P
C

2
 S

c
o

re

(a)

10-11 °C 12-13 °C 14-15 °C

-2

-1

0

1

2

3

P
C

3
 S

c
o

re

(b) Boxplox of the PC score of the low-rank data from temperature
intervals with a 2°C difference. Data from sensor 31.

Figure 7.19: Boxplox of the PC score of the low-rank data from temperature intervals with a 2°C difference. The 10-11°C and
12-13°C temperature intervals contain data from both measurement days but the temperature interval 14-15°C only contains

data from 18th of October. Data from sensor 31.

The first three PCs are shown in figure 7.20. The PCs are slightly different compared to the previous
analysis. Here we see the sawtooth pattern again as the natural frequencies shift with temperature.
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(a) First Principal Component
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(b) Second Principal Component
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(c) Third Principal Component

Figure 7.20: First three Principal Component. Data from three temperature intervals with a 2 °C difference. Low-rank data set

1°C Difference

The final test is to see if it is still possible to distinguish between the temperature intervals that are
1°C from one another. In the previous analysis, it was discovered that there is a higher degree of
difference in the dynamic properties between the samples from different days that is not accounted
for by the temperature measurement of a single sensor. Figure 7.21 shows the PC score of samples
from 3 temperature intervals. These are temperature intervals 11-12°C, 12-13°C and 13-14°C. The two
lower temperature intervals contain data from both measurement days, while the highest temperature
interval contains only data from the 18th of October. Even with 1°C difference between the temperature
intervals, there is a separation between the samples according to their temperature in the PC space,
which can be better seen with the boxplot in figure 7.22 with the data mostly separating in PC 3. Similar
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to the 2°C comparison case, there is a better degree of separability of the data for the temperature
interval that only has data from the 18th of October. The other two lower temperature intervals contain
data from both days. Again there is a greater difference in the underlying data between the different
days that is not explained by the measurement of a single sensor. This difference could be linked to
different operational and environmental conditions between the days, which influences the dynamic
properties of the system.
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Figure 7.21: Principal component score of the samples in the PCs for data in three temperature intervals with a 1°C difference.
The 11-12°C and 12-13°C temperature intervals contain data from both measurement days but the temperature interval

12-14°C only contains data from 18th of October. Data from sensor 31. (a) Low-rank data. First three PCs. (b) Low-rank data.
PCs 2 and 3.
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Figure 7.22: Boxplox of the PC score of the low-rank data from temperature intervals with a 1°C difference. The 11-12°C and
12-13°C temperature intervals contain data from both measurement days but the temperature interval 12-14°C only contains

data from 18th of October. Data from sensor 31. (a) Low-rank data. PC 2 (b) Low-rank data. PC 3

However, when all the temperature intervals have data from both days, there is no particular separation
of the data in the first three PCs according to temperature. This can be seen in figures 7.23 and in the
boxplot in 7.24. Here temperature intervals 9-10 °C, 10-11 °C and 11-12 °C are used for the analysis.
The first three PCs do not contain information to distinguish between the underlying dynamic properties
at different temperatures. It seems that without the ”extra” difference between days, it is not possible
to distinguish between data with a 1°C difference.

Fortunately, steps can be taken to improve the results. So far, only the default regularisation parameter
λ = 1/

√
max(n,m) has been used in the rPCA. By selecting a lower regularisation parameter, the
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Figure 7.23: Principal component score of the samples in the PCs for data in three temperature intervals with a 1°C difference.
The 9-10°C, 10-11°C and 11-12°C temperature intervals contain data from both measurement days. Data from sensor 31. (a)

Low-rank data. First three PCs. (b) Low-rank data. PCs 2 and 3.
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Figure 7.24: Boxplox of the PC score of the low-rank data from temperature intervals with a 1°C difference. The 9-10°C,
10-11°C and 11-12°C temperature intervals contain data from both measurement days. Data from sensor 31. (a) Low-rank

data. PC 2 (b) Low-rank data. PCs 3

filtering of the rPCA becomes more aggressive, as was discussed in chapter 4.3. More of the noise
within the data will be discarded into the sparse component of the rPCA, and the low-rank matrix of the
rPCA will be reconstructed from even fewer PCs which will result in an even lower rank of the low-rank.
This essentially means that the low-rank data will more closely resemble the coherent structures in
the data, that is, the dynamic properties. However, lowering the regularisation parameter too much
runs the risk of the rPCA identifying coherent patterns in the data as outliers [38]. An arbitrary value of
λ = 1/

√
2 ·max(n,m) will be utilised for the next analysis.

The previous analysis can now be repeated but now with the new lower regularisation parameter. Fig-
ure 7.25 shows the PC score of the samples for the low-rank data with the aforementioned new reg-
ularisation parameter. There is a substantial improvement compared to figure 7.23 with the default
regularisation parameter. Now the data is separated in the first three PCs according to temperature,
and there is a negative linear correlation between temperature and the score of the samples in the 3rd
PC. The data is mostly being separated in the 3rd PC. Figure 7.27 shows the first three PCs. PC 3
has a sawtooth pattern at the natural frequencies, similar to what was seen in the 4°C difference case.
Even at 1°C difference, the frequencies are shifting, and the rPCA can recover the coherent patterns
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Figure 7.25: Principal component score of the samples in the PCs for Low-rank data with a lower regularisation parameter
λ = 1/

√
2 ·max(n,m) in three temperature intervals with a 1°C difference. The 9-10°C, 10-11°C and 11-12°C temperature

intervals contain data from both measurement days. Data from sensor 31. (a) Low-rank data. First three PCs. (b) Low-rank
data. PCs 2 and 3.
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Figure 7.26: Boxplox of the PC score of the low-rank data with a lower regularisation parameter λ = 1/
√

2 ·max(n,m) from
temperature intervals with a 1°C difference. The 9-10°C, 10-11°C and 11-12°C temperature intervals contain data from both

measurement days. Data from sensor 31. (a) Low-rank data. PC 2 (b) Low-rank data. PC3

at each corresponding temperature when a lower regularisation parameter is used.
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(a) First Principal Component
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(b) Second Principal Component
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(c) Third Principal Component

Figure 7.27: First three Principal Component. Low-rank data set with a lower regularisation parameter λ = 1/
√

2 ·max(n,m)
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Points of maximum difference

In the damage detection with the data from the first measurement campaign, the sparse sensor place-
ment optimisation for classification (SPPOC) [7] was used to find the locations in the frequency vector
that contained the most significant difference between the signals in the undamaged and damaged
areas. The SPPOC can be used again but now in relation to the temperature change to find the fre-
quency locations that contain the most discriminating information between the data in the different
temperature intervals. These frequency locations should be the natural frequencies that change the
most with temperature.

