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Abstract

The cut-set ∂V in a graph is defined as the set of all links between a set of nodes V and all other

nodes in that graph. Finding bounds for the size of a cut-set |∂V| is an important problem, and is

related to mixing times, connectedness and spreading processes on networks. A standard way to

bound the number of links in a cut-set |∂V| relies on Laplacian eigenvalues, which approximate the

largest and smallest possible cut-sets for a given size of the set V. In this article, we extend the

standard spectral approximations by including information about the Laplacian eigenvectors. This

additional information leads to provably tighter bounds compared to the standard spectral bounds.

We apply our new method to find improved spectral bounds for the well-known Cheeger constant,

the Max Cut problem and the expander mixing lemma.We also apply our bounds to study cut

sizes in the hypercube graph, and describe an application related to the spreading of epidemics on

networks. We further illustrate the performance of our new bounds using simulations, revealing

that a significant improvement over the standard bounds is possible.

Keywords: Graph cut, Laplacian matrix, Spectral graph theory, Cheeger inequality, Network epi-

demics

AMS subject classifications: 05C50, 68R10

Acknowledgements: Not applicable

1 Introduction

In spectral graph theory [22], the eigenvalues and eigenvectors of matrix representations of graphs are

studied and related to properties of the graph. This spectral methodology often enables a very concise

characterization of a graph by relating complex combinatorial graph properties to simple expressions

involving the graphs’ eigenvalues. While other methods may provide tight algorithmic approximations

to such combinatorial problems, for instance the famous Arora-Rao-Vazirani algorithm for finding

sparse cuts [4], the added value of the spectral approach is that it provides analytical relations and
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bounds in terms of the graphs’ spectral properties rather than numerical or algorithmic solutions.

The combinatorial property of interest in this work is related to the number of links between disjoint

sets of nodes in a graph. If we select two such sets, then the cut-set is defined as the set of all links

that connect nodes from one set to nodes from the other set. The number of links in the cut-set is then

called the cut size. Given the number of nodes in each subset, one is often interested in the smallest

and largest possible value of the cut size. Here, we propose new spectral bounds for the cut size.

We start from the standard spectral approach, which we refer to as the standard relaxation method

(SR), which yields spectral bounds by relaxing the combinatorial optimization problem of finding the

smallest and largest cut-sets. By considering additional constraints based on Laplacian eigenvectors,

our constrained relaxation method (CR) leads to a tighter relaxation of the combinatorial optimization

problem, and tighter bounds on the cut size. While the SR bounds contain limited spectral information

about the graph — in fact, only the largest or second-smallest eigenvalue of the Laplacian of the graph

— the CR bounds include a larger number of eigenvalues, and additionally, some properties of the

Laplacian eigenvectors. To illustrate the applicability of our new bounds, we relate the cut size to

three well-studied problems in graph theory: the Cheeger inequalities, the Max Cut problem, and the

expander mixing lemma [3],[14],[17, Lemma 2.5]. Numerical simulations of the new (CR) and existing

(SR) bounds further illustrate the potential of our constrained relaxation approach. Finally, we apply

our bounds to study cut sizes in the hypercube graph, and describe how bounding the cut size plays

an important role in the study of epidemics on networks, where the cut size relates to the spreading

velocity of a disease over a network [24].

In Section 2, we introduce some basic definitions from spectral graph theory and formally define the

cut size. In Section 3, we derive the new cut size bounds starting from the definition of the largest

and smallest cut size and the standard relaxation. We then compare all bounds, which results in a

hierarchy of bounds. Section 4 describes the application of our constrained relaxation method to the

Cheeger inequality, the Max Cut problem, the expander mixing lemma, cuts in the hypercube graph

and epidemics on graphs. Finally, Section 5 concludes and summarizes the results.

2 Preliminaries

2.1 Graphs and the Laplacian matrix

We consider a connected and unweighted graph G(N ,L) without self-loops, where N is the set of N

nodes and L the set of L links. The structure of any such graph can be represented by a symmetric

N ×N Laplacian matrix Q with elements:

Qij =


di if i = j

−1 if (i, j) ∈ L

0 otherwise

Here, the degree di is the number of nodes connected to node i, and (i, j) ∈ L represents the condition

that there is a link between node i and node j. The quadratic form xTQx, for some vector x ∈ RN ,
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can be written as a sum over the graph links:

xTQx =
∑

(i,j)∈L

(xi − xj)2 (1)

Furthermore, since the Laplacian matrix Q is a real and symmetric matrix, its eigendecomposition is

[22]:

Q =
N∑
k=1

µkzkz
T
k ,

where µk is the kth real eigenvalue and zk the corresponding eigenvector. Equation (1) shows that the

Laplacian matrix is positive semi-definite and, additionally, a basic result from spectral graph theory

states that the multiplicity of the zero eigenvalue equals the number of connected components [22,

art. 80]. Since we are considering connected graphs, we can thus always define the ordered sequence

of eigenvalues µ1 ≥ µ2 ≥ · · · > µN = 0. From the definition of the Laplacian matrix Q, we find that

the eigenvector corresponding to the zero eigenvalue µN = 0 equals zN = u√
N

, where u = [1, 1, . . . , 1]T

is the all-one vector. Furthermore, as the Laplacian is real and symmetric, we know that the set of

all eigenvectors {z1, z2, . . . , zN} forms an orthonormal basis of RN . In other words, we know that

zTi zj = δij , where δij is the Kronecker delta, which is equal to δij = 1 if i = j, and δij = 0 otherwise.

