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Abstract

This study aims to develop a regression model of the aerodynamic coefficients for leading edge in-
flatable (LEI) kite profiles. Aerodynamic data is obtained by 2D computational fluid dynamics (CFD)
simulations for different Reynolds numbers, angle of atack and profile configuration, leading to the fol-
lowing: lift, drag and moment coefficients Cl, Cd, Cm, as well as the surface distribution of pressure
and skin friction coefficients (Cp and Cf). The machine learning regression model is trained on this
multidimensional dataset to generate accurate 2D aerodynamic predictions, which serve as essential
input for the vortex step method (VSM), a fast aerodynamic solver used in kite fluid-structure interaction
(FSI) simulations.

The profile geometry parameterisation forms the backbone of the automated CFD toolchain. It provides
an advanced and robust design framework for LEI kite profiles. The geometry is defined by its main
components: a circular leading edge (LE) tube and a canopy, which is subdivided into two splines. The
front spline connects the LE tube seam (i.e., the LE tube–canopy stitching connection) to the maximum
camber point, while the rear spline extends from this point to the trailing edge (TE). Both splines are
modelled as cubic Bézier curves with four control points, where the first and last points define the
connection boundaries, enabling smooth and flexible surface shaping. The seam angle on the LE tube
is dynamically calculated to ensure a smooth transition for any given configuration. The positions of the
control points are governed by the following non-dimensionalised profile parameters, defined relative
to the chord: LE diameter t, maximum camber chordwise position η, camber height κ, reflex angle δ,
camber tension λ, and LE curvature ϕ. For meshing purposes, a finite thickness is assigned to the
canopy to separate the upper and lower flow regions. Additionally, a LE fillet is added to the underside
of the canopy to facilitate mesh smoothing at the sharp corner connection with the LE tube.

Aerodynamic data is collected from steady Reynolds-averaged Navier–Stokes (RANS) simulations,
employing the k − ω shear stress transport (SST) turbulence model. The simulations are performed
with the open-source CFD software OpenFOAM, using structured meshes generated in Pointwise. An
extensive mesh sensitivity analysis was conducted, focusing on the effects of canopy thickness tcanopy,
the LE fillet, and the resolution of the fully structured grid in both normal and tangential directions.
Transition modelling was omitted based on the assumption that the boundary layer undergoes forced
transition at the LE tube seams. This includes the LE tube-canopy connection on the upper side and
the LE closing seam on the lower side, where numerical results indicated that the flow transitions due
to seam-induced roughness. Since the region upstream of the seams is small, its impact is considered
negligible, justifying the simplification.

Due to the large number of required simulations, computational resources from the high-performance
computing (HPC) cluster of the Faculty of Aerospace Engineering at TU Delft were utilised. To define
the parameter configurations for data collection, a trade-off was made between parameter resolution
and computational cost. Parameters were sampled across the following ranges for three Reynolds
numbers (Re = 1× 106, 5× 106, and 2× 107): α from −22◦ to −10◦ (13 values), t from 0.03 to 0.12 (5
values), η from 0.08 to 0.4 (8 values), κ from 0.04 to 0.16 (7 values), δ from −8◦ to 0◦ (4 values), and
λ from 0.1 to 0.4 (4 values). The LE curvature ϕ was held constant at 0.65.

The flow fields were analysed for the effects on the newly introduced parameters in the updated profile
geometry model: δ, λ, and ϕ. Downward deflections of the profile TE due to negative δ resulted in
reduced lift (Cl) and increased drag (Cd) performance, while enhancing longitudinal pitching moment
stability. In contrast, variations in λ showed the opposite effect; increased camber tension resulted in
higher Cl and Cd values but diminished longitudinal stability. The parameter ϕ, having minimal geomet-
ric influence, caused negligible changes in aerodynamic performance, only slightly altering the pressure
distribution. Consequently, ϕ was fixed in the regression model. Among all tested algorithms, the extra
trees (ET) model achieved the highest predictive accuracy, with R2 scores of 0.987 for Re = 1 × 106,
0.988 for 5× 106, and 0.989 for 2× 107.
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1
Introduction

With the accelerating impacts of climate change, the need for sustainable energy solutions is more
urgent than ever. As global energy demand rises, transitioning from fossil fuels to renewable sources
is critical. Wind energy is a leading contributor, primarily through the horizontal-axis wind turbines
(HAWT). However, these are limited in height by structural and economic constraints. Airborne Wind
Energy (AWE) systems present a promising alternative by accessing stronger, more consistent winds at
higher altitudes. At around 500 m, wind speeds can be 10% to 100% higher than those at conventional
turbine heights, depending on location [4]. This altitude advantage offers significant potential for more
efficient and cost-effective energy generation.

AWE systems are typically classified as ground-generation (ground-gen) or onboard-generation (fly-
gen), depending on where the electricity is produced. Each category includes various sub-systems
[41, 14]. In ground-gen systems, for example, energy can be generated through crosswind flight or by
maintaining a static position. During crosswind cycles, the kite generates energy by pulling a tether,
which rotates a drum that is connected to a generator, hence delivering power. This work focuses on
soft-wing kites, specifically leading edge inflatable (LEI) kites, which are also widely used in kitesurfing
and can be applied in other areas such as boat towing. LEI kites consist of an inflated leading edge (LE)
tube and spanwise-distributed inflatable struts that provide rigidity and shape the aerodynamic profile
[47, 48].

Although the inflated structures provide stiffness to the kite, it remains a highly flexible system, with a
thin canopy forming a lightweight, deformable platform. This flexibility is crucial for maintaining flight in
low wind conditions and enables the deformations required for steering. As the wing deforms during
flight and actuation, the airfoil shape changes locally, altering the aerodynamic loading. To accurately
capture this aero-structural interaction, it’s essential to include the effects of these shape changes in a
coupled fluid-structure interaction (FSI) framework.

A high-fidelity approach to optimise soft-wing kites involves coupling computational fluid dynamics
(CFD) with structural finite element method (FEM) simulations [24]. However, the high computational
cost of CFD-FEM coupling necessitates the development of faster, low-fidelity models for efficient de-
sign exploration. At the TU Delft, the vortex step method (VSM) [11] and the particle system model [38]
were developed for this purpose. Combined, they provide a rapid aero-structural simulation framework
at significantly reduced computational cost.

As the airfoil shape changes dynamically during flight, the aerodynamic loading must be known for a
wide range of possible configurations. To enable this, the VSM relies on viscous 2D airfoil polars to
describe the local aerodynamic loading on the flexible profiles. These polars are currently obtained
from look-up tables or polynomial regression models, first introduced by Breukels [9], using only cam-
ber magnitude and leading edge tube diameter as profile parameters. Kappel [27] and Cayon [11]
recommended including the chordwise position of maximum camber, which was later implemented by
Watchorn [50] in the current polynomial regression model. However, this model was developed using
a limited dataset and low-order polynomial algorithms, resulting in low prediction accuracy and high
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2 Chapter 1. Introduction

variance for unseen profiles. This highlights the need for improvement and motivates the following
research questions:

1. How can the parametric model of the LEI kite profile be extended to cover the wide range of
shape variations that occur during flight, while improving smoothness, robustness, and flexibility
through additional shape parameters?

2. How can CFD simulations of LEI kite profiles be made more efficient to enable an automated
process for meshing and determining the 2D flow field?

3. To what extent can machine learning enhance regression models for predicting the aerodynamic
performance of LEI kite profiles?

Machine learning (ML) has become widely adopted across various sectors, driven by the growing avail-
ability of large datasets and the increasing demand for performance optimisation. Recent advance-
ments in computer science have led to the development of efficient ML algorithms that support scientists
and engineers in data-driven analysis. A relevant example to this thesis, Teimourian et al. [45] applied
ML regression techniques to aerodynamic data of airfoils, comparing different algorithms. Providing
the foundation for the ML-based regression model developed in this thesis.

The thesis is structured as follows. Chapter 2 reviews previous work on parametric profile modelling,
CFD analysis, and regression-based aerodynamic prediction, with a focus on key limitations. Chapter 3
presents a workflow diagram outlining the research method. Chapter 4 presents the extended para-
metric model, introducing additional shape parameters and ensuring robustness across configurations.
Chapter 5 covers the CFD setup, including mesh sensitivity analysis and the rationale for omitting tran-
sition modelling. In Chapter 6, the aerodynamic influence of the new parameters is evaluated using
Reynolds-averaged Navier-Stokes (RANS) simulations. Chapter 7 explores the development of an ML
regression model for aerodynamic prediction, covering the full process from data preparation to algo-
rithm evaluation. Chapter 8 demonstrates the regression model implementation for 2D LEI kite profile
design optimisation. Finally, Chapter 9 concludes with key findings and outlines directions for future
research.



2
Literature Study

This chapter reviews the current state of aerodynamic modelling for LEI kites. It begins with an overview
of simplified FSI methods in Section 2.1, followed by a summary of past 2D RANS studies in Section 2.2
and a review of parametric profile geometry models and limitations in Section 2.3. It continues with a
discussion of CFD practices covering meshing, turbulence, and transition modelling in Section 2.4, then
reviews aerodynamic regression approaches in Section 2.5. The chapter concludes in Section 2.6 by
identifying key gaps and formulating the research questions guiding this thesis.

2.1. Fluid Structural Interaction (FSI)
LEI kites, composed of a lightweight canopy supported by inflated struts and a LE tube, maintain struc-
tural stiffness while allowing the flexibility required for flight control and operations. However, their
design is complex due to the strongly coupled FSI. Traditional high-fidelity FSI simulations, combining
FEM with CFD solvers and robust mesh handling, are computationally expensive and unsuitable for
design optimisation where many configurations must be evaluated [12].

To address this challenge, a potential flow method, the vortex step method (VSM), offers a solution by
providing accuracy comparable to CFD simulations while significantly reducing computational cost [12].
In parallel, the particle system model is a simplified FEM approach that captures the kite’s structural
response [38]. When coupled in a loop, these models enable rapid prediction of kite aero-structural
behaviour at a fraction of the computational cost of traditional FEM-CFD simulations.

The VSM extends the classic lifting line method (LLM) by computing force magnitude at the three-
quarter chord and direction at the one-quarter chord, enhancing accuracy for unconventional geome-
tries with low aspect ratios and high anhedral angles [12]. It models the wing as a spanwise arrange-
ment of horseshoe vortices and uses local velocity and 2D viscous polar data to iteratively solve the
aerodynamic loads.

These loads drive the particle system model, where the kite’s structure is coarsely discretised into
spanwise rectangular segments, defined by the strut locations. Particle points are placed at the LE and
trailing edge (TE) of each strut and are connected by bridle lines modelled as spring-damper systems.
The model includes additional springs at the LE and TE to provide structural stiffness, and diagonal
springs within each segment to resist shear deformation. Load transfer is applied at the intersection
points of the diagonal springs and is distributed approximately 75 − 25% between the front and rear
bridle points, respectively, according to the typical load distribution Poland et al. [38].

Following the implementation of the VSM and particle system model, integrating an ML-based aerody-
namic regression model offers a promising path to enhance the accuracy of the FSI framework and
increase flexibility in design optimisation, by replacing the current look-up tables or low-order polyno-
mial regression models developed by Breukels [9] and revised by Watchorn [50].

With the availability of a predictive model for the Cp distribution, the particle system model could be
improved in several ways. Adding particle points along the struts could enhance the representation of

3



4 Chapter 2. Literature Study

chordwise billowing in both the canopy and the struts. The current fixed 25 − 75% load split between
rear and front bridle points could be replaced by a dynamically computed distribution, informed by
the predicted Cp or derived xcp values from Cl and Cm. Additionally, increasing the spanwise particle
resolution between struts guided by local Cp predictions could improve structural accuracy and reduce
coupling errors with the more finely discretised VSM model.

On the aerodynamic side, incorporating predicted Cp values could refine the estimation of local veloc-
ities at the three-quarter and one-quarter chord points. With the local angle of attack (AoA) available
per segment, a 2D polar regression model trained on a wide range of airfoils, AoA, and Reynolds num-
bers could provide more accurate aerodynamic loading predictions, significantly improving both global
accuracy and design flexibility.

2.2. Overview 2D LEI Kite Profile Studies
This section presents an overview in Table 2.1, which summarises the two-dimensional RANS studies of
LEI kite profiles and flexible membrane wings conducted to date. The overview was initially compiled
by Demkowicz [18] and has since been extended to include more recent contributions. Collectively,
these studies form the aerodynamic foundation upon which the present research is built. Among the
listed works, only Breukels [9] and Watchorn [50] developed polynomial regression models based on
their CFD results. Watchorn [50] further developed the model introduced by Breukels [9], improving
its applicability by incorporating additional LEI kite profile geometry parameters. The RANS-based
turbulence models, including the k−ω shear stress transport (SST) and the k−ϵmodel, are introduced
in Section 2.4.3.

Table 2.1: Overview of 2D RANS studies on flexible membranes and LEI kite profile.

Reference Geometry Steady /
Unsteady

Solver Turbulence
Model

Transition
Model

Mesh
Type

Watchorn
(2023) [50]

LEI kite Steady OpenFOAM
simple-
FOAM

RANS k− ω
SST

- Structured
O-mesh

Folkersma et
al. (2019) [23]

LEI kite Steady OpenFOAM
simple-
FOAM

RANS k− ω
SST

γ-R̂eθ Structured
O-mesh

Steiner (2018)
[44]

LEI kite Unsteady OpenFOAM
preCICE

RANS k− ω
SST

- Structured
O-mesh

Breukels
(2011) [9]

LEI kite Steady Ansys
Fluent

RANS k− ω
SST

- Hybrid
mesh

Smith et al.
(1996) [42]

Flexible
membrane

wing

Steady - RANS k− ω
SST

- Structured
H-mesh

Smith et al.
(1995) [43]

Flexible
membrane

wing

Steady - RANS k − ϵ - Structured
H-mesh

2.3. Geometry & Parametric Model
Developing a robust and flexible simulation setup depends on a solid understanding of existing mod-
elling approaches and their limitations.

2.3.1. Geometry
LEI kite profiles differ significantly from conventional airfoils, mainly due to their distinct circular leading
edge and attached canopy, which makes them easily recognisable. These profiles, also known as sail-
ing airfoils, have been extensively studied in the context of sailing. Despite their widespread application
across various fields, no standardised or universally accepted equations define the shape of LEI kite
profiles.
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In earlier studies, researchers often used the kite design software SurfPlan [1] to export profile coordi-
nates, as done by Folkersma et al. [23], Deaves [16], and Sachdeva [40]. However, the limited number
of profiles available in SurfPlan prompted Breukels [9] to develop a parametric model for LEI kite profiles.
Similar to National advisory committee for aeronautics (NACA) airfoils [29], using shape parameters to
generate coordinates via interpolation. Breukels’ model provides more direct control over the profile
using two parameters: the relative LE tube diameter t and camber height κ, both normalised by the
chord length c, as shown in Figure 2.1. In contrast, Kappel [27] defined camber relative to the chord
line, aligning with the NACA convention as adopted by Berens [5] and Bosch et al. [7], illustrated in
Figure 2.2.

Figure 2.1: LEI kite profile parameterisation as defined by Boer [6].

Figure 2.2: LEI kite profile parameterisation as defined by Kappel [27].

Additionally, Watchorn [50] introduced the chordwise position of the camber as a parameter to enhance
design flexibility and expand the range of shape configurations. Including this parameter allows for
better control, making the LEI airfoil more comparable to a NACA 4-digit airfoil with similar parameters
[29]. Based on experimental studies of a sailing airfoil, Boer [6] observed that the camber height of a
flexible membrane airfoil shifts toward the LE as the AoA increases. Following this insight, both Kappel
[27] and Cayon [11] proposed incorporating the chordwise position of maximum camber as a key airfoil
shape parameter in Breukels [9] model. As a result, the updated model from Watchorn [50] includes
three parameters: camber height κ, LE tube diameter t, and the chordwise position of the maximum
camber η, all normalised by the chord length, providing more precise control over the airfoil’s shape.