Data from the three temperature intervals in the previous analysis are used in the SPPOC method.
These are temperature intervals 9-10°C, 10-11°C and 11-12°C. Temperature sensor 6 is used again to
categorise the samples. The low-rank data with the lower regularisation parameter λ = 1/

√
2 ·max(n,m)

will be used with the SSPOCmethod, and 200 samples are taken from each temperature interval. There
is a requirement with the SPPOC that the data is embedded into a coordinate system that allows for
classification algorithms to work, in this case, the Linear Discriminant analysis (LDA). This means that
the data has to cluster in the subspace of the PCs according to temperature, which is the case as seen
in figure 7.26. There are three categories of the data or three temperature intervals, and the number of
features is three, corresponding to the first three PCs. This gives a total of six sparse sensor locations.
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Figure 7.28: Sparse sensor locations for Low-rank data with a lower regularisation parameter λ = 1/
√

2 ·max(n,m). Data
from random 200 samples from temperature intervals 9-10°C, 10-11°C and 11-12°C (a) Discriminant projection vector with the

sparse sensor locations marked in red. (b) Mean vectors of the three temperature intervals.

Figure 7.28 shows the sparse sensor locations that contain themost discriminatory information between
the data in the different temperature intervals. Here the calculated sensor locations are at the natural
frequencies but also at the anomalous ”spike” at around 100 Hz. This is similar to what was seen when
the SSPOC was used in damage detection. The anomalous ”spike” is not part of the dynamics of the
structure but holds the most significant difference in the frequency vector connected to the temperature
change. In fact, these anomalous ”spikes” have a clear positive correlation with temperature, which
can be seen in appendix A. These anomalous ”spikes” add a false positive bias to the data as they are
not part of the system dynamics and should be filtered out of the signals.

The other sparse sensor locations are at the natural frequencies. There is a sparse sensor location
at each of the ”major” natural frequencies. The location that contains the largest difference, after the
anomalous ”spike”, is the natural frequency at 440 Hz. A possible reason why these higher natural
frequencies contain the largest difference between the vibration data at different temperatures is that
the absolute frequency shift of these higher natural frequencies is the largest. Another thing to consider
is that the SPPOC depends on the inputted data. Therefore, any variation in the input can produce
different sparse sensor locations. Consider figure 7.29, which has a different set of 200 random samples
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from each of the temperature intervals. Here, there are new sparse sensor locations, such as the natural
frequency at 480 Hz. However, most of the sensor locations remain the same. A better approach here
would be to conduct multiple iterations of the SPPOC using random samples and construct a distribution
of the sensor locations as was done in [7]
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Figure 7.29: Sparse sensor locations for Low-rank data with a lower regularisation parameter λ = 1/
√

2 ·max(n,m). Data
from 200 random samples from temperature intervals 9-10°C, 10-11°C and 11-12°C. The random samples are different from
figure 7.29 (a) Discriminant projection vector with the sparse sensor locations marked in red. (b) Mean vectors of the three

temperature intervals.

1°C Many intervals

The previous analyses can be repeated, but instead of just inputting data from three temperature inter-
vals into the (regular) PCA, data from all available temperature intervals can be used in the PCA. The
PCA would then have information about the system properties under all available measured temper-
atures, given that the rPCA can find the dynamic properties for each temperature interval. Two data
sets are considered with different regularisation parameters in the rPCA. One data set with the default
regularisation parameter and another with the lower regularisation parameter of λ = 1/

√
2 ·max(n,m).

This allows for the comparison of their performance.

As was discussed at the beginning of the chapter, there is an uneven distribution of samples for the
different temperature intervals, as seen in figure 7.1. For example, some temperature intervals have
over 2000 samples, while other intervals have only 148 samples. This means that the performance of
the rPCA in extracting the coherent patterns of each temperature interval can vary between the different
intervals.

After applying the rPCA to the data in each of the temperature intervals, 200 random low-rank samples
are taken from each temperature interval, and the PCA is then performed. There is an exception to
this rule for temperature interval 8-9°C, which only has 148 samples. In this case, all samples are used
from this temperature interval. This leads to a total of 2748 samples in the PCA. Figure 7.30 shows the
low-rank data in the first three PCs for all the temperature intervals. There is an intersection of the data
from different temperature intervals in the PC space. This makes it difficult to distinguish between data
from different temperature intervals based on the PC score. However, data from each temperature
interval is surrounded by data in corresponding adjacent temperature intervals in the PC space. There
is also a correlation between the temperature and the score of the samples in the PCs. For the case
with the default regularisation parameter, there is a correlation between temperature with the 2nd and
3rd PCs. While in the case of the lower regularisation parameter, the correlation is mainly with the 2nd
PC. This correlation is better seen when viewing the boxplot in figure 7.32.

The boxplot also reveals that there is a considerable shift in the score of the samples in the 2nd PC at
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(a) Default regularisation parameter (b) Default regularisation parameter

(c) Lower regularisation parameter (d) Lower regularisation parameter

Figure 7.30: Principal component score of the samples in the PCs for data in All temperature intervals Data from sensor 31.
(a) Low-rank data with default regularisation parameter. First three PCs. (b) Low-rank data with default regularisation

parameter. PCs 2 and 3. (c) Low-rank data with lower regularisation parameter λ = 1/
√

2 ·max(n,m). First three Pcs. (d)
Low-rank data with lower regularisation parameter λ = 1/

√
2 ·max(n,m). PCs 2 and 3.
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Figure 7.31: Singular values and total variance explained by the PCs. (a) Low-rank data with default regularisation parameter.
(b) Low-rank data with lower regularisation parameter λ = 1/

√
2 ·max(n,m).
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13°C. This shift is the largest between two adjacent temperature intervals, and the shift is maintained
for all temperature intervals above 13°C. At temperatures above 13°C, the data is only from a single
day, the 18th of October. This is similar to what was encountered in the previous analysis when there
was a greater difference in the PC score of the samples between days than in temperature intervals
within the same day. Furthermore, this shift can also be seen in a large gap between the samples at
this temperature boundary in the PC space for the lower regularisation parameter case. However, this
behaviour is not observed for the data at the other lower temperature boundary between days at 10 °C.
The total variance explained by the 1st PC is higher for the low-rank data with the lower regularisation
parameter compared to the low-rank data with the default regularisation parameter. This can be seen
in figure 7.31. By lowering the regularisation parameter, there is more aggressive filtering of the rPCA,
which means more noise is filtered out, which in turn means the major correlations in the data explain
more of the variance within the data. Finally, the PCs for the two different regularisation cases are
shown in figure 7.33. It is similar to the PCs of the previous analyses with a sawtooth pattern around
the natural frequencies for the 2nd and 3rd PCs. The PCs are nearly the same for the two regularisation
parameter cases.
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Figure 7.32: Boxplox of the PC score of the low-rank data from all temperature intervals. Data from sensor 31. (a) Low-rank
data with default regularisation parameter. PC 2 (b) Low-rank data with default regularisation parameter. PC 3 (c) Low-rank

data with lower regularisation parameter. PC 2 (d) Low-rank data with default regularisation parameter. PC 3

