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Abstract

Robot Care Systems (RCS) is involved in the development of the WEpod, an autonomous shuttle which can
transfer up to six people. Based on a predefined map of the environment, the shuttle is able to navigate
through mixed traffic its perception sensors such as camera, radar and lidar sensors. This study is acquired in
collaboration with RCS and focuses on two parts: assessing the influence of different factors on the domain
shift and assessing the importance of depth information in the transformation of scene understanding from
image space to top view.

For the WEpod, or any self-driving vehicle to safely travel over the road and through traffic, it is important
to understand road scenes that appear in our daily life. This scene understanding is the base for a success-
ful and reliable future of autonomous vehicles. Deploying a Convolutional Neural Network (CNN) in order
to execute the task of semantic segmentation is a typical approach to attain such understanding of the sur-
roundings. However, when a CNN is trained on a certain source domain and then deployed on a different
(target) domain, the network will often execute the task poorly. This is the result of differences between the
source and target domain and is referred to as domain shift. Although it is a common problem, the factors
that cause these differences are not yet fully explored. We filled this research gap with the investigation of ten
different factors.

To explore these factors, a base network was generated by a two-step fine-tuning procedure on an existing
convolutional neural network (SegNet) which is pretrained on the CityScapes dataset (dataset for semantic
segmentation). Fine-tuning on part of the RobotCar dataset (road scenery dataset recorded in Oxford, UK) is
followed by a second fine-tuning step. The latter is done on part of the KITTI dataset (road scenery dataset
recorded throughout Germany). Experiments are conducted in order to obtain the influence of each factor
on a successful domain adaptation (i.e. negligible domain shift). The influence of factors on the domain shift
based on semantic segmentation is assessed by comparing the result of every factor to the result on the base
network. Results consist of the F1-measure and Jaccard index for drivable path segmentation and occupancy
segmentation although the emphasis lies on the drivable path segmentation.

Significant positive influence on the estimation of drivable path for the WEpod domain was obtained
when the ground truth labels only consisted of two labels (i.e. drivable path and non-drivable path) instead
of three classes. This performance gain is signed by an increase of 8 percent points for both the IoU and the
F1 metric. Making all images intrinsically consistent, and thus removing all geometric differences between
the camera sensors, resulted in a larger increase of performance metrics. Compared to the baseline, both the
Jaccard index and F1 metric increased with 10 percent points. The training order is a main contributor for
domain adaptation with an increase of the IoU metric of 18 percent points and 20 percent points for the F1

metric. This shows that the target domain (WEpod) is more closely related to RobotCar than to KITTI.

Although the investigation of different factors potentially can realise a better performance on the WEpod
domain, understanding the environment in image space is not enough because path planning is utilised in
top view. Hence, a transformation between image space and top view is needed to use the scene understand-
ing based on semantic segmentation to the full extent. For this transformation, three setups are utilised with
each a different form of depth information available: no depth information, ground truth depth information
and estimated depth information. This approach gains insight into the relevance of depth information on the
usability of scene understanding. The accuracy of top view transformations is measured in the form of four
metrics: raw lateral error, scaled lateral error, overlap length and a count metric. The first metric is concerned
with the raw difference between the estimated and ground truth trajectory. The second metric is a scaled
form of the former. The overlap length measures to what extent the trajectory is estimated while the count
metric takes into account if the estimated trajectory is present in top view.

From the experiments it is concluded that depth information plays an important role in the lateral sense
of the trajectories while it is of less importance for the longitudinal length of the trajectory. It is also noticed
that depth information does not necessarily needs to be dense. Moreover, the sparse but ground truth depth
information leads to a better trajectory.
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1
Introduction

In recent years, great progress has been shown in the fields of computer vision, machine learning and one of
its applications, Autonomous Vehicles (AVs). This progress has led to a continuously growing interest in these
fields, revealing new techniques and approaches, pushing its applicability increasingly further. In addition to
these new advances, emerging interest in AVs is motivated by the potential of AVs itself.

The vast majority of traffic related fatalities is caused by human error [43], [48], [60]. Such errors can
occur due to fatigue, distraction or simply a wrong interpretation of the traffic situation causing dangerous
situations or collisions. Autonomous and intelligent vehicles have the potential to greatly reduce incidents
induced by human error, simply by minimising the human inference or completely taking the human factor
out of the process.

Another promising feature of autonomous vehicles is the ability of mobilising people who are unable to
drive themselves. This could relate to elderly people who are not capable of driving anymore as well as people
with disabilities or people who are not confident in the chaotic traffic situations that can occur. Another
group that can relate to this benefit from autonomous vehicles are young people that are not allowed to drive
a car. AVs will increase the action radius of these groups and therefore contribute to an increasing mobility in
general.

Furthermore, according to [51] the average round trip commuting time in the Netherlands is 47 minutes
for the period 2005-2009 while in the same period it sums to 51 minutes in the United States. Currently, drivers
have to be focused on the road and environment to avoid collisions. Autonomous vehicles can replace the
need for human control and this will result in the possibility to use the commuting time in a productive or
more relaxing manner which will result in a more efficient work-free time ratio.

The potential of AVs is also shown by two case studies in New York City and Singapore, conducted by [70].
Based on these case studies it is suggested that an Autonomous Mobility-on-Demand (AMoD) system would
be much more affordable and convenient in order to access mobility compared to the traditional mobility
models dependent on private vehicle ownership. To optimise performance, AMoD relies on highly automated
vehicles. An overview of the levels of automation (ranging from 0 to 5) can be found in figure 1.1.

An intermediate step in the process towards fully or highly automated vehicles, are Advanced Driver-
Assistance Systems (ADAS). These systems assist human drivers in the driving process, aiming to increase
safety for both the driver as the other traffic participants. Examples of features of ADAS are collision avoid-
ance system (preventing or reducing the severity of a collision) and adaptive cruise control (automatically
adjusting vehicles speed to maintain a safe distance). Except the increase of general safety, ADAS are also
used to increase the comfort of the driver (e.g. automatic parking).

In contrast to lower level automation features and vehicles, the WEpod is aiming for high automation
(level 4). The WEpod is an autonomous shuttle, able to transfer up to six people. The shuttle is already
deployed on trajectories in Wageningen and Delft. It has a maximum speed of 25 km/h and does not need a
separate lane to drive in.

During autonomous driving the WEpod uses its sensors to sense its surroundings. The sensor suite of the
WEpod consists of nine radar sensors, nine cameras and six four-plane lidars placed around the vehicle. The
WEpod also has a GNSS receiver and IMU sensor. This sensor suite offers the ability to drive autonomously
in a pre-built map of the area.

1



2 1. Introduction

Figure 1.1: Levels of automation as defined by Society of Automotive Engineers (SAE) in J3016 [13].

Nevertheless, in order to utilise the potential of self-driving transportation in general, several barriers
have to be overcome. These challenges are split up into different topics. Both on national and international
level there are regulations that are not suited for (different ways of) autonomous driving. These need to be
adjusted in order for utilise the potential of autonomous vehicles. Obviously, it is hard to change regulations
and specifically to make new valid regulations which can cope with future situations. Therefore, it will take
time for these changes take effect officially.

In addition to these legal challenges, there are a fair amount of practical challenges such as vehicle cost,
adjustment of people’s behaviour, insurance cases and privacy that need to be handled before full-autonomous
transport can participate in our daily life.

There are still a lot of unsolved technical problems in order to obtain a full-autonomous system. These
problems are all fields of research which need both funding and time to reach a practical solution. This thesis
is part of the research challenge that has to be overcome.

Despite great developments, accidents with AVs (and vehicles with self-driving modes) made it clear that
such systems are not satisfactory yet1. Therefore, research will continue in academia as well as in industry
itself. One of the areas on which research is conducted is the understanding of road scenery which is one of
the biggest challenges for AVs.

For a self-driving vehicle such as the WEpod to safely navigate on roads, it needs to understand road
scenes that appear in our daily life. The environment that needs to be understood can be separated into
several categories. The environment depends on the location which determines the infrastructure, but also
traffic situations and traffic rules. Since the latter is part of different components in an AV such as behavioural
planning (figure 1.2), these are not considered, whereas the infrastructure is an important feature which is in-
cluded in this thesis.

This thesis focuses on the environmental understanding where it is safe to navigate to and where it is

1Examples:
https://www.tesla.com/blog/tragic-loss?redirect=no
https://www.tesla.com/blog/update-last-week%E2%80%99s-accident
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe

https://www.tesla.com/blog/tragic-loss?redirect=no
https://www.tesla.com/blog/update-last-week%E2%80%99s-accident
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
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Figure 1.2: A general autonomous vehicle system overview. Obtained from [47].

not advisable (due to occupancies). Occupancies can occur due to a variety of reasons such as buildings,
other cars and pedestrians. To the contrary, the path where a vehicle can safely navigate through traffic, is the
trajectory where it does not collide with occupancies. But except for these obvious cases, it is also important
a vehicle does not recognise the lane for the opposite traffic as "safe" by default.

One common way to achieve this level of understanding of the environment, is to use semantic segmen-
tation. Semantic segmentation is the assignment of each pixel of an image to a semantically meaningful class.
Large semantic datasets such as CityScapes [14], contain several groups where each group contains several
classes. For CityScapes, this leads to 30 visual classes spread over eight groups. However, 19 classes from
seven groups are used for creating the benchmark of this dataset. Examples of these groups are ’human’,
’object’ and ’construction’ while examples of the classes are ’building’, ’person’, ’rider’, ’pole’, ’traffic sign’.

All these different classes and groups are not strictly necessary to make a relatively fair visualisation of
the environment. For an AV it is important to know where it is possible to drive and where it is not allowed
to drive. Therefore, a simple reconstruction of the environment can already be achieved by identifying three
classes: occupancies, drivable path and unknown area.

The first goal of humans when driving around in traffic is to avoid any obstacle. The detection of obstacles
is therefore an important aspect in order to realise autonomous vehicles. Two categories can be distinguished:
static obstacles and dynamic obstacles. Static obstacles are ought not to move with buildings and trees be-
ing the most obvious examples. Dynamic obstacles can change direction and speed such as other traffic
participants. Both static and dynamic obstacles should be detected with great accuracy to avoid dangerous
situations or accidents.

As the name suggests, drivable path is a potential route which the vehicle may follow and is characterised
by the outline of the total width the vehicle needs. Hence, a drivable path is more than only a trajectory line,
enclosing an area with the width of the vehicle. The drivable path is not necessarily bounded to one ”solution”
because intersections can be thought of as an example of a combination of solutions. This path can be used
for in-lane localisation.

Within every environment, there will be positions that cannot be classified as drivable path but is not per-
ceived as obstacle, often due to the small size. Lanes (both in the same direction as opposite direction) are an
example such a situation. Often curbstones, empty pavements and ditches also are included in this category,
referred to as unknown area [5].

Traditionally, semantic segmentation of images were executed via semantic texton forests [55] or randomised
decision trees [57]. The reason that these methods are outdated is due to the rise of Convolutional Neural
Networks (CNNs) which have become a dominant player in the world of computer vision and semantic seg-
mentation during recent years. CNNs showed to obtain high evaluation results concerning semantic segmen-
tation of images, with increasing accuracy and decreasing computation time over the last years. However, it
is commonly known that CNNs are data hungry. This means that a network needs a lot of (training) data in
order make a reasonably good prediction.

Initially, no large amount of sensor data was available for the WEpod and stimulated by the fact that it is
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not desirable to mount (an expensive) lidar on every vehicle, already available (external) datasets are used to
predict the drivable path, occupancies and unknown area for the WEpod.

Because only few training images containing full semantic ground truth are available weak labels are cre-
ated for a subset of two large road scenery datasets, KITTI [20] and RobotCar [41]. These datasets not only
contain the recorded image sequences but also laser, GPS and IMU data. The created labels are referred to
as weak because they do not have clear boundaries for all three categories (occupancies, drivable path and
unknown area). The quality of these labels depends to a certain extent on the sensor quality of the recording
platform (both camera and lidar). By treating these labels as ground truth, it is possible to produce a vast
amount of labels which will enable us to create a (large) set of training images within only a fraction of the
manual annotation time. This comes at the cost of less precise labels. However, this decrease in quality is not
necessarily a problem since the focus is put on the drivable path.

In general transfer learning can be very useful since it limits the required amount of training data and
computational time needed to successfully train a CNN. However, one particular problem that occurs when
a CNN is trained on a certain source domain (e.g. CityScapes) and then deployed on a different target domain
(e.g. WEpod), the network will often execute the task (e.g. segmentation) poorly because of the differences
between target and source domain (i.e. the domain shift). This limited ability of a CNN to adapt itself to new
domains is a common problem of transfer learning.

The first goal of this thesis is to obtain an idea if and how several factors influence the domain shift from
the KITTI and RobotCar domain towards the WEpod domain. Factors that influence the success of domain
adaptation are identified and it is shown how they influence the result.

However, the WEpod is not able to process the segmented images directly because planning the trajectory
generally occurs in a different space than image space. Hence, the segmented image should be converted
towards the same space as where the path planning happens. This transformation between spaces is not
straightforward since the segmentation misses one specific sort of information; depth. Depth is important in
order to transform the predicted labels towards a top view, the space where path planning is executed. With
depth information the segmentation can be used in the same space as path and therefore can act as a tool in
order to understand the environment of the vehicle.

Hence, the second goal of this thesis focuses on achieving an usable format for semantic segmentation
by highlighting differences between several setups.

1.1. Problem formulation and research objectives
The previous section briefly discussed the occasions and situations that lead to the the core of this research,
which is motivated by two problems.

The first problem is based on the shift between datasets, obtained by different recording platforms. Due
to the shift in domain for different datasets it is not possible to directly transfer knowledge, obtained from one
dataset, to the other domain. Therefore, it is useful to obtain factors that are responsible for the shift between
the domains.

The second problem is related to the transformation of scene understanding in image space towards a
space that is useful for path planning: top view. As result of the project scope and research objectives, the
following main research question is addressed in this study:

Is it possible to estimate and utilise drivable paths for the WEpod domain, solely based on data from
different domains?

Several sub-questions assist to find a thorough answer to the main research question, stated above. These
sub-questions are listed below:

• How can deep learning be used for estimating drivable paths and what is the role of domain adaptation?
Drivable paths are an important aspect for autonomous vehicles as they play a role in localisation and
path planning. Deep learning and moreover CNNs are an important tool in computer vision in order
to predict these drivable paths. Insight in how these proposed paths are obtained and how domain
adaptation can be utilised is a good base for this study.

• How to utilise the vast amount of data that is already available?
A lot of data, often consisting of laser and camera data, is currently made available aiming to resolve
different computer vision problems, including for the application of autonomous vehicles. However,
there are different approaches in order to utilise this vast amount of data.
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• What factors influence a successful domain adaptation for the task of semantic segmentation?
Due to the domain shift resulting from the utilisation of existing datasets, results of semantic segmen-
tation on the target domain are not satisfactory. It is beneficial to identify the factors that influence the
performance by this domain shift.

• What is the importance of depth information in the transformation from image space to top view space?
Autonomous vehicles are driving around in a 3D environment. However, part of scene understanding
is done in image space, which is a 2D representation of this 3D environment. Since path planning is
performed in a different 2D space the scene understanding needs to be transformed. Different setups
are possible with varying depth information, resulting in different accuracies.

• How to evaluate drivable path proposals?
In order to quantify the effect of certain parameters, it is important that well-defined evaluation metrics
are used which will help to evaluate influences on the different classes.

1.2. Outline
Chapter 2 describes the theoretical background of this study which details various approaches and theories of
semantic segmentation, transfer learning and the transformation of scene understanding to a usable format.
The related work of these concepts will be helpful in understanding chapter 3 which entails the methodology
that is used during this research. This chapter consists of three parts: drivable path segmentation, domain
adaptation and top view transformation. The first section will highlight the approach for drivable segmen-
tation which are used in the second part of domain adaptation where the approach of different experiments
is explained. The last section describes the method behind the transformation to top view in various experi-
ments.

The setup used during the experiments is first discussed in chapter 4. This section is followed by a detailed
description of the experiments and examination of the results. First this is done for the experiments of the
domain shift factors while a third section handles the experiments of the top view transformation.

Discussion of the results, conclusions based on the results and recommendations for future research are
reported in chapter 5.





2
Background

While chapter 1 sketched an overview of the project, this chapter reviews concepts which are used throughout
this work more thoroughly. The chapter starts with a discussion about the observational data of the WEpod
and different datasets are that used throughout this study in section 2.1. Further, this chapter entails (semantic)
segmentation, obtaining an overview of different kinds of segmentation, discussing the pros and cons of various
classes (section 2.2). Furthermore, different methods for segmentation are examined, making a clear distinction
between hand-crafted methods and learned methods (section 2.3). Subsequently, transfer learning and more
specifically domain adaptation is discussed (section 2.4). The relevance of the transformation from image space
towards top view is explored (section 2.5). Finally, the chapter is summarised in section 2.6.

2.1. WEpod
The WEpod is a autonomous shuttle, capable of transferring up to six people. For the purpose of autonomous
driving, the vehicle needs to observe and sense the surroundings with its sensors. Although the sensor suite
differs per vehicle, these varieties are mostly based on the geometry of the sensors. Section 2.1.1 discusses
the sensor suite which is utilised throughout this study. External datasets (i.e. not obtained by the WEpod)
are an important part of this study and therefore explained in section 2.1.2.

2.1.1. Observational data
A number of sensors is used by an autonomous vehicle to safely drive through traffic. All sensors have their
strengths and limitations. Although an autonomous vehicle has various sensors, only a part of the total sen-
sor suite is used for this thesis and hence, only these sensors are briefly described below. Figure 2.1 gives a
broader overview of the total sensor suite, mounted on autonomous vehicles.

Like the human eye, cameras are susceptible to adverse weather conditions and variations in lighting (in-
cidence). However, it is the only technology that is able to capture texture, colour and contrast information.
The high level of detail (which obviously varies with the cost of the camera) allow them to be the leading tech-
nology for classification. These features, combined with the increasing pixel resolution and decreasing costs,
make camera sensors the "leading" sensors for Advanced Driver Assistance Systems (ADAS) and autonomous
systems.

Light Detection And Ranging sensors, or lidar sensors in short, are capable of measuring the distance to
any object nearby by simply calculating the time taken by a pulse of light to travel to that object and back to
the sensor. These sensors therefore play an important role in creating a depth map which enables the vehicle
to correctly estimate potential danger of objects.