An important consequence of this orthonormality property is Plancherel’s theorem:

N∑
k=1

(zTk x)2 = xTx ∀x ∈ RN . (2)

2.2 Cut size: definition, quadratic form and constraints

Definition 1 (Cut-set) For two non-empty, disjoint node subsets V,S ⊂ N of a graph, the cut-set

C(V,S) is the set of all links that connect nodes in V to nodes in S. In other words:

C(V,S) = {(i, j) ∈ L | i ∈ V, j ∈ S}

For a subset V and its complement V, this cut-set equals the edge boundary ∂V of the set V:

∂V = C(V,V)

In the remainder of this article, we will work with the edge boundary ∂V, which is invariant when

V and its complement V are interchanged. The number of links in the edge boundary ∂V is called

the cut size and is denoted by |∂V|. The number of nodes in V will be denoted by V = |V| and the

fraction of nodes in V by v = V
N . Appendix E extends the results for ∂V to C(V,S) in context of the

expander mixing lemma, illustrating how the derivations and results for ∂V can be generalized.

The ability to find spectral bounds for the cut size follows from its algebraic representation as a

quadratic form:

Definition 2 (Quadratic and Spectral Form) The cut size |∂V| of a set V in a graph with Lapla-

cian matrix Q can be written as:

|∂V| = wT
VQwV =

N−1∑
k=1

(wT
V zk)2µk, (3)
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where wV ∈ {0, 1}N is the zero-one partition indicator vector specifying the nodes in V by (wV)i = 1

if i ∈ V, and (wV)i = 0 otherwise.

The quadratic form for the cut size can be rewritten with (1) as

wT
VQwV =

∑
(i,j)∈L

((wV)i − (wV)j)
2 ,

where the sum in the right-hand side runs over all links, and only links in the cut-set contribute a

“+1” to the sum. Furthermore, based on Plancherel’s theorem and on the specific form of wV as a

zero-one vector, we show in Appendix A that the projections wT
V zk obey the following contraints:

Property 1 (Spectral Constraints) For any vector wV representing a subset of V nodes, the pro-

jections wT
V zk on the Laplacian eigenvectors are constrained by:

N−1∑
k=1

(wT
V zk)2 = Nv(1− v) (4a)

(wT
V zk)2 ≤ s2

k(v), (4b)

where we introduce

s2
k(v) := max


(

V∑
i=1

(
z↓k

)
i

)2

,

(
N−V∑
i=1

(
z↓k

)
i

)2
 , (5)

where z↓k is the vector zk with entries ordered by decreasing value, such that
(
z↓k

)
1
≥
(
z↓k

)
2
≥ · · · ≥(

z↓k

)
N

.

Property (4a) follows from Plancherel’s theorem applied to the partition indicator vector wV and the

eigenvectors of Q. Property (4b) follows from the fact that wV is a zero-one vector with exactly V

non-zero elements.

3 Deriving the constrained relaxation bounds

Our main result is the formulation of the constrained relaxation bounds in Theorem 2 and the hier-

archy of bounds in Theorem 3, which proves that these new bounds are at least as tight the standard

bounds.

Assuming that a graph G(N ,L) is given and its eigendecomposition is either known or can be calcu-

lated, we propose a new upper-bound on the cut size |∂V|. First, we discuss the exact characterization

of the cut size range (EX), then formulate the standard spectral approximation approach (SR) and

finally discuss our constrained relaxation approach (CR), which improves these standard bounds.

3.1 The Exact Method

The tightest characterization for the range of the cut size |∂V| for a given size of the set V is:

Definition 3 (Exact Cut Size Bounds) The cut size between a subset V? of V nodes and its com-

plement is bounded by:

min
V⊂N
|V|=V

|∂V| ≤ |∂V?| ≤ max
V⊂N
|V|=V

|∂V|. (6)
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The lower and upper-bound are further abbreviated by θE(v) and ΘE(v), respectively, where v = V
N .

While (6) is an explicit description for the tightest possible cut size range, finding the maximum and

minimum over all possible sets V of size V is NP-hard1 [17, Sec. 2.4],[6],[18], which motivates the

pursuit to approximate the cut size bounds instead.

3.2 The Standard Relaxation Method

The standard relaxation method (SR) addresses the combinatorial difficulty of finding θE and ΘE by

writing the optimization objective in a spectral form, and by subsequently relaxing the optimization

domain.

First, using the spectral form of the cut size (3), the exact upper-bound (6) can be written as2:

ΘE(v) = max
V⊂N
|V|=V

|∂V| = max
wV∈{0,1}N
uTwV=V

N−1∑
k=1

(zTk wV)2µk (7)

Next, the combinatorial domain is relaxed from the zero-one partition indicator vector wV to a real

vector x, taking property (4a) into account:{
wV ∈ {0, 1}N

∣∣∣∣ N∑
k=1

(wV)k = V

}
⊂
{
x ∈ RN

∣∣∣∣N−1∑
k=1

(zTk x)2 = Nv(1− v)

}
(SR relaxation)

Finally, after denoting the projection of x on the kth Laplacian eigenvector by yk = (zTk x)2 and

rewriting the sum using the all-one vector u, the SR optimization problem follows as:

Problem 1 (SR Problem)

maximize
y∈RN−1

N−1∑
k=1

ykµk

subject to 0 ≤ yk,

uT y = Nv(1− v).

(8)

This optimization problem is solved by the vector y?, with its first entry equal to (y?)1 = Nv(1− v)

and all other entries equal to zero, leading to the SR bounds:

Proposition 1 (SR Bounds) The cut size between a subset V of V nodes and its complement is

bounded by:

θS(v) ≤ |∂V| ≤ ΘS(v), (9)

where the lower and upper-bound are defined as{
θS(v) = Nv(1− v)µN−1

ΘS(v) = Nv(1− v)µ1

(10)

Since the SR bounds (9) solve the relaxed optimization problem (8), they are necessarily less tight

than the exact bounds, which means that ΘE(v) ≤ ΘS(v) holds for all v.