In the previous analysis with three data groups with a 1°C difference, the lower regularisation parameter
performed better as the data was separated in the first three PCs. At the same time, there was no
separation with the default regularisation parameter. However, in this case, it is more challenging to
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(a) First Principal Component. Default
regularisation parameter
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(b) Second Principal Component. Default
regularisation parameter
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(c) Third Principal Component. Default
regularisation parameter
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(d) First Principal Component. Lower
regularisation parameter
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(f) Third Principal Component. Lower
regularisation parameter

Figure 7.33: First three Principal Component for the different regularisation parameters. Low-rank data set

assess the performance difference between the two different regularisation parameter cases by only
visually looking at the data in the PC space. The performance can be measured by comparing the
accuracy of two supervised classification models. Two models are trained, one with the low-rank data
with the default regularisation parameter and another with the low-rank data with the lower regularisation
parameter. The aim of the models is to predict which classes the features belong to based on training
data. In this problem, the classes are the different temperature intervals, and the features are the PC
score of the samples in the first three PCs. The models themselves serve no purpose. There is no
need to evaluate the temperature from vibration data. This information is already known for the entire
vibration data. However, it is the performance of these models for the data with different regularisation
parameters that is of interest. The ”performance” here is how the data is embedded into the PCs or
how well separated the data from different temperature intervals is in the subspace of the PCs. The
model with well-separated data should perform better.

Table 7.2: Comparison between accuracy of different classifiers between low-rank data with different regularisation parameters.

Linear discriminant Support Vector Machine (SVM)
Default Regularisation 31.1 % 42.9 %
Lower Regularisation % 41.0 % 72.5 %
Difference 9.9 % 29.6 %

Two supervised classification methods are considered, Linear discriminant analysis (LDA) and Support
Vector Machines (SVM). These methods were outlined in chapters 4.6 and 4.7, respectively. For both
methods, five-fold cross-validation is applied, and for both models, the linear version is used. The
features are the PC score of the samples in the first three PCs. For the SVM, a One-vs-One multiclass
method is used. The models are constructed with Matlab’s Classification Learner App 1.

Table 7.2 shows the accuracy of the classification models for the two methods and the two different
cases of the regularisation parameter. The accuracy of the models with the lower regularisation pa-

1Matlab Classification Learner - Source

https://nl.mathworks.com/help/stats/classificationlearner-app.html
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Figure 7.34: Confusion Matrix for the SVM model with the lower regularisation parameter

rameter is higher for both the Linear discriminant and the SVM. There is nearly a double increase in
accuracy for the SVM model. This would indicate that there is a higher degree of separability between
data from each of the temperature intervals for the data with the lower regularisation parameter. Figure
7.34 shows the confusion matrix of the SVM model with the lower regularisation parameter data. The
error mainly occurs between adjacent bins. One of the highest locations of accuracy is at the boundary
between days at 13°C. There is a high degree of difference between the data at that point.

Interestingly there is hardly any difference in the PCs between the two regularisation cases, but there
is a substantial amount of difference in the accuracy of the classification models. A likely explanation is
that with a lower regularisation parameter, more of the noise within the data is discarded into the sparse
matrix of the rPCA. As more noise in the data has been removed, the main correlations in the data will
explain more of the variance in the data as can be seen in figure 7.31. The samples are characterised
by less noise and thus correspond to the main correlations in the data seen in the PCs.

This analysis shows that by changing the value of the regularisation parameter, more of the noise and
outliers are removed from the data. This, in turn, makes it easier to distinguish between the underlying
coherent structures at different temperatures, making it possible to differentiate between data with a
1°C difference.

7.3.2. Vertical Sensor 17

The next task is to evaluate how the low-frequency content of the accelerometers that measure the
vertical acceleration of the bridge changes with temperature. The vibration data from accelerometer
number 17 will now be analysed. As previously mentioned, there are several challenges when working
with low-frequency content. A single centigrade temperature difference leads to a percentage shift of
the natural frequencies of a system [41]. The absolute value of this shift is less for the lower natural
frequencies than for the higher natural frequencies. Thus a higher frequency resolution is required to
be able to detect the shift of the lower frequencies compared to the higher frequencies for the same
level of temperature difference. Increasing the frequency resolution of the Fourier transform means
taking a larger time window in the time domain for the samples. The samples are taken around the
excitation due to traffic in the time domain, and the excitation due to the traffic can be densely packed
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in the time domain. Increasing the time window ”merges” many of the samples together. This lowers
the number of available samples for analysis, which is detrimental to the effectiveness of the rPCA.

For the low-frequency content, a frequency resolution of 0.125 Hz is selected, which translates to a time
window of 8s. The amount of samples available for analysis with this frequency resolution is shown in
figure 7.9a. It is considerably less than the samples when the frequency resolution was taken as 0.5
Hz, as seen in figure 7.1.

Most of the dynamic amplification in these sensors occurs below 100 Hz. As such, it seems reasonable
to limit the analysis to this frequency band and discard the higher frequencies. It is not desirable to
categorise samples based on the high-frequency content that is not related to the actual dynamics of
the system. Therefore, only the frequency band below 100 Hz is used for analysis.

The same analysis is carried out as was done for the horizontal sensor 31. The rPCA is applied to all the
data for each temperature interval. Three temperature intervals with a 5°C difference are selected with
200 random low-rank samples taken from each temperature interval, and the PCA is then computed.
The three temperature intervals are 6-7 °C, 11-12 °C and 16-17 °C. There was no particular separation
of the samples in the subspace of the first three PCs according to temperature. The analysis was
then repeated with a lower regularisation parameter of λ = 1/

√
2 ·max(n,m). However, this did not

significantly improve the results. The only visible separation of the data in the subspace of the first
three PCs was between data from the different days. This is similar to what was seen in the analysis
of the horizontal accelerometer.

There is barely any separation between data from the different temperature intervals. This will hardly
improve when the temperature intervals are more closely spaced, which is a more challenging problem.
Thus no more analysis will be conducted with the data from the low-frequency vertical sensors.

7.4. Conclusion
The goal of the analysis of the vibration data from the 2nd measurement campaign was to see if it
was possible to distinguish between vibration data at different temperatures. Two analyses were con-
ducted. First, a single resonance peak was tracked in relation to temperature. It revealed a negative
linear correlation between temperature and the frequency value of a high natural frequency, which is in
agreement with what is seen in the literature as was discussed in chapter 2. There was also a negative
linear correlation between temperature and the amplitude of the natural frequency. It could be an indi-
cation that the damping properties of the structure change with temperature. Another possible reason
is that the position of the mode shape that corresponds to the natural frequency is shifting within the
structure with temperature. This would mean the sensor is capturing a different part of the mode shape
with potentially different amplification.

