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Abstract

Malaria remains a leading cause of mortality, particularly in regions with limited access to
healthcare. Despite the availability of diagnostic methods such as microscopy, Rapid Diag-
nostic Tests (RDT), and Polymerase Chain Reaction (PCR), these methods face challenges
in accuracy and practicality, especially in field conditions. This thesis investigates the use
of automated, Computer-aided diagnostics (CAD) to improve in-the-field malaria diagnosis.
While CAD shows promise, significant challenges remain in dealing with image imperfections
and data variability. The study focuses on the use of blob detectors and Zernike decomposi-
tion to improve the precision of the CAD system. Additionally, data quality is investigated
to evaluate the reliability of malaria diagnostic pipeline. The results suggest that Zernike de-
composition is effective in identifying shapes most likely to correspond to parasites, enhancing
the blob detector’s precision. Furthermore, the use of data stratification is shown to reduce
the variance between models during training, which indicates that it can generalise better to
unseen data. This work contributes to the ongoing effort to develop a robust, field-deploy-able
malaria diagnostic tool by incorporating prior knowledge of the malaria parasite its shape to
improve precision and ensuring reliability by evaluating data quality.
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Chapter 1

Introduction

Malaria is one of the leading causes of death in South Africa, attributed to poor access
to healthcare, understaffing of public health facilities, and lack of equipment [49, 74, 81].
The WHO African region accounts for approximately 95% of the total 247 million malaria
infections [74], of which less than 29% receives proper treatment [81]. Despite the WHO its
efforts, the mortality rate (deaths per 100000 people at risk) did not decrease significantly
(1.3%) as of 2015 [74]. Therefore, it remains vital to keep developing (new) diagnostic methods
that aid in the eradication of malaria.

Rapid and accurate diagnosis can be achieved with current diagnostic methods, yet their
performance deteriorates when applied in-the-field. The predominantly used methods include:
microscopy, which involves manual inspection of blood samples for malaria parasites; Rapid
Diagnostic Tests (RDT), which involve applying a drop of blood to a paper strip that shows a
visible line if the patient is infected; and Polymerase Chain Reaction (PCR), which effectively
creates countless copies of a DNA sample to allow for careful analysis. Despite microscopy
being the golden standard, it is labour-intensive, and its efficacy depends on factors such as
the quality of the blood sample, available equipment, and skill level of the handler [23,34].
Low skill levels due to inadequate training can result in misdiagnosis; studies have reported
that 36% to 41% of the cases are misdiagnosed [49,81]. Moreover, microscopy is usually done
in a laboratory, which impedes diagnostics where resources are low [34]. RDT are widely used
as an alternative if microscopy diagnosis cannot be provided, due to their rapid deployment
and quick results. However, the performance is severely affected by climate conditions and
it only detects malaria if the density is > 100 parasites/ul, compared to > 5 parasites/ul
for manual microscopy [71]. PCR, however, can detect malaria for densities as low as 0.004
parasites/ul, but the use is limited due to its high cost and storage conditions [49]. Hence,
whereas microscopy its performance is affected by humans, the alternatives, RDT and PCR,
are affected by external factors. This presents the possibility to improve upon microscopy
diagnostics by either improving the performance of the handler, or by reducing the dependence
on trained personnel.

Automated diagnosis has been proposed to reduce the dependence on trained personnel,
referred to as Computer-aided diagnostics (CAD), which reduces the amount of labour and
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2 Introduction

can lead to more reliable diagnostic results [7,41,50]. CAD consists of four main steps:
pre-processing (e.g. filtering out noise), feature extraction (retrieving relevant information
from an image), classification (using the provided information to evaluate whether this is
a parasite or not), and performance evaluation (verification based on ground truth) [41].
Numerous CAD implementations have been proposed [41,50] to achieve accurate diagnosis
(> 96% [60]), typically by implementing increasingly complex machine learning and deep
learning algorithms on high-end devices. To mitigate the dependence on high-end devices,
algorithms are proposed that can be implemented on smartphones [79]. Using readily available
technology such as smartphones facilitates in-the-field deployment [55], yet this gives rise to
a new challenge: processing of in-the-field data.

Data acquired in-the-field gives rise to complications such as poor image quality, available
computing power, and variations in the images due to preparation or contamination of the
sample [23,35,37,78]. To account for these imperfections, the traditional approach in CAD
is to implement a series of manually tuned filters to acquire a dataset that is as homogeneous
as possible. However, the used datasets are acquired in different locations and conditions,
introducing deviations between datasets due to differences in sample preparation and imaging
settings [50, 53]; these variations deteriorate the homogeneity of the datasets. Since CAD
methods proposed in the literature are typically evaluated on one dataset only, it is not clear
if these methods generalise to other datasets as well.

To mitigate the need for manual tuning and improve the generalisability of the automated
diagnostic algorithm, focus has shifted from the traditional approach to neural networks by
replacing the feature extraction step or providing an end-to-end solution [41]. Neural networks
typically outperform traditional approaches [60], although the performance deteriorates when
dealing with unseen data [78]. This hinders application in-the-field since datasets acquired
in this setting contain more imperfections (unseen data) than datasets acquired in a clinical
setting [34,59]. Although algorithms can be trained using in-the-field data [38], this is impeded
by the scarcity of publicly available in-the-field data [78]. To deal with these imperfections,
or artefacts, several approaches have been proposed, such as: manually removing images with
imperfections [34], using fluorescent imaging [33], or setting a threshold for the minimum
number of detected parasites to account for some of the detections being artefacts [78]. Since
the goal is to reduce manual labour, and the fact that in-the-field labs are typically only
equipped with brightfield microscopes, the first two methods are not sufficient. The third
method does not require additional manual labour or equipment, yet requires tuning of the
threshold parameter and assumes that the number of parasites will equivalent for all images
in the dataset. Therefore, dealing with imperfections such as artefacts remains an open area
of research.

It is clear that quality of images in a dataset affect the performance of CAD algorithms, yet the
performance is also affected by the quality of the data itself. For example, the performance of
Convolutional Neural Network (CNN)s depends strongly on the amount of data available [36],
and if there is a class imbalance in the dataset, e.g., if there are more samples of negative
images than of positive images, the performance can be affected as well [54]. In the latter case,
it is also important to carefully select which performance metric is used as it can overestimate
the performance [54,56,61].

In conclusion, CAD has shown to be a promising approach to automate the diagnosis of
malaria, yet requires further research in order to successfully implement it in-the-field. First
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1-1 Roadmap 3

off, it is unclear how to distinguish between parasites and imperfections such as artefacts.
Second, data quality is not always taken into account when evaluating performance of a
CAD algorithm. Lastly, when evaluating, metrics are used that give a biased representation
of the performance. Therefore, this thesis aims to find characteristics, or features, that set
imperfections apart from parasites to improve in-the-field performance, and explores other
error sources such as data quality and performance metrics to evaluate how they affect the
performance of automated diagnostic algorithm.

1-1 Roadmap

This thesis is structured into four main parts: background chapters, methods, results, and
conclusions. The background chapters provide context and reviews relevant literature; the
methods chapters discusses how the research is performed; the results chapter presents the
outcomes of the research; and the conclusion summarises how the results have contributed
to the field. The following chapters will together form the background part of this thesis.
Chapter 2, will review how manual diagnosis is performed to analyse what characteristics are
used to recognise malaria, and what guidelines the microscopist need to follow to ensure that
the patient gets the correct treatment. For example, it is essential to know the severity of the
infection for proper treatment, therefore it is also important to analyse how this is assessed.
Next, it is reviewed how this process is ported to automated diagnosis in Chapter 3. Lastly,
Chapter 4 reviews how past studies have dealt with image- and data quality and how they
evaluated the performance.
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Chapter 2

Recognition of Malaria

Characteristics of a malaria parasite such as size, shape and colour are vital when learning how
to distinguish between parasites and other objects; this is true for both lab technicians and
computer algorithms. However, whereas lab technicians intuitively know what to look for if a
parasite is described as a purple, ring-shaped object, computer algorithms first need to learn
to recognise characteristics like colour and shape. These characteristics are called features.
This chapter reviews the manual diagnosis process to better understand which characteristics
are decisive in recognising malaria, and what procedures are in place to establish a diagnosis.

2-1 Manual diagnosis using brightfield microscopy

Due to its availability in laboratories, versatility in diagnostics and simplicity in handling,
brightfield microscopy remains the golden standard for manual malaria diagnosis [23, 73].
In brightfield microscopy the sample is typically illuminated from below and observed from
above. As a result, objects in the sample appear darker than the rest of the sample due to the
absorption and reflection of light. This allows technicians to spot objects that would otherwise
remain undetected. The diagnosis through brightfield microscopy (roughly) consists of three
important parts: sample preparation, handling the microscope, and reading of the sample,
i.e., examining whether parasites are present in the sample.

The types of samples can range from stool samples to urine samples to blood samples, of
which the latter is a standard option for diagnosing malaria. The blood smear consists of
a single layer or multiple layers of blood, called thin and thick blood smears, respectively.
The fact that more blood is used makes the thick blood smear more sensitive for parasite
detection and quantification [71]. However, the image will inherently contain some defocused
objects as a result of the multiple layers. In thin blood smears, red blood cells are preserved
and therefore are more suitable to classify different species of parasites [73]. Technicians are
therefore instructed to first examine a thick blood smear to derive if a patient is infected or
not, and only examine a thin blood smear if the parasite species cannot be confirmed in the
thick blood smear.
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6 Recognition of Malaria

Effect of pH on parasite morphology
pH 6.4 6.8 72 76

Figure 2-1: Deviations in colour balance due to staining. If staining is done correctly, the pH
should be around 7.2 [71].