Recently, Corentin [15] introduced a TE angle, also known as a reflex angle, into the parametric profile
model, as shown in Figure 2.3. This feature is similar to the reflex commonly found in NACA 5-series
airfoils [29]. For larger kites, the reflex angle helps prevent the kite from flying excessively high toward
the zenith, a condition that can cause longitudinal pitching moment instabilities due to low apparent
wind. By incorporating a reflex, the profile produces a positive moment and increases the angle of
attack, reducing the risk of nose stalls.
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Figure 2.3: LEI kite profile parametric model with reflex angle [15].

The canopy is connected to the LE tube at a defined angle known as the seam angle, also visible in
Figure 2.3. Various seam angles have been evaluated through trial and error for different maximum
camber positions. In the model by Watchorn [50], the seam angle is fixed at 20◦, while Corentin [15]
applies a value of 35◦. The canopy shape is constructed based on the reflex angle, LE seam angle,
and maximum camber location, using either cubic polynomials or a combination of Bézier curves and
cubic polynomials. To ensure a smooth geometric transition, tangency conditions are enforced at both
the LE tube-canopy connection and the maximum camber point.

2.3.2. Limitations
The current parametric profile model already provides substantial geometric control. However, the
reflex angle has not yet been incorporated into the regression model. Moreover, analysis of different
LE tube diameters and camber locations reveals that the seam angle should vary accordingly. Fixing
this parameter can result in issues such as reduced smoothness or invalid geometries. Incorporating
a dynamic seam angle that adapts to LE tube diameter and camber would be beneficial for producing
a broader range of smooth profile shapes.

At present, a large portion of the profile is constructed using cubic polynomials, which offer limited
flexibility over the extended region defined by the parametric points. While additional points can be
introduced to refine the shape, this makes it more difficult to maintain overall smoothness. Expand-
ing control over LE canopy curvature, reflex angle, and canopy tension would broaden the range of
achievable profile shapes, enabling more effective optimisation across various applications.

2.4. Computational Fluid Dynamics (CFD)
Due to the unconventional shape of the LEI kite profile and the large recirculation region on its lower
surface, along with the need for accurate separation modelling near stall on the upper surface, XFOIL’s
potential flow assumptions are insufficient [19]. Therefore, CFD analysis is required.

2.4.1. Mesh Setup
To simulate the freestream interaction with the LEI kite profile, the surrounding space is discretised into
a mesh. The quality of the mesh is crucial for accurately replicating actual conditions and relies on the
level of grid refinement as well as specific quality parameters, such as skewness, orthogonality, aspect
ratio, etc. Much of the meshing setup used here is based on Watchorn’s [50] recent work, where he
employed the commercial Pointwise [37] software controlled by Matlab, which inputs the profile and
meshing characteristics.

Before generating the mesh, slight adjustments are made to the profile to enhance mesh quality by ad-
dressing the parameters mentioned. Mesh quality tends to deteriorate near sharp corners and edges,
such as the area where the tube and canopy profiles intersect. A fillet is introduced to mitigate this,
balancing the trade-off between mesh quality and representing the actual geometry. Deaves [16] com-
pared aerodynamic performance with and without a fillet across various angles with RANS simulations,
concluding that the lift and drag differences were within 5%, which falls within the error range when
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comparing the RANS simulation of a NACA0012 profile with experimental data. The fillet is visible in
Figure 2.4(c). Leloup et al. [33] also conducted an analysis using XFOIL [19]. However, the results are
of limited validity, as XFOIL cannot accurately capture the recirculation region on the pressure side of
the airfoil.

The canopy thickness tcanopy, considered negligible, is included in the work of Watchorn [50], Deaves
[16], Folkersma et al. [23], Demkowicz [18], to distinguish airflow between the upper and lower surfaces.
A larger tcanopy improves mesh quality at the TE but is less representative of the actual membrane.
Watchorn found 0.001 m to be a reasonable compromise but did not assess its impact on residual
convergence or aerodynamic performance.

A finite canopy thickness introduces a gap in the mesh at the TE. To address this, Watchorn [50]
implemented a semi-circular TE with a diameter equal to tcanopy. This rounded geometry is well-suited
for generating an O-grid mesh, offering improved mesh quality near the TE. In contrast, closing the
gap with a straight line would be more appropriate for a C-grid mesh topology. The semi-circular TE
implementation is illustrated in Figure 2.4(d).

Figure 2.4: Structured mesh with O-grid topology of a LEI kite profile with LE fillet and round TE.

Regarding the meshing structure, there are options to use a fully structured, unstructured, or hybrid
mesh, which combines both types. Watchorn opted for a structured mesh, which offers better accuracy
but requires more intricate work to achieve high precision. For the topology, Watchorn used an O-
grid, as shown in Figure 2.4. Folkersma et al. [23], Steiner [44] also used this same topology in there
analyses. A summary of previous studies and their corresponding mesh types is provided in Table 2.1.

Another commonly used topology for discretising the space around an airfoil is the C-grid. Both C-grid
and O-grid topologies have their advantages and drawbacks. The main reason for choosing an O-grid
over a C-grid is that the flow remains orthogonal to the mesh cells at both the inflow and the wake, en-
suring better alignment. In contrast, a C-grid requires more effort to maintain mesh quality, particularly
at larger angles of attack, where wake alignment becomes necessary to improve orthogonality.

However, the O-grid’s circular nature results in equal grid lengths in all directions, which is less efficient,
as the far-field at the TE requires a larger area to properly capture the wake region compared to the
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front, lower, and upper sections of the mesh. In summary, while a C-grid can offer higher accuracy for
the same resolution, it involves the additional complexity of aligning the mesh with the wake.

AlthoughWatchorn’s mesh analysis was thorough, no sensitivity study was carried out using alternative
meshing algorithms, topologies, or mesh types. Moreover, the influence of canopy thickness tcanopy on
mesh behaviour was not explored. Incorporating such sensitivity analyses into the design process
could improve simulation accuracy and lead to better residual convergence.

2.4.2. Direct Numerical Simulation (DNS) vs Large Eddy Simulation (LES)
Direct numerical simulation (DNS) offers the highest fidelity in turbulence modelling by solving the
Navier–Stokes equations without approximations, resolving all spatial and temporal scales down to the
Kolmogorov scale. However, its computational cost scales with Re3 [22], making it impractical for high
Reynolds number flows such as those around LEI airfoils, which can reach 107. This limitation becomes
even more restrictive when regression models need to be developed over a wide range of geometries
and operating conditions.

Nevertheless, DNS studies have been performed on LEI kite profiles at low Reynolds numbers (e.g.,
Re = 1000− 5000), providing valuable insight into flow behaviour in simplified scenarios [46].

Large-eddy simulation (LES) offers a compromise between accuracy and efficiency by resolving only
the larger, more energetic eddies while modelling the smaller scales through subgrid-scale models
[22]. Although less expensive than DNS, LES still requires a fine spatial grid and time step resolution
to capture unsteady wake dynamics, particularly at high Reynolds numbers.

2.4.3. Steady Reynolds-Averaged Navier-Stokes (RANS) Simulation
Reynolds-averaged Navier-Stokes (RANS) methods are a widely used approach for predicting average
flow properties, such as lift and pressure distributions, at a fraction of the computational cost of DNS
or LES [22]. By time-averaging the Navier–Stokes equations, all turbulent fluctuations are treated
statistically, resulting in the loss of unsteady flow details and requiring closure models for the unresolved
Reynolds stresses.

Despite reduced accuracy, RANS remains the standard in engineering applications due to its efficiency,
and is commonly used in LEI kite simulations by Folkersma et al. [23], Watchorn [50], and others listed
in Table 2.1.

Turbulence Modelling
Turbulence models are essential for closing the RANS equations. Among the most widely used are the
two-equation models: k − ϵ and k − ω.

The kϵ model [31] solves transport equations for turbulent kinetic energy (k) and its dissipation rate (ϵ).
It is robust and efficient for fully developed turbulence in free-stream flows but performs poorly near
walls or in flows with strong pressure gradients.

The k − ω model, introduced by Wilcox [52], replaces ϵ with the specific dissipation rate (ω), improv-
ing accuracy in near-wall and adverse pressure gradient regions, though it is sensitive in free-stream
conditions.

To address these limitations, the k−ω SST model [34] blends both approaches: it uses the k−ω model
near walls and transitions to k− ϵ in the free stream. It also accounts for shear stress transport, making
it highly effective for separated and complex boundary layer flows.

The SST model is the preferred turbulence model in LEI kite analyses and has been applied by Folk-
ersma et al. [23], Watchorn [50], Steiner [44], and Breukels [9], as summarised in Table 2.1.

Transition modelling
Accurately modelling the boundary layer transition from laminar to turbulent flow is challenging due to
the various factors that can trigger this transition. Typically, three primary modes of laminar-turbulent
transition are considered, each driven by different influences [23].

1. Natural transition: Perturbations from the exterior flow, such as turbulence, propagate into the
boundary layer and force the laminar flow to transition into turbulent flow.
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2. Bypass transition: The freestream disturbances are high (turbulence intensity) and propagate
directly into the boundary layer, or the rough surface triggers the transition.

3. Separation-induced transition: A laminar boundary layer cannot withstand much adverse pres-
sure gradient, so it separates rather easily. Separated flow transitions quickly, and the turbulent
flow may reattach from the enhanced momentum.

Folkersma et al. [23] conducted a study investigating the impact of incorporating a transition model
(natural transition) versus a fully turbulent flow on an LEI kite profile across a wide range of Reynolds
numbers. Representative of the traction and retraction phases in airborne wind energy (AWE) systems,
covering Re values between 1 × 105 and 5 × 107. This study implemented a transition model, such
as the γ − R̃eθt model [30], to predict where flow over an airfoil transitions from laminar to turbulent.
Both approaches exhibit quite different results with distinct flow characteristics given in Figure 2.6 and
Figure 2.7. The simulation results were compared against experimental data at a low Reynolds number
of Re = 105.

Figure 2.5: Flow topology around a LEI kite airfoil, adapted from Folkersma et al. [23]

The results demonstrated that the simulations with a transition model more closely matched the experi-
mental data than those without. However, it should be noted that the wind tunnel tests were conducted
using a LEI kite profile with a smooth surface at low turbulence intensity (I), approximately 2%. Under
these conditions, it is logical that simulation with a transition model lies closer to the experimental data.
The transition model can capture the laminar regions, turbulent regions, and the laminar separation
bubble, which are prominent at low Reynolds numbers. Unlike the fully turbulent simulation, a different
pressure distribution is achieved without a laminar separation bubble and laminar flow.

A similar phenomenon appears at the pressure side for the large recirculation region depicted in Fig-
ure 2.5. With the transition model, the laminar boundary layer separates earlier than the turbulent
boundary layer in the fully turbulent model. Creating a larger recirculation region with the transition
model for low Reynolds numbers around Re = 105.

Folkermsa’s report comprehensively analyses the observed differences with and without the transition
model. Still, the key distinctions are highlighted here to underscore the importance of selecting the
most accurate model that reflects real-world conditions.
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Figure 2.6: Lift polar (left) and drag polar (right) for a LEI kite profile at various Reynolds numbers, computed without transition
model [23].

Figure 2.7: Lift polar (left) and drag polar (right) for a LEI kite profile at various Reynolds numbers, computed with transition
model [23].

For Reynolds numbers below 5 × 106, the aerodynamic performance predicted using the transition
model in Figure 2.7 shows lower lift and higher drag. This is due to the formation of a long laminar
separation bubble on the suction side of the airfoil, as opposed to the fully turbulent flow seen in Fig-
ure 2.6. For higher Reynolds numbers, the distinction in maximum lift and drag coefficients is due to
the presence of a laminar region when using a transition model different to fully turbulent flow. Beyond
2×107, the performance is similar in both cases as the flow naturally transitions at the front of the airfoil,
inducing fully turbulent flow. Highlighting the importance of considering transition effects at Reynolds
numbers below 2× 107.
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Figure 2.8: Stitching seams with canopy overlay near the
upper surface of the LE tube.

Figure 2.9: LE tube closing seam located on the underside of
the LE tube.

Unlike the smooth surface assumed in the validation model by Folkersma et al. [23], the kite’s canopy
is made of textile material with stitched seams, as shown on both the upper and lower sides of the
LE tube in Figures 2.8 and 2.9. Due to the presence of seams near the LE, Watchorn [50] omitted
a detailed transition model, assuming that the surface irregularities would cause a bypass transition,
immediately triggering the boundary layer to transition from laminar to turbulent flow.

2.5. Regression Model
First, Breukels [9] introduced the use of polynomial curve fitting to model aerodynamic performance as
a function of AoA, κ, and the LE tube diameter. This approach was later refined by Watchorn [50], who
maintained the polynomial structure while improving the model’s applicability.

In Watchorn’s revised model, the aerodynamic coefficients (Cl, Cd, Cm) are predicted using polynomial
regressions: Cl is fitted with a cubic polynomial in α, while Cd and Cm are approximated using quadratic
terms. The model was trained on 256 CFD data points derived from 64 unique LEI kite profiles, each
evaluated at four angles of attack (α = 0◦, 5◦, 10◦, 15◦) at a constant Reynolds number of 5× 106. As
shown in Table 2.2, the R2 and root mean square error (RMSE) values do not always show consistent
trends. This is expected, as RMSE is sensitive to the scale of the output variable: for instance, Cl
typically larger in magnitude naturally yields a higher RMSE despite a strong R2. Additionally, the lack
of variance or confidence intervals makes it difficult to assess the statistical reliability of the results.

Future improvements could include expanding the dataset with more diverse input combinations and
transitioning from polynomial regression to ML algorithms, which are better suited for capturing complex
nonlinear relationships.

Table 2.2: Polynomial regression model performance for the aerodynamic coefficients, developed by Watchorn [50].

Coefficient R2 RMSE

Cl 0.9582 0.1181
Cd 0.8971 0.0184
Cm 0.9791 0.0088
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2.6. Research Question
Based on the latest parametric model by Watchorn [50] and the limitations identified in the literature
review (Section 2.3.2), the current model lacks support for incorporating a reflex angle at the TE and
offers limited control over the rest of the profile both of which are essential for capturing the wide range
of shape variations caused by the flexible membrane. Additionally, there is insufficient control over the
seam angle and LE fillet geometry, affecting smoothness and robustness. These shortcomings lead to
the following research questions for further development of the profile geometry model:

1.1 How can the parametric model of the LEI kite profile be extended to cover the wide range of shape
variations that occur during flight?

1.2 What is the aerodynamic effect of incorporating a reflex angle into the LEI kite profile?
1.3 What is the aerodynamic effect of the LE fillet size?

The literature highlights uncertainty around the transition of the upper and lower seams present on the
LE tube. This unresolved aspect motivates the following CFD research questions:

2.1 Do the LE tube-canopy intersection seam and the closing seam located on the upper and lower
surfaces of the LE tube, respectively, trigger the boundary layer to transition from laminar to
turbulent flow?

2.2 Is the boundary layer transition behaviour associated with the flow conditions, and to what extent?

Finally, answering the research questions above provides the foundation of aerodynamic data used for
the regression model, enabling improvements to the revised polynomial regression model by Watchorn
[50]. The following research questions specifically address how the regression model itself can be
further enhanced:

3.1 To what extent can machine learning enhance regression models for predicting the aerodynamic
performance of LEI kite profiles?