1The problem maxV |∂V| is NP-hard (see also Section 4.2) and can be rewritten as maxV maxV,|V|=V |∂V|, which

implies that maxV,|V|=V |∂V| is NP-hard for general V .
2We confine our derivation to the upper-bound, but the results for the lower-bound follow in direct analogy by

replacing the matrix Q with eigenvalues µi and eigenvectors zi by the matrix Q̂ with eigenvalues (−µi) and eigenvectors

zi.
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3.3 The Constrained Relaxation Method

In order to improve the bounds obtained by the standard relaxation method, we further constrain the

relaxed optimization domain. Starting from the exact formulation of the cut size upper-bound (7),

the zero-one partition indicator vector wV is relaxed to a real vector x taking both property (4a) and

property (4b) into account:{
wV ∈ {0, 1}N

∣∣∣∣ N∑
k=1

(wV)k = V

}
⊂
{
x ∈ RN

∣∣∣∣N−1∑
k=1

(zTk x)2 = Nv(1− v), (zTk x)2 ≤ s2
k(v)

}
(CR relaxation)

Relying again on the notation yk = (zTk x)2, the relaxed problem can be written as:

maximize
y∈RN−1

N−1∑
k=1

ykµk

subject to 0 ≤ yk ≤ s2
k(v),

uT y = Nv(1− v).

(11)

By explicitly incorporating the equality constraint, variable yN−1 can be eliminated as yN−1 = Nv(1−
v)−

∑N−2
k=1 yk. The problem can then be rewritten as:

Problem 2 (CR? Problem)

maximize
y∈RN−2

N−2∑
k=1

yk(µk − µN−1) +Nv(1− v)µN−1

subject to 0 ≤ yk ≤ s2
k(v),

0 ≤ Nv(1− v)− uT y ≤ s2
N−1(v).

(12)

Since the CR? problem is a linear program, it can be solved efficiently in polynomial time, yielding

numerical solutions θC?(v) and ΘC?(v) for the cut size lower and upper-bound, respectively. In order

to find closed-form bounds, we introduce further approximations.

We derive a set of bounds parametrized by K ∈ {1, 2, . . . , N}, by upper-bounding the objective

function of (11). For any K, the eigenvalue order dictates that µk ≤ µK for all k ≥ K, and thus that∑N−1
k=1 ykµk ≤

∑K−1
k=1 ykµk +µK

∑N−1
k=K yk. Now, from property (4a), we have

∑N−1
k=K yk = Nv(1− v)−∑K−1

k=1 yk, by which the objective function of (11) can be upper-bounded by:

N−1∑
k=1

ykµk ≤
K−1∑
k=1

yk(µk − µK) +Nv(1− v)µK , (13)

for y ∈ RN−1 subject to the constraints in (11). Introducing the approximate objective function (13)

for general values of K in problem (11) and translating the constraints leads to:

Problem 3 (CR-K Problem)

maximize
y∈RK−1

K−1∑
k=1

yk(µk − µK) +Nv(1− v)µK

subject to 0 ≤ yk ≤ s2
k(v),

0 ≤ Nv(1− v)− uT y ≤
K−1∑
k=1

s2
N−k(v).

(14)
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We will show that there always exists some K (see later: this corresponds to K = Ku(v) or K = Kl(v))

for which the second inequality constraint in (14) follows from the first inequality constraint. For this

K, the exact solution y? can be found, which has elements (y?)k = s2
k(v). In Appendix B, this solution

and approximate solutions for other values of K are derived, leading to the following bounds:

Theorem 2 (CR-K Bounds) The cut size between a subset V of V nodes and its complement is

bounded by:

θC(v,K) ≤ |∂V| ≤ ΘC(v,K) for all 1 ≤ K ≤ N (15)

where the lower and upper-bound are defined asθC(v,K) =
∑K−1

k=1 s2
k′(v)(µk′ − µK′) +Nv(1− v)µK′

ΘC(v,K) =
∑K−1

k=1 s2
k(v)(µk − µK) +Nv(1− v)µK

(16)

with k′ = N − k and K ′ = N −K.

3.4 Comparison between bounds

When comparing the constrained relaxation bounds for different values of the parameter K, certain

values of K are “special”. In particular, the values Ku(v) and Kl(v), defined asKu(v) = max
{

1 ≤ K ≤ N
∣∣∑K−1

k=1 s2
k(v) ≤ Nv(1− v)

}
Kl(v) = max

{
1 ≤ K ≤ N

∣∣∑K−1
k=1 s2

k′(v) ≤ Nv(1− v)
}
,

(17)

are important since the CR-K bounds (15) are tightest at these values. This optimality of Ku(v) and

Kl(v) is derived in Appendix C in context of a hierarchy of bounds:

Theorem 3 (Hierarchy of Bounds) The cut size bounds are related by

|∂V| ≤ ΘE(v)︸ ︷︷ ︸
NP−hard

≤ ΘC?(v)︸ ︷︷ ︸
Lin.Prog.

≤ ΘC(v,Ku) ≤ ΘC(v,K)︸ ︷︷ ︸
new bounds

≤ ΘS(v) ≡ ΘC(v, 1)︸ ︷︷ ︸
standard bound

(18)

for all K ≤ Ku and similarly for the lower bounds.

Theorem 3 thus states that amongst all CR-K bounds, the bound with K = Ku(v) according to (17)

is the tightest bound. Since the SR bound corresponds to the CR-K bound with K = 1, this implies

that the CR-K bounds are at least as tight as the SR bound, and that the constrained relaxation

method can yield strictly tighter bounds only if Ku(v) > 1 holds. More specifically, and taking the

multiplicity of eigenvalues into account3, the following condition can be formulated:

Corollary 1 The constrained relaxation method leads to tighter upper-bounds than the standard re-

laxation method, if and only if Ku(v) is strictly larger than the multiplicity of the largest eigenvalue,

in other words if Ku(v) > mult(µ1) holds. The same result holds for the lower-bound, with condition

Kl(v) > mult(µN−1).

3When an eigenvalue µk has multiplicity higher than one, say multiplicity m, then the corresponding eigenvectors

Zk = {zk1, zk2, . . . , zkm} and thus also s2k1, s
2
k2, . . . , s

2
km are not uniquely defined. For any particular set of m vectors

that spans Zk all derivations still hold, and in some cases it might be desirable to consider specific choices of these m

vectors.
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Interestingly, a similar condition can be used as a criterion to determine in which graphs the SR

bounds are achieved for some set V?: if Kl(v) = 1 for some v, then the set V? consisting of the V

nodes with the largest elements of zN−1 corresponds to a cut size |∂V?| which equals the SR lower-

bound.An example where the condition of Corollary 1 can be invoked to find when the constrained

spectral bounds and standard spectral bounds coincide, is the hypercube graph (see Section 4.4).