2-2 Staining of blood samples

To ensure that the technician is able to observe parasites in a blood smear under a microscope,
both thin or thick, a dye is applied to the blood smear [73]. This dye stains each part of the
parasite with a distinct, more intense colour, which enhances the contrast between the parasite
and background [23] [58]; this process is called staining. Due to a lack of standardisation and
quality control, the staining process differs between laboratories, resulting in variations in
contrast and colour [35] [49]. In addition, artefacts can be introduced during the staining
process, such as blurring, dirt contamination, or smudges due to incorrect application of the
dye [37]. In Figure 2-1 it is show how the colour balance of a sample is affected by deviations
in the staining process. Hence, although staining is highly recommended for malaria detection
[73,74], it is also a possible source of imperfections that can complicate diagnosis.

2-3 Examination of blood sample

Once the blood smear is prepared, it is placed under the microscope for examination. The
microscope is typically fitted with multiple objectives so that the sample can be examined
under different magnifications. It is recommended to use 10x oculars, but 7x oculars are
used in practice as well to enable the technician to scan a larger area in one go. Starting
with the thick blood smear, a lower magnification (usually 40x) is used to select a part of the
blood smear that is free of contamination and is properly stained [71]. This part of the blood
smear, also called the Region of Interest (ROI), is then examined under a higher magnification
(usually 100x). To ensure a reliable diagnosis, the technician should examine at least 100
different areas within the ROI, referred to as fields, and confirm that at least 15 — 20 White
Blood Cell (WBC) are present in each field. The former is used to reduce false negative
diagnoses for low parasite densities. Parasite density D, or parasitaemia, is defined as

¢p  Cp X Nype ¢ X 8000

- (2-1)

D= ,
V;)s Cwbe Cwbc

¢p denotes the count of parasites, Ny, and c,p. denote the total number and counted WBC’s
respectively. The latter is assumed to be 8000 if the actual count is not available [71]. Hence,
for 100 images the minimum detectable parasitaemia, assuming an average of 20 WBC’s,
is [51]:

1 x 8000  1x8000
100 X cype 100 x 20

Dmin = (2‘2)
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Figure 2-2: a) Red blood cells infected ring-stage malaria parasites. (a-g) display parasites at
different points in their life cycle. (h) displays an earlier stage. adapted from [13] b) lllustration of
ring-stage malaria parasite appearances in thick blood films. The red dots resemble the nucleus,
the cytoplasm is attached to the nucleus. Adapted from [71]

The probability of a false negative (False Negative Rate (FNR)) is calculated as follows: [72]

C,
FNR = (N_"> " (2-3)
where C), denotes the total count of parasites for the total number of images N and n denotes
the number of samples taken from the population. Hence, after analysing 100 out of 1000
images
1000 — 100
1000

where C), = 10 corresponds to the minimum detectable parasitaemia, D = 4.

10
FNR = ( ) = 34.8%, (2-4)

2-4 Malaria parasite characteristics

After an ROI is selected, the technician scans the area to identify parasites. During the
lifetime of a parasite it goes through several stages, where each stage of the parasite can
be recognised through specific characteristics such as shape and size. In Figure 2-2b, the
different parts of the parasite are shown, which can be used to recognise them. The first
thing to look for is the chromatin, a part of the nucleus, which is always present in a parasite.
If one or more nuclei are present, the next thing to check is their size and shape. The nucleus
is usually round and the parasite’s size ranges between 2 — 3.7um [13], which can be seen
in Figure 2-2a. Another common characteristic is the cytoplasm, which is attached to the
nucleus and is typically ring shaped.

2-5 Performance evaluation of technicians

To guarantee that technicians’ performance meets the established standards, the World Health
Organisation (WHO) prescribes how to assess their performance. Malaria microscopists can
have different levels of expertise, which are evaluated using performance metrics shown in
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8 Recognition of Malaria

Table 2-1: Accreditation levels for malaria microscopists.

Detection Parasite quantita-
Accreditation level tion (25% of true | FPR
accuracy
count)

Level 1 (Expert) > 90% > 50% < 2.5%
Level 2 < 90% < 50% <5%
Level 3 < 80% < 40% < 10%
Level 4 < 70% < 30% < 20%

FPR denotes False Positive Rate. Metrics are evaluated on image level. Adapted from [73].

Table 2-1. These metrics are similar for machine learning algorithms as will be discussed in
Section 4-3, however, there are some subtle differences: First, detection accuracy (2-5a), is
often misinterpreted as accuracy of classification; detection accuracy only takes into account
if the microscopist correctly diagnosed a slide, as opposed to individual (potential) parasites
within each image [72]. Second, precision (2-5¢), and recall (2-5d)(sensitivity) are often given
the same weight, although they are not necessarily equally important. As shown in Table 2-1,
misdiagnosis of 10% of the slides is acceptable for an expert level microscopist, yet the false
positive rate (2-5b) should be < 2.5%; this infers that more weight is put on reducing false
positives.

accuracy = N+ 1P (2-5a)
Y~ TP+ FP + TN+ FN
TN

specificity = FPR = TN +FP (2-5b)

TP
precision = m (2-5C)

TP
recaﬂ = Sensitivity = m (2—5d)

2-6 Conclusion

To detect malaria we first need to identify objects in the image, which can be found by
searching for parts of the image where the intensity is low. The object is identified as a
parasite if it matches the description of the malaria parasite, e.g. if it has a similar shape and
colour. Note that the colour can be affected by human interference: improper staining will
shift the colour balance of the sample. The shape, however, remains the same. Moreover, by
using thick smears, the probability of detecting a parasite is improved due to the larger volume
of the blood sample. Lastly, it can be concluded from that technicians and algorithms can
be evaluated using the same performance metrics. The WHO uses these metrics as well and
prescribes that minimising false positives outweighs minimising false negatives. Moreover,
the quantification does not have to be spot on as long as the other performance requirements
are met. Hence, the recommended approach for detecting malaria is by looking for similar
shaped objects in thick blood smears, while only classifying them as parasites if it is evident
to avoid false positives.
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Chapter 3

Automated diagnosis

Automated diagnosis is proposed to reduce the dependence on trained personnel and make
the diagnostic results more reliable through implementation of algorithms. The process of
automated diagnosis is, too a certain extent, analogous to that of manual diagnosis: First,
the image is scanned for object with similar characteristics as malaria parasites (Feature
extraction). Second, the potential parasites are inspected more closely to label it as a parasite
(Classification). Lastly, the predicted labels are compared to the true labels to evaluate the
algorithms performance (Performance evaluation). Hence, the goal of automated diagnosis is
to find and implement an algorithm, or algorithms, that can perform these tasks. Although
these steps were implemented as separate steps by traditional approaches for automated
diagnosis, following the seminal work of Krizhevsky et al. [39], the focus has shifted to deep
learning approaches that deal with multiple, or all of these steps at once: Convolutional
Neural Networks (CNN’s) [82].

3-1 CNN'’s

A CNN trains a set of filters to detect features instead of using a separate feature extraction
step. These features can be used as input for traditional classification approaches such as
Support Vector Matrix (SVM), or a CNN can be designed to classify these features as well to
provide an end-to-end solution [41,82]. In Figure 3-1 an overview with examples are shown
that visualise the workings of a typical CNN architecture used in image classification.

CNN’s usually outperform traditional machine learning algorithms and are therefore widely
applied in Computer-aided diagnostics (CAD) [4,5,12,60], yet are typically considered to be
computationally expensive [12,36,82] which might reduce its applicability in-the-field where
resources are limited. Nevertheless, they have been implemented on low-end (compared to,
e.g. laptops) devices such as Raspberry Pi’s [53] and smartphones [78,79, 81|, which are
readily available even in settings where resources are limited [55]. Even though the available
computational resources on a smartphones are limited when compared to (super)computers,
the reported accuracy ranges between 96.5% and 99.5% [7,52,79]. These algorithms are
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Figure 3-1: Overview of a typical CNN architecture and its workings. a) General structure of
the CNN: the image is used as input for a convolutional layer consisting of multiple kernels,
which output is again used for another convolutional or fully-connetected layer. b) An example
of how an input is transformed to the output by the kernel of a convolutional layer, which is also
visualised using a real world image in c). Adapted from [1,26, 31].
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3-2 Feature Detection 11

trained on images that are acquired in a laboratory setting. The algorithm proposed in [79]
is evaluated using in-the-field data as well, which showed a relatively low specificity of 51.1%,
compared to 74% for lab data. This drop in performance is often attributed to parasite-
like staining artefacts [34,78]. Unseen data that is dissimilar from the training data can
indeed deteriorate the performance [83], yet is not guaranteed to be the only source of error:
error sources such as shift and rotation-invariance [40,80] or data imbalance [54] are typically
not ruled out. The lack of interpretability of CNN’s due to its black-box design not only
complicates finding the error sources, it makes it difficult to predict whether it can deal with
imperfections that are not present in the training data, but are present in new, unseen data
such as in-the-field data. Hence, CNN’s in-the-field applicability is not necessarily reduced
due limited computational resources, yet the lack of interpretability impedes finding a solution
that generalises to other datasets.

Hybrid CNN approaches are proposed in [77-79] to reduce computational complexity by only
selecting certain parts of the image based on the image intensity.Image patches where the
image intensity is low are selected based on the fact that objects, including parasites, in
brightfield images appear darker than the background. This filters out most of the back-
ground, yet it does not filter out other objects in an image, such as artefacts. The traditional
approach to filter out irrelevant objects is to find features that are correlated to malaria
parasites, and filter out objects that are not or weakly correlated to these features [21,22].
Although previous studies have attempted to find features corresponding to malaria, [20-22],
they did not focus on why these features would be relevant for detecting parasites and did
not investigate if the features were invariant to image transformations such as rotation or
scaling. In other medical fields, however, studies have been able to relate certain features to
the shape of a cell using Zernike Moments (see Section 3-2-3) [8,9,63]. Since the shape of
a malaria parasite is well known, the corresponding features can be identified using Zernike
moments and could be used to filter out irrelevant objects. However, instead of first selecting
image patches based on intensity and then filter out the objects, these features can be used
to implement a filter to directly detect objects with a certain shape, referred to as feature
detection.

