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Abstract

Across the world, countries are facing housing shortages and the Netherlands is no different. The
increasing demand for new housing exceeds the growth rate of the architecture, engineering, and
construction industry. Current solutions remain small in scale and therefore unsustainable. Multi-
family housing is the optimal typology to address the housing shortage but the industry cannot design
and build these projects fast enough. Automation can help. In 2016, Kevin Kelly [2016] reframed
the conversation about automation, by stating ”our most important mechanical inventions are not
machines that do what humans do better, but machines that can do things we can’t do at all.” Humans
cannot address the housing crisis alone, but automation through the application of deep learning
models can bring well-designed spaces to everyone.

Since the introduction of computers, architects have looked for ways to automate menial tasks. Some
researchers even imagine a future where the machine becomes a partner to architects and designers,
contributing to the design process. This ambition requires that the algorithms train themselves. Inno-
vations in the field of deep learning have made this possible by allowing algorithms to train themselves
through the use of artificial neural networks. When it comes to applying deep learning to generative
design tasks, however, there is little research. The studies that have been done generate geometry that
is small in size (64 x 64 x 64 voxels) and focuses on objects like chairs, not on buildings. 3D generative
adversarial networks show promise for generating building geometry. By automating design, it is pos-
sible to apply expert knowledge on good design to all projects so everyone has access to well-designed
buildings.

This research aims to develop the architecture for a generative adversarial network that produces
feasible building geometry. An important first step was identifying and pre-processing a data set
that could be used for this purpose. The data set is released with the publication of this thesis so
it can be used for further research. Through this thesis, the Improved 3D Wasserstein Generative
Adversarial Network architecture has also been developed and documented. The research found that
using a combination of Wasserstein loss with gradient penalty, Leaky ReLU activation functions in the
generator and the critic, and the RMS Prop optimizer results in an architecture with stable training and
outputs that are similar in size, shape, and proportion to the training data with minimal noise in the
output. Performance of 3D Wasserstein generative adversarial networks with these hyperparameters
was improved even further when using ten layers and a larger number of channels. The experiments
concluded that generative adversarial networks can be used to generate building geometry and can
be an area of continued research to improve generative design tools and support the automation of
architectural design.
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Definitions

architecture in the study of the built environment, architecture refers to the art or practice of designing
and constructing buildings.

architecture in the field of machine learning, architecture refers to the definition of the neural network
and includes its structure and hyperparameter settings.

building model (also 3D model(s)) in the study of the built environment, a model is a type of scaled
representation made to study aspects of an architectural design or to communicate design intent.
It can be digital or physical but in this thesis, it refers to three-dimensional digital representations.
Although frequently just called model, this thesis will refer to these models as ’building models’
or ’three-dimensional models’ to distinguish them from the term ’model’ used in the field of
machine learning.

classification in machine learning, the kind of model prediction in which a class label is anticipated
for a specific example of input data. An example is predicting if an email is spam or not spam.

critic in a generative adversarial network, the critic learns features of the data set through a convolu-
tional neural network and scores the realness or fakeness of the generator’s output through an
output of a scalar between −∞ and ∞.

data set a collection of information where each data point in the set contains information that a
computer can read.

discriminator in a generative adversarial network, the discriminator learns features of the data set
through a convolutional neural network and then tries to identify if the geometry created by
the generator is real or fake. Its goal is to maximize the objective loss function by correctly
categorizing the generator’s output.

fidelity describes the gap between what a model learns and the ground truth learned by humans.
High fidelity means there is a small gap between learned and ground truth.

generator in a generative adversarial network, the generator has an input of random noise and creates
an output of geometry within the geometry space. When paired with a discriminator or critic,
its goal is to minimize the objective loss function by ensuring the output is realistic and can fool
the discriminator or critic.

geometry space the three dimensional, voxel space that the generator outputs with the produced
geometry.

gradient of a function, the collection of all the function’s partial derivatives into a vector. It denotes
the direction of greatest change.

gradient descent an optimization algorithm which randomly initializes and then takes steps in the
direction opposite the gradient of the function. It is the most common method for training
machine learning models.
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Definitions

latent space an abstract multi-dimensional space that encodes a meaningful internal representation
of externally observed events. Similar samples are near each other in the latent space.

model in the field of machine learning, a model is a file that has been or can be trained to recognize
certain types of patterns in training data.

norm the length or distance of a vector or matrix.

objective function the mathematical representation of the goal of an optimization problem and repre-
sents how good the solution to the problem is.

regression in machine learning, the kind of model prediction where the predicted output is a contin-
uous numerical value. An example is predicting the value of homes based on their features.

space continuity space continuity means that the latent space can be represented by a continuous
function. This is important because then it is possible to take the derivative of the latent space
which is necessary for the optimization function used for training neural networks.

voxel a representation of a single sample, or data point, on a regularly spaced, three-dimensional grid.
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1. Introduction

1.1. Motivation and Problem Statement

As we enter an era where the world population has exceeded 8 billion people [Victor, 2022], we can
see the impact of housing pressure around the world. This is also causing more adults to suffer from
mental health problems [Shelter, 2017]. A staggering number of homes must be built every year to
help [CapitalValue, 2022].

In the five years between 2014 and 2019, the architecture industry grew only 2.1% [IBISWorld, 2021].
At the same time, the demand for new construction has increased at a faster rate. The demand partic-
ularly hits the housing sector, as countries around the world are experiencing housing shortages. In
the Netherlands specifically, the housing shortage reached 279,000 homes in 2022, which is 3.5% of the
housing stock. The shortage is expected to increase as there is a projected 4.7% increase in the number
of households between 2022 and 2026 [CapitalValue, 2022]. The increase in demand for just housing
exceeds industry growth. These demand estimations do not consider other construction needs such
as community centers, libraries, and schools that need to support new housing. Dutch government
officials have already discussed that the architecture, engineering, and construction (AEC) industry will
not be able to keep up with this demand [NLTimes, 2022].

To keep up with the growing demand for AEC services, the industry must radically rethink the
design, planning, and construction process.

These pressures are leading to a scarcity of houses, but also to a scarcity of design services. History
has shown that people who are economically disadvantaged are the first to lose access when demand
increases and supply decreases. Affordable housing is therefore more at risk of becoming a catalog of
poorly designed buildings. Current solutions that have been proposed and implemented include ship-
ping container homes that are too cold to sleep in and rust within weeks of occupancy [Rippingale,
2014] and tiny home ”communities” that journalists have described as more like slums than neighbor-
hoods [McManus, 2022]. These solutions demonstrate a lack of understanding of the complex needs
of people and provide small-scale, unsustainable approaches to the problem. To address the needs
of all, architectural services need to change from a service for the elite to an option for all. To make
this shift, multifamily housing should no longer be designed by architects. The design of multifamily
housing should be automated through the use of deep learning (DL).

Automating the architectural design process would allow for equal access to well-designed, cus-
tomized solutions.

When news reports discuss automation taking over another sector of jobs, these sources are quick to
confirm that an architect’s job is not at risk of being replaced. There are a number of different reasons
stated to support the position. Frequently, reports discuss that computers cannot think creatively
[Davis, 2015] and cannot adapt to real-world problems [Chahine, 2019]. Despite these objections,
engineers have already trained machine learning (ML) models to generate novel images and art -
which also requires the same considerations. Philosophically, it is still possible to debate whether ML
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1. Introduction

models are creative, but it has been shown that they can perform creative tasks [Marr, 2020]. Within
the AEC industry the applications of ML models have been based on generating two-dimensional (2D)
images like generative floor plans [Keshavarzi and Rahmani-Asl, 2021; Carta, 2021], novel site layouts
[Spacemaker, 2023; TestFit, 2023], and context-responsive building massing envelopes [Vesely, 2022].
When we look at other industries, however, innovation does not stop at 2D. In computer science
research, there are also applications in 3D. For example, Wu et al. [2016] developed 3D GAN architecture
for generating 3D objects like chairs and cars, and Smith and Meger [2017] improved on GANs for 3D
geometry by changing the loss function.

Despite these improvements, little research has been extended to generate 3D geometry with respect to
the design of buildings. Research in this area has been done by private companies with little published
information. Autodesk has hinted at working on such tools at a keynote at Autodesk University in
2014 [Davis, 2015] and a parallel to this research can be seen through their released software Project
Dreamcatcher [Autodesk, 2016]. Google had also done some research that resulted in Flux, a start-up
that has since closed [Schwartz, 2016]. One company that is currently active and provides advertising
services for automated building design is Augmenta. Augmenta promises clients the ability to design
sustainable, code compliant, and fully constructible buildings in hours [Augmenta, 2022]. However,
their website currently only offers electrical raceway design with other products ”coming soon”.

There are opportunities to automate design through the applications of deep learning within the
architecture, engineering and construction industry.

Because existing research has been completed by various private companies, there is a lack of pub-
lished information in the area of automating the design of buildings. These gaps present opportunities
to expand industry knowledge about how to automate the design process. The goal of automating
design is to provide access to thoughtful design to larger groups of people. This thesis takes a step
forward to help close this knowledge gap.

The research conducted in this thesis develops strategies to automate the design process. It also
supports the expansion of the generative design tools used today. Currently, generative design tools
propose simple massing, site layouts, and floor plans. This research lays the foundation for these tools
to also propose 3D system designs. Expanding generative design tools to produce novel 3D geometries
can lead to time savings and optimizations throughout the design process.

1.2. Objectives, Deliverables, and Questions

This thesis aims to explore one step in the larger challenge of automating design by investigating the
opportunities of applying deep learning models to the design of buildings. Initially, the goal was to
apply an existing GAN architecture called 3D GAN [Wu et al., 2016] to a new data set and build on this
existing research. When using an existing architecture, it would have been possible to expand on the
existing research by incorporating multiple building features like doors and windows, and by gener-
ating site-responsive designs. After some initial research described in Chapter 7, I determined that
the current state-of-the-art architecture was unstable when applied to the building data set. Therefore,
I pivoted the focus of my research and proposed a method to develop a new Neural Network (NN)
architecture. The new model is trained to generate building geometry.

To test the current state-of-the-art solutions and to develop a new architecture, it was necessary to
select and modify a training data set. The selected training data set BuildingNet [Selvaraju et al., 2021]
was modified for the purposes of this thesis and can also be used for future applications, including
other research related to the generation of 3D building geometry. BuildingNet [Selvaraju et al., 2021]
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contains labeled 3D building models which through this thesis have been pre-processed to remove site
geometry and relabeled to use only ’wall’, ’window’, ’door’, and ’roof’ labels.

After pre-processing the data set, the next step was to develop a GAN architecture that will generate
feasible building geometry based on the training data. The largest obstacle was developing a GAN
architecture that was stable. GANs are notoriously challenging to train as is further discussed in Chap-
ter 3. To maintain a stable training process and achieve a desirable output, many hyperparameters
need to be tested and tuned. A key step in developing a more successful architecture was quickly
identifying any problems and testing many different hyperparameter options. The steps to address
the research objectives are summarized as follows:

1. Pre-process data set

2. Test 3D GAN [Wu et al., 2016] architecture on training data set

3. Test different loss functions

4. Tune specific hyperparameters like activation functions and learning rate

5. Refine architecture by tuning use of the optimizer, normalization, and weight clipping

6. Test the impact of adjusting the network depth, width, and kernel size

7. Refine the inputs by testing different input options

8. Identify the best performing architecture

There were two check-points leading up to the final deliverable:

1. completing HouseNet which consists of a sub-set of the existing BuildingNet data set pre-
processed for the application of generating 3D building models with detailed information in
Appendix A.4

2. training a model with fewer data points that can generate a result that is approximately the
correct size, shape, and scale

The final deliverable is a trained model that can generate a feasible building geometry considering the
training data set.

The research question for this thesis is:

How can a GAN model be trained to produce 3D building geometry given 3D building models of
single-family houses as an input?

The following sub-questions are therefore relevant:

• What are key aspects of a training data set that are required for generating 3D building designs?

• What are the key network architecture hyperparameters that lead to a stable GAN training when
generating 3D geometry?

• How does network depth, width, and kernel size impact GAN training when generating 3D
geometry?

• How do network inputs impact GAN training when generating 3D geometry?

• What are the challenges and benefits of using GAN for architectural design?
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1.3. Scope

This thesis focuses on the applications of DL models to the challenge of generating single-family house
designs. As such, there will be no design project as a component of the thesis. Instead, the project
is focused on delivering a modified data set tailored to the task of generating building designs and
a DL model trained for this application. Since GANs are an emerging model type in the field of DL,
research is interdisciplinary as it spans the fields of architecture and computer science. This presents
an opportunity for an interdisciplinary research approach that will review the expertise developed in
this adjacent field and apply the concepts within the AEC industry.

1.4. Framework

The research framework for this thesis focuses on developing two key areas, the data set and the NN
architecture of the GANs. This framework is visualized in Figure 1.1. The topics explored in this thesis
are based on a literature review discussed in Chapter 2 and Chapter 3 and followed by research by
design described further in Section 1.5.

The initial steps will require pre-processing the existing data set. This involved:

• selecting a building typology: Each building model in the data set comes with a label for the
building typology and the building type. The five typologies are commercial, military, pub-
lic, religious, and residential. The fifteen building types are castle, cathedral, church, city hall,
factory, hotel building, house, monastery, mosque, museum, office building, palace, school build-
ing, temple, and villa. Chapter 4 and chapter 5 discuss how a relevant building typology was
selected.

• evaluating and editing the geometry of the building models: Most building models in the data
set contain site geometry that is not relevant to the research. This excess geometry must be
removed before the building models can be used for training, as discussed in Chapter 5.

• determining the resolution of the training data: When the training data set is used as an input
in the GAN, it needs to be formatted in a way that is useful to the algorithm. The algorithm
cannot work with point clouds, so instead the data needs to be encoded into an array. Encoding
is the process of reformatting the data to make them machine readable. When a point cloud is
encoded into an array, each axis of the 3-dimensional array represents the x, y, and z coordinate.
Therefore, when the array is visualized, it is a voxel 3D model of the building geometry as shown
in Figure 1.2. The voxel visualization tool by Brake [2023] was used for all visualizations of the
encoded arrays throughout this thesis.

• selecting the class labels: Class labels are human-readable information that must be mapped to
numerical representations so that the algorithm can use this information. This process is called
label encoding. The data set being used starts with 31 class labels including the ’wall’, ’door’, and
’window’ labels. This thesis only uses two labels for training, 0 to indicate that a voxel is empty
and 1 to represent that it is filled. However, future research would allow for the incorporation of
multiple labels in the generated geometry. Chapter 5 describes the process of selecting relevant
labels.

The above-mentioned preparation all results in a data set that can be used for training.

Additional steps are required to develop and test the NN architecture. This involved:

• testing hyperparameters: To find a NN architecture that works well for the problem, it is neces-
sary to research, select, and test different hyperparameters alone and in combination. These tests
allow the best-performing hyperparameter settings to be identified.
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Figure 1.1.: The research framework of the thesis for modifying a data set, creating a GAN architecture,
and training a model to generate building geometry.

• testing network depths and widths: The number of layers (depth) and the number of channels
(width) affect the performance of the NNs because these impact how well the network learns
patterns in the data and also how long the network takes to train.

• testing network inputs: Changes to generator input and training data also have an impact on
how well the network trains.

1.5. Methodology

To address all parts of the primary research question, a selection of methodologies is required for
each part. The focus of the research is on modifying the existing data set and training a model to
generate feasible building designs. This will mainly involve exploratory research and the application
of design science methodology [Simon, 1970]. As Simon [1970] notes, it is important to recognize that,
unlike studying the natural world, in design research, the result can be different given different goals.
Therefore, I strove to document the goals and reasoning of each step to clarify why the research took
the path it did.

What are key aspects of a training data set that are required to generate 3D building designs? A
key step for training a GAN model to generate feasible building designs is the data set. Deep learning
models require large data sets as discussed further in Section 3.2. The proposed data set, BuildingNet
v0.1 [Selvaraju et al., 2021], was originally developed to label building features in 3D building models.
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Figure 1.2.: The images on the left show the point cloud and the images on the right visualize the
matrix that represents the encoded point cloud as voxels.

Because the data set will now be used to train a DL model that generates buildings, the data set needs
to meet requirements different from the purpose for which it was originally created. This research
aims to determine what changes are required in the data set and to implement these changes. This
sub-question will be addressed through a literature review and by experimenting and testing.

What are the key network architecture hyperparameters that lead to a stable GAN training when
generating 3D geometry? GANs have a complex structure that allows tuning of the network archi-
tecture by changing many different hyperparameters. This also means that many options need to be
tested. Some examples of hyperparameters that need to be tuned include the loss function, activation
functions, normalization methods, and others. It is important to research how each parameter is used
and how it can impact the output to be able to apply this knowledge when developing a new network
architecture. This sub-question will be addressed through a literature review and through exploratory
research by experimenting and testing.

How does network depth, width, and kernel size impact GAN training when generating 3D ge-
ometry? In addition to hyperparameters, there are other factors of GAN architecture which must be
reviewed. Network depth, width, and kernel size all have an impact on the performance, output, and
computational resources required to train. Finding a reasonable balance between these parameters
and a successful training result is important. This sub-question will be addressed through a literature
review and through exploratory research by experimenting and testing.
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How do the network inputs impact GAN training when generating 3D geometry? GANs have multiple
inputs. The input to the critic is the training data set, and the input to the generator is noise. There
are options to adjust these inputs, such as increasing the size of the training data set or having the
random noise input of the generator be more similar in size and shape to the expected output. All of
this impacts training time and quality of the output. This sub-question will be addressed through a
literature review and through exploratory research by experimenting and testing.

What are the challenges and benefits of using three-dimensional generative adversarial networks
(3D GAN) for architectural design? Based on all aspects that the research will explore, the overall
challenges and benefits will be reviewed. The results will be observed and evaluated to determine
what additional progress can be made and whether the goals of the research were achieved.

1.6. Verification and Validation

For GAN, the loss cannot be used as a metric to objectively assess the progress of training or the quality
of the model. Borji [2022] reviewed a number of metrics for assessing GAN models and determined
that the measurements should favor GAN models which:

• generate high fidelity samples

• generate diverse samples

• have disentangled latent spaces and space continuity

• have well-defined lower, upper, and chance bounds

• can handle data set distortions and transformations which means it is robust to imperfect data
and translated data

• align with people’s rankings of models

• have low sample and computational complexity which means it minimizes the use of computa-
tional resources during and after training

[Borji, 2022]

Of the metrics discussed by Borji [2022], some were focused on GAN models trained for classifica-
tion problems that have training and test data. These metrics were not considered because they are
not applicable. Some other methods were only applicable for 2D GANs so these methods were also
excluded.

After a review of the various metrics, two qualitative metrics were selected:

• nearest neighbors: generated samples are reviewed next to their nearest neighbors in the training
set

• visualization and evaluation of the output: the output of each training iteration will be visualized
and compared between different architectures and to the training data

The performance of the trained model also validates the data set and framework. The above mentioned
performance metrics will be used to evaluate the different models trained during this research.
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The thesis builds upon existing research in the fields of computer science, design, and engineering.
The main areas of literature research include reviews focused on two key areas: the automation of
architectural design and the exploration of DL models, specifically GANs. This chapter further discusses
the former: the automation of architectural design.

2.1. Literature Research Methodology

The literature review investigates sources that discuss design automation, multifamily building ty-
pologies, and design tools. The search looked at the title, abstract, and keywords of the literature in
the JSTOR, ResearchGate, Science Direct, Scopus, and WorldCat Discovery databases. The keyword
search used to find information and applicable case studies for architectural theory included the terms
deep learning for architecture/design, generative adversarial networks for architecture/design, design
automation, automation in construction, and generative design. Furthermore, sources cited by articles
in peer-reviewed journals and conference proceedings were reviewed. From this list of sources, a select
number of additional sources were chosen based on those that were frequently referenced. The articles
reviewed came primarily from the fields of architecture and design.

2.2. The Need for Automation

Automation within the AEC industry remains an important area of research. Automation increases
efficiency and, therefore, scalability in the industry. Design automation research is a topic that building
technologists are uniquely positioned to undertake. Building technologists can approach research with
a multidisciplinary lens to explore both the design and the informatics perspectives. Research into
design automation is beneficial for the industry because it allows architects to complete deliverables
faster and more efficiently. This has the potential to decrease design service costs, project costs, project
timelines, and design timelines. Through these benefits, the industry can increase its productivity and
provide design services to a larger group of people.

The architecture industry needs to improve productivity. Statistics in the years leading up to the
pandemic show that demand for construction and design services continued to increase, while growth
in the industry has been fairly minimal. Between 2014 and 2019, the architecture industry increased
only 2.1% [IBISWorld, 2021] or 0.42% per year. The demand for construction has been increasing at
a faster rate. The demand for housing alone has been increasing as the gap in housing availability
increases, and the demand is expected to increase by 4.7% [CapitalValue, 2022] in 4 years or 1.175 %
per year. Currently, the industry cannot keep up with the rising demand.

If not addressed, the challenge people will face is that a higher demand for design services will lead
to higher prices for these services. This prices out clients who need these services but also have
low budgets, such as those providing affordable and low-income housing. These projects need to
be completed with cost efficiency in mind and in short timelines. To provide everyone with a safe
and healthy place to live, the gap between supply and demand needs to be addressed by providing
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more services faster. Automation can help. Design automation combines two key concepts: generative
design and the digital tools that support these ideas.

2.3. Generative Design

Concepts around generative design have been published about since the 1970s. Research simulta-
neously explored computerized methods such as the Computerized Relative Allocation of Facilities
Technique (CRAFT) program developed by Delon [1970] and manual implementations of generative
design systems such as the Pallidian Villas shape grammar by Stiny and Mitchell [1978]. The CRAFT
program developed a methodology for automating the size, adjacency, and location requirements of
the building program [Delon, 1970]. It also incorporated optimization of the layout based on the time
it takes to walk between the building programs and the cost. A flow chart of the logic used in CRAFT
can be seen in Figure 2.1. Another early example of generative design included applying concepts
to designs manually. Stiny and Mitchell [1978] developed a shape grammar for the Palladian Villas
which they then followed to generate floor plans. An example of the grammar and a generated floor
plan can be seen in Figure 2.2.

Since the topic generative design was first discussed in publications, a number of different techniques
have emerged. There are four techniques that are most commonly used:

• shape grammars [Delon, 1970]

• L-systems [Lindenmayer, 1968]

• cellular automata [Wolfram, 2002]

• genetic algorithms [Holland, 1975]

[Kasmarik, 2023]

Shape grammars [Delon, 1970] describe a set of rules that are used to generate geometry. This concept
is probably the most similar to the structure of a programming language, although initially the rules
were executed manually. Both shape grammars and programming languages use basic terms or com-
ponents and a grammar to combine them. Using shape grammars to generate designs can be done
computationally or manually. To define a shape grammar, there must be a start rule, at least one trans-
formation rule, and a termination rule. However, most applications expand upon these requirements.
When executed computationally, a generation program selects and processes which rules should be
applied. Shape grammars can be used to create new designs or they can be developed to understand
existing designs. When describing existing designs, the shape grammar can also be used to generate
new designs similar to the original. An example of shape grammar is shown in Figure 2.3. This is
the shape grammar that Koning and Eisenberg developed for Frank Lloyd Wright’s prairie houses
[Koning and Eizenberg, 1981]. Shape grammars originated in the architecture industry but have since
been used across other industries. [Cagan and Antonsson, 2001]

L-systems, also known as Lindenmayer systems, were originally introduced to describe plant cells
and plant growth. This is also the system by which self-similar fractals are generated. An L-system
consists of three parts. An alphabet defines the set of replaceable elements called variables and the
non-replaceable elements called constants. The start value defines the state of the system upon ini-
tialization. The set of production rules defines how the variables can be replaced with constants and
other variables. [Lindenmayer, 1968]

Cellular automata were developed in the 1940s by Stanislaw Ulam and John Von Neumann [Cosentino
et al., 2013]. They consist of a regular grid of any size and dimension that contains cells. Each cell has
a finite number of states, and the neighboring cells are defined relative to a specific cell. A cellular
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Figure 2.1.: A flow chart of the logic used in CRAFT [Delon, 1970].
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Figure 2.2.: The rules for room layouts (left) in the shape grammar developed for the Pallidian Villas
and an example of a generated floor plan (right) using all the rules from the shape grammar [Stiny
and Mitchell, 1978].