To further illustrate the discrepancy between the SR and the CR-K bounds, Figures 1a and 1b show

numerical simulations of the bounds for a randomly generated Barabási-Albert graph and a randomly

generated Erdős-Rényi graph4. These simulations indicate that the improvements can be considerable,

and hint towards “degree heterogeneity” as a property that leads to large differences between the SR

and the CR methodology.

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

0 100 200 300 400 500

2

2.05

2.1

(a) Cut size bounds for Barabási-Albert graph.

0 50 100 150 200 250 300 350 400 450 500

0
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15

20

25

0 100 200 300 400 500

2

3

4

(b) Cut size bounds for Erdős-Rényi graph.

Figure 1: Simulation of the SR and CR bounds for a Barabási-Albert and Erdős-Rényi random graph

on N = 103 nodes. The bounds are normalized to ΘS(v)
Nv(1−v) and ΘC(v)

Nv(1−v) , such that the standard bounds

correspond to constant bounds µ1 and µN−1. The lower bounds are magnified in the inset.

4 Applications of the improved bound

4.1 The Cheeger Constant

In 1969, Jeff Cheeger [7] proved a relation between the smallest non-zero eigenvalue of the Laplace

operator on a Riemannian manifold M , and a geometric characterization h̃(M) of that manifold.

Later, this inspired others to define the Cheeger constant for graphs:

4The Barabási-Albert graph was generated starting from a clique of 10 nodes and by adding degree four nodes that

link to the existing nodes with probability proportional to their degree. For the Erdős-Rényi random graph, link density

p = 4pc was chosen, with pc = log(N)
N

= 3
1000

the connectedness threshold for p.
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Definition 4 The Cheeger constant h(G) of a graph is defined as

h(G) = min
V⊂N
|V|≤N

2

|∂V|
|V|

(19)

In other words, the Cheeger constant, also called the edge expansion or the isoperimetric constant, is

the smallest number h(G) such that each partition of V nodes has a cut size of at least V h(G) links.

By this description, it is clear that the Cheeger constant is closely related to how well-connected a

graph is. Similar to the spectral result of Jeff Cheeger for Riemannian manifolds, the Cheeger constant

(19) for graphs can also be bounded by spectral properties of the Laplacian matrix Q [12, 3, 1, 19]:

Theorem 4 The Cheeger constant h(G) of a graph can be bounded by:

µN−1

2
≤ h(G) ≤

√
µN−1(2dmax − µN−1), (20)

where dmax is the largest degree.

Invoking the CR-K bounds (15) for the cut size, it is possible to find tighter lower-bounds for the

Cheeger constant:

Corollary 2 (Tighter Cheeger lower-bound) The Cheeger constant h(G) of a graph is lower-

bounded by
µN−1

2
≤ min

v
{θC(v,Kl(v))} ≤ h(G) (21)

The standard Cheeger inequality (20) is an important result in spectral graph theory, that highlights

the relation between second-smallest Laplacian eigenvalue µN−1 and the connectedness of a graph.

This fact was discovered earlier by Fiedler [13, 9], who coined the appropriate name algebraic con-

nectivity for µN−1. The constrained relaxation method and resulting tighter Cheeger lower-bound

(21) provide additional information about the connectivity of a graph in terms of the other eigen-

values. Assume for simplicity that Kl(v) > 1 for all v, such that we can look at θC(v, 2) as a lower

bound. The standard Cheeger inequality is based on minv {(1− v)µN−1} ≤ h(G), which relates µN−1

to the connectedness of a graph. The constrained relaxation (limited to K = 2) is then based on

minv

{
(1− v)µN−2 + (µN−2 − µN−1)

s2N−2(v)

V

}
≤ h(G). This inequality shows that µN−2 is related to

the graph connectedness in a similar way as the algebraic connectivity µN−1, and that a large eigen-

value gap (µN−2−µN−1) contributes to a higher connectedness. The CR-K bounds for higher values of

K thus provide relations between the K smallest Laplacian eigenvalues and the graph’s connectedness.

4.2 The Max Cut problem

Finding the node subset V? with the largest cut size |∂V?| in a graph was one of the original 21 NP-

hard problems5 identified by Karp [18]. This problem is commonly known as the Max Cut problem,

and several approaches were developed to approximate the largest cut size, or to find subsets with

5More precisely, the following decision problem was shown to be NP-hard: “given a graph G and a positive integer k,

is there a cut-set in G of at least k links?” Consequently, finding the largest cut size or the subset V? must be NP-hard

as well.
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large cut sizes. The spectral relaxation, corresponding to what we have called the SR methodology,

was first invoked on the max cut problem by Mohar and Poljak [20], yielding the bound

max
V⊂N

|∂V| ≤ N

4
µ1. (22)

It was shown that (22) is tight for a number of graph families, such as complete graphs, regular

bipartite graphs and others [20]. Taking into account additional constraints, the CR methodology can

be invoked to yield the new bound

max
V⊂N

|∂V| ≤ max
v

ΘC(v,Ku) (23)

with the CR bound θC(v,Ku) as in Theorem 2. By the hierarchy of bounds (18), the CR max cut

bound (23) is tighter than the SR max cut bound (22). A different eigenvalue-based bound was

formulated by Delorme and Poljak [10], given by the optimization problem

Theorem 5 (Delorme-Poljak max cut bound) The largest cut size in a graph is bounded by

max
V⊂N

|∂V| ≤ N

4
min
c∈RN

cTu=0

µmax (Q+ diag(c)) , (24)

with µmax(M) the largest eigenvalue of matrix M .