3-2 Feature Detection

The theory of feature detection is related to how humans recognise objects; feature detection
mirrors the brain’s early visual processing stage that involves identifying fundamental features
like shape, colors and location to identify and classify objects. In other words, this stage
establishes what is where [19]. In case of malaria detection, this means we can use feature
detection to detect the parasite together with its location (where), and what it looks like
(what).

In Figure 3-2 a common feature is illustrated, referred to as a corner feature. Features
detectors are however not limited to detecting corner features, but can detect shapes such as
circles or ellipses as well, as will be discussed in Section 3-2-1. Hence, to detect an object
with a certain shape, such as the blob shape of a parasites’ nucleus, a feature detector with a
similar semantic interpretation could be used. Although blob detectors have been successfully
implemented to detect malaria parasites [43], other objects with a similar shape will be
detected as well. To mitigate this, the image patch centred at the feature is used to generate
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Figure 3-2: lllustration of corner features. Left visualises the effect of removing line segments
or corners. On the right, an example is shown of detected corner features in an image. Image
adapted from [66]

/

a description of that part of the image using a feature descriptor. Zernike Moments can be
used as feature descriptors, which will be discussed in Section 3-2-3

3-2-1 Feature detectors

Feature detectors can be implemented to find specific features in an image such as shape,
often used to find objects in an image that resemble a particular object of interest, such
as parasites. Corner, blob and region detectors are common feature detectors in context of
feature detection, yet blob detectors are favoured in the medical field [2,27,43,67]. Blob
features are typically based on the determinant and/or the trace of the Hessian matrix

bl

H = Ixz (X7 OD) Ixy (X7 O-D)
Ly (x,0p) Iy (x,0D)

where I, etc. are the second-order Gaussian derivatives of the image [42,66]. The trace
corresponds to the Laplacian of the image.

Vi = trace(H) = A1 + Ao

The eigenvalues are proportional to the curvature in that direction [44]. Therefore, the ratio
between the two eigenvalues will indicate if it is a blob feature (A; & A2), or an edge (A1 > A2).
The determinant corresponds to the product of the eigenvalues, and will therefore respond
weakly to edges since one of the eigenvalues will be small near edges [14]. Combining the two
allows for identifying points that have similar curvatures in both directions [46]. Hence, based
on the to-be-detected shape, either a blob detector based on the trace, or the determinant
can be used. To derive the size, or scale, of the detected blob feature the scale space is used,
which is based on the Laplacian as well.
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3-2 Feature Detection 13

3-2-2 Scale space

Scale plays an important role in how we perceive the world. Analogously in computer vision
scale it is vital for object recognition [42]. The same is true for recognising parasites. However,
the scale of a parasite in an image is often unknown. To address this, the scale-space is
introduced, in which the proper scale can be selected algorithmically [42]. This allows one to
find potential parasites based on an object its scale.

The scale-space representation L : R? x R, — R for any two-dimensional signal, f : R? — R
is defined as the solution to the diffusion equation

OL 1_, 1(0°L 0L L
(915_2VL_2<8x2+3y2)’ L(-;0) = f(:) (3-1)

where t is the scale parameter. Intuitively this means that as scale increases, peaks in intensity
will decrease, i.e., an object seen from a larger distance will get more blurry. Alternatively,
the scale-space can be defined as the convolution of various Gaussian kernels g(z,y;t) with
f(z,y), referred to as the Gaussian scale-space, defined as:

L(x7y;t) - g(l‘,y;t) * f(xay)

1 2,2 (3-2)
f) = —(a?+y?) /2t
9z, y;t) = 5 e
The scale space is normalised such that its magnitude is independent from the scale,
oL
— =¢'V2L. 3-3
5 (3-3)

The scale of an object corresponds to the scale where the magnitude is maximal. Hence, the
scale space identifies the scale of an object, which allows matching of objects based on scale,
but also allows us to filter out objects that are larger of smaller.

3-2-3 Zernike Decomposition

Feature descriptors are used to give a more detailed description of a feature to distinguish
between dissimilar objects that are detected by the same feature detector. Instead of look-
ing for one shape like the feature detector, feature descriptors such as Zernike descriptors
incorporate a combination of multiple shapes. Zernike decomposition decomposes an image
into a series of orthogonal Zernike polynomials, from which Zernike moments are derived that
together describe the shape of an object in said image. Each Zernike moment M]" uses a
Zernike polynomial V" as a basis function

m n+1 m .
My = SN T y) Vit )], 2t +y? <1, (3-4)
r Yy

™

where Z(z,y) denotes the image intensity at (z,y). Zernike polynomials in turn use radial
polynomials R* as a basis
V' (p,0) = R, (p) exp(—im0), (3-5)
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where p and 6 denote the radius and phase respectively. The following equations are used to
transform Cartesian coordinates to {p, 6}:

V(2z —N+1)2+ (2y — N+ 1)?

10 =
N
6 =tan~! <N —1- 2y> o
N 20 — N +1
The radial polynomials are defined as
(n—m)/2 (=1)%(n — s)!
R™ — : n—2s 3.7
Finally, the magnitudes of the Zernike moments can be used as shape descriptors
Ino = My,
n0 n0 ) (3—8)
Iy = |Mnl| .

Hence, the shape of a malaria parasite can be described through Zernike decomposition. The
magnitudes can be used to define which basic shapes are dominant, and can therefore be used
to detect potential parasite more precisely.

3-3 Conclusion

CNN’s are successfully implemented on low-end devices to automatically diagnose malaria
when resources are limited, yet its performance deteriorates when applied in-the-field. This
drop in performance is reportedly caused by artefacts that are present in in-the-field data,
yet due to the CNN black-box architecture this cannot be guaranteed. The hybrid approach
proposed in [77-79] is aimed to reduce the complexity, but also opens up the possibility to
adapt this algorithm to filter out irrelevant objects to improve precision. However, since most
imperfections or errors are different in different datasets, filters tuned on one dataset might
not work for other datasets. To circumvent this, one can look for patterns or characteristics
that are expected to be constant for all datasets, such as shape. Hence, by implementing
a feature detector that matches the expected shape, which can be identified using Zernike
decomposition, the overall precision could be improved.
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Chapter 4

Dealing with errors and imperfections

Real world data will always have imperfections, and therefore need to be taken into account
when automatically diagnosing malaria based on an image of a blood smear. Imperfections
can be the result of technical limitations of the imaging setup or inconsistent preparation of
blood samples [37], yet the dataset as a whole can be imperfect as well, e.g. the dataset might
be too small. The following sections will discuss common error sources, and how to mitigate
the negative effect of these imperfections.

4-1 Image quality

4-1-1 Noise

Noise impedes the algorithm’s accuracy due to the inherent uncertainty [41]. One of the most
effective methods to reduce this effect is median filtering [32,50]. A median filter assigns the
median value of the intensity values of pixels within a window around the current point. The
size of the filter defines the window. An advantage is that it does not significantly affect image
details, such as the edges of an object. However, if the size of the filter is too large, it can
remove small image features [32]. The usual approach to finding the right size is manually
changing this value to get the best trade-off between noise reduction and losing details in
the image [3,10]. The noise reduction is typically not quantified but observed manually since
there is no ground truth to compare with.

4-1-2 Low image contrast

Low contrast is a common problem when using a brightfield microscope to image biological
samples. The result is that only a small portion of the available colour (intensity) scale is
used, causing the segmentation and classification process to be hampered [30]. To mitigate
this effect, histogram equalisation and contrast stretching techniques are two commonly used
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I I I I
Histogram of low-contrast image

(a)

Figure 4-1: Examples of images and their corresponding intensity histograms. (a) a low-contrast
image (left), with its corresponding intensity histogram (right), shows that only a small part of
the range of possible intensities is used. (b) The same image (left) from as shown in (a) after
pre-processing. The histogram (right) shows that the intensities are more uniformly distributed.
In this example, histogram equalisation is used to achieve enhanced contrast. Images adapted
from [32]

methods [24,50]. To quantify the improvement, measures such as the Peak Signal to Noise
Ratio (PSNR) can be used [57,68]. PSNR is defined as

254
PSNR = 201 <> A1
0810 \/I\TSE ( )
with
1 m—1n—1 . )
z=0 y=0

where Z(z,y) and 7 (z,y) denote the image intensity at (z,y) of the ground truth image, and
the deteriorated image respectively. In other words, the further away the intensity of the
deteriorated image is to the ground truth the lower your PSNR, i.e, more loss of information.
Note that this also means that applying contrast enhancement techniques such as Histogram
equalisation (HE) or contrast stretching, as discussed in the next sections, could negatively
affect the PSNR. To illustrate this, Figure 4-1b shows a contrast enhanced image, yet differs
significantly in intensity from the original (Figure 4-1a), and therefore has a low PSNR.
Hence, measuring whether the image quality is improved strongly depends on which metric
or quantity is used to quantify it [68].

Histogram equalisation

Low contrast can be mitigated by ensuring that the full range of pixel intensities is used, as
visualised in Figure 4-1. This can be achieved through HE. The image is transformed in such
a way that the histogram of the pixel intensities in the enhanced image is roughly uniform,
i.e., each intensity is represented by approximately the same number of pixels. By creating
a uniform histogram, the assumption is that it will give the ’best visual contrast’ [30]. Note
that this strongly depends on how the contrast is measured. Moreover, this does not directly
imply better classification results, since this approach can amplify noise as well [30,68].