Global Navigation Satellite System (GNSS) is the generic term for satellite navigation systems that pro-
vide autonomous geo-spatial positioning with global coverage while using different systems such as GPS,
GLONASS, Galileo, Beidou and other regional systems are included. The advantage to having access to mul-
tiple navigation platforms is a higher accuracy and availability at different times and locations. The GNSS
system will report the position of the receiver in the ellipsoid coordinate system (longitude, latitude and alti-
tude). The quality of these measures can be affected by a range of elements such as urban canyoning.

An Inertial Measurement Unit (IMU) is an electronic device which detects linear acceleration using ac-
celerometers and angular velocity using gyroscopes. Sometimes a magnetometer is included which mea-
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sures the magnetic field intensity and is used as a heading reference. A generic configuration contains one
accelerometer, gyroscope, and magnetometer per axis for each of the three vehicle axes: pitch, roll and yaw.
Roll is referring to the rotation around the front-to-back axis, pitch is the rotation around the left-to-right
axis and yaw (sometimes referred to as heading) is the rotation around the vertical (top-to-bottom) axis. The
combination of GNSS data and IMU data allows one to reconstruct the driven path.

Inertial Navigation System (INS) is a system that processes the data collected by an (included) IMU in
order to calculate relative position, orientation and velocity of the INS. Positions are retrieved through dead
reckoning, which is the procedure that calculates the current position by adding the movement over elapsed
time and course to the previously (known) position.

Figure 2.1: Overview of the key sensors for an autonomous vehicle.1

2.1.2. Datasets
In order to create state-of-the-art algorithms and ensure they achieve good results, it is important to train on
one particular set and evaluate on a different (test) set which ideally represents real-world challenges. This
is the key role of datasets, providing a sample of real-world problems with ground truth to allow quantitative
evaluation. On the basis of these evaluations, conclusions can be drawn about their constraints and abili-
ties. In light of autonomous driving, the KITTI dataset (with tasks as depth prediction, object detection and
tracking) and the CityScapes dataset (instance and pixel-wise segmentation) are challenging benchmarks
that play a key role in research. The size of datasets has evolved over time from smaller datasets of several
hundred images to huge datasets with thousands of images.

1Center for Sustainable Systems, University of Michigan. 2017. "Autonomous Vehicles Factsheet." Pub. No. CSS16-18
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Many datasets aim for a large variety in the encountered road scenery. This results in a large variation of
traffic situations and a large dissimilarity in traffic participants and thus the algorithm which is trained on
such a dataset learns a lot of different representations of obstacles. These datasets do not take the challenges
of environmental changes over time (i.e. seasonal changes) into account. [41] recorded images along with
lidar data, GNSS data and Inertial Navigation System (INS) data by driving more than 1000 km over a period
of one year. During this period (May 2014 to December 2015) one route in central Oxford (England) is covered
twice a week. This driving scheme led to large variations in scene appearance due to illumination, weather
and seasonal changes. Due to these long-term changes captured in the dataset, it is possible to develop
algorithms that can handle these challenges.

Very recently, three enormous datasets have been released: Mapillary (May 2017), ApolloScape (March
2018) and BDD100K (May 2018) containing 25 000, 143 906 and 120 000 000 images respectively. Where
ApolloScape does not have any diversity concerning cities, weather, times of day and scene types, Mapillary
and BDD100K do contain all these varieties. However, ApolloScape and BDD100K were released too recently
to be integrated in this work. Mapillary was not used because it lacks GPS and IMU data which is necessary
to project the drivable path.

The generation of a dataset with ground truth labels is a time consuming task, especially when the labels
need to be pixel-wise annotated as for semantic segmentation. This problem initiated research on ways to
solve this problem by automating the process of labelling and alternative ways of data acquisition to avoid
this problem. One alternative approach is to utilise synthetic data where ground truth on pixel-level can
easily be acquired. However, for synthetic data there is a trade-off between the realism of the dataset and the
flexibility of the data. In this area there are three main simulators: Grand Theft Auto V (GTA V), CAR Learning
to Act (CARLA) [16] and The Open Racing Car Simulator (TORCS) [68]. GTA V has a very high level of realistic
settings however, it is the least flexible among the three. TORCS is the least realistic but has high flexibility
and CARLA is the most flexible simulator resulting in a less realistic setting than GTA V. However, despite the
increasing effort for creating synthetic data it is unclear whether the scenes are realistic enough to replace
real-world datasets. Creation of virtual content itself is time consuming. Where generation of ground truth
labels are relatively easy to obtain for virtual data, the creation of the content itself is not, which makes the
trade-off between real and synthetic data unclear. Hence, this thesis has been limited to real-world datasets.
The datasets that are used throughout this thesis, are briefly mentioned below.

CityScapes
[14] tries to capture the complexity of real-world urban scenes by introducing the CityScapes dataset. This
dataset comprises a benchmark suite and large amount of labelled images to semantically understand urban
street scenes. The stereo video sequences of CityScapes are recorded in 50 different cities in Germany. 25 000
images are labelled from which 5 000 have high quality pixel-level annotations. These fine annotated images
are divided into three categories: 2 975 training, 500 validation and 1 525 test images. The remaining 20 000
images have coarse annotations which are not partitioned into separate training, validation and test images
as they only serve as additional training data.

Figure 2.2: Example of a fine annotated image from CityScapes
dataset, recorded in Tübingen.2

Figure 2.3: Example of a coarsely annotated image from
CityScapes dataset, recorded in Saarbrücken.3

The images are recorded only during daytime and mostly with good or medium weather conditions. To
achieve this recordings took place during spring, summer and fall. In total 19 semantic classes among seven
groups are distinguished.

3https://www.cityscapes-dataset.com/examples/#fine-annotations
3https://www.cityscapes-dataset.com/examples/#coarse-annotations

https://www.cityscapes-dataset.com/examples/##fine-annotations
https://www.cityscapes-dataset.com/examples/##coarse-annotations
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KITTI
The raw dataset [20] consists of 6 hours recording throughout a variety of traffic environments. The record-
ings are obtained with high-resolution colour and stereo cameras, a Velodyne 3D laser scanner, GNSS data
and IMU data. Although the weather conditions are similar across all recordings there is a large diversity
in traffic situations that are encountered. The raw dataset is divided in four categories (city, road, residen-
tial and campus) based on the environment in which it is recorded. Image sequences that are calibrated,
synchronised, timestamped and rectified are available.

Figure 2.4: Image from the Raw KITTI dataset.

Oxford RobotCar
A different approach is followed by [41] who collected data over the period of a year leading to more diversity
in appearance. During this period, one route in central Oxford is traversed twice a week collecting data for
more than 1000 km. Although this is a notable distance, the novelty of this dataset is the variety in scene
appearance since the sequences are recorded in different weather conditions during all four seasons.

The sensor suite of RobotCar consists of a stereo camera setup, two 2D lidars and one 3D lidar and
GNSS/INS data. In contrast to the KITTI dataset, RobotCar consists only of raw data sequences without any
ground truth labels.

Figure 2.5: Raw image from the Oxford Robotcar dataset.
Figure 2.6: Undistorted and demosaiced image of Oxford

Robotcar dataset.

WEpod
The WEpod is able to record its own dataset. For the goal of this project, two recordings are obtained. One
dataset is recorded at Researchlab Automated Driving Delft (RADD) while the second dataset is recorded at
the University in Wageningen.

The dataset at RADD is recorded in a private property setting which means that the image sequence does
not resemble the general road scenery. The path is made out of concrete slabs and hence are not similar
to road layouts. Furthermore, no pedestrians, cyclists or other traffic is present on the property during the
recording. However, this dataset is used for testing the created algorithms. An example of this dataset is
shown in figure 2.7.
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The second dataset has parts which are recorded on public roads while other traffic participants are
present. Despite these traffic participants, the recording does not show highly varying scenery. An exam-
ple of this dataset is shown in figure 2.8.

Figure 2.7: Raw image from WEpod dataset recorded at RADD
(19-10-2017).

Figure 2.8: Raw image from WEpod dataset recorded at
Wageningen.

2.1.3. Overview datasets
An overview of the aforementioned datasets is provided in table 2.1 based on number of training, validation
and test images. Furthermore, the number of classes that are used during the training phase are noted.

The training set of KITTI contains 1060 images which are all recorded in a city-like environment and
represents a variety of environmental scenes since different drives are used. The RobotCar training set exists
of 2730 images from one recording

Test images from the KITTI domain are obtained from three different categories: city, road and residen-
tial. The road category and residential category are represented by 100 each while 50 images recorded in a city
environment are present. The test set of RobotCar is composed of a subset of 250 images from one recording.
Unfortunately, the WEpod is not as diverse as KITTI or RobotCar. Two options for the test set were the record-
ing at RADD and the recording in Wageningen. Since the trajectory at RADD is far from representative of real
road scenes, the trajectory at the University of Wageningen is chosen. From this set, a subset of 250 images is
chosen to create the test set.

All test images are manually selected in order to achieve a good diversity throughout the total set and
ensuring the correctness of the ground truth labels.

Dataset # Training images # Validation images # Test images # Classes

CityScapes 2975 500 n/a 11
KITTI 1060 114 250 3

RobotCar 2730 303 250 3
WEpod 493 54 250 3

Table 2.1: Overview of all utilised datasets throughout this study.

2.2. Image segmentation
Image segmentation is the process of partitioning an image into different regions based on the similarity of
neighbouring pixels. This similarity can be based on a whole range of elements or parameters and can vary
from colour to texture and shape [54]. The parameters on which segmentation is performed will differ per
case since the objective of each segmentation may differ.

Image segmentation is used as a tool when an image is decomposed into separate parts for further anal-
yses. This simplification is useful for different applications, such as medical imaging. Separating healthy
tissues from abnormal tissues to correctly identify brain tumours is an example where image segmentation
is helpful [2].

The sum of the segmented regions often covers the whole image. This is a requirement for semantic
segmentation which is defined as the assignment of each pixel of an image to a semantically meaningful class.
However, when not every pixel is classified, and hence the image is not completely covered by segments, it
can be still referred to as segmentation; instance segmentation. An example is shown in figure 2.9.
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Figure 2.9: An example of semantic segmentation (b) and instance segmentation (c), clearly demonstrating the differences. Image
modified from [32].

2.2.1. Semantic segmentation
As highlighted in section 2.2, image segmentation is the partition of an image into coherent parts without
necessarily understanding what these parts represent. This is different from semantic segmentation which
is the process of labelling each pixel in the image as one of the predefined classes and hence obtaining a
certain understanding of the scene. Based on the predefined classes, AVs can obtain an understanding of
its surroundings which is essential for enabling path planning and obstacle detection. Semantic segmenta-
tion can also help to play a role in visual odometry (determining position and orientation based on images)
[1] by determining a higher uncertainty to dynamic obstacles than static obstacles by incorporating motion
estimation.

[52] jointly uses semantic and geometric information in order to obtain robust visual localisation. The
key of this attempt to apply localisation under extreme viewpoint and appearance changes is the method of
learning robust 3D semantic descriptors. Hence, this approach shows that semantic segmentation can play
an important and potentially essential role in solving the fundamental problem of visual localisation in a wide
range of viewing conditions.

Since each pixel of the image needs to be assigned, it is obvious that manually creating a training set with
semantically segmented images is a time consuming task. [14] mentions an annotation time (including qual-
ity control) of 1.5 hours for one image. High labour costs in combination with data hungry neural networks,
result in an expensive combination.

Figure 2.10: Image from the KITTI raw dataset with the pixel-wise semantic segmented ground truth.

2.2.2. Semantic classes
For semantic segmentation of images predefined classes are necessary. Obviously, these classes will relate
to the application for which the images will be used for. An example of a fully semantic segmented image is
shown in figure 2.10. The advantage of such a detailed segmented image is that it results in a high level of
understanding of the scene. As mentioned in section 2.2.1, the disadvantage is the labour cost. It is possible
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to define less classes while still being able to give a useful scene understanding. Classes that are considered
and differences with similar classes are highlighted in the following sections.

Road segmentation
Road segmentation is a vital part of scene understanding for pedestrian detection and autonomous driving
[27]. It is important to know the position of the vehicle relative to the road markings or, when markings are
absent, road layout. However, the challenge of road segmentation is to correctly segment in case of different
occlusions such as cars and traffic participants. But also when the road type differs in some directions when
roads have been broken open and repaired with a different material. It can also be challenging when weather
conditions are bad for example when the road is still wet or when there are still puddles on the road. Except
for rain, shadows can cause similar problems.

An approach based on publicly available OpenStreetMap (OSM) is exploited by [34]. Initial training labels
are generated in an automated fashion by using noisy data from OSM. Hereafter, the labels are refined pixel-
wise and used in a fully convolutional network in order to segment the road area. Due to this procedure
annotation effort is reduced and hence supervised road segmentation algorithms are scalable.

Where [34] used OSM as initial training label, [30] use a deconvolutional network (DeconvNet) based on
RGB and depth to provide initial labels. Both on pixel-level as on path-level, features are used to refine these
initial labels. On patch-level, the road scene geometry feature is utilised while on pixel-level appearance and
depth are used. The pixel-level features are obtained via a Random Forest classifier for each road scene.

A multi-task network is proposed by [63] who use a relatively straightforward encoder-decoder network to
jointly deploy classification, detection and (road) segmentation. The approach is basic but efficient, perform-
ing with very low computation times. One encoder connects to three separate decoders which each perform
their own task.

Lane segmentation
A lane segment is always a part of the road segmentation. For highways, lane segmentation is relatively easy
since it is well defined by road markings but it becomes significantly harder to identify when travelling in
urban areas since there are no predefined lanes and in some cases roads are not wide enough to contain two
lanes.

[44] have divided the task of lane segmentation in two tasks/branches. The segmentation branch will
create a binary lane mask while the embedding branch will produce an embedding per lane pixel in such a
way that embeddings from the same lane are close together while different lane embeddings are located far
from each other. After masking the background pixels using the binary mask from the segmentation branch,
the lane embeddings are clustered together resulting in lanes separated by the marking splines.

Drivable path
Different from lane segmentation, where only the currently occupied lane is segmented, drivable path seg-
mentation, highlights a proposed path where the vehicle is able to drive avoiding obstacles. Therefore, the
drivable path will not occupy the whole lane and additionally is able to suggest a path around obstacles,
changing lanes. When approaching intersections, it is important that the proposed path includes all possible
options. This results in a manifold of solutions for multiple incoming roads [5].

In figure 2.11, the difference between the three previously mentioned segmentation classes is visualised.
The upper element of the figure is the image as recorded. Below this image, the ground truth is representing
three classes: road, non-road and unlabelled. In the bottom image, lane segmentation and drivable path
are both shown to explicitly mention the difference between the two. In contrast to road segmentation, lane
segmentation only labels the current lane where the recording platform is in. Drivable path ground truth
contains the actual path the recording platform has followed. As can be seen in figure 2.11 (bottom), a lane
change is ahead.

Free space estimation
The road is generally divided into two parts: occupied space and free space. Within the road segment, free
space is defined as the space where a vehicle can freely move without colliding with other objects [39], [27].
Where the aim of road segmentation is to classify each pixel belonging to the road as such, the aim of free
space segmentation is to classify each pixel where the vehicle can navigate without collisions as free space.
Pixels beneath a car can be seen as a situation where the difference between the definition of these segments.
For road segmentation the pixels beneath the car should be classified as road while for the free space seg-
mentation, these pixels should be considered as obstacle (i.e. non-free).
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Figure 2.11: Visualisation of the difference between road segmentation (middle; grey area) and lane segmentation (lower; grey are) and
drivable path (lower; green area). NOTE: the lane change of the drivable path can clearly be seen in the lower image.

Occupancies
Occupancies form a crucial class for autonomous vehicles. Because self-driving vehicles share the road with
other traffic participants which are referred as occupancies from the view point of the autonomous vehicle.
However, there are more occupancies for the self-driving car; this class is a collection of static obstacles such
as parked cars and buildings and dynamic obstacles comprising cyclists, pedestrians and moving cars. Seg-
mentation of the occupancy class is challenging in some setups due to spatially different lighting conditions
(i.e. some areas are overexposed). Dependent on the location, obstacles can resemble the background which
may lead to missing the obstacles [27]. Figure 2.12 shows an example image containing the occupancy label.

Unknown area
Unknown area specifies the space which is not included in the occupied space and drivable space. This
definition results in no clear boundaries for this class because it is the remainder and has no specific meaning.
In some cases, depending on the specifications of the lidar sensor, parts of occupancies can be included in the
unknown area space. Furthermore, sidewalks are often classified as unknown area because of the complexity
to extract them from the lidar data. Based on these examples of unknown area it is clear that there are some
significant differences with free space.

2.3. Semantic segmentation methods
Different segmentation methods are categorised into two groups: hand-crafted methods and learned meth-
ods. Section 2.3.1 describes image segmentation techniques which are used before the rise of Deep Learn-
ing (DL), heavily depending on hand-crafted features combined with classifiers. Although these methods
performed better over time, the performance of these approaches will always be bounded by the limited ex-
pressive power of the features. This restriction is resolved by deep learning since features are created by the
system itself. The subsection of learned methods is related to this period of time (i.e. current time span),
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Figure 2.12: Example image of the KITTI raw dataset and the corresponding generated ground truth label. Red refers to occupancies,
blue to unknown area and the drivable path is depicted as green.

mainly focusing on learned techniques to semantically segment road scenes.

2.3.1. Hand-crafted methods

Before the breakthrough of DL in 2012 [33], successful image segmentation was based on hand-crafted fea-
tures combined with classifiers. Several machine learning approaches were used such as Support Vector
Machines (SVM). Pixel-level colour and texture features are used as input for the SVM classifier by [66]. These
features are manually extracted via a homogeneity model and a Gabor filter (a linear filter for texture analysis).
Instead of pixel-level features, [19] use superpixel-level (local) features as the base for class segmentation. Ag-
gregated histograms of the surrounding features are used as basis for the SVM classifier. Refinement of results
is done by using Conditional Random Fields (CRFs) on the superpixel graph.

[42] defines image segmentation as the partitioning of an image into regions of coherent brightness and
texture. Contours are treated via an existing framework while textons (clustering of responses of a linear filter
bank) are introduced for analysing the texture. Hereafter, the cues of contour and texture differences are
exploited simultaneously to find the correct partitions.

Textons are also exploited by [56] who use a texture-layout filter which is based on texture, layout and
context information simultaneously. Additionally, boosting is used to achieve one-class classification and
feature selection. Inclusion of this unary classification in a CRF is used to attain accurate object recognition
and semantic segmentation.

In order to combine multiple classifiers [53] shows the capabilities of Random Forest, which is a collection
of multiple decision trees. Furthermore, the combination of multiple features simultaneously as exploited via
the random forest architecture leads to a further increase in performance when textons, colour, filter banks
and Histogram of Oriented Gradients (HOG).