This spectral optimization problem (24) is solvable in polynomial time, and is tighter than the SR

max cut bound (22), as (24) reduces to (22) for c = 0. In 1995, Goemans and Williamson [14] relaxed

the max cut problem to a semidefinite program:

Theorem 6 (Goemans-Williamson max cut bound) The largest cut size in a graph is bounded

by

max
V⊂N

|∂V| ≤ 1

4
max

Y ∈PSD
(Y )ii=1 ∀i

tr(QY ), (25)

where Y ∈ PSD means that Y is a real, symmetric matrix with non-negative eigenvalues (positive

semi-definite).

The Goemans-Williamson semidefinite optimization problem is the dual problem of the spectral opti-

mization of Delorme and Poljak (see [14]), which means that (25) is a tighter max cut bound than (24)

(with equality possible), and consequently is tighter than the SR max cut bound (22). The approach

of Goemans and Williamson moreover leads to an elegant randomized construction of a set VGW ,

whose average cut size is guaranteed to be within a constant factor α ≈ 0.878 of the max cut value,

i.e. E (|∂VGW |) ≥ αmaxV⊂N |∂V| (see [14]).

Figure 2 below compares the different max cut bounds (22) and (23) to the GW max cut bound (25)

for a number of Erdős-Rényi and Barabási-Albert random graphs6 of increasing size N . The SDP

problem in (25) is solved using CVX, a package for specifying and solving convex programs [15]. The

positive relative differences GW−SR
GW and GW−CR

GW which are plotted in Figure 2 show that the GW

6The Barabási-Albert random graphs are generated starting from a clique of 10 nodes and adding degree four nodes

with probability proportional to the existing degrees. The Erdős-Rényi random graphs have link density equal to p = 4pc

with pc = log(N)
N

, the connectedness threshold for p.
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bound (25) clearly outperforms the spectral bounds (22),(23) for these random graphs. The relative

difference for both SR and CR max cut bounds seems to be much smaller for Erdős-Rényi random

graphs than for Barabási-Albert random graphs. However, the improvement of the CR bound over the

SR bound is significantly larger for Barabási-Albert random graphs compared to the improvement for

Erdős-Rényi random graphs, which was also the case in Figure 1a. While the Goemans-Williamson

bound seems to generally give a tighter bound than the spectral bounds, it yields a numerical solution

rather than a closed-form expression in terms of properties of the Laplacian Q, such as Laplacian

eigenvalues and eigenvectors. Hence, we believe that the interpretable expression of our constrained

relaxation bound (23) has complementary value to the numerical solution of the GW bound, even if

the latter might generally be tighter.
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Figure 2: Comparison between the standard (spectral) relaxation bounds (SR) (22), the constrained

(spectral) relaxation bounds (CR) (23) and the Goemans-Williamson bound (GW) (25) for the largest

cut size of a graph. The relative differences SR−GW
GW and CR−GW

GW are calculated for Erdős-Rényi and

Barabási-Albert random graphs of size N = 50, 70, 90, . . . , 800, and for each size 10 random graphs

are sampled.

4.3 The Expander Mixing Lemma

The expander mixing lemma (EML) is a basic result in the study of expander graphs [2, 17], which

relates the expansion properties of a graph to the Laplacian spectrum. In context of the graph

isoperimetric problem [5, 8], the same inequality appears in a geometric context. While generally

stated in terms of the cut-set C(V,S) between two disjoint sets V and S (see Appendix E), we focus

here on the cut-set ∂V corresponding to S = V. The expander mixing lemma is then stated as:

Lemma 1 (Expander Mixing Lemma) In a graph G(N ,L), the difference between the cut size

|∂V| for any subset V of V nodes, and the average cut size 2Lv(1− v) is bounded by∣∣|∂V| − 2Lv(1− v)
∣∣ ≤ λNv(1− v),

11



with λ = max
{
|µN−1 − 2L

N |, |µ1 − 2L
N |
}

.

The expander mixing lemma quantifies how far the cut size of a set with V nodes can possibly diverge

from 2Lv(1 − v), which is the expected cut size in a random graph with the same “link density” or

average degree as G. Hence, rather than bounding the cut size range, EML bounds the variation of

this range around a central value. In Appendix D, we show that the CR-K bounds naturally translate

to the EML bounds:

Corollary 3 (Tighter Expander Mixing Lemma) In a graph G(N ,L), the difference between the

cut size |∂V| for any subset V of V nodes, and the average cut size 2Lv(1− v) is bounded by∣∣|∂V| − 2Lv(1− v)
∣∣ ≤ max

{∣∣∣θ̃C(v,Kl(v))
∣∣∣ , ∣∣∣Θ̃C(v,Ku(v))

∣∣∣} ≤ λNv(1− v),

where Θ̃C(v,K) and θ̃C(v,K) are the CR-K bounds corresponding to the matrix Q̃ = Q− 2L
N (I− uuT

N ).

The proof of Corollary 3 in Appendix D shows that the standard EML inequality corresponds to

the least tight bound in the bound hierarchy of Theorem 3, for bounds calculated from the matrix

Q̃ = Q − 2L
N (I − uuT

N ). Appendix E further generalizes the result to cut-sets between any pair of

disjoint subsets.

4.4 Spectral lower bounds in the hypercube graph Hd

The hypercube graph is a graph where cuts and cut sizes have been thoroughly studied. The d-

dimensional hypercube graph is the graph Hd = G(N ,L) with N = 2d nodes, and with links L deter-

mined by identifying each node n ∈ N with a unique d-length bit string b(n) ∈ {0, 1}d, and connecting

two nodes with a link if their bit strings differ in only one entry, i.e. L = {(i, j) | ‖b(i)− b(j)‖1 = 1}.
In 1964, Harper [16] proved the following result for the smallest cut size in the hypercube graph:

Theorem 7 In the hypercube graph Hd the smallest cut size for a set of size V is achieved by the set

of nodes V? containing the nodes with the V smallest bit strings, in other words

min
V⊂N
|V|=V

|∂V| = |∂V?| where V? =

{
n ∈ N

∣∣∣∣ d∑
i=1

(b(n))i 2i−1 ≤ V − 1

}
, (26)

where (b(n))i is the ith bit of the bit string b(n).