In the second analysis, the entire frequency vector was investigated in relation to the temperature and
PCAwas used to distinguish between the samples belonging to the different temperature intervals. This
proved to be a more challenging problem compared to the ”damage” detection with the data from the
first measurement campaign. The temperature has a minor effect on the system properties compared
to the ”damage” present in the first measurement campaign. This means that the underlying dynamic
properties at a given temperature interval are similar to those at adjacent temperature intervals. Any
noise present in the signals will make it difficult to distinguish between the underlying dynamic properties
at different temperatures. However, with the rPCA the noise within the vibration data can be reduced,
and the underlying coherent structures can be obtained. By lowering the regularisation parameter in
the rPCA, even more of the noise within the data can be filtered out, enabling the distinction between
signals with a 1°C temperature differencewhich was otherwise impossible with the default regularisation
parameter. The rPCA, with a lower regularisation parameter, is able to extract the underlying coherent
patterns that correspond to the dynamic properties at each temperature interval.

The analysis of this chapter has revealed that temperature affects the system and that it is possible
to extract the underlying coherent structures of the data at different temperatures. These coherent



7.4. Conclusion 94

structures correspond to the dynamic properties at different temperatures. Thus it is possible to obtain
information about the system under different environmental conditions. A complete understanding of
how the system responds to all possible environmental conditions is necessary for a robust structural
health monitoring program.

This was only achieved for vibration data from a horizontal sensor with high-frequency content. It
was more challenging to distinguish between the dynamic properties at different temperatures for low-
frequency content from a vertical sensor. It was not possible to distinguish between signals with a
temperature difference lower than 5°C. A possible reason for this is the frequency resolution, which
needs to be higher for the low-frequency content to capture the shifts in the lower natural frequencies.
However, increasing the frequency resolution comes at a cost by increasing the time window around
the samples in the time domain. This, in turn, decreases the number of samples in the data, which has
a negative effect on the performance of the rPCA. Increasing the frequency resolution also decreases
the number of samples per length of the frequency vector. This could have adverse effects on the
performance of the PCA and rPCA, as is discussed in chapter 8.

A frequency resolution of 0.125 Hz was used for the analysis of the low-frequency content of sensor
17. This might have been insufficient. A 0.5 Hz frequency resolution was used for the high-frequency
content of sensor 31, which translates to a ratio of 380 between the natural frequency at 190 Hz and the
frequency resolution. If the same ratio was used for the natural frequency at 10 Hz, then the frequency
resolution would be 0.026 Hz. However, this frequency resolution would translate to a time window of
around 40 seconds, which would yield few samples in a 15-minute time frame. Using this frequency
resolution would be impractical with the amount of data available for this research.

There was a higher degree of difference between the vibration data from two different days that could
not be explained by the temperature measurement of a single sensor. A possible explanation is the
operational and environmental conditions between the two days are different, which a single tempera-
ture sensor cannot capture. It could be that the temperature profile of the bridge is different between
days, for instance.

Finally, the sparse sensor placement optimisation for classification (SSPOC) revealed that the fre-
quency location that contains the largest difference between different temperature intervals is the
anomalous ”spikes”, which are not part of the structural system. This is the same result that was
discovered in the first measurement campaign. These anomalous ”spikes” must be filtered out as they
add a false positive to the data. However, it also revealed that the natural frequencies contain the
largest difference between vibration data at different temperatures.



8
rPCA in detail

8.1. Truncation unnecessary for the rPCA
The rPCA has shown good performance for data in the 1st and 2nd measurement campaigns. It is able
to reduce the operational variability of the traffic, thereby allowing for comparison between structural
states and identifying if the structural state has changed. However, caution should be taken when
interpreting the results. It has been observed that the low-rank of the rPCA produces, in most cases,
a visible division of data groups in the first three PCs when comparing different structural states. The
separation between data groups in these examples is believed to be based on actual differences in the
structural condition.

Figure 8.1 shows the clustering of temperature groups with a 4°C difference in the low-rank represen-
tation of the first three PCs. Here there is a comparison between a 20 % truncated sample set and
a non-truncated sample set when comparing different temperature groups, as was done in chapter 7.
In both cases, the rPCA has been applied, and low-rank L is used. There does not seem to be any
significant difference between the truncated and non-truncated sample sets. Similarly, as seen
in figure 8.3, there does not appear to be any particular difference between the two sample sets in
their PCs. However, there is one noticeable difference in the PC score of the sample. The samples in
the non-truncated sample set can have a potentially larger score in the first PC. The maximum score
in the first PC for the non-truncated sample set is 80, while it is only 40 for the truncated sample set.
This seems logical as the non-truncated sample set has a higher energy content, leading to a higher
response. Furthermore, since there is more variation in the score of the first PC, it explains more of the
total variance within the sample set compared to the truncated sample set. This can be seen in figure
8.2. The second and third PCs also have a greater extent for the non-truncated sample set compared
to the truncated sample set.

To better assess how the data from the two cases are embedded into the first three PCs, a comparison
can be made with classifiers, as was done in the previous chapter. Table 8.1 compares different classi-
fiers for the truncated and non-truncated sample sets. There is a slight difference in the accuracy of the
classification models. However, it is not possible to discern if this difference is due to the truncation, the
selection of random samples or the model creation of the classifiers as the difference is so insignificant.

While it seems unnecessary to apply the truncation for the performance of the rPCA, it likely helps as
it simplifies the data. The preprocessing step is simple and intuitive as it reduces the variance within
data and makes the data adhere to a normal distribution in relation to the energy of each sample. The
only ”cost” of the truncation is the removal of samples, but these samples are already undesirable as
they deviate from the normal condition of the traffic.
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Figure 8.1: Principal component score of the samples in the PCs for data in three temperature intervals with a 4° difference.
Data from sensor 31. (a) Truncated low-rank data. First three PCs. (b) Truncated low-rank data. First three PCs. (c)

Untruncated low-rank data. PCs 2 and 3. (d) Untruncated low-rank data. PCs 2 and 3.

Table 8.1: Comparison between accuracy of different classifiers between truncated and non-truncated data.

Linear discriminant Support Vector Machine (SVM)
20 % Truncation 86.5 % 91.7 %
No Truncation 79.5 % 88.7 %
Difference 7 % 3 %

8.2. Dataset size and false positives
The rPCA has shown good performance for data in the 1st and 2nd measurement campaigns. It is able
to reduce the operational variability of the traffic, thereby allowing for comparison between structural
states and identifying if the structural state has changed. However, caution should be taken when
interpreting the results. It has been observed that the low-rank of the rPCA produces, in most cases,
a visible division of data groups in the first three PCs when comparing different structural states. The
separation between data groups in these examples is believed to be based on actual differences in the
structural condition.