Figure 2.3.: An example of shape grammar developed by Koning and Eizenberg [1981] for Frank Lloyd
Wright’s prairie houses.
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automaton has an initial state and, for each generation, the new state of each cell is based on the
current state of the neighboring cells. The rule applied to a cell does not change and all cells are
updated simultaneously. [Wolfram, 2002]

Genetic Algorithms are metaheuristics, or functions that tune a heuristic with a focus on quickly
finding many solutions to a problem. A heuristic is an underlying function that provides a solution
to an optimization problem even when the problem definition is incomplete. Genetic Algorithms
are inspired by the process of natural selection, generating solution options based on operators that
include mutation, crossover, and selection. [Holland, 1975]

In architectural practice, generative design using genetic algorithms was quickly popularized once the
hardware advanced and allowed the implementation of such ideas without coding knowledge.

2.4. Digital Design Tools

Since the computer’s first applications in architecture in the 1960’s, its use has continued to expand.
After the era of 2D drafting, computer-aided design (CAD) software programs like AutoCAD extended
their capabilities to allow for 3D modeling as well. Soon after this change, the concept of a building
information model (BIM) was conceptualized, developed, and published in the 1970s and 1980s [Ruffle,
1986]. The first BIM program was AEC CAD, released in the mid 1970s and developed by Charles M.
Eastman [Eastman, 1975]. BIM programs allow users to model buildings accurately in 3D but instead
of representing geometry as volumes, the geometry has embedded information. A wall is modeled
as an element that is tagged as a wall and contains information on thickness, finishes, insulation,
construction, materials, and other characteristics. This information can then be used to complete sim-
ulations, analyses, and to generate construction documentation. At the turn of the century, programs
like ArchiCAD and Autodesk Revit popularized the concept of BIM. But innovation did not stop there.
As hardware advanced, computers finally had the capacity to process large amounts of data making
the implementation of methodologies such as generative design possible.

The early 2000s brought an era of scripting programs. Visual scripting allows users to customize
workflows through a graphical interface. The nodes in the script each have specific functions that
users can connect to create a variety of results. In 2007, Robert McNeel & Associates released Explicit
History, which is now known as Grasshopper. It is a visual scripting language that is integrated
with McNeel’s CAD software Rhinoceros 3D. Figure 2.4 shows an example of a Grasshopper script
that shows how nodes that complete specific functions are connected to generate a result. Before this
release, architects and designers had to know how to code to customize their workflow and process,
but now they could do so by scripting. A few years later, in 2011, Autodesk, a multinational software
company that provides software across numerous industries, released their graphical programming
interface called Dynamo for the AEC industry. Figure 2.5 shows an example of a Dynamo script where,
similar to Grasshopper, nodes that perform specific functions are connected to automate a task.

The release of these tools allowed architects to automate a variety of tasks necessary to complete their
projects. Scripts could be as simple as renumbering construction document sheets or as complex as
designing an entire building from site constraints. As users pushed the envelope of what scripting
programs could do, independent developers began releasing open-source plug-ins to add functionality.
It was through these open-source projects that generative design began to be integrated into the design
workflow and accessible to anyone willing to learn Grasshopper or later Dynamo. Early examples
include evolutionary solvers like Octopus, released in 2012 [Vierlinger, 2012] and shown in Figure 2.6,
and other plug-ins that soon followed.

In 2016, Autodesk released the beta version of a generative design tool called Project Fractal, later
renamed Project Refinery. Autodesk’s tool brought a more tailored generative design tool that incor-
porates an evolutionary solver to the masses. These generative design programs were integrated with
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Figure 2.4.: Example of a Rhino Grasshopper script.

Figure 2.5.: Example of a Revit Dynamo script.

Dynamo, so users still had to know Dynamo to be able to use the tool, but this made generative de-
sign significantly more accessible than before. This software allowed architects and engineers to take
automation into their own hands. Instead of having to learn to code entire programs or waiting for
software companies to develop a product that addressed their problem, firms could develop their own
tools with minimal coding knowledge. Research into automation has always been of interest and has
so far led to many advances in the AEC industry.

However, generative design still has a number of limitations. It follows a system of rules-based design
coupled with parameter tuning. Not only does the problem need to be defined in significant detail
within the framework of the existing parametric nodes, there is also a limitation to the number of
parameters that can be optimized. Scripting an entire building with defined architectural features and
interior layouts can mean a large and extensive script that is time consuming to write and manage.

Figure 2.6.: Octopus is an evolutionary solver that allows designers to optimize various design prob-
lems. [Vierlinger, 2012]
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2.5. Machine Learning in Architecture

Alongside these advances, computational design researchers continue to strive to use the computer
for more than just executing explicit instructions. Researchers envision a future where the machine
becomes a partner for architects and designers, contributing to the design process. This ambition
requires that the algorithms train themselves. Although machine learning has brought some advance-
ments, there have been limitations to the creative tasks these algorithms can perform. DL, however,
introduced the concept of having algorithms train themselves through the use of NN. Within the field
of DL, GANs have shown promise for generating 3D geometry.

A GAN [Goodfellow et al., 2014] trains two Artificial Neural Networks (ANN) models simultaneously
to contest against each other in a zero-sum game. One of these NN is called the generator, and it
creates geometry based on a randomized input. The other NN is called the discriminator, and it
learns features from the training data set and then classifies the generator’s output as real or fake.
The generator learns to create believable geometry that fools the discriminator and the discriminator
learns to identify fake geometry. Examples of a use of GANs are the early text-to-image generators.
The details about how these innovations have been implemented are discussed further in Chapter 3.

Newton [2019] noted that until 2019, when his paper was published, GAN research had been used
primarily for 2D outputs (images). The only studies of 3D GAN were with small geometry spaces with
a maximum output dimension of 64 x 64 x 64. GAN research originates in the field of informatics
and was implemented with the ShapeNet data base, which consists of 3D models of objects such as
chairs, cars, and others. One of the deep learning models Newton [2019] reviewed was Improved
Wasserstein Generative Adversarial Network (IWGAN). IWGAN developed by Smith and Meger [2017]
was an improvement of existing 3D GAN research by Wu et al. [2016]. IWGAN implemented a new
loss function for GAN and trained the models on ShapeNet to generate 3D objects like chairs. Newton
[2019], the author of the survey paper, implemented IWGAN using an architectural data set; however,
there were many limitations. The model was trained on a data set consisting of New York City
skyscrapers and generated a geometry geometry space of 32 x 32 x 32 as seen in Figure 2.7. The
data set and implementation were not published except for the reference in his survey of GAN use in
architecture, so limited information is available. The low resolution output meant that the generated
geometry was not meaningful. Buildings that were hundreds of stories high were represented as 32
voxels high, so one voxel represented many stories. With this, Newton [2019] acknowledged that
3D GAN could be useful for a number of other 3D generation tasks in architecture and design if it could
produce results with higher resolution. However, increasing resolution poses its own challenges. Due
to the fact that geometry is generated in 3D, increasing the size of the geometry space has a significant
impact on computational resources. Increasing the geometry space from 32 x 32 x 32 to 64 x 64 x 64
increases the resources required eightfold.
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Figure 2.7.: Newton [2019] trained a GAN to generate skyscrapers with a data set consisting of sky
scrapers from New York City. The geometry space used was 32 x 32 x 32 voxels.

This survey identifies a gap that still exists. In the four years since Newton [2019] published their
survey, minimal additional research has been done in this regard. Another survey by Wu et al. [2022]
published in 2022 found that only a handful of additional papers regarding GAN application to the
built environment were published between 2019 and 2022. These include topics such as generating
terrain maps from semantic masks of street views [Kim et al., 2020], improving the level of detail of the
generated 3D models [Kelly et al., 2018; Du et al., 2022], and generating synthetic data sets for building
performance studies [Chokwitthaya et al., 2020]. Although all of these research papers all use GANs
for 3D architectural applications, their research does not cover automating the design process. The rest
of the research surveyed was 2D and therefore used images not 3D geometry. This demonstrates that
there is no research on the use of GANs to generate high-resolution 3D building geometry. This is an
opportunity to expand the research and investigate the application of DL for building design.
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As is described in Section 2.1, the literature review covered two primary topics and extends here with
the theoretical background and related work on deep learning.

The literature review investigates sources that discuss DL models for classification, image generation,
and generating 3D designs with and without optimization. The search looked at the title, abstract,
and keywords of the literature in the JSTOR, ResearchGate, Science Direct, Scopus, and WorldCat
Discovery databases. The keyword search used to find information and applicable case studies for
DL included the terms deep learning, generative adversarial networks, 3D generative adversarial net-
works, generative adversarial networks for design, and generative 3D design. Furthermore, sources
cited by articles in peer-reviewed journals and conference proceedings were reviewed. From this list
of sources, a select number of additional sources were chosen based on those that were frequently
referenced. Furthermore, articles published in journals and conference proceedings that pioneered or
first documented specific DL topics were reviewed. The articles reviewed come primarily from the
fields of architecture, engineering, and computer science.

3.1. Artificial Intelligence

The Oxford English Dictionary [OED, 2022] describes artificial intelligence (AI) as ”the capacity of com-
puters or other machines to exhibit or simulate intelligent behavior.” This can include any technique
that allows a computer to mimic human intelligence. Some examples of AI include self-driving cars,
chatbots, and automated investing tools. AI can be narrow or general. Narrow AI focuses on training a
model for a specific task on which this thesis will focus. ML is a sub-field of AI which applies statistical
techniques and methods that allow computers to improve the output of a task with experience. Some
examples of ML include speech recognition, medical diagnosis from scans, and smart assistants. This
thesis focuses on a subset of ML called DL. DL consists of algorithms that allow software to train itself
to perform tasks and generally require large data sets [LeCun et al., 2015]. Some common methods
used in DL include multi-layer perceptrons (MLP) [LeCun et al., 1998; Rumelhart and McClelland, 1987;
Werbos and John, 1974], Convolutional Neural Networks (CNN) [Bengio and Lecun, 1997], GAN [Good-
fellow et al., 2014], and autoencoders [Kramer, 1991]. Figure 3.1 visualizes the relationship between
these related disciplines.

3.2. Deep Learning

As mentioned, DL describes algorithms that allow software to train itself through a NN with more
than one hidden layer. DL has already been applied in the field of architecture and engineering.
Applications have focused on predicting the results of simulations, but generative design tasks have
been less commonly explored. A field of study in which deep learning is applied within the AEC
industry is for computational fluid dynamics (CFD) [Wang and Wang, 2021]. This includes studies of
predicting wind and heat transfer to circumvent the long and resource-intensive physics simulations.
Research aims to reduce the time it takes for simulations to run by predicting the results of CFD and
other analyses instead of completing the physics simulation. Additionally, researchers have used DL
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Figure 3.1.: Deep learning is a sub-discipline of machine learning and includes a number of different
methods.

Figure 3.2.: Perceptron Model [Rosenblatt, 1958; Minsky and Papert, 1969]

for topology optimization. Several researchers, including Oh et al. [2019] and Banga et al. [2018],
apply finite element analysis (FEA) through DL. These varied applications show how DL has become
an imperative tool for simulations and optimizations. Although less commonly researched, it also
presents opportunities to further apply DL models in generative design applications. To understand
how DL can be used to generate building designs, which will be discussed further in Section 3.5, it is
important to first understand how NNs work.

3.3. Neural Networks

NNs are machine learning models which were first conceptualized in 1943 and were inspired by the
function of the brain [McCulloch and Pitts, 1943]. This is also why some of the terminology overlaps
with neuroscience. A NN is a network made up of components called neurons or nodes and their
connections.
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Figure 3.3.: Multi-Layer Perceptron Model [LeCun et al., 1998; Rumelhart and McClelland, 1987; Wer-
bos and John, 1974]

PERCEPTRONS Originally, each node in a NN was a perceptron which was first described by Rosen-
blatt [1958] and is shown in Figure 3.2. Perceptrons, now sometimes referred to as single-layer percep-
trons, are not DL models, but they form the building blocks of contemporary NNs. A perceptron is a
threshold function that takes an input and maps it to a binary output value. This makes perceptrons
linear classifiers. A simplified notation for the threshold function of a perceptron is:

f (x) = 0 if w · x + b ≤ 0, and f (x) = 1 if w · x + b > 0. (3.1)

where w is the weight and b is the bias. The weight determines the strength of a neuron’s output, and
the bias value determines how easily a neuron will fire. A neuron fires when it returns an output of a
value of 1. The weights and biases are determined when training the network.

MULTI-LAYER PERCEPTRONS In a MLP [LeCun et al., 1998; Rumelhart and McClelland, 1987; Wer-
bos and John, 1974], perceptrons are combined in a minimum of three layers. Each neuron in a layer
is connected to all neurons in the next layer, making MLPs fully connected networks. The structure is
shown in Figure 3.3, and the layers are an input layer, a hidden layer, and an output layer. When there
are two or more hidden layers, the network is called an ANN. Contemporary ANNs still have nodes,
but each node is no longer a perceptron. Remember that a perceptron can only output a binary value.
In practice, this makes tuning the weight and bias parameters challenging because even a small change
in the weights and biases can drastically change the output from 0 to 1 or vis versa. It is more optimal
to have a small change in the output when there is a small change in the weights and biases. This
is why activation functions are now used instead at each node. They output a value that is typically
between 0 and 1 or between -1 and 1.

ACTIVATION FUNCTIONS An activation function is a non-linear function that maps an input to an
output value between 0 and 1 or -1 and 1. Common activation functions are shown in Figure 3.4 and
include: sigmoid, TanH, ReLU [Nair and Hinton, 2010], Leaky ReLU [Maas et al., 2013], ELU [Clevert
et al., 2015], and SoftPlus [Glorot et al., 2011]. In practice, ReLU [Nair and Hinton, 2010] is a commonly
used activation function.
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Figure 3.4.: Sigmoid, TanH, Rectified Linear Unit (ReLU) [Nair and Hinton, 2010], Leaky ReLU [Maas
et al., 2013], Exponential Linear Unit (ELU) [Clevert et al., 2015], and SoftPlus [Glorot et al., 2011]
activation functions. Graphs from Wikipedia [2023].
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Figure 3.5.: Convolutional Neural Network model [Bengio and Lecun, 1997].

Each of the three different layer types in an ANN uses a different activation function. The input layers
use a linear function. The hidden layers typically use ReLU [Nair and Hinton, 2010] and all nodes in
the hidden layers use the same activation function. The output layer usually uses a different activation
function and this can vary based on the application.

LEARNING At the connection between nodes, the output of the previous layer is multiplied by a
weight and a bias is added. The result is the input for the next layer of nodes. ANNs learn by
changing the weights and biases based on comparing the error in the output against the expected
result. The training process is carried out through a process called backpropagation, a supervised
learning technique.

BACKPROPAGATION Backpropogation [Rumelhart and McClelland, 1987] is an algorithm that starts
at the last layer of the ANN and works backwards one layer at a time to determine changes in weights
and biases. A loss function compares the predicted output values with the target values. Using the
chain rule, the algorithm calculates the gradient of the loss function with respect to each weight and
bias. There are options of which loss function to use and the selection also depends on whether the
model is used for regression or classification.

3.4. Convolutional Neural Networks

CNNs [Bengio and Lecun, 1997] shown in Figure 3.5 are a class of ANNs which are specifically used
for analyzing images, and similar principles have been extended to the analysis of 3D objects. CNNs
regularize by taking advantage of patterns in the data. Each hidden layer detects increasingly complex
patterns. They then assemble these complex patterns into smaller and simpler patterns in their filters,
also known as kernels. Just like ANNs, CNNs have an input layer, a number of hidden layers and an
output layer. Unlike the general ANN architecture discussed in Section 3.3, CNNs have convolutional
layers, pooling layers, and fully connected layers.
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Figure 3.6.: An example of convolution operation in (A) through (C). The kernel size is 3 x 3, there is
no padding, and the stride is 1.
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Figure 3.7.: Examples of features that a CNN learns and how these features become more detailed
as the network is deeper. Image by Ibrahimli [2022] created using images from Zeiler and Fergus
[2013].

CONVOLUTIONAL LAYERS Convolutional layers abstract the input (usually images) into a feature
map which shows the locations and strengths of features in that input. The CNN performs the convo-
lution by taking the dot product of the input data matrix with a kernel, sometimes also called a filter,
as shown in Figure 3.6. The kernel is a 2D array of weights. The kernel is smaller than the input and is
systematically moved across the input so that the feature can be detected anywhere in the image. Each
value of the feature map is then passed through a non-linearity like ReLU [Nair and Hinton, 2010].
A convolutional layer learns between 32 and 512 kernels, allowing it to learn specific details of the
training data. Multiple convolutional layers allow for the features learned to be higher-level features
as the layer is located further down in the network. The higher-level features are larger and more
descriptive, as can be seen in Figure 3.7. For example, when learning how to recognize a car, the first
convolutional layer may learn a low-level feature, such as a kernel that identifies that the black color
of the tire is next to the background color of the image. The third convolutional layer may then learn
a high-level feature like a kernel that identifies a quarter of the shape of the wheel.

POOLING LAYERS In 2D applications, a pooling layer follows a convolutional layer and is used to
reduce the dimensionality of the data. This is done by taking the outputs of a cluster of neurons of
one layer and combining them as an input into a single neuron in the following layer. Pooling can
be local or global and uses one of the two common types of pooling, max pooling [Yamaguchi et al.,
1990; Ciregan et al., 2012], or average pooling. Local pooling combines small clusters, and global
pooling combines all neurons of the feature map. Pooling layers are not used when working with 3D
geometry.

FULLY CONNECTED LAYERS To classify inputs, the flattened matrix passes through a fully con-
nected layer. The fully connected layers are the same as in a traditional MLP.

THREE-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORKS 3D CNNs work similarly with
a few small differences. Instead of using 2D kernels 3D CNNs use 3D kernels and the kernels are applied
by moving the kernel in three directions. Additionally, as mentioned previously, pooling layers are
not used.
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Figure 3.8.: An overview of a typical structure for a GAN [Goodfellow et al., 2014] model.

3.5. Generative Adversarial Networks

A GAN [Goodfellow et al., 2014] is an architecture for ANN models where two different ANNs are
trained to contest against each other in a zero-sum game. A zero-sum game describes a game where
the advantage won by one player is equal to the loss of the other player [CambridgeDictionary, 2022].
The generative network generates candidates based on the data set, while the discriminatory network
evaluates if the candidate is generated or is from the data set. In other words, the discriminator de-
termines if the input is real, realistic enough to be part of the data set, or fake, not realistic enough
and a generated image or object. Figure 3.8 demonstrates a typical GAN structure. The generator has
only one input, randomized noise, and outputs fake geometry. The discriminator has two inputs, the
training data set and the fake geometry created by the generator. The discriminator learns character-
istics of the data set and uses this information to output the probability that the fake geometry is real
or fake. The generator is rewarded when it fools the discriminator and the discriminator is rewarded
when it correctly classifies the geometry. Some examples of GANs include text to image generators like
DALL-E with images shown in Figure 3.9 (A) [OpenAI, 2021], this person does not exist with images
shown in 3.9 (B) [ThisPersonDoesNotExist, 2023], and sketch to image generators like Picsart SketchAI
[Picsart, 2023].

Figure 3.9.: (A) Three images generated by OpenAI [2021] for the prompt ”A living room with two red
armchairs and a painting of the Colosseum. The painting is mounted behind an indoor plant.” (B)
Two images of people generated by This Person Does Not Exist [ThisPersonDoesNotExist, 2023].
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Figure 3.10.: There exists a distribution (green line) of buildings that exist. The discriminator uses
its assumption of this distribution (red line) to evaluate if data samples produced by the generator
(yellow) are real or fake and then adjust its distribution based on the new data point (dashed red
line).

A GAN game is defined by a probability space with the game state (Ω), the probability measure of
the training data (µre f ), and two players which are the generative network, called the generator, and the
discriminative network, called the discriminator. The generator’s strategy is to generate new outputs,
which is noted by the strategy set P(Ω) which is the set of all probability measures (µG) on (Ω). The
discriminator’s probability measure (µD) is the state of the game (Ω) as it impacts the probability
measure of the state being real or fake P[0, 1]. The GAN game is a zero-sum game with the objective
function:

L(µG, µD) := Ex µre f ,y µD(x)[ln y] + Ex µG ,y µD(x)[ln(1 − y)] (3.2)

The goal of the generator is to minimize the objective, and the discriminator aims to maximize the
objective. The goal of the generator is to approach µG ≈ µre f , that is, to match the reference distribution
as closely as possible with its output distribution. The discriminator outputs a value close to 1 when
the input appears to be from the reference distribution and a value close to 0 when the input appears
to be from the generator distribution.

This objective function is also called a loss function and the standard loss function for GANs as de-
scribed by Goodfellow et al. [2014] is the Min-Max loss function. To better understand how the training
with the Min-Max Loss function works, note the following scenario. As shown in Figure 3.10 (A), there
exists a distribution, represented by the green line, of all buildings that exist. Although it is not pos-
sible to know this distribution, there are data points available that show which buildings are more
likely to exist. The discriminator has assumed what this distribution is based on the data set it has
seen. The assumed distribution of the discriminator is represented by the red line. When the generator
creates a new building geometry, it is located somewhere along this distribution as shown in Figure
3.10 (B). When presented this new sample, the discriminator uses its distribution to determine whether
the sample is real or fake and provides this information to the generator. The generator then tries to
improve its next output based on the feedback. From the feedback, it now knows that samples near
the geometry that was labeled ’fake’ will most likely also be fake. It keeps trying different geometry
options to try to create geometry that gets identified as real. This is how the generator learns. The
discriminator also takes the actual value of this new data point to adjust its distribution as shown in
Figure 3.10 (C). This is how the discriminator learns.
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Thus, training of a GAN is indirect as the discriminator trains to be able to distinguish whether the
output of the generator is realistic given the training data. Therefore, the generator is not trained to
minimize a loss function, but rather to fool the discriminator. The two models are trained together to
ensure an equilibrium. This is contrary to most DL models which usually train with a loss function
and continue training until the loss function converges. This also presents some challenges, as there
is no objective way to assess the progress of the training or the quality of the model, both relative and
absolute quality from the loss [Salimans et al., 2016].

Another challenge when training GANs is that the learning rate between the discriminator and the
generator tends to be different. The discriminator tends to learn much faster than the generator. This
is possibly because it is more difficult for the generator to generate objects in a 3D voxel space than it is
for the discriminator to determine whether the object is real or fake [Goodfellow et al., 2014]. Because
the discriminator trains faster, it will always label inputs as fake with high confidence. This does not
provide enough feedback for the generator to improve. To mitigate this challenge, adaptive training
strategies may need to be employed which keep the networks learning at a similar pace. There have
been different loss functions that have been developed that can help stabilize training.