3.2 What are the optimal parameter bounds and resolution requirements needed to develop a reliable
and applicable aerodynamic prediction model?
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Research Method

The research methodology is summarised in the flowchart in Figure 3.1, which outlines three main
building blocks. These guide the investigation into improving the parametric profile model, enhancing
CFD accuracy, and enabling automated data generation for more reliable and accurate regression
models.

The first part of the workflow focuses on extending the profile geometry model by introducing additional
parameters and spline interpolation methods to capture a wider range of profile shapes. It also includes
an investigation into potential dependencies for implementing a robust, dynamic LE fillet and seam
angle. These steps are examined in detail in Chapter 4.

In parallel, mesh sensitivity studies and CFD setup verification are carried out. These tasks, covered in
Chapters 4 and 5, address the implementation of transition modelling and the generation of automated
meshes capable of reliably capturing recirculation and separation regions.

The next phase involves analysing the aerodynamic influence of the newly introduced parameters
across the defined parameter space, as detailed in Chapter 6. The data generated will be used to
explore the development of an ML regression model. This involves investigating various preprocessing
techniques, algorithm choices, and postprocessing methods, as well as evaluating model performance
using appropriate scoring metrics, all of which are discussed in Chapter 7.

Finally, the regression model implementation for 2D LEI kite profile design optimisation is investigated
in Chapter 8.

13
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Profile Geometry Parameterisation

and Mesh Generation

Generating a high-quality mesh for CFD simulations is a demanding task that requires careful attention
to detail, particularly when working with the unconventional geometries of LEI kite profiles. Since a large
number of profiles need to be analysed, a parametric model is first developed in Section 4.1 to enable
automated geometry and mesh generation. The corresponding mesh topology and structure are then
addressed in Section 4.2, with a comparison of the commercial software Pointwise and the open-source
Python-based application Gmsh. To ensure accurate and reliable results across the design space,
mesh parameters and smoothing strategies are fine-tuned in Section 4.3, where a comprehensive
mesh sensitivity study is performed.

4.1. Profile Geometry Parameterisation
This section establishes the foundation for a broadly applicable regression model by developing a
parametric profile geometry model with multiple design parameters, with a focus on surface mesh
reliability and robust automation.

4.1.1. Geometric Components, Constraints & Parameters
The literature study provides a comprehensive overview of the evolution of the kite profile model in
Section 2.3, beginning with Breukels [9], who laid the foundation by defining the circular LE tube diam-
eter t and the camber height κ. Based on earlier experimental studies of flexible sailing airfoils, Boer
[6] observed that the maximum camber position shifts toward the leading edge as the angle of attack
increases. Building on this insight, Kappel [27] and Cayon [11] proposed incorporating the chordwise
position of maximum camber η as an additional design parameter, an idea that Watchorn [50] later
implemented to enhance design flexibility. More recently, Corentin [15] introduced a reflex angle δ at
the TE, which increases the longitudinal pitching moment Cm by locally deflecting the canopy at the
TE downward, thereby helping prevent kites from climbing too high toward the zenith and entering an
unrecoverable front stall.

In addition to the current model, this work introduces a dynamic seam angle function to improve smooth-
ness at the LE tube-canopy intersection, along with two cubic Bézier curves, which increase geometric
flexibility through additional control point parameters and ensure smooth curvature along the canopy
profile.

Constraints
Before introducing these new implementations, it is essential to establish the constraints that the para-
metric model must adhere to. The airfoil chord is set to a unit length of one, with all parameters non-
dimensionalised relative to the chord length. TE is positioned at the standard airfoil coordinate (1, 0),
while the LE is located at (0, 0). A point constraint is applied to the centre of the circular tube, which has
a non-dimensional radius of t/2, placing it at (t/2, 0) to ensure that the leftmost point, the LE, remains

15



16 Chapter 4. Profile Geometry Parameterisation and Mesh Generation

fixed at (0, 0).

The profile is constructed by first defining the circular LE tube, followed by the front spline extending
from the LE tube-canopy seam to the maximum camber location, and finally the rear spline connecting
the maximum camber point to the TE. Tangent continuity constraints are enforced at both junctions to
ensure smooth transitions between the segments.

Bézier Curve Splines
The two canopy splines are defined using cubic Bézier curves, as given in Equation 4.1, with parameter
tb controlling the point interpolation along each spline. The four control points, [P0, P1, P2, P3], define
the shape of the curve: the first and last points set the start and end positions of the spline, while the
two intermediate points control the tangency and curvature at the intersections and the TE reflex angle.

With two Bézier splines used to define the profile, four additional parameters are introduced through
the placement of the control points. Depending on tb, the Bézier curve equation generates a dense set
of points along the profile in the form of

[
x y

]T vectors.

[
x
y

]
= (1− tb)

3P0 + 3(1− tb)
2tbP1 + 3(1− tb)t

2
bP2 + t3bP3 . (4.1)

During the decision-making process for spline interpolation, class shape transformation (CST) variables
were also considered, as they produce exceptionally smooth profiles and yield excellent results for
optimisation. However, they did not meet the criteria for this study. While an existing profile can be
easily represented by a set number of CST variables, directly deriving these variables from the profile
parameters to accommodate reflex angle modifications or shifts in the maximum camber position is not
feasible. This does not resolve the issue, as an initial spline still needs to be generated precisely for
the profile geometry.

Dynamic seam angle
Watchorn [50] primarily studied highly cambered profiles, assuming a constant seam angle of 20◦. How-
ever, for flatter profiles, this low seam angle often leads to the front spline intersecting the circular LE
tube, resulting in invalid geometry. To overcome this, a higher seam angle is required. Therefore, a
dynamic seam angle is introduced, enabling automated adjustment across a variety of profile shapes
necessary for the regression model.

The dynamic seam angle function first generates a cubic interpolation spline that is tangent to both
the LE tube and the maximum camber location. The function iterates through a range of seam angles,
starting from 0◦ at (0, 0) up to 90◦ at (t/2, t/2). If the seam angle is too low, the spline may create a
bump higher than the maximum camber point, which is not feasible. The function continuously monitors
the highest point of the spline and identifies the optimal seam angle when it becomes equal to or lower
than the maximum camber location.

Parameters
With the additional control points introduced by the two Bézier splines, the profile shape can be defined
with greater flexibility. The standard parameters already implemented in Watchorn’s model include the
LE tube diameter t, the Camber height κ, and its chordwise position η, all non-dimensionalised relative
to the chord length to allow simulations based solely on Re. Additionally, the reflex angle at the TE,
denoted as δ and introduced by Corentin [15], will be incorporated into the model.

The Bézier formulation also enables the introduction of two additional parameters: λ, the camber ten-
sion, and ϕ, the LE curvature. All parameters are listed below and visualised in Figure 4.1.

• t: LE tube diameter
• η: Chordwise position of the maximum chamber location.
• κ: Camber height
• δ: Reflex angle
• λ: Camber tension
• ϕ: LE curvature
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The reflex angle δ is defined as the angle between the line connecting the second rear spline control
point to the TE, and the line connecting the third control point to the TE. A downward deflection of the
third control point corresponds to a negative reflex angle. The distance from the third control point to
the TE is 20% of the distance between the second control point and the TE. This placement reduces
the number of free parameters and enhances the robustness of the model.

The camber tension λ improves the smoothness of the transition from the maximum camber point to
the TE by locally tensioning the spline. It is defined as the non-dimensional distance from the maximum
camber point to the second control point, relative to the unit chord length.

The LE curvature parameter ϕ defines the position of the intermediate control points of the front canopy
spline. These points are constrained to move along two tangent lines originating from the LE tube and
the maximum camber location. The non-dimensional parameter ϕ determines the relative distance of
each control point along its tangent line, with larger values shifting the control points closer to their
intersection. As a result, larger ϕ values produce more curvature near the centre of the spline, while
smaller values concentrate curvature toward the endpoints.
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Figure 4.1: LEI kite profile parametrisation using Bézier curves and control points.

A special profile configuration is the flat, zero-camber profile commonly found near the wing tips of a
kite. This profile depends solely on the LE tube diameter and the reflex angle, with other parameters
fixed for simplicity and robustness. When the maximum camber location falls below the LE tube radius,
this flat profile is generated. The seam angle is then positioned at the most suitable tube angle, slightly
aft, of (t/2, t/2). An example of this configuration, using t = 0.08 and δ = −10◦, is shown in Figure 4.2.
With η fixed at 2t and λ at 0.2.
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Figure 4.2: Parametrisation of a flat wingtip LEI kite profile using Bézier curves and defined control points.

4.2. Mesh Structure & Profile Geometry Adaptation
With the profile parameters defined, the geometry requires adaptation for CFD analysis. A smooth
surface is essential to support mesh generation and accurately capture the boundary layer. This sec-
tion outlines the mesh type, topology, and automation-friendly meshing platform designed to balance
accuracy and computational efficiency.
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4.2.1. Geometry Adaptation for Mesh Smoothing
With the parametric profile established, as shown in Figure 4.1, it cannot be directly used for CFD
simulations due to sharp corners that cause mesh distortions and the infinitely thin canopy, which
allows adjacent mesh cells on the upper and lower surfaces to share flow information. Although the
canopy has negligible physical thickness, a finite thickness must be introduced to avoid this issue. This
is defined as the non-dimensional canopy thickness, tcanopy, relative to the chord length c. Increasing
this gap improves mesh quality at the TE but deviates from physical accuracy; its impact is assessed
in the sensitivity study in Section 4.3.

To construct the lower canopy surface, two Bézier curves are used: existing control points from the
upper surface are shifted downward by tcanopy at the maximum camber location and at the second
control point of the rear spline. The lower TE point is placed using an orthogonal offset of tcanopy, as is
the third control point of the rear spline near the TE. For the front spline, all spline interpolation points
are uniformly shifted downward by tcanopy. The lower splines are presented with an exaggerated canopy
thickness of tcanopy = 0.006 in Figure 4.3.

The connection between the lower front spline and the tube creates a sharp corner, causing mesh
irregularities in this region. This issue is mitigated by incorporating an LE fillet, which facilitates smooth
transitions. The LE fillet is constructed using a cubic Bézier curve, ensuring tangent continuity at its
connections with both the circular tube and the lower front spline. Similar to the canopy thickness,
increasing the fillet region enhances mesh quality but introduces deviations from physical reality. A
detailed sensitivity analysis of this effect is provided in Section 4.3. Lastly, the TE is rounded to a
semi-circular TE fillet for mesh smoothing in an O-grid topology mesh. The resulting adapted profile is
illustrated in Figure 4.3.

Improving spline Smoothness, point density along the Bézier curve splines, tb is allocated as follows:
80 points for the LE tube and the upper front spline, 100 points for both the upper and lower rear splines,
30 points for the rounded TE, and 50 points for the LE fillet.
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Figure 4.3: Profile modification to achieve smooth and mesh-compatible geometry for CFD with exaggerated tcanopy = 0.006.

4.2.2. Pointwise versus Gmsh Mesh Generator Platforms
The search for an automated, high-quality mesh generator focused on the commercial software Point-
wise [37] and the open-source application Gmsh [25], both of which provide Python APIs for mesh
parameterisation. The main advantage of Gmsh is its free access, extensive documentation, and na-
tive integration with OpenFOAM. Pointwise, while less accessible and more complex to automate via
Python, offers the ability to generate fully structured meshes using a hyperbolic solver. This results in
superior mesh quality, especially for high-curvature geometries like LEI kite profiles. In contrast, Gmsh
lacks support for structured hyperbolic meshing. Although structured mesh generation was attempted
in Gmsh via automation scripts, the resulting mesh quality did not match that achievable with Pointwise.

As part of the sensitivity analysis, a comparison is conducted between a fully structured grid generated
in Pointwise and a hybrid grid created in Gmsh. In the hybrid mesh, structured cell layers are applied
near the profile surface to accurately resolve the boundary layer, while the rest of the domain is filled
with an unstructured triangular mesh bounded by a circular outer edge in the O-grid topology. The
hybrid mesh is illustrated in Figure 4.4, and the structured mesh is shown in Figure 4.5.
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The profile used for the mesh comparison in this section is shown in detail in Figure 4.13, corresponding
to fillet number 3. It is defined for Re = 5 × 106, with the following specifications: t = 0.08, η = 0.15,
κ = 0.08, δ = 0◦, λ = 0.2, ϕ = 0.65, and tcanopy = 0.0005.

(a) Near airfoil mesh region with structured grid along the surface and unstructured towards the outer
boundary.

(b) Full mesh domain. (c) Mesh distribution along the
LE section.

(d) Mesh distribution along the TE.

Figure 4.4: Hybrid mesh with O-grid topology generated in Gmsh [25], with a domain radius of 150c, and 575 nodes along the
profile surface.
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Figure 4.5: Fully structured mesh with O-grid topology generated in Pointwise [37] (575× 201) for a LEI kite profile with shape
parameters: t = 0.08, η = 0.15, κ = 0.08, δ = 0◦, λ = 0.2, and ϕ = 0.65.

The first issue encountered with the hybrid mesh in Gmsh is its inability to adapt the end-node spacing
for the hyperbolic distribution along the upper and lower surfaces, which connects the uniform node
distributions at the TE and LE. In contrast, Pointwise supports this adaptation, allowing for smooth
transitions between regions. Additionally, the structured grid in the hybrid mesh is not dynamically
optimised for cell quality, resulting in high aspect ratio cells when the mesh is extruded in the normal
direction from the surface. This is illustrated in Figure 4.4(d). Gmsh also performs poorly at high
Reynolds numbers of 5× 106, where the initial cell height at the surface must be very small to achieve
y+ < 1. This limitation is not observed when meshing with Pointwise.

The lift, drag, and moment polars, shown in Figures 4.6, 4.7, and 4.8, are examined using the CFD
setup described in Chapter 5. The mesh generated in Pointwise demonstrates a smoother trend when
a linear spline is interpolated through the CFD data points, in contrast to the results obtained with the
Gmsh mesh. Within the operational flight regime, the aerodynamic coefficients are generally in close
agreement, with minor discrepancies observed in Cd; specifically, the Gmsh mesh predicts slightly
higher drag than the Pointwise mesh.

The number of iterations required for the initial residuals to fall below 8×107 is shown in Figure 4.9. The
Pointwise mesh consistently requires fewer iterations, with a general trend of decreasing iteration count
corresponding to the reduction of the recirculation bubble on the lower surface as the AoA increases
up to the stall point. In comparison, the Gmsh mesh generally requires more iterations, and no clear
dependency on AoA is noticeable. Additionally, for theGmshmesh, the simulation diverged for α = −2◦,
resulting in no data being obtained for this angle. These results further support the reliability of the fully
structured Pointwise mesh, which also offers advantages for automation, requiring fewer iterations
across a wide range of simulations.
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Figure 4.6: Lift polar comparison between hybrid mesh
(Gmsh) and structured mesh (Pointwise).
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Figure 4.7: Drag polar comparison between hybrid mesh
(Gmsh) and structured mesh (Pointwise).
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Figure 4.8: Moment polar comparison between hybrid mesh
(Gmsh) and structured mesh (Pointwise).
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Figure 4.9: Iteration comparison between hybrid mesh
(Gmsh) and structured mesh (Pointwise).

Finally, the residual plots for α = 10◦ are presented in Figure 4.10 for the Gmsh mesh and Figure 4.11
for the Pointwise mesh. Once again, the structured Pointwise mesh shows greater stability, with already
lower residual values at the start of the simulation and a steeper convergence slope.