New low-level features are introduced in the form of semantic texton forests [55]. Semantic textons are
ensembles of decision trees that act directly on image pixels. The bag of semantic textons is computed over
local rectangular regions for segmentation. Textural and semantic context are included by semantic texton
histograms and the region prior which is a class distribution computed as the average of leaf node class dis-
tributions of all trees in the forest.

A probabilistic framework proposed by [22] combines three individual models: a local classifier, regional
label features and global label features, each encoding different information. By means of this framework
contextual features are included via multi-scale CRFs with the aim of semantic segmentation of images.
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2.3.2. Learned methods
Since interest in semantic segmentation increased due to the diverse applications such as autonomous driv-
ing, development on CNNs for semantic segmentation is a dynamic area of research resulting in impressive
results. Modifying ILSVRC winning networks (e.g. VGG [59]) for image classification into a Fully Convolu-
tional Network (FCN) for semantic segmentation resulted in state-of-the-art results on a variety of datasets
[37]. SegNet [4] is a network consisting of two parts: an encoder and a decoder, where the encoder of SegNet is
also based on VGG. In a few steps, this decoder will map the low resolution feature maps from the encoder to
a final feature map by transferring pooling indices from the encoder. This helps to keep the spatial structure
of the input (feature) map(s).

While both previously mentioned architectures are (partially) based on the VGG structure, [67] proposes
a network based on a different idea. It is suggested to use a modified version of a Residual Network (ResNet
[21]) as basis for semantic segmentation. Instead of constructing increasingly deeper networks, this modified
ResNet is an ensemble of shallow networks. This version combines FCN and DeepLab ([10]) and outperforms
very deep ResNets. Another extension of ResNets resulted in the densely connected convolutional networks
(DenseNet [25]). [28] successfully extended DenseNet to be able to deploy the network for semantic segmen-
tation instead of the original task of object recognition.

DeepLab uses Atrous (i.e. dilated [69]) Spatial Pyramid Pooling (ASPP). ASPP refers to the process of apply-
ing several parallel dilated convolutions with variable rates of dilation. These different rates are implemented
in order to catch both local and global representations, classifying each pixel based on multi-scale features.
PSPNet [72] performs several pooling operations on the feature map of the last convolutional layer with dif-
ferent pooling dimensions, aiming for the same goal, namely incorporating context information at different
scales. PSPNet achieves higher evaluation metrics even without post-processing techniques such as CRFs
which are used within DeepLab to boost performance.

To combine the advantages of an encoder-decoder architecture (identifying sharper boundaries) and spa-
tial pyramid pooling module (multi-scale contextual information) [11] proposes a network which includes a
spatial pyramid pooling module in the encoder while adding a simple decoder. This network, referred to as
"DeepLabV3+" achieved top ranking on the CityScapes dataset.

2.4. Transfer learning

Figure 2.13: An overview of different settings for transfer learning. Image obtained from [46].
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As described in the subsection 2.3.2, the results on several leading benchmarks for semantic segmentation
are increasing to impressive accuracy. These state-of-the-art performances are achieved by the traditional
approach of training a network on a certain source domain and subsequently testing on different data from
the (same) source domain. For road scenes this implies that the test data is recorded with the same recording
platform as the training set within the same environment. Additionally, all networks resulting in state-of-the-
art benchmarks are trained for the task which eventually is deployed on the test data (i.e. the source task is the
same as the target task). In short: state-of-the-art results are achieved under ideal circumstances. However,
these ideal circumstances are often not available, implying the need for different approaches. One approach
aiming to resolve this problem is referred to as Transfer Learning (TL) which is depicted in figure 2.13.

Domain Adaptation (DA) is a subset of TL and is concerned with the process of transferring knowledge
obtained from a source domain to a different (target) domain while performing the same task. Based on two
steps, [65] aims for simultaneous deep transfer across domains and tasks. First, the domain confusion is
maximised which aims to align the domains and hence making the distributions of the domains as similar as
possible. This is implemented by a domain confusion loss objective. Second, the proposed network transfers
task information between domains by a cross entropy soft label loss.

The novelty of the approach of [38] lies in the implementation of classifier adaptation which is achieved
by assuming that the source classifier differs from the target classifier by a residual function. Furthermore,
feature adaptation is achieved by aligning the distributions across the different domains. While these ap-
proaches are successful, the implementation focuses on the image classification while this research is con-
cerned with semantic segmentation.

Domain adaptation for semantic segmentation is initiated by [23] who considered the learning scenario
of strong supervision in the source domain while no supervision was available in the target domain with
the goal of semantically segmenting images. The implementation consists of global and category specific
adaptation tested on three scenarios: synthetic to real adaptation, cross seasons adaptation, and cross city
adaptation. While using a similar approach to tackle the problem [12] deploys the network only for cross city
adaptation, however, in a more thorough way. Instead of cross city adaptation within the CityScapes dataset
(as done by [23]) they use cross city adaptation for cities around the world.

Focused on unsupervised adaptation for the task of semantic segmentation [71] also exploits fully convo-
lutional adversarial training. In more detail, the adaptation happens on both visual appearance and repre-
sentation level. The former modifies both source and target images in such a way that they are more similar
visually. The latter utilises the fully convolutional adversarial training method for a domain invariant repre-
sentation.

Adversarial adaptation models applied in feature spaces discover domain invariant representations. Be-
cause adversarial adaptation models sometimes fail to capture pixel-level and low-level domain shift, [24]
proposes a Cycle-consistent adversarial domain adaptation model (CyCADA). This model enforces cycle-
consistency by taking five different losses into account: image-level GAN (Generative Adversarial Network)
loss, feature level GAN loss, source cycle loss, semantic consistency loss and source task loss.

2.5. Top view transformation
It is essential for Autonomous Vehicles (AVs) to be able to relate measurements from different sensors for a
variety of applications for the vehicle (e.g. tracking) [50]. Therefore, it is important to combine data from
different sub spaces into one generic space. This generic space should contain all information and give an
overview of the environment, hence the image space is not sufficient.

For autonomous driving applications, it is often sufficient to map the road surface in 2D (i.e. in top view)
which allows for accurate localisation with respect to features on the road such as road markings or obstacles
on the road surface [27]. The differences between top view space and image space are shown in figure 2.14.

Recent research has explored the field of road segmentation based on point clouds. [9] creates a network
from scratch and thus perfectly matches the task. [8] uses a similar approach in order to generate the driving
path. Both methods apply the network on the point cloud which is projected in top view. [40] even uses input
maps projected in spherical coordinates because point clouds are least sparse in this projection.

Although these researches prove that (road) segmentation can be done in other views than image space,
(semantic) segmentation still generally is deployed in the image space because image space contains a lot of
details that vanish in top view and the image space is easily interpretable for humans.
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Figure 2.14: Image view (top) versus top view (bottom). Image obtained from [36].

2.5.1. Path planning
A detailed map of the environment is often necessary for path planning and navigation of an self driving
vehicle [27]. The environment is not limited by the front view of the vehicle and occlusions are not allowed
to play any role. It is necessary to have sight on the full 360°view around the vehicle. To obtain the whole
environment of the vehicle in one map, a top view map can be created.

Many current methods for motion planning, path planning and route planning happen in top view. [45]
gives a nice overview of motion planning and control techniques for autonomous vehicles.

The unified framework for manoeuvre classification and motion prediction created by [15] is projected in
top view. In this way the framework is able to exploit multiple cues, such as the estimated motion of vehicles,
an understanding of typical motion patterns of freeway traffic and inter-vehicle interaction.

[50] presents a framework for tracking multiple objects. The framework accepts object proposals from
both camera and lidar to produce continuous object tracks. Throughout this work, two approaches for the
projection towards top view are used. The effects of different camera setups, fusion schemes and 2D-to-3D
projection schemes are examined.

Furthermore, [8] projects the driving path, generated by a fully convolutional neural network from the
obtained point cloud, in a top view map. Although this resembles our goal of estimating drivable paths and
projecting them into a usable space, there are some differences in the process. The mentioned research
concerns with point clouds which can easily be transferred to top view while this work is solely dependent
on the image segmentation making the transformation to top view different. Therefore, in this thesis, several
possibilities are examined.

2.5.2. Relevance of semantic segmentation for autonomous vehicles
Semantic segmentation within the field of AVs mainly acts a tool for scene understanding but can also act as
an helpful tool for localisation and visual odometry, as mentioned in the introduction of the chapter. Scene
understanding viewed from the point of obstacles can be split up into two parts: dynamic obstacles (e.g.
pedestrians and other traffic participants) and static obstacles (e.g. parked cars and buildings). Detecting
dynamic obstacles is often done by obstacle detection, resulting in the type of obstacle and bounding boxes
which indicate the extent of the obstacle. Static obstacles are mapped via semantic segmentation.

Semantic segmentation can aid in case of obstacle detection. Obstacles can falsely be detected by a variety
of reasons. The silhouette of a person can be projected on the ground because of shading while cars can be
reflected in the windows of buildings or buses (an example is shown in figure 2.15). In order to recognise these

4https://www.youtube.com/watch?v=LSX3qdy0dFg&t=2000s
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Figure 2.15: A situation where semantic segmentation could help object detection. Image obtained from a guest lecture of Sasha
Arnoud (Director of Engineering, Waymo) for the MIT 6.S094 course4.

false positives, a combination of systems should be applied. Semantic segmentation helps to understand the
scene correctly and is able to prevent these false detections.

2.6. Summary
An autonomous vehicle, such as the WEpod, is equipped with a sensor suite. Except this sensor suite, and
due to the increased attention for self-driving vehicles, datasets are made available to push the field to new
levels. Both the sensor suite of the vehicle itself and datasets are necessary for the vehicle to understand its
environment.

In addition to these elements, semantic segmentation of road scenes is a valuable approach to understand
the surroundings of the vehicle. A broad variety of semantic classes can be useful for understanding the scene.
However, a highly detailed understanding of the environment inherently leads to a large number of classes.

A distinction between two categories is made when evaluating the possible semantic segmentation meth-
ods. The first category contains methods that are based on hand-crafted features. These hand-crafted fea-
tures are not required for the second category which is based on learned methods, mainly convolutional
neural networks. The latter achieves better performance since the recent development of these methods.

One common disadvantage of these learned methods is the amount of training (both data and time) that
is needed in order to achieve satisfactory results. Transfer learning is one approach to avoid this problem.
Transfer learning is able to transfer "knowledge" from one problem consisting of a certain (source) task in a
certain (source) domain to a different (target) task and/or a different (target) domain. This reduces the need
for training data since advantage is taken from already existing knowledge. In this study, domain adaptation
will be utilised which is the transfer of knowledge when source and target task are the same but deployed in a
target domain that differs from the source domain.

To benefit from scene understanding in image space (i.e. semantic segmentation is deployed on image
sequences), a conversion to another space should be applied. This transformation is necessary because path
planning and higher level decisions are made in top view or a similar space.





3
Methodology

After discussing related work about semantic segmentation methods, different transfer learning approaches
and the importance of the transformation to top view in chapter 2, the methodology used for three aspects is
discussed in this chapter. The approach of weakly-supervised learning and the generation of labels is described
in section 3.1. Then, the methodology behind the examination of the influence of several domain shift factors
for semantic segmentation is discussed in 3.2. Different setups of the transformation to top view are described
in section 3.3. The last section of this chapter contains a summary.

3.1. Drivable path segmentation
This section is divided into three parts. The first subsection will zoom from a broad view of learning methods
towards the conducted learning method. The second subsection will examine this learning approach into
detail while the last subsection briefly explores the implemented network for the learning approach.

3.1.1. Learning methods
Data is essential for learning. Except obtaining data, it is also key how to utilise and organise the data in such
a way that it is optimally used to learn. In general data is subdivided into three sets, independent of learning
method:

• Training set: A subset of the data which is used to fit the model or network. During training, model
parameters are adjusted such that they fit this set of data.

• Validation set: A selection of the data which is used to estimate the prediction error for model selection
or hyperparameter (i.e. parameters that cannot directly be learned during training) tuning.

• Test set: Sample of the data which is used for assessment of the generalisation error of the finally chosen
model and/or (hyper) parameters.

It is important to create a separate test and validation set because the error estimates of the final model
and hyperparameters on validation data will be biased. It will show better evaluation metrics than the true
metrics since the validation set is containing data that is used to select the final model and tune the final
hyperparameters. Because of this reason, it is not "allowed" to tune the model based on the test set.

Learning techniques are categorised in three major categories [6]: supervised learning, unsupervised
learning and reinforcement learning. These categories are briefly explained in the sections below. Addi-
tionally, weakly-supervised learning is highlighted since this technique plays an important role in this work.

Supervised learning
Supervised learning is a method where the training set contains input data (e.g. images) together with their
corresponding output vectors (in case of semantic segmentation this equals the the semantic label of the
image). If the desired output consists of one or more continuous variables, the learning task is referred to as
regression. However, when the task is to assign each input vector to one category, out of a finite number of
categories, it is called classification.

21
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Unsupervised learning
For unsupervised learning, in contrast to supervised learning, the training set only consists of input vectors.
No corresponding output vectors are available. Unsupervised learning can be used for a range of applications:
clustering (grouping similar data points), density estimation (determination of distribution of input data) and
visualisation (reduce the dimensions of the input vector) [6].

Reinforcement learning
To complete the major learning categories, reinforcement learning is briefly discussed. The goal of reinforce-
ment learning [61] is to learn a task consisting of a series of inputs with a delayed result. The learning tech-
nique learns to find suitable actions that will complete the task. It differs from supervised learning by the fact
that it does not have the desired (optimal) output for very input, but only the desired end goal after a series
of inputs. However, by iterating it can find a (better) solution which results in a higher reward. This iteration
process can be seen as a sequence of states and actions which result in interaction with its environment [6].
The most well-known example of reinforcement learning is AlphaGo [58], the first program to defeat a world
champion in the game of Go.

Weakly-supervised learning
Although current supervised learning techniques are able to obtain high accuracy for a whole range of tasks, it
often is difficult to obtain or create strong labels to act as ground truth. Hence, weak supervision is a solution
to this problem. There are different types of weak supervision possible [73]:

• Incomplete supervision: the training set only partially has ground truth labels

• Inexact supervision: the training set only has coarse labels

• Inaccurate supervision: the training set contains labels which are not always equal to the ground truth

Incomplete supervision is the learning environment where only a part of the total training set contains
ground truth labels. This is often referred to as semi-supervised learning and will not be considered in this
work. The other two types of weak supervision are very similar: inexact and inaccurate supervision. Inexact
supervision is the approach where ground truth labels are available for the complete training set but the
labels are only coarsely annotated (e.g. figure 2.3). For inaccurate supervision, the training set also consists of
ground truth labels corresponding to every image of this training set. This ground truth, however, can contain
small inaccuracies in the labels. In other words, pixels in the ground truth label classified as class X can in
reality contain (small) parts of class Y. In this thesis, when referring to weakly-supervised learning, inexact
supervision is intended. Therefore weakly-supervised learning is similar to supervised learning but instead
of comparing the output vectors to ground truth data, it compares every output vector to weak labels that act
as ground truth.

Self-supervised learning is the process of using the output of the model or network as a proxy for the
desired output vector. Basically the structure of the data is used as a supervisory signal (which relates to
unsupervised learning since no (manual) annotations are used).

3.1.2. Weakly-supervised segmentation
The weak labels are created in an automated fashion, adopted from [5]. This three-step process starts with
the projection of the drivable path in the image. This is based on the assumption that the trajectory taken
by the recording platform is the ground truth trajectory. The drivable path refers to the outermost points of
the contact of the tires with the ground. These ground contact points are projected because the positions are
known via the sensor setup (i.e. dimensions of the vehicle with sensor placement) of the recording platform
and the GPS and IMU data. From the sensor setup, the dimensions from the contact point of the front wheels
with the ground to the camera (with respect to the camera frame) is used.

The projection of points in the camera frame to the image plane is achieved by the pinhole camera model
as visualised in figure 3.1. In this model, a scene view is formed by projecting 3D points into the image plane
using a perspective transformation. This perspective transformation is specified as:s ·u

s · v
s

= K ·
xcam

ycam

zcam

 , (3.1)
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where xcam, ycam and zcam are the coordinates in camera frame while u and v are the corresponding image
coordinates. In equation 3.1, s is a scale parameter. K represents the camera matrix and is expressed as:

K =

 fx 0 cx

0 fy cy

0 0 1

 , (3.2)

where fx and fy are the focal lengths in x and y direction measured in pixel units. In a true pinhole camera, they
are equal to each other. cx and cy are referring to the principal point offset, also noted in pixel units. Because
K is only concerned with the transformation between the camera coordinates and the image coordinates, the
absolute camera dimensions are irrelevant. Using pixel units for focal length and principal point offset allows
to represent the relative dimensions of the camera, namely, the film’s position relative to its size in pixels.

Figure 3.1: Visualisation of the pinhole camera model1.

Ground scatter removal
The point cloud obtained by the laser scanner contains, besides the obstacles, also the ground plane of the
road in front of the vehicle. Obviously, this ground scatter will not act as an obstacle for the vehicle and
should thus be removed from the point cloud. Hence, after this removal the point cloud will only contain
points which correspond with an obstacle for which it is important that the vehicle should avoid.

The ground points are removed from the point cloud based on GNSS data, IMU data and the external
dimensions of the recording platform (i.e. the height of the laser scanner above the road). For this explana-
tion, the time stamp which is currently considered is referred to as t0 while the image during this time stamp
is equal to the base image and denoted as i0. The position of the IMU (the pose) at a certain time stamp is
denoted analogous to this time stamp (i.e. IMU position, or pose, at time stamp t0 is referred to as I MU0).
Time stamps ahead of this base, called future time stamps, are denoted as t1, t2,... while the notation of the
pose follows the same trend (I MU0, I MU1,...). It is possible to visualise future poses in the base image via the
GNSS data.

Basically, the point cloud belonging to time stamp t0 is subdivided into different areas parallel to the side-
to-side line of the vehicle. These areas are enclosed by pose I MUk to I MUk+1 with k ranging from 0 to 50.
For every area, points from the point cloud are removed when the point is less than 10 cm above the ground
based on the height of the laser scanner and the position of the vehicle (i.e. IMU) relative to the time stamp

1Image obtained from: https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.html?#

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?#
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?#
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t0. In this manner, the slope of the road ahead is accounted for.