3.6. 3D Generative Adversarial Networks

When focusing on the application of GANs in 3D, there are some additional differences and consider-
ations. To be able to apply existing 3D GAN architectures to a new problem type, it was important to
understand how the state-of-the-art systems work.

Wu et al. [2016] developed the architecture for 3D GAN which was used to generate novel 3D objects.
3D objects have long been explored within computer vision, but research about generating 3D objects
has been more limited. Most methods focus on generating novel shapes based on the retrieval and
combination of selected parts from a database of options or using supervised training techniques [van
Kaick et al., 2011; Tangelder and Veltkamp, 2004; Carlson, 1982]. Wu et al. [2016] pioneered research
on generating objects from voxels through learned features instead of using predefined parts with an
unsupervised training method.

NETWORK ARCHITECTURE As introduced by Goodfellow et al. [2014] and discussed in Section 3.5,
GANs consist of a generator and discriminator. In the case of 3D GAN described by Wu et al. [2016], the
generator, (G), maps a 200-dimensional latent vector, (z) that is randomly sampled from a probabilistic
latent space to a 64 x 64 x 64 cube. This cube represents an object (G(z)) in the 3D voxel space. The
discriminator (D) outputs a confidence value (D(x)) that describes whether an input of a 3D object (x)
is real or synthetic. Wu et al. [2016] followed Goodfellow et al. [2014] and used binary cross-entropy
as the classification loss. Therefore, the overall adversarial loss function, the loss function of the entire
architecture that combines the loss of the generator and the discriminator, as described by Wu et al.
[2016] is

L3DGAN = log D(x) + log(1D(G(z))), (3.3)

where x is a real object in a 64 × 64 × 64 space, and z is a randomly sampled noise vector from a
distribution p(z). Additionally, each dimension of z is an independent and identically distributed (IID)
uniform distribution over [0, 1].

Wu et al. [2016] also implemented a number of key changes that were proposed by Radford et al.
[2016]. These changes allowed for the scaling of GANs using CNN architecture. Radford et al. [2016]
discuss three changes resulting from existing research and two additional changes. They published
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Figure 3.11.: The architecture of the generator in 3D GAN. The discriminator mostly mirrors the gener-
ator. Image by Wu et al. [2016]

the following guidelines for stable deep convolutional generative adversarial network (DCGAN) imple-
mentation:

• Replace any pooling layers with strided convolutions in the discriminator and fractional strided
convolutions in the generator [Springenberg et al., 2014]. Strided convolutions are convolutional
layers where the stride is equal to two or more, and fractional-strided convolutional layers pad
each pixel by placing a row and column of zeros between each pixel in an image. This means
that when the kernel moves across the image, the stride is less than 1 which basically decreases
the size of the kernel. Fractional-strided convolutions are also called transposed convolutions.

• Use batch normalization (batch norm) in both the generator and the discriminator [Ioffe and
Szegedy, 2015]. batch norm normalizes each of the layers’ inputs by recentering and rescaling
them.

• Remove fully connected hidden layers for deeper architectures [Mordvintsev et al., 2015].

• Use ReLU [Nair and Hinton, 2010] activation in generator for all layers except the output, which
uses Tanh.

• Use Leaky ReLU [Maas et al., 2013] activation in the discriminator for all layers [Radford et al.,
2016].

Based on these principles, Wu et al. [2016] designed an all-convolutional ANN architecture that gener-
ates 3D objects. The structure is shown in Figure 3.11.

In this architecture, the generator consists of five volumetric fully convolutional layers. The convolu-
tional layers are of kernel size 4 x 4 x 4 with strides of 2. The batch normalization and ReLU [Nair and
Hinton, 2010] layers are in between the convolutional layers. The final layer is a Sigmoid layer. The
discriminator mirrors the generator, but instead of using ReLU [Nair and Hinton, 2010] layers, it uses
Leaky ReLU [Maas et al., 2013] layers. The network does not contain pooling layers or linear layers.
[Wu et al., 2016]

As discussed in Section 3.5, the discriminator tends to learn much faster than the generator which
can lead to the discriminator always labeling inputs as fake with a high confidence, therefore not
providing enough feedback for the generator to improve. The adaptive training strategy employed
by Wu et al. [2016] includes updating the discriminator only if the accuracy in the last batch is not
greater than 80%. Additionally, the learning rate of the generator was set at 0.0025 and the learning
rate of the discriminator was set at 10−5 and the authors used a batch size of 100. The optimization
method used was ADAM [Kingma and Ba, 2014] with β = 0.5. ADAM is a first-order gradient-based
optimization of stochastic objective functions [Kingma and Ba, 2014]. Gradient-based optimization
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Figure 3.12.: A selection of 3D objects generated by Wu et al. [2016] with their 3D GAN model.

methods are methods in which the search directions are defined by the gradient of the function at the
current point.

TRAINING STABILITY GANs are notoriously challenging to train because they are very unstable. As
discussed in previous sections, the discriminator and generator need to find a balance with each other,
however, the tasks each is completing vary in complexity. It is significantly easier for the discriminator
to learn if geometry is real or fake than it is for the generator to create real-looking geometry to fool
the discriminator. When the discriminator outperforms the generator too quickly, neither network
continues to learn, and training fails. This issue is referred to as vanishing gradients. The gradients
of the loss function that provide information to the generator about how to learn are so small that the
generator cannot learn.

A second problem that can occur concerns the output of the generator. It is expected that, for each new
random input the generator receives, it produces a new and different output. Sometimes, however,
this does not happen. This common problem with GANs is called mode collapse. Mode collapse occurs
when the generator begins to produce only the same geometry, even when different random inputs
are provided. The problem occurs because the generator learns to create one output that fools the
discriminator and then produces only that one output. The discriminator and generator get stuck in a
loop where the generator is over-optimizing to the specific discriminator.

These two common GAN issues are important to watch out for, recognize, and address if they arise
during training. Since they are common problems, they have been well researched. There are existing
strategies that involve adjusting the loss functions and that can address these failures.

GENERATING NOVEL 3D OBJECTS Wu et al. [2016] used the 3D GAN architecture that they devel-
oped and trained a model that generates novel 3D objects. The outputs of their architecture are shown
in Figure 3.12. The researchers trained a separate 3D GAN according to each category of objects such
as chair, car, and table. Based on this approach, it may be necessary to also train separate models
for each type of building. This will be an aspect to explore in future research, as building types still
have more overlap of features than objects of different classes such as those used in Wu et al. [2016].
However, this thesis will focus on learning one building typology, which is selected to be single fam-
ily houses. The model trained by Wu et al. [2016] sampled 200-dimensional vectors following an IID
uniform distribution over [0, 1] and the authors rendered the largest connected component of each of
the generated objects. The result produced higher resolution objects that had more detailed geometry
compared to a model synthesizing objects from a probabilistic space [Wu et al., 2015] and a volumetric
autoencoder [Girdhar et al., 2016; Sharma et al., 2016].

One concern that needs to be addressed when generating 3D objects is if the model is memorizing the
objects that are already in the training data. The method implemented by Wu et al. [2016] to confirm
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that this was not happening was to compare the models to their nearest neighbors in the training
set. The output of the last convolutional layer in the discriminator was used to retrieve features. The
authors concluded that the generated objects are similar to the nearest examples in the training set,
but not identical. This will also be a concern that needs to be addressed in my own research to ensure
that the generated buildings are not the same as the training set. The methods discussed in Section
1.6 will be used to address this concern.

3.7. Conclusions

As discussed in the above review of related work, research with a focus on DL has been conducted
primarily in the computer science field. There has been some work within the AEC field, but this
research focuses on simulations and topology optimization. One study translated GAN applications
to generate building geometry based on sky scrapers from New York City [Newton, 2019]. Unfortu-
nately, the geometry space was very small and minimal detail is provided to be able to reproduce the
study. Within DL, GANs have the potential to be applied more widely to the generation of 3D geom-
etry in the AEC industry. Research published on 3D GANs shows that applying similar principles to
generating novel 3D buildings is feasible. Based on the literature review, key gaps in existing research
include generating high-resolution geometry and applications on building geometry. This thesis aims
to address these shortcomings by developing a new GAN architecture to generate high resolution 3D
building geometry.
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4.1. Deep Learning for Design

As mentioned, DL can help solve design problems in a more time-efficient manner by allowing algo-
rithms to train themselves to perform tasks in a human-like manner. Some of the advantages of deep
learning include the ability of neural networks to discover hidden patterns in data and the fact that
training can use a variety of data types. Additionally, after a network is trained, it can complete the
task over and over to the same level of detail and in a significantly shorter time than it would take a
person to complete the same task. All of these features make it well suited to be applied to design
tasks. Existing surveys of DL applications within architecture and design [Newton, 2019; Wu et al.,
2022] and the literature review in this thesis have concluded that there is a lack of research regarding
GAN applications to the generation of 3D building geometry. Despite the lack of existing research,
these methods show promise for the application of design.

There are a number of advantages to using ML, but it is also important to carefully formulate the task
to which the algorithm is applied. With the potential benefits, there are also some disadvantages to
keep in mind. Because DL models train themselves, they generally require large data sets for training
[LeCun et al., 2015] so these data sets need to be available. When training themselves, algorithms also
make decisions without providing an explanation for the reasoning of reaching the result. Despite
these challenges, deep learning allows professionals in the AEC industry to go beyond automating
menial and tedious tasks. It presents the opportunity to automate design tasks without having to
define all of the parameters.

An important motivation for automating design is to raise the bar for providing good design. Cur-
rently, well-designed buildings are not evenly distributed. And with the housing crisis, the risk that
’good design’ will become a scarce commodity is even greater. When clients can pay more money for
an architect, their project receives more skilled design attention. Those with fewer resources are left
with unsustainable solutions. Other industries have found methods to automate creative tasks, and
the AEC industry can draw on these examples. It is not necessary to limit the experts’ attention to a
few projects when DL can model the expert team’s knowledge and generate well-designed buildings
for everyone.

4.2. Innovation to Solve the Housing Problem

Industry professionals frequently describe automation as a way to let machines do the repetitive tasks
to free up time and allow architects and designers to do the creative tasks which they are best at.
In 2016, Kevin Kelly [2016] changed the conversation. He discusses ”our most important mechanical
inventions are not machines that do what humans do better, but machines that can do things we can’t
do at all.” [Kevin Kelly, 2016]. This leads to the question:

What can machines do for the housing crisis that people cannot?

When contemplating the current housing crisis, there are a number of aspects that people are not able
to address, or are not able to address fast enough. DL models could:
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• deliver a code-compliant building design without an architect

• provide safe housing solutions in hours rather than months or even years

• increase productivity in the AEC industry

• efficiently address the increasing housing needs

As generative DL models have gained popularity in recent years, these methods provide innovative
solutions to a long-established problem.

4.3. Optimal Building Typology

Generating building geometry through ANN models is not feasible for all types of buildings. Iconic
buildings, for example, are generally designed by world-renowned architects, and owners pay a pre-
mium to have a well-known name attached to their project. Multifamily housing, on the other hand,
requires fast solutions to keep up with the current demand. It also requires good design solutions that
provide code-compliant, safe, and healthy places to live. This is why multi-family housing is the ty-
pology that provides the most opportunity for algorithmic generation and optimization. Multi-family
housing:

• is a sustainable solution to the housing crisis

• can provide low-income and affordable housing options

• provides opportunity for construction standardization

• is not an iconic building typology

• has repeating patterns that can be learned by an algorithm

These characteristics and the benefit that automation can provide for this typology make midsized,
multifamily housing the ideal typology for automation.

Based on detailed research of data set options, there were no data sets that contained enough buildings
of the desired typology. Because the thesis focuses on a DL model, the data set must be substantial
with a minimum of 100 building geometries and ideally a few hundred building geometries. Due to
the lack of available data, this thesis will instead train on building geometries that represent primarily
single-family homes. This is discussed in further detail in Chapter 5.

When enough data is available for the optimal typology, then it is possible to implement the steps
documented in this thesis and the algorithms written for this thesis with the new training data set.
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To select a data set, a critical consideration was the level of detail (LOD) of the building models. The
LOD determines what building features are visible in a building model. As shown in Figure 5.1, LOD
0 describes a building in 2D as a massing outline, LOD 1 describes the 3D massing of a building, LOD 2
describes the envelope of the building and the form of the roof, and LOD 3 describes a building with
its features such as windows and doors. Since the goal of this thesis is to generate building geometry,
the building form that is generated should be more detailed than its initial massing. Recognizable
building features include windows, doors, and a more developed building form, which can include
changes in the facade and roof overhangs. Models that have these characteristics have an LOD of 3.1.
This also means that the data set must have a minimum LOD of 3.1 because the network will need to
train on a data set that contains the same level of information.

Another requirement for a data set for any DL task is the size. THe data set needs to contain a
minimum of 100 models, but the larger the data set, the better it is for training. After determining
these primary requirements and searching for available data sets, it was determined that one data set
met the LOD requirements and was large enough to train a deep learning model.

The data set used for training is a large-scale data set of just under 2,000 building models called
BuildingNet v0.1 [Selvaraju et al., 2021]. The data set was developed to train a graph ANN that is
used to label building meshes by analyzing relationships between spatial and structural geometric
primitives [Selvaraju et al., 2021]. The data set is well suited for this application and provides the
opportunity for other applications. Because the data set was recently released, the research will use
version 0.1 with the opportunity to retrain the GAN model once version 1 of the data set is released.
After detailed review of the BuildingNet v0.1 data set [Selvaraju et al., 2021], there are a few key
changes that must be made to prepare the data set for the application of generating buildings. Section
5.1 discusses the content of the existing data set and the changes that must be made in more detail.

5.1. 3D Model Data Set

BuildingNet v0.1 [Selvaraju et al., 2021] is a data set released in 2021 that consists of 1,938 buildings
with consistently labeled exteriors. Buildings were selected from SketchUp Warehouse, labeled with
exterior classes, and labeled with building typology classes. The data set contains for each building
the mesh (.OBJ file format), rendering textures (.jpg file format and .mtl file format), labels for each
mesh surface (.JSON file format), a point cloud consisting of 100,000 points generated from the mesh
(.ply file format), and labels for each point (.JSON file format). The label files includes a nominal clas-
sification for each point consisting of 31 different classes: undetermined, wall, window, vehicle, roof,
plant/tree, door, tower/steeple, furniture, ground/grass, beam/frame, stairs, column, railing/balus-
ter, floor, chimney, ceiling, fence, pond/pool, corridor/path, garage, dome, road, entrance/gate, para-
pet/merlon, buttress, dormer, lantern/lamp, arch, awning, shutters, and balcony/patio. The 3D mod-
els are also classified by what will be called typology and building type. The five typologies are
commercial, military, public, religious, and residential. The fifteen building types are castle, cathedral,
church, city hall, factory, hotel building, house, monastery, mosque, museum, office building, palace,
school building, temple, and villa. Table 5.1 lists each label and indicates the number of 3D models
that contained this label before and after cleaning. Table 5.2 lists each building typology and building
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5. Training Data Set

Figure 5.1.: A visual representation of the levels of detail and their sub-levels. Image from Biljecki et al.
[2016].

type and indicates the number of 3D models that belong to that building typology and building type
before and after cleaning.

After reviewing the data set, several key attributes were identified that are not suitable for training a
GAN model to generate buildings. These attributes needed to be rectified in order to use the data for
this thesis:

• The 3D models are different scales and have been normalized so that the maximum dimension
of each 3D model is equal to one unit regardless of the real-world dimension of the building.
There are some buildings where the maximum dimension is not normalized to one unit but the
maximum dimension is instead smaller than one unit.

• The 3D models contain geometry that is related to the site. For example, some models contain
plants, vehicles, and roads.

• The labels cover a wide range of classes, but all 3D models also contain ’undetermined’ points.
For some 3D models, the ’undetermined’ points belong to one of the labeled classes. For example,
some 3D models have walls labeled as ’undetermined.’

• The size of the voxels affects the resolution and detail of the generated 3D models and also
depends on the available memory.
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before
cleaning

after
cleaning

0 undetermined 1,938 1,247
1 wall 1,930 1,247
2 window 1,688 1,247
3 vehicle 268 202
4 roof 1,860 1,247
5 plant, tree 400 269
6 door 1,358 1,247
7 tower, steeple 389 154
8 furniture 301 236
9 ground, grass 859 558
10 beam, frame 385 307
11 stairs 687 487
12 column 523 370
13 railing, baluster 362 293
14 floor 871 599
15 chimney 382 330
16 ceiling 591 463
17 fence 284 203
18 pond, pool 320 213
19 corridor, path 521 394
20 balcony, patio 458 364
21 garage 359 300
22 dome 172 53
23 road 356 249
24 entrance, gate 124 84
25 parapet, merlon 173 108
26 buttress 60 20
27 dormer 120 99
28 lantern, lamp 62 54
29 arch 81 41
30 awning 68 49
31 shutters 52 43

total 1,938 1,247

Table 5.1.: Total number of 3D models that
contain each type of label.

before
cleaning

after
cleaning

Building Typology

commercial 126 51
military 65 16
public 57 20
religious 447 183
residential 1,243 977

total 1,938 1,247

Building Type

castle 68 19
cathedral 34 11
church 271 133
city hall 16 5
factory 10 7
hotel building 31 12
house 780 629
monastery 7 3
mosque 71 23
museum 34 16
office building 110 53
palace 44 20
school building 27 20
temple 45 11
villa 390 284

total 1,938 1,247

Table 5.2.: Total number of 3D models that belong
to each typology and building type.
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Figure 5.2.: Examples of the building point cloud visualizations with each label represented by a color.
(A) shows an acceptable 3D model and (B), (C), and (D) show examples of 3D models that were
removed because they contained too many ’undetermined’ points, incorrectly labeled points, or
unclear building features.

5.2. Cleaning Data Set

To analyze the necessary cleaning steps, each building model was visualized as a point cloud with the
points labeled and color coded according to their class label. From this analysis, the following steps
were observed as necessary to clean the data set and then implemented.

1. 3D models with an acceptable number of labels and generally good accuracy of the labels, as
shown in Figure 5.2 (A) should remain in the data set.

2. 3D models with a significant amount of points labeled as ’undetermined’ (indicated by the color
red) as shown in Figure 5.2 (B) should be removed. This was evaluated by counting the number
of ’undetermined’ labels that were present in each 3D model. Then the top 10% of the data was
calculated and the upper limit (equal to the top 10% plus 1.5 times the top 10 percent minus the
bottom 10%) was calculated. Any 3D models that contained more undetermined labels than the
upper bound were removed from the list.

3. 3D models with a significant number of incorrectly labeled points, for example, walls labeled
as doors as shown in Figure 5.2 (C), need to be removed. This was evaluated by counting the
number of points for each of the remaining labels that were present in each 3D model. Then the
top 10% of the data was calculated and the upper limit (equal to the top 10% plus 1.5 times the
top 10 percent minus the bottom 10%) was calculated. Any 3D models that contained more labels
than the upper bound were removed from the list.

4. 3D models where the building characteristics are unclear or missing, as shown in Figure 5.2 (D)
must be removed. This was evaluated based on whether 3D models contained at a minimum the
labels ’undetermined’, ’wall’, ’window’, ’roof’, and ’door.’ 3D models that did not contain all five
of these labels were removed.

An overview of this process is described in Algorithm 5.1. The 691 3D models that met criteria 2, 3,
and 4 were removed from the data set, leaving 1,247 3D models. These 1,247 3D models are then used
for the pre-processing steps. Table 5.1 lists each label and shows the difference in the number of 3D
models that contained this label before and after cleaning. Table 5.2 lists each building typology and
building type and indicates the difference in the number of 3D models that belong to that building
typology and building type before and after cleaning.
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Algorithm 5.1: An overview of how the models are evaluated for incorrect labels.
Input: the data set, D, containing point clouds, pcd
Output: the revised data set containing remaining point clouds, Dr

1 labeltrackingtable is an empty table where each model is represented by a row and each
column represents a label

2 for pcd in D do
3 load label array L ;
4 for label in L do
5 ;

6 count total instances of label ;
7 save to labeltrackingtable[pcd, label] ;

8 for column c in labeltrackingtable do
9 d1 = calculate the lowest decile, the 10th percentile ;

10 d9 = calculate the highest decile, the 90th percentile ;
11 upperlimit = d9 + 1.5 ∗ (d9 − d1)

12 for pcd in D do
13 if labeltrackingtable[pcd, label] > upperlimit then
14 remove pcd from D

15 if labeltrackingtable[pcd, wall] == 0 or ;
16 labeltrackingtable[pcd, window] == 0 or ;
17 labeltrackingtable[pcd, roof] == 0 or ;
18 labeltrackingtable[pcd, door] == 0 then
19 remove pcd from D

20 return D
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Figure 5.3.: A number of examples of the house building type (top row) and villa building type (bottom
row).

5.3. 3D Model Pre-Processing

Based on the analysis in Section 5.1, the remaining 3D models needed to be pre-processed to meet the
needs of the research. This generated a revised data set consisting of pre-processed 3D models that
are a subset of the BuildingNet v0.1 [Selvaraju et al., 2021] 3D models which then meet the needs of
training a GAN to generate 3D building forms. The steps for pre-processing the data set are outlined in
the following sections, and the pre-processed data set is released with this research so it can be used
for future research.

THREE-DIMENSIONAL MODEL TYPOLOGY SELECTION As discussed in Chapter 4, automat-
ing the design of buildings is not suited for unique or monumental building types. Therefore, the
following building types were removed: castle, cathedral, church, city hall, factory, hotel building,
monastery, mosque, museum, palace, school building, temple. After removing these building types,
the following types remained: house, office building, villa.

Further analysis outlined in Chapter 4 explains that mid-sized multifamily housing with a height of
8-12 stories is the ideal typology for automation. However, there were not many data sets that con-
tained this typology. Therefore, single-family homes were used for training. Based on the information
recorded in Table 5.2, the BuildingNet v0.1 [Selvaraju et al., 2021] data set had many buildings that
matched the single-family home typology and even after cleaning the data set, there were many 3D
models left that matched the criteria. Therefore, the following building types remain in the revised
data set: house and villa. Examples of these two building types are shown in Figure 5.3. After selecting
the typology, 913 3D models remained in the training data set.

REMOVING SITE GEOMETRY The models that remained still contained unnecessary geometry.
Geometries labeled as vehicle, fence, furniture, ground, gate, lighting, pool, road, and plant/tree were
removed since these elements are either too detailed in scale or are part of the site, not part of the
building. After removing these labels, it became clear that some 3D models also have site geometry
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Figure 5.4.: (A) shows the original 3D model with each label represented by a different color. (B) shows
the bounding box that was created around the wall, door, and roof geometry. (C) shows the resulting
3D model after removing the site geometry based on labels and based on geometry that was located
outside the bounding box.

that is labeled ’undetermined’ or site site that is incorrectly labeled as building geometry. To address
this, all points of the 3D model belonging to the labels ’wall’, ’door’, and ’roof’ were collected and
a bounding box was placed around these points. After removing the site geometry that belonged
to the labels mentioned above, any additional geometry located outside the bounding box was also
removed. This helped to clean up most of the site geometry that was ’undetermined’ and some of the
site geometry that was incorrectly labeled, as shown in Figure 5.4.