A comprehensive survey of the various variants is presented in [68], which discusses methods
to evaluate the performance of these methods as well. [64] and [75] propose that HE can be
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minTH maxTH

*
COIllpl'E!SS 1011
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Figure 4-2: lllustration of (partial) contrast stretching. The minimum threshold (minTH) is
determined by the minimum non-zero value in an intensity histogram, and vice versa for the
maximum threshold (maxTH). These thresholds are then stretched to the desired values. Typically,
the minimum is stretched to 0 and the maximum to 255. Alternatively, they can be scaled based
on parameters such as standard deviation to achieve partial contrast stretching. Image adapted
from [3]

applied to deal with images that are non-uniformly illuminated. The potential improvement
of the proposed method in [75] is not evaluated. By using HE for each colour channel, the
technique is ensured to work for different detectors and illumination intensities as well [29].
Although this ensures the generalisability to other datasets, it is not clear if it will improve
performance for malaria classification for each separate dataset. Moreover, HE algorithms
generally suffer from increased computational complexity, brightness reduction, or contrast
deficiency [24,45,68].

Contrast stretching

To enhance contrast, the lower and upper limits of the image histogram are stretched linearly
such that the entire scale is used, as visualised in Figure 4-2. The difference with HE is that
whereas HE is designed to get a more uniform histogram (the same number of pixels for each
intensity) [32], this method stretches the histogram, and is also less computationally complex.
Nevertheless, the threshold are chosen empirically, and can affect the colour balance of the
image.

4-1-3 Colour variation

When a sample is not illuminated uniformly, it will result in intensity changes in the image,
deteriorating the performance of the consequent image processing tasks [25]. Moreover, due
to human inconsistencies in staining a sample, staining variation can occur. This results in
discrepancies in colour and intensity. To reduce the effect of intensity changes, grey world
colour normalisation is often used [20,50]. This method assumes that the mean of each
colour channel is grey. Hence, channels that have a different mean will be scaled accordingly.
Although this method does not take lighting into account [28], making it sensitive to its
surroundings, it is an effective method [29]; using different scanners and illuminations, it
achieved an average accuracy of 92.3%, whereas the more complex method,HE, only scored
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(c) Dirt particles

(d) Dirt particles (e) Bacteria

Figure 4-3: Types of artefacts. Adapted from [34,37,71]

2% higher. Alternatively, a low-pass filter [11,25] can be used to reduce this effect. Other
approaches include HE (Section 4-1-2).

4-1-4 Artefacts

Artefacts introduced during the acquisition of images can have a wide range of different
forms [37]. Depicted in Figure 4-3 are examples of artefacts and contaminants that might be
introduced. Although bacteria are not necessarily artefacts, they can lead to confusion due to
their similarity to malaria parasites [71]. Besides the fact that these artefacts complicate the
diagnosis of malaria, they are not easy to remove or undo either. Small dirt particles can be
removed using morphological operations, however, this will remove other small objects that
might be of interest as well [37,50]. Studies have proposed remove images with a significant
amount of artefacts from the dataset [34], use a minimum predicted parasite count to account
for false positives due to artefacts [78], or use fluorescent microscopy together with brightfield
microscopy [33]. Another approach is to train a classifier to recognise these artefacts [38].
However, due to fact that artefacts can basically take any shape or form, it is not trivial to
train a classifier for all possible artefacts.

4-2 Data quality

Data quality not only depends on the quality of the images itself, it also depends on the
methodology of how these images are acquired. For example, in order to evaluate the per-
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formance of the implemented algorithms, the dataset needs to be annotated, i.e., there needs
to be a ground truth to compare with. However, there is no standardised way to do this
and can therefore differ between datasets. Other factors such as the size of the dataset, and
the (im)balance of classes within the datasets play an important role as well. The following
sections discuss the effects of these quality factors.

4-2-1 Data size

The performance of classification algorithms depends strongly on the amount of data available
[36]. However, it is not trivial to determine how much data is "enough" to properly train your
algorithm. One approach is to iteratively evaluate the algorithm for different dataset sizes.
The point where the performance stops improving can then be seen as where the dataset is
large enough. This approach does, however, assume that the dataset is large enough in the
first place in order to see where it stops improving.

From a manual diagnostic perspective the amount of data needed depends on the desired
sensitivity for detecting malaria: for lower parasite densities, a higher number of images
should be checked to prevent false negatives. Therefore, using the relation between number
of images and parasitaemia as discussed in Section 2-3, one can derive if the acquired number
of images is sufficient to detect different levels of parasitaemia.

4-2-2 Data annotations

Dataset are annotated manually to establish a ground truth that can be used to evaluate
the performance of classification algorithms. Annotations for parasites, or other objects, are
typically in the form of a list of coordinates or in counts per image. Whereas the former
provides enough information to directly compare the location of the parasite predicted by the
model with the ground truth, the latter does not. In other words, if the coordinates are known,
the predictions can be defined as True Positive (TP), False Positive (FP), True Negative (TN)
or False Negative (FN). These values are required for the performance metrics described in
Section 4-3-1. When the coordinates are unknown, evaluation done on image level [78], or by
using different metrics such as Pearson’s correlation coefficient [33,34]. Performance metrics
based on counts are discussed in Section 4-3-3

Although the main goal of data annotations is to evaluate the performance, it is also essential
for analysing the distribution of classes or categories within the data. For example, the data
might contain more negative patients than infected patients (data imbalance) or that the
data only contains infected patients that have a low parasitaemia, i.e., patients with severe
infections are not represented in this dataset.

4-3 Performance metrics

4-3-1 Binary classification

Performance of malaria diagnosis algorithms are typically evaluated based on binary classi-
fication metrics. These metrics use a ground truth to compare the classification results; if
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the classifier correctly labels the input, it is either true positive or true negative. If a positive
input is classified as negative, it is called a false negative, and vice versa for a false positive.
In [61], a systematic analysis is done by using machine learning to review which metrics are
most reliable for each classification task. By analysing how each metric, as defined in (2-5),
depends on each result (true positive, false positive, etc.), one can select the right metric for a
specific task. For example, if true negatives are not incorporated in the metric, changing the
number of true negatives will not change the metric outcome. In case of parasite detection
the dataset is usually imbalanced [41], that is, there will likely be more uninfected cells than
infected. Because of this, the inability to detect changes in true negatives is favourable since
a higher number of true negatives does not necessarily indicate better performance. Precision
and recall are examples of measures that possess this property and are therefore preferred
when using imbalanced datasets [12].

4-3-2 Area Under Curve (AUC) and Area Under Precision-Recall Curve (AUPRC)

Metrics such as accuracy are evaluated for a single-threshold to divide the predictions into
positive and negative classes, yet it is not trivial to choose the right threshold [56]. To
mitigate this, Receiver Operating Characteristic (ROC) and Precision-Recall Curve (PRC)
plots can be used. Both use recall on one axis and on the other axis specificity and precision,
respectively. From these graphs, a single performance metric can be extracted by calculating
the area under each curve, resulting in the AUC, and AUPRC. Although the AUC is more
common, it can be misleading when the dataset is strongly imbalanced [56], as is generally
the case for malaria. For imbalanced datasets, the AUPRC gives a more informative view
since it is not affected by the imbalance [56].

4-3-3 Metrics based on counts

Datasets annotated with only parasite counts for each image are not suitable for binary
classification metrics, which complicates performance evaluation. If image coordinates for
the parasites are not available, the parasite locations predicted by the trained model cannot
be validated. Therefore, metrics are proposed to directly compare the predicted parasite
count ¢, with the true count c¢t. One approach is to use measure the linear correlation
between the predictions and the ground truth, combined with linear regression. [33, 34, 76].
The latter is used since a high correlation only indicates a strong linear relationship between
the predictions and the ground truth, yet does not measure if they are proportional to each
other. In contrast to binary classification metrics, however, this method assumes that the
absolute error, |ct — ¢,|, will be equivalent for both small and large parasite counts. In
addition, the World Health Organisation (WHO) also prescribes a metric that uses relative
error instead of the absolute error (see Section 2-5). Hence, although this approach can be
used to compare the performance of algorithms, it does diverge from the approaches used in
binary classification.
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4-4 Conclusion

Methods to improve image quality can be effective for specific datasets, but since many
datasets are private [81], these improvements are often not reproducible. Even with public
datasets, methods are typically optimised for that specific dataset, limiting their applicability
in real-world malaria diagnostics where in-the-field data differs from lab data. Besides image
quality, dataset size, annotations and class distributions can affect the performance as well.
Methods such as data stratification can be used to ensure data quality, yet do not take away
the root cause. Therefore, to reliably evaluate the performance choosing the right performance
metric is crucial, with AUC and AUPRC being the preferred metrics. Alternatively, the
performance can be evaluated using the method prescribed by the WHO: in 50% of the
images the count should be within +£25% of the true count. A performance metric similar
to this is Mean Absolute Percentage Error (MAPE). Therefore, to ensure generalisability to
in-the-field applications, errors and imperfections are usually not removed but rather taken
into account in the data processing pipeline and performance metrics.
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Chapter 5

Methods

The goal of this chapter is to provide a roadmap on how the research for this thesis was
conducted to reduce the false positive rate for malaria diagnostic algorithms that are applied
in-the-field. In the first section (Section 5-1) preliminaries are discussed to provide the reader
with an overview of the most relevant concepts and terminology used in this chapter. Next, a
brief outline of the roadmap is presented in Section 5-2 as a guideline for how the subsequent
sections are connected.

5-1 Preliminaries

The following sections will review the characteristics of malaria parasites, summarise the
terminology used in this thesis, and provide an overview of the methods used as benchmark.