After the ground scatter is filtered from the point cloud, the resulting point cloud is transformed to image
coordinates. Then, the base image is virtually divided in 100 vertical bins. For each bin, all pixels above the
lowest projected laser point are labelled as obstacle in that specific bin. When there is no laser point present
in a bin, no pixels in that bin are labelled as obstacle. In case a pixel obtains labels both as drivable path and
obstacle, the obstacle label is superimposed over the drivable path [7].

As third and last step, pixels without a label at this point will be labelled as ’unknown area’. These areas
often consist of sidewalks, road and depending on the lidar (4-beam; RobotCar and WEpod) sometimes will
include small areas of other vehicles and buildings. This characterises that we are using weak labels. Figure
3.2 shows example images from KITTI, RobotCar and WEpod with the corresponding weak labels.

Because this method is not applied through an extensive set of work (yet), there is no benchmark available.

Figure 3.2: Example images and created labels of the KITTI raw dataset (left), Oxford RobotCar (middle) and the WEpod dataset (right).
Red refers to occupancies, blue to unknown area and the drivable path is depicted as green. All images are a resized to fit.

3.1.3. SegNet
A neural network is deployed to segment images into three classes (occupancies, drivable path and unknown
area). The network needs to be robust and the goal is not focused on achieving state-of-the-art results. [5]
proves that SegNet is able to achieve good results with the same classes and therefore SegNet is chosen as
network for semantic segmentation.

SegNet is an encoder-decoder network first introduced by [3] in 2015. Despite not obtaining state-of-the-
art results for semantic segmentation anymore, it has proven to be a very robust network and often acts as a
baseline for experiments with new architectures. The architecture of SegNet is shown in figure 3.3.

The architecture shows the encoder on the left side while the decoder follows on the right side. The en-
coder of SegNet is identical to the VGG16 network [59] except for the three fully connected layers of VGG16,
these are left out in SegNet. Every convolutional layer (except the last layer in the decoder) is followed by a
batch normalisation layer [26] and a Rectified Linear Unit (ReLU) activation function. The pipeline of these
operations is presented as a blue layer in figure 3.3. In order to reduce the resolution of the input (feature)
map a pooling layer is applied at the end of each block (the green layers in figure 3.3). During these down-
sampling steps, indices of the pooled (maximum) values are transferred to the corresponding upsampling
layers (red layers in figure 3.3) in the decoder, aiming to keep the spatial structure of the original image. The
last layer of the decoder consists of a softmax layer (yellow layer in figure 3.3) which results in a pixel-wise
segmented image.
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Figure 3.3: Encoder-decoder architecture of the implemented CNN. Image modified from [4].

Convolution layer
A convolutional layer consists of a filter (i.e. kernel). The size of the filter is adaptable but generally equals
three by three pixels. The third dimension of the kernel will always cover the total number of input (feature)
maps. The kernel is filled with values called weights and will slide over the image with a certain stride; when
the stride equals one, the complete filter will shift with one pixel at the time. During this operation, it will
multiply every element of the kernel with the corresponding element on the feature map(s) and finally sum
all these multiplications, resulting in one value. This process is often referred to as neuron. The operation is
simply represented by the following formula:

F MR,C =∑
K

(
WR,C ,k · xR,C ,k

)
+bias, (3.3)

where FM is the output feature map, W are the kernel weights and x is the input (feature) map. In this equa-
tion, R represents the row and C shows the column. K is equal to the number of feature maps while k ∈ K. The
number of channels of the output (activation) map is equal to the number of filters.

Figure 3.4: Low level example of convolution in a neural network. Image modified from CS231n course2.

Batch normalisation layer
Introduced by [26], Batch Normalisation (BN) has three (main) goals:

• Batch normalisation improves gradient flow through the network
• Batch normalisation allows higher learning rates
• Batch normalisation reduces the dependency on initialisation

The BN layer often occurs in one pipeline with the convolutional layer and is followed by an activation
layer. During the training stage, every mini-batch is normalised separately by computing the mean and vari-
ance of that specific mini-batch. Two parameters, γ and β are learned through training. These parameters
represent a scaling and shifting value respectively, resulting in more flexible learning.

2Lecture 5 - Convolutional Neural Networks:
https://www.youtube.com/watch?v=bNb2fEVKeEo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=5

https://www.youtube.com/watch?v=bNb2fEVKeEo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=5
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Activation layer
The activation function is a key component within neural networks. It brings non-linearity into the network
which enlarges the potential capabilities to solve complex problems. There are a variety of activation func-
tions which should be differentiable in order to train the network via back propagation.

A Rectified Linear Unit (ReLU) is used in SegNet which mathematically is presented by:

f (x) = max(0, x), (3.4)

where x represents the input to a neuron while f(x) equals the output of the activation layer. The ReLU layer
is visualised in figure 3.5.

Figure 3.5: Visualisation of the ReLU activation function.

Utilising a ReLU function will lead to a sparse network since not every neuron will be activated by ReLU
which is a positive attribute concerning computation. Examining figure 3.5, it is clear that all negative values
will be converted to zero. The result of the behaviour of the ReLU function in the negative domain is a gradient
which also equals zero. Because the gradient is zero, weights are not updated during back propagation and
create dead neurons which never will be activated again.

Pooling layer
There are different variants of pooling layers such as average pooling but SegNet only uses maximum pooling
layers with a dimension of two by two. Hence, the pooling layer is a window of two by two pixels that slides
over every channel of the image or feature map. During this operation it only keeps the maximum value and
hence reduces the output resolution by a half in the case of SegNet.

The indices of these maximum values are also stored which is specific for the SegNet architecture. These
indices are used in the corresponding upsampling layer in the decoder to upsample the feature maps. This
transfers the spatial structure of the original image to the output vector and is visualised in figure 3.6.

Figure 3.6: Visualisation of the upsampling process of SegNet. Image obtained from [5].

Softmax layer
The softmax layer in SegNet is the last layer of the network and acts as a classifier. This layer produces an prob-
ability for each class with the highest value for the most probable class. The distribution of these probabilities,
however, depends on the regularisation strength. The softmax function is also known as the normalised ex-
ponential and equals the multi-class generalisation of the logistic sigmoid function [6]. The softmax function
is represented by
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S(yi ) = e( yi )∑
j

e( y j )
, (3.5)

where y is the input vector with length j over which the softmax function is computed. Hence, yi represents
the ith element of this input vector.

Loss function
SegNet is using a modified version of the cross-entropy loss. The original cross-entropy loss of one observa-
tion is expressed as:

L (y, ŷ) =−
C∑

c=1
yc ln(ŷc ), (3.6)

where C represents the total number of classes. yc is a binary indicator for class c and is equal to 1 when the
observation is classified correctly and equals 0 otherwise. ŷc is the predicted probability that the observation
is classified as class c.

To tackle the problem of class imbalance (i.e. more pixels are classified as obstacles and unknown area
than drivable path), the original cross-entropy loss is weighted in the SegNet architecture. These weights are
class dependent and different for each dataset. The imbalance weights are not trainable which means that
they are constant throughout training. Computation of the weights is according to the equation below:

Wc = M(F )

f (c)
, (3.7)

where f(c) stands for the frequency of c (i.e. the number of pixels of class c divided by the total amount of pixels
in the image). M(F) is equal to the median of frequencies of all classes. This weighting procedure results in
low weights for the larger classes while the smaller classes (drivable path in our case) has the highest value
and hence, will cause the loss to increase. The weight values for occupancy, drivable path and unknown area
are determined for a subset of the training data consisting of 256 images.

The objective or cost function of SegNet is a weighted cross-entropy loss, summed over all pixels of the
mini-batch and expressed as:

LCr oss−Entr opy (y, ŷ) =−
P∑

p=1

C∑
c=1

Wc · yc ln(ŷc ), (3.8)

with P equal to the total amount of pixels in each mini-batch (containing four images in our case). Note: the
regularisation term in this loss function is ignored.

Regularisation
Although, the regularisation term is not included in equation 3.8, it is present in SegNet. Regularisation is
added to the cost function in order to prevent the model from over-fitting. Hence, the total loss function
exists out of two parameters: the data loss and the regularisation loss. This is shown in the following equation
where the first part equals the data loss and the second part is the regularisation loss:

LSeg Net (y, ŷ) =−
P∑

p=1

C∑
c=1

Wc · yc ln(ŷc )+λR(W ), (3.9)

where λ is the regularisation strength and also referred to as weight decay parameter. This parameter de-
termines the ration between the data loss and the regularisation loss. R(W ) represents the regularisation
method. SegNet utilises the commonly used L2 norm which is the sum of the element-wise square of weights
and expressed as:

R(W ) =
E∑

e=1
w2

e , (3.10)

where, E is total amount of elements in the weight matrix. This will penalise the larger weights more because
of the presence of the square.
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3.2. Domain adaptation
As referred to in section 2.4, Transfer Learning or TL is one approach for resolving the fact that often no ideal
dataset is available. However, TL is a large collection of scenarios based on different situations of deploying
a certain task on a certain domain and contains three subcategories according to [46]: inductive transfer
learning, transductive transfer learning and unsupervised transfer learning. This is summarised in table 3.1.
The case of transductive transfer learning refers to the setting where the target domain does not have labelled
data available while the source domain does. Finally, the last category of TL is the method where labelled data
is not available in both the source and target domain. This is referred to as unsupervised transfer learning.
This research focused on a special form of transductive transfer learning, called Domain Adaptation (DA).
Domain adaptation requires a setup where source task and target task are the same but the domains where
these tasks are deployed are different.

Learning setting
Source and target Source and target

domain task

Traditional machine learning the same the same

Transfer Learning
Inductive Transfer Learning the same different but related
Transductive Transfer Learning different but related the same
Unsupervised Transfer Learning different but related different but related

Table 3.1: Relationship between traditional machine learning and transfer learning setups. Obtained from [46].

It is uncommon to train an entire CNN based on random initialisation, referring to the initial weights of
the CNN being random values. Datasets are often not large enough to be able to train with random initiali-
sation. In an exceptional case when the dataset is sufficiently large, the consequence of a very long training
period cannot be avoided. Instead, it is common to use weights which are already available through the
increasing popularity of neural networks.

These weights can be used as a fixed feature extractor. This relates to the case that the weights of the pre-
trained network are directly used and hence are not influenced by the training phase of the network. Except
this fixed feature extractor, another possibility is to use the weights as initialisation. This allows the network
to adjust the weights slightly (i.e. fine-tune) during the training phase. This is useful when the pre-trained
network had different number of classes which should be classified. How the weights are fine-tuned, can be
tuned per layer.

The following section will introduce the phenomenon called domain shift. The approach of the research
concerning the factors influencing this domain shift is explained in section 3.2.2. Finally, in subsection 3.2.3,
the evaluation metrics are explained. These metrics are used to make conclusions about the influence of
different factors on the domain shift for semantic segmentation.

3.2.1. Domain shift
Based on the setting of DA mentioned above, it is possible to use a network which is trained on a source
domain for the task of semantic segmentation while deploying the network for the task of semantic segmen-
tation on a different but related domain than the source domain. However, generally this setup show huge
performance drops for the target domain while achieving good results for the source domain, this is shown in
figure 3.7. This problem can be explained by the difference in distributions of the domains, also known as the
domain shift. This limited ability of a neural network to adapt itself to new domains is a common problem in
DA.

Mitigation of the domain shift is examined by a broad range of papers, however, only few resources target
to track the domain shift down to factors that can be manipulated. [31] analysed the influence of four factors
on object detection: spatial location accuracy, appearance diversity, image quality and aspect distribution.
They managed to show that these four factors almost close the whole performance gap which resulted from
the domain shift. However, this research focused on object detection and in our case, the focus will be on
semantic segmentation.

In order to address the influence of factors on the success of the domain adaptation, a baseline is created.
This baseline acts as an evaluation marker to monitor whether factors have a positive or negative influence
on the ability of the network to adapt itself to a new domain. The factors that are examined are mentioned in
section 3.2.2.
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Figure 3.7: Visualisation of domain shift. Left is the ground truth label for two images. The middle column represents the estimated
drivable path when trained on the target domain. The right column represents the estimated drivable path when segmentation is

deployed on a target domain that differs from the source domain.

3.2.2. Factors
Each factor that is examined is listed and the methodology of each experiment is explained in the subsections
below.

Default network and upper bound
In order to be able to determine the influence of different factors and to get a global view on the consequences
of different modifications, it is important to set one default network. Every factor is evaluated compared to
this default setting and thus no combinations of multiple factors is examined. For the default setting the
modification elements within the workflow are not activated.

Data equalisation
The initial dataset combination of RobotCar and KITTI consisted of 2730 and 1060 training images respec-
tively. In contrast to the imbalance in classes, the imbalance between these two domains is not resolved in
the loss function. Therefore, equalising the number of training images from these datasets will potentially
resolve a bias towards the larger dataset in the feature space.

Order of training
Another training setup is effecting the order in which the network will be fine-tuned. As a first approach,
SegNet is fine-tuned on RobotCar first and later on it is fine-tuned on KITTI. To exclude the effect of tuning
order, the setup is reversed; first train on KITTI and later on RobotCar. Exactly the same data is used to train
with exactly the same settings. The only difference is the order of tuning and hence the default workflow does
not match with this setting.

Greyscale
Originally, SegNet is intended for RGB images. However the target imagery (WEpod) is only available in
greyscale. Initially this was handled by copying the greyscale channel three times such that the original filter
weights could be implemented on the greyscale images of the WEpod. However, this implies that features
which are learned primarily by colour are not obtained when tested on target imagery. Therefore, another
setup was made by fine-tuning the neural network on the same images but converted to greyscale. The
comparison of these setups will indicate to what extend colour is important for creating features, which is
automatically done by the neural network.
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In neural networks it is important to detect edges and the combination of the edges make an object. For
tracking most edges, colour is not necessary. The transformation from RGB to greyscale is computed using
the formula noted in Rec. 601 [17]. The conversion is formulated as:

Y = 0.30 ·R +0.59 ·G +0.11 ·B , (3.11)

where R, G, B represent the red, green and blue channel of the original image respectively. Y is the output
value describing the intensity of the pixel with the same range of the original RGB channels.

Left-hand traffic
The RobotCar dataset is recorded in Oxford and consequently trajectories of the vehicle are located on the
left side of the road. The opposite is true for KITTI and the target domain of WEpod, thus an experiment
where the training and validation images are flipped is executed. A flipped image can simply be created by
the following expression:

Flippedr,c = Originalr,W −c , (3.12)

where Flipped is the flipped image and Original is the source image which is being flipped. r and c run
through every pixel in row and column respectively. W is the width of the source (and hence destination)
image. An example is shown in figure 3.8.

Figure 3.8: Original image of the RobotCar training set (left), after the flipping procedure (right).

Gamma correction
The human eye perceives colour and luminance differently than the camera sensors of the recording plat-
form. When the sensor acquires double the amount of photons, the signal is doubled where the human eye
only will see this doubled amount as a fraction brighter. In other words: the camera has a linear relationship
between amount of photons and signal while the human eye has a non-linear relationship.

Figure 3.9: Gamma correction for γ= 0.7.
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In order to account for this effect, gamma correction is applied which enhances the contrast of an image.
The mathematical expression of the gamma correction is depicted in figure 3.9 and is formulated as:

Vout put =
(Vi nput

255

)1/γ ·255, (3.13)

where Vout put is the gamma corrected output value and Vi nput equals the input pixel value. This input pixel
value is the Value component in the HSV colour space. Hence the image is first converted from RGB colour
space to HSV colour space before the power law transform is performed. The conversion of RGB colour space
to HSV colour space is expressed as:

V = max(R,G,B),

S =
{ (V - min(R,G,B)

V if V 6= 0

0 otherwise
,

H =


60·(G−B)

(V −mi n(R,G ,B) if V = R

120+60·(B−R)
(V −mi n(R,G ,B) if V = G

240+60·(R−G)
(V −mi n(R,G ,B) if V = B

.

(3.14)

Histogram equalisation
A method for contrast enhancement of an image is to distribute the intensity values more uniform over the
complete range. The dispersion of intensity values is translated as forcing the cumulative density function of
the pixel intensities of the image into a linear trend. A quantification of this intensity distribution is the image
histogram. An example of the intensity distribution of an original WEpod image is shown in figure 3.10. After
applying histogram equalisation, the intensity values are indeed more spread out over the total range as can
be seen in figure 3.11.

Histogram equalisation is a non-linear process on the intensity values of the image. Hence, to preserve
the colour balance of the image, the RGB colour space is converted to a representation that separates the
intensity values from the colour components. One of the possibilities is to convert the YUV colour space
which follows the following equations:

Y = 0.299 ·R +0.587 ·G +0.114 ·B ,

U =−0.147 ·R −0.289 ·G +0.436 ·B ,

V = 0.615 ·R −0.515 ·G −0.100 ·B.

(3.15)

After the conversion, the equalisation is deployed on the intensity values, presented as Y-value in YUV
space. The updated YUV values are then converted back to RGB values by means of equation 3.16.

R = Y +1.140 ·V ,

G = Y −0.395 ·U −0.581 ·V ,

B = Y +2.032 ·U .

(3.16)
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Figure 3.10: Histogram of a raw WEpod image.
Figure 3.11: Histogram of the WEpod image after histogram

equalisation.

Number of classes
The initial proposal included three classes. Because our target platform is equipped with a lidar, it would
be possible to deploy it during test phase. Therefore, occupancies can be processed on the fly and only two
classes need to be present in the segmentation: drivable path and non-drivable path. The idea behind the
focus on path proposal estimation is that fusing two chaotic classes will increase the overall accuracy. Occu-
pancies and unknown area are referred to as chaotic because they do not have clear distinguishable features.

Horizon
The height of the horizon line in the image for a certain camera is the result of the camera height, roll and
pitch. KITTI and RobotCar data have a similar horizon height in the images (they only differ by a few pix-
els). However, WEpod images have a relatively low horizon line due to the significant lower placement of the
camera ( 0.8m versus 1.65m for KITTI and 1.52m for RobotCar), resulting in a smaller part of the image con-
taining road and potentially a crucial difference between the datasets. To examine this, the horizon height of
the WEpod test images is changed such that it is similar to KITTI and RobotCar.

Cropping
The original aspect ratio differs for all three domains. Therefore, when resizing the images to the fixed input
aspect ratio this will lead to strange deformations for KITTI and to a lesser extent for WEpod. RobotCar does
not have these deformations since the input resolution has the same aspect ratio as the raw images. To correct
for these deformations, images of the KITTI domain are directly cropped to the input size of the network and
thus no resizing is applied after the cropping. In the test set, WEpod images are cropped to the input aspect
ratio and afterwards resized to the fixed input size.