22 Chapter 4. Profile Geometry Parameterisation and Mesh Generation

0 1000 2000 3000 4000 5000
Iteration Number [-]

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

R
es

id
ua

l V
al

ue
 [-

]
Ux

Uy

k

p

Figure 4.10: Gmsh mesh simulation residuals at α = 10◦.
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Figure 4.11: Pointwise mesh simulation residuals at α = 10◦.

4.2.3. Selected Mesh Type and Topology
The structured mesh generated in Pointwise has been shown to outperform the hybrid mesh fromGmsh
in terms of accuracy and numerical robustness, as discussed in Section 4.2.2. This aligns with general
findings that structured meshes better resolve boundary layers and reduce numerical diffusion [22].
Regarding mesh topology, the large number of simulations and the need for automation across varied
geometries and angles of attack motivated the use of an O-grid topology. This choice ensures mesh
independence from AoA, as the grid lines naturally follow the flow direction. While a C-grid topology
may offer improved wake resolution, it requires more manual tuning to align the mesh with the wake
and is therefore less suitable for automated workflows, making the O-grid a more practical and reliable
choice for this study.

4.2.4. Profile Surface Node Distribution
Conventional airfoils, such as NACA profiles, typically use cosine spacing to interpolate nodes along
the surface [29]. This method distributes grid points more densely near the LE and TE, where curvature
and pressure gradients are highest, thereby improving accuracy

xi =
1− cos

(
iπ
N

)
2

c. (4.2)

The unconventional and highly asymmetric shape of a LEI kite profile presents challenges for mesh
discretisation along the chord line. The lower surface spans a larger area with slower-moving flow in
the recurvature region, while the upper surface requires sufficient resolution up to the point of max-
imum camber to capture the accelerated flow accurately. To address these issues, Watchorn [50]
implemented a custom node distribution: uniform spacing near the LE, a hyperbolic tangent distribu-
tion along the canopy, and another uniform spacing around the semi-circular TE. The tanh spacing is
designed to start and end with the same spacing as the adjacent uniform regions near the LE and TE,
thereby avoiding abrupt transitions in grid density.

The transition between the uniform and hyperbolic tangent distributions occurs near the end of the LE
fillet on both surfaces. An example of this node distribution, using a total of 575 points, is shown in
Figure 4.12. The number of nodes near the LE is defined as 28% of the total amount, nLE = 0.28ntotal,
providing good results across a range of LE tube diameters. For the TE region, a fixed number of
nTE = 15 nodes is used to improve mesh density and prevent failures in the hyperbolic extrusion
process, especially in cases where small initial layer thicknesses would otherwise violate the Jacobian
criteria. The remaining nodes are distributed along the canopy region, resulting in

ncanopy =

⌊
1

2
(ntotal − nTE − nLE)

⌋
(4.3)
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nodes on each side, ensuring a balanced distribution. Here, the floor operator ⌊·⌋ denotes rounding
down to the nearest integer.

(a) Tanh node distribution along the upper and lower canopy surface.

(b) Uniform node distribution along the
LE section.

(c) Uniform node distribution along the TE section.

Figure 4.12: Grid point distribution along the surface of an LEI kite profile with 575 nodes. Shape parameters: t = 0.08,
η = 0.15, κ = 0.08, δ = 0◦, λ = 0.2, and ϕ = 0.65.

4.2.5. Mesh Layer Spacing
Pointwise employs a hyperbolic extrusion algorithm to generate mesh layers in the wall-normal direc-
tion, using a progression-based method. This algorithm requires three key parameters to control the
extrusion process. The cell growth rate is set to 1.1, consistent with both Pointwise’s default and the
setting used in Watchorn’s study [50]. The number of layers is discussed in Section 4.3, while the third
parameter is the initial step size y, which directly affects the non-dimensional wall distance y+.

The y+ value is a dimensionless quantity used to assess whether the near-wall mesh resolution is
sufficient to capture boundary layer effects in turbulence modelling. It accounts for the no-slip condi-
tion at the wall, where the velocity is zero. The friction velocity is defined as Uτ =

√
τw/ρ∞, with τw

representing wall shear stress. The resulting expression for y+ is

y+ =
ρ∞yUτ

µ∞
=

ρ∞
√

τw/ρ∞
µ∞

. (4.4)

The general rule for achieving a well-resolved boundary layer in turbulence modelling is to ensure that
the surface grid cells satisfy the condition y+ < 1 [22]. The wall shear stress τw, which is needed for
calculating y+ in Equation 4.4, is defined as

τw =
1

2
Cfρ∞U2

∞ , (4.5)

where Cf is the skin friction coefficient, ρ∞ is the freestream density, and U∞ is the freestream velocity.

The skin friction coefficient is estimated using an empirical relation from turbulent flat-plate boundary
layer theory, commonly known as Prandtl’s one-seventh-power law [2]:
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Cf =
0.027

Rex
1/7

. (4.6)

The Reynolds number based on the chord length is defined in terms of either the dynamic or kinematic
viscosity as

Re =
ρ∞U∞c

µ∞
=

U∞c

ν∞
, (4.7)

where µ∞ and ν∞ represent the freestream dynamic and kinematic viscosity, respectively.

Assuming U∞ = 1ms−1 and ρ∞ = 1 kgm−3, the Reynolds number determines µ∞. Rather than relying
on fixed freestream conditions, this approach focuses on non-dimensional aerodynamic coefficients,
which are more relevant for the analysis. By assembling the previously defined relations and enforcing
a y+ value below 1, the required initial step size can be computed. This ensures that the y+ value at
each surface node remains below 1 during the simulation. As such, this relation is of critical importance
for enabling automated CFD workflows across varying Reynolds numbers.

4.2.6. Smoothing Parameters
An LEI kite profile differs significantly from a conventional airfoil, primarily due to its large LE tube and
thin canopy, which form a sharp corner on the lower surface near the junction.

To prevent errors in Pointwise’s hyperbolic extrusion method, smoothing parameters are carefully ad-
justed to suit the profile. Proper tuning of these parameters not only helps to mitigate numerical in-
stabilities but also ensures a smooth and well-structured mesh. The software provides four types of
smoothing techniques for this purpose: explicit smoothing, implicit smoothing, Kinsey-Barth smoothing
and volume smoothing.

Both the explicit and implicit smoothing parameters operate in the transverse direction, with the implicit
coefficient always set to twice the value of the explicit coefficient. In contrast, the Kinsey-Barth smooth-
ing parameter functions in the wall-normal direction and is typically applied when dealing with severe
concavity.

Compared to the smoothing parameters used byWatchorn [50], only the explicit parameter is increased
to 8, while the implicit parameter is adjusted accordingly. This modification results in slightly improved
smoothness in localised high-curvature regions. As shown in Table 4.1, these settings are consistently
applied across all configurations to ensure uniform mesh quality and stability.

Table 4.1: Hyperbolic extrusion smoothing parameters.

Smoothing Parameter Value Notes

Explicit 8.0
Implicit 16.0 Double the explicit coefficient
Kinsey Barth 5.0 High concavity → ≥ 3.0

Volume 0.5 Default value
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4.3. Mesh Sensitivity Analysis
This section presents a sensitivity analysis of the fully structured mesh designed for the LEI kite profile
at Re = 5×105. It evaluates mesh resolution convergence (normal and tangential), LE fillet effects, and
canopy thickness. Their impact on aerodynamic performance and residual convergence is assessed
for both a conventional and a highly cambered airfoil, as shown in Figures 4.13 and 4.14.

To support mesh automation across different profile geometries, these two contrasting profiles were
selected to test mesh performance, ranging from conventional shapes to extreme cases like the highly
cambered airfoil. The aim is to identify optimal mesh settings and assess the need for dynamic adap-
tation based on profile parameters.

This approach aims to minimise numerical errors and ensure an accurate representation of real-world
aerodynamic behaviour. For all cases, percentage differences in force and moment coefficients are
analysed, along with residual convergence plots for Ux, Uy, k, p, and ω.

Standard convergence guidelines suggest residuals should reach approximately 10−6 for momentum,
pressure, and turbulence equations, and 10−4 for force coefficients [22]. To meet these criteria consis-
tently across configurations, an initial residual threshold of 8× 10−7 is used.
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Figure 4.13: Conventional LEI kite profile with varying LE fillet configuration and fixed shape parameters: t = 0.08, η = 0.15,
κ = 0.08, δ = 0◦, λ = 0.2, and ϕ = 0.65.
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Figure 4.14: Highly cambered LEI kite profile with varying LE fillet configuration and fixed shape parameters: t = 0.15,
η = 0.4, κ = 0.3, δ = 0◦, λ = 0.4, and ϕ = 0.65.
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4.3.1. Mesh Domain Convergence
The aerodynamic performance and residual convergence of the mesh domain are analysed by varying
the tangential and normal mesh resolutions for two specific configurations: the conventional profile with
fillet 3 and the highly cambered profile with fillet 2, as shown in Figures 4.24 and 4.14. The influence
of tangential resolution is shown in Figures 4.15 and 4.16 for both profiles. Except at α = 0◦ for
the highly cambered case, a tangential resolution of 475 nodes yields good convergence across both
configurations. However, to ensure consistency and remain aligned with Watchorn’s study, a resolution
of 575 nodes is selected. As the optimal resolution is less clearly defined for the highly cambered profile,
the 575-node distribution is applied uniformly across all cases.

275-375 375-475 475-575 575-675 675-775
Tangent dimension step [-]

0

5

10

15

20

25

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 [%
]

Cl at 0
Cd at 0
Cm at 0

Cl at 10
Cd at 10
Cm at 10

Cl at 15
Cd at 15
Cm at 15

Figure 4.15: Absolute percentage differences in (Cl, Cd, and
Cm) for various tangential node resolutions for a conventional
LEI kite profile. For a fixed normal distribution of 201 layers

and tcanopy = 0.0001.
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Figure 4.16: Absolute percentage differences in (Cl, Cd, and
Cm) for various tangential node resolutions for a highly

cambered LEI kite profile. For a fixed normal distribution of
201 layers and tcanopy = 0.0001.

In contrast, establishing convergence for aerodynamic performance with respect to wall-normal cell
layers is more challenging, as shown in Figures 4.17 and 4.18. Nevertheless, a mesh with 201 layers
appears sufficient to capture the relevant flow features, showing minimal differences compared to adja-
cent configurations. This choice also aligns with Watchorn’s sensitivity analysis, which used the same
number of layers. The pronounced peak at steps 191-201 for the highly cambered profile in Figure 4.18
occurs at α = 0◦, likely due to the large recirculation region extending far toward the TE, which can
cause the results to deviate using steady RANS simulations.
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Figure 4.17: Absolute percentage differences in (Cl, Cd, and
Cm) for various wall-normal cell layers for a conventional LEI
kite profile. For fixed tangential resolution of 575 nodes and

tcanopy = 0.0001.
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Figure 4.18: Absolute percentage differences in (Cl, Cd, and
Cm) for various wall-normal cell layers for a highly cambered
LEI kite profile. For fixed tangential resolution of 575 nodes

and tcanopy = 0.0001.

Regarding the number of simulation cycles for the tangential and wall-normal sensitivity analyses in
Figures 4.19 and 4.20, no clear correlation is observed between tangential resolution and convergence
rate. However, for the wall-normal resolution, a trend of earlier convergence emerges with increasing
layer count. While this improves CFD automation, it also raises computational cost due to a higher cell
count. To balance accuracy and efficiency, the wall-normal layer count is set to 201.
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Figure 4.19: Iteration count to reach 8× 10−7 residual for
varying tangential node distributions on conventional and
cambered LEI kite profiles. For a fixed normal dimension of

201 nodes and tcanopy = 0.0001.
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Figure 4.20: Iteration count to reach 8× 10−7 residual for
varying wall-normal cell layers on conventional and cambered
LEI kite profiles. For fixed tangential resolution of 575 nodes

and tcanopy = 0.0001.

4.3.2. Leading Edge Fillet Analysis
In reality, no fillet is present on the lower surface near the LE. However, in CFD simulations, introducing
a fillet is necessary to prevent numerical errors caused by grid compression at the sharp intersection
of the front canopy spline and the LE tube.

This analysis evaluates the impact of varying fillet sizes on aerodynamic performance and flow residual
convergence, while also examining potential correlations between them. The fillet configurations for
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both conventional and highly cambered profiles are shown in Figure 4.13 and 4.14.

To quantify the fillet geometry, Delaunay triangulation is used to generate non-overlapping triangular
mesh elements from a set of contour points, ensuring that no point lies within the circumcircle of any
triangle [32]. The total LE fillet area is obtained by summing the areas of these triangles, as illustrated
in Figure 4.21. The calculated areas for the different fillet configurations are listed in Table 4.2.
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Figure 4.21: Delaunay triangulation method applied for area calculation on the LE fillet.

Table 4.2: LE fillet enclosed areas for the conventional and highly cambered profile.

Conventional Profile Area [cm2] Highly Cambered Profile Area [cm2]

LE fillet 1 0.13 LE fillet 1 4.22
LE fillet 2 0.98 LE fillet 2 8.58
LE fillet 3 2.26 LE fillet 3 26.12
LE fillet 4 5.04 LE fillet 4 36.60
LE fillet 5 9.45 LE fillet 5 47.90
LE fillet 6 19.31 LE fillet 6 137.12
LE fillet 7 45.52

To gain a better understanding of the mesh structure at the LE fillet, a close-up view of the conventional
profile with LE fillet number 1 and 2 is presented in Figures 4.22 and 4.23, with a tangential and normal
mesh resolution of 575×201. Both meshes exhibit decent orthogonality despite the presence of a sharp
LE corner, showcasing the capabilities of the hyperbolic mesh generator in Pointwise.

In this analysis, it is assumed that the smallest LE fillet would provide the best representation of real-
world conditions while also considering the numerical error introduced with squeezed mesh quality.
Therefore, the second smallest mesh for the conventional profile Figure 4.23 is used as the baseline
for aerodynamic comparisons in terms of Cl, Cd, and Cm.

For the highly cambered profile, the smallest fillet demonstrated a smooth local mesh, ensuring reliable
flow representation. The aerodynamic performance comparisons for both the conventional and highly
cambered profiles are shown in Figures 4.24 and 4.25, where the LE fillet number is represented on
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the x-axis as the reference for comparison with LE fillet 2 for the conventional profile and LE fillet 1 for
the highly cambered one.

Figure 4.22: Conventional profile with LE fillet configuration 1,
with mesh resolution 575× 201.

Figure 4.23: Conventional profile with LE fillet configuration 2,
with mesh resolution 575× 201.

A clear diverging trend in aerodynamic performance is noticeable at α = 0◦. However, no clear cor-
relation is observed for other AoAs. For the highly cambered profile (Figure 4.25), a difference in
aerodynamic performance is observed only for the largest fillet, affecting all coefficients across the
AoA range.
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Figure 4.24: Relative percentage differences in (Cl, Cd, and
Cm) for the conventional LEI kite profile across various LE

fillets compared to LE fillet number 2.
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Figure 4.25: Relative percentage differences in (Cl, Cd, and
Cm) for the highly cambered LEI kite profile across various LE

fillets compared to LE fillet number 1.

Concerning the convergence iteration count for the highly cambered profile in Figure 4.27, convergence
at α = 15◦ is achieved only for fillet configurations 3 and 6. While no clear trend is observed across all
fillets, fillet 6 appears to offer greater stability. However, it also more closely resembles a double-skin
LEI kite, which may not reflect the target design profile.

For the conventional LEI kite profile, the required number of iterations is shown in Figure 4.26. A general
trend of faster convergence is visible with increasing fillet size, except at α = 15◦. The convergence
trend obtained for the α = 0◦ and 10◦ is likely due to the larger recirculation region present at these
angles, in which the LE fillet can help streamline the flow.