THREE-DIMENSIONAL MODEL SCALING (not implemented) After reviewing the models, it be-
came evident that the scale of the buildings was mostly normalized so that the maximum dimension
of each 3D model was one unit. Some 3D models did not have normalized heights and instead had
heights less than 1 unit. The range of sizes is shown in Figure 5.5. The first 3D model is a two-story
house and it is smaller than 1 unit in width and height (shown) and depth (not shown). The second
3D model is a three-story house and it is 1 unit wide because the width is its largest dimension, and
it is just under 1 unit tall. The third 3D model is an approximately 30-story building and is 1 unit tall.
To use these 3D models for training, the height of the buildings should be normalized in relation to a
set scale so that additional 3D models can be added to the data set. Furthermore, having a set scale
would mean that all 3D models are scaled relative to each other.

There were multiple options for scaling the models that were reviewed, but due to time constraints,
they were not implemented. Some methods were tested that were based on scaling the model ac-
cording to known features such as door heights. Unfortunately, the resulting point clouds were not
uniformly scaled because the doors were not consistently labeled. Scale information was also re-
quested from the authors of the data set, but unfortunately this data was not available. Therefore, the
most feasible route was determined to be downloading the original 3D models from Google SketchUp
Warehouse and scaling 3D models this way. This method is outlined in detail below, but it was not
implemented due to the time restraints of this thesis.
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Figure 5.5.: The 3D models in the BuildingNet data set are mostly normalized to have the maximum
dimension equal to 1 unit regardless of building height and some 3D models have a smaller maxi-
mum dimension.

In order to scale the 3D models, the following steps must be taken:

1. Download the original 3D model from Google SketchUp Warehouse

2. Convert the file type from a SKP file to an OBJ file

3. Load the original 3D model file

4. Create a bounding box around original 3D model

5. Load the point cloud from the data set

6. Create a bounding box around the point cloud

7. Scale the point cloud model up to original 3D model size based on the bounding box heights of
each model

8. Save the scaled point cloud

The automated portion of these steps are summarized in Algorithm 5.2. At this time, downloading
the original models from the SketchUp Warehouse and converting the file from SKP to OBJ needs to
be done manually due to licensing requirements. Due to the large amounts of manual work involved
in scaling more than 900 3D models, and considering the time limitations of this thesis, the data set
that is released with this thesis does not contain scaled models.

5.4. Selecting Labels for Training

The data in the data set is also already formatted to include only the labels contained in all building
models. These labels include ’wall’, ’window’, ’door’, and ’roof’.

To select which labels could be used for further research, I analyzed the 31 existing labels. Of these
labels, there are many labels that appear in very few 3D models as shown in Table 5.3. This means
that there is not enough data to train models on these labels. Furthermore, some labels do not provide
enough information. Since the ’undetermined’ label encompasses a large collection of geometry and
some geometry that is labeled ’undetermined’ actually belongs to another label like ’wall’, this label
does not provide any additional information. Instead, it is better to use labels that are present in all 3D
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Algorithm 5.2: An overview of how the models are scaled when the original model is avail-
able as an OBJ file.

Input: the original OBJ file, obj; the point cloud file, pcd
Output: the scaled point cloud file, pcdscaled

1 create bounding box, bbobj, around obj;
2 create bounding box, bbpcd, around pcd;

3 hobj = height of bbobj ;
4 hpcd = height of bbpcd ;

// select a revised scale, in this case 1 unit is 5 meters

5 scale = hobj / (hpcd * 5) ;
6 pcdscaled = scale pcd by scale ;
7 return pcdscaled

Figure 5.6.: Select examples of 3D models from the pre-processed data set.

models and those that are labeled fairly consistently. Based on how many 3D models contained each
label, it was determined that the labels ’wall’, ’window’, ’roof’, and ’door’ had the most 3D models
available and a combination of these labels can be used for training.

5.5. Processed Data Set Information

The pre-processed data set released with this report can be found on 4TU.ResearchData at
https://doi.org/10.4121/4d82052e-650c-4775-8bd9-623df68991b6.v1.

Based on the above-mentioned changes, the data set released with this thesis contains labeled point
clouds of ’house’ and ’villa’ buildings. Each model contains only points of label ’door’, ’roof’, ’wall’,
and ’window’. Some examples of models from the data set are shown in Figure 5.6. The data set was
narrowed down to relevant building types, and site geometry has been removed. The data set has not
been scaled due to the time limitations of this thesis. The revised data set contains a total of 913 3D
models. Table 5.3 shows how many 3D models contain each label before being simplified to the four
labels and Table 5.4 shows the number of 3D models of each typology and building type. Additional
information on the released data set can be viewed in Appendix A.4.
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number
of models

0 undetermined 913
1 wall 913
2 window 913
3 vehicle 0
4 roof 913
5 plant, tree 0
6 door 913
7 tower, steeple 2
8 furniture 0
9 ground, grass 0
10 beam, frame 266
11 stairs 357
12 column 267
13 railing, baluster 253
14 floor 460
15 chimney 297
16 ceiling 373
17 fence 0
18 pond, pool 0
19 corridor, path 0
20 balcony, patio 338
21 garage 281
22 dome 0
23 road 0
24 entrance, gate 0
25 parapet, merlon 70
26 buttress 0
27 dormer 83
28 lantern, lamp 0
29 arch 0
30 awning 43
31 shutters 40

total 913

Table 5.3.: Total number of 3D models that
contain each type of label before the labels
were removed. The released data set only
contains the labels highlighted in the table.

number
of models

Building Typology

commercial 7
military 1
public 2
religious 1
residential 902

total 913

Building Type

house 629
villa 284

total 913

Table 5.4.: Total number of 3D models that belong to
each typology and building type in the released
data set.
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Chapter 5 discussed changes to the data set that would make it more suitable for automating the
design of buildings. To use the data set for this thesis, additional adjustments needed to be made
to format each 3D model correctly for training a GAN. These changes include limiting the number of
labels and converting the data from a point cloud data format to an array.

6.1. Selecting Labels for Training

Although the training data is uploaded with four different labels, the training for this thesis was
simplified and no labels were used. GANs can only generate a binary output. Therefore, they can only
produce an output that states if a voxel exists or does not exist. Future research can explore labeling
the voxels based on the available classes for different combinations of labels. An example of different
label combinations can be seen in Figure 6.1. The architectures tested during this thesis were trained
on 3D models that were simplified to one label only. The label determines whether the voxel is visible
or not.

6.2. Point Cloud to Voxel Grid

After trying a number of different Python libraries without success, I wrote my own script for con-
verting point clouds into an array. This allowed me to skip the intermediate step of using an external
library to first generate voxels from the 3D models and instead meant that the data could be encoded
directly from a point cloud to an array. The number of voxels is an important consideration. It not
only impacts the resolution of the 3D models, as indicated in Figure 6.2, but it also affects the required

Figure 6.1.: Examples of a 3D model with one label, two labels (’wall’ and ’window’), and four labels
(’wall’, ’window’, ’roof’, and ’door’ labels.
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Figure 6.2.: Examples of three different scales of voxels and how much memory is then required to
store the 3D model. This images shows two 3D models before the 3D models have been scaled relative
to each other.

amount of memory, which is an important consideration. As found in existing research, the creation of
high-resolution models is a critical next step in 3D GAN research. Balancing the need for high-quality
geometry is a limit of the amount of memory needed to load the models for training.

MEMORY The maximum resolution to allow the training to run on a laptop depends on the available
memory. Assuming that each voxel will be stored in 4 bytes of memory, the maximum resolution
is equal to the amount of memory available divided by the number of channels multiplied by four
bytes.

Vmax = Mavailable/(Ctotal ∗ 4 bytes) (6.1)

Where Mavailable is the amount of memory available, Vmax is the maximum number of voxels, and Cmax
is equal to the total number of channels. This means that the maximum size of the building models
in the training set is dependent on the total number of channels and the available memory. For this
thesis, I had two resources available, a laptop and a high performance computing cluster. More details
on the hardware are available in Section 7.1.

The minimum number of channels used was a total of 86 channels. This meant that the maximum
voxels could range between 11.6 million and 93.0 billion voxels per building model, which includes
the empty voxel space. This gives a maximum size geometry space of 226 x 226 x 226 when training on
a laptop and 453 x 453 x 453 when training on the Delft High Performance Computing Centre (DHPCC)
assuming a cubic shape. However, through the experiments, different numbers of channels were also
tested, with the maximum number of channels being 724 channels in total (architecture 17R described
in Table 9.3). Some even larger options with up to 1,924 channels were also tested. When using 724
channels, the maximum geometry space is 111 x 111 x 111 on a PC and 222 x 222 x 222 on the DHPCC.
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Figure 6.3.: An example of how a 3D model with two labels is encoded.

For the largest number of channels, 1,924, the maximum geometry space is 80 x 80 x 80 on a computer
and 160 x 160 x 160 on the DHPCC.

However, when selecting the geometry space size, there were also other factors to consider, such as the
number of training data points that are loaded at once, the padding, stride and kernel sizes, and the
size of the building models. The overall size was ultimately based on the size of the building models
and how the number of layers and stride impacted the size. For example, with a stride of two, the
dimensions of the geometry space are doubled for each convolution in the generator (and halved in
the discriminator or critic). This means that with five layers, the minimum size of each axis of the
geometry space can be 1 * 2 * 2 * 2 * 2 or 16. This, of course, is too small to fit any of the building
models, but it demonstrates how many factors impact the size of the geometry space. The selected
size is discussed in further detail in Chapter 7.

ENCODING TO ARRAY After the steps are taken to clean and pre-process the data set, it is necessary
to encode the voxelized 3D models to an array which the GAN can read. This is done through one-
hot encoding. The pseudo-code that describes the process of encoding the point cloud in an array is
described in Algorithm 6.1. Each point in the point cloud is transferred to the correct location in the
array and the label is encoded as a tensor. If two labels are used as with the training in this thesis
(empty and building geometry), then the encoding is [1,0] for empty voxels and [0,1] for filled voxels.
This can be seen in Figure 6.3. Additionally, the values of the labels are encoded into a label array,
which is saved separately. This is set up so that future research can explore training a ANN to label
generated geometry with more than two labels.

The final data structure of the encoded array is a 4-D matrix where the first axis describes the x
location, the second axis describes the y location, the third axis describes the z location of a voxel, and
the fourth axis describes the state of the voxel (filled or empty). Figure 6.4 shows a comparison by
visualizing the images of the point clouds from the data set above and the voxel representation of the
matrix after the point cloud is encoded.

6.3. Filling 3D Model Shells

The 3D models from the data set are hollow, but throughout the experiments it became evident that it
was important to also test the network architecture with solid building models. After recognizing this,
I wrote a script to fill in the building models. The pseudo-code that describes the process of filling the
building model is described in Algorithm 6.2. The script starts with the bottom layer of the building
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Figure 6.4.: A comparison showing the original point cloud model and a voxel representation of the
matrix after the 3D model has been encoded.

Algorithm 6.1: An overview of how the point clouds and labels are encoded to an array
Input: the point cloud pcd, the labels for each point label, the voxel size voxsize, the maximum

bounds of the geometry space (xmax, ymax, zmax)
Output: P: the encoded array of the point cloud, L: the encoded array of the labels

1 generate P: a new, empty matrix of size [xmax, ymax, zmax, 2]
2 generate L: a new, empty matrix of size [xmax, ymax, zmax, 1]

3 calculate the translation t between the center of the bottom layer of the matrix and the center
of the bottom of the point cloud

4 for i, p in pcd do
5 x = p[0] // voxsize + t[0]
6 y = p[1] // voxsize + t[1]
7 z = p[2] // voxsize + t[2]

8 P[x, y, z] = [0,1]
9 L[x, y, z] = label[i]

10 return P, L
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Figure 6.5.: The original 3D model, a pulled apart view of the 3D model showing the hollow internal
structure, and a pulled apart view of the 3D model showing the solid internal structure after filling
the interior.

model, selects the center point, and checks if it is filled in. If it is not filled, it fills the center point
and then adds all the adjacent points to a list to be checked as well. When it gets to a point that is
already filled, the neighbors do not get added to the list, so the fill stops at the edges. There are also
checks in place for layers that have holes and for layers where the center point is outside of the exterior
boundary. The script does not perfectly fill all 3D models, but it fills the majority of the layers and
works fairly well. Figure 6.5 shows an example of how it successfully fills one building model and fills
another fairly well, although not perfectly. If more time were available to continue this research, the
script should be adjusted to catch more edge cases, which would allow it to fill all models perfectly.
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Algorithm 6.2: An overview of how the interior points and labels are filled in the array
Input: the encoded array of the point cloud P, the encoded array of the labels L, the

maximum height h, the maximum bounds of the geometry space (xmax, ymax, zmax)
Output: P: the filled encoded array of the point cloud, L: the filled encoded array of the labels

1 center = (xmax // 2, ymax // 2)

2 for layer in range(h) do
3 points = [(center[0], center[1], layer)] while length of points is greater than 0 do
4 if point (x, y, z) in points is within the maximum bounds and P[x, y, z] is empty then

// fill the voxel, [0, 1] represents a filled voxel

5 P[x, y, z] = [0, 1] // 50 is the label for interior voxels

6 L[x, y, z] = 50

7 neighbors = [ (x-1, y, z), (x, y-1, z), (x, y+1, z), (x+1, y, z) ]

8 append neighbors to points

9 return P, L
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Once the data is properly encoded, it can be used to train a GAN model that generates building
geometry. Initially, the architecture was based on 3D GAN documented by [Wu et al., 2016]. However,
after testing this architecture and adjusting the hyperparameters, it became clear that this architecture
was not going to work for the application of generating buildings. Therefore, it was necessary to
develop new architectures to generate 3D geometries and test these different architectures.

7.1. System Details

For the computation time mentioned in the rest of the thesis, the data processing was completed on
one of two set-ups.

A Windows PC, which will be referenced as PC, with following specifications:

1. CPU: Intel(R) Core(TM) i7-10750H @ 2.60GHz (6 cores)

2. GPU: NVIDIA Quadro T1000 with Max-Q Design (4 GB GDDR6 dedicated)

3. RAM: 16 GB

The DHPCC [Delft High Performance Computing Centre , DHPC], which will be referenced as DHPCC
with the following specifications:

1. CPU: AMD EPYC 7402 24C @ 2.80 GHz (2 cores)

2. GPU: NVIDIA Tesla V100S 32 GB

3. RAM: 2GB - 8GB requested [64 GB available total]

7.2. Testing State-of-the-Art 3D GANs

As discussed in Section 3.5, GANs consist of two ANN, a generator G and a discriminator D. The
generator learns how to map a random noise vector z to a 3D geometry x, G(z) = x. The discrim-
inator distinguishes between the geometry generated by G and the ground truth. Therefore, given
x, D should be able to tell if x is real or fake by providing an output that is the probability value
D(x) = P(real). The two networks compete against each other in a zero-sum game. The generator is
trying to produce 3D geometry as close to the ground truth, while the discriminator becomes better at
identifying if the geometry is fake.

Initially, I implemented an architecture structure based on 3D GAN [Wu et al., 2016]. This structure is
a DCGAN where the discriminator has a deep convolutional network to stabilize the training, but the
output is 3D instead of 2D. With the goal of rapidly prototyping network designs, I made adjustments
to the architecture starting with fewer layers and channels to accelerate training, as shown in Figure
7.1.
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Figure 7.1.: The generator in v00 base architecture based on 3D GAN [Wu et al., 2016]. The discrimi-
nator mostly mirrors the generator. It takes G(z) as an input and outputs a real number in [0, 1].
Additionally, the discriminator uses Leaky ReLU, instead of ReLU, as the activation function.

I also initially used only one training data point to minimize training time and get results faster.
Having a small training data set means that the model is more prone to overfitting, but I would still
expect the model to produce a meaningful output that allows me to evaluate if it is training properly.
This allowed the architectures to be tested quickly on a PC with 6,000 epochs of training completing
in a few hours. Additional information on which models were included in the small data set and
visualizations of some models can be found in the Appendix A.1.

More detailed information on the GAN architecture is provided later in this section. Using this network
architecture, after several thousand epochs, the generator should produce geometry similar to the data
set. After implementing this architecture, the training was very unstable when training on the data set
which contains the 3D building geometry.

Table 7.1 shows the different hyperparameter adjustments that were initially tested to stabilize training.
With these architectures, the network width, learning rates, and initializers were adjusted.

NETWORK WIDTH Network width refers to the number of channels used. Remember that each
channel is one learned feature of the 3D model. Therefore, it is important to balance the number of
channels so that the model learns enough features to generate accurate geometry, but not too many
to unreasonably increase the amount of time it takes to train. It is also important to limit the network
width so that the training procedure does not exceed memory limits.

LEARNING RATES The learning rate determines how much of an impact a single epoch’s results
have on the update to the weights and biases of the network. Changing the learning impacts how well
the network learns and the balance between the generator and the discriminator. The initial rates were
based on the learning rates Wu et al. [2016] used which are 0.025 in the generator and 0.00001 in the
discriminator.
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ID factors

v00 base architecture

v01 learning rate G: 0.025 D: 0.00001

v02 kernel 4x4x4

v03 learning rate G: 0.025 D: 0.000001
v03 learning rate G: 0.025 D: 0.001
v03 learning rate G: 0.025 D: 0.00015

v04 4 layers 48, 24, 12, 2

v05 4 layers 56, 28, 14, 2
v05 4 layers 56, 28, 14, 2, initializer RandomNormal
v05 4 layers 56, 28, 14, 2, initializer GlorotNormal
v05 4 layers 56, 28, 14, 2, initializer GlorotUniform

Table 7.1.: A list of the experiments that were run to asses the existing 3D GAN architecture.

INITIALIZERS Initializers define the way in which the initial random weights of layers are set. Keras
offers many initializer options, but for GANs, HeNormal, RandomNormal, GlorotNormal, and Gloro-
tUniform are the most commonly used.

For each version of the architecture, the hyperparameter options were tested based on the changes
noted in Table 7.1. A 240 x 240 x 40 geometry space was selected because the largest model in the
data set would fit inside this space. Training with a data set of one model also meant that this larger
geometry space did not cause any memory problems. The initial base architecture of v00 is described
below.

GENERATOR v00 [BASE] The generator consists of three fully convolution layers with numbers of
channels {32, 16, 8, 2}, kernel sizes {3, 3, 3}, and strides {2, 2, 2}. The kernel and stride sizes are the
same in all three dimensions. The activation function used is ReLU (Figure 3.4) between convolutional
layers, and a Softmax (Figure 3.4) layer at the end. The kernel initializer used is HeNormal. The
input is a 200-dimensional vector, and the output is a 240 × 240 × 40 matrix with values in [0, 1]. The
generator uses ADAM [Kingma and Ba, 2014] with Learning Rate=1e-4 and Beta=0.5.

DISCRIMINATOR v00 [BASE] The discriminator is a mirrored version of the generator, it takes an
input of a 240 × 240 × 40 matrix, and outputs a real number in [0, 1]. The discriminator consists of
three volumetric convolution layers, with numbers of channels {8, 16, 2}, kernel sizes {3, 3, 3}, and
strides {2, 2, 2}. The kernel and stride sizes are the same in all three dimensions. There are Leaky
ReLU (Figure 3.4) layers with the alpha parameter set to 0.2 in between the convolutional layers, and a
Sigmoid (Figure 3.4) activation function at the end. The discriminator uses ADAM [Kingma and Ba,
2014] with Learning Rate=1e-4 and Beta=0.5.

All the tests resulted in the generator producing noise and training remained unstable. Despite ad-
justing the parameters, the generator and discriminator did not balance each other. This is a typical
challenge faced when training GANs. Figure 7.2 shows some results from this early training. The
visualized output is noise and the training does not converge or stabilize. Each improvement the gen-
erator makes causes a sharp impact on the discriminator and they are not able to find an equilibrium.
When looking at the different aspects of the training, it became clear that the models had the common
problem of vanishing gradients.
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Figure 7.2.: Early training results showed a very unstable training process and the output remained
noise or geometry that does not resemble a building.
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Figure 7.3.: When using Wasserstein Loss [Arjovsky et al., 2017], a Critic (C) is trained with the training
data and the Critic evaluates the fake geometry and outputs a scalar representing the distribution
of realness between −∞ and ∞.

7.3. GAN Loss Functions

After testing a number of different parameter adjustments, the primary issue that made the training
unstable was vanishing gradients. Unstable training led me to realize that instead I would need to
develop a new GAN architecture to address the problem of generating building geometry.

To address the issue of vanishing gradients, I implemented Wasserstein Loss [Arjovsky et al., 2017].
The expectation was that using Wasserstein Loss would stabilize the training by solving the problem
of the vanishing gradients. This would then allow the generator to have a more successful training
procedure and generate geometry that was more similar to the training data. The results of the
experiment showed that this primary change helped stabilize the training and provided results that
aligned with the initial expectations. This loss function replaces the commonly used min-max loss
function. To understand how changing the loss function improved the training, it is necessary to
understand the algorithm of the loss function.

Min-Max Loss Function Recall that the loss function used by GANs is called the standard GAN loss
function or the min-max loss function. This loss function was first described by Goodfellow et al.
[2014] when they first described GANs.

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))] (7.1)

The loss function is minimized by the generator, and it is maximized by the discriminator. Although
mathematically, the min-max loss formulates the loss effectively, in practice it does not work as well.
The generator easily falls behind the discriminator and, therefore, stops learning if it cannot catch up
because the generator cannot gain any valuable information from the discriminator. The loss function
can be examined in relation to the discriminator and the generator.

Discriminator Loss The discriminator trains by classifying real data and fake data that is output by
the generator. The discriminator receives a penalty for incorrectly classifying the data. For example,
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by classifying a real data point as fake or a fake data point as real. The gradient is calculated by
maximizing the function:

∇θd

1
m

m

∑
i=1

[log D(xi)] + log (1 − D(G(zi)))] (7.2)

where log D(xi) describes the probability that the discriminator classifies the real data points correctly.
Maximizing log (1 − D(G(zi))) provides the reward for correctly labeling fake data points as fake.

Generator Loss To train, the generator samples random noise and generates an output. The output is
then classified by the discriminator as real or fake. The generator’s loss function rewards the generator
for tricking the discriminator when the discriminator labels the data point as real. If it does not trick
the discriminator, it is penalized. The gradient is calculated by minimizing the function:

∇θg

1
m

m

∑
i=1

[log (1 − D(G(zi)))] (7.3)

Figure 7.4.: There exists a distribution (green line) of the buildings that exist. The discriminator uses
its assumption of this distribution (red line) to evaluate if data samples produced by the generator
(yellow) are real or fake and then adjust its distribution based on the new data point (dashed red
line).