Intrinsic consistency
Datasets are created with the use of different recording platforms and often different camera sensors. These
sensors have different characteristics which have influence on the output in the form of an image. To cancel
these differences, the datasets are manipulated to be intrinsic consistent. Intrinsic consistency refers to con-
sistent intrinsic parameters throughout the different camera sensors. In order to acquire consistency, three
steps are taken.

First, the Horizontal and Vertical Field of View (HFOV and VFOV) are determined. The HFOV is obtained
by projecting two points on the road, two metres apart in horizontal direction and seven metres away from
the camera in longitudinal direction. The pixel coordinates of these two points are obtained and the differ-
ence between them in horizontal direction is calculated. A similar approach is followed for calculating VFOV,
separating the points in vertical direction instead of horizontal direction. It turned out that HFOV is the same
(pixel-wise) as VFOV for all platforms and hence, only one is noted in table 3.2. The actual HFOV and VFOV
at seven metres of the camera, are calculated by taking the image size into account.
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Ddataset Image size HFOV VFOV
2m @ 7m [px] [H x W] @ 7m [m] @ 7m [m]

KITTI 206 375 x 1242 12.06 3.64
RobotCar 276 960 x 1280 9.28 6.96

WEpod 239 512 x 1024 8.57 4.28

Table 3.2: Characteristics for the KITTI, RobotCar and WEpod camera sensors.

Second, the images are cropped to their new size. This new size is defined by the characteristics of table
3.2. All images are cropped relative to the smallest HFOV and VFOV, resulting in a decisive height of KITTI
and decisive width of WEpod. The new height is calculated as:

Hnew, dataset =
V FOVnormative

V FOVdataset
·Horiginal, (3.17)

and the new width as,

Wnew, dataset =
HFOVnormative

HFOVdataset
·Woriginal. (3.18)

In these equations Hnew,d at aset and Wnew,d at aset are the new height and width of that particular dataset,
respectively. V FOVnor mati ve represents the ratio of normative VFOV (i.e. smallest VFOV; bold in table 3.2)
to dataset VFOV and both values are extracted from table 3.2. Similarly, Wnor mati ve represents the ratio of
normative HFOV (i.e. smallest HFOV; bold in table 3.2) to dataset HFOV. Both values are found in table 3.2.

These new size are calculated for every dataset except the normative sizes (i.e. width of WEpod images
and height of KITTI images) and therefore these will be kept as the original size. The new size are aligned
below:

HWEpod = 3.64

4.28
·512 = 435 pixels,

WRobotCar =
8.57

9.28
·1280 = 1182 pixels,

HRobotCar =
3.64

6.96
·960 = 502 pixels,

WKITTI = 8.57

12.06
·1242 = 883 pixels.

As a third and last step, the images are resized to a smaller uniform size while maintaining the aspect ratio.
All images in the dataset are resized to 240 x 565. Figure 3.12 shows an undistorted and demosaic image of
RobotCar which is not intrinsic consistent with the other two domains. The result of intrinsic consistency is
shown in figure 3.13, also depicting less information than the original because RobotCar images are cropped
both in height and width.

Figure 3.12: Undistorted and demosaiced image from the Oxford
Robotcar dataset.

Figure 3.13: Intrinsic consistent image of Oxford Robotcar
dataset.
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3.2.3. Evaluation
Several classical metrics are available to evaluate the performance of semantic segmentation on pixel-level.
However, since there is no benchmark suite for the semantic classes (drivable path, unknown area and oc-
cupancy) that are applied, no comparison with respect to the current state-of-the-art concerning semantic
segmentation can be made. This comparison is of less importance for the experiments because the aim of
the experiments is to depict the influence of each factor on the domain shift. This is achieved by comparing
results to the results of the baseline instead of comparing it to the state-of-the-art. Although the state-of-
the-art results are not needed, ground truth is required for the test images in order to evaluate the results
both quantitatively and qualitatively. Ground truth is created by labelling test images similar to the labelling
technique used on the training images.

When qualitatively evaluating a drivable path it is important that occupancies are not segmented as driv-
able path. This situation is potentially more catastrophic than drivable path segmented as occupancies or
unknown area as occupancy. Hence, it is important to have as few false positives as possible and thus, preci-
sion is a more informative metric than recall in the case of drivable path estimates. Precision is indicated as
P and calculated according to [18]:

P = T P

T P +F P
, (3.19)

where T P and F P denote True Positive and False Positive respectively.
For occupancies, the opposite is true. Qualitatively it is better to have classified too many pixels as occu-

pancy than missing a lot of occupancies. Therefore, it is important to have as few false negatives as possible
which means sensitivity is a more informative score than precision. Sensitivity or recall is indicated as R and
expressed as [18]:

R = T P

T P +F N
, (3.20)

where F N denotes False Negatives. However, it has to be stressed that the performance cannot be summa-
rized in one metric.

Quantitative evaluation of the semantic segmentation and hence, relating the effect of different factors
to the domain shift is presented via two generic evaluation metrics: Intersection-over-Union (IoU) and F1-
measure (F1). The IoU metric is also known as the Jaccard index and measures the similarity between two
segments (in our case between the ground truth and the network output) and is stated as [18], [49]:

IoU(i) = T P

T P +F P +F N
, (3.21)

where i representing image i . In order to summarise the performance in one value, the IoU metric is averaged
over all images according to:

IoU(total) =

n∑
i=1

I oU (i )

n
, (3.22)

with n being the total amount of images in the domain that is considered.
The F1-measure considers both precision and recall being the harmonic mean of the two metrics. A per-

fect F1-score (equal to one) is reached when both precision and recall are equal to 1. The F1-measure or
F1-score is expressed as [18]:

F1(i) = 2 ·P ·R

P +R
, (3.23)

with P and R referring to the previously explained precision and recall metric. Similar to the Jaccard index,
the F1-score is summarised to one metric value according to:

F1(total) =

n∑
i=1

F1(i )

n
. (3.24)

Because the spatial resolution reduces as the road is further away, a pixel-wise metric is biased. This
could be handled in different ways, such as weighting the metric values as they lie further from the vehicle.
However, in the image space this effect is neglected.
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Figure 3.14: Two visualisations of segmentation errors. Green, red and blue are correctly labelled as drivable path, occupancy and
unknown area respectively. Yellow refers to drivable path classified as occupancy while cyan refers to drivable path classified as

unknown area. Magenta corresponds to occupancies which are classified as drivable path. White pixels are classified as unknown area
while being occupancy or vice versa or unknown area classified as drivable path.

3.3. Top view transformation

A path is a geometric trace that the vehicle should follow in order to reach its destination without colliding
with obstacles. Path planning is finding a geometric path from an initial configuration to a given terminating
configuration such that each configuration and state (if time is taken into account) on the path is a feasible
one. A feasible configuration/state does not result in a collision and adheres to a set of motion constraints
such as road and lane boundaries, as well as traffic rules. It should be noted that importance is given in
finding the best and safest geometric trace, under the constraints described above which also have a logical
argument regarding the rules of traffic.

For the application of autonomous driving, four different views are considered [40]: image view, top view
(i.e. bird’s eye view), spherical view and cylindrical view. Figure 3.15 shows the four representations. The
former two view points are easily understandable for humans as they represent the world as humans see it.
However, taking the sensor perception into account, it gives a deformed representation because of the way
the sensors create data. The monocular camera system retrieves data as a flat plane, missing one dimension
which is retrieved by the human eye (stereo system). High-level lidar (64-beam), rotates around its own axis
which results in sparse data for image view and top view. Additionally, occlusions potentially occur in image
space which automatically will result in problems for the autonomous vehicles. The segmentation results will
be transformed to Cartesian coordinates because the current path planner of the WEpod is implemented in
this space.
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Figure 3.15: Four possible views. (a) Image space, (b) top view, (c) polar view and (d) spherical view. Image modified from [40].

3.3.1. Setups
Semantic segmentation of images retrieves an understanding of the environment in image space. To trans-
form this understanding from image space towards top view there is one factor missing; depth. In order to
acquire depth information, several options are possible. Two frequently used options are stereo imaging and
lidar, both having their (dis)advantages. It is very challenging to obtain ground truth dense depth data which
represent a road scene (or any scene) well. Scenarios for the transformation of image space to top view is only
carried out for the KITTI dataset since ground truth depth is available from the 64-beam lidar. The RobotCar
dataset and WEpod dataset are not considered because the 4-beam lidar is too sparse to represent depth well
enough.

3.3.2. Without depth

Figure 3.16: Setup for top view creation without ground truth depth.

Even without ground truth depth from lidar it is possible to create top view from the image space. This is
executed in the first setup. This is done by obtaining a transformation matrix, based on four corner points of
a rectangle which is chosen as the extent of the top view. The corner points define the rectangle on the road
projected in the image (i.e. the projection is a trapezoid). In lateral direction this rectangle reaches up to 5
metres to the left and right of the origin of the camera frame. In longitudinal direction the rectangle spans
from 7 to 46 metres measured from the origin of the camera frame, resulting in a rectangle with dimensions
of 10 metre by 39 metre. The transformation matrix, M, is found by solving the following equation for all four
corner points: si ·u∗

i
si · v∗

i
si

= M ·
ui

vi

1

 , (3.25)

In this equation, ui and vi describe the pixel values of the corner points while u∗
i and v∗

i are the correspond-
ing quadrangle vertices in top view (i.e. the extent of the image). si is a scale factor. i is referring to a corner
point and thus ranging from 0 to 3. The transformation matrix M is stated as

M =
M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (3.26)

When the transformation matrix M is found, it is used to transform the source image (I) to the output (top
view) image, O, via the following equation:

Ou,v = I M11 ·u+M12 ·v+M13
M31 ·u+M32 ·v+M33

,
M21 ·u+M22 ·v+M23
M31 ·u+M32 ·v+M33

. (3.27)
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Figure 3.17: Transformed image without exploiting depth
information.

Figure 3.18: Transformed ground truth label of figure 3.17
without exploiting depth information.

From the example image (figure 3.17 and 3.18), it is seen that the spatial resolution reduces towards the
edges of the image. This leads to an unrealistic top view, where objects at the edges and further away are
blurry. This is due to the fact that the spatial resolution of this area of the image is lower, meaning that more
interpolation of pixels is needed in these areas compared to the areas closer to the camera. This process is
clarified in figure 3.19 where the transformation from a trapezoid form to a rectangle form is visualised. From
the figure it is clear that the top edge will be "stretched" the most while the bottom edge will have the least
deformation.

While this blurriness and hence incorrect representation of the truth is considered a disadvantage of the
method, there are also some advantages to be considered. As mentioned previously, this method does not
use any depth information. The rectangle which is projected into the image in order to transform to top view
is computed via the intrinsic camera matrix, K (equation 3.2) and dimensions on the position of the rectangle
with respect to the camera frame. Hence, the position of the camera with respect to the road is required. The
output of the process is dense which is another advantage. However, it should be noted that the quality of the
output differs throughout the image. The quality in the top corners is lower due to the previously mentioned
lower spatial resolution in the image.



38 3. Methodology

Figure 3.19: Example of shape modification due to the transformation to top view.

3.3.3. With ground truth depth
In the case where ground truth depth information (depicted in figure 3.21) is available it is used to to trans-
form from image space to top view. Since only the data from KITTI will be examined, the setting of this data
is taking into account. For the KITTI dataset, sparse depth maps (as images) are available resulting from the
64-beam lidar. These depth maps are directly used to reproject the semantic image segmentation to top view.
An overview of the setup is seen in figure 3.20.

Figure 3.20: Setup for top view creation with ground truth depth.

Top view is created by transforming every image pixel containing depth information and therefore the
resulting top view will also be sparse. The transformation follows from the opposite of the conversion from
x, y, z points in the camera frame to pixel coordinates in the image space. This is also referred to as Inverse
Perspective Mapping (IPM). Writing out the matrix multiplication from equation 3.1 results in the following
set of equations.

s ·u = fx · x + cx · z,

s · v = fy · x + cy · z,

s = z.

(3.28)

These equations are simplified to:

z ·u = fx · x + cx · z, (3.29)

and,

z · v = fy · x + cy · z. (3.30)

Extracting x and y from these equations results in

x = z · (u − cx )

fx

y = z · (v − cy )

fy

(3.31)
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Figure 3.21: KITTI image (top) with corresponding ground truth depth (bottom).

With this transformation x and y-values for every pixel in the image containing depth information is re-
trieved. The depth information itself is the missing z-coordinate. However, to create top view only the x and
z-values are used while the y-values are changed to zero in order to create a plane. Since the output is sparse
due to sparse depth information, the resolution of the top view has to set. Resolution in both x and z-direction
is set to 0.1 metre.

3.3.4. With depth estimating CNN

[35] resolve the problem of estimating depth based on a single image by proposing a CNN. This architecture
is fully convolutional and exploits residual learning (ResNet-50) to create (dense) depth maps of monocular
images. Since these depth maps are dense, it is easy to add depth values for each pixel in the segmented
image. The approach which includes these dense depth maps to transform from image space to top view
space is depicted in figure 3.22.

Figure 3.22: Setup for top view creation with depth information from a depth estimating CNN.

Figure 3.23 shows an image of the KITTI dataset and the corresponding estimated depth map, acquired
via the aforementioned architecture.
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Figure 3.23: KITTI image (top) with corresponding estimated depth (bottom).

3.3.5. Evaluation
The transformation from image space to top view is evaluated in the top view space. Besides an evaluation
metric for the importance of depth accuracy in the transformation process, the approach automatically gen-
erates an additional metric for evaluating the task of semantic segmentation.

In top view, two out of the three approaches will result in a sparse projection. However, because these two
approaches do not produce exactly the same sparse projection (i.e. one is more sparse than the other), an
intermediate step should be done in order to be able to compare results of these different methods. This step
generates trajectory lines in top view based on the drivable path in top view. The trajectory line is retrieved
by obtaining the lateral median of values classified as drivable path. In other words, for every row containing
pixels classified as drivable path the median of these drivable path pixels is obtained. Additionally, to make
the trajectory less noisy, the median is only acquired when the row contains more than ten pixels classified
as drivable path. The trajectory is created for both the estimated drivable path and the ground truth which,
ideally, would result in two overlapping lines.

The ideal prediction of two completely overlapping trajectory lines (i.e. prediction is 100% correct) is,
however, never obtained in practice. Except the size of the lateral error, it is important where the error occurs
in longitudinal direction. In other words, it is important to incorporate at what distance from the vehicle the
estimated trajectory and ground truth trajectory separate from each other. To take this in consideration, the
value of the difference between estimation and ground truth is scaled by weights. These weights are inversely
proportional to the distance from the vehicle, ranging from one for the estimation closest (i.e. smallest longi-
tudinal distance) to the car to zero for the estimation furthest away from the vehicle.

Two parameters are extracted from the trajectory lines. The lateral error is represented by the average
difference between the estimated trajectory line and ground truth trajectory line. This value in absolute sense
is an additional evaluation measure for the drivable path segmentation. The disadvantage of this additional
metric is the lack of a benchmark. The advantage of this method is the practical representation of the value.
This metric is calculated as

E =
k∑

i=1

Si · |gi −pi |
k

, (3.32)

where i represents every row in the top view that contains both a predicted value, pi , and a ground truth
value, gi , and k notes the number of rows where ground truth value exists. The scale in order to account
for the importance of the predicted value is symbolised by Si . This scale decreases linearly from one in the
direct range of the vehicle to zero at the most distant measurement of the vehicle. E is thus a scaled difference
metric between the ground truth and prediction.

Another parameter that should be considered is the amount of overlap in longitudinal direction between
the estimation and ground truth trajectory. Obviously, the estimated trajectory should ideally stretch over the
same longitudinal length as the ground truth trajectory and can be found by the following simple expression:

O = j

k
, (3.33)

where j notes the number of rows where estimated trajectory and ground truth trajectory overlap in longi-
tudinal direction. O is the amount of overlap in longitudinal direction between ground truth and prediction
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resulting in a value between zero (i.e. no overlap) and one (i.e. full overlap).

Semantic segmentation
Both metrics (equation 3.32 and equation 3.33) can be utilised as additional metrics for the quality of the
semantic segmentation. These metrics are an evaluation of the estimated trajectory compared to the ground
truth trajectory while using the same method and hence the same depth estimation. In this way, the evalua-
tion is independent of the depth accuracy. A visualisation of the trajectories is depicted in figure 3.24. Since
there is no benchmark in this format is available, no comparison with other methods and networks can be
made.

Effect of depth accuracy
Besides the additional evaluation metric for semantic segmentation, another evaluation is conducted. By
comparing different setups for the transformation to top view while using the same estimated segmentation
(i.e. same output of the semantic segmentation network), the effect of depth accuracy is measured because
this accuracy is the only difference in each approach.

Figure 3.24 shows two trajectory lines. The white trajectory line is the ground truth trajectory while the
green line represents estimated trajectory based on the segmentation of the drivable path. The analysis of
these trajectories is visualised by two curves in figure 3.25. The raw difference curve presents the actual
difference between the ground truth and estimation throughout an increasing longitudinal distance from the
vehicle. The second curve shows the scaled version of the raw difference, taking the significance of the error
into account.

Figure 3.24: Visualisation of trajectories in top view. Green is the
estimated trajectory while the white line represents the ground

truth trajectory.

Figure 3.25: Graphical representation of the difference between
estimation and ground truth.

3.4. Summary
To avoid the problem of high annotation times which are applicable for full semantic segmentation, a reduc-
tion of predefined semantic classes is proposed. This reduction simultaneously produces an approach which
is very data efficient, utilising existing datasets to the full extent. The semantic classes are generated via a
method proposed by [5] and results in weak ground truth labels. The label generation utilises data from the
lidar and camera sensor and has the advantage that the pipeline can be automated, resulting in a compu-
tation efficient approach compared to full semantic segmentation. The robust network of SegNet is used to
deploy semantic segmentation during test phase.

As highlighted in the chapter 2, domain adaptation is used to reduce the need for huge amounts of train-
ing data. However, this technique showed limited abilities when the performance was measured. This prob-
lem is referred to as domain shift and is assigned to the differences in data distribution of the domains. In
order to get more insight in this problem, ten factors in three categories are examined. A comparison is
achieved by the evaluation of these factors, mainly based on the Jaccard index and F1-measure.

The last part of this chapter describes three setups that are used to transform from image space to top
view space. Differences between these setups is quality of the depth information, used for the transformation.
One setup is created where no depth information is used to transfer to top view. A second setup describes the
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possibilities when ground truth depth is available in the form of sparse depth maps and the last setups refers
to the situation where depth is estimated via a separate CNN, resulting in a dense (estimated) depth map.