Ultimately, considering the already smooth surface mesh obtained with LE fillet 2 in Figure 4.23 and
the minimal impact of LE fillet size on aerodynamic performance, fillet configuration 3, offering slightly
improved smoothness, is selected for the conventional LEI kite profile. While even larger fillets showed
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improved convergence, they deviated more from the realistic geometry. Therefore, fillet 3 is chosen as
a balanced solution and will be applied consistently across all other profile configurations.
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Figure 4.26: Iteration count to reach an initial residual
threshold of 8× 10−7 for the conventional LEI kite profile with

varying LE fillets.
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Figure 4.27: Iteration count to reach an initial residual
threshold of 8× 10−7 for the highly cambered LEI kite profile

with varying LE fillets.

4.3.3. Canopy Thickness Analysis
The canopy sensitivity analysis focuses only on the conventional profile, as the large camber could
introduce additional interference. While the canopy is small relative to the chord, its thickness is not
negligible. This analysis compares the smallest canopy thickness against larger values, with the rela-
tive aerodynamic performance differences shown in Figure 4.28. A clear divergence in performance
appears as thickness increases, highlighting the importance of selecting a representative canopy thick-
ness. All meshes are assumed to be of smooth quality due to the use of hyperbolic mesh generation.
Although experimental validation is ideal.

In real-world kites, canopy fabric can be as thin as 0.1 mm, but reinforcement near the TE often in-
creases this to around 1 mm to prevent damage from flutter. When scaled to typical centre chord
lengths, 1.8 m for kitesurfing kites and 2.7 m for KitePower systems [12], this corresponds to non-
dimensional canopy thicknesses of tcanopy = 0.00055 and 0.00037, respectively. In comparison, Watchorn
used a larger value of tcanopy = 0.001 [50]. The thinner, more realistic values derived here are therefore
included in this sensitivity analysis.

The iteration count demonstrated in Figure 4.29 remains roughly constant at α = 10◦ and 15◦. At α = 0◦,
however, a trend emerges: thicker canopies tend to generate more turbulence at the TE, requiring more
iterations for convergence.

This leads to the selection of a more representative canopy thickness of tcanopy = 0.0005, balanc-
ing slightly improved convergence behaviour with reduced deviation from realistic aerodynamic perfor-
mance.
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Figure 4.28: Relative percentage differences in (Cl, Cd,
and Cm) for the conventional LEI kite profile across various
canopy thicknesses compared to (tcanopy = 0.0001). Mesh

resolution 575× 201.
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Figure 4.29: Iteration count to reach an initial residual
threshold of 8× 10−7 for the conventional LEI kite profile with

varying canopy thickness.





5
Computational Fluid Dynamics &

Simulation Set-Up

This chapter presents the computational methodology used to simulate the aerodynamic behaviour of
LEI kite profiles. It includes the justification for using the RANS equations and the selected turbulence
modelling approach. The omission of transition modelling is supported by a numerical analysis of the
LE tube-canopy connection and the lower surface closing seam. These elements, along with the open-
source CFD solver OpenFOAM used to solve the RANS equations, are discussed in Section 5.1. The
simulation setup in Section 5.2 includes the use of the high-performance computing (HPC) cluster and
outlines the applied boundary conditions. The chapter concludes with a discussion of the convergence
criteria and the postprocessing methods used to extract aerodynamic performance coefficients.

5.1. Computational Fluid Dynamics
Due to the unconventional shape of LEI kite profiles, flow phenomena such as lower surface recircula-
tion and upper surface separation at higher angles of attack arise, both of which are inherently viscous
and rotational. As these effects cannot be captured by conventional potential flow tools like Xfoil [19],
CFD simulations are necessary for accurate analysis.

5.1.1. RANS k-ω SST Simulation
Based on the discussion presented in Section 2.4, Steady RANS simulations provide an effective bal-
ance between computational cost and accuracy compared to LES and DNS, making it particularly
suitable for automating large datasets of profiles intended for regression modelling. The assumption
made by [23] further supports employing steady-state RANS simulations, as the flow experiences a
low Mach number and can thus be considered incompressible.

The steady RANS equations are derived by applying Reynolds averaging to the Navier–Stokes equa-
tions, which removes turbulent fluctuations. This process introduces additional unknowns, leaving the
system unclosed. To achieve closure, empirical approximations in the form of turbulence models are
introduced, enabling the equations to be solved [22].

Among the various turbulence models discussed in more detail in the literature Section 2.4 and previ-
ously implemented in RANS simulations by Folkersma et al. [23], Demkowicz [18], and Viré et al. [47],
the k−ω SSTmodel byMenter [34] is selected as themost suitable option. This model is widely adopted
in engineering applications due to its ability to accurately capture flow behaviour both near walls and
in the far field. For a more in depth explanation of the RANS k − ω SST equations as implemented in
the solver, the reader is referred to the work of Watchorn [50].

5.1.2. Transition Modelling
The influence of a transition model versus fully turbulent flow on a LEI kite profile has been investi-
gated by Folkersma et al. [23] using RANS simulations with results compared to experimental data as
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summarised in Section 2.4.3. The study demonstrated that incorporating a transition model produced
results more consistent with experiments, particularly for smooth profiles tested at low turbulence in-
tensity (I = 0.02).

In contrast, Watchorn [50] noted the presence of a seam at the LE, connecting the canopy to the LE
tube (see Figure 2.8), which acts as a disturbance triggering bypass transition. This observation has
led to the assumption that the flow transitions to a turbulence boundary layer immediately at the seam,
with the seam located within the first 2% of the chord length. Justifying the omission of a transition
model. However, no direct evidence currently confirms that the seam initiates the bypass transition
outlined in Section 2.4.3.

When deciding whether to implement a transition model or assume fully turbulent flow, key parameters
such as the free-stream Reynolds number (Re), turbulence intensity, and seam geometry must be
considered. Recent field measurements from the Kitepower V9 system, conducted in 2023 and 2024,
report turbulence intensities ranging from 5% up to 30%, with a median around 8% [13]. These values
indicate a significantly more turbulent environment compared to the 2% turbulence level assumed in
the study by Folkersma et al. [23].

Regarding surface imperfection-induced disturbances, bypass transition can be triggered by the LEI
seam. The seam on the upper side of the LE consists of two main components: a forward-facing step
and a zig-zag stitching pattern, both resulting from the overlapping canopy fabric seen in Figure 2.8. A
study involving LES simulations of a forward-facing step with a step-height Reynolds number (Reh) of
720 revealed the formation of turbulent structures, indicating its potential to trigger transition [53].

The step-height Reynolds number, or more generally, the roughness-height-based Reynolds number,
is defined by the following relation [8],

Reh =
uhh

ν
. (5.1)

where h is the obstacle height, and uh is the local flow velocity at that height. uh can be estimated using
the pressure coefficient

uh = fbl

(
U∞

√
1− Cp

)
. (5.2)

Here, fbl is a boundary layer correction factor accounting for viscous effects, as the obstacle is located
within the boundary layer. The term in brackets is derived from Bernoulli’s equation.

Additionally, the zig-zag stitching pattern observed on the LEI seam, as shown in Figure 2.8, is com-
monly used in aerospace applications to induce a fixed transition and is therefore important to account
for. While the same methodology and equations apply, the zig-zag pattern acts as a three-dimensional
roughness element and is generally more effective at triggering transition than a simple forward-facing
step. Consequently, it typically requires a smaller height to initiate transition over the profile [8].

Determining the critical roughness-height-based Reynolds number (Reh,crit) required to trigger transition
is complex, as various studies report different threshold values. For the current configuration featuring
a forward-facing step combined with a zig-zag stitching pattern, no experimental data exist that also
account for the influence of elevated turbulence intensity. However, literature provides some guidance.
Braslow et al. [8] reported typical critical values ranging between 300 and 600. For three-dimensional
roughness elements such as zig-zag or wavy patterns, Balakumar [3] adopted a value of 300, while
other studies by Rooij et al. [39] and Elsinga et al. [20] found that values as low as 200 may be sufficient
to trigger transition.

Considering the elevated turbulence intensity and presence of a two-layer roughness, an estimate of
Reh,crit = 200 is assumed. The obstacle height, representing the stitching and step at the LE seam,
is measured at 0.6 mm. The Reynolds number formulation given in Equation 5.1 is applied across
a freestream Reynolds number range from 105 to 107, with pressure coefficient values ranging from
Cp = −2 to Cp = −4.5, corresponding to low and high angles of attack. Chord lengths of 1.8 m and
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5 m are used to represent a typical kitesurfing kite and an airborne wind energy kite, respectively, as
illustrated in Figure 5.1.
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Figure 5.1: Roughness-height-based Reynolds number versus flow Reynolds number for various c and Cp values, with a
seam height of 0.6 mm and fbl = 0.8.

In the most transition-prone case, with a chord length of 5 m, Cp = −2, and a boundary layer factor
fbl = 0.8, transition would occur beyond Re = 1.5× 106, representative of low wind speeds during the
reel-in phase. However, during power generation in crosswind flight, this leads to significantly higher
Reynolds numbers. Since the LE seam is located within the first 2% of the chord, the influence of any
upstream laminar region is minimal.

Regarding the closing seam on the underside of the LE tube, shown in Figure 2.9, its height, ap-
proximately 6 mm, is around 10 times greater than that of the LE tube-canopy intersection. Based
on Equations 5.1 and 5.2, this configuration yields transition as early as Re = 1.5 × 105 under most
transition-prone conditions. Since this seam is also located within the first 2% of the chord, both geomet-
ric features support the omission of laminar flow modelling. Consequently, assuming a fully turbulent
boundary layer from the LE onward is both reasonable and justified.

5.1.3. CFD Solver OpenFoam
OpenFOAM is an open-source CFD software widely utilised in Universities and industry for aerody-
namic simulations. It is notable for its flexibility and innovative object-oriented structure built on the C++
programming language [51].

The software utilises the finite volume method (FVM) to discretise and solve the governing partial dif-
ferential equations of fluid flow, accurately capturing the physics within each control volume. Flow
variables are computed at the centroids of these volumes and interpolated through quadrature formu-
las, inherently maintaining flux conservation across neighbouring control volumes.

Although OpenFOAM can simulate compressible flows, the low free-stream Mach number associated
with flow over a LEI kite allows the assumption of incompressibility [23]. This simplification leads to a
reduction in the complexity of the RANS equations. By further assuming steady-state conditions, the
simplified equations become suitable for simulation using the SimpleFOAM solver library, as demon-
strated by Folkersma et al. [23].

SimpleFOAM is based on the semi-implicit method for pressure linked equations (SIMPLE) algorithm,
which couples pressure and velocity fields [10]. For a detailed overview of its structure and imple-
mentation, readers are directed to Watchorn’s master’s thesis [50]. The solver is designed exclusively
for 3D domains, so for 2D simulations, the profile domain is extruded outward by one chord length.
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OpenFOAM integrates smoothly with the meshing tool Pointwise, and simulation results can be easily
analysed and visualised using built-in utilities or external programs like ParaView [28].

5.2. Simulation Set-Up
This section outlines the simulation toolchain used to run multiple simulations in parallel on the HPC
system at the faculty of Aerospace Engineering. The boundary conditions used in the simulations are
discussed in Section 5.2.2. The numerical schemes employed in the OpenFOAM setup were adopted
from Watchorn’s work, to which the reader is referred for further details. The convergence criteria are
outlined in Section 5.2.3, and the aerodynamic data postprocessing is presented in Section 5.2.4.

5.2.1. Simulation Platform
Developing an accurate regression model for multiple input parameters defining the LEI kite profile, us-
ing aerodynamic performance coefficients as output, requires substantial computational resources due
to the intensive CFD simulations needed for various profile configurations. Running these calculations
locally would be impractical, making high-performance computing resources essential. Therefore, the
HPC-12 cluster at Delft University of Technology, Faculty of Aerospace Engineering, is employed.

The cluster connects nodes managed by a central master, with access via SSH keys, and jobs are
submitted through PBS files that specify the simulation tasks and resource requirements. Operating in
a Linux environment with OpenFOAM pre-installed, the cluster efficiently distributes simulations across
nodes, automatically assigning new tasks as cores become available.

Mesh generation is performed on a local device and uploaded to the cluster, where simulations are
executed and monitored. Once completed, the aerodynamic data is transferred back to the local de-
vice for further analysis and regression model development. For verification, local runs using parallel
processing are suitable for a small set of AoAs, but for multiple profile configurations, it is advisable to
utilise the supercomputer.

5.2.2. Boundary Conditions & Initial Values
This section outlines the boundary types and values employed in the OpenFOAM simulation setup,
grounded in the methodology introduced by [23] and verified through subsequent studies by [18] and
[50]. The discussion covers the various regions of the simulation domain, including the far-field, profile,
and side boundary conditions, which are summarised with their respective types and values in Table 5.1.

Far field
The far-field boundary is modelled as a cylindrical region extending 201 cell layers outward from the
profile, with a unit depth of length 1. The inlet velocity scalar U∞, set to a unit magnitude of 1, is
projected in the direction determined by the AoA to define the vector inlet velocity:

Ui = U∞ ·

cosαsinα
0

 . (5.3)

Since the analysis is two-dimensional, there is no flow variation in the normal z-direction.

The turbulent kinetic energy at the inlet ki is defined by the free-stream velocity U∞ and the turbulence
intensity I, as

ki =
3

2
(U∞I)2. (5.4)

The specific turbulent dissipation rate at the inlet ωi is related to the initial turbulent kinetic energy ki
and the free-stream eddy viscosity ratio νt/ν∞, given by

ωi =
ki
ν∞

(
νt
ν∞

)−1

. (5.5)
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These expressions follow the formulation adopted by Watchorn [50], which has been adopted in this
work. Given the parameter νt/ν∞, Folkersma et al. [23] reported negligible sensitivity to changes in the
eddy viscosity ratio across a range of 0.1 to 10. Similarly, Demkowicz [18] observed minimal influence
when varying this ratio between 1 and 50, and for the turbulence intensities ranging from 0.5% to 20%.
Based on these findings, both studies selected constant values of νt/ν∞ = 10 and I = 0.02, a choice
also adopted by Watchorn and consistently applied throughout this work.

Under the assumption of incompressible flow for LEI kites [23], the fluid density ρ is treated as constant.
The pressure field is expressed in terms of the kinematic pressure, pk = ps/ρ, where ps is the static
pressure. This formulation, adopted in simpleFoam, preserves the correct physical pressure gradient
while simplifying its numerical treatment.

For the boundary conditions, the inletOutlet type is applied to the velocity field U, k, and ω. This
condition uses a fixedValue at inflow and a zeroGradient at outflow [10]. For the pressure field, a
fixedValue condition is imposed at the outlet (pk = 0), while the inflow uses a zeroGradient condition,
implemented via the outletInlet boundary type.

Profile
The LEI kite profile is defined as a stationary, impermeable solid boundary around which the flowmoves.
Due to fluid viscosity and impermeability, the no-slip boundary condition is applied, meaning both tan-
gential and normal velocity components at the wall are zero. Under the assumption of incompressible
flow, the pressure gradient normal to the wall is considered negligible and is set to zero.

Turbulence fluctuations diminish near impermeable surfaces, making the flow essentially laminar in
close proximity to the wall. The boundary layer adjacent to the wall is known as the viscous sub-layer,
where k and eddy viscosity (νt) are effectively zero. However, the specific turbulent dissipation rate ω
is not zero at the wall due to the damping effects of the solid boundary on turbulence fluctuations. [22]

Side
The SimpleFOAM solver is limited to simulating three-dimensional domains. To accommodate two-
dimensional airfoil simulations, the profile is extruded by one chord length in the z-direction, forming
a thin 3D domain [10]. The two side boundaries created through this extrusion are defined as empty,
specifying a two-dimensional simulation setup in OpenFOAM. This boundary condition ensures uniform
flow conditions along the domain thickness, preventing flow variation in the normal z-direction.