However, there is a possibility that the rPCA produces a false positive, a division of two data groups



8.2. Dataset size and false positives 97

100 300 500

r

10
-20

10
0

S
in

g
u

la
r 

v
a

lu
e

s

100 300 500

r

0

0.2

0.4

0.6

0.8

1

T
o

ta
l 
v
a
ri
a

n
c
e

 e
x
p

la
in

e
d

(a)

100 300 500

r

10
-5

10
0

S
in

g
u
la

r 
v
a
lu

e
s

100 300 500

r

0

0.2

0.4

0.6

0.8

1

T
o
ta

l 
v
a
ri
a
n
c
e
 e

x
p
la

in
e
d

(b)

Figure 8.2: Singular values and total variance explained by the PCs. (a) Truncated Low-rank data. (b) Untruncated Low-rank
data.
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(a) First Principal Component. Untruncated
low-rank data
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(b) Second Principal Component. Untruncated
low-rank data
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(c) Third Principal Component. Untruncated
low-rank data
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(d) First Principal Component. Truncated
low-rank data
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(e) Second Principal Component. Truncated
low-rank data
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(f) Third Principal Component. Truncated
low-rank data

Figure 8.3: First three Principal Component. Truncated and untruncated data sets

that have no underlying difference. For example, consider figure 8.4. It shows the PC score of the
data in the first three PCs and for three different scenarios. All the data is from sensor 31 in the
2nd measurement campaign and within the same temperature interval of 6-7. Therefore, there is no
underlying difference in the structural state of these samples. Two sets of 100 random samples are
taken from the aforementioned data set in all scenarios. PCA is applied to the 200 samples from raw
truncated data in the first scenario in figure 8.4a. This does not produce any visible division in the space
of the first three PCs. The second scenario consists of low-rank data from the rPCA. The rPCA was
computed on the entire data set of the temperature interval 6-7 for sensor 31. This data set is 1183
samples. Two sets of 100 low-rank samples were subsequently taken randomly from this data set, and
the PCA was then computed to produce figure 8.4b. Again, there is no distinct separation between
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the two randomly chosen groups. Finally, the rPCA is computed twice separately on the two random
sample groups from the same temperature interval in the third scenario. Then the PCA on the two
groups is computed. Here there is a visible separate clustering of the two groups of samples, even if
there is no underlying difference in the structural state between these two groups.

(a) (b) (c)

Figure 8.4: Principal component score of the samples in the PCs for data randomly sampled from temperature interval 6-7°C.
(a) First three PCs of two groups of 100 raw truncated samples. (b) First three PCs of two groups of 100 low-rank samples. (c)

First three PCs of two groups of 100 samples and the rPCA applied on them.
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Figure 8.5: Singular values and total variance explained for data randomly sampled from temperature interval 6-7°C. (a) First
three PCs of two groups of 100 raw truncated samples. (b) First three PCs of two groups of 100 low-rank samples. (c) First

three PCs of two groups of 100 samples and the rPCA applied on them.

What is happening here is that the rPCA is a data-driven method; it creates a basis that is tailored to
the input data. In this example, two sets of 100 random samples were gathered from a single sensor
and the same temperature interval. The rPCA is then applied to these two sets separately. The two
bases that are created from the rPCA are not the same. Their differences lie in the noise that they
capture. Neither two of these bases encapsulate the entire random process of the traffic. This means
that the reconstructed low-rank will be governed partially by the level of noise in the data, as there is a
similarity of the noise within this small sample set. The difference in the noise between the two sample
sets becomes one of the data’s major variances. When the low-rank of these two signal groups is
subsequently compared with the PCA, they will be separated by the different levels of noise in which
the low-rank was reconstructed. The third PC separates the two groups in figure 8.4c. The first three
PCs are shown in figure 8.6, and it appears that the third PC resembles noise.

Another observation to make is the variance explained by the PCs and the rank of these data sets.
This can be seen in figure 8.5. For the third comparison scenario, the first PC accounts for 95 % of the
variance, the second PC 3.1 % and the third PC 0.3 %. So the two groups are separated by a PC, which
explains 0.3 % of the correlation in the data set. This variance explained is much less than has been
observed when there was an actual underlying difference in the structural state. The high variance
explained by the first PC can be attributed to the small data size of 100 samples for each rPCA. This
small basis is not enough to capture the entire random process of the traffic. It only captures a small
slice of the total variance of the random process. However, it does have information on the underlying
coherent structure or the system properties, which is a larger part of the total variance within the data
as there is less variance of the random process in the data. This can be compared to the variance
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(a) First Principal Component
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(b) Second Principal Component

0 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

A
m

p
lit

u
d
e

(c) Third Principal Component

Figure 8.6: First three Principal Component. Two groups of 100 samples are taken from tempature interval 6-7°C and the
rPCA applied on them.

explained by the first PC of the second comparison scenario, which has a lower variance as there
is more information about the random process of the traffic in that data set. The data in the second
comparison scenario contains information about the entire data even if only two random 100 samples
are taken as the rPCA is applied on all 1883 samples.

A simple solution to this potential false positive is to increase the amount of data when the rPCA is
applied. Increasing the sample size to two sets of 200 samples yields figure 8.7. There is no division
between the data groups. However, the total variance of the 1st PC is still really high. It is not at
comparable levels to the first PC with the rPCA applied on the entire sample size of 1883 samples in
the second scenario in figure 8.5b. 200 samples are not enough to cover the variance of the entire
random process, but it is enough so that the data is not separated based on noise in the first three
PCs.
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Figure 8.7: Low-rank Data from two groups of 200 samples taken from tempature interval 6-7°C and the rPCA applied on them.
(a) First three PCs (b) Singular values and total variance explained by the PCs.

8.3. Convergence
The rPCA is a data-driven method; it creates a basis tailored to the specific data. The PCs of the low-
rank, which are robust towards outliers in the data, form this basis. This means that the amount of data
inputted into the rPCA is essential to its performance. The question is, how much data is required to
enable accurate comparisons between two different structural states?

The measured response of the accelerometers is a function of the dynamic properties at the sensor’s
location and the stochastic process of the traffic. The dynamic properties can be considered a determin-
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istic quantity, given that the system does not change in the observed time frame ( The environmental
and operational conditions are the same). However, the traffic and energy it inputs into the system is
a stochastic process in the time and frequency domain. The energy inputted into the system by each
vehicle will be different. To be able to compare two sets of random variables from this process, they
ideally need to span the same sample space; otherwise, there is a comparison between the differences
in the random process. However, in all these random realisations, there is always information about
the same dynamic system.