To better understand the Min-Max Loss function, note the following scenario. As shown in Figure
7.4 (A), there exists a distribution, represented by the green line, of the buildings that exist. It is not
possible to know this distribution, but there are available data points that show which buildings are
more likely to exist. There is another distribution, represented by the red line, that the discriminator
has assumed based on the data set it has seen. When the generator creates a new building geometry,
it is located somewhere along this distribution, as shown in Figure 7.4 (B). When presented this new
sample, the discriminator uses its distribution to determine whether the sample is real or fake and
provides this information to the generator. The generator then tries to improve its next output based
on the feedback, working towards geometry that gets identified as real. This is how the generator
learns. The discriminator also takes the actual value of this new data point to adjust its distribution as
shown in Figure 7.4 (C). This is how the discriminator learns. When using the Min-Max Loss Function,
the generator receives very little information from the discriminator.
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Wasserstein Loss Function To address the issue of vanishing gradients, I instead implemented Wasser-
stein Loss [Arjovsky et al., 2017]. This change helped stabilize the training and provide results that
were consistent with the initial expectations. When implementing Wasserstein loss, the structure of
the network changed because instead of a discriminator D training the generator G, the discriminator
is replaced by a critic C. Figure 7.3 gives an overview of a typical Wasserstein generative adversarial
network (WGAN) structure. Instead of only providing a probability value to the generator, the critic
scores the realness or fakeness of a given 3D geometry produced by the generator. The critic outputs a
scalar between −∞ and ∞. Therefore, given x, C should be able to produce a scalar s, representing the
distribution of realness and fakeness, C(x) = s. The loss function for Wasserstein loss is as follows:

min
G

max
C

Ez∼pz(z)[C(G(z))]− Ex∼pdata(x)[C(x)] (7.4)

Changing the loss function to improve performance is motivated by the process of training GANs.
In all GANs, the generator trains by minimizing the distance between the distribution of the training
data and the distribution of the generated geometry. There are a number of distance measures that
can be used which include: Kullback-Leibler (KL) divergence, Jensen-Shannon (JS) divergence, and
Earth-Mover (EM) distance, also known as the Wasserstein distance. Min-Max Loss effectively uses JS
divergence and minimizes it. To implement Wasserstein loss, the critic is trained to approximate the
EM or Wasserstein distance instead, and also provides this additional information to the generator.
Since the Wasserstein distance is continuous and differentiable, it will provide a linear gradient to the
generator even after it is well trained. This is contrary to a discriminator model, which once trained
may no longer provide useful gradient information to the generator. The use of a critic allows the GAN
model to seek convergence by lowering the generator loss instead of stabilizing by finding stability
between a generator and discriminator. Arjovsky et al. [2017]

Figure 7.5.: There exists a distribution (green line) of buildings that exist. The critic uses its assumption
of this distribution (red line) to evaluate how the distribution produced by the generator (yellow
line) is different than the critic’s distribution. The generator then adjusts its distribution based on
information received from the critic (dashed yellow line) and the critic updates its distribution based
on the new data points (dashed red line).

To better understand the Wasserstein loss function, remember the scenario set up in the Min-Max
loss section. As shown in Figure 7.5 (A), there exists a distribution, represented by the green line, of
buildings that exist and another distribution, represented by the red line, that the critic has assumed
based on the data set it has seen. With Wasserstein loss, the generator also randomly guesses this
distribution shown with the yellow line in Figure 7.5 (B). The generator creates multiple samples for
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Figure 7.6.: The generator in the base architecture for DCGAN and WGAN. The discriminator and critic
mostly mirror the generator.

the critic to review, as shown with the yellow points in Figure 7.5 (B). Based on these points, the critic
is able to guess what the generator’s distribution most likely is, and it compares this distribution to
its own distribution. The critic then determines how the generator’s distribution needs to change
based on the critic’s own distribution using the Wasserstein distance. This is done by taking the area
under the curve and moving it as indicated in Figure 7.5 (B). The generator is then able to update its
distribution based on the information it has received from the critic, as shown by the yellow dashed
line in Figure 7.5 (C). This is how the generator learns. The critic can then also update its distribution
based on the new data points it received, as shown by the red dashed line in Figure 7.5 (C). This is
how the critic learns. When seeing these graphs, it becomes clear that when using Wasserstein Loss,
more information is exchanged between the generator and the critic. This helps the generator learn
faster because it does not have to work by trail and error as with the Min-Max Loss Function.

7.4. Experimental Set Up

[completed on PC]

After changing the loss function, I also explored some other hyperparameters of the network architec-
ture that could be adjusted. I completed an ablation study to determine which aspects of the network
architecture had an impact on stabilizing the training. An ablation study separates out hyperparam-
eters and tests these to determine which parameters impact a successful architecture. These changes
were tested on both the original DCGAN and the new WGAN. Starting with the base architectures de-
scribed below and visualized in Figure 7.6, subsequent versions incorporated different hyperparam-
eters into the architecture until the training stabilized. Due to having to test many different factors,
it was important to be able to test quickly. Therefore, the training data set still contained only 1 3D
model to allow fast training. More information on the 3D model used can be found in Appendix A.1.
The base architecture started with four layers and the maximum number of channels was 48, since this
architecture performed better than the network with three layers. The 160 x 160 x 80 geometry space
was selected because most of the data set fit within this smaller geometry space. The model performs
better when the generated geometry takes up most of the geometry space. Additionally, when another
layer was added to the network, it was necessary to increase the height of the geometry space. To do
this without increasing the required memory by too much, the width and depth were reduced. The
base architecture for 3D GAN and WGAN is described below.
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3D DCGAN
This architecture is based on the precedent of the 3D GAN architecture [Wu et al., 2016].

LOSS FUNCTION Min-Max GAN loss function

GENERATOR The generator consists of four fully convolution layers with a number of channels of
{48, 24, 12, 2}, kernel sizes {4, 4, 4, 4}, and strides {2, 2, 2, 2}. The kernel and stride sizes are the
same in all three dimensions. The activation function used is ReLU between convolutional layers, and
a Softmax layer at the end. The input is a 200-dimensional vector, and the output is a 160 × 160 × 80
matrix with values in [0, 1]. The generator uses ADAM [Kingma and Ba, 2014] as the optimizer with
Learning Rate=0.0025 and Beta=0.5.

DISCRIMINATOR The discriminator is a mirrored version of the generator, it takes an input of a 160
× 160 × 80 matrix, and outputs a real number in [0, 1]. The discriminator consists of four volumetric
convolution layers, with a number of channels of {12, 24, 48, 2}, kernel sizes {4, 4, 4, 4}, and strides {2,
2, 2, 2}. The kernel and stride sizes are the same in all three dimensions. There are Leaky ReLU layers
with the alpha parameter set to 0.2 in between the convolutional layers, and a Sigmoid layer at the end.
The discriminator uses ADAM [Kingma and Ba, 2014] as the optimizer with Learning Rate=0.00001
and Beta=0.5.

3D WGAN
This architecture takes DCGAN as a starting point, but with a revised loss function.

LOSS FUNCTION Wasserstein loss function [Arjovsky et al., 2017]

GENERATOR The generator consists of four fully convolution layers with a number of channels of
{48, 24, 12, 2}, kernel sizes {4, 4, 4, 4}, and strides {2, 2, 2, 2}. The kernel and stride sizes are the
same in all three dimensions. The activation function used is Leaky ReLU between the convolutional
layers and a Tanh layer at the end. The input is a 200-dimensional vector, and the output is a 160 ×
160 × 80 matrix with values in [0, 1]. The generator uses ADAM [Kingma and Ba, 2014] with Learning
Rate=0.0025 and Beta=0.5.

CRITIC As a mirrored version of the generator, the critic takes as input a 160 x 160 x 80 matrix, and
outputs a scalar between −∞ and ∞. The critic consists of four volumetric convolution layers, with
a number of channels of {12, 24, 48, 2}, kernel sizes {4, 4, 4, 4}, and strides {2, 2, 2, 2}. The kernel
and stride sizes are the same in all three dimensions. There are Leaky ReLU layers added between the
convolutional layers of parameter 0.2, and no activation function in the final layer. At the end, there
is a flatten layer followed by a dense layer with one output and no activation. The critic uses ADAM
[Kingma and Ba, 2014] with Learning Rate=0.00001 and Beta=0.5.

7.5. Wasserstein and Min-Max Loss Experiments and Results

To improve the quality of the output and stabilize the training, a number of hyperparameters were con-
sidered. Some hyperparameters can only be applied to DCGANs or WGANs while others can be applied
to both DCGANs and WGANs. Select results are visualized and shown in this chapter to demonstrate
specific training outcomes. Visualized results from all architectures that were tested starting with the
base architectures can be seen in the Appendix B.

LOGITS (DCGAN ONLY) Logits is only relevant for DCGANs. This is because it is a parameter of the
binary cross entropy, which is not used in WGANs. When the logits parameter is set to true, the loss
function takes a value between negative infinity and infinity. It then uses sigmoid to transform the
input to a value between 0 and 1. Another way of accomplishing this is to set logits to false and then
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Figure 7.7.: ReLU [Nair and Hinton, 2010] and Leaky ReLU activation functions. Graphs from Wikipedia
[2023].

add a sigmoid layer at the end of the discriminator. When logits is set to false, then the loss function
expects to take as an input the probability of real and fake. The sigmoid at the end of the discriminator
would transform the output to this probability; however, this can lead to more floating point errors.
Using logits instead reduces the floating-point errors and is therefore a better option.

LABEL SMOOTHING (DCGAN ONLY) As a standard, the discriminator outputs a label of 1 to
represent real geometry and a label of 0 to represent fake geometry. Label smoothing randomly varies
these values so that real geometries receive a value between 0.7 and 1.2 and fake geometries receive a
value between 0.0 and 0.3 as described in Algorithm 7.1. This can have a regularizing effect on model
training. [Salimans et al., 2016]

Algorithm 7.1: An overview of how label smoothing is implemented
Input: the original label l
Output: the label after smoothing

// random returns a random value between 0 and 1

1 if l == 1 then
2 return l - 0.3 + random * 0.5

3 if l == 0 then
4 return l + random * 0.3

ACTIVATION FUNCTIONS Activation functions are used after each convolutional layer and at the
end of the generator. Additionally, there are different layer structures that can be used at the end of
the discriminator or critic. For the activation function after each convolutional layer, it is common
to use ReLU in the generator and Leaky ReLU in the discriminator regardless of which loss function is
used. ReLU however cuts off all negative values by setting them equal to zero. Leaky ReLU, on the other
hand, allows some values less than zero, as shown in Figure 7.7. This is why some researchers have
implemented Leaky ReLU in both the generator and the discriminator. The slope of the line mapping
negative numbers can be specified. In TensorFlow, the slope is adjusted by the parameter alpha and
0.2 is a good starting point. This is why the experiments tested architectures and compared using ReLU
and Leaky ReLU in the generator.

WGANs also use different activation functions at the end of the generator and the critic. At the end of
the generator, they use Tanh or Sigmoid. At the end of the critic, there are no activation functions, but
there is a layer to flatten and an additional dense layer. DCGANs use Softmax at the end of the generator
and no activation function and no additional layers at the end of the discriminator. Therefore, I also
tested whether the Tanh activation function at the end of the generator and the flatten and additional
dense layer at the end of the discriminator would impact the performance of DCGAN for this training
problem.
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LEARNING RATE DECAY Using learning rate decay (lrDecay) means that the algorithm starts with
an initial learning rate and decays the learning rate as training continues. For the experiments, the
learning rate started at 0.0001 with a decay factor of 0.9999600016 based on commonly used values.
The learning rate decreased as training went on but never below a minimum of 0.000001.

Research has shown that lrDecay works based on the optimization analysis in stochastic gradient de-
scent. The large initial learning rate helps the algorithm escape false local minima and the rate is then
decreased (decayed) so that the algorithm will locate a true local minimum and not oscillate around
it [LeCun et al., 1990; Kleinberg et al., 2018]. There are also other theories of why it works. Others
have argued that starting with a higher initial learning rate keeps the network from memorizing noisy
data and therefore the decay helps improve the network’s ability to learn complex patterns [You et al.,
2019]. Although the exact reasoning is not agreed upon, lrDecay is cited as a factor that improves GAN
training and was therefore a hyperparameter that was tested in the experiments.

EXPERIMENTS The parameters described above each provide benefits that can stabilize GAN training.
To properly understand how each parameter impacts the training and output of the GAN, a number
of experiments were run with different variables. The experiments not only tested individual param-
eters, but they also tested different combinations of parameters and how they work together. The
experiments and results are described in Table 7.2.

This first round of experiments was completed on the PC and involved a training data set of 1 3D
model. The goal was to try to overfit the network to the training data set so that the initial results
could be visualized. A small training data set was also used because the experiments needed to run
on a PC in a reasonable time frame. Training with the 1 3D model kept the training time below three
hours. The results generated by the base architectures are visualized in Figure 7.8. These tests were not
successful and did not produce any building geometry. The output was only noise. Figure 7.9 shows
the training results of architectures that did not train well. Figure 7.10 shows the initial results of the
G architecture which performed the best in the experiments. Initial tests were useful in identifying
which parameters were key to stabilize the training and how the loss function had an impact on the
training.
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Figure 7.8.: Images showing the results of the base architectures from DCGAN (top) and WGAN
(bottom) and graphs showing their respective loss.
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Figure 7.9.: Images showing generated geometry that resembles noise from DCGAN (top) and WGAN
(bottom) and graphs showing their respective loss.
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Figure 7.10.: Images showing the results of the G architecture with DCGAN on the top and WGAN on
the bottom and graphs showing their respective loss. The models were trained with 1 training data
point shown above the results.
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ID factors 3D DCGAN 3D WGAN

train output train output

BASE base architecture [U] [1] [U] [1]
A Leaky ReLU [x] [x] [U] [1]
B lrDecay [x] [x] [U] [1]
C using logits [U] [1] [x] [x]
D using label smoothing [U] [1] [x] [x]
E using logits + Leaky ReLU [U] [1] [x] [x]
F using logits + lrDecay [U] [1] [x] [x]

G using logits (DC only) + Leaky ReLU + lrDecay [U] [1] [S] [4]
G-A G w/ Tanh activation (end of G) [U] [1] [x] [x]
G-B G w/ Tanh activation (end of G) and flatten (end of D) [U] [1] [x] [x]

H using logits + Leaky ReLU + lrDecay + label smoothing [U] [1] [x] [x]

Table 7.2.: List of experiments run to asses GAN architecture with depth and width of 11 per Table 9.1.
[x] indicates this combination was not tested because the parameters cannot be applied to the noted
architecture [U] indicates that the training was unstable [S] indicates that the training was stable.
[1] indicates the output was noise as shown in Figure 7.9 [2] indicates that the output size, shape,
and/or proportions are significantly different than the training data [3] indicates that the output is
correct in size or proportion but the shape is not accurate [4] indicates that the output is noisy but
roughly the correct size, shape, and proportions [5] indicates the output is roughly the correct size,
shape, and proportions and has less noise [6] indicates the geometry is very similar to resolution of
the training data. The highlighted row indicates the best performing architecture.

7.6. Experiment Analysis and Conclusions

The results of the experiments are indicated in Table 7.2 and the generated geometry from the best
performing architecture shown in Figure 7.10.

Based on the completed experiments, DCGANs did not train well. The results showed that even after the
various hyperparameters were adjusted, the generator only produced noise. Additionally, the training
was very unstable, with vanishing gradients being the primary issue. The different parameters tested
on DCGANs did not have an impact on stabilizing the training and the generator continued to produce
only noise. The switch to Wasserstein loss was key to stabilize the training.

ACTIVATION FUNCTIONS On its own, using Leaky ReLU in both the generator and the critic did
not have an impact on the training, but when also using lrDecay, it helped to ensure that the WGAN
produced geometry that had roughly the correct size, shape and proportions.

LEARNING RATE DECAY When implemented alone with the base architecture, lrDecay did not ben-
efit the training. However, using lrDecay in combination with Leaky ReLU helped to ensure that the
WGAN produced geometry that had roughly the correct size, shape, and proportions.

Based on the ablation study, it was determined that a 3D implementation of WGAN with some addi-
tional modifications allowed for stable training. I was unable to reproduce a stable training of the
3D GAN model architecture when it was trained on the building geometry data set. The key factors
that impacted the training were using Wasserstein Loss [Arjovsky et al., 2017], using Leaky ReLU as the
activation function in the generator and critic, and implementing lrDecay in the generator and critic.
After these experiments, the most promising 3D GAN architecture was G. Architecture G produced
geometry that was noisy but it had roughly the correct size, shape, and proportions as the training
data model.
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After developing the initial 3D WGAN architecture, it was necessary to test the architecture with more
data points. Initially, tests were run on several of the architectures with a data set containing 10 models.
The 10 models used are described in Appendix A.1. Then, it was necessary to scale up even more to
test on at least 100 models. Training on 10 models on the PC was slow, and training took almost an
entire day. Therefore, training with 100 models was also not feasible on the PC since the training time
was too long. To continue training, I set up access to DHPCC so that I could run experiments using the
larger training data set of at least 100 3D models. The data set is described in Appendix A.2. The first
test of architecture G with a 10 and then 100 model data set resulted in some interesting results. The
resulting geometry no longer looked like the building shapes of the training data, so more exploration
was necessary to improve the GAN architecture.
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The results of the initial tests were promising, but it was necessary to test on larger data sets. After
testing the WGAN architecture G with 100 data points, the results were less promising than the tests on
1 data point. Additional information on which models were included in the 100 model data set and
visualizations of some models can be found in Appendix A.2. When architecture G was trained on one
data point, it was overfitting, but the geometry it generated was accurate in size, shape, and proportion.
However, when the same architecture was trained on 100 models, the generator created geometry that
was not accurate in size and proportion. Figure 8.1 shows how the results changed when using a larger
training data set. This led to another round of experiments that studied additional hyperparameters.
Only select visualizations are shown in this chapter, but the results of all architectures that were tested
can be seen in Appendix B.

8.1. Experiment Set Up

[completed on DHPCC]

From the initial experiments discussed in Chapter 7, the generator output 3D geometry, but this ge-
ometry did not look like building models. After determining that DCGAN remained unstable despite
parameter adjustments, I began testing additional changes using only WGAN. The G architecture was
used as the base architecture with a slight modification of using Sigmoid instead of Tanh as the acti-
vation function at the end of the generator. This is because sigmoid outputs a value between 0 and
1 which aligns with the goal of the generator outputting values between 0 and 1 for each voxel to
represent whether the voxel is visible or not. Furthermore, the training data set consisted of 100 hand-
selected training building models that were similar in size, shape, and height. A list of the training
building models used can be found in Appendix A.2. These models were scaled so that the height of
all the models was equal to one unit.

8.2. Experiments and Results

Through an additional literature review, a new set of WGAN hyperparameters were identified. These
were all parameters that various researchers noted would improve WGAN performance. When these
new hyperparameters were added, it was also important to assess their compatibility with existing
hyperparameters selected after the first round of experiments. lrDecay, a feature that was found to
be helpful with architecture G, did not always generate good results when used with the additional
hyperparameters that were tested. Therefore, some architectures used lrDecay and others did not.
When learning rate decay was not used, the learning rate was LR = 0.00005 for both the generator and
the discriminator.

BATCH NORMALIZATION batch norm normalizes the input of the next layer of an ANN by centering
and scaling each entry by the population mean and variance across a batch. The original idea of
batch norm was to accelerate training and improve stability by reducing the covariant shift [Ioffe and
Szegedy, 2015]. However, this has been disputed, and there is no consensus among DL practitioners
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Figure 8.1.: Images showing the results of the G architecture of WGAN. The model was trained with 1
and 100 training data points respectively.
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Figure 8.2.: A visual representation of the trajectory of three different optimizers.

about the usefulness of batch norm [Santurkar et al., 2019], especially for GANs Xiang and Li [2017].
Salimans et al. [2016], for example, discuss implementing a modified version of batch norm that they
introduced called virtual batch normalization. Salimans et al. [2016] found that batch norm makes the
output highly dependent on several other inputs. Therefore, they instead used a virtual batch which
is chosen once and fixed at the start of training. However, this method is computationally expensive
because it requires forward propagation on two batches. Xiang and Li [2017] also found that batch norm
can decrease the stability, efficiency, and quality of GAN compared to their alternative normalization
method, weight normalization. Since existing research conflicts, it was worth implementing batch norm
to understand the impact as it pertains to generating 3D geometry.

ADAM OPTIMIZER The ADAM optimizer [Kingma and Ba, 2014] extends an adaptive version of
stochastic gradient decent. There are two adaptive gradient decent algorithms which ADAM is based
on, AdaGrad and root mean squared propagation (RMSProp). AdaGrad has a learning rate per param-
eter, which helps increase the learning rate when there are few parameters. Therefore, it performs
better when there are sparse gradients. RMSProp, described in more detail in the next section, was de-
veloped to speed up mini batch learning. ADAM combines these two concepts in its implementation.
It is currently the most popular optimization algorithm.

RMS PROP Like ADAM, RMSProp, is based on the concepts of stochastic gradient decent. The RMSProp
optimizer Hinton [2018] is a gradient-based adaptive learning rate method, which means that it uses
the gradient to minimize the objective function. RMSProp tracks a running sum of the average of the
gradients squared. The learning rate is then adapted by dividing the learning rate by the average of
the gradients squared Hinton [2018]. This helps prevent the algorithm from getting stuck on saddle
points. It is currently the second most popular optimization algorithm.

When comparing RMSProp with ADAM with the same learning rate, RMSProp has a high momentum
and reaches further before changing direction, which means it is faster, but it can sometimes get stuck
at saddle points in scenarios where ADAM does not. A visual example of this can be seen in Figure
8.2. There is no clear consensus on which is better. Both optimizers are commonly used. In the
research discussed in previous chapters, architectures A through H all used the ADAM optimizer, but
for architectures J through W, both ADAM [Kingma and Ba, 2014] and RMSProp Hinton [2018] were
tested. The use of RMSProp is noted in the table. When no optimizer is noted, ADAM is used since this
was described in the base architecture.
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WEIGHT CLIPPING As Sohrab [2003] described, ”there exists a real number such that, for every
pair of points on the graph of this function, the absolute value of the slope of the line connecting
them is not greater than this real number”. The smallest bound that this real number can be is called
the Lipschitz constant. Due to the theory of Wasserstein metrics, WGANs must maintain a Lipschitz
constant for the discriminator that is less than 1 to train. To ensure that the GAN loss function has a
Lipschitz constant bounded by 1, weight clipping is introduced. Weight clipping clips the weights if
their norm is too large. When weight clipping is implemented, it keeps the Lipschitz constant under
control.

GRADIENT PENALTY Despite having been commonly applied, weight clipping causes a number of
problems when applied to WGANs. To understand these problems, remember that for WGANs, the critic
learns a value function that is then able to output the value representing the distribution of realness.
The value function estimates how good it is to take an action given a specific set of observed features.
The value surface is the representation of a multidimensional value function. Gradient penalty and
weight clipping both impact the value function.

Weight clipping results in weights that are close to the boundary conditions as shown in the top right
graph in Figure 8.3. This results in a pathological value surface, which means that the resulting value
surface is contrary to intuition [Gulrajani et al., 2017; Chen and Tong, 2017]. The impact is that the
value function that the critic learns has a pathological surface, meaning that it cannot represent the
true distribution of buildings well. Instead of clipping the weights, Gulrajani et al. [2017] proposed a
penalty to the norm of the gradient of the critic. This penalty is calculated with respect to the critic’s
input and, therefore, encourages the satisfaction of the Lipschitz constraint without the issues caused
by weight clipping. The equation for the gradient penalty added to the critic is as follows:

min
G

max
C

Ez∼pz(z)[C(G(z))]− Ex∼pdata(x)[C(x)] + λEx∼pdata(x)[(∥∇xC(x)∥2 − 1)2] (8.1)

where λ is the regularization rate and controls the magnitude of the penalty by weighing it against
the regular Wasserstein loss. The benefits of weight clipping can be seen in the experiments run by
Gulrajani et al. [2017] on the Swiss Roll data set. Figure 8.3 generated by Gulrajani et al. [2017] shows
how the gradient penalty kept the gradient norms consistent during training and kept the weights
distributed across a normal distribution.