Two metrics are used in order to evaluate the importance of depth information in the process of trans-
forming from image space to top view. One metric calculates the average lateral error between the ground
truth and estimated trajectory while the second metric represents the overlap length between the trajecto-
ries.



4
Experiments and results

First, the experimental setup is discussed in section 4.1. Here, details about the implementation of the neural
network will be discussed. Second, experiments which aim to describe the influence of different factors on the
domain shift for the task of semantic segmentation are motivated in section 4.2. The chapter continues with the
experiments on the transformation to a usable top view in section 4.3. This is followed by a discussion about
the results of both the domain shift and the top view transformation in section 4.4. Conclusively, the chapter
ends with a summary in section 4.5.

4.1. Experimental setup
All experiments are carried out by utilising SegNet, which is detailed in section 3.1.3. This convolutional neu-
ral network is deployed with a modified version of the Caffe deep learning framework [29] and all experiments
are fulfilled using a NVIDIA GeForce 1080 Ti GPU. Caffe is a C++ library with Python and MATLAB bindings
for training and deploying convolutional neural networks and other deep models. The framework links file,
describing the network and indicating the hyperparameter values which are summarised below:

Parameter
Value

Explanation
[RobotCar/KITTI]

test_iter 75 / 29 Indicates how many test iterations occur per test_interval.

test_interval 500 Indicates after how many iterations the test phase will be executed.

base_lr 0.01 Indicates the base learning rate of the network.

lr_policy "step" The learning rate decay policy.

gamma 0.9 Indicates how much the learning rate changes every step.

stepsize 2500 / 250 Indicates at what iteration the next step of training is activated.

momentum 0.9
Indicates amount of the previous weight that will be retained in the
next step.

max_iter 13660 / 5300 Indicates at which iteration the network should stop training.

weight_decay 0.0005 Regularisation parameter.

Table 4.1: Settings for SegNet during the conducted experiments.

It has to be noted that when a parameter is referring to test, it actually refers to the validation phase. The
framework of Caffe, however, addresses this as test phase.

Test_iter indicates how many test iterations should occur per test_interval. The test_interval represents
the number of iterations after which the test phase is activated. Base_lr is the initial learning rate of the
network. This learning rate will change over time and the fashion in which this happens is determined by
lr_policy. In our case, the policy is "step" which means that the learning rate drops in steps sizes indicated
by the gamma parameter. Gamma determines to what extent the base_lr should change for the next "step".

43
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This policy can mathematically be expressed as:

new_lr = base_lr ·gammafloor(iter / stepsize), (4.1)

where iter is the current iteration and stepsize indicates at what iteration we should apply the policy men-
tioned above and move on to the next "step" in training. Momentum is a parameter that defines how much
of the previous weight will be retained in the new calculation. Max_iter sets the value at which iteration
the network should stop training. Regularisation is addressed via the weight_decay parameter. This variable
indicates the factor of penalisation of large weights and equals λ in equation 3.9.

Another parameter often used in neural networks and other frameworks is epochs. One epoch represents
one forward and backward pass of all training images. With the parameters used in the solver file, the number
of epochs is calculated as follows:

Epoch = max_iter · batchsize

# training images
. (4.2)

In this equation, the batch size refers to the amount of training images in one pass. Values for batch size,
filter depth, learning rate and offset are pointed in the network file instead of the solver file. Hence, these
values can manually be adjusted for every layer.

4.2. Domain shift factors
The setup where all target domains are present in the training phase is often not possible because the target
domain lacks labelled data. Therefore it is necessary to transfer knowledge from other domains to a certain
target domain. While this is possible, figure 3.7 shows that the estimation of the drivable path is not satis-
factory when the network is not trained on the target domain. Literature assigns this phenomenon to the
domain shift, or stated otherwise, the difference in data distributions between datasets. In order to examine
potential causes for this shift, several experiments are carried out, using datasets described in section 2.1.2.
These experiments are divided into three categories based on what modifications are made. The category
image refers to modifications purely based the image. The second category, geometry, refers to modifications
concerning the geometry of the image. The remaining factors are modifications on the setup of the exper-
iments and hence are assigned to the category setup. The table (4.2) below shows these categories, defines
every experiment in a category and mentions the section where the experiment is discussed.

Setup Image Geometry

Factor Section Factor Section Factor Section

Dataset equalisation 4.2.2 Greyscale 4.2.4 Horizon shift 4.2.9
Order of training 4.2.3 Left-hand traffic 4.2.5 Cropping 4.2.10

Gamma correction 4.2.6 Intrinsic consistent 4.2.11
Histogram equalisation 4.2.7
Number of classes 4.2.8

Table 4.2: Summary of the conducted experiments, divided into three categories.

The default workflow to examine domain shift factors is shown in figure 4.1. Again, the red rectangle
("CityScapes") in this figure represents the pre-trained network on CityScapes. However, the difference with
the workflow in figure 4.2 is the lack of ground truth labels in one of the target domains (WEpod domain).
Furthermore, the network is trained in two steps, one for each source domain instead of a mixed dataset
containing all domains.

Based on which experiment is executed the modification elements (for training and test phase) in the
workflow will be activated. What this element contains is described in each experiment separately and obvi-
ously differs per experiment. This whole process of label generation and modifications results in a training
set for both KITTI and RobotCar. The pre-trained network is fine-tuned on these newly generated training
sets. After the final fine-tuning, the resulting weights are used in SegNet for semantically segmenting the test
set.
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Figure 4.1: The default workflow of the applied approach. The green and blue dashed boxes represent the generation of weak labels.

This workflow contains a double fine-tuning step which is not generic. Fine-tuning usually only has one
step. The choice of a two step fine-tuning approach is based on two reasons:

1. The two-step fine-tuning procedure enables the network to add training data and train the network
only on the additional data which is very time efficient.

2. Intermediate results give more insight in the process of the neural network, enabling extra analyses.
However, these analysis are not shown in this study.

In order to find the influence of different factors on the effect of the domain shift for semantic segmenta-
tion of road scenes, ten experiments are carried out. The methodology behind these experiments is explained
in section 3.2.2. In the remainder of this section, the setup of every experiment will be described and the re-
sults are discussed, leading to some possible explanations for these outcomes. The presented results are
summarised in table 4.3 with the best results per category (setup, image and geometry) highlighted in bold.
These results all relate to the default setting, noted as "baseline" in table 4.3. They are noted such that values
in 4.3 represent absolute evaluation results while tables 4.4 and 4.6 represent evaluation results relative to the
baseline. Hence, negative values in these tables suggest a decrease in performance and positive values show
an increase in performance.
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4.2.1. Default network and upper bound
The default setting does not produce optimal results, which obviously is part of the problem. However, it is
stressed that for the remaining part of the thesis it is not intended to obtain state-of-the-art results. The aim
is to see performance gains or performance losses as a result of data modification according to experimental
setups. Yet, in order to show to what extent the network is capable of achieving good results, an upper bound
is created.

Figure 4.2: The workflow of the approach for the upper bound. The green, blue and orange dashed boxes represent the generation of
weak labels. Note: The inclusion of the WEpod domain in the training phase marks a big difference with the default approach.

For the upper bound setup, the data from the target domains is combined in one large dataset with cor-
responding ground truth labels. Hence, all target domains are present in the training phase and the network
is fine-tuned in one step, on the combined dataset. Figure 4.2 depicts the workflow for this upper bound
setup. The red rectangle ("CityScapes") in this figure represents the pre-trained network on CityScapes. The
process captured in the green, blue and orange dashed squares is the generation of weakly-supervised labels,
as described in subsection 3.1.2.

Results of both the upper bound and the default setting are summarised in table 4.3, tagged as "upper
bound". Although the results of the upper bound are not competitive with state-of-the-art, all domains
achieve relatively good results.

Metric Drivable path Occupancy
[%] RobotCar KITTI WEpod RobotCar KITTI WEpod

Misses 0 4 4

Baseline
IoU 29 54 24 74 81 38
F1 44 66 37 85 89 45

Upper bound1 IoU 75 67 80 90 88 78
F1 83 78 88 95 93 87

Table 4.3: Evaluation values for the baseline and upper bound of the domain shift experiments.
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4.2.2. Data equalisation
While the default network represents realistic situations with datasets having different sizes, it is possible that
this difference in number of images influences the created feature space of the network. From the original
RobotCar dataset, images are removed in a random fashion to decrease the size to 1060 training images. This
size is equal to the size of the KITTI training set and hence, the KITTI training set is not adjusted. Since this
experiment only comprises the removal of training images, modifying the size of datasets and leaving the
modification element in figure 4.1 empty.

Results
This experiment shows some surprising results. The equalisation results in strong reduction of metrics for
the segmentation of drivable path in the WEpod domain. Although the size of the RobotCar training set is
reduced by roughly 61%, the metrics on the test set of RobotCar are increasing by a notable amount of 4
percent points for drivable path segmentation. As all other results, this result is found in table 4.4 and table
4.6. The segmentation of occupancies for RobotCar does decrease with the adjustment of the training set
by a minimal margin of 3 percent points. Results on the drivable path segmentation on the KITTI domain
increases with eight percent points for both IoU and F1. However, occupancies are segmented more accurate
for KITTI and WEpod resulting in an increase for the IoU and F1 metric. The drivable path segmentation
for the WEpod domain decreases drastically by 6 and 9 percent points for the Jaccard index and F1-measure
respectively. No rigorous changes in the number of drivable segments is observed in any domain.

Possible explanations
KITTI test images see an expected increase in evaluation metrics since the share of KITTI training images
in the total training set is increased from 28% (1060 KITTI images of 3790 images total) to 50% (1060 KITTI
images of 2120 images total) by equalising the dataset. Although a drop in performance was expected for
RobotCar since less training data is available, the results show a slight increase of performance for drivable
path. Because the removal of around 60% of the RobotCar dataset is too big to be explained as the accidental
removal of bad training images, this increase is yet unexplained. For segmenting WEpod images, it is likely
that training on RobotCar images is more valuable which leads to a decrease of performance for drivable path
segmentation. However, this decrease can also be explained by the reduction of data in general.

4.2.3. Order of training
The baseline presented in table 4.3 show results for three domains. From these three domains, two are also
present as a source domain (i.e. KITTI and RobotCar). When comparing results for these domains, it can be
observed that the network achieves significantly better performance for the KITTI test images than RobotCar
test images. In the default setup, the network is fine-tuned on the KITTI domain as a last step. The influence
of this second fine-tuning step is examined in this experiment by changing the order of training. It is expected
that this experiment will have effect on the segmentation of both KITTI and RobotCar since these domains are
represented in the training phase but the WEpod domain remains unseen during training and influence on
this dataset is tested. The modification element will stay empty as the only difference is the order of training
while the training data is equal to the baseline.

Results
Influence on the source domains during testing are clearly shown in the results. The evaluation metrics in-
creased by a great amount for the drivable path segmentation of the RobotCar test set. This increase of metrics
comes at the cost of great reduction in IoU and F1 for the drivable path segmentation in the KITTI domain.
Furthermore, the occupancy segmentation follows the same trend as drivable path segmentation (increase
for RobotCar; decrease for KITTI) but by a far less amount than for drivable path.

Results for the unseen domain of the WEpod show clear influence throughout the evaluation metrics.
Drivable path segmentation show an improvement of 18 and 20 percent points over the baseline setup while
the increase for the occupancy segmentation is high with 63 and 56 percent points for IoU and F1-measure,
respectively. Opposite to the source domains, the WEpod domain sees a bigger increase for the occupancy
class than the drivable path class.

Besides these huge improvements in metrics, the experiment also effects the number of drivable path
segments. The experiment is close to resolving this problem, only leaving one case where the drivable path
segment is not recognised for the WEpod (originally there were four cases). In both the KITTI and RobotCar

1It should be noted that the test set of the upper bound differs from the test set used for the baseline.
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dataset, all drivable path segments are detected and which is an improvement for KITTI (originally missing
four cases) and a stable situation for RobotCar which also did not leave any drivable path segments unde-
tected in the default setup.

Possible explanations
Because of the large differences in the evaluation metrics between the source domains, it is concluded that
the network does not generalise well and is dependent on the order of training to produce good results. The
WEpod data has more similarities with the RobotCar domain than with the KITTI domain, based on the enor-
mous increase of all evaluation metrics for the WEpod domain. This conclusion agrees with the previous
experiment which showed that reducing the size of the RobotCar training set led to worse prediction of the
drivable path for WEpod. One of the similarities is the aspect ratio of the raw images. The raw images for
WEpod equal 1024 x 512 pixels which is a lot closer to RobotCar (1280 x 960 pixels) than KITTI images (1242 x
375 pixels).

4.2.4. Greyscale
As noticed in the experiment on training order, the aspect ratio of the images from RobotCar and WEpod
are relatively similar (i.e. compared to the similarity between KITTI and WEpod). However, there are still
differences between the domains. One difference is the colour space of both domains, the WEpod domain
consists of greyscale images while RobotCar contains RGB images. In this setup, the original RGB training
images of both KITTI and RobotCar dataset are converted to greyscale images in order to match the target
images from the WEpod domain. By means of this conversion, the pixel intensities are the only information
that the image contains. The modification module is activated for both RobotCar and KITTI which leads to
conversion to greyscale images. Obviously, the ground truth labels do not change and will be the same as in
the default setting.

Results
This scenario resulted in a minimal increase for the IoU metric (one percent point) and no change in F1-
score for the drivable path segmentation compared to the default setting for the WEpod domain. Slightly
bigger improvements are found for occupancies, resulting in an increase of four percent points for both IoU
and F1. In contrast to the results for the unseen domain of the WEpod, the results for KITTI and RobotCar are
heavily influenced in a negative way. A decrease in IoU and F1 is found for the drivable path segmentation in
the KITTI domain (10 percent points for both IoU and F1) and RobotCar domain (25 and 36 percent points
for IoU and F1 respectively). This decrease is also visible for the occupancy segmentation on RobotCar but
shows a negligible (positive) influence on the occupancy segmentation of KITTI. The results relative to the
baseline can be found in tables 4.4 and 4.6.

Furthermore, it is noted that the amount of drivable path segments dramatically decreases for the both
RobotCar and KITTI when the network is trained on greyscale images. In other words, more often there is
no drivable path segmentation in this setup than in the default setup. For RobotCar, 68 cases (27% of the
RobotCar test set) are not recognised, compared to the original setup with zero failures. KITTI shows 21 cases
where it does not recognise a drivable path which is a notable increase over the 4 cases in the setup. However,
for the WEpod domain there is only the minimum difference of one in the number of drivable path segments,
resulting in more drivable path segments during greyscale training. This setup only misses 3 cases while the
default setup misses 4 cases.

Possible explanations
By changing from the RGB colour space to greyscale, three colour values are combined to result in one inten-
sity value with the consequence of a loss of (colour) information. For RobotCar, the road is often reflective,
leading to high intensity values when converted to greyscale. These high intensities are scattered spatially
and hence do not form a good signature for a drivable path. For KITTI images the road is not as reflective as
for RobotCar, however the contrast in the images, is relatively low. Therefore it is harder to detect patterns
without colour information.

When the test set consists of greyscale images, it is assumed that a feature space based on greyscale images
matches better than a feature space that is created based on RGB images. Therefore, it can be considered
surprising that results on WEpod imagery only improves slightly.
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4.2.5. Left-hand traffic
Another difference in the images is the fact that RobotCar is recorded in the streets of Oxford (England) where
different traffic rules apply compared to the KITTI domain and WEpod domain. An example of a traffic rule
which influences the layout of the image and ground truth label is the left-hand traffic rule. The modification
element in the workflow contains a procedure in order to flip both training images and ground truth labels,
only for RobotCar. Note that this will not change the RGB pixel values and corresponding ground truth label,
only the spatial relation differs. KITTI does not experience any changes.

Results
WEpod test images see a notable increase in evaluation metrics for drivable path with 4 percent points. Occu-
pancy segmentation of the WEpod test set is marked by a much larger increase of 39 percent points for both
IoU and F1. KITTI sees a slight decrease of IoU and F1 for drivable path segmentation and occupancy seg-
mentation of 3 (IoU) and 2 (F1) percent points. For RobotCar, the decrease in metric values for drivable path
segmentation is minimal (maximum of 1 percent point) while there is a notable increase for occupancies (5
and 9 percent points for F1 and IoU respectively).

Influence is also shown in the drivable path recognition. Both KITTI and WEpod miss to segment drivable
paths in 11 and 10 test cases respectively during this experiment while the original setup only miss 4 test cases.
RobotCar is stable and, as in the default setup, recognises a drivable path in all test images.

Possible explanations
Generalisation is increased, based on the results for WEpod test images. However, results for KITTI and
RobotCar see a slight decrease in performance. The fact that no large increase occurs for these datasets can
be explained by the position of the drivable path in the training and test set. RobotCar is driving in a urban
environment without clear boundaries for lanes.

Drivable path segmentation, seen from the point of view of the car, always starts from the middle of the
image. Road positioning becomes important further away from the vehicle but at the same time, the effect
of the experiment diminishes because of the decrease in spatial resolution. The increase of performance on
occupancy segmentation for both KITTI and RobotCar is unexpected since the relation between occupancy
label and pixel values did not change. One possible explanation for this event leads to the spatial positioning
of occupancies. The place of occupancies in the image relate more to each other when the image and label
are flipped.

4.2.6. Gamma correction
By applying a gamma correction on the images, the contrast is enhanced by a non-linear operation. This
enhancement applies on the luminance value of every pixel in the image. In this experiment the value of γ
is set to the value of 0.7 to resemble more to the KITTI dataset. Hence, the modification element applies the
gamma correction to the raw images for both training and test images and does not modify the ground truth
labels.

Results
Drivable path segmentation within the WEpod domain increases by 6 and 7 percent points for the IoU and F1

metrics. A negligible increase for occupancy is observed. Both KITTI and RobotCar show completely different
metrics as result of the experiment. The drivable path estimation drops with 5 percent points for KITTI while
a decrease up to 6 percent points for RobotCar is observed. Where KITTI shows a negligible decrease for
occupancies, a notable increase of 7 (IoU) and 5 (F1) percent points is obtained for RobotCar.

Although, drivable path segmentation showed a decrease in metrics for RobotCar, it keeps the 100% de-
tection of drivable paths, missing no segmentation. This is in contrast to KITTI where the experiment results
in an extra 13 missed drivable path estimations (on top of the original 4). The WEpod domain is relatively
constant, missing 5 drivable path estimations meaning an increase of only 1 missed recognition.