To better understand how the amount of data affects the performance of the rPCA consider figure 8.8a,
which shows the development of the variance explained by the first PC with an increasing amount of
samples. The samples are from temperature interval 10-12°C. Two cases are considered: the variance
explained by the 1st PC of raw truncated data and the variance explained by the 1st PC of low-rank data.
For the raw truncated data, the variance explained by the first PC converges early at a comparatively
”low” variance. The variance explained by the first principal component of the low-rank follows an
entirely different pattern. It starts high, around 95 % for 100 samples. Then the variance steadily
decreases until it reaches 1000 samples. This is the length of the feature vector/frequency vector.
From this point and beyond, the variance of the first PC increases steadily, and it seems it will converge
at some point. Figure 8.8c shows the rank of the same low-rank at different sample sizes. The rank
increase with a nearly constant slope of y = 0.6x until it reaches 1000 samples. This means that
with the introduction of 100 new samples, around 60 samples will be linearly independent, while the
remaining 40 samples will be linearly dependent. After reaching 1000 samples, the rate at which the
rank increases with the introduction of new samples goes down considerably. Figure 8.8b shows the
percentage of zero entries in the sparse matrix of the rPCA. The percentage steadily increases with
an increasing number of samples, but at 1000 samples, there is a shift, and the percentage starts to
decrease.
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Figure 8.8: Development of the rPCA with an increasing amount of samples. Data from sensor 31 from temperature interval
10-11°C (a) Relationship between the number of samples and the total variance explained by the first PC for the low-rank and
raw-truncated samples. (b) Relationship between the number of samples and the percentage of zero entries in the sparse

matrix S of the rPCA. (c) Relationship between the number of samples and the rank of the low-rank.

Increasing the number of samples means more realisations of the random process of the traffic. This
brings in more measurement noise, but the main correlation of the data becomes clearer as all samples
have information on the dynamic properties. With more noise in the data, the total variance explained
by the first PC will be lower, as seen in figure 8.8a. However, the PC with a low amount of samples
does not resemble the dynamic system properties. This can be seen in figure 8.9. It is full of noise.
Increasing the number of samples makes the first PC resemble the dynamic properties of the system,
but the total variance of the PC is lower. The correlation connected to the noise is now explained by
higher PCs and the 1st PC only explains the correlation connected to the same dynamic properties
between samples. At 1000 samples, when the number of samples becomes the same as the length of
the frequency vector, the regularisation parameter λ = 1/

√
max(mxn) in the rPCA starts to decrease

as the maximum dimension of the data matrix starts to increase. This means the filtering of the rPCA
will be more aggressive. More of the noise in the data will be discarded into the sparse matrix of
the rPCA. This can be seen with the percentage of zero entries in the sparse matrix decreasing with
the increasing amount of samples after 1000 samples. It can also be seen with increasing variance
explained by the first PC. The number of samples used with the rPCA has an effect on its performance.
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(c) 2270 Samples

Figure 8.9: The 1st PC with different amount of samples.
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“An oil painting by Aelbert Cuyp of the Skinny bridge in Amsterdam” DALL-E 2



9
Conclusion and Recommendations

9.1. Conclusions
The main objective of this research was to remove or reduce the operational variability to allow for com-
parison and identification between structural states. The rPCA has proven to be an effective method for
discovering the underlying dynamics of a given sensor. All the signals from a sensor share the same
underlying dynamic system, given that the environmental and operational conditions are the same but
are obstructed by noise due to the operational variability of the traffic. The reconstructed low-rank L of
the rPCA is assembled with PCs that are robust to the outliers in the data, that is, the noise. These
robust PCs contain information about the similarity in the process that generated the signals, which cor-
responds to the dynamic properties. Thus the low-rank L resembles that of the underlying dynamics of
the system.

The low-rank of two different structural states, such as damaged or undamaged, can be compared
to measure if damage is present. This involves computing the PCA on a combined data set of both
structural states to find the PCs that explain the differences between the two states, in other words,
finding a low-rank representation that separates the signals according to their structural states. This
allows for automatic detection if the structural states are significantly different.

Applying the above process, ”damage” was successfully identified. In the first measurement campaign,
two measurement areas were considered, one damaged area with the presence of fatigue cracks and
another undamaged reference area. Sensor pairs from the two areas were compared, and it was
possible to see a difference in the signals of the two areas and identify ”damage”. The damaged and
undamaged signals clustered separately in the first three PCs. Computing the Mahalanobis distance
of the samples reveals if there is a deviation in the normal condition of the bridge. The Mahalanobis
distance of the ”damaged” samples was much greater than the ”Healthy” samples. A simple decision
boundary according to the distance of the samples could be taken to distinguish between the two
groups. Thus, it was possible to distinguish between the signals based on their score in the first three
PCs. In the analysis, a difference could be found for every valid sensor pair. However, it is not possible
to assert that the fatigue cracks caused this difference as the structural configuration of the two areas
that were compared was different.

In the second measurement campaign, the effect of temperature on the structural state was inves-
tigated. Two analyses were conducted. First, a single resonance peak was tracked in relation to
temperature. It revealed a negative linear correlation between temperature and the frequency value of
a high natural frequency, which is in agreement with what is seen in the literature as was discussed
in chapter 2. There was also a negative linear correlation between temperature and the amplitude of
the natural frequency. It could be an indication that the damping properties of the structure change
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with temperature. Another possible reason is that the position of the mode shape that corresponds to
the natural frequency is shifting within the structure with temperature. This would mean the sensor is
capturing a different part of the mode shape with potentially different amplification.

In the second analysis of the second measurement campaign, the entire frequency vector was investi-
gated in relation to the temperature and PCA was used to distinguish between the samples belonging
to the different temperature intervals. This proved to be a more challenging problem compared to the
”damage” detection with the data from the first measurement campaign. The temperature has a minor
effect on the system properties compared to the ”damage” present in the first measurement campaign.
This means that the underlying dynamic properties at a given temperature interval are similar to those
at adjacent temperature intervals. Any noise present in the signals will make it difficult to distinguish be-
tween the underlying dynamic properties at different temperatures. However, with the rPCA the noise
within the vibration data can be reduced, and the underlying coherent structures can be obtained. By
lowering the regularisation parameter to λ = 1/

√
2 ·max(n,m) in the rPCA, even more of the noise

within the data can be filtered out, enabling the distinction between signals with a 1°C temperature
difference which was otherwise impossible with the default regularisation parameter. The rPCA, with
a lower regularisation parameter, is able to extract the underlying coherent patterns that correspond to
the dynamic properties at each temperature interval.

The analysis of the data from the second measurement campaign revealed that temperature affects the
system, and it is possible to extract the underlying coherent structures corresponding to the dynamic
properties at different temperatures with the rPCA. A complete understanding of the dynamic proper-
ties under all possible environmental conditions is necessary for a robust structural health monitoring
program.