Table 5.1 summarises the boundary conditions applied at the far-field, profile, and side surfaces, in-
cluding their respective types and values.

Table 5.1: Boundary conditions for the flow variables [50].

Variable Far-field
Type Far-field Value Profile Type Profile Value Side

Type

U,m/s inletOutlet inletValue = Ui fixedValue (0, 0, 0) emptyInitial value = Ui

pk (ps/ρ),m2/s2 outletInlet outletValue = 0 zeroGradient – emptyInitial value = 0

k,m2/s2 inletOutlet inletValue = ki fixedValue Value = 0 emptyInitial value = ki

ω, 1/s inletOutlet inletValue = ωi omegaWallFunction Initial value = ωi emptyInitial value = ωi
νt,m2/s calculated Initial value = 0 nutkWallFunction Initial value = 0 empty
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5.2.3. Convergence Monitoring
A general rule of thumb for convergence criteria is that the final residuals for momentum, pressure, and
turbulence equations represented by Ux, Uy, p, k, and ω should fall below 10−6. Meanwhile, the force
residuals, corresponding to Cl, Cd, and Cm, should typically reach the order of 10−4 [22].

In OpenFOAM, residuals are monitored using the initial residual, which is slightly higher than the final
value. In cases of rapid convergence, force coefficients may not reach the 10−4 threshold. To ensure
consistent behaviour, an initial residual threshold of 8×10−7 was selected. Each simulation was limited
to 5,000 iterations. Exceeding this indicates non-convergence, typically at negative or post-stall AoA,
where steady RANS accuracy declines due to large flow separation.

The final flow and force residuals for a conventional LEI kite profile at α = 6◦ are shown in Figures 5.2
and 5.3, respectively. Compared to the setup used by Watchorn, the relaxation factor for the velocity
component U was reduced from 0.9 to 0.8, which helped smooth out residual noise and led to a more
stable convergence. Notably, the final flow residuals fall below the order of 10−7, while the initial flow
residual reached 8 × 10−7. The force residuals also dropped just below the convergence threshold of
10−4.
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Figure 5.2: Final flow residuals at α = 6◦ for the following
profile parameters: t = 0.09, η = 0.2, κ = 0.08, δ = 0,

λ = 0.2, and ϕ = 0.65.
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Figure 5.3: Force residuals at α = 6◦ for the following profile
parameters: t = 0.09, η = 0.2, κ = 0.08, δ = 0, λ = 0.2, and

ϕ = 0.65.
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5.2.4. Postprocessing
For each simulation, data containing the profile configuration, Reynolds number, AoA, force, and mo-
ment coefficients are recorded. For verification, the maximum iteration number, corresponding residu-
als, and the maximum Y + value are also included. A VTK file can be exported to visualise all relevant
flow variables, for example, the velocity field with streamlines at α = 10◦, as shown in Figure 5.4. The
recirculation region is clearly visible, comprising a primary recirculation zone and a smaller secondary
region near the LE tube-canopy intersection.

Figure 5.4: Contour plot of the velocity field of a LEI kite profile including the streamlines around the profile at α = 10◦ for the
following profile parameters: t = 0.09, η = 0.2, κ = 0.08, δ = 0, λ = 0.2, and ϕ = 0.65.

Pressure coefficient (Cp) and skin friction coefficient (Cf) distributions are compiled at each AoA, calcu-
lated using Equations 5.6 and 5.7,

Cp =
p− p∞
1
2 ρ∞ U2

∞
, (5.6)

Cf =
τw

1
2 ρ∞ U2

∞
. (5.7)

Where τw is wall shear stress, p∞ the free-stream pressure, and p the local pressure. Since regression
modelling involves many simulations, reducing the dataset size without significant information loss is
essential. The Ramer-Douglas-Peucker (RDP) algorithm, implemented via the RDP Python library [26],
was used to simplify both Cp and Cf curves while preserving their shape. As shown in Figures 5.5 and
5.6, the data was reduced to about 10% of the original points using epsilon values of 0.004 for Cp and
0.0001 for Cf. No significant visual differences were observed.
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Figure 5.5: Pressure coefficient distribution at α = 10◦ and
Re = 5× 106 for the following profile parameters: t = 0.09,

η = 0.2, κ = 0.08, δ = 0, λ = 0.2, and ϕ = 0.65.
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Figure 5.6: Skin friction coefficient distribution at α = 10◦ and
Re = 5× 106 for the following profile parameters: t = 0.09,

η = 0.2, κ = 0.08, δ = 0, λ = 0.2, and ϕ = 0.65.

The chordwise position of the centre of pressure (xcp) can be determined by integrating the pressure
distribution over the airfoil surface. The centre of pressure (CoP) represents the mean location of aero-
dynamic pressure and is a key metric for assessing airfoil stability. Alternatively, xcp can be calculated
using force and moment coefficients with α, as defined in Equation 5.8 [2]. A common simplified form,
neglecting drag and α, is xcp = xref − Cm

Cl
. Figure 5.7 compares all three methods. The results show

minimal differences between the direct, simplified, and Cp integration-based method. These small
differences may arise from numerical integration errors or from reducing the resolution of the Cp data.

Since the data for the direct method is available for all simulations, it is used throughout this work.
However, care is needed near angles of attack where Cl approaches zero. For instance, at α = −2◦,
a sudden shift in xcp occurs. This sensitivity is particularly evident in the simplified expression, xcp =
xref − Cm

Cl
, where small values of Cl can cause large fluctuations.

xcp = xref −
Cm c√

C2
l + C2

d sin
(
tan−1 Cl

Cd
+ α

) (5.8)
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Figure 5.7: CoP versus α at Re = 5× 106 for the following profile parameters: t = 0.09, η = 0.2, κ = 0.08, δ = 0, λ = 0.2,
and ϕ = 0.65.



6
LEI Kite profile Aerodynamic Analysis

Optimisation of the LEI kite profiles begins with understanding how individual profile parameters in-
fluence the flow field and, consequently, aerodynamic performance. All simulations presented in this
chapter are conducted at Re = 5 × 106. The parameters with the most significant impact, being the
non-dimensional LE tube diameter t, chordwise position of maximum camber η, and camber height κ,
have been thoroughly analysed by Watchorn [50] and are therefore not discussed in detail here.

Similarly to Watchorn’s approach, the Cl, Cd, and Cm coefficients, as well as the Cp and Cf distributions,
are analysed here for the updated parametric model, which includes the reflex angle δ in Section 6.1,
camber tension λ in Section 6.2, and LE curvature ϕ in Section 6.3. Additionally, the CoP is included
as a key stability performance parameter.

6.1. Reflex Angle δ
The reflex angle δ influences the TE profile and is introduced to modify the pitching moment, thereby
affecting the CoP. It serves as a passive design feature to increase the nose-up pitching moment,
helping to ensure that the kite does not fly too close to the zenith but instead glides naturally to a
slightly lower position in the wind window. This behaviour helps to prevent an unrecoverable front
stall, which could pose safety risks for users or bystanders. For these reasons, the effect of δ is worth
investigating.

The reflex angle is analysed for four small deflection variations, as visualised in Figure 6.1, which
result in noticeable changes in both the lift and moment coefficients. The definition of δ is detailed in
Section 4.1, where a deflection of δ = 0◦ corresponds to a straight canopy, and negative values indicate
a downward deflection.
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Figure 6.1: LEI kite profile for various δ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and ϕ = 0.65.

Considering the Cd in Figure 6.3, only negligible differences are observed across the simulated reflex
angles. However, Cl in Figure 6.2 shows a consistent variation over the entire AoA range, indicating
that reflex can negatively impact performance. For this reason, only small deflection angles were
considered.
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Figure 6.2: Cl versus α for various δ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and

ϕ = 0.65.
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Figure 6.3: Cd versus α for various δ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and

ϕ = 0.65.

Examining Cm and the chordwise position of the centre of pressure xcp in Figures 6.4 and 6.5, the
motivation for introducing the reflex becomes clearer. As the downward deflection angle (negative δ)
increases, Cm becomes more positive across the full AoA range, indicating a nose-up pitching moment.
Consequently, xcp shifts forward along the chord, which contributes to improved stability characteristics.
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Figure 6.4: Cm versus α for various δ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and

ϕ = 0.65.
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Figure 6.5: xcp versus α for various δ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and

ϕ = 0.65.

An interesting observation arises in the pressure distribution shown in Figure 6.6. While increasing the
reflex angle δ results in more positiveCm, one might expect this to correlate with a stronger suction peak
near the LE. However, the opposite occurs. As the profile becomes more concave at the upper surface
of the TE due to increased reflex, suction on the aft section decreases, and pressure on the lower
surface drops due to the locally convex shape, both contributing to an increase in Cm. Surprisingly,
suction near the LE also weakens, which would typically reduce Cm. Despite this opposing effect, the
overall Cm still increases. This behaviour is explained by global pressure coupling in the flowfield, the
pressure field adapts over the entire profile to satisfy continuity and momentum conservation [2].

The Cf distribution is closely related to the Cp plot, as visualised in Figure 6.7. Lower pressure corre-
sponds to locally higher flow velocity, which results in increased skin friction. Additionally, the recircula-
tion region on the lower surface is evident from the negative Cf values, with the flow reattaching around
x/c = 0.4.
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Figure 6.6: Cp distribution at α = 10◦ for various δ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and
ϕ = 0.65.
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Figure 6.7: Cf distribution at α = 10◦ for various δ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, λ = 0.2, and
ϕ = 0.65.

6.2. Camber Tension λ
The camber tension parameter λ was introduced based on the observation of an abrupt change in
curvature from the maximum camber location toward the TE in profiles designed using Surfplan. To
address this, a Bézier curve was implemented, using control points to define the rear spline of the profile
from the maximum camber location towards the TE. The control point, located near the maximum
camber position, defines the so-called camber tension λ. Larger values of λ increase the curvature
tension, resulting in smoother rear profiles, as visualised in Figure 6.8. The role of this tension control
point is discussed in more detail in Section 4.1.
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Figure 6.8: LEI kite profile for various λ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and ϕ = 0.65.

The lift and drag coefficients, shown in Figures 6.9 and 6.10, reveal a slight increase in Cl across the full
range of AoA as the camber tension increases. The Cd remains mostly unchanged within the normal
operating range, but exhibits beneficial behaviour at higher angles of attack, particularly at 16◦ and 18◦

AoA.
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Figure 6.9: Cl versus α for various λ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and

ϕ = 0.65.
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Figure 6.10: Cd versus α for various λ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and

ϕ = 0.65.

TheCm andCoP, shown in Figures 6.11 and 6.12, exhibit trends similar to those discussed in Section 6.1.
For stability reasons, it is desirable to maintain more positive values of Cm. Although the lift increases
with higher camber tension λ, the Cm becomes more negative across all angles of attack, indicating
reduced stability. As a consequence, the CoP shifts rearward with increasing λ.



6.2. Camber Tension λ 45

10 5 0 5 10 15 20 25
 [ ]

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

C m
 [-

]

=0.1
=0.2
=0.3
=0.4

Figure 6.11: Cm versus α for various λ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and

ϕ = 0.65.
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Figure 6.12: xcp versus α for various λ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and

ϕ = 0.65.

The gain in Cl can be explained by examining the Cp distribution in Figure 6.13. At higher values
of λ, the maximum camber position transitions more smoothly toward the TE, forming a continuous
convex spline over a longer portion of the profile. This contrasts with the case of λ = 0.1, which results
in a straighter rear profile. The extended convex curvature increases suction on the upper surface
and enhances pressure on the lower surface, thereby contributing to higher lift. Additionally, a slight
increase in suction is observed upstream near the LE for larger λ by global pressure coupling in the
flowfield, further supporting the lift gain.

With respect to the Cm, the additional lift generated by the rear part of the profile at higher λ dominates
over the increased suction near the LE, leading to a more negative Cm, indicating reduced pitch stability
as λ increases.

For the strongest curvature at λ = 0.1, a distinct adverse pressure gradient step is noticeable in both
theCp andCf plots around the maximum camber location at x/c = 0.2. As shown in Figure 6.14, slightly
higherCf values are observed for larger λ, indicating a modest increase in overall skin friction. The recir-
culation region on the lower surface remains visible, with negative Cf values followed by reattachment
occurring around x/c = 0.4.
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Figure 6.13: Cp distribution at α = 10◦ for various λ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and
ϕ = 0.65.
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Figure 6.14: Cf distribution at α = 10◦ for various λ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and
ϕ = 0.65.

6.3. Leading Edge Curvature ϕ
The LE curvature, parametrised by ϕ, is explained and visualised using control points in Section 4.1. In
short, larger values of ϕmove the control points away from the maximum camber position and LE seam,
introducing curvature closer to the centre of the front spline. In contrast, smaller values concentrate
the curvature near the endpoints of the front spline, specifically at the seam and maximum camber
locations. This behaviour is illustrated in Figure 6.15 for various values of ϕ.
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Figure 6.15: LEI kite profile for various ϕ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and λ = 0.2.

Analysing the Cl and Cd curves reveals negligible differences throughout the AoA range, except for
minor variations beyond stall at α = 22◦. These differences at high AoA should be interpreted with
caution and ideally verified using transient simulations, as steady RANS approaches lack reliability at
high AoA.
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Figure 6.16: Cl versus α for various ϕ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and λ = 0.2.
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Figure 6.17: Cd versus α for various ϕ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and λ = 0.2.

Focusing on Cm and xcp within the operating range of 0−16◦ AoA, the moment coefficient Cm becomes
slightly more positive for larger ϕ values, resulting in a small forward shift of the CoP. This behaviour
can be explained by examining the Cp distribution in Figure 6.20. Larger ϕ values produce sharper
curvature and more pronounced suction peaks, while smaller values tend to create a broader pressure
plateau with two smaller peaks caused by the dual convex regions associated with reduced curvature
in the centre of the front spline, as seen for ϕ = 0.55. Additionally, the Cf distribution for the upper
surface, shown in Figure 6.21, closely reflects the trends in the Cp distribution.
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Figure 6.18: Cm versus α for various ϕ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and λ = 0.2.
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Figure 6.19: xcp versus α for various ϕ, with fixed profile
parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and λ = 0.2.

Although the overall lift coefficient Cl remains nearly constant, this redistribution of pressure causes a
slight shift in the CoP without significantly affecting the total suction force. Given that this performance
variation is relatively small. Overall, it can be concluded that the LE curvature ϕ has only a minor effect
on the aerodynamic performance and can be omitted as a variable, instead being fixed at ϕ = 0.65.
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Figure 6.20: Cp distribution at α = 10◦ for various ϕ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and
λ = 0.2.
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Figure 6.21: Cf distribution at α = 10◦ for various ϕ, with fixed profile parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦, and
λ = 0.2.



7
Machine Learning for Aerodynamic

Regression

This chapter introduces the application of machine learning (ML) algorithms and hyperparameter tuning
to develop regression models for predicting aerodynamic performance coefficients (Cl, Cd, Cm), as well
as surface distributions of Cp and Cf, for LEI kite profile configurations at various AoA and Reynolds
numbers. In Section 7.1, the six-dimensional space comprising geometric profile parameters and AoA
is defined across a representative range of Reynolds numbers. The data generation and filtering pro-
cess, described in Section 7.2, ensures high-quality CFD data by removing non-converged simulations
and statistical outliers. In Section 7.3, multiple ML models are trained and tuned using cross-validation.
The model’s performance is then further improved through spline interpolation. Finally, Section 7.4
evaluates the most promising models on a randomly selected test set, with the tuned extra trees model
achieving the highest accuracy, and is visually demonstrated through selected profile comparisons.