GRADIENT PENALTY AND NORMALIZATION It is important to note that implementing gradient
penalty does not work with batch norm in the critic. This is because batch norm changes the way the critic
maps geometries to a scalar value. Without batch norm, the critic maps a single input to a single output.
With batch norm, the critic maps a whole batch of inputs to a batch of outputs Ioffe and Szegedy [2015].
Gradient penalty is no longer valid because the penalty calculated is the norm of the critic’s gradient
with respect to each independent input. Gulrajani et al. [2017] instead recommends layer normaliza-
tion, which does not introduce a correlation between samples. According to this recommendation,
architectures Q-A and S-A use layer normalization in the critic and batch norm in the generator. Using
layer normalization leads to the generator only producing noise throughout the training. Therefore, it
was also important to test using no normalization in the discriminator. Architectures Q-B and S-B use
no normalization in the critic and batch norm in the generator.

EXPERIMENTS All the parameters discussed above are mentioned in research papers as methods
that help stabilize GAN training and help clarify the output. The second round of experiments con-
tinued using hyperparameters that were found to be successful from the first round of experiments
(Wasserstein loss, Leaky ReLU, and lrDecay) and built on these. The experiments continued to look for
changes that would stabilize training and help the generator produce more clear outputs. As noted,
lrDecay did not always produce favorable results and, therefore, was only used in select architectures
as indicated in Table 8.1.
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Figure 8.3.: Gulrajani et al. [2017] shows how gradient penalty was able to keep the gradient norms
consistent during training while weight clipping caused them to explode or vanish. Weight clipping
(top, right) pushes the weights towards two values which are the extremes of the clipping range
while gradient penalty (bottom, right) keeps a non-degenerate distribution. Image by Gulrajani
et al. [2017].

The experiments were carried out on the DHPCC with a training data set of 100 3D models and each
training of 8,000 epochs ran approximately six to eight hours. The experiments and the results are
described in Table 8.1. Figure 8.4 visualizes the training of one of the unsuccessful architectures,
architecture M. Figure 8.5 shows the results of the R architecture which had the most successful
training outcomes with width and depth of 11 per Table 9.1.

8.3. Experiment Analysis and Conclusions

After reviewing a number of additional hyperparameters, it became evident that certain parameters
had a larger impact. The results are indicated in Table 8.1 and the geometry generated from the
architecture with the best performance shown in Figure 8.5. Overall, there was a benefit to using
RMSProp over ADAM as the optimizer. Furthermore, the gradient penalty was more beneficial than
weight clipping, which aligns with current research [Gulrajani et al., 2017]. After completing the
research, I found a survey about different deep learning applications in design. My findings were
validated by the notes made by Newton [2019] in their survey, where they implemented a WGAN
architecture with gradient penalty to generate skyscrapers.

BATCH NORMALIZATION batch norm had no consistent impact on training. It improved some archi-
tectures. For example, adding batch norm to an architecture that used Leaky ReLU and lrDecay improved
the output. However, batch norm did not help improve the output when this same architecture was
tested with RMSProp instead of ADAM as the optimizer. Furthermore, normalization did not work
when gradient penalty was introduced, even when normalization was used properly to avoid the im-
pact on gradient penalty as described in Section 8.2. Based on these findings and tests, it remains
inconclusive if batch norm on its own is beneficial for generating 3D building geometry with GANs.

Based on the trade-off that when batch norm is used, gradient penalty cannot be used, I would argue
that batch norm is not beneficial for this problem. The benefits of gradient penalty discussed in the
associated subsection outweigh benefits seen from applying batch norm.
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ID factors 3D WGAN

train output

G Leaky ReLU + lrDecay [S] [3]
J Leaky ReLU + lrDecay + batch norm [S] [2]
K Leaky ReLU + RMSProp optimizer + lrDecay [S] [2]
L Leaky ReLU + RMSProp optimizer + lrDecay + batch norm [S] [2]
M Leaky ReLU + RMSProp optimizer [U] [2]
N Leaky ReLU + RMSProp optimizer + batch norm [U] [3]
P Leaky ReLU + lrDecay + gradient penalty [U] [1]
Q-A Leaky ReLU + lrDecay + layer normalization + gradient penalty [U] [1]
Q-B Leaky ReLU + lrDecay + batch norm (G) + gradient penalty [S] [2]
R Leaky ReLU + RMSProp optimizer + gradient penalty [S] [4/5]
S-A Leaky ReLU + RMSProp optimizer + layer normalization + gradient penalty [U] [1]
S-B Leaky ReLU + RMSProp optimizer + batch norm (G) + gradient penalty [S] [3]
T Leaky ReLU + lrDecay + gradient clipping [S] [2]
U Leaky ReLU + lrDecay + batch norm + gradient clipping [S] [2]
V Leaky ReLU + RMSProp optimizer + gradient clipping [S] [2]
W Leaky ReLU + RMSProp optimizer + batch norm + gradient clipping [S] [2]

Table 8.1.: List of experiments run to asses GAN architecture with depth and width of 11 per Table 9.1.
When learning rate decay was not used, the learning rate was LR = 0.00005. [U] indicates that the
training was unstable [S] indicates that the training was stable. [1] indicates the output was noise [2]
indicates that the output size, shape, and/or proportions are significantly different than the training
data [3] indicates that the output is correct in size or proportion but the shape is not accurate [4]
indicates that the output is noisy but roughly the correct size, shape, and proportions [5] indicates
the output is roughly the correct size, shape, and proportions and has less noise [6] indicates the
geometry is very similar to resolution of the training data. The highlighted row indicates the best
performing architecture.

Figure 8.4.: Images showing the results of the M architecture and graphs showing its loss which show
the unstable training and unsuccessful results. The model was trained with 100 training data points.
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Figure 8.5.: Images showing the results of the most successful, R architecture, and graph showing its
loss. The model was trained with 100 training data points.

RMS PROP When comparing architectures that used the ADAM and RMSProp optimizers, results show
that RMSProp brought benefits to GAN performance when combined with other hyperparameters. The
most successful architecture uses RMSProp. An interesting result is that ADAM works best with lrDecay
while RMSProp works best with a set learning rate. Due to time limits, I was only able to test RMSProp
with the recommended learning rate of 0.00005. An opportunity for future research would be to
further test and tune the learning rate to see if this can bring even better results.

WEIGHT CLIPPING AND GRADIENT PENALTY Based on existing research, [Gulrajani et al., 2017],
I expected that weight clipping would not be beneficial and that gradient penalty should be used
instead. This aligned with the results of the experiment. Gradient clipping did not show a positive
impact on training. Implementing gradient penalty did have a positive impact, and the architecture
that produced the best results used gradient penalty.

Of the different architectures tested, architecture R generated the best results. The result was geometry
of a size, shape, and proportion similar to the training data. It also incorporated features of the training
data, such as fairly flat walls and sloped roofs, which can be seen in Figure 8.5. This is based on
experiments using architecture 11 (Table 9.1) which is an architecture with 4 layers with {48-24-12-2}
channels.
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9.1. Experiment Set Up

[completed on DHPCC]

All architectures described in Chapter 7 and 8 were tested with architecture 11. Architecture 11 has 4
layers with {48-24-12-2} channels. Then only the most promising architectures were tested with differ-
ent depths, widths, and kernels. These were architectures G, J, and R. Only select visualizations are
shown in this chapter, but the results from all architectures that were tested can be seen in Appendix
B.

9.2. Experiments and Results

The initial network architecture was intentionally shallow and narrow. It was selected for the first
tests to ensure that these models trained quickly. These early tests used a network depth of 3 with a
maximum of 24 channels. After these initial tests, the network size was increased to 4 layers and {48-
24-12-2} channels because this generated better results while still running in a relatively short period
of time. This larger network was successful when testing different hyperparameter adjustments. This
four-layer network structure was the 11th structure tested, so it was labeled architecture 11 and all
networks (A through W) were tested with this structure. The results of tests from A through G are
discussed in Table 7.2, the rest are shown in Table 9.3. Then, only the ones that were the most successful
were tested with additional structures. The additional structures are summarized in Table 9.1.

KERNEL SIZES In the field of computer vision, it is generally agreed that it is best to use smaller
kernel sizes. This has resulted in many CNN architectures for 2D applications using 3x3 kernels. The
3D GAN architecture of Wu et al. [2016] uses a 4 x 4 x 4 kernel with a geometry space of 64 x 64 x 64.
Because of this, the research of this thesis also uses a 4 x 4 x 4 kernel as the starting point. However,

ID factors

11 4 layers 48-24-12-2
12 kernel size 6x6x6
13 kernel size 8x8x8
14 5 layers 96-48-24-12-2
15 5 layers 192-96-48-24-2
16 10 layers channels 96-96-48-48-24-24-12-12-2-2
17 10 layers channels 192-192-96-96-48-48-24-24-2-2

18 10 layers channels 512-512-256-256-128-128-64-64-2-2
19 15 layers channels 512-512-512-256-256-256-128-128-128-64-64-64-2-2-2

Table 9.1.: List of the different network depths and widths tested.
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Figure 9.1.: Examples of features that a CNN learns and how these features become more detailed
as the network is deeper. Image by Ibrahimli [2022] created using images from Zeiler and Fergus
[2013].

different kernel sizes were also tested due to the larger geometry space size. Smaller kernels reduce
computational costs, so the sizes that were tested included 6 x 6 x 6 and 8 x 8 x 8.

CHANNELS The number of input channels is called the width of a network. Each channel can learn
one specific feature of the network in each layer. Selecting the number of channels is a balance. It
is necessary to have enough channels to learn meaningful information, but not too many, so training
time is not too long, and so networks do not memorize data set samples. Additionally, remember
that the structure of the generator expands each voxel into more voxels through each layer. Therefore,
generators usually need many channels in the early layers, where each voxel is expanded into more
voxels, so that the channels can represent all the information. The best practice when determining
the ANN architecture is to start with a smaller number of channels and then test variations of the
architecture that gradually increase the number of channels. The 3D GAN architecture from [Wu et al.,
2016] started with 512 channels in their first layer. To simplify this architecture, I started by testing
with 48 channels in the first layer. Then, well-performing architectures were tested with 96 channels
and 192 channels in the first layer. After running these tests, it was determined that it would also
be interesting to review the results of a very wide network. Therefore, I tested two very wide and
very deep architectures. Architecture 18R has a total of ten layers, with the first layer containing 512
channels and architecture 19R has fifteen layers, with the first layer containing 512 channels.

LAYERS When adjusting ANN architecture, it is also beneficial to add depth when adding width. This
is because a network that is too wide and shallow will begin to memorize features instead of learning
features that can be generalized to additional data. The more layers that are added to a network, the
more detailed the learned features become. Ibrahimli [2022] described this concept shown in Figure
9.1 using images from Zeiler and Fergus [2013]. From the figure, it is possible to see that deeper layers
learn more detailed features. The 3D GAN architecture of [Wu et al., 2016] contained five layers. Since
starting small is more beneficial, the initial architectures I tested contained only four layers. After
determining which hyperparameters were necessary for the best results, I also tested networks with
five and ten layers. The deepest model tested had fifteen layers.

PADDING In CNNs, convolutions map an input to an output through the use of a kernel. The size of
the output may vary from the size of the input based on the size of the kernel and the stride (how far
the kernel is moved). To adjust the size of the output, padding can be added. For convolutional layers,
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Figure 9.2.: (A) Padding in the convolution layers. (B) Padding in the transposed convolution layers.

padding adds extra voxels on the outside of the geometry space, and for transposed convolutional
layers, it creates a larger kernel size by padding between layers. This is shown in Figure 9.2.

For a convolution, the output size is determined by the following formula:

outputsize =

⌊
input size + 2 ∗ padding − kernel size

stride
+ 1

⌋
(9.1)

Therefore, ⌊x⌋ is the mathematical floor of x. This means returning the largest integer below or
equal to the value of x. For a transposed convolution, the output size is determined by the following
formula:

outputsize = (input size − 1) ∗ stride − 2 ∗ padding + kernel size. (9.2)

Using these formulas, the padding can be adjusted to ensure a specific relationship between the input
size and the output size.

All experiments in this thesis used the same geometry space of 160 x 160 x 80 and a stride of 2 x 2 x 2.
The padding was then adjusted so that the convolution layers output a result in which the output is
half the length, width, and height of the input. This means that sometimes the padding was unequal.
To demonstrate this, let us review the following scenario. For this thesis, the geometry space is 160 x
160 x 80 voxels. The kernel size and stride is already determined by the network architecture, which
means that the padding can vary and will be adjusted to ensure the correctly sized output. This means
that when the input is 160 x 160 x 80, the kernel size is 4 x 4 x 4, the stride is 2 x 2 x 2, and the output
size needs to be 80 x 80 x 40, the padding needs to be 1 voxel wide. Therefore, padding is used on one
side only for each dimension of the matrix (x, y, and z). Some architectures had noise at the boundary
conditions as seen in the results of architecture 15J in Figure 9.3. Noise at the boundary could be
caused by uneven padding. To test whether padding had an impact on this noise, two additional
variations were tested for architectures 11R, 15J, 16R, and 17R.

The first variation tested a kernel size of 5 x 5 x 5. Using this size kernel leaves equal padding of
1 voxel on each side of the geometry space when the input, output, and stride values remain the
same as mentioned above. The second variation tested filling this equal padding with different values.
Padding is automatically filled with zeros in TensorFlow. However, it is also possible to instead reflect
the value contained in the matrix. This can also help to reduce the noise around the boundary. The
results of these experiments are summarized in Table 9.2. One important aspect to note is to get equal
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Figure 9.3.: Architecture 15J had noise at the geometry space boundary during early trainign epochs
which could be caused by having unequal padding added during the convolution and transposed
convolution layers.

padding on all sides, the kernel was changed to 5 x 5 x 5. So, although this leads to successful results,
it is unclear if the success is due to the kernel size or the equal padding. Another test that should
be performed is to change the geometry space size to provide equal padding when using a 4 x 4 x 4
kernel. This will make it possible to narrow down if the kernel or the padding impacted the result.
Due to the time constraints of this thesis, it was not possible to run this additional test.

ID factors padding

unequal equal reflect

11R R (Table 8.1) with 4 layers 48-24-12-2 [S][4/5] [S][4/5] [S][3]
15J J (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [U][1/2] [U][1]
16R R (Table 8.1) with 10 layers (2)96-(2)48-(2)24-(2)12-(2)2 [S][5] [S][5] [S][5]
17R R (Table 8.1) with 10 layers (2)192-(2)96-(2)48-(2)24-(2)2 [S][5] [S][6] [S][4/5]

Table 9.2.: List of experiments run to see the impact of padding. [U] indicates that the training was
unstable [S] indicates that the training was stable. [1] indicates the output was noise [2] indicates
that the output size, shape, and/or proportions are significantly different than the training data [3]
indicates that the output is correct in size or proportion but the shape is not accurate [4] indicates
that the output is noisy but roughly the correct size, shape, and proportions [5] indicates the output
is roughly the correct size, shape, and proportions and has less noise [6] indicates the geometry is
very similar to resolution of the training data. The red highlighted rows indicate the best performing
architectures.

MEMORIZING DATA As the architectures produced a geometry that was more clear, it was possible
to evaluate if the GANs were just memorizing the data set or if they were generating novel buildings.
During training, 17R with equal padding was memorizing specific samples as shown in Figure 9.8,
but it was important to determine if it could also produce novel geometry. To review if the 17R
models were memorizing the training data, the 17R architecture with unequal padding and the 17R
architecture with equal padding were used to generate 100 building geometries each. Then, I selected
several of the generated buildings and visually compared them with the data set. Figure 9.4 shows a
selection of these comparisons.
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There are instances where the generated geometry repeats similar forms. However, there is also a fine
line between memorizing and creating new buildings that look similar to the existing data set.

For example, model 43, generated by architecture 17R and shown in Figure 9.4, has massing that is
similar to the models in the data set. The massing of the generated model is very similar to mesh3513
and mesh4362 from the data set. But when looking more closely, there are also some key differences.
When looking at how the different roof slopes come together, the roofs of model 43 are all at the same
height. In mesh3513, on the other hand, the roof of the central room is higher and 4362 has a similar
feature. Furthermore, the slopes at the roof connections in model 43 resemble the changes in slopes
that can be found in mesh0109 and mesh2529 more closely. This suggests that the massing and the roof
features are learned from different models and combined to generate a new building mass.

Model 60 generated by architecture 17R with equal padding and shown in Figure 9.4 is another excel-
lent example. There are only three flat-roofed houses in the data set; therefore, it is easier to compare
the generated model with the data set models. In this case, the massing of the generated model is
very similar to mesh1329 from the data set, but when looking at the detail, it incorporates the parapet
detailing from mesh0648 and mesh3480. The detail of the parapet is not found in mesh1329.

However, with some of the other models, it is harder to judge. Model 8 generated by architecture 17R
with equal padding, for example, has massing very similar to mesh3240 including the inset porch on
the left wall. There are some clear differences, however, such as the wall on the right of the model
does not have openings, while the same wall in mesh3240 does. Model 8 also has what looks like the
start of a chimney at the top right, as observed in Figure 9.4, but it is hard to tell exactly what the
extrusion is. Mesh3240 has an extrusion for a dormer window in the same area. In this case, it is hard
to tell whether the generated model replaced the extrusion with a learned chimney feature such as the
chimneys in mesh0456 and mesh0718, or if it just poorly replicated the dormer window. Additionally, it
could actually suggest the beginning of the model learning to remove the dormer and replace it with
a roof section which would demonstrate that it is learning features.
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Figure 9.4.: A selection of models generated by architecture 17R with unequal and equal padding and
a comparison to certain training data points to analyze to what extent the DL model is memorizing
the training data set.
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Figure 9.5.: A selection of models generated by architecture 17R with equal padding which all have
similar massing but different building features.

Furthermore, when looking at multiple different generated models from architecture 17R with equal
padding, there is evidence that the DL model is trying to generate buildings with similar massing but
with different building features. Figure 9.5 demonstrates an example. Figures 9.5 (A) and (B) appear
to have variations of a sloped roof structure. Figures 9.5 (C) and (D) appear to have variations of a flat
roof structure, with (C) having no parapet and (D) appearing to have a parapet.

There definitely seems to be some level of memorization happening in the 3D models output during
training and for those generated after training, however, there are also signs that the DL models are
combining features from numerous different training data points and learning building features such
as roof slopes, details of the parapet, and possibly chimney shapes.
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ID factors training data size

10 100

11G G (Table 7.2) with 4 layers 48-24-12-2 [4] [S][3]
11H H (Table 7.2) with 4 layers 48-24-12-2 [2] [S][2]
11J J (Table 8.1) with 4 layers 48-24-12-2 [2] [S][2]
11K K (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11L L (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11M M (Table 8.1) with 4 layers 48-24-12-2 [x] [U][2/3]
11N N (Table 8.1) with 4 layers 48-24-12-2 [x] [U][3]
11P P (Table 8.1) with 4 layers 48-24-12-2 [x] [U][2]
11Q-A Q-A (Table 8.1) with 4 layers 48-24-12-2 [x] [U][1]
11Q-B Q-B (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11R R (Table 8.1) with 4 layers 48-24-12-2 [x] [S][4/5]
11S-A S-A (Table 8.1) with 4 layers 48-24-12-2 [x] [U][1]
11S-B S-B (Table 8.1) with 4 layers 48-24-12-2 [x] [S][3]
11T T (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11U U (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11V V (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]
11W W (Table 8.1) with 4 layers 48-24-12-2 [x] [S][2]

12G G (Table 7.2) with kernel size 6x6x6 [1] [U][2]
12J J (Table 8.1) with kernel size 6x6x6 [1] [S][2]
12R R (Table 8.1) with kernel size 6x6x6 [x] [S][2]

13G G (Table 7.2) with kernel size 8x8x8 [1] [S][2]
13J J (Table 8.1) with kernel size 8x8x8 [1] [U][1]
13R R (Table 8.1) with kernel size 8x8x8 [x] [S][3]

14G G (Table 7.2) with 5 layers 96-48-24-12-2 [1] [U][2]
14J J (Table 8.1) with 5 layers 96-48-24-12-2 [1] [U][2]
14R R (Table 8.1) with 5 layers 96-48-24-12-2 [x] [S][3]

15G G (Table 7.2) with 5 layers 192-96-48-24-2 [1] [U][2]
15J J (Table 8.1) with 5 layers 192-96-48-24-2 [U][1] [S][4]
15R R (Table 8.1) with 5 layers 192-96-48-24-2 [x] [S][4]

16G G (Table 7.2) with 10 layers 96-96-48-48-24-24-12-12-2-2 [x] [U][2]
16J J (Table 8.1) with 10 layers 96-96-48-48-24-24-12-12-2-2 [x] [U][2]
16R R (Table 8.1) with 10 layers 96-96-48-48-24-24-12-12-2-2 [x] [S][5]

17R R (Table 8.1) with 10 layers 192-192-96-96-48-48-24-24-2-2 [x] [S][5]

18R R (Table 8.1) with 10 layers 512-512-256-256-128-128-64-64-2-2 [x] [S][5]
19R R (Table 8.1) with 15 layers (3)512-(3)256-(3)128-(3)64-(3)2 [x] [S][1/2]

Table 9.3.: List of experiments run to tune 3D WGAN architecture to generate more refined geometry.
All architectures were tested with network depth and width of 11 per Table 9.1 and only the most
promising architectures were then tested with different depths, widths, and kernels. When learning
rate decay was not used, the learning rate was LR = 0.00005. [x] indicates this combination was not
tested with the noted quantity of training samples. [U] indicates that the training was unstable [S]
indicates that the training was stable. [1] indicates the output was noise [2] indicates that the output
size, shape, and/or proportions are significantly different than the training data [3] indicates that
the output is correct in size or proportion but the shape is not accurate [4] indicates that the output
is noisy but roughly the correct size, shape, and proportions [5] indicates the output is roughly the
correct size, shape, and proportions and has less noise [6] indicates the geometry is very similar to
resolution of the training data. The red highlighted rows indicate the best performing architectures.
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Figure 9.6.: The generated images of three of the best performing architectures, 16R, 17R with unequal
padding, and 17R with equal padding, and graphs showing their respective loss.
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9.3. Experiment Analysis and Conclusions

It was important to test different network depths and widths along with different kernel sizes because
these factors significantly impact the resources needed to train a network. They also have an impact
on the output. The results of these experiments are indicated in Table 9.3, and the geometry gener-
ated from the best-performing architectures is shown in Figure 9.6. There were benefits to adjusting
network depth and width, but adjusting the kernel size did not benefit training.

KERNEL SIZES It was expected that changing to a larger kernel size would not have a positive
impact on training. It was still important to test this option due to the larger geometry space used in
this research. The results of the experiments aligned with the expected results. For some architectures,
using a larger kernel size helped the model learn larger building features, such as walls, but did not
produce entire buildings that were the correct size, shape, and proportions.

CHANNELS Increasing the number of channels did not always have a positive result. However, for
select architectures that did not perform well with fewer channels, increasing the number of chan-
nels did improve the output. For architecture J, for example, the previous iterations did not generate
meaningful geometry, but with more layers and more channels, it performed fairly well. Increasing the
number of channels also helped to improve the performance of the best performing architecture, ar-
chitecture R. Ultimately, architecture R still outperformed architecture J both when these architectures
had fewer channels and when they had more channels.