This was only achieved for vibration data from a horizontal sensor with high-frequency content. It
was more challenging to distinguish between the dynamic properties at different temperatures for low-
frequency content from a vertical sensor. It was not possible to distinguish between signals with a
temperature difference lower than 5°C. A possible reason for this is the frequency resolution, which
needs to be higher for the low-frequency content to capture the shifts in the lower natural frequencies.
However, increasing the frequency resolution comes at a cost by increasing the time window around
the samples in the time domain. This, in turn, decreases the number of samples in the data, which has
a negative effect on the performance of the rPCA.

There was a higher degree of difference between the vibration data from two different days that could
not be explained by the temperature measurement from a single sensor. This was seen when compar-
ing vibration data from the horizontal accelerometer with a 2°C difference. The data from the different
days had a higher degree of a difference than data within a single day, even if the temperature dif-
ference was the same. A possible explanation for this behaviour is that the vibration data is grouped
into temperature intervals by a single temperature sensor. This single temperature sensor does not
capture the full temperature profile of the bridge. So while there is a 2°C difference between the temper-
ature intervals according to this sensor, the actual temperature profile of the bridge could be potentially
different between the different days. This, in turn, means that there is a difference in the dynamic prop-
erties, which is not explained by this single temperature sensor. The ”extra” difference in the dynamic
properties between the two different days could also be due to changes in other operational and en-
vironmental conditions. For instance, it might have been raining on one of the days, which led to an
increase in the mass of the structure, thereby altering the dynamic properties. During the measure-
ment period, there was ongoing maintenance of the drawbridge. The position of concrete barriers on
the road might have been moved between the days due to maintenance. Thus the mass distribution
would be different, altering the dynamic properties. This might also have changed the position of the
traffic on the bridge deck, which would also change the mass distribution. However, at least it seems
that a single temperature sensor is not capturing the cause of this difference between the days.

The SSPOC also revealed the locations in the frequency vector that contained the largest difference
between the different structural states. Aside from the anomalous ”spikes”, the location of these sparse
sensor locations was at the natural frequencies for data from both measurement campaigns. Under-
standing which natural frequencies change the most between two structural states is beneficial, and
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these natural frequencies can be analysed further. The SSPOC also revealed that the changes in the
vibration data are due to changes in the natural frequencies.

9.2. Recomendations
Higher frequency resolution for low-frequency content

When working with vibration data with a low-frequency content, a frequency resolution of 0.125 Hz
was used. This proved to be insufficient in capturing the change in the dynamic properties of the
low-frequency content due to temperature. The frequency resolution has to be increased for the low-
frequency content to have the same level of accuracy as the analysis with the high-frequency content.
A 0.5 Hz frequency resolution was used for the high-frequency content of sensor 31 from the second
measurement campaign, which translates to a ratio of 380 between the natural frequency at 190 Hz
and the frequency resolution. This ratio is even higher for the natural frequencies at 400 Hz. If the same
ratio or level of accuracy was used for the natural frequency at 10 Hz of sensor 17, then the frequency
resolution would be 0.026 Hz. However, this frequency resolution would translate to a time window of
around 40 seconds, which would yield few samples in a 15-minute time frame. Using this frequency
resolution would be impractical with the amount of data available for this research, which was only
two days. More data is needed in order to see if there is any change in the lower natural frequencies
with temperature. Future analyses with access to a more extensive data set can investigate the low-
frequency content in more detail.

Regularisation parameter optimisation

The default value of the regularisation parameter in the Robust Principal Component Analysis is λ =
1/
√
(max(mxn) as recommended by the authors of the rPCA [11]. It was arbitrarily lowered to λ =

1/
√

2 · (max(mxn) in order to reduce the noise in the vibration data, and it enabled distinction between
vibration data with a 1°C difference. Lowering the regularisation parameter leads to more aggressive
filtering of the rPCA as more of the data is put into the sparse matrix of the rPCA. Thus the low-rank of
the rPCA is reconstructed from even fewer PCs leading to an even lower rank which should contain only
the major coherent structures in the data. However, selecting a too-low regularisation parameter can
lead to the rPCA filtering out coherent structures in the data. This was seen when the rPCA was used
to remove corruption in fluid flows [38]. The researchers of the paper also discussed that there needs
to be an understanding of the selection of an optimal regularisation parameter for different scenarios
in fluid mechanics. The same can be said for the vibration data in civil engineering structures. There
needs to be an understanding of which regularisation parameter best suits the vibration data.

Temperature profile

It was discovered that there was more difference in the vibration data between days that was not
explained by the temperature measurement of a single sensor. It is plausible that the temperature
profile between these two days was different, which leads higher degree of difference in the underlying
system and, subsequently, in the vibration data. This should be investigated. Instead of just working
with temperature data from a single sensor, the entire temperature profile of the bridge should be used
for analysis. There is a temperature gradient present in the bridge, in the vertical direction and in the
transverse direction of the bridge. This underlying temperature pattern can be potentially extracted.
This would provide more comprehensive information on the environmental condition of the bridge, and
it could be linked to the vibration data. PCA or rPCA could be used to find the coherent structures
within the temperature profile.

Remove the anomalous spikes

The anomalous ”spikes” present in the vibration data are not part of the dynamics of the structure, but
it is theorised that the ”spikes” are due to the sensors themselves and auxiliary equipment. These
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”spikes” contained the most significant difference between the structural states of both measurement
campaigns, according to SSPOC. The ”spikes” add a false positive bias to any damage detection
involving the entire frequency vector. They need to be filtered in order to avoid misclassifying damage
as change these anomalous ”spikes”.

Expand the spatial domain of the analysis

In this thesis, the rPCA was used only on the output of a single accelerometer for each analysis. Only
the frequency spectrum and its natural frequencies were used to determine if the two dynamic systems
were different. However, these natural frequencies have corresponding vibration modes that can help
distinguish between different structural states. These vibration modes hold information about the dy-
namic system that might be valuable in damage detection. The rPCA can reduce the noise within each
sensor and reveal the underlying dynamic system in which each sensor is measuring. The next step
with the rPCA should be to expand its usage in the spatial domain by incorporating more sensors into
the analysis and experiment in extracting the modal shapes of the structure from the rPCA-filtered data.

Stochastic input force

In this thesis, the rPCAmanaged to discover the underlying patterns in the vibration data corresponding
to the dynamic properties of the system. The goal of using the rPCA on the vibration data is to obtain
the system properties by removing the operational variability in the input force, that is, the traffic. The
input force is a stochastic process, with each realisation of the traffic being potentially different. On the
other hand, the system properties can be thought of as a deterministic quantity as it does not change
between the different realisations of the response, given that environmental and operational conditions
do not change.

The performance of the rPCA in extracting the system properties depends on the stochastic input force.
For instance, if the random process of the input force does not have energy at a particular frequency,
then it will not be possible to determine the system properties at that frequency. The success of the
rPCA in obtaining the system properties for the entire frequency spectrum depends on if the random
process is broadband or narrowband. Broadband processes such as white noise should perform well
in this regard. The vibration data in this thesis seems to be broadband, as there are natural frequencies
over the entire frequency band. Another factor to consider is how many samples are required for the
rPCA to obtain the underlying dynamic properties of the signals. The number of required samples is
most likely tied to the characteristics of the random process of the input force. Simple processes such
as white noise could require fewer samples to discover the underlying dynamics with the rPCA.