5-1-1 Malaria parasite

One of the first stages in the malaria parasite life cycle is the ring-stage, owing its name
to its distinctive ring shape. In Figure 2-2b, the key elements of the parasite are shown:
the cytoplasm and the nucleus. A nucleus is always present in a parasite, varying from a
curved shape to a more rounded one as it ages. Apart from the parasite its morphology
and the typical position of the nucleus, it is shown in Figure 2-2a that the parasite has an
irregular size and shape (2 < d < 3.7um) [13]. These variations complicate the detection
of parasites [23]. Detection is complicated even further due to the fact that blood smear
images typically have low contrast, making it difficult to distinguish between background and
parasite [23].

To enhance the contrast a dye is applied to a blood smear which stains each part of the
parasite with a distinct, more intense colour [23,58]; this process is called staining. Due to a
lack of standardisation and quality control, artefacts can be introduced during the staining
process, such as blurring, contamination due to dirt, or smudges due to incorrect application
of the dye [35,37,49]. These artefacts are often claimed to be the source of deteriorated
in-the-field performance [34, 78].
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5-1-2 Terminology

The terminology used in this thesis is summarised in Tables 5-1 and 5-2, which define the

meaning of several malaria related terms and machine learning terms respectively.

Table 5-1: Malaria related terms

Term

Description

Image

Interest point/Keypoint

Image patch

a camera-captured microscopic image of a blood smear.

a point in an image with specific characteristics. E.g., the point
in an image where the intensity is minimal.

a square, typically small area within an image, centred around an
interest point.

Number of parasites per ul of blood. Also referred to as parasite

Parasitaemia .
density.
Parasite a malaria pa.rasme. Specifically: A ring-stage Plasmodium Falci-
parum parasite.
Table 5-2: Machine learning related terms
Term Description
Data(set) A set of images or image patches.

Training data
Validation data

Test data

Lab data

In-the-field data

Ground truth

Label

Class

Algorithm

M. Pors

A dataset used to train a model.

A dataset used to check the performance while training a model
to prevent overfitting to the training dataset.

A dataset that is kept aside during the training process, and is
only used for the final performance evaluation.

A dataset consisting of images that are acquired in a laboratory
setting.

A dataset consisting of images that are acquired in an in-the-field
setting.

A set of annotations belonging to a dataset that can be used as
benchmark, e.g., the true locations of parasites in an image, or
the correct label of an image.

A label assigns an image or image patch to a predefined category,
e.g., positive or negative. These categories are also referred to as
classes.

A predefined category. In this thesis only two classes are used:
positive and negative.

A sequence of computational techniques that aims to fit a model
based on a set of inputs, and the desired outputs.
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Model The result of an algorithm. A model is used to make predictions
on new data, i.e., images or image patches. The predictions cor-
respond to the probability that the input belongs to the positive
class.

Classification The procedure of assigning a label to an image or image patch by
using the predictions of a model.

Computer Aided Diag- An umbrella term for machine learning algorithms that are applied

nostics in various medical fields to automate diagnosis.

Feature A point or area in an image that stands out from its surroundings.
A prominent characteristic.

Feature Detector A filter designed to respond strongly to a specific type of feature.

5-1-3 Benchmark overview

In this thesis the algorithms used in the Malaria Screener [77-79] are replicated in order to
verify their results, and to allow further analysis of the deteriorated performance when using
in-the-field data. The datasets used to produce the results presented in [77,78] are publicly
available !, and will be used in this thesis to ensure a fair comparison between the benchmark
and the proposed approach. Throughout this thesis, the datasets used in [38,77] will be
referred to as laboratory data (or lab data), and the dataset used in [78] will be referred to
as in-the-field data.

Based on these datasets, the benchmark implements two algorithms to analyse the digital im-
ages of thick blood smears: First, Iterative Global Minimum Screening (IGMS) is used to pre-
select a number of patches from the image; this is proposed to reduce the processing time [76].
The workings of this algorithm is summarised in Algorithm 1 Second, a Convolutional Neural
Network (CNN) with a reduced number of layers is used to provide equivalent performance,
but faster processing [76]. Together these two algorithms form the pipeline referred to (in
this thesis) as IGMS-CNN.

5-2 Roadmap

It has been demonstrated that Computer-aided diagnostics (CAD) enhances diagnostic per-
formance by eliminating the human element from the process [41,50]. Human error, stress,
and fatigue all impair manual diagnosis performance [41], yet machine learning algorithms
are unaffected by these factors. This apparent superiority, however, is not always true: in
contrast to automated diagnosis, the use of in-the-field data has minimal impact on man-
ual diagnosis performance [17,34,78]. This suggests that there is a pattern associated with
malaria parasites that clinicians can identify and that is constant, independent of the data
its source. In fact, clinicians are taught to identify malaria parasites based on their color and
shape. These characteristics, also known as features, could therefore be used to automatically

"https://Thncbe.nlm.nih.gov/LHC-research /LHC-projects/image-processing /malaria-datasheet. html
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Algorithm 1 Iterative Global Minimum Screening

procedure IGMS(Z(x,y),j,n,r)
n < 400
7 22
Z(x,y) < image(z,y)
j+<0
REMOVEBORDER(I(z,y))
REMOVEWBCSs(I(z,vy))
while j <n do
SELECTMINIMUM(Z(z, y))
j+—i+1
end while
end procedure
function SELECTMINIMUM(Z(x,y))
Tins Ymin < min(Z(z,y))
patch < I[l‘mzn =7 Zmin T T Ymin — T Ymin + 7"]
remove patch from Z(z,y)
return Z(zx,y)
end function

detect parasites. However, as Figure 2-2 illustrates, these features can differ significantly be-
tween samples [71]. Note that although the ring shape of the parasite varies over its lifespan,
the nucleus is always present [13].

Besides variations between samples, identification of malaria parasite features is complicated
even further by the fact that, in contrast to human vision, features are not always invariant
to image transformations such as scaling, rotation, and translation [62]. Previous studies
have attempted to find features corresponding to malaria, [20-22], yet they did not focus on
why these features would be relevant for detecting parasites and did not investigate if the
features were invariant to image transformations. In other medical fields, however, studies
have been able to relate certain features to the shape of a cell using Zernike Moments Although
Zernike Moments are by design only invariant to rotation, they can be adapted to attain
scale and translational invariance as well [47,65] Therefore it is proposed to use Zernike
moments to identify the dominant shapes in infected image patches and use this information
to preselect image patches instead of solely relying on image intensity (which is the current
implementation, IGMS). To find image patches that contain these specific shapes a Difference-
of-Gaussian (DoG) feature detector is implemented, as will be discussed in Section 5-5.

After implementing the DoG detector, it is used to extract image patches to create a dataset
that is used to train and test the benchmark classification algorithm. However, before it is
used for trained and testing, the dataset is resampled such that the number of positive and
negative patches are equal. A fraction n = Z:—ZZ of negative patches is sampled from each
individual image to ensure that all images are represented in the final dataset. This is referred
to as stratification, and will be discussed in Section 5-6-1. Using the created dataset, a new
model will be generated from the benchmark classification algorithm, which will be referred
to as DoG-CNN. k-fold cross-validation is used during the training process to estimate the

accuracy of the model is predictions. This method of cross-validation is discussed in Section
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Preprocessing Preselection Postprocessing Classification Performance evaluation
. k-fold cross Comparison
Data exploration IGMS Data stratification validation Lab performance
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Figure 5-1: Overview pipeline
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Figure 5-2: Flowchart of evaluation process for both lab and in-the-field data. The training and
validation lab data are used to train the classification algorithm, which is then evaluated on unseen
data (test data). Next, the in-the-field performance is evaluated. Using the trained algorithm,
predictions are made for each sample in the training set. Then, the predictions are averaged for
each patient. If the average is above a certain threshold the patient will be classified as infected.

5-7-2.

The last step in the process is performance evaluation. This evaluation is divided into two
steps: preselection evaluation; comparing the precision and recall of the DoG detector with the
benchmark algorithm IGMS, and classification evaluation; comparing the diagnostic perfor-
mance of the DoG-CNN with the benchmark model (IGMS-CNN) for both lab and in-the-field
data. Classification performance is reported for all metrics shown in Table ??, from which
the Area Under Curve (AUC) and Area Under Precision-Recall Curve (AUPRC) are used to
compare the two models. These two metrics are used since they do not rely on one single
threshold, and provide insights on how data imbalance affects the performance.

Each of the preceding steps is visualised in Figure 5-1, and will be discussed in more detail
in the following sections.

5-3 Data Partitioning

From each dataset only the thick blood smear images that are either negative or contain
malaria species P. Fualciparum are used, since in-the-field performances for thin smears and
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other species are not reported [78], and therefore cannot be used for comparison. The lab and
in-the-field data will be split into training, validation and test datasets on patient-level [77,78];
that is, each dataset is assigned a predefined number of positive and negative patients (see
Table 5-3). In Figure 5-2 a flowchart is shown that depicts how each separate dataset will
be used to compare the performance of the benchmark with the algorithm proposed in this
thesis.

5-4 Data Exploration

To analyse if the available data is ’enough’, the parasite densities are analysed for each patient
from which a minimum number of images can be derived, as will be discussed in the next
section. Moreover, the calculated parasite densities are categorised into levels of severity,
summarised in Table 5-4, such that performance can be evaluated for different densities.

5-4-1 Parasite Density

To minimise the probability of false negatives, the World Health Organisation (WHO) pre-
scribes that, assuming there are 1000 images, at least 100 of them should be analysed before
labelling it as negative. This infers that the minimum parasite density that can be detected
using this method is 4 parasites/ul, as shown in 2-3. However, to calculate the parasitaemia
(2-1), less images need to be analysed [71]: it is prescribed that the technician continues
reading slides until 200 White Blood Cells (WBC'’s) are counted (+20 images). If at this
point the count of parasites, ¢, is not sufficient (¢, < 100), counting should be continued
until 500 WBC’s are counted. Hence, for a reliable calculation of the parasitaemia, the num-
ber of WBC’s and number of parasites given by the ground truth should conform to these
conditions.