The experiments that used 512 channels in the first layer of the generator had mixed results. The 18R
architecture, which was identical to 17R except for the number of channels, performed similarly to,
but not better than, 18R. The comparison of the best generated geometry from 16R, 17R, and 18R is
shown in Figure 9.7. The image shows how increasing the channels helped produce a clearer output
between 16R and 17R, but the clarity is very similar between 17R and 18R. However, when adding
both channels and depth in architecture 19R, the model no longer outputs any geometry. Since 17R
performed similarly to 18R, this suggests that there is not always a benefit to increasing the number
of channels. At some point, there are enough channels to learn the features without the need for
more. It is necessary to perform more tests on the number of channels, especially when training on a
significantly larger data set.

Based on these results, having more channels is beneficial, but they should be balanced with the
number of layers and training samples. Additionally, there is a point where more layers do not
necessarily improve performance.

LAYERS Increasing the number of layers by a large amount did have an impact on training for well-
performing architectures. For architecture R, for example, increasing from four layers to ten layers
helped reduce the noise in the output. For the architectures tested, architectures that performed well
with shallower and narrower structures continued to perform well with wider and deeper structures.
For some poorly performing architectures, using wider and deeper networks improved their perfor-
mance. However, architectures that consistently performed well still outperformed architectures that
improved with wider and deeper structures.

Based on these results, I conclude that when the depth and width of the network are adjusted, these
parameters can help to lessen the amount of noise in architectures that are performing well. It also
shows that if an architecture performs well with a shallow and narrow structure, it will likely do better
overall.

PADDING Architectures 11R, 16R, and 17R did have less noise when tested with equal padding.
Furthermore, the overall results were equal to or better than when tested with unequal padding. For
architecture 17R, using equal padding had a large impact on the results and allowed this architecture
to produce clear geometry that showed the features of the training data in more detail than any other

79



9. Network Depth and Width

Figure 9.7.: Images showing the best generated building produced by 16R, 17R, and 18R architectures.
These all have 10 layers but the number of channels in each layer is increased. The models were
trained with 100 training data points.

architecture. However, this architecture also had a tendency to memorize different models in the
training data.

When using reflected values from the matrix as the padding instead of zeros, there was no positive
impact on the output. In some architectures, it even hurts the training, with the output being only
noise. For other architectures the reflect padding did not hurt performance but also did not improve
it above the performance with unequal padding. This suggests that using geometry space, kernel, and
stride sizes that allow for equal padding on all sides of the geometry space can help to reduce noise
in the output and can help the network learn features with a higher level of detail.

An important factor that requires more research is the relationship between kernel size and the amount
of padding. To test equal padding, it is possible to either change the geometry space or change the
kernel size. Due to time constraints, it was not possible to test equal padding by changing the geometry
size during this thesis. Instead, to get equal padding with a geometry size of 160 x 160 x 80, the kernel
size was changed to 5 x 5 x 5. This change made the output more clear, but also meant that the network
had a tendency to memorize certain geometry from the training data. Therefore, it is also necessary
to test the impact of equal padding when it is achieved by changing the geometry space when using a
kernel of 4 x 4 x 4. This would allow for a more clear understanding of which part affected training.
It could help clarify whether there are certain characteristics that lead the network to memorize the
training data.

MEMORIZING DATA Based on reviewing the generated models from architecture 17R, it is possible
to determine that the tested GAN are sometimes memorizing data points. This is shown in Figure
9.8, since the models generated during training are almost identical to those in the training data set.
When reviewing 100 models that the architectures generated, however, there are also signs that the
model is learning features. As described in Figure 9.4, there are results that suggest that the model
combines features from numerous different training data points. The geometry that the models output
also shows signs that the model is learning building features such as roof slopes, parapet details, and
chimneys.

There appears to be some level of memorization that is happening, and it is important to address this
in future research. Two main factors can contribute to a network memorizing training data, and this is
the network width and the size of the training data set. One possible cause of the memorization is that
the model became too wide with architecture 17, which means that the number of channels should
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Figure 9.8.: Images showing the results of the 17R architecture with equal padding. The geometry
on the left is the output from the model during training and the geometry on the right shows the
training data it memorized. The model was trained with 100 training data points.

be reduced. But the solution may not be that simple. Reducing the number of channels can also
have an impact on the resolution of the output. Instead of reducing the number of channels, another
option is to implement concepts such as memorization rejection. Memorization rejection penalizes
networks when the generated geometry is too similar to the training data set. The penalty encourages
the network to learn to generate unique geometry. Research has shown that memorization rejection
can help prevent the network from memorizing data while maintaining a high-resolution output [Bai
et al., 2022].

These results also suggest that it is important to train and test on a much larger data set. The data
set of 100 models could simply be too small. Other deep learning models are trained on thousands
and sometimes millions of data points. ImageNet, a well-known data set containing different pictures
used to train machine learning models, contains over 1.2 million images. With smaller data sets, it
is possible that the number of parameters exceeds the available data. For these reasons, it is also
important to further test the proposed architectures with a larger data set.

Of the different architectures tested, architecture R continued to generate the best results. The output
was geometry of similar size, shape, and proportion to the training data. It also showed signs of
learning more detailed characteristics of the data, such as roof slopes, recesses, and chimneys. Based
on testing different options, architectures 16R, 17R with unequal padding, and 17R with equal padding
generated the most clear geometry. Architecture 16 has 10 layers with {96-96-48-48-24-24-12-12-2-2}
channels and architecture 17 has 10 layers with {192-192-96-96-48-48-24-24-2-2} channels as shown in
Table 9.1.
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In addition to changing the hyperparameters of the GAN, it was important to understand how different
changes to the input for the generator and critic also impact the training. The results of all the
architectures that were tested can be seen in Appendix B.

10.1. Critic Input

MULTI-LABEL INPUTS (not implemented) Now that a successful GAN architecture is developed,
a possible extension of the research is to generate geometry with multiple labels. As described in
Section 5.4 and shown in Figure 6.1, selected labels of ’wall’, ’window’, ’roof’, and ’door’, were fairly
accurately assigned in all 3D models of the pre-processed data set. The initial intent was to use these
labels as input to the critic so that the generator could then generate geometry that comprised of
four labels, ’wall’, ’window’, ’roof’, and ’door’. However, after experimenting with this concept and
doing some further research, it was discovered that GANs can only generate a single label. This is
due to the limitation of the generator. Some researchers have addressed this problem by connecting
generator and discriminator pairs that each learn a specific label. Since the research in this thesis
focuses on generative geometry instead of labeling data, the approach of using multiple generator
and discriminator pairs is not possible. It is not possible because the window geometry generated
by a generator discriminator pair that learns the window label needs to align correctly with the wall
geometry generated by a generator discriminator pair that learns the wall labels. Otherwise, the
window will not be located within the wall.

Instead of using multiple labels, a possible path to generate geometry with more than two labels would
be to generate the geometry with the GAN architecture described in this thesis and afterward use this
geometry as input for another ANN that learns to label the voxels with the correct label. Based on the
success of ANN in labeling data, this method has potential. Due to the time limitations of this thesis,
this method was not able to be tested. It remains an opportunity for future research.

SHELL 3D MODELS AND SOLID 3D MODELS The data in the data set comes as shell 3D models.
When these shell models were used, however, some architectures learned how to generate certain
features such as walls and then repeated this feature many times. One architecture that did this was
architecture 11G, and an example of an output from this architecture can be seen in Figure 10.1. To
test whether solid 3D models would address this problem, these shell 3D models were filled to produce
solid 3D models as described in Section 6.3 and Figure 6.5. To test the impact of solid 3D models, the
network architectures of each performance level [2 to 5] were randomly selected. Then these were
trained with solid 3D models.

The results, summarized in Table 10.1, show that there was no positive impact on training when
successful architectures were trained with solid models. If the geometry they produced was roughly
the correct size, shape, and proportions, then training this architecture on solid 3D models did not
benefit the architecture. Additionally, architectures that had the problem of creating many walls, such
as architecture 11G, did not improve their training on solid models. After training on solid models,
architecture 11G generated only a small number of pixels, as shown in Figure 10.1. One architecture
that was generating poor results, where the output was not noise but was significantly different in size,
shape, and/or proportion than the training result, performed better when trained with solid models.
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Figure 10.1.: On the left, an example produced by architecture 11G of how the model learned to
generate wall-like layers and kept repeating this feature. On the right, an example produced by
architecture 11G when trained on solid models. The models were trained with 100 training data
points.

After training the low-performance architecture, 11N, with a data set that contained solid 3D models,
the network generated geometry that was roughly the correct size, shape, and proportions. This shows
that training on solid models is possible; however, the architecture needs to be tuned differently so it
does not help with the goals of this thesis.

The results of the tests indicate that training with shell 3D models versus solid 3D models requires
different hyperparameter tuning. The results of the training are shown in Figure 10.2. Knowing that
training with solid models does not improve output is good because training with solid 3D models is
not preferred. In reality, it is best to generate the most accurate geometry, and since buildings have
empty space inside, the GANs should generate building models that also have empty space inside. The
results of these tests do show that if GANs are used to generate solid 3D models they should also be
trained on solid 3D models. Additionally, when using solid 3D models, the hyperparameters need to
be tuned differently based on this requirement.

ID factors training data type

shell solid

11G G (Table 8.1) with 4 layers 48-24-12-2 [S][3] [S][2]
11N N (Table 8.1) with 4 layers 48-24-12-2 [U][3] [S][4]
11R R (Table 8.1) with 4 layers 48-24-12-2 [S][4] [U][1/2]
11S S (Table 8.1) with 4 layers 48-24-12-2 [U][1] [U][1]
15J J (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [U][1/2]

Table 10.1.: List of experiments run with shell 3D models and solid 3D models. [U] indicates that the
training was unstable [S] indicates that the training was stable. [1] indicates the output was noise [2]
indicates that the output size, shape, and/or proportions are significantly different than the training
data [3] indicates that the output is correct in size or proportion but the shape is not accurate [4]
indicates that the output is noisy but roughly the correct size, shape, and proportions [5] indicates
the output is roughly the correct size, shape, and proportions and has less noise [6] indicates the
geometry is very similar to resolution of the training data.
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ID factors training data size

100 200

11R R (Table 8.1) with 4 layers 48-24-12-2 [S][4/5] [S][3]
15J J (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [U][1/2]
15R R (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [S][3]
16R R (Table 8.1) with 10 layers channels 48-48-24-24-12-12-2-2 [S][5] [S][3/4]

Table 10.2.: List of experiments run with the larger data set to compare training with 100 and 200
3D models. [U] indicates that the training was unstable [S] indicates that the training was stable.
[1] indicates the output was noise [2] indicates that the output size, shape, and/or proportions
are significantly different than the training data [3] indicates that the output is correct in size or
proportion but the shape is not accurate [4] indicates that the output is noisy but roughly the
correct size, shape, and proportions [5] indicates the output is roughly the correct size, shape, and
proportions and has less noise [6] indicates the geometry is very similar to resolution of the training
data.

LARGER TRAINING DATA SET There are limitations on the size of the training data set based on the
currently available data. Therefore, 100 single-story, single-family house building models were selected
for the training. Existing research on training 3D GANs suggests that 100 3D models is the minimum
quantity needed to generate meaningful results. This led to fairly successful results with architecture
R, but the geometry output from the generator still had a lower level of detail than the 3D models
in the training data set. A possible obstacle to more successful training is that ANNs did not have
enough data to extract more meaningful information. The data set was therefore doubled to a total
of 200 single-story, single-family house building models. Additional information on which models
were included in the data set and visualizations of some models can be found in Appendix A.3. All
architectures produced less accurate geometry when trained on larger data sets, as indicated in Table
10.2. However, wider and deeper architectures produced a better output. For example, architecture
16R performed better than architecture 11R on the larger data set. The generated geometry was still
not as good as those trained on 100 models. Figure 10.3 shows the result of architecture 11R when
trained on 100 and 200 training data points and Figure 10.4 shows the result of architecture 16R when
trained on 100 and 200 training data points.

However, training on larger data sets was not explored to the full extent. Increasing from 100 to 200
models is a small increase compared to training on thousands of models. Further testing is required
with significantly larger data sets. A possible solution to obtain larger data sets more quickly is by
implementing data set augmentation strategies. Data set augmentation copies and changes the existing
data points, for example, by rotating a building model, to generate more training data.

Ultimately, there are many benefits of training on large data sets that could not be explored through
this thesis. For example, training on larger data sets helps prevent networks from memorizing training
models. Initial research on data set size shows that changes would most likely need to be made to the
network width and depth of the network, but these changes are worth the extra time since training on
larger data sets can lead to a more robust model.
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Figure 10.2.: Images showing the results of the N architecture trained with hollow shell 3D models on
the top and the N architecture trained with filled solid 3D models on the bottom. The models were
trained with 100 training data points.
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Figure 10.3.: Images showing the results of the 11R architecture trained with 100 training data points
above and 200 training data points below.
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Figure 10.4.: Images showing the results of the 16R architecture trained with 100 training data points
above and 200 training data points below.
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Figure 10.5.: (A) noise as the input to the generator (B) a rectangular prism as the input to the generator

ID factors generator input type

noise cube

11R R (Table 8.1) with 4 layers 48-24-12-2 [S][4/5] [S][1]
15J J (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [U][1]
15R R (Table 8.1) with 5 layers 192-96-48-24-2 [S][4] [S][1]

Table 10.3.: List of experiments run with noise and a rectangular prism (labeled as cube) input to the
generator. [U] indicates that the training was unstable [S] indicates that the training was stable.
[1] indicates the output was noise [2] indicates that the output size, shape, and/or proportions
are significantly different than the training data [3] indicates that the output is correct in size or
proportion but the shape is not accurate [4] indicates that the output is noisy but roughly the
correct size, shape, and proportions [5] indicates the output is roughly the correct size, shape, and
proportions and has less noise [6] indicates the geometry is very similar to resolution of the training
data.

10.2. Generator Input

NOISE VS RECTANGULAR PRISMS Typically, the input to the generator is noise as described in
Section 3.6 and shown in Figure 10.5 (A). However, when the input to the generator is more similar
to the final result, the generator needs to perform fewer modifications to the input. This results in
the need for fewer layers in the network and more efficient training. One key part of the generator
input is that it must still be random. Because of this, I wanted to test having generator inputs that are
rectangular prisms as shown in Figure 10.5 (B). These prisms are generated from random variables for
the length, width, and height of the prism within an acceptable range. After the rectangular prisms are
generated, a process similar to label smoothing is used to randomly distribute the 0 values between
0.0 and 0.3 and all the 1 values between 0.7 and 1.2. This is important because there is not enough
randomness if only 0 and 1 labels are used. Table 10.3 shows the results of these experiments. All
architectures only generate noise when using rectangular prisms (referred to as cubes in the table and
some images) as the input. An example with two of the outputs is shown in Figure 10.6.
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Figure 10.6.: Images showing the results from 11R and 15J architectures when using a rectangular
prism as the input to the generator. Each model is trained with 100 training data points.
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10.3. Experiment Analysis and Conclusions

In addition to exploring different hyperparameters, it was important to test different inputs for the
generator and the critic and to analyze the training process. The results are indicated in Table 10.1,
Table 10.2, and Table 10.3.

MULTI-LABEL INPUTS After testing and research it was determined that GANs do not work with
multi-label inputs. There are various methods to incorporate multiple labels with generated geome-
try. Due to time restrictions, it was not possible to further test during this thesis, but it remains an
opportunity for future research.

SHELL 3D MODELS AND SOLID 3D MODELS After using shell and solid 3D models for the
training data set, it became clear that using solid 3D models requires its own hyperparameter tuning.
For architectures that performed well, there was no benefit to using solid 3D models.

LARGER TRAINING DATA SET All architectures produced less accurate geometry with the larger
data set. This is expected as the architectures need to learn more features. The depth and width of the
network seem to affect the performance of DL models when trained on larger data sets. Architecture
16R, for example, performed better than architecture 11R on the larger data set. The generated geom-
etry was still not as good as the geometry generated by the DL models when trained on 100 models;
however, this aligns with expectations. A larger data set is more complex and has more features that
a network must learn. However, it is still important to train on large data sets, as this results in a
more robust model. The results of these experiments suggest that larger data sets require deeper and
wider networks to maintain a similar level of performance. Large data sets can also help prevent
architectures from memorizing the training data set.

NOISE VS RECTANGULAR PRISMS After testing a rectangular prism input on architecture 11R,
15J, and 15R, it became clear that having a cube as an input did not help improve training. All
the architectures continued to generate noise throughout the training process. There are additional
tests needed to determine whether changing the generator input in other ways can have benefits to
training.

Testing different inputs did not have an impact on the best-performing network architecture, but did
show that it is necessary to train on significantly larger data sets.
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After determining the best architectures, it was necessary to perform some additional testing with
these three architectures. The three best performing networks are architecture 16R, 17R with unequal
padding, and 17R with equal padding. All R architectures use Leaky ReLU in the generator and critic
and use the RMSProp optimizer with gradient penalty and a learning rate of 0.00005 as described in
Table 8.1. Architecture 16 has 10 layers with {96-96-48-48-24-24-12-12-2-2} channels and architecture
17 has 10 layers with {192-192-96-96-48-48-24-24-2-2} channels as shown in Table 9.1. To test these
architectures, it was necessary first to determine the optimal number of epochs for which each should
train, and then it was possible to use the trained models to generate 100 3D building models each for
evaluation.

11.1. Training Length

When training GANs, it is not possible to use the loss function to identify how many epochs a network
needs to train for to learn features. Instead, it is possible to visualize the image of the generator output
after each epoch. These outputs can then be compared as shown in Figure 11.1 and Figure 11.2. At a
certain point in the training, the geometry is fairly clear and there are no major changes to the output
anymore. At this point, the network performs fairly well. For architecture 16R, this was after 5600
epochs, and for architecture 17R, this was after 2600 epochs. Part of the reason that the architectures
take a different number of epochs to train is that architecture 17R is updated more times each epoch,
so therefore it takes fewer total epochs to train. Based on this, architecture 16R should be trained for
5600 epochs and architecture 17R should be trained for 2600 epochs.

11.2. Test Results

Based on the optimal training duration, described in Section 11.1, 16R and 17R were trained for 5600
epochs and 2600 epochs, respectively. After training, the networks were used to generate 100 building
geometry forms so that all 100 outputs could be compared. There are multiple reasons for evaluating
and comparing multiple outputs of the same model. First, it is important to evaluate the generated
building geometry to see if the networks generate many of the same building models. In addition, it is
important to check that the networks memorize the training data. Due to time constraints, these com-
parisons were done manually. Figure 11.3 shows visualizations of selected outputs from the training.
The 100 generated images and additional larger images can be found in Appendix B.9.

Some of the outputs were very successful, while others were not as successful. By generating 100
models with these three architectures, it was possible to confirm that the networks produce different
results for each 100 iterations. There are some models that have similarities, but they are not exact
copies.
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Figure 11.1.: Images generated every 200 epochs during the training of architecture 16R. The earliest
clear output is identified with a red box.
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Figure 11.2.: Images generated every 200 epochs during the training of architecture 17R. The earliest
clear output is identified with a red box.
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Figure 11.3.: Select examples of the 100 models generated by architectures 16R, 17R, and 17R equal
padding.

94



11. Analysis of Final Results

Figure 11.4.: A selection of models generated by architecture 17R with equal padding which all have
similar massing but different building features.

The output was also evaluated with respect to memorizing the training data set. All three architectures
picked up training data set features such as the massing of different training data points, but it can
be challenging to differentiate between learned and memorized features. 16R shows very little sign of
memorizing data, while 17R with unequal and equal padding both show some signs of memorization.
This was discussed in more detail in Section 9.2 Subsection Memorizing Data. However, the two
variations of the 17R architecture also show signs of learning from the data set, which is also described
in detail in the same section. The fact that the architectures appear to be learning building features is
demonstrated in Figure 11.4. Of the 100 different outputs that architecture 17R with equal padding
generated, four models have a similar massing. However, other building features are different between
iterations. Figure 11.4 (B) for example shows what could be a sloped roof and Figure 11.4 (D) shows
a flat roof with detail around the edge that resembles a parapet. This suggests that the DL model did
learn feature of the data set and is not simply repeating the exact geometry as the training models.

In reviewing all outputs, the generated models are varied and also have features that suggest that
the DL models are learning characteristics found in the training data set. This is shown in figure 11.5
shows select generated models on the left and select models from the training data set for comparison
on the right. The variety in the generated models and the fairly high resolution show promise in the
tested architectures. However, there is still room for improvement. Currently, some of the generated
geometry contains significant amounts of noise, and the unclear models do not look very similar to a
building. Further research is required to improve the architectures to a point where they consistently
output high-resolution results.
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Figure 11.5.: Images showing generated models from the 16R, 17R, and 17R with equal padding
architectures compared to select models from the training data set.
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Figure 11.6.: Images showing some of the best generated results of the 17R architecture. The geometry
below is samples from the data set that have similar features. The model was trained with 100
training data points.

11.3. Improved 3D Wasserstein GAN Architecture

When evaluating between the best performing architectures which include 16R, 17R, and 17R with
equal padding, the most promising architecture is 17R. When reviewing 17R with unequal padding
and kernel size 4x4x4 and 17R with equal padding and kernel 5x5x5, 17R with equal padding gener-
ates a clearer geometry. However, this architecture also showed some tendencies to memorize models
from the training data during training, as shown in Figure 9.8. When comparing many outputs of
architecture 17R with equal padding, there are signs of learned features. Because architecture 17R
with equal padding is more likely to memorize features than architecture 17R, architecture 17R was
selected as the best performing architecture.

Therefore, this thesis introduces a new GAN architecture developed through exploratory research and
called Improved 3D Wasserstein Generative Adversarial Network (I3D WGAN) based on architecture
17R. Figure 11.6 shows some of the best results produced by this architecture. The network learned to
create a model with fairly straight walls and a sloped roof as well as details like recesses and changes
in plane. Additionally, the resolution of the generated geometry remains fairly high due to the large
geometry space.
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The architecture of the improved I3D WGAN is shown in Figure 11.7 and is described in the following
subsections.

LOSS FUNCTION Wasserstein Loss.

GENERATOR The generator consists of ten fully convolution layers with numbers of channels {192,
192, 96, 96, 48, 48, 24, 24, 2, 2}, kernel sizes {4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, and strides {2, 2, 2, 2, 2, 2, 2, 2,
2, 2}. The kernel and stride sizes are the same in all three dimensions. The activation function used
is Leaky ReLU of parameter 0.2 and there are no batch normalization layers. The Sigmoid activation
function and a flatten layer are used at the end. The input is a 200-dimensional vector and the output is
a 160 × 160 × 80 matrix with values in [0, 1]. The generator uses RMSProp with a Learning Rate=0.00005.

CRITIC As a mirrored version of the generator, the critic takes as input a 160 × 160 × 80 matrix, and
outputs a scalar between −∞ and ∞. The critic consists of ten volumetric convolution layers, with
numbers of channels {2, 2, 24, 24, 48, 48, 96, 96, 192, 192}, kernel sizes {4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, and
strides {2, 2, 2, 2, 2, 2, 2, 2, 2, 2}. The kernel and stride sizes are the same in all three dimensions. There
are Leaky ReLU layers of parameter 0.2 without batch normalization layers and no activation function
in the final layer. At the end, there is a flatten layer followed by a dense layer with one channel. The
generator uses RMSProp with a Learning Rate=0.00005.

Figure 11.7.: Images showing the 17R architecture.

11.4. Source Code

The code for architecture 17R and a selection of the rest of the experiments run for this thesis are
located on the public GitHub repository. The public GitHub repository for this project can be found

at https://github.com/lm2-me/3DWGANHouses.