7.1. Parameter Definition
With the Reynolds number varying significantly during the crosswind flight and stationary retraction
phases of LEI kites, it is worthwhile to investigate the performance differences across this range. There-
fore, the lift, drag, and moment polars, as well as the drag-lift polar, are presented in Figures 7.1, 7.2,
7.3, and 7.4 respectively. These results correspond to a conventional profile with following parameters:
t = 0.08, η = 0.2, κ = 0.09, δ = 0, λ = 0.2 and ϕ = 0.65, across a Reynolds number range from 6× 105

to 6× 107.

A convergence in aerodynamic performance is observed at higher Reynolds numbers, while a greater
spread appears at lower values. Even lower Reynolds numbers may occur at the wingtips during static
flight due to shorter chord lengths and reduced apparent wind speeds. However, these scenarios are
considered less critical for optimisation and are therefore omitted. Instead, three representative models
are considered: one at the lower bound, corresponding to smaller kites or static flight (1 × 106), one
near the typical in-flight operational conditions for kites (5 × 106), and one representing larger kites or
higher wind conditions, and future designs with extended chord lengths (2× 107) [13].

As expected, the same aerodynamic performance trends were observed, verifying the findings of Folk-
ersma without transition modelling [23]. The maximum lift coefficient Cl,max increases with Reynolds
number, while the Cd decreases. The new analysis further reveals that Cm decreases, corresponding
to an increasing nose-down pitching moment as the Reynolds number rises. At higher Re, the profile
achieves a higher Cl,max and maintains a stable Cm over a longer range before stall. Beyond stall, a
sharp drop in Cl is accompanied by a plunge into more negative Cm values.

49
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Figure 7.1: Cl versus AoA for varying Reynolds numbers,
given the following profile parameters: t = 0.08, η = 0.2,

κ = 0.09, δ = 0◦, λ = 0.2, and ϕ = 0.65.
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Figure 7.2: Cd versus AoA for varying Reynolds numbers,
given the following profile parameters: t = 0.08, η = 0.2,

κ = 0.09, δ = 0◦, λ = 0.2, and ϕ = 0.65.
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Figure 7.3: Cm versus AoA for varying Reynolds numbers, for
the following profile parameters: t = 0.08, η = 0.2, κ = 0.09,

δ = 0◦, λ = 0.2, and ϕ = 0.65.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Cd [-]

0.0

0.5

1.0

1.5

2.0
C l

 [-
]

Re = 6 × 105

Re = 1 × 106

Re = 4 × 106

Re = 8 × 106

Re = 2 × 107

Re = 6 × 107

Figure 7.4: Cd versus Cl for varying Reynolds numbers,
given the following profile parameters: t = 0.08, η = 0.2,

κ = 0.09, δ = 0◦, λ = 0.2, and ϕ = 0.65.

With the flow conditions defined, the profile parameters and AoA need to be selected to sufficiently
cover the design space and achieve an accurate model. Through discussions with kite designers
across applications such as boat towing, airborne wind energy, and kitesurfing, a practical range for
each profile parameter was defined, carefully balancing computational cost with data resolution across
the design space. To ensure a uniform data distribution, a complete grid covering all possible parameter
combinations was generated, creating a dedicated model for each Re. Additionally, based on the aero-
dynamic analysis in Section 6.3, the parameter ϕ was found to have minimal impact on aerodynamic
performance. Therefore, considering computational efficiency, this parameter was fixed at a value of
0.65. Allowing greater refinement of other, more influential parameters. Regarding the AoA range, the
distribution was chosen to optimise accuracy in the lift polar while maintaining computational efficiency.
Thus, fewer data points were used in the linear lift region (around α = 2◦ to α = 10◦). Negative AoA
were also sampled more coarsely due to less importance. Around the stall region, a finer AoA step size
of 2◦ was chosen to accurately capture the stall behaviour. Ultimately, the finalised parameter ranges
are summarised in Table 7.1. With ϕ fixed and a separate model constructed for each Re, this results
in a six-dimensional profile geometry space.
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Table 7.1: Design parameter ranges of the dataset.

Parameter Variables Count

t [-] 0.03, 0.06, 0.08, 0.1, 0.12 5
η [-] 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 8
κ [-] 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16 7
δ [◦] -8, -5, -2, 0 4
λ [-] 0.1, 0.2, 0.3, 0.4 4
ϕ [-] 0.65 1
α [◦] -10, -5, -2, 0, 2, 6, 10, 12, 14, 16, 18, 20, 22 13
Re [-] 1 × 106, 5 × 106, 2 × 107 3

A preprocessing step was performed to remove profile configurations outside the applicable design
space. Profiles were filtered based on the following criteria:

• Profiles where the camber tension control point λ is positioned too far aft, i.e., when η + λ ≥ 0.8.
• Profiles for which the camber height κ is excessively large compared to thickness t, specifically
when κ > 2.5, t.

• Additionally, profiles with κ less than t
2 were considered flat (no camber). These profiles are

simplified to the LE tube diameter t and the reflection angle δ, as other parameters have minimal
influence. A flat profile representation can be seen in Figure 4.2.

Profiles with larger non-dimensional tube diameters and low camber are retained, as they represent
wingtip configurations necessary for the 3D aerodynamic analysis using the VSM model. The total
number of filtered profile configurations is summarised in Table 7.2. A total of 3,464 configurations
were evaluated across 13 angles of attack, leading to 45,032 simulations per Reynolds number (Re).

Table 7.2: Number of profile configurations per t in the dataset.

Thickness t [-] Count

0.03 256
0.06 768
0.08 896
0.10 772
0.12 772

Total 3,464

7.2. Data Generation and Preprocessing
In chapter 5, the steady RANS k − ω SST simulations are described in detail, including the use of the
OpenFOAM solver and the HPC-12 supercomputer platform to compute the aerodynamic coefficients
for all profile configurations. This also includes the boundary condition setup and postprocessing steps
to extract surface distributions of Cp and Cf. The resulting simulation data, along with the integrated
force coefficients Cd, Cl, and Cm, is loaded for further analysis.

Although a thorough sensitivity analysis was conducted using a fully structured hyperbolic mesh and
solver tuning, including relaxation factor adjustments and a low initial residual convergence threshold
of 8 × 10−7, a limited number of outliers and non-converged cases remained. To further improve the
quality of the model input, a data filtering step was applied to ensure a cleaner training dataset.

All non-converged simulations, defined as cases reaching amaximum of 5000 iterations, were removed.
This was especially relevant at high AoA values beyond stall, where flow separation and large recircula-
tion regions occur. Such conditions cannot be accurately resolved by a steady-state RANS solver and
would instead require a transient simulation approach. The effect of removing these non-converged
cases is illustrated in the lift, drag, and moment polars shown in Figures 7.5, 7.6, and 7.7.
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To identify and exclude outliers in the force coefficient output data, a z-score filtering Equation 7.1
approach was used [17]. Specifically, for each AoA, any data point with an absolute z-score greater
than approximately 3 standard deviations ±3σ from the mean (µ) was classified as an outlier and
removed. These outliers are visualised as orange markers near the distribution boundaries per AoA
in Figures 7.5, 7.6, and 7.7, and their removal is quantified in Table 7.3. The percentage of excluded
points remains low, confirming that aside from the non-converged simulations, no significant outliers
were present. This mild filtering approach improves the overall model accuracy and standard deviation.

z =
x− µ

σ
(7.1)

As described in Section 7.1, the profile geometry dataset spans a large six-dimensional grid defined
by all possible combinations of the selected parameter variables 1. Building a predictive model within
this space also requires a test dataset to evaluate the model’s accuracy and standard deviation. To
ensure reliable verification of the model across the grid, the test set was constructed from randomly
sampled profile configurations that satisfy the three configuration criteria outlined in Section 7.1, while
using AoA data points that differ from those in the training set. From this point forward, the data used
to train the model is referred to as the training data, and the verification set as the test data.

Table 7.3 presents the percentage of non-converged and outlier-removed samples for both datasets.
After filtering, the final dataset consists of 42,183 training samples and 5,016 test samples, correspond-
ing to a test-train split of 10.6%.

Table 7.3: Data filtering steps and resulting sizes for Re = 5× 106 dataset.

Step Train Data Test Data

Similutation data 45,032 5,187
Not converged (removed) 2,452 (5.45%) 118 (2.27%)
Outliers (removed) 397 (0.93%) 53 (1.05%)
Final dataset size 42,183 5,016
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Figure 7.5: Cl versus α for the Re = 5× 106 dataset,
illustrating filtering of cambered, flat, and removed profiles.
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Figure 7.6: Cd versus α for the Re = 5× 106 dataset,
illustrating filtering of cambered, flat, and removed profiles.

1The source code for the CFD simulations, figure generation, and prediction models is available on GitHub: https://github.
com/awegroup/Pointwise-Openfoam-toolchain. The CFD simulation dataset used to train the ML model is archived on Zen-
odo: https://doi.org/10.5281/zenodo.15593140.

https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://doi.org/10.5281/zenodo.15593140
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Figure 7.7: Cm versus α for the Re = 5× 106 dataset, illustrating filtering of cambered, flat, and removed profiles.

To visualise the flat (no camber) profiles described in Section 7.1, these cases are highlighted in green
in the figures above. Only 104 samples, corresponding to approximately 0.23% of the training data, are
classified as flat profiles. Analysing their aerodynamic behaviour reveals that flat profiles, as expected,
generate less lift and tend to stall earlier, around α = 10◦. Consequently, they exhibit relatively high
Cd beyond stall, and show a higher Cm, indicating a stronger nose-up tendency in the pre-stall flight
regime.

7.3. Machine Learning Model Setup and Postprocessing
The machine learning model setup for aerodynamic force prediction is organised as a modular pipeline,
illustrated in Figure 7.8. The process begins with the standardisation of the filtered training datasets,
using a Standard Scaler to ensure consistent scaling of all parameters.

Initially, several regression algorithms are evaluated using their default settings. The selected algo-
rithms include k-nearest neighbors (KNN), random forest (RF), extra trees (ET), support vector regres-
sion (SVR), and multi-layer perceptron (MLP), all implemented via the scikit-learn library [36]. These
models were chosen based on their strong default regression performance, as reported in [45] and
facilitated by the lazypredict library [35]. Linear regression (LR) is also included for baseline compar-
ison.

Subsequently, for each algorithm, a dedicated hyperparameter search space was defined and system-
atically explored using grid search cross-validation (GridSearchCV). This process enables effective
fine-tuning of each model’s configuration based on a selected scoring metric. The coefficient of de-
termination (R2) was chosen over root mean squared error (RMSE), as it provides a more informative
measure of model performance for this dataset. Unlike RMSE,R2 takes into account the variance of the
true target values, as reflected in the denominator of Equation 7.2 compared to the definition of RMSE
provided in Equation 7.3. Both expressions are adapted from A Modern Introduction to Probability and
Statistics [17].

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(7.2)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7.3)

In the above equations, yi denotes the true value of each test data point, ŷi represents the corresponding
model prediction. y is the mean value of the true data, and n is the total data size in the test set.



54 Chapter 7. Machine Learning for Aerodynamic Regression

It is important to note that in the context of grid search cross-validation, the term validation does not
refer to comparing model predictions against experimental data. Instead, in ML language, validation
refers to the internal process of fine-tuning model hyperparameters using subsets of the training data,
prior to evaluating the final model on an independent test set.

During grid search cross-validation, the training data is split into multiple subsets, known as folds. This
technique, referred to as k-fold cross-validation, typically involves 5 to 10 folds, depending on the size
of the dataset. In this study, the dataset was sufficiently large to support a more robust evaluation, and
a configuration of k = 10 was selected. This means that in each iteration, 90% of the data is used for
training and 10% for validation. While increasing the number of folds can enhance R2 scoring, it may
also introduce greater variance in the results. However, given the size of the dataset, this trade-off was
carefully evaluated, and the chosen setting was considered appropriate.

In Table 7.4, the machine learning algorithms and their corresponding hyperparameter settings that
achieved the highest mean R2 values are summarised, with extra trees and Random Forest emerging
as the top-performing models.

Table 7.4: Overview of ML models, hyperparameters, and R2 values.

ML Model Hyperparameter Value R2

K-nearest neighbors (KNN) n_neighbors 8 0.945
Linear regression (LR) – – 0.617
Random forest (RF) n_estimators 130 0.993

max_features sqrt
min_samples_split 2

Extra trees (ET) n_estimators 130 0.991
max_depth None
max_features log2
min_samples_split 2

Support vector regression (SVR) kernel rbf 0.737
C 1
epsilon 0.1
gamma scale

Multi-layer perceptron (MLP) hidden_layer_sizes 100 0.941
activation tanh

An additional postprocessing step was introduced to improve prediction accuracy at AoA values that fall
between the discrete data points used during model training, visualised in the flowchart 7.8. Most of the
MLmodels employed, except for SVR, lack smooth continuity in AoA, leading to less reliable predictions
in between training points, as observed in the random test data used for model verification. Given that
AoA strongly influences aerodynamic performance, as supported by the parameter importance weights
shown in Table 7.5, a more refined approach is required. To address this, a piecewise cubic Hermite
interpolating polynomial (PCHIP) spline is applied, using the scipy.interpolate module [49]. This
enables smooth interpolation and more accurate aerodynamic performance predictions for any given
profile configuration and AoA.

For theCp andCf distribution predictions, each distribution consists of approximately 80 data points, too
many for conventional ML approaches. Instead, the KNeighbors algorithm is employed to identify, for a
given configuration and AoA, the closest simulated Cp and Cf distributions from the filtered training data.
Since certain geometric parameters have a greater influence on the prediction than others, a weighted
KNeighbors model is utilised, with the weights determined via permutation importance. Permutation
importance estimates feature importance by randomly shuffling each parameter across the dataset and
measuring the resulting drop in model performance, as indicated by the reduction in R2 score. A larger
drop signifies a more influential feature. In this study, permutation importance was calculated using
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the scikit-learn library [36]. The resulting parameter weights, presented in Table 7.5, reflect the relative
importance of each parameter in predicting the Cp and Cf distributions.

Table 7.5: Weights used for each parameter in the KNeighbors algorithm.

α t η κ δ λ

1.758 0.0470 0.2441 0.250 0.0170 0.0278
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Figure 7.8: Machine learning model setup flowchart, from data preprocessing to model evaluation.
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7.4. Model Evaluation
The final dataset that remains completely unseen by the ML models is the test dataset, as described
in Section 7.2. After filtering the data, a test-train split of 10.6% remains, which, given the large overall
dataset size of approximately 47,000 data points, was deemed sufficient to ensure statistical reliability
without significantly increasing variance. To verify whether the high R2 values observed for Random
Forest and extra trees on the grid dataset indicate true model reliability, these models will be further
evaluated using the randomly selected test set. For evaluation, bothR2 and the root mean square error
(RMSE) as a percentage are reported, to accurately capture differences in the magnitude of aerody-
namic forces. Additionally, the percentage of the standard deviation (σ), as defined in Equations 7.4
and 7.5 and following the approach from A Modern Introduction to Probability and Statistics [17], is also
presented to provide a comprehensive assessment of model performance.

RMSE [%] =

√
MSE

⟨|ytest|⟩
× 100 (7.4)

σ [%] =

√
1

n−1

∑n
i=1(ri − r̄)2

⟨|ytest|⟩
× 100 (7.5)

In the above equations, n is the number of test samples. The mean square error (MSE) is the average
squared difference between the true (yi) and predicted (ŷi) values. ⟨|ytest|⟩ is the mean absolute value
of the test targets, used to normalise both RMSE and σ so they are expressed as percentages. In
Equation 7.5, ri are the residuals and r̄ is their mean.