To quantify the reliability of the calculated parasitaemia (2-1), the FNR is calculated for each
patient. The population size N is assumed to be N = %, i.e., the approximate number of
images needed to count 500 WBC’s. n and C), correspond to the patients count of WBC’s
and parasites respectively. Using the FNR derived in (2-3) as threshold to ensure the same

accuracy, the calculated parasitaemia is labelled as reliable if the FNR > 34.8% for a given

Table 5-3: Summary of lab and in-the-field datasets in terms of annotations and splits.

Dataset Annotations Split Patients
No. Type Positive  Negative
Lab 84509 Bounding boxes Train 90 30
Validation 30 10
Test 30 10
In-the-field 29034 Counts Train 21 45
Test 40 45
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n and Cy:
500/20 — n
500/20

For reference, Table 5-5 shows the FNR’s for a select range of parasitaemia and numbers of
images per patient.

Cyp
FNR — ( ) > 34.8% (5-1)

5-5 Adapted preselection

Incorporation of prior knowledge (expert knowledge), instead of solely relying on learned
features, is reported to improve generalisability of the algorithm [15,16]. This infers that
incorporating characteristics, such as the shape of a parasite, can improve the algorithm its
performance. Although the appearance of malaria parasites is well-documented [71, 73], it is
unclear what features are linked to which characteristic of a malaria parasite. Although it is
expected that blob features can be used to detect parasites their nucleus due to their similar
shape, it is not clear from the literature if this is indeed the case. Since it is shown to be
possible to link cell shapes to Zernike moments [8,9,63], and the fact that these moments are
well suited to be used as features for object recognition due to their well-defined mathematical
properties [66], it is proposed to analyse the parasite shapes using Zernike decomposition. The
goal of this analysis is to justify the choice to use a blob detector by providing evidence that
these detectors can indeed detect parasites. Moreover, after designing the blob detector,
Zernike decomposition is used to verify if the detector is more selective towards parasites
than IGMS.

5-5-1 Zernike Decomposition

As discussed in Section 3-2-3, the Zernike moments for digital images are defined as:

n—+1
T

M = SO I(x,y) Vi), 2*+y” <L (5-2)

Table 5-4: Degrees of severity for malaria infection in terms of parasitaemia [6, 70]

Severity  #Parasites Parasitaemia

Low 1-10 4-40
Mild 11-100 44-400
Moderate 101-1000 404-4000
High 1001-25000 4004—-100 000
Hyper > 25000 > 100000

#Parasites corresponds to the number of parasites in 100 images. The range of #Parasites
corresponds to a range of integer values. Using the number of parasites, the parasitaemia is
approximated using (2-1) where ny pc = 20 [71]
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To ensure that Zernike moments are not affected by translation, they are centred around the
centre of mass {Z,y} of an image patch Z(z,y) with size N x M [47,65]. The centre of mass

is defined as
1,0
- Ho M1
T,Ysy= 00 (> 5-3
.9} {MS MS} 3)

where
N—1M-1

py = > a'yI(xy). (5-4)

z=0 y=0

However, instead of the image patch centroid, the parasite its centre of mass should be used
in order to get the parasite its shape. Hence, before calculating the centre of mass, Otsu
thresholding is used to binarize the image patch. By setting the background to zero, only the
intensities of the parasite are taken into account, thereby ensuring that the correct centre of
mass is selected. An example is shown in Figure 5-3.

If the radius of the object is known, scale invariance can be attained for Zernike Moments by
rescaling the object to a unit circle [47]. Hence, for each image patch the size of the parasite
needs to be derived. Although the proposed feature detector can automatically detect the
scale of the detected object , IGMS does not. To mitigate this, the radius is derived from the
binary image using the image processing package for Python, skimage [69].

The last step is to calculate the Zernike moments (5-2) for all positive and negative patches
to analyse differences in magnitudes between the classes. Positive patches are based on the
ground truth annotations, negative patches are extracted by the IGMS method described in
Section 5-1-3. It is expected that in image patches containing parasites the magnitude of
defocus, coma, and spherical aberration will on average be higher than others due to their
resemblance to the parasites shape. In Figure 5-4 the Zernike polynomials are visualised up
to the sixth degree.Students t-test is used to verify if for a particular Zernike moment the
difference between the distributions for positive and negative patches is statistically significant
(p < 0.05). Zernike Moments for which the difference is significant will then be used to design
the feature detector.

Table 5-5: Probability of a false negative when sampling a number of images n from a population
of 25 images for a given parasite count.

Number of images
¢, D 10 15 20

1 16 60% 40% 20%
2 32 36% 16% 4%
4 64 13% 26% 0.2%

cp denotes the number of parasites per n images, where D is the corresponding parasitaemia.
The given probabilities are used to check if the number of images is sufficient to reliably detect
a given parasite density. For example, if there are 2 parasites present in 25 images, there is a
probability of 36% that these are not identified when examining 10 images.
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(a) Original example image patch (b) Binarized image patch

Figure 5-3: Example of a greyscale image patch containing a parasite. a) shows the original
image patch. The blue dot represents the centre of mass. b) shows the binarized image patch
with corrected centre of mass.

B5-5-2 Feature detector

To detect malaria parasites based on prior knowledge of its shape, a blob detector is imple-
mented. Blob detectors can be tuned to detect shapes ranging from ellipsoids to circular,
and are able to automatically detect the scale of an object. The detector shape is tuned
such that the shape it detects matches the shape found by Zernike decomposition to improve
the precision of the preselection algorithm by filtering out irrelevant objects. Other than the
shape, three other parameters are used to filter out objects: minimum scale, maximum scale
and minimum intensity. The values for these parameters are found using grid search, while
optimising for AUPRC. An initial guess for the minimum and maximum scale is derived using
the available annotations, as described in the following section.

The scale of an object can be derived by using a scale-space. This section will give a brief
overview of the scale-space, which is described in more detail in Section 3-2-2, and the im-
portant parameters that are used to design the feature detector. Table 5-6 summarises the
relevant parameters to configure the scale-space, including the effect of changing the value
of that parameter. Figure 5-5 shows an example of a scale-space with four octaves, each
consisting of four levels. Each level corresponds to a certain scale o;, which is derived from
the base scale of the image o [44].

g; = k‘O‘z;l, 1= {1,2,3, }, (5—5)

where k denotes the scale ratio. The value of k& is chosen such that the scale doubles for each
octave. Therefore, if we have n levels for one octave:

R —
)
knil _ 20'n71 (5_6)
On—1
k= 2Ym,
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Figure 5-4: Visualisation of Zernike polynomials up to the sixth degree.

Table 5-6: Parameters for configuring a scale-space.

Symbol Description Effect
o number of octaves
- number of levels per octave More levels will result in a lower
amount of blur added per level.
o scale
o relative scale with respect to the

previous level
assumed scale at which the image is

Os sampled Default value is o, = 0.5 [1§]

adds extra smoothing. o9 = 1.6 is
) base scale of the scale space, o¢g > o, recommended [44]
k scale ratio
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Figure 5-5: Visualisation of a hierarchical scale space. Each octave consists of four levels, where
each first level of the next octave is a subsampled copy of the last level of the previous octave.
The scale is doubled each octave, which effectively halves the bandwidth. Therefore subsampling
will not result in loss of information. Image adapted from [18]

Although a large number of levels per octave infers a better approximation of the scale, it is
shown that the accuracy deteriorates for [18,48]

o' =\/o2 —02_, <08. (5-7)

o=

Therefore, the number of levels n is chosen such that for a given base scale gg the following
inequality holds:

\/J% — 02 = \/k:ag —02>038
U%(Ql/n -1)> 0.82 (5-8)
0.82

2l/m > o+ 1.
90

To improve the precision of the feature detector the base- and maximum scale are fine-tuned
to filter out objects that are smaller or larger than parasites. Although the radius of the
parasites is given in the ground truth, it corresponds to the entire parasite, whereas the scale
detected by the feature detector might correspond to only a part of the parasite (such as the
nucleus) depending on the type of feature detector. Therefore, the ground truth radius is
used as initial guess for the base- and maximum scale, and are then fine-tuned to maximise

AUPRC
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Figure 5-6: Visualisation of sampling a dataset using stratification. The population consists
of 150 patients with varying infection severity. In this example, 50% of the dataset is sampled.
In contrast to random sampling, stratified sampling ensures that the same fraction (50%) is
sampled from each category (severity). This ensures that the sampled dataset is representative
to the original dataset.

5-6 Classification

The classification algorithm used in this thesis is a replication of the CNN proposed in [76].
Training of the algorithm is done in a similar way as proposed in the original study: First,
image patches are extracted from the images in the training set and are labelled as positive or
negative using the provided ground truth. Second, the training set is balanced by using the
same number of positive and negative image patches. Finally, the classifier is trained using
k-fold cross-validation (as will be discussed in Section 5-7-2). However, instead of taking
n, (number of positive patches) random samples from all negative samples, I propose to
use a sampling approach that is shown reduce variance and bias of k-fold cross validation
estimate [54]: stratification.