Harper’s result (26) does not give an explicit numerical result in terms of graph properties, and in

practice the following approximate bound can be used [17, Example 4.2.1]:

min
V⊂N
|V|=V

|∂V| ≥ V log2

(
N

V

)
, (27)

which is tight when V = 2` for some integer `. As the Laplacian eigenvalues and eigenvectors of the

hypercube graph Hd are known, we can compare (26) and (27) to the CR bounds. The hypercube

graph Hd has Laplacian eigenvalues µk = 2m with multiplicity
(
d
m

)
for 0 ≤ m ≤ d, and except for the

12



eigenvector zN = u√
N

, all eigenvectors zk contain exactly 2d−1 entries equal to 1√
2d

and 2d−1 entries

equal to −1√
2d

. As a result, the ordered eigenvectors obey
(
z↓k

)
i

= 1√
2d

for all 1 ≤ i ≤ 2d−1(
z↓k

)
i

= −1√
2d

for all 2d−1 + 1 ≤ i ≤ 2d,

such that s2
k(v) = V 2

N is independent of k. Since s2
k(v) is constant, we find that Kl(v) = max

{
1 ≤

K ≤ N

∣∣∣∣ ∑K
k=1

V 2

N ≤
V (N−V )

N

}
=
⌊
v−1
⌋
. By Corollary 1 and the fact that mult(µN−1) = d, it thus

follows that the CR bound can only be tighter than the SR bound when
⌊
v−1
⌋
≥ d. More specifically,

the CR bound will always equal the SR bound when v ≥ d−1. Figure 3, comparing lower bounds for

the cut size in the Hypercube graph Hd, shows that the CR bound is better than the SR bound for

small cuts, i.e. when v < d−1, but that both the SR and CR bounds are significantly less tight than

Harper’s bound (26) and its approximation (27). However, this difference can be expected as (26) and

(27) are tailored to the hypercube Hd specifically, while the CR bound is valid for general graphs.

4.5 Bounding the spread of epidemics and mean-field accuracy

In epidemics on networks, a disease spreads through the network, infecting new nodes via links between

infected nodes and healthy nodes [21]. If all infected nodes at some time t are grouped in the set V(t),

and all healthy nodes in the complementary set V(t), then the cut-set ∂V(t) is the set of all “infectious

links” at that time, i.e. links between healthy and infected nodes over which the disease can spread.

By modeling the spreading dynamics as independent Poisson processes, the epidemic process satisfies

the Markov property [23] and the probability distribution PV?(t) = Pr[V(t) = V?] can be solved from

the Kolmogorov equations. However, since this probability distribution is defined over all 2N possible

states V? ⊆ N , several methods have been developed to approximate the exact description. In [24], a

compact differential equation for the average number of infected nodes in the SIS epidemic model is

proposed:
dEV(t)[|V|]

dt
= −EV(t)[|V|] + τEV(t)[|∂V|] (28)

where τ is the effective infection rate of the disease and EV(t)[.] the expected value with respect to

PV?(t). Since the second term contains the cut size, equation (28) is not self-contained and cannot be

solved for EV(t)[|V(t)|]. However, using the CR-K bounds for |∂V|, we can write:

−EV(t)[|V|] + τ min
v
{θC(v,Kl(v))} ≤

dEV(t)[|V|]
dt

≤ −EV(t)[|V|] + τ max
v
{ΘC(v,Ku(v))}

which shows how the best and worst-case SIS spreading behavior of a disease can be bounded, based

on spectral information of the network over which the epidemic spreads.

More detailed approximations exist, ranging from approaches that incorporate the full topology of

the graph, to mean-field approaches that coarse-grain the topological information. This variety of

approaches is unified in [11] from the perspective of cut-set approximations. Specifically, the class of

mean-field methods (MF) rely on approximations of the form:

E{V(t)||V|=V } [|∂V|] MF approx.−−−−−−−→ 2Lv(1− v) (29)
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Figure 3: Comparison between different bounds for the smallest cut size in the hypercube graph Hd

of dimension d. All bounds are divided by Nv(1 − v) for normalization. This comparison indicates

that the tightest bounds are, respectively: Harper’s bound (26), the approximate lower bound (27),

the CR bound and finally the SR bound. The black star indicates v = d−1 from which point the CR

bound is guaranteed to equal the SR bound.

where E{V(t)||V|=V }[.] is the expectation with respect to the conditional probability distribution Pr[V(t) =

V?
∣∣|V(t)| = V ], and similar results were found for general cut-sets C(V,S). The main result in [11] was

to show that the topological mean-field approximation (29) can be bounded using the isoperimetric

inequality (equivalently, the expander mixing lemma). Since we provide tighter bounds for EML in

Corollary 3, these bounds for the MF accuracy are also improved:∣∣E{V(t)||V|=V } [|∂V|]− 2Lv(1− v)
∣∣ ≤ max

{∣∣∣θ̃C(v,Kl(v))
∣∣∣ , ∣∣∣Θ̃C(v,Ku(v))

∣∣∣}︸ ︷︷ ︸
CR-K bounds

≤ λv(1− v)︸ ︷︷ ︸
SR bounds [11]

,

where λ = max
{∣∣µN−1 − 2L

N

∣∣ , ∣∣µ1 − 2L
N

∣∣}.

5 Conclusion

We formulate new spectral bounds for the cut size |∂V| in general graphs. The bounds follow from

a convex relaxation of the combinatorial (EX) problem maxV |∂V| and, compared to the standard
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spectral relaxation approach (SR), additional constraints based on the Laplacian eigenvectors lead to

a tighter relaxation of the problem (CR). The new bounds that follow from this constrained relaxation

problem are given by Theorem 2, and as summarized in Theorem 3, these new bounds are at least as

tight as the existing spectral bounds. Corollary 1 additionally specifies the condition that determines

whether the CR bounds are strictly tighter than the SR bounds. The numerical results in Figures

1a-3 show that, indeed, the CR bounds are tighter than the SR bounds, and that the improvement

can be significant.