Possible explanations
The gamma correction only has limited effect on the RobotCar images due to the large amount of brightness
values at the end (low or high) of the spectrum, while it is clear from figure 3.9 that the gamma correction has
the largest effect in the middle of the spectrum.
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4.2.7. Histogram equalisation
The experiment with histogram equalisation is used to modify the intensity values of the image in order to
enhance the contrast using the image histogram. The histogram equalisation is applied on both training and
test data and therefore the modification element will be activated in both phases. These elements change the
raw images and leave the ground truth labels unchanged.

Results
In all three domains the experiment shows a decrease for the drivable path segmentation in all metrics. The
quantity however, does differ notably throughout these domains. The largest decreases are noted for Robot-
Car, lowering the IoU and F1 metric with 7 and 10 percent points respectively. This decrease is a bit higher
than KITTI (5 and 4 percent points respectively). The decrease in evaluation metrics for the drivable path
segmentation of WEpod test images is almost negligible equalling 1 and 2 percent point for IoU and F1.

Similar negligible values are obtained for the occupancy segmentation of KITTI and RobotCar. Difference
is that these values present an slight increase for the experiment. The WEpod domain however, sees a great
improvement in occupancy segmentation, increasing with 24 percent points for IoU and 27 percent points
for F1.

The experiment did also show some negative effects on the detectability of the drivable path. All domains
did recognise less drivable paths than in the default setting. RobotCar missed 4 drivable paths compared to
no failures in the default while for KITTI the network did not estimate a drivable path at all in 15 cases while
only 4 were missed in the default setting. The WEpod domain showed the worst results with 31 failures to
detect a drivable path. This is 27 extra missed drivable paths compared with the default network.

Possible explanations
The contrast enhancement via histogram equalisation shows similar trends as the gamma correction for
RobotCar and KITTI. Apparently, the contrast for the WEpod images is increased too much leading to nega-
tive influence on the drivable path segmentation. This can be the result of newly introduced edges because of
the increased contrast.

4.2.8. Number of classes
For this experiment, the ground truth labels have to be modified since there is a reduction in number of
classes. This also affects the weight values as calculated in equation 3.7 since the ratio between the classes is
shifted. The modification element contains the adjustment of the ground truth labels and the recalculation of
the imbalance weights presented in equation 3.7. This modification additionally has some consequences for
the evaluation of the experiment. Where the normal setting interprets results on drivable path segmentation
and occupancy segmentation, the latter is impossible in this case. There is no class which only contains
occupancy and therefore, this segmentation is not evaluated. The only meaningful class in this experiment is
the drivable path segmentation and hence only the results of these metrics will be interpreted.

Results
Results on the three different domains give three different insights. Evaluation on the RobotCar domain only
sees a small (negligible) added value of the conversion to two classes. The WEpod test set is influenced heavily
by the experiment, resulting in an increase of 8 percent points for both the IoU and F1 metric. This result is
close to the opposite effect of the influence on the KITTI dataset. KITTI sees a drastic decrease in metrics of 8
and 9 percent points for F1 and IoU respectively.

Although the increasing evaluation metrics for the WEpod domain, drivable path segments are less often
recognised during this experiment, 13 test cases fail to obtain drivable path where the original setting only
had 4 missing estimations. Similar numbers can be presented for the KITTI dataset (failure of 16 images to
originally 4 faults occurred) while for RobotCar, there are drivable segments for every test image and thus no
changes are seen compared to the default network.

Possible explanations
This experiment results in a more simplistic feature space which is expected to lead to better output for the
drivable path segmentation. This is clearly the case for WEpod test images and also happens in a very small
amount for RobotCar. The experiment has significant negative influence on the drivable path segment of
KITTI test images, that has not been explained.
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4.2.9. Horizon
The last category ("Geometry") will modify image geometry instead of adjusting the setup or the image ap-
pearance. The first experiment within this category will shift the horizon for the WEpod domain. This experi-
ment is the consequence of a big difference between the three datasets is the position (and hence orientation)
of the camera on the recording platform. This difference is especially large between the WEpod platform and
the other two platforms. This is due to the low camera height compared to the recording platforms of KITTI
and RobotCar. Because of these differences, the vanishing point in the WEpod domain occurs at lower height
in pixel coordinates than for KITTI and RobotCar. This difference is resolved in the modification element of
the workflow depicted in figure 4.1. In this element, the horizon line is aligned to the horizon lines in KITTI
and RobotCar by cropping the upper part of the image.

Results
Because the modification only applies on the WEpod test images, only the results on this part of the test set
is highlighted, considering that results for both KITTI and RobotCar are the same as in the default setting.
Aligning the horizon line throughout the domains shows positive results on the drivable path segmentation,
increasing with 7 and 8 percent points for the IoU metric and F1 metric respectively. An increase of evaluation
metrics does also hold for the occupancy segmentation where a increase of 7 percent points for IoU is found.
The F1 metric shares the same trend, increasing by 7 percent points.

Although the drivable path segmentation increases by a notable amount, there is the minimum decrease
of one extra missed recognition compared to the default setting, resulting in a total of five test images with no
drivable path segmentation.

Possible explanations
Only cropping the top of the image will result in a shift of the principle point compared to the original situ-
ation. Consequence of the horizon line shift is a (small) change in the road layout. Because the road layout
resembles KITTI and RobotCar more, an increase of evaluation metrics for the WEpod domain is seen.

4.2.10. Cropping
Resizing training images to a fixed resolution will result in deformations of the objects in the image. Because
the initial image size differs among the domains, similar objects (e.g. cars) will be deformed differently. In
order to overcome this problem, the modification element in the workflow contains a cropping mechanism
at the cost of loss of information. In training phase, this only influences the images of KITTI. The original
size of 1242 by 375 pixels is cropped to the fixed input size of the neural network, 480 by 360 pixels. This
results in a loss of information on the sides of the image and the top of the image. A similar procedure is
followed for the WEpod domain (test set). The WEpod test images are first cropped to the fixed aspect ratio
for the network while afterwards, the test images of the WEpod domain are resized to the fixed input size of
the network. RobotCar data will not have any changes since the aspect ratio of the raw images and input
images is the same. Therefore, the procedure for RobotCar images is the same as for the default setting.

Results
In terms of drivable path segmentation, the unseen domain of the WEpod sees a great increase in both IoU
and F1 which equal 9 and 11 percent points respectively. An even larger increase in the IoU and F1 metric
is shown in the KITTI (both 13 percent points) and RobotCar (both 27 percent points) domain. In case of
RobotCar, this is almost an increase of 100%. This experiment however, also shows a decrease for the occu-
pancy segmentation in the WEpod domain of 11 and 15 percent points for IoU and F1 respectively. This is in
contrast with the increase of IoU and F1 with 8 and 5 percent points for the RobotCar domain. Occupancies
in the KITTI domain experience a small decrease in IoU and F1 of 3 and 2 percent points respectively.

These great increases of drivable path segmentation come at the cost of slightly less annotated drivable
paths. For the WEpod domain, this only equals one less (5 in total against 4 original misses) detected drivable
path while for KITTI 11 paths are not recognised (which originally are 4 misses). RobotCar domain is stable
and recognises all drivable paths (as in the original setting).

Possible explanations
By cropping the KITTI training images to the same aspect ratio, the network will learn features that are similar
for both KITTI and RobotCar and is thus more generic because the spatial environment resembles more.
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4.2.11. Intrinsic consistency
By adjusting the training set such that it is intrinsic consistent, the differences between the various recording
platforms based on the camera characteristics and geometry of the camera are removed. In this experiment
it is tested whether the inconsistency caused by the usage of different recording platforms is the root cause of
the domain shift problem. The modification element is activated and consists of the three steps, mentioned
in section 3.2.2. This applies for both training and test data and effects the raw images and the corresponding
labels.

Results
RobotCar and WEpod show a similar trend in the evaluation metrics in this experiment. RobotCar increases
by 7 and 8 percent points for IoU and F1-score respectively while for the WEpod domain these metrics are
both increased by 10 percent points. These values are referring to the drivable path segmentation. For KITTI
there occurs a drop in performance for the drivable path segmentation of 7 and 5 percent points. All domains
have an increase in the evaluation metrics (both IoU and F1) for the occupancy segmentation ranging from 2
percent points for KITTI to 9 percent points for RobotCar, up to 31 percent points for WEpod test images.

The three domains are affected by the experiment for the detection of drivable paths. RobotCar does
not recognise a drivable path in 3 test images while 6 of the WEpod test images are without a drivable path
segmentation. The most failures occur in the KITTI domain, where this experiment results in 13 test cases
without drivable path segmentation. For all domains this is an increase of detection failures. RobotCar origi-
nally does not miss any drivable path segmentation while both the KITTI and WEpod domain miss a drivable
path segmentation for 4 test cases.

Possible explanations
Although KITTI has a notable drop in the performance, this experiment shows that the results are more equal-
ising throughout the three domains. Because the domains are intrinsic consistent, the only differences will
be found in the environmental changes.

Jaccard index [∆%]
Drivable path Occupancy

RobotCar KITTI WEpod RobotCar KITTI WEpod

Dataset equalisation +4 +8 -6 -3 +2 +6
Order of training +51 -37 +18 +19 -3 +63

Greyscale -25 -10 +1 -11 +1 +4
Left-hand traffic 0 -3 +4 +9 -3 +39

Gamma correction -4 -5 +6 +7 -1 +1
Histogram equalisation -7 -5 -1 +2 +1 +24

Number of classes +1 -9 +8 n/a n/a n/a
Horizon n/a n/a +7 n/a n/a +7

Cropping +27 +13 +9 +8 -3 -11
Intrinsic consistency +7 -7 +10 +9 +4 +24

Table 4.4: Jaccard index values compared to the baseline for every experiment. ∆% refers to percentage points compared to this
baseline. The dash line distinguishes between three categories: setup, image and geometry as mentioned in table 4.2.
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Factor RobotCar KITTI WEpod

Default 0 4 4

Dataset equalisation 1 12 4
Order of training 0 0 1

Greyscale 68 21 3
Left-hand traffic 0 11 10

Gamma correction 0 17 5
Histogram equalisation 4 15 31

Number of classes 0 16 13
Horizon n/a n/a 5

Cropping 0 11 5
Intrinsic consistency 3 13 6

Table 4.5: Number of missed drivable path segments. In these cases, the network does not estimate a drivable path at all.

F1-score [∆%]
Drivable path Occupancy

RobotCar KITTI WEpod RobotCar KITTI WEpod

Dataset equalisation +4 +8 -9 -2 +1 +7
Order of training +41 -38 +20 +12 -2 +56

Greyscale -36 -9 0 -8 0 +4
Left-hand traffic -1 -2 +4 +5 -2 +39

Gamma correction -6 -5 +7 +5 -1 0
Histogram equalisation -10 -4 -2 +1 0 +27

Number of classes +1 -8 +8 n/a n/a n/a
Horizon n/a n/a +8 n/a n/a +7

Cropping +27 +13 +11 +5 -2 -15
Intrinsic consistency +8 -5 +10 +6 +2 +31

Table 4.6: F1 metric values compared to the baseline for every experiment. ∆% refers to percentage points compared to this baseline.
The dash line distinguishes between three categories: setup, image and geometry as mentioned in table 4.2.

4.3. Top View
As motivated in section 3.3, the transformation to top view is important. These experiments will result in two
additional evaluation metrics. The first evaluation entails a check on the quality of the drivable path segmen-
tation. The second and last evaluation results in the importance of ground truth depth for the transformation
to top view.

Because ground truth depth maps are needed for several setups, only the KITTI dataset is used. Both
RobotCar and WEpod have a lidar sensor mounted which can obtain ground truth depth but the mounted
lidar is a 4-beam lidar which does not suffice in order to create depth maps. KITTI however, has a 64-beam
lidar and hence results in the best possible (sparse) depth maps. A selection from the KITTI test set, used in
experiments for the domain shift, is created resulting in 150 images. In this way, every category (road, city,
residential) is represented by 50 images.

Throughout the top view experiments, a CNN is used to deploy drivable path segmentation. Since the test
data for these experiments only exists out of images of the KITTI domain, the training phase of the CNN is
implemented such that segmentation results are better for KITTI than the baseline in table 4.3. This KITTI
training set is however, the same training set as used for the other experiments of domain shift.

4.3.1. Without depth
The most basic setting to convert to a top view entails a simple transformation without the need for depth
information. It is important to use the same transformation parameters for both the ground truth and the
network output of the test images. This results in a clean comparison between the ground truth and estimated
drivable path. This comparison acts as an extra metric to see if the estimation is satisfactory. In order to
evaluate the quality, four additional metrics are calculated and are shown in table 4.7.
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Within the three categories, the road element shows the best performance in all metrics. Both raw error
and scaled error have their minimum for road when comparing with the other two categories. The raw error
is 0.68 metre for road while it is notably higher for city (0.93 metre) and residential (2.36 metre). The scaled
error has a similar trend for all categories.

Additionally, the trajectory which follows from the estimated drivable path is about 90% of the length of
ground truth trajectory. This is much better than the 73% and 75% for city and residential respectively. For
the count parameter, the road category has all test images classified with a drivable path where for city 49 out
of 50 are classified. Residential images are lacking four drivable path estimates, classifying 46 out of 50.

Figure 4.3: The top row show the original KITTI image. The middle row consists of three top views: top view image (left), top view
ground truth (middle) and top view output (right). The bottom row consists of two images related to the evaluation. The left image

depicts the top view trajectories and the graph on the right shows the raw and scaled error relative to the longitudinal direction.
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4.3.2. Ground truth depth

Figure 4.4: The top row show the original KITTI image. The middle row consists of three top views: top view image (left), top view
ground truth (middle) and top view output (right). The bottom row consists of two images related to the evaluation. The left image

depicts the top view trajectories and the graph on the right shows the raw and scaled error relative to the longitudinal direction.
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When depth information is available, the transformation to top view can be achieved utilising this informa-
tion. When ground truth depth maps are obtained from lidar sensors (as in this case), the resulting depth
maps are sparse.

For the raw and scaled errors the same observations as for the first experiment are found. The road cate-
gory outperforms the other two categories however, the difference with the city category is decreased. Where
the raw error of the road category equals 0.61 metre, the city category only has a slightly bigger error resulting
in a raw error of 0.64 metre. Residential images perform considerably worse with a raw error of 1.86 metre.
The scaled error has a similar trend for all categories.

The trajectory length of the residential category is the largest (80% of the ground truth trajectory length)
out the three categories. This is realised based on 44 out of the 50 test images for residential category, meaning
it is missing six drivable path estimations. Road imagery achieves 73% of the full trajectory length (obtaining
a drivable path in top view for 49 out of 50 images) while city images only reach to 61% of the ground truth
trajectory (obtaining a drivable path in top view for 44 out of 50 images).

4.3.3. Estimated depth
Often, depth information is not available. The transformation to top view can still be made by a simple
perspective transformation as shown in section 4.3.1. However, it is also possible to estimate depth based
on images, resulting in a dense depth map. This is explained in section 3.3.4.

For this approach, the road category obtains the best results for raw and scaled errors. The raw error
equalled 0.60 metre while the scaled error is 0.24 metre. These metrics are notably better than the metrics for
the city test set which resulted in 0.82 metre and 0.34 metre for raw and scaled error respectively. Drivable
path estimates in residential images score the lowest based on the proposed metrics with a raw error of 2.04
metre and a scaled error of 0.76 metre.

The trajectory length of residential images is the highest with 77% of the ground truth trajectory esti-
mated. The drivable path trajectory lengths are similar for road and city images obtain roughly 68% and 69%
of the full trajectory length. Except the lengths, the amount of drivable paths are also similar for these test
sets, obtaining 49 out of 50 segments for the road images and 48 out of 50 city images. The residential set has
45 out of 50 drivable path estimates.

For the evaluation metrics of semantic segmentation, one trend can be discovered. For all approaches, the
proportions within every test set are similar. In all cases, the road category obtains the best results, looking at
raw and scaled error. Differences based on these two parameters are large between residential and the other
two categories.
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Figure 4.5: The top row show the original KITTI image. The middle row consists of three top views: top view image (left), top view
ground truth (middle) and top view output (right). The bottom row consists of two images related to the evaluation. The left image

depicts the top view trajectories and the graph on the right shows the raw and scaled error relative to the longitudinal direction.

Category Setup
Raw Scaled Overlap

Count
error [m] error [m] length [%]

Without depth 0.68 0.28 90 50
Road With ground truth depth 0.61 0.25 73 49

With depth estimating CNN 0.60 0.24 68 49
Without depth 0.93 0.42 73 49

City With ground truth depth 0.64 0.27 61 44
With depth estimating CNN 0.82 0.34 69 48
Without depth 2.26 0.93 75 46

Residential With ground truth depth 1.86 0.72 80 44
With depth estimating CNN 2.04 0.76 77 45

Table 4.7: Evaluation values for the top view experiments. For the error: less is better. For the overlap length and count: higher is better.

4.3.4. Depth accuracy
By comparing the results from the different approaches, the effect of depth accuracy is analysed. The ap-
proach where no depth information is used in the transformation to top view, results in the lowest evaluation



58 4. Experiments and results

metrics out of the three approaches. For the road category an increase of roughly 13 percent compared to the
best performance (i.e. approach where depth is estimated via a CNN) is noted. With a difference not topping
2 percent, the other two approaches are really close but the performance in the road category is best for the
approach with the depth estimating CNN.

For the city category the difference between approaches is larger. Utilising ground truth depth informa-
tion leads to the best performance, only slightly less accurate than for the road category (0.64m compared to
0.61m). Using the depth information obtained from a CNN, results in a decrease of 28 percent compared to
the ground truth depth method. Again, the transformation without the use of depth information results in
the worst performance, decreasing with 45 percent compared to the ground truth depth approach.

Similar results are shown in the residential category, the hardest category out of the three. The approach
where ground truth depth is used, computes the transformation the best out of the three options, ending with
a raw error of 1.86m. An increase of more than 9 percent for the raw error compared the ground truth depth
is found for the estimated depth approach. Roughly 21 percent is the loss of performance when no depth
information is used when transforming from image space to top view space.

In table 4.7 four parameters are listed. raw error denotes the average difference over all the trajectories
where scaled error refers to the scaled error between ground truth and estimated drivable trajectory over all
trajectories from the test set. This results in one value for every category. The Length parameter is expressed
in percentage referring to the amount of overlap between the ground truth and estimation in longitudinal
direction. The last parameter is Count which entails the number of drivable paths estimated, where 50 is the
maximum.

4.4. Discussion
During this study, the experiments were conducted based on SegNet, an encoder-decoder network. No other
architectures are used to conduct experiments. The problem of the domain shift is not solved by deploying
another network since the data contains differences and therefore, is not dependent on the network. How-
ever, it would be interesting to what extent the conclusions based on the experiments will coincide. This
would rule out any network architecture related issue and hence give more insight in the problem of domain
shift.