5-6-1 Data Stratification

To ensure that the training and test data are both representative, i.e., that they have a similar
distribution of classes as the entire dataset, stratified sampling is applied. Stratification, as
exemplified in Figure 5-6, ensures that each 'group’ in the data, i.e., patients and images, is
represented proportionally. Note that although the example shows stratified sampling based
on positive or negative images, stratification can be applied for other groupings as well. This
approach is implemented for two separate sampling processes: sampling of patients to form
training, validation and test sets, and sampling of patches during k-fold cross validation. The
former is achieved by grouping patients by severity, which is defined in Table 5-4. Then, the
patients are sampled such that each degree of parasitaemia is represented in each Random
Forest [67] (interpretability)
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5-7 Evaluation

The evaluation of the DoG-CNN pipeline can be split up into two parts: Lab performance, and
in-the-field performance. To evaluate the lab performance, the training set will first be used to
fine-tune the parameters of the preselection and classification algorithms. After fine-tuning,
the generalisation performance of the classification algorithm is evaluated using the test set.
Finally, the predictions are aggregated to derive the performance on patient level. These
topics will be addressed in more detail in Section 5-7-1 and 5-7-2. In-the-field performance
is evaluated using the aforementioned fine-tuned preselection and classification algorithms.
To evaluate the patient level performance, first a threshold is derived that is used to classify
a patient as infected or uninfected. This is done in two different ways: the first approach
is implemented for comparison with the benchmark, the second approach is implemented to
provide a performance evaluation method that is independent from parasitaemia. Section
5-7-3 will discuss these approaches in detail.

5-7-1 Preselection performance

The preselection algorithms their precision and recall are evaluated on image level, and for
each severity (see Table 5-4). In contrast to the classifier algorithm, the preselection algorithm
does not produce predictions, but rather possible locations of parasites; so called interest
points. These interest points are compared with the ground truth annotations {zT,yT,rT}
to see if they are close enough to label it as positive. Specifically, the interest point {Z, g} is
counted as True Positive (TP) if:

Vet bt =82+ < (5-9)

where r1 is the radius of the parasite according to the ground truth. If (5-9) does not hold,
it is counted as False Positive (FP). Ground truth annotations that have no interest points
close to them are counted as False Negative (FN).

For each image, precision and recall are calculated using the aforementioned quantities. From
these results the 95% Confidence Interval (CI) is calculated as final metric. This interval is
calculated by taking the 2.5 percentile as lower limit, and the 97.5 as upper limit. To analyse
potential correlations between the performance metrics and parasitaemia, the performance
will be reported for each parasitaemia level, as defined in Section 5-4-1.

5-7-2 Classification performance

A CNN is used to automatically diagnose if a blood smear image is infected or not, i.e., the
CNN is used to classify the images. Classification refers dividing the dataset into classes
through the assignment of categorical labels to samples from the dataset. In this case, there
are two classes: positive and negative. Table 5-7 summarises some common labels analogous
aforementioned classes. A label is assigned to a sample based on the prediction score of the
CNN: if the prediction score exceeds a certain threshold -, it is considered positive, and
negative otherwise. Unless specified otherwise, this threshold is set to v, = 0.5. Before
discussing which performance metrics are used, the next paragraph elaborates on how the
model is evaluated.
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Positive  Negative  Used in
Infected Uninfected Diagnosis
1 0 Binary classification

Table 5-7: Analogous terminology for positive and negative classes.
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Figure 5-7: Visualisation of k-fold cross-validation procedure. The first step is splitting the
dataset into k-splits, in this case £k = 5. From these splits, five distinct folds are created. Note
that the training data has some overlap between the separate folds, whereas the validation data
does not. The second step is to train a model for each fold, which are then used in the third step
to evaluate the performance of each fold. The last step is to calculate the final performance by
taking the average and standard deviation (o) over all fold performances. Visualisation is based
on the approach described in [54]

The classification model is evaluated using k-fold cross-validation, which reduces the bias of
the estimated performance by using a larger portion of the dataset as training data. Instead
of using a separate training and test sets, the dataset is divided into k-splits. The training
process is repeated k times, where each fold uses k—1 splits for training and one for validation.
Figure 5-7 visualises how each fold is composed using different sets of splits. One of the
main advantages are that this method reduces overfitting, and does not waste as much data
compared to splitting the dataset into three parts, since each split can be used for either
training and validation [54]. To ensure a fair comparison between the benchmark and the
proposed method, the same number of folds (k = 5) is used [77]. The final performance is
derived by taking the mean and standard deviation of the performances for each fold.

Using the results from k-fold cross validation, the performance metrics defined in Table 7?
are calculated to compare between the benchmark and the proposed pipeline. Although all
metrics are calculated to provide a comprehensive comparison, only the AUC and AUPRC
are used to analyse if the proposed method improves upon the benchmark. These metrics are
selected since they both take into account how the model performs for different thresholds
instead of one. The choice to use both metrics is based on the fact that the AUC is used for
evaluating the benchmark [77,78], whereas the AUPRC is shown to be more informative than
the AUC in case of imbalanced datasets [56].

The last step is to aggregate the results on patch level to patient level. First, the performance
is evaluated for each image. Second, the patient level performance is derived by calculating

the 95% CI from the image results for each patient.
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5-7-3 In-the-field performance

In-the-field performance is evaluated, if possible, in the same way as the lab performance. The
evaluation deviates from the previous evaluations in that it does not evaluate on patch level,
since the in-the-field data only contain parasite counts for each image instead of locations.
Moreover, the threshold «; used to label a prediction as positive or negative is derived in two
different ways, as discussed in the next paragraph.

To allow comparison with the benchmark the first approach is based on [78]: First the average
of all predictions for each patient is calculated, from which a threshold is derived that ‘mazx-
imises’ the performance [78]. Since it is not reported what specific metric or loss function is
maximised, the AUC and AUPRC will be used in the comparison. This eliminates the need
of setting a fixed threshold that is tuned for a specific metric. The prediction score of the j*
image, pj, is the average of all m predictions p; ; belonging to image j:

1 m
pj = — > _Dij: (5-10)
i=1

Similarly, the prediction score of the k*" patient, Py, is the average of all n image predictions
scores p; 1 belonging to patient k:

_ 1S
Py = EZPi,k- (5-11)
i=1

Note that since the number of predictions is equal to the number of image patches extracted
from the images, and the IGMS algorithm is designed to extract a fixed number of patches, the
image prediction score depends on the number of parasites present in the image. Specifically,
if the number of patches correctly identified as positive is high, this infers that the average
prediction score is high as well. Due to this dependency, it is expected that when fine-tuning
this threshold to a dataset with a relatively low parasite density, it will increase the probability
of false positives when testing on datasets with higher parasite densities and vice-versa.

The second approach defines 7 as the threshold for which the Mean Absolute Percentage
Error (MAPE) between predicted number of parasites C (7¢) in an image and actual number
of parasites C't is minimal. This eliminates the dependency on parasite densities and makes

it consistent with the performance evaluation approach prescribed by the WHO (See Section
2-5).

(5-12)
Ci(vy) = ({Pi,j €p;lpij >

p; denotes the set of predictions belonging to image j, #(-) denotes the number of elements
(cardinality).

5-8 Summary

Together, the methods described in the previous sections form the proposed malaria diagnostic
pipeline of this thesis. This pipeline is designed to address the following issues to reduce the
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false positive rate for in-the-field applications: First, the preselection algorithm is adapted to
take the shape of the parasite into account such that irrelevant objects can be filtered out.
Second, the data (image patches) extracted by the preselection algorithm are partitioned into
training and validation sets while taking parasitaemia into account to ensure that each dataset
is representative for the original dataset. Third, the performance evaluation is adapted to
take into account data imbalance by using the AUPRC. Lastly, to allow evaluation based
on parasite counts rather than locations, the MAPE is used, which also provides a metric
that is equivalent to the one used to evaluate the performance of microscopists. Hence, this
pipeline adapts the algorithm to reduce the false positive rate, adapts the methodology of
performance evaluation to provide a more informative view when data is imbalanced, and
implements MAPE to reliably evaluate in-the-field performance.
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Results

In this chapter the preselection performance of the proposed Difference-of-Gaussian (DoG)
blob detector are benchmarked against the Iterative Global Minimum Screening (IGMS) algo-
rithm, and evaluated how it affects the performance of the DoG-CNN and IGMS-CNN models
for both laboratory and in-the-field data. By implementing the DoG detector tailored to de-
tect shapes similar to malaria parasites, it is expected that the precision of the preselection
algorithm will be improved compared to IGMS. As a result, it is expected that the DoG-CNN
performance will improve as well. To analyse other possible factors that negatively affect the
performance, the effect of data stratification on classification performance of the DoG-CNN
pipeline is evaluated. By implementing data stratification is not necessarily expected that
the mean performance will improve, yet the variance should be lower.

6-1 Improved preselection precision

The DoG feature detection algorithm is fine-tuned to only select objects that have a similar
size and shape as parasites to filter out irrelevant objects while maintaining recall, which in
some cases halves the amount of false positives when compared to IGMS. As shown in Figure
6-1, the recalls of DoG and IGMS overlap for mild to high parasitaemia, however, the mean
value of DoG for hyperparasitaemia is 4% higher. As for precision, the mean values of DoG
are higher (4%, 13%, 33%, 46%) for all parasitaemia, yet the DoG has a larger interquartile
range (15%, 26%) for moderate and high severities.
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Figure 6-1: Performance comparison of IGMS algorithm and the feature selection algorithm
DoG, evaluated on image-level for lab data.

Hence, the DoG feature detector is able to maintain an equivalent recall as the benchmark,
while improving the mean precision for all parasitaemia. Also, the mean recall and preci-
sion for hyperparasitaemia, 96.14% and 86.6% respectively, are noteworthy considering the
uncomplicated nature of the feature detection algorithm. The IGMS algorithm does have a
smaller spread for all but hyperparasitaemia. However, this could be explained by the fact
that IGMS extracts a fixed number (n = 400) of image patches for each image. If all parasites
are found, recall =100% = TP = ¢,, FN = 0, and we have 400 patches predicted as positive

M. Pors Master of Science Thesis



6-2 Comparison of in-the-field classification performance 41

(PP), it follows that:
PP =400 =FP+TP — FP =400 — ¢,
p Cp (6-1)

= precision = —cp (00— ) = 100

Hence, the precision is upper bounded, which limits its spread.