We furthermore apply the constrained relaxation method to a number of problems in spectral graph

theory. In particular, we show that the Cheeger inequality lower-bound, max cut bounds and the

expander mixing lemma and related graph isoperimetric inequality [17, 2] can be tightened using the

constrained relaxation method. Finally, the conceptual importance of the cut-set in epidemics on

networks is highlighted, and we show how our improved bounds provide a tighter characterization

of best and worst-case spreading behavior, as well as improved bounds for the error of mean-field

approximation methods.
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A Proof of Spectral Constraints

Proof of property (4a):

From Plancherel’s theorem applied to the Laplacian eigenvectors zk (2), we know that for any vector

x ∈ RN the relation
N∑
k=1

(zTk x)2 =
N∑
k=1

(xk)2

holds. For the partition indicator vector wV in particular, and using the fact that zN = u√
N

, this

yields:
N−1∑
k=1

(zTk wV)2 = Nv(1− v),

proving property (4a). �

Proof of property (4b):

Since the partition indicator vector wV is a zero-one vector, the projection wT
V zk can be written as

wT
V zk =

∑
i∈V

(zk)i.

In other words, the projection is a sum of V entries of eigenvector zk. This sum can be bounded by∑
i∈V−

(zk)i ≤ wT
V zk ≤

∑
i∈V+

(zk)i, (30)

where V+ is the subset ofN corresponding to the V nodes with the highest zk values, and V− the subset

with the V lowest zk values. Introducing the ordered vector z↓k, with
(
z↓k

)
1
≥
(
z↓k

)
2
≥ · · · ≥

(
z↓k

)
N

,

allows inequality (30) to be written as

N∑
i=N−V +1

(
z↓k

)
i
≤ wT

V zk ≤
V∑
i=1

(
z↓k

)
i
.

Since all eigenvectors zk, with k 6= N , are orthogonal to zN = u√
N

, which means that
∑N

i=1(zk)i = 0

holds, we can write

−
N−V∑
i=1

(
z↓k

)
i
≤ wT

V zk ≤
V∑
i=1

(
z↓k

)
i
.

Squaring leads to the inequality

(wT
V zk)2 ≤ max


(

V∑
i=1

(
z↓k

)
i

)2

,

(
N−V∑
i=1

(
z↓k

)
i

)2
 ,

which proves property (4b). �

B Derivation of Constrained Relaxation Bounds

Proof of Theorem 2:

From expression (3) and introducing the parameter K ∈ {1, 2, . . . , N}, we know that the cut size can
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be written as

|∂V| =
N∑
k=1

(wT
V zk)2µk =

K−1∑
k=1

(wT
V zk)2µk +

N−1∑
k=K

(wT
V zk)2µk,

where the empty sums
∑0

k=1 and
∑N−1

k=N are defined to be zero. By the ordering of the eigenvalues

µK ≥ µk holds for all k ≥ K. Replacing µk by µK in the second summation then yields the inequality:

|∂V| ≤
K−1∑
k=1

(wT
V zk)2µk + µK

N−1∑
k=K

(wT
V zk)2

Invoking property (4a) as
∑K−1

k=1 (wT
V zK)2 +

∑N−1
k=K(wT

V zK)2 = Nv(1− v) then leads to

|∂V| ≤
K−1∑
k=1

(wT
V zk)2(µk − µK) +Nv(1− v)µK .

Finally, invoking property (4b), we can further bound the cut-set size as:

|∂V| ≤
K−1∑
k=1

s2
k(v)(µk − µK) +Nv(1− v)µK for any 1 ≤ K ≤ N,

which proves that the CR-K bounds upper-bound the cut size. �

The lower-bound inequality follows similarly by replacing µk by −µk (turning maximization into

minimization) and subsequently ordering the eigenvalues according to decreasing values, which leads

to the index replacement k → k′ = N − k.

C Hierarchy of Bounds

We start by proving an additional Lemma, which relates the CR-K bounds for different values of K:

Lemma 2 The constrained relaxation upper-bounds for different values of K satisfyΘC(v,K1) ≥ ΘC(v,K2) for 1 ≤ K1 ≤ K2 ≤ Ku(v)

ΘC(v,K3) ≤ ΘC(v,K4) for Ku(v) ≤ K3 ≤ K4 ≤ N,

and similarly for the lower-bounds.

Proof of Lemma 2:

The difference between two consecutive bounds equals:

ΘC(v,K − 1)−ΘC(v,K) = (µK − µK−1)︸ ︷︷ ︸
≤0

(
K−1∑
k=1

s2
k(v)−Nv(1− v)

)
for 2 ≤ K ≤ N,

where the first factor is always negative or zero by the eigenvalue ordering. Hence, the sign of the

second factor determines which of the consecutive bounds is tighter:ΘC(v,K − 1) ≥ ΘC(v,K) if
∑K−1

k=1 s2
k(v) ≤ Nv(1− v)

ΘC(v,K − 1) ≤ ΘC(v,K) if
∑K−1

k=1 s2
k(v) ≥ Nv(1− v)
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from which Lemma 2 follows by definition of Ku(v) = max
{

1 ≤ K ≤ N
∣∣∑K−1

k=1 s2
k(v) ≤ Nv(1− v)

}
in (17), and by transitivity of “≤” and “≥”. �

In order to prove the hierarchy of bounds (18), we start by proving pairwise inequalities of the form

θ1 ≤ θ2 and θ2 ≤ θ3, which by transitivity of “≤” over the real numbers also proves θ1 ≤ θ2 ≤ θ3.