Synthetic data is becoming increasingly important for improving current state-of-the-art results. The
potential of synthetic data is lies in the possibilities of high variety of scene appearances and the ease of gen-
erating ground truth. However, the latter is possibly cancelled out by the generation of realistic virtual worlds,
which is time consuming [27]. A few possibilities are already existing datasets/games such as GTA V, TORCS,
SYNTHIA and CARLA. Synthetic data could be exploited as base for semantic segmentation. The research for
influencing factors would be a lot broader since the domain shift also consists of the transformation from
synthetic data to real-world data. However, due to time constraints, synthetic data is not utilised in this study.

4.4.1. Drivable path segmentation
Currently, the WEpod does not use images in order to predict its path. The WEpod drives around in a point
cloud which is obtained beforehand. Based on this point cloud, the WEpod can locate the static objects of the
environment. Within this "static map", a trajectory is planned. When the WEpod is driving in autonomous
mode, this trajectory is followed as long as the lasers and radars do not detect any additional obstacles that
are predicted to cross the trajectory in the near future.

During the generation of the ground truth labels, the ground scatter is removed from the point cloud.
In the process of the removal, a few manually adjustable features (e.g. length of analysed sequence, obstacle
height) are set to a threshold. These thresholds are determined on the basis of the domain where the labelling
process is applied. As mentioned in section 3.1.2, the amount of future IMU positions that are taken into
account equals 50. This number is set to be the best amount when considering the tracks in our training set.

Another parameter which is manually set, is the margin that is taking into account for determining whether
points are located on an obstacle or on the road plane. Because of possible inaccuracies in road layout (i.e.
ditches or natural slope), there is a margin which defines to what extent points are considered as road. This
margin is set to 0.10 metres and based on the training sets for which the labels are generated.

In urban areas, GNSS is not always capable of retrieving a good localisation due to (high) buildings that
prevent the signal from reaching the vehicle. The problem of blocked GNSS signals is often referred to as
urban canyon. Signals that do reach the vehicle are often reflected of buildings and hence giving positioning
of low quality. This error is referred to as multipath. These errors reflect on the drivable path segmentation
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because the car’s position of future poses is used, potentially leading to bad ground truth labels. This is, how-
ever, averted by a threshold on the accuracy of the measurements. The threshold of accepted measurements
is managed by a parameter, that is set manually.

4.4.2. Domain shift
Throughout this study, the factors are subdivided into one out three categories: network setup, image ap-
pearance and geometry. In general, the effect on the drivable path segmentation for the WEpod domain is
positively influenced the most by the geometry category. However, this general trend is quantitatively topped
by the order of training which is part of the network setup category and affects the drivable path estimation
the most of all factors.

Factors in the image appearance category often have limited effect on the drivable path segmentation
although histogram equalisation and left-hand traffic are two factors that have major positive influence on
the occupancy segmentation of the WEpod domain. The change in the setup where the network is first fine-
tuned on KITTI and as a second step fine-tuned on RobotCar. Both drivable path segmentation as occupancy
segmentation of the WEpod domain see a huge increase in evaluation metrics due to the change in setup.

During the evaluation, two separate metrics are used: Jaccard index and F1-measure. Analysing both
metrics, it is noticed that, although the absolute values differ, they both follow the same trends. However, in
one case the difference in absolute values show a different "leading" factor within a category. In this study,
generating images with corresponding labels which are intrinsic consistent show to be the lead factor in the
geometry category, based on the Jaccard index where the cropping factor is considered leading factor by the
F1 metric.

Analysing one inference image with corresponding ground truth, both IoU as F1 metric are always posi-
tively correlated. Therefore, when the IoU metric prefers case "intrinsic" over case "cropping", the F1 metric
will do the same. However, there is a possibility this changes when the average score over a set of inference
images is taken. There is a difference between the Jaccard index and the F1 metric in quantifying the errors in
case "intrinsic" and in case "cropping". In general, IoU metric will penalise single instances of bad segmen-
tation more than the F1 score and hence, over a set of averages, the IoU score results closer to the worst case
performance while the F1 measure is closer to the average performance. This potentially guides to a different
"leading factor" based on the IoU and F1 metric.

When obtaining average values of over a large set of inference images, both metrics have the same draw-
back. They both overestimate the importance of (very) small classes. As illustrating example, in an extreme
case of semantic segmentation, if an image only has a single pixel of some class, and the network classifies
that pixel correctly but also one other pixel wrongly, its F1 score is 66% and the IoU is even worse at 50%.
These severely punished mistakes can play an important role when averaging metric values over a set of in-
ference images. In other words, the metrics weight each error on pixel level inversely proportional to the
number of relevant pixels instead of treating them equally.

Another notable result is seen for left-hand traffic where a large increase of the occupancy segmentation
is noted. This is surprising because the relation between the pixel values (RGB values) of the original image
and corresponding ground truth label value are not changed. The spatial relation between pixels did change.
This would implies that the network is dependent on spatial locations in the image which is not the goal of
the neural network which is assumed to recognise obstacles independent of the spatial location in the image.

Because of the used approach, influence of the factors on seen (RobotCar and KITTI) domains can be
separated from unseen (WEpod) domains. In the image appearance category, histogram equalisation is the
only factor that results in similar trends throughout all domains and for both the classes. Cropping also shows
this for the drivable path class.

4.4.3. Transformation to top view
From the results in table 4.7, it is concluded that depth information does play an important role for the gen-
eration of a correct drivable trajectory. Depth plays a more important role for the lateral error than for the
longitudinal error. Moreover, the approach which does not use any depth information has a better longi-
tudinal performance than approaches which utilise (ground truth or estimated) depth information for the
transformation.

When the results of lateral error are split for the three categories (i.e. residential, city and road), the pres-
ence of depth information in the transformation from image space to top view space is most important for
the residential and city category. The road category also notices improvements but these are minimal com-
pared to the other two categories. This is intuitive since the road category has the least amount of turns in
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the drivable path, resulting in a relatively easy interpretable environment.
The evaluation in top view space has two related metrics: raw error and scaled error. The raw error is gives

a good overview of the difference between the estimated trajectory and the ground truth trajectory. However,
it does not take into account that the significance of the estimation drops proportional to the longitudinal
distance from the vehicle. Therefore, the raw error is scaled. A simple scale is created which represents the
importance of the location by a value. These values range from one to zero and are limited to the length of
overlap between the ground truth and estimation.

When analysing the results of the raw error and the scaled error, the same trend throughout the results
can be seen. Hence, the same conclusions are drawn based on the raw error as based on the scaled error. This
is opposed to the evaluation metrics of the domain shift factors where differences between the Jaccard index
and F1-measure led to a discrepancy in one occasion. The fact that the raw error and scaled error in the top
view transformation tell the same story means that the behaviour in longitudinal direction is similar. Most
of the trajectories start relatively accurate while diverging further from the vehicle. This divergence does not
necessarily happen at the same absolute longitudinal distance from the car but it does occur at the same part
of the full trajectory.

A critical note on the results is the absence of the requirement on a continuous lateral drivable path esti-
mation in order to create a top view trajectory. This potentially results in better overlap length than would be
considered useful.

4.5. Summary
This chapter begins with a small description of the experimental setup. This part explains the used hyperpa-
rameters of the network. The remainder of the chapter is dedicated to the experiments which are split up into
two parts: domain shift factors and top view transformation. The examined domain shift factors are organ-
ised such that first it is briefly mentioned what the experiment executes. Afterwards, the results are described
and the last part of each experiment consists of a discussion about the possible explanations for these results.

Based on the drivable path of the WEpod domain, factors which show influence on the domain shift are
intrinsic consistency, cropping and horizon shift. Other factors only show minimum influence on the drivable
path segmentation such as converting to greyscale or even negative influence such as contrast enhancement
via histogram equalisation. Reversing the training order is the factor which has the largest positive influence
on the drivable path segmentation. This indicates that the RobotCar and WEpod domain are more similar
than the KITTI and WEpod domain.

As discussed in chapter 3, a transformation from image space to top view is necessary to use semantic
segmentation to its full potential. However, a range of possibilities exists to obtain this transformation. How
these transformations differ, depends on the depth information that is used in the conversion to top view:
no depth information, ground truth depth information (lidar) or estimated depth information. From the
experiments it is concluded that the setup with ground truth depth information leads to the best performance
concerning lateral error in two out of three categories (city and residential). For the road category, the best
lateral performance is acquired by the transformation without depth information.
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Conclusions and recommendations

During this thesis, the domain shift between datasets for the task of semantic segmentation is examined by
deploying several experiments. Additionally, different setups for the transformation from image space to top
view space are examined. In this chapter, the main conclusions of the five research objectives will be presented
section 5.1 and suggestions for further research are proposed in section 5.2.

5.1. Conclusions
The conclusions noted in this chapter are organised such that they relate to the main research question and
the five sub questions that were determined in chapter 1 and are given in the following subsections.

5.1.1. Deep Learning

How can deep learning be used for estimating drivable paths and what is the role of domain adaptation?

Semantic segmentation of images is a significant method for scene understanding in road scenery. During
recent years deep learning, often in the form of convolutional neural networks, has become a dominant tool
for semantically segmenting images, exceeding performance of the existing methods based on hand-crafted
features. Convolutional neural networks learn feature extraction during the training phase by relating ground
truth labels (containing drivable paths) to training images. These features are utilised during test phase,
estimating the drivable path from a test image.

A downside of neural networks is that it is fully dependent on the data used during training. Especially the
amount of data which is needed in order to obtain state-of-the-art results. Transfer learning is one approach
to tackle this problem. It aims to transfer knowledge gained from one (source) problem to a different but
related (target) problem. In this thesis, a problem consists of a task and a domain. One specific part of transfer
learning, called domain adaptation, aims to successfully transfer knowledge assuming the same (source and
target) task is deployed in a different domain. Due to this transfer of knowledge, a neural network is able to
obtain good drivable path segments without the need of enormous amount of additional data, making the
system data efficient.

5.1.2. Efficiency

How to utilise the vast amount of data that is already available?

As concluded from the first sub question, domain adaptation can be used to reduce the required size of the
training set. However, this form of training still requires ground truth labels which are often not available in
sufficient quantities. To address this problem it is essential to efficiently use the available laser and camera
sensor data. This is achieved by creating ground truth labels with limited accuracy and a limited number of
classes. Based on the point clouds from the lidar sensor and images from the camera sensor, occupancies can
be projected into a label. Additionally IMU and GNSS data is used to construct drivable path segmentation.
Due to the difference in quality of different datasets, mainly determined by the number of lidar planes, the
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amount of details (i.e. number of classes) in the ground truth labels is limited. However, this procedure results
in a computation efficient method to obtain labelled data since the pipeline can be completely automated.

5.1.3. Domain adaptation

What factors influence a successful domain adaptation for the task of domain adaptation?

Concluded from the first sub question, domain adaptation can be useful and potentially essential to achieve
state-of-the-art results in real world situations where data is limited and not perfect. Successful domain adap-
tation is defined as the process of transferring knowledge of a single task from one domain to a different do-
main where no drastic drop in evaluation metrics occurs. A range of potential factors is examined and based
on the performed experiments, several conclusions are stated.

The cropping experiment where KITTI images are cropped to the same aspect ratio as RobotCar images is
successful for the drivable path segmentation of all domains. By the cropping modifications, the feature space
describes the features in more generic way such that the classes can be distinguished better. Establishing a
training and test set which are intrinsic consistent removes the differences between the recording platforms
with respect to camera parameters. This did have positive influence on the WEpod and RobotCar domain,
increasing the evaluation metrics for the drivable path segmentation. However, these improvements did not
lead to a fundamental change of the results. The shift of the horizon line is also examined and found to be a
factor which will have a positive influence on the drivable path segmentation.

Besides these adjustments based on geometry, modifications on image appearance are made. However,
these modifications did not have as much effect on the drivable path segmentation as previously mentioned
geometry based adjustments. Contrast adjustment by means of histogram equalisation even results in a de-
crease of performance for drivable path segmentation over all domains. Applying gamma correction results
in similar decrease for the RobotCar and KITTI domain but achieves an improvement for the drivable path
segmentation of the WEpod domain. The influence of the left-hand traffic in the RobotCar domain is small
for the drivable path segmentation in the WEpod domain but large for the occupancy segmentation, boosting
performance. Creating the same colour space for all domains by converting the RobotCar and KITTI domain
to greyscale resulted in a tremendous decrease in performance for the drivable path segmentation in these
domains. It showed to have a negligible effect on the WEpod domain. The last factor in the image appearance
category is a modification of the labels, bringing the number of classes from three to two. This resulted in the
best improvement for the drivable path segmentation of the WEpod domain.

Equalising the size of the input dataset of RobotCar and KITTI lead to a smaller training set and resulted
in a decrease of performance on the drivable path segmentation of the WEpod. This adjustment is part of
the setup category. Another change in this category, leading to the largest improvement for the drivable path
segmentation of the WEpod domain, is the order of training. The performance gain implies that the RobotCar
domain and WEpod domain resemble more than the KITTI domain and the WEpod domain.

5.1.4. Top view transformation

What is the importance of depth information in the transformation from image space to top view space?

In this work scene understanding in the form of semantic segmentation is deployed in 2D image space while
the control of the vehicle occurs in top view. Therefore, to utilise the scene understanding, the performed
semantic segmentation is transformed from image space to top view space. A variety of setups with different
inputs are possible. Three possibilities are examined: transformation without depth information, transfor-
mation with (sparse) ground truth depth information, transformation with (dense) estimated depth informa-
tion.

From the experiments it is concluded that the influence of depth information information differs per
category but in all cases is an added value for the transformation to top view trajectories. This conclusion
is based on the evaluation metric which takes the differences between ground truth and the estimation into
account. The evaluation metric which compares the overlap in longitudinal direction between ground truth
and estimation, only shows added value of depth information for the Residential category. The other two
categories, road and city, show longest overlap for the transformation where no depth information is used.
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5.1.5. Evaluation

How to evaluate drivable path proposals?

The evaluation of drivable path proposals is important in order to assess the method and to determine
whether the results are satisfactory. In this work, the drivable path estimation is evaluated at two different
levels: image space and top view space.

For the image space, a variety of default evaluation metrics exist and are used within this work. Different
evaluation metrics contain different valuable information about the segmentation. The Jaccard index and
F1-measure are the metrics that are considered in image space.

In top view space, a set of customised evaluation metrics are created. From the segmentation in top view,
a trajectory line is extracted. This trajectory line is compared to the ground truth trajectory which is extracted
via exactly the same method (i.e. from the label transferred to top view). A meaningful metric is created by
obtaining the difference between the estimated trajectory line and ground truth trajectory line. This differ-
ence is scaled to relate the size of the error with the longitudinal distance from the vehicle. This scale assumes
a linear decrease of significance, where distant errors are less important. In order to obtain an overview of
each method these values are averaged over the length and number of test images, resulting in one evalua-
tion value. It is important to know to which extent there is an overlap between the estimation and the ground
truth in the longitudinal direction. This metric is generated as a certain percentage of the ground truth length,
assuming the ground truth is the ideal and correct length.

5.1.6. Final conclusion

Is it possible to estimate and utilise drivable paths for the WEpod domain, solely based on data from
different domains?

From the sub question about successful domain adaptation, more insight is gained in the domain shift. A
variety of factors showed positive or negative influence on the evaluation metrics. However, it is concluded
that the domain shift cannot be addressed to one factor solely. Hence, it is possible to estimate drivable paths
for the WEpod domain solely based on external training data, only to a very limited extent. The results based
on external training data are not satisfactory and do no reach similar results as when the network is trained
on the domain itself.

However, the sub question about top view transformation showed that depth information is of additional
value for the transformation to top view which is necessary to utilise the estimated drivable path. Experi-
ments showed that in two out of three cases, ground truth depth information was optimal. However, the main
research question focuses on data of different domains (i.e. no data from the WEpod is available). Therefore,
it is assumed that the ground truth data of the lidar is not available. Based on external data, which do con-
tain depth information, it is possible to estimate depth information based on a single image and hence, it is
possible to utilise drivable path segmentations although not being the optimal solution.

5.2. Recommendations
To use this research as a base for future research or use this research as advice for other work some issues
should be taken into consideration. In addition some aspects of the research can be further developed or
improved and these are mentioned based on the following sections.

5.2.1. Weakly-supervised segmentation
Ground scatter removal is an important procedure during the generation of ground truth labels. The con-
ducted approach is explained in section 3.1.2. This approach works very well under a variety of situations but
has its limitations. Therefore, the current method can be replaced by a more sophisticated approach such
as MLESAC [64]. The use of such an approach will result in small improvements, mainly correcting ground
scatter at significant distances from the vehicle. Except the improvement in approach, the algorithm can be
developed further in order to decrease the computation time and thus be less.

The most common case of semantic segmentation is deployed on images. However, recent research also
consists of semantic segmentation of 3D point clouds in order to segment road [9] but also full semantic
segmentation containing nine classes [62].
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Due to the the phenomenon "urban canyoning", the accuracy of GNSS data and hence the amount usable
GNSS data in urban areas is greatly reduced. This automatically leads to less accurate drivable path labels as
ground truth. In order to avoid inaccurate ground truth labels without necessity of manual correction, optical
flow should be considered as solution to this problem.

5.2.2. Domain shift factors
During the experiments for determining the influence of factors on the domain shift, there is specifically
chosen for isolating each factor to see what the influence is of each factor separately. However, when aiming
for the next step in improving the performance, a combination of factors should be analysed.

During this work, the influence of a domain shift factor is based on a comparison of evaluation metrics
which are the result of semantic segmentation in image space and top view space. However, to get more
insight in the learned feature space it would be interesting to see the influence of the modifications on the
intermediate layers of the network.

It would be interesting to examine the domain shift on more than three classes which is acquired by full
segmentation. This will potentially lead to problems with specific classes and and is thus possible to focus
and point down the main reason of the domain shift based on the differences in the environment of the
domain.

Since the evaluation metrics point out that there is more resemblance between RobotCar and WEpod than
between KITTI and WEpod, it would be interesting to further investigate the specific differences between
RobotCar and WEpod.

5.2.3. Top view transformation
In certain cases, the estimated trajectory has only a small overlap with the ground truth. For these cases
the scale will be zero at the end of the overlap which will be relatively close to the vehicle. This situation is
obviously not a good representation of the real world situations. Instead of creating a scale dependent on
the overlap of the ground truth and estimation, it is advised to create a scale dependent on the longitudinal
distance from the vehicle, regardless of the existence of an estimate in that area.
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