6-2 Comparison of in-the-field classification performance

Using the feature detector DoG proposed in this thesis, the classification performance is
improved in terms of Area Under Precision-Recall Curve (AUPRC) (26.4%), and Area Under
Curve (AUC) (19.4%) when compared to IGMS. Although both classifiers have a higher recall
than the baseline for all specificities as shown in Figure 6-2b, the precision is worse than the
baseline (<57.5%) for a recall higher than 17.5% and 77.5% for IGMS and DoG respectively,
as shown in Figure 6-2a.
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Figure 6-2: Performance evaluation of classifiers for in-the-field data. The classifiers are trained
using image patches extracted by IGMS and DoG from lab image data. For the Precision-
Recall plot, the baseline is derived from the class imbalance: n.—1/(n.—o + nc=1), where n.;
denotes the number of samples for class i. The classifier trained and tested on DoG data has a
26.4% and 19.4% larger area under the Precision-Recall Curve (PRC) and the Receiver Operating
Characteristic (ROC) curve respectively.

6-3 Effect of data stratification on classification performance

It is found that by ensuring that the both training and validation datasets have an equivalent
distribution of positive and negative classes, and infection severity per patient, the standard
deviation of the validation loss is less than half (¢ = 30.8 x 1073, compared to o = 68.1x 1073)
than without stratification. Figure 6-3 visualises the loss during training of the models based
on the DoG-CNN pipeline, with on the left the result for without stratification, and on the
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right with stratification. Whereas the training loss is equivalent for both approaches and
keeps decreasing, the validation loss varies for each epoch and increases in the last epochs.
This could indicate that the models are overfitting. Hence, stratification results in a lower
deviation in validation loss, which indicates that the model generalises better to new, unseen
data.
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Figure 6-3: Training and validation loss over 10 epochs without stratification (a), and with
stratification (b). Both graphs plot the results of 5 models resulting from k-fold cross-validation.
The average training loss is equivalent (0.18), and is relatively stable across the different models
in terms of standard deviation (¢ = 5.7 x 1073 and 0 = 4.6 x 10~3 for without and with
stratification respectively). The deviation in validation loss is highest when no stratification is
applied (o = 68.1 x 1073, compared to o = 30.8 x 1073).

6-4 Identification of parasite shapes using Zernike Decomposition

By decomposing the images it is shown that on average, defocus and spherical aberration
(corresponding to noll-indices j = {4, 11,22, 37}) differ the most in terms of magnitude. These
Zernike moments all correspond to the shape of a blob detector, and therefore supports the
choice of using a blob detector to detect malaria parasites. Table 6-1 specifies the difference
in magnitude with negative patches for these moments.

Table 6-1: Differences in magnitude for positive and negative patches

Spherical aberrations

Label Defocus (j = 4)
Primary (j = 11) Secondary (j = 22) Tertiary (j = 37)

Negative ~ 0.096 x 1073 0.042 x 1073 0.046 x 1073 0.025 x 1073
Positive 0.184 x 103 0.170 x 1073 0.187 x 103 0.132 x 1073
Difference  0.088 x 1073 0.128 x 1073 0.141 x 1073 0.107 x 1073
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Figure 6-4: Zernike moments for positive and negative image patches extracted from lab data.
The noll-indices (j) are plotted on the x-axis, and their corresponding magnitudes on the y-axis.
The Zernike moments correspond to defocus and spherical aberrations (j = {4, 11,22, 37}).

6-5 Conclusion

The proposed DoG blob detector is shown to be, on average, more precise than the IGMS
algorithm in terms of preselecting patches that might contain parasites. This effect is also
visible in the performance of the classification algorithm: The DoG-CNN is has a higher mean
precision, as shown in the AUPRC plot in Figure 6-2a. From this it can be inferred that,
as proposed in this thesis, implementing a feature detector based on the shapes identified
through Zernike decomposition can indeed improve the precision, while maintaining recall.
Moreover, the AUPRC shows that for a recall higher than 17.5% and 77.5% for IGMS and
DoG respectively, the precision of these algorithms is less than if one would let a coin flip
decide the diagnosis instead. This effect is not visible in the ROC curve, which infers that
the AUPRC gives a more informative view of the performance.
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Chapter 7

Conclusion

This thesis aimed to design an automated malaria diagnosis pipeline with improved in-the-
field performance by reducing the number of false positives. The pipeline, referred to as
DoG-CNN, was designed to diagnose if a patient is infected with malaria by analysing a blood
smear image acquired through a microscope, regardless of where the images are acquired. The
research questions for this thesis were as follows:

1. How can we identify the sources of false positives generated by state-of-the-art algo-
rithms?

2. How can we reduce the effect of these error sources in order to minimise false positives?

Staining artefacts are reported to be one of the root cause of performance deterioration in
malaria detection algorithms. However, since these studies implement a black-box classifier
such as Convolutional Neural Networks (CNN’s), it is difficult, if not impossible, to deduce if
this is indeed the case. The first step was to replicate the benchmark, which showed that the
in-the-field performance is indeed lower compared to lab data. To mitigate this, a Difference-
of-Gaussian (DoG) blob detector to detect shapes similar to that of malaria parasites, which
were identified using Zernike decomposition. While maintaining a similar recall as Iterative
Global Minimum Screening (IGMS), the DoG detector improved the precision for all parasite
densities by 4.45%, 13.02%, 32.91%, 46.17% for mild, moderate, high, and hyperparasitaemia
respectively.

As expected, improving the precision of the preselection algorithm improved the precision of
the pipeline (DoG-CNN) as a whole as well. Compared to IGMS-CNN, the mean Area Under
Precision-Recall Curve (AUPRC) and Area Under Curve (AUC) are improved by 26.4% and
19.4% respectively. Nevertheless, the average in-the-field performance of DoG-CNN (AUC:
86.8%, AUPRC: 61.7%) remains inferior to the laboratory benchmark performance (AUC:
99.8%, AUPRC: 98.3%). Note that the AUPRC drops by 36.6%, whereas the AUC drops by
13%. Hence, the performance is improved by using DoG, yet the AUPRC exposes a different
source of complications: data imbalance.
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46 Conclusion

It was found that not only the image quality affected the results, but also the quality of the
data itself as well. In particular, data imbalance in terms of classes (positive/negative) and
infection severity (mild, medium, high, hyper) resulted in a higher variance when cross vali-
dating models. By applying data stratification to ensure that each severity was represented
equivalently in each dataset, the standard deviation was reduced by 55%. Since the avail-
able lab data consisted of 150 positive and 50 negative patients, the class imbalance remains.
Therefore, AUPRC was used as additional metric since it gives a more informative represen-
tation of the performance. Still, this metric was based on the evaluation methodology of the
benchmark, which averaged the prediction scores to diagnose a patient. It was found that
this metric depends on the average infection severity of patients present in the dataset which
varies between datasets, and is therefore not able to generalise to other datasets.

The proposed DoG-CNN pipeline and methodology of performance evaluation have been
shown to improve the performance compared to IGMS-CNN, and provides a framework to
reliably evaluate in-the-field performance of automated malaria algorithms. The shapes iden-
tified by Zernike decomposition can be effectively used to implement a DoG blob detector
that is selective towards parasites, improving the precision while maintaining recall. Data
stratification, AUPRC provide additional measures to deal with data imbalance. Through
these improvements, this thesis paves the way for applying automated diagnostics in resource-
limited settings, ultimately aimed to mitigate the burden of malaria in endemic regions.

The application of Zernike Decomposition in this context represents a novel approach to
addressing the challenge of shape recognition in malaria parasites, which has not been ex-
tensively explored in prior research towards malaria detection. This not only improves the
diagnostic algorithm but also provides a framework that can be adapted to use other clas-
sification algorithms that use the Zernike descriptors as input, and allows to configure the
preselection algorithm to adapt to image transformations such as scaling or rotating.

In alignment with the research questions outlined at the start of this thesis, this thesis has
demonstrated how prior knowledge can be incorporated in the preselection algorithm to reduce
positives, and provides techniques and metrics to reduce the effect of errors and imperfec-
tions in a quantifiable manner. Future research could investigate other datasets that were
not present at the time of writing to further evaluate the generalisability of this approach.
Moreover, the methodology prescribed by the World Health Organisation (WHO) to evaluate
the performance of clinicians could be mirrored by implementing Mean Absolute Percent-
age Error (MAPE), which has the advantage that it is independent of the average infection
severity and is therefore able to generalise better to other datasets.
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List of Acronyms

AUC
CAD
CI
CNN
DoG
FN
FP
FNR
HE
IGMS
MAPE
PCR
PRC
AUPRC
PSNR
RDT
ROC
ROI
SVM
TN
TP
WBC
WHO

Area Under Curve
Computer-aided diagnostics
Confidence Interval

Convolutional Neural Network
Difference-of-Gaussian

False Negative

False Positive

False Negative Rate

Histogram equalisation

Iterative Global Minimum Screening
Mean Absolute Percentage Error
Polymerase Chain Reaction
Precision-Recall Curve

Area Under Precision-Recall Curve
Peak Signal to Noise Ratio

Rapid Diagnostic Tests

Receiver Operating Characteristic
Region of Interest

Support Vector Matrix

True Negative

True Positive

White Blood Cell

World Health Organisation
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56 Glossary

List of Symbols

Vb Threshold: Minimum prediction score to label input as positive.

Vf Threshold to assign label to prediction, specifically for in-the-field performance.
D Parasite density; Parasitaemia

rT Annotated radius of parasite

d Diameter
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