Proof of Theorem 3:

By definition, the exact bound satisfies:

|∂V| ≤ max
V⊂N
|V|=V

|∂V| = ΘE(v) (a)

Since the CR? bound is found by relaxing the exact optimization problem, the solution to the CR?

problem (12) is less tight than the exact bound:

ΘE(v) ≤ ΘC?(v) (b)

Next, the CR-K problem approximates the CR? problem by replacing µk>K by µK , which means that

for all K and for Ku(v) in particular, the inequality

ΘC?(v) ≤ ΘC(v,Ku(v)) (c)

must hold. From Lemma 2, it follows that K = Ku(v) achieves the tightest bound among all CR-K

bounds:

ΘC(v,Ku(v)) ≤ ΘC(v,K) for 1 ≤ K ≤ Ku(v) (d)

Finally, since the CR-K bound for K = 1 equals the SR bound, and invoking Lemma 2 leads to:

ΘC(v,K) ≤ ΘC(v, 1) ≡ ΘS(v) for 1 ≤ K ≤ Ku(v) (e)

By transitivity, the inequalities (a)-(e) then lead to

|∂V|
(a)

≤ ΘE(v)
(b)

≤ ΘC?(v)
(c)

≤ ΘC(v,Ku(v))
(d)

≤ ΘC(v,K)
(e)

≤ ΘS(v) ≡ ΘC(v, 1),

proving Theorem 3. �

D Proof of Tighter Expander Mixing Lemma

We prove that the tighter expander mixing lemma follows as a corollary from Theorem 2, by rewriting

the difference between the cut size |∂V| and the average cut size 2Lv(1− v).

Proof of Corollary 3:

Using the partition indicator vector wV , we can write the difference between the cut size |∂V| and the

average cut size 2Lv(1− v) is:

|∂V| − 2Lv(1− v) = wT
VQwV −

2L

N
wT
V

(
I − uuT

N

)
wV ,

with I the identity matrix. Since all Laplacian eigenvectors zk correspond to non-zero eigenvalues

µk 6= 0 satisfy zTk u = 0, and thus satisfy
∑N−1

k=1 zkz
T
k = I − uuT

N , this can be rewritten as:

|∂V| − 2Lv(1− v) = wT
V

(
N−1∑
k=1

zkz
T
k

(
µk −

2L

N

))
wV .
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Defining the matrix Q̃ =
∑N−1

k=1 zkz
T
k (µk − 2L

N ) leads to

|∂V| − 2Lv(1− v) = wT
V Q̃wV = |∂̃V|, (31)

where ∂̃V is the “cut-set” with respect to the matrix Q̃. While in general this matrix Q̃ is not a

Laplacian matrix (since µk − 2L
N can be negative for some k), the derivation of the CR-K bound still

works for the matrix Q̃, because Q̃ has a single zero eigenvalue corresponding to the eigenvector u√
N

.

Hence, we can bound the cut size |∂̃V| by the CR-K bounds Θ̃C(v,K), which means equation (31)

can be written as ∣∣∣θ̃C(v,K)
∣∣∣ ≤ |∂V| − 2Lv(1− v) ≤

∣∣∣Θ̃C(v,K)
∣∣∣ ,

which proves Corollary 3 by taking the absolute value and using the tightest bounds K = Ku(v) and

K = Kl(v) for the upper and lower-bound, respectively. �

E The General Expander Mixing Lemma

Here, we prove an improvement of the general expander mixing lemma which is based on the cut-set

C(V,S) between any pair of disjoint partitions [2, 17]:

Lemma 3 (General Expander Mixing Lemma) In a graph G(N ,L), the difference between the

average cut size 2Lsv and the cut size |C(V,S)| between two disjoint partitions V and S is bounded by∣∣|C(V,S)| − 2Lsv
∣∣ ≤ λN√v(1− v)s(1− s),

with λ = max{|µN−1 − 2L
N |, |µ1 − 2L

N |}, and s = |S|
N and v = |V|

N .

As we show further, it is possible to upper-bound the cut size |C(V,S)| using the cut sizes |∂V| and

|∂S|, which allows the general expander mixing lemma to be improved using the constrained relaxation

method:

Theorem 8 (Tighter Expander Mixing Lemma) In a graph G(N ,L), the difference between the

average cut size 2Lsv and the cut size |C(V,S)| between two disjoint partitions V and S is bounded by∣∣|C(V,S)| − 2Lsv
∣∣ ≤√Θ̂C(v,Ku(v))Θ̂C(s,Ku(s)) ≤ Nλ

√
v(1− v)s(1− s)

where Θ̂C(v,K) is the CR-K bound with respect to the matrix Q̂ =
∣∣∣Q− 2L

N (I − uuT

N )
∣∣∣.

Proof:

Using the zero-one partition indication vectors wV and wS with wT
Vu = Nv and wT

Su = Ns and the

fact that wT
VwS = 0, we have:∣∣|C(V,S)| − 2Lvs

∣∣ =

∣∣∣∣−wT
VQwS +

2L

N
wT
V

(
I − uuT

N

)
wS

∣∣∣∣ .
Since all eigenvectors of the Laplacian Q that correspond to non-zero eigenvalues satisfy zTk u = 0 and

thus satisfy
∑N−1

k=1 zkz
T
k = I − uuT

N , this can be written as:

∣∣|C(V,S)| − 2Lsv
∣∣ =

∣∣∣∣∣
N−1∑
k=1

(wT
V zk)(wT

S zk)(µk −
2L

N
)

∣∣∣∣∣ .
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Now we define µ̂k = |µi? − 2L
N | and ẑk = zi? , where i? is the index such that µ̂k is ordered according

to descending values. Invoking the Cauchy-Schwarz inequality then leads to:

∣∣|C(V,S)| − 2Lsv
∣∣ ≤

√√√√N−1∑
k=1

(wT
V ẑk)2µ̂k

N−1∑
i=1

(wT
S ẑk)2µ̂k.

If by ∂̂ we denote the “cut-set” with respect to the matrix Q̂ =
∑N−1

k=1 z̃kẑ
T
k µ̂k, then we can write:

∣∣|C(V,S)| − 2Lsv
∣∣ ≤√|∂̂V||∂̂S|.

By introducing the CR-K upper-bounds for |∂̂V| and |∂̂S| in this expression, we arrive at Corollary 3.

�
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