The vibration data in this thesis consists of ambient vibrations, traffic and the amplification due to the
sensors. With this data, the rPCA was successful in finding the underlying patterns corresponding
to the dynamic properties. Can the rPCA be used with other types of input forces and discover the
underlying patterns for other structures? In order to understand how rPCA performs for vibration data
for the different input forces, there needs to be a good understanding of the statistics of these stochastic
input forces.

Sparsity and compressed sensing in SHM for civil engineering structures

The Mathematics of sparsity and compressed sensing, which are the foundation of rPCA and the
SSPOC, is an exciting field and can be potentially applied to other problems in SHM for civil engineer-
ing structures. With sparsity and compressed sensing, it is possible to reconstruct complex systems
from sparse measurements. One question in vibration-based monitoring is where to place the sensors
to measure damage in a structure. The goal should be to minimise the amount of the sensor for an
economical solution. The mathematics of sparsity and compressed sensing can prove useful in finding
the optimal sparse sensor locations for a given structure.
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A
Anomalous Spikes

During analysis, anomalous spikes were encountered. These spikes are peaks in the DFT that are
contained to a single frequency index. They are present in each sensor but at different frequencies and
vary with temperature. The spikes are present in signals from both the first and second measurement
campaigns, but both campaigns use the same sensors. Even without the excitation from the traffic, the
spikes are still present. This section will go into detail on the behaviour and effect of these spikes.

Location

The spikes appear at various locations below 110 HZ in the frequency domain for the various sensors.
In some instances, they are also isolated from any other resonance activity. The location of the spikes
does not change drastically between sensors measuring vertical and horizontal acceleration. These
two types of sensors have completely different frequency contents. Horizontal sensors capture high-
frequency content, while vertical sensors capture low-frequency content, but the anomalous spikes do
not follow this change to the same degree.

These ”curious spikes” were first discovered by Marie-Louise [21] in the data from the first measure-
ment campaign. However, these anomalous spikes were also present in the data from the second
measurement campaign. Both the first and second measurement campaigns used the same sensors.
The difference was in the locations where the sensors were deployed, possibly suggesting that the
spikes were bound to the sensors and the auxiliary equipment.

Temperature

The frequency location of the spikes shows a positive linear correlation with temperature. This can be
seen in figure A.1, which shows how a single anomalous spike changes with temperature for horizontal
sensor 31 from the second measurement campaign. Figure A.1a shows how the mean value of the
spike, while figure A.1b shows a histogram where the largest peak is located in a given frequency
interval. According to the histogram figure, the spike is present in nearly all samples. This behaviour
of the spikes is the same for a vertical sensor, as seen for sensor 17 from the second measurement
campaign in figure A.2. The spikes seem to be much more responsive to temperature than the natural
frequencies; a clear shift in frequency is visible between all temperature intervals. There is no sudden
shift in the relationship between the frequency of the spike and temperature between the two days.
The temperature measurement of a single sensor is enough to capture the relationship between the
spike and temperature. This could indicate that the sensor equipment is more sensitive to temperature
changes than the dynamic system. This seems plausible as all the sensor equipment is exposed to
the air.

110
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Figure A.1: Frequency location of anomalous spikes with temperature. There is a positive linear correlation of the spike with
temperature. Data from sensor 31 (a) Mean value of each temperature interval. (b) Histogram of the location of the spike at

different temperatures.
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Figure A.2: Frequency location of anomalous spikes with temperature. There is a positive linear correlation of the spike with
temperature. Data from sensor 17 (a) Mean value of each temperature interval. (b) Histogram of the location of the spike at

different temperatures.

Present without traffic excitation

In her research, Marie-Louise discovered that these spikes are present in the frequency domain even
if there was no traffic on the bridge. Only the spikes were visible in the frequency domain; not even the
system’s natural frequencies were visible under the ambient load. This could suggest that the spikes
are not a resonance phenomenon but rather some force. It also revealed other higher-frequency spikes
around 190 Hz, 210 Hz and 290 Hz. These spikes have not been detected in the analysis of this thesis
as all analysed signals contain excitation from the traffic, thereby masking these higher frequency
spikes.

Summary

The spikes appear in a similar frequency range for sensors with widely different frequency content.
They do not look like any other resonance frequencies in the system. The spikes are present even if
a sensor is moved to a different location and also appear when there is no traffic on the bridge. This
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suggests that the spikes are not part of the structural system of the bridge but rather some input force
that could be due to the installed hardware of the sensor equipment. The variation in temperature
could be explained by the resistance of the circuitry changing with temperature and thus changing the
frequency of this ”force”. It could also explain why the spikes are so responsive to temperature, as all
the electrical equipment is exposed.

The anomalous spikes are part of the overall frequency spectrum and can potentially affect any anal-
ysis of the frequency spectrum. Specifically, the goal of the analysis of this thesis is to identify the
difference between data groups. In the case of the first measurement campaign, the goal was to dis-
tinguish between damaged and undamaged signals, while in the second measurement campaign, the
analysis was focused on the effect of temperature on the structural system. In both cases, the spikes
introduce a false positive bias to the analysis. The spikes are different between sensors and change
with temperature. However, they do not represent the actual dynamic properties of the system. Thus
a false positive bias is added as the spikes contribute to the difference between data groups but are
not the system under analysis. The SSPOC algorithm revealed that the spikes are also potentially the
highest contributing point in the frequency spectrum that discriminates between the data groups. This
is shown in figure A.3, which shows three sensor locations that maximally discriminate between signals
from sensors 7 and 23. The highest scoring point of the three sparse locations is one of the anomalous
spikes, indicating that this frequency index contains the most discriminating information between the
two groups. Ideally, this false positive bias should be removed either with some processing of the data
or by reconsidering the choice of hardware.
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B
Fourier transform

The Fourier transform is a mathematical operation that transforms a function into its frequency compo-
nents. This transformation moves a function into the generic basis of the frequency domain. For a time
domain function x(t), the Fourier transform is:

X(ω) =

∫ ∞

−∞
x(t)e−iωt dt (B.1)

The corresponding Fourier pair or the inverse Fourier transform is:

x(t) =
1

2π

∫ ∞

−∞
X(ω)eiωt dω (B.2)

Parsevals Theorem

The total energy within a signal is the same in its time-domain and frequency-domain representation.
The Fourier transform preserves the ℓ2 norm or energy between transformation. This is Parseval’s
theorem and can be stated follows:

∫ ∞

−∞
|X(ω)|2 dω = 2π

∫ ∞

−∞
|x(t)|2 dt (B.3)
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