The performance of each machine learning model on the test dataset evaluated using R2, RMSE, and
σ is summarised in Table 7.6. Among all models, extra trees stands out by achieving the highestR2 and
the lowest RMSE and variance, demonstrating both high accuracy and consistent predictions. While
Random Forest also performs well, it is clearly outperformed by extra trees across all metrics. KNN and
MLP show moderate performance with higher prediction errors, whereas LR and SVR yield the least
accurate results. Based on these findings, the extra trees model is selected as the preferred prediction
method.

Extra trees (extremely randomised trees) build an ensemble of decision trees using two key sources of
randomness: it selects split points completely at random rather than optimising them, and it uses the
entire training dataset instead of bootstrap samples [21]. These differences make the algorithm both
faster and less prone to overfitting. Its high level of randomisation enhances generalisation, particularly
in high-dimensional spaces, as demonstrated in Table 7.6.

Table 7.6: ML model verification using R2, percentage RMSE, and σ, for the Re = 5× 106 model.

ML Algorithm R2 RMSE [%] σ [%] Training Time [s]

KNN 0.9576 18.54 18.28 0.05
LR 0.6169 55.50 55.08 0.04
RF 0.9442 21.15 24.08 10.6
ET 0.9857 10.87 9.83 9.1
SVR 0.7470 43.10 18.23 46.3
MLP 0.9366 22.42 17.02 7.4
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To visualise the performance of the extra trees model2, three representative profiles were selected from
the test dataset: one with a small LE tube diameter (t = 0.032), one with a medium diameter (t = 0.086),
and one with a large diameter (t = 0.115). The third profile is notable as it represents a flat configuration,
providing insight into the model’s performance on edge cases. The prediction metrics for these profiles
are summarised in Table 7.7.

Profile 2 demonstrates excellent prediction accuracy, with high R2 values and low RMSE percentages
across all aerodynamic coefficients. These results are further illustrated for Cl and Cd in Figure 7.9,
and for Cm in Figure 7.10. In these plots, the PCHIP spline forms a smooth connection between the
ML predictions at the AoA values present in the training data, allowing aerodynamic coefficients to be
extrapolated for comparison with the true test data.

Generally, a lower R2 is associated with a higher RMSE, although RMSE is more sensitive to outliers.
For example, in the moment polar for Profile 1, the predictions are mostly accurate, but a single outlier
near α = −3◦ causes an increase in RMSE. Similarly, Profile 3 shows an outlier around α = 11◦. In
the drag polar for Profile 1, a larger outlier at α = 18◦ leads to an RMSE for Cd as high as 25.3%.

Table 7.7: Prediction performance metrics (R2, RMSE) for Profiles 1-3, listed from top to bottom.

t η κ δ ϕ λ R2
Cl

R2
Cd

R2
Cm

RMSECl

[%]
RMSECd

[%]
RMSECm

[%]

0.032 0.308 0.047 -3.5 0.65 0.134 0.980 0.959 0.931 11.4 25.3 25.8
0.086 0.192 0.08 -5.6 0.65 0.325 0.998 0.996 0.999 3.3 6.7 2.3
0.115 0 0 -7.7 0 0 0.950 0.996 0.955 19.6 6.0 31.0
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Figure 7.9: Verification of the ML model using lift and drag polars (left and right, respectively) for the Re = 5× 106 dataset.

2The source code for the CFD simulations, figure generation, and prediction models is available on GitHub: https://github.
com/awegroup/Pointwise-Openfoam-toolchain. The CFD simulation dataset used to train the ML model is archived on Zen-
odo: https://doi.org/10.5281/zenodo.15593140.

https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://doi.org/10.5281/zenodo.15593140
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Figure 7.10: Verification of the ML model using moment polar for the Re = 5× 106 dataset.

To assess the Cp and Cf distributions, as illustrated in Figure 7.11, three random profiles from the test
dataset are analysed, each with a distinct AoA to ensure clear differentiation. The AoA was selected as
the varying parameter, as it has the most significant influence on aerodynamic performance, as shown
in Table 7.5. The chosen AoA values were α = 5.3◦, 11◦, and 14.4◦. The selected profiles and their
corresponding k-nearest neighbor are listed in Table 7.8.

The predicted Cp distributions show strong agreement with the reference profiles at each AoA, demon-
strating that the k-nearest neighbors model successfully identifies the closest possible matches within
the dataset, as also confirmed in Table 7.8. Moreover, the weighted parameter search proves particu-
larly beneficial when certain reference profiles are excluded or unavailable in the reference dataset.

With respect to the Cf distribution, the model yields accurate predictions, especially on the upper sur-
faces of the second and third profiles, where excellent agreement with the reference data is observed.
Minor discrepancies are noted on the lower surfaces, primarily due to the effects of vorticity in the
recirculation region, which introduces localised deviations.

Table 7.8: Profile configurations and α values for test data and KNeighbors predictions from training data.

Profile No. Test Profile KNeighbors Prediction
α t η κ δ λ α t η κ δ λ

1 5.3 0.03 0.315 0.051 -7.6 0.109 6 0.03 0.3 0.06 -8 0.1
2 11.0 0.08 0.311 0.062 -5.6 0.302 10 0.08 0.3 0.06 -5 0.3
3 14.4 0.085 0.31 0.12 -4.2 0.23 14 0.08 0.3 0.12 -5 0.2
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Figure 7.11: Verification of Cp and Cf distributions for the test data and KNeighbors predictions at Re = 5× 106.

The overall regression model results presented in Table 7.9 demonstrate consistently high predictive
performance across all Reynolds numbers, as indicated by the total R2 values above 0.98. The R2

performance metric measures how well the predicted values match the actual data. With, R2 values
close to 1 across all aerodynamic coefficients (Cl, Cd, and Cm) confirm the model’s strong accuracy
and applicability.

The total standard deviation (σ) values, expressed in percentage, show a decreasing trend with increas-
ing Reynolds number, indicating improved prediction consistency at higher Re. Lower variance in the
residuals at 2 × 107 reflects closer alignment of predictions with actual values, enhancing confidence
in the model’s output for high Re scenarios.

Table 7.9: Regression model performance metrics.

Re R2 σ [%] R2
Cl

R2
Cd

R2
Cm

1× 106 0.987 10.520 0.988 0.989 0.985
5× 106 0.988 9.430 0.993 0.984 0.987
2× 107 0.989 7.677 0.995 0.983 0.990
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LEI Kite Profile Design

Recommendations

Given the diverse applications of LEI kites, ranging from boat towing to airborne wind energy generation
and kitesurfing, profile design must be tailored to the specific operational context. A key consideration
in all cases is the variation in Reynolds number across different flight phases, as aerodynamic perfor-
mance shifts across the range. This sensitivity is illustrated in Figures 7.1, 7.2, 7.3, and 7.4.

Among the aerodynamic coefficients, Cm and the associated CoP position are of particular importance.
In large-scale systems such as airborne wind energy platforms and boat-towed kites, a strong negative
Cm, corresponding to a large nose-down pitching moment, poses a serious risk of front stall at the
edge of the wind window. This failure mode must be avoided at all costs. It can be mitigated by shifting
the CoP forward through adjustments to the profile parameters. More positive pitching moments also
reduce the force required on the rear bridle lines due to a longer moment arm, thereby improving both
mechanical efficiency and longitudinal stability. These forces are visualised in Figure 8.1, where the
red arrow indicates the rear bridle force, the green arrow the front bridle force, and the blue arrow the
lift force, located at the CoP. The CoP shifts with AoA, as illustrated by the dashed blue line.

It is important to note that a forward-shifted CoP position often comes at the cost of reduced aerody-
namic efficiency, particularly in terms ofCl andCd. Optimal aerodynamic performance typically requires
larger values of η and λ without reflex deflection, which tend to shift the CoP rearward as discussed in
Chapter 6 and demonstrated by Watchorn in the context of η variation [50].

An example of the wide CoP variation with α, ranging from x/c = 0.28 to 0.45, is shown in Figure 8.1
for a representative LEI kite profile with the following parameters: t = 0.08, η = 0.2, κ = 0.08, δ = 0◦,
λ = 0.2, and ϕ = 0.65. The corresponding CoP location across the AoA range is plotted in Figure 6.19,
illustrating the relatively rearward position of xcp in LEI kite profiles. At α = 10◦, for instance, the CoP is
located at x/c = 0.3, which is significantly aft compared to conventional NACA airfoils, where the CoP
typically aligns near the quarter chord [2].
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Figure 8.1: 2D free-body diagram of a LEI kite showing rear (red), front (green), and lift (blue, at CoP) forces.

The recommended procedure for implementing the regression model1 is as follows. First, define a grid
of profile parameters for which the predictionmodel should compute the aerodynamic coefficients. Next,
specify acceptable bounds for Cm within a given range of α. Depending on the performance objectives,
such as maximising lift, optimising the lift-to-drag ratio, or a weighted combination, a suitable profile
can be identified. Alternatively, performance weights can be applied across a range of AoA values to
prioritise specific flight regimes.

After this selection, the results can be postprocessed by examining the Cp distribution predicted via
k-nearest neighbours from the reference dataset. Once an approximate optimum is identified, a finer
parameter grid analysis can be conducted using steady RANS simulations to achieve higher accuracy
and perform final fine tuning. Finally, the optimal profile contour coordinates can be directly exported
from the parametric model.

1The source code for the CFD simulations, figure generation, and prediction models is available on GitHub: https://github.
com/awegroup/Pointwise-Openfoam-toolchain. The CFD simulation dataset used to train the ML model is archived on Zen-
odo: https://doi.org/10.5281/zenodo.15593140.

https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://doi.org/10.5281/zenodo.15593140
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Conclusion & Recommendations

The parametric model improvements began with the implementation of a dynamic seam angle locator,
which exhibited a smooth and robust dependency on other geometric parameters. A similar approach
was applied to the lower surface fillet at the LE seam, whose size was thoroughly assessed through
sensitivity analysis across various configurations. Although smooth meshes could be achieved with
small LE fillets, experimental validation is recommended to assess the aerodynamic influence of the
fillet with a real-life configuration without a fillet.

Further profile smoothness was achieved by replacing the single cubic Bézier curve used by Watchorn
[50] with two connected cubic Bézier curve segments. This increased the number of control points and
enabled greater flexibility and control through the introduction of additional shape parameters: reflex
angle δ, camber tension λ, and LE curvature ϕ.

A mesh sensitivity study revealed slight variations in aerodynamic performance and convergence itera-
tions due to canopy thickness. Given its influence on the results and to more accurately represent the
actual canopy thickness, the non-dimensional thickness was reduced relative to Watchorn’s, reaching
a value of 0.0005c. Mesh resolution in the normal and tangential directions was found to be sufficiently
converged. Therefore, the same grid density as used by Watchorn [50] (201× 575) was maintained to
balance accuracy and computational cost.

The decision to omit a transition model due to the presence of overlapping fabric and stitching seams
was verified numerically, confirming that bypass transition is triggered by the roughness elements. The
overlap acts as a forward-facing step, while the stitching behaves like a three-dimensional roughness
element. Given the elevated turbulence intensity (≈ 8%), the estimated critical roughness Reynolds
number (Reh, crit = 200), and trip height (h = 0.6 mm), transition is predicted for flows above approxi-
mately Re > 1× 106. However, since this approach is based on assumptions, experimental validation
is recommended, specifically, wind tunnel testing across a range of Reynolds numbers and seam con-
figurations. Techniques such as fluorescent oil film and infrared thermography could be considered for
boundary layer visualisation.

Numerical results also suggest a bypass transition at the closing seam on the lower side of the LE tube,
which behaves similarly to a trip wire. The larger seam height on the lower surface, measuring 6 mm,
induces transition at even lower Reynolds numbers than the upper seam. Experimental validation
is again recommended across different seam placements, angles of attack, and Reynolds numbers.
Finally, it remains uncertain whether a fixed transition location should be enforced in simulations or if
the short upstream laminar region can be neglected under the assumption that a fully turbulent boundary
layer from the LE suffices for aerodynamic predictions.

The latest LEI kite profile parametric model by Watchorn [50] provided a solid foundation but lacked
key geometric parameters, limiting aerodynamic optimisation. One critical addition is the reflex angle δ,
which increases Cm and shifts the CoP forward, an important feature for improving static longitudinal
stability and reducing rear bridle forces. Further refinement was achieved by enhancing control over the
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Bézier curves that define the front and rear canopy splines. Leading to a camber tension parameter,
λ, adjusting the Bézier control point at the location of maximum camber near the TE. This enables
improvements in lift coefficient Cl, with a trade-off in slightly lower Cm values, while maintaining a
stable drag coefficient Cd. Additional LE curvature control using the front spline control points allowed
for a smoother geometric transition at the LE seam. Although this modification had a negligible effect
on aerodynamic performance.

Building upon the polynomial regression model by Watchorn [50], the present approach introduces
significant improvements in both model performance and reliability. The dataset was expanded from
256 to 126,500 CFD simulations1, covering a broader range of Reynolds numbers, Re = 1×106, 5×106,
and 2×107. This led to an overall regression accuracy improvement, with the mean R2 increasing from
0.945 in Watchorn’s results to 0.988 using the extra trees ML model. Although RMSE is sensitive to the
scale of the output variable, it remains a useful metric for comparison. In this case, the RMSE values
reported by Watchorn were approximately 50% higher for both Cl and Cd compared to those obtained
with the extra trees model, indicating a noticeable improvement in accuracy, while the RMSE for Cm
was identical.

Model confidence was verified using randomised test configurations comprising 10.6% of the total
dataset. The resulting relative error σ was 10.5% for Re = 1 × 106, 9.4% for 5 × 106, and as low
as 7.68% for 2×107, indicating greater reliability at higher Reynolds numbers likely due to delayed stall.
In contrast, Watchorn’s results lack reported variance and confidence intervals, making it difficult to
assess the statistical reliability of the findings. Furthermore, a k-nearest neighbours (kNN) model was
employed for Cp and Cf predictions, achieving good agreement with the randomised test data.

Despite these advancements, several areas for further improvement remain. Outlier detection and
initial profile filtering could be enhanced, for instance, by excluding cases with low η where κ > 2.5× t.
Additionally, the AoA distribution, though effective for Cl, showed limitations for Cd and Cm. A more
uniformly and densely distributed AoA range could help reduce the variance and improve regression
accuracy across all coefficients.

Future Perspective
The developed aerodynamic regression model offers a valuable opportunity to enhance existing FSI
frameworks. For structural modelling, incorporating more particle points along the struts and replacing
the current fixed load split with a dynamically derived distribution from the Ccp k-nearest neighbours
model or from xcp obtained with Cl and Cm could significantly improve accuracy. Increasing spanwise
resolution guided by predicted Cp values would also better align with the VSM model and reduce cou-
pling errors.

On the aerodynamic side, replacing traditional polar lookup tables or less accurate polynomial regres-
sion models with an ML regression model trained across a wide range of angles of attack, Reynolds
numbers, and profile parameters would enable more accurate force predictions per segment. This
approach would align aerodynamic force estimation more closely with 3D CFD results and improve
adaptability to various kite configurations.

Overall, these improvements point to a robust path forward for applying the regression model in more
advanced, data-driven FSI simulations.

1The source code for the CFD simulations, figure generation, and prediction models is available on GitHub: https://github.
com/awegroup/Pointwise-Openfoam-toolchain. The CFD simulation dataset used to train the ML model is archived on Zen-
odo: https://doi.org/10.5281/zenodo.15593140.

https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://github.com/awegroup/Pointwise-Openfoam-toolchain
https://doi.org/10.5281/zenodo.15593140
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