The two run files in the main folder can be used to train two of the best performing architectures 16R
and 17R with a small training data set. It is necessary to install all the dependencies required to run
the code. There is a Conda environment file included on GitHub that can be used to set up a new
environment.

There are also three different Jupyter notebook files located in the public GitHub repository for this
thesis. These notebooks demonstrate some specific parts of the project and make them easier to
use and understand. Please note that to use a Jupyter notebook, you need to have the appropriate
dependencies installed. There is a Conda environment file included on GitHub that can be used to set
up a new environment with all the dependencies.

PRE-PROCESSING NOTEBOOK The Jupyter notebook on pre-processing demonstrates the steps
that were implemented to clean the point-cloud models so that they can be used for training GANs.
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11. Analysis of Final Results

There is a Conda environment file included on GitHub that can be used to set up a new environment
with all the dependencies including Open3D which will be needed to visualize the models. Appendix
B.10 shows images of the notebook.

GENERATE NOTEBOOKS The Jupyter notebooks on generating geometry allow users to generate
new building forms with the trained models that use architecture 16R and 17R. There is a Conda
environment file included on GitHub that can be used to set up a new environment with all the
dependencies including TensorFlow which will be needed to run the code. These notebooks allow
those interested to easily generate some geometry using two different trained models. Appendix B.10
shows images of the 16R notebook.
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12.1. Research Questions

Through the research completed for this thesis, the following conclusions have been made.

How can a 3D GAN model be trained to produce 3D building geometry given models of single-
family homes as an input?

Through the development of a new GAN architecture, I was able to generate a building geometry that
incorporated structural features that were present in the data set. This includes features such as flat
walls and sloped roofs. Additionally, the models also learned more detailed features, such as recesses
in the walls and chimneys. The type of research conducted for this thesis was exploratory research
that required researching, coding, training, testing, and documenting the results of many different
GAN models. The process started by evaluating existing state-of-the-art models and attempting to
generate building geometry with these models. When trained on a data set that contained 3D building
models, the state-of-the-art architectures generated only noise. Then, on the basis of the problems
that resulted after these evaluations, new hyperparameter options and combinations were found. Key
hyperparameters were identified by running experiments and comparing the different results. The
best performing architectures were then further developed by exploring the network depth and width,
and input options. The best architectures are now able to generate building geometry with large-scale
features, such as wall and roof features, and small-scale features, such as recesses in the wall and
extrusions similar to dormer windows and chimneys.

What are key aspects of a training data set that are required for generating 3D building designs?

Based on the experiments conducted, it is important that the training data set is clean. This means
that labels should be accurate and consistent throughout the data set. The geometry should also be
clean, so the models should contain only relevant geometry. For example, when training to produce
building geometry, site geometry such as roads and trees should be excluded. The data also needs to
be at a consistent scale to each other. For example, the existing building model data set had model
sizes normalized so that the largest dimension was one unit. This meant that the 30-story tall buildings
and the one-story tall building were approximately one unit tall. The data set was used for labeling
data, and, therefore, the scale was not an important factor. However, when creating new building
geometry, building elements, such as doors, always have a size that is within a specific range and in a
specific proportion to the rest of the building. Therefore, having a consistent scale is more important.
Finally, the data set must be large enough for training. At a minimum, 100 models should be used for
training, but more data is better.
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What are the key network architecture hyperparameters that lead to a stable GAN training when generating 3D
geometry?

The experiments tested a number of different hyperparameters, some of which were successful and
others were not. I was able to identify several hyperparameters through experiments that led to
a successful training. The most critical is to use Wasserstein loss because it has a large impact on
training stability. Additionally, the best performing architecture uses gradient penalty, Leaky ReLU in
both the generator and critic, and RMSProp as the optimizer. These hyperparameter settings lead to
a model that generated geometry that incorporated both large-scale structural features from the data
set, such as flat walls and sloped roofs, and small-scale details, such as recessed in the walls. Based on
this research, I developed I3D WGAN which incorporates these findings.

The experiments also showed that batch normalization did not improve training. Additionally, when
using ADAM as the optimizer, it should be used in conjunction with learning rate decay. RMSProp, on
the other hand, performs best with a fixed learning rate. When comparing different optimizers for the
application of generating building geometry, RMSProp with a fixed learning rate outperformed ADAM
with learning rate decay.

How does network depth, width, and kernel size impact GAN training when generating 3D geometry?

Adjusting the kernel size did not benefit training, but changes in network depth and width had an
impact. The width of the architecture refers to the number of channels, which is the number of features
that the model will learn in each layer. The depth of the architecture refers to the number of layers
that the architecture has. For some architectures, increasing the number of channels, thus increasing
the width, had a positive impact on training. There was a similar result for increasing the number of
layers, thus increasing the depth, of the architecture. This was especially true for architectures that
generated geometry that was similar in size, shape, and proportion to the training data but still had
noise around the geometry space. These well-performing architectures benefited from more depth and
width. On the other hand, scaling width and depth for architectures generating low-quality outputs
yielded inconsistent results. The best performing architecture, architecture R, uses leaky ReLU in the
generator and discriminator, uses the RMSProp optimizer, and has gradient penalty implemented. For
example, this architecture generated geometry with significantly less noise when the depth and width
were increased.

Based on these results, I conclude that adjusting the depth and width of the network can help to reduce
the amount of noise in architectures that are performing well. For the architectures tested during this
thesis, architectures that performed well with shallower and narrower structures continued to perform
well with wider and deeper structures. Some architectures that initially performed poorly performed
better with wider and deeper networks. However, architectures that consistently performed well
still outperformed architectures that improved with wider and deeper structures. Therefore, these
experiment results show that if an architecture performs well with a shallow and narrow structure, it
will likely perform better overall. I recommend that a practitioner start with a small network in terms
of width and depth while tuning hyperparameters to accelerate training for rapid prototyping and
to reduce data memorization. Then, it is possible to scale up only when the shallower and narrower
models show clearly positive results.
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How do the network inputs impact GAN training when generating 3D geometry?

The impact of different inputs was determined by selecting different input options for the generator
and the critic and then testing the outcome. I tested hollow shell versus solid training models, the size
of the training data set, and rectangular prisms as inputs for the generator.

The most important input parameter to consider is the size of the data set. I was able to test 100 versus
200 training models, but due to time constraints and limited data availability, I was not able to test
training on large data sets. When training on data sets containing 100 and 200 models, the resolution
of the output decreased when there were more 3D models in the training data set. This is in line with
expectations. A larger data set is more complex and has more features that a network must learn.
This suggests that larger data sets require deeper and wider networks to maintain a similar level of
performance. The architectures that performed best with the smaller training data set also performed
best with the larger data set. This shows that if you can train well-performing models on small data
sets, it is possible to scale the training data set and still have a model that performs well, although
some slight adjustments may be needed.

It is also important to remember that other industries train on data sets consisting of thousands or
even millions of data points. ImageNet, a well-known data set containing different pictures used
for machine learning, contains more than 1.2 million images. The AEC industry is lacking in data
availability (too little data is available to the public), completeness (data lacks information like model
scales and labels), and relevance (there are not enough models of the relevant building typologies).

In addition to organically obtaining more data, data set augmentation can be used as a strategy to
increase the size of the data set without the need to generate more building models. Data set aug-
mentation uses modified copies of existing data to artificially increase the size of the training data
set. For example, copying and rotating each model around a central axis by a set number of degrees.
This is a valuable strategy in the interim, as larger data sets are better for training. As more data
becomes available in the industry or more data is generated through augmentation, it is better to train
DL models on larger data sets. Large data sets benefit the training because they can help prevent the
models from memorizing the training data set.

Several other options were also tested when researching different inputs. Training of well-performing
models did not improve when the training data set was solid models. Additionally, when rectangular
prisms are used as inputs for the generator, the network only outputs noise. Therefore, these two
inputs do not benefit the training.

What are the challenges and benefits of using GAN for architectural design?

There are both challenges and benefits to using GANs for architectural design. Through this research,
I have identified the following challenges:

• Access to computational resources. To generate 3D geometry in a large geometry space, training
needs to take place on a GPU with enough memory. A standard PC will run out of memory
when training the models, and training will be too slow to be tractable.

• Having a large enough data set to properly train the model. A minimum data set of 100 models
is needed, but more data of good quality is generally better.

• It is currently not possible to know how the trained model makes the connection between the
training data and the new generated geometry.

• Small-scale features, such as roof overhangs and complex setbacks, remain difficult for the gen-
erator and will likely require additional modifications.

• Models that generate high-resolution outputs also have a tendency to memorize select data set
elements, which is a problem when the goal is to generate novel geometry. It can also have legal
implications such as copyright infringement.
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And the following benefits:

• Once a model is trained, it can be used repeatedly with little to no cost.

• The architecture developed through this thesis can also be tested on other types of problem,
generalizing the results beyond single-family houses.

• The architecture determined through this research provides a stable model that can generate 3D
geometry in a large geometry space.

• The model can always be fine-tuned or re-trained when more and/or different data becomes
available.

• GAN can solve creative tasks and provide one step in the larger picture of automating design to
bring good design to the masses.

12.2. Limitations

The research carried out was limited in scope due to several factors.

DATA SET Although an ideal training data set would consist of multifamily buildings, existing train-
ing data did not meet this requirement. This is why single-family homes were used instead. In the
future, the models can be retrained using the correct building typology.

Additionally, the data set was limited in size due to available data and time constraints. An opportu-
nity for future research includes data set augmentation and data mining. In the future, data mining
could be done in the real world by having drones scan and generate 3D building models from these
scans. Technology may even allow models to easily be generated from the photos people take on their
phones.

TIME CONSTRAINTS Due to time constraints, research on multiple class labels in the generated
geometry and incorporating site-responsive design was not completed. There are also a few hyper-
parameters that could not be researched due to time limitations. These include different learning
rates using RMSProp, larger and differently proportioned geometry spaces, and more research about
padding. In general, exploring 3D GAN methods is a time-consuming venture, which limits the number
of iterations of the architecture and other hyperparameters.

Some key design aspects that were not yet incorporated into the research should also be consid-
ered. These including site-responsive outputs and code requirements. Architecture is not generated
in isolation, and therefore considering the surrounding site and context of each building through site-
responsive design is important to generate successful designs. Additionally, buildings must consider
all code requirements and be designed to ensure the health and safety of the occupants. These factors
will require human intervention or other generative AI to fill the gaps.

12.3. The Bigger Picture

Ultimately, this research has shown that scaling up the resolution of GANs is possible and there are
opportunities to implement deep learning in generative design. Although it is unlikely to find this
technology implemented into major BIM software within the next few years, the research has clearly
shown that GANs are promising in the use of generative design. In the future, it will be possible to link
different research areas to design a complete building. Figure 12.2, for example, shows how existing
AI image generators use the geometry created by the GANs I trained and visualize it as photorealistic
houses. To help the AI image generators distinguish the planes of the image, each face of the building
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Figure 12.1.: A diagram of the possible future workflow to generate building designs with deep learn-
ing processes.

was recolored to a different color. There is also other DL research that can contribute to the goal of
automating building design. This includes methods to label 3D models [Selvaraju et al., 2021] and
methods to generate floor plans [Rodrigues and Duarte, 2022]. A new workflow would combine all
three generative, deep learning processes to produce a building that can be imported into BIM software.
Figure 12.1 shows an example of what this workflow could look like. First, the context (surrounding
site information), stakeholder requirements, and building codes are analyzed and a 3D building form is
developed. The building form, stakeholder requirements, building codes, and program requirements
are then used to create an interior floor plan. The form and floor plan are then used to auto-annotate
the voxels of the 3D building geometry. This results in a building model that can be imported into
3D modeling software for design documentation. This is one way in which different deep learning
methods can come together to deliver a design project in the future.

Figure 12.2.: The generated geometry, how it was recolored to clarify the different planes for AI image
generators, and the output from those generators imaging the geometry as photo-realistic houses.
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12.4. Further Research

There are several areas that present opportunities for further research. Some topics are direct next
steps following this thesis research, and these include:

• Implement methods like memorization rejection Bai et al. [2022] to discourage architectures that
generate geometry with a high level of detail from memorizing training data.

• Explore the relationship between the kernel size and geometry space size and how this relates to
the generated geometry with regard to level of detail and memorization.

• Review additional hyperparameters to see their impact and to see if they would improve the
output of the generator. These include testing different learning rates using RMSProp and testing
larger and differently proportioned geometry spaces.

• If it is not feasible to add new models to the data set, expand the data set through data augmen-
tation. This would involve creating a new data set that includes only the best building models,
but placing each building model in the geometry space at multiple different rotations. This
could ensure that GANs do not learn to generate buildings only parallel to the geometry space
boundaries.

• Incorporate site information to generate site-responsive geometry. Architecture is never gen-
erated in a vacuum, so an important next step is to incorporate context information into the
training data so that the algorithm can learn to generate site-responsive building geometry.

In addition, there are opportunities to expand on the research and support the bigger picture of
automating building design. These opportunities include:

• Generate a multifamily home data set and retrain the GAN models. As discussed, an optimal
building typology would be multifamily housing, but these models are not available in large
enough quantities to train a model.

• Train a neural network to label generated geometry with multiple class labels. GANs can only
generate a single label, so they cannot generate geometry that distinguishes between voxels
representing windows, doors, and walls. It would be useful to us a ANN to label each voxel with
the building feature it represents.

• Use other generative methods such as diffusion or flow models to generate building geometry
to see how they compare to using GANs. All methods can also explore using different modalities
such as graphs, 3D models, and point clouds.

• Integrate simulations to automatically analyze the structural integrity of the generated geometry
and use this to guide the search for viable designs. Differential simulators could be used for
structural analysis and feedback to the generative models.

• Incorporate additional inputs that allow users to modify the output each time it is generated.
For example, how DALL-E2 allows text prompts to adjust the generated images.
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13. Reflection

The goal of this thesis was to explore one step in the larger challenge of automating design by research-
ing the opportunities of applying deep learning models to the design of buildings. The resulting DL
model came from researching and testing various hyperparameters of 3D GANs to find an architecture
that generates building geometry. Through this process, I developed my own improved 3D WGAN ar-
chitecture to stabilize training and provide more consistent results. The final goal was for the trained
model to generate building geometry that has features similar to those in the data set.

13.1. Graduation Process

How is your graduation topic positioned in the Master of Science in Architecture, Urbanism and Building
Sciences program and the Building Technology master track?

The Master of Science in Architecture, Urbanism and Building Sciences focuses on innovation within
the fields of architecture and engineering. This relates directly to my thesis topic, as my thesis is
looking at innovative approaches to the design process by applying deep learning to an architectural
problem. The building technology track focuses on integrating design and technical disciplines. This
means the program has a multidisciplinary focus that encourages students to explore topics that con-
nect different fields. I am following this multidisciplinary process by connecting expertise from the
design, engineering, and informatics fields through my thesis. My topic requires knowledge that is
very specific to the built environment and also requires the use of research from the field of infor-
matics. Combining these two different specialties allows me to explore a topic rooted in design and
engineering with a new lens.

What value did your approach and methodology bring to your thesis?

For my methodology, I focused on a review of the literature and exploratory experimentation and
testing. Both aspects were valuable and allowed me to maintain a methodical approach while applying
an innovative process to an established problem. The literature review allowed me to understand the
solutions from existing research and also learn how to identify common problems that may need to
be addressed. Initially, I had expected that the 3D GAN architecture on which I based my research
would need minimal changes to work with my problem due to similarities between the two topics.
However, I soon realized that I would need to make significant changes to this structure to stabilize
training with the new data set. Here, the use of an ablation study helped. Through the ablation study,
I tested hyperparameters individually and in combination to identify which changes helped stabilize
training. This systematic approach allowed me to pin-point key aspects of stable training. These
hyperparameters can be used for the problem of generating building geometry but can also be used
in future research. This systematic approach also means that the steps I took are well documented so
future researchers can learn from the process, not just have a new architecture to use. The report also
explains why specific hyperparameters are used so future research can expand upon the process and
learn from it.
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How did the approach influence your result and what were the strengths, weaknesses, opportunities, and threats
of your method?

The method and the research has a number of strengths and weaknesses, also summarized in Figure
13.1. One weakness is that a process of trial and error is required to tune and train models. Through
the literature review, I realized that researchers have different opinions on how and why certain hy-
perparameters work. Therefore, when developing the architecture of improved 3D WGANs, I needed
to try different hyperparameters and set up new experiments based on the previous results. Another
challenge of using DL models is that the model discovers the characteristics of the data set during
training. This means that there is currently no way to fully understand the connection between the
training data and the result. Finally, training requires a large data set filled with fairly accurate data,
which can be challenging to obtain. There are also a number of strengths to the method. Although
an optimal data set was not available during the writing of the thesis, the resulting model can be
re-trained once this data becomes available. Because research was done for this specific model, the
final data set used for training can vary and can be added to over time. Additionally, this method can
be applied to other generative design problems. Future researchers will only need to train on different
data sets and tune the hyper-parameters to be able to apply the model to different problems. Finally,
through the architecture I developed, I was able to generate buildings in a large geometry space. My
thesis is the first research that significantly increases the geometry space (from 64 x 64 x 64 to 160 x
160 x 80). By increasing the geometry space by 2.5 times in each direction, I hope to demonstrate how
their application can be useful for building scale.

When considering external factors, there are some opportunities and threats to consider, which are
also summarized in Figure 13.1. There are a few threats that we need to be aware of. Data sets
related to the AEC industry are scarce and the limited availability of relevant data sets remains a
threat to continuing research. For this thesis, I compromised on the training data because there was
not a large enough data set that contained building models of the optimal building typology. In
addition, the success of research in this field is based on access to powerful computational resources.
Thankfully, TU Delft has the high-performance computing cluster which I was able to use. Without
this resource, it would not have been possible to scale up my research. Despite these threats, there
are still opportunities. Currently, there is great interest in AI and this means that many companies
and institutions are collecting data to use to train future models. This means that more data will be
available in the future. Additionally, the methodology developed through this thesis is not limited
to building technology. The model architecture and the research method can be used as a reference
for further research in other disciplines. Finally, automation provides access to design to so many
more people. It is an important area of research to continue so that everyone can enjoy well-designed
spaces.

What are some moral and ethical issues that need to be considered?

When working with machine learning applications, it is important to consider ethical problems that
may be present in the current workflow or future applications. Models trained with human-generated
and human-selected data will always have biases. The most important aspect is to recognize this and
to check for these biases so that the end result is as fair and equal as possible. One aspect is the data
itself. Currently there are not many data sets that contain buildings, and the one I found, I would
say, contains stereotypes of specific building typologies based on a western lens. Additionally, the
buildings included may be related to specific aesthetics versus what is truly found in specific cities, so
buildings belonging to middle- and upper-class individuals or high-end developers are more likely to
appear. It is important to continue to grow the data sets to be more inclusive and represent all of the
architecture we see around us. Additionally, the labels in the data often reflect societal biases. This is
why it is critical that data labeling be performed by a large and diverse group of people with different
values and belief systems. Even within labeling buildings, labels can have a very specific meaning
depending on the region. For example, a porch in the American south is a vernacular architecture
feature located in front of the house that is hugely important in the daily social life of people in the
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Figure 13.1.: A summary of the SWOT analysis of the research approach and method.

region. However, on the east coast of the United States, a porch is frequently located in the back yard
and is associated with a more private use for family gatherings and dinner outside. The porch is an
example of a similar design feature that has the same name in different regions, but the use, location,
and cultural importance vary greatly. Everything we do has nuances, and the best way to ensure that
we maintain an ethical approach when applying machine learning is to be aware of our innate biases,
check for them, acknowledge them, and correct them when we do realize they exist.

13.2. Societal Impact

What is the academic and societal value of your graduation project?

Existing research on deep learning applications within the architecture, engineering, and construction
industry has been completed by various private companies, so there is a lack of published information
in the area of building design automation. Additionally, research on 3D geometry generation has
focused on small geometry spaces and small objects such as chairs. Based on these gaps, I had the
goal of generating building geometries and greatly increasing the size of the geometry space. The gaps
identified in my literature review present opportunities to expand industry knowledge. By continuing
research on how to automate the design process, the industry can provide access to thoughtful design
to a wider audience. This thesis helps address this missing knowledge.

The research that was conducted in this thesis also expands the use of the generative design tools
that are used today. By discovering more varied applications of DL in design, these findings can be
incorporated into industry tools such as the software used. In the future, generative design tools
could propose more than massing, site layouts, and floors plans. The computer can become the design
assistant in the way researchers have been striving. This thesis lays the foundation for the use of DL
models in generative design tools, so that these tools can propose designs for 3D building geometry.
Future researchers can expand on the topic and also explore how GANs and other DL models could
design not only building geometry but also building systems.
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To what extent has the expected innovation been achieved?

This thesis focused on applying an innovative approach to a known design problem. The research
focus turned out to be developing a new GAN architecture for generating building geometry in a larger
geometry space. I was able to identify a number of hyperparameters, including Wasserstein loss with
a gradient penalty, Leakly ReLU, and the RMSProp optimizer that combined into an architecture that
produced building geometry. One aspect of the innovation was the combination of hyperparemeters,
and another was the large geometry space and working with building geometry. I was able to expand
the size of the geometry space increasing from a size of 64 x 64 x 64 to 160 x 160 x 80.

How does your research impact architectural practice?

Despite improvements in software and automation within the field of architecture, little research has
been extended to applying DL to generative problems. To fill this knowledge gap, I wanted to conduct
research on the topic of generating 3D building geometry. The research that has been done on this
topic was completed by private companies or is not well documented. The goal of this thesis was to
begin to fill the gap in industry knowledge about how to automate the design process through DL.
By generating building geometry in a large geometry space, this thesis was able to show the potential
of GAN. By seeing that GAN can be trained to generate higher-resolution geometry, the industry is
hopefully able to recognize the ways in which DL models could be incorporated into generative design
tools in the future.

How do you assess the value of the transferability of your project results?

One of the strengths of my project is the transferability of the research. The architecture I developed
for improved 3D WGANs performs well in generating building geometry, but it is also applicable to
other generative 3D problems. The model can be re-trained with different data sets depending on the
requirement. This applies not only to generative design problems within the AEC industry, other fields
can also use the architecture for generative design applications. In addition, the methodology used
and the lessons learned by creating this architecture can be applied by other researchers in the future.
For example, successful architectures tend to perform well when the network is shallow and narrow,
so different hyperparameter combinations can be tested and then scaled up afterwards. Regardless of
the industry or the field of study that is interested in DL, there is information documented through
this thesis that can help others in their development of DL models.
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A. Additional Data Set Information

A.1. DCGAN and WGAN Selected Models for Training

Table A.1 indicates which models were used for the training discussed in Chapter 7. When one model
was used, it was mesh2682. Figure A.1 shows images of the training data set.

name typology building type

mesh2682 commercial house
mesh0067 residential house
mesh0074 residential house
mesh0096 residential house
mesh0109 residential house
mesh0166 residential house
mesh0244 residential house
mesh0379 residential house
mesh0422 residential house
mesh0456 residential house

Table A.1.: Data set model list
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Figure A.1.: Images of the models used for training the initial DCGAN and WGAN.

A.2. WGAN Selected Models for Training

The models discussed in this section were used for experiments in Chapter 8, Chapter 9, and exper-
iments in Chapter 10 where 100 training models were used. Table A.2 indicates which models were
used for the training and Figure A.2 shows images of selected 3D models in the training data set.
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name typology type

mesh0067 residential house
mesh0074 residential house
mesh0096 residential house
mesh0109 residential house
mesh0166 residential house
mesh0244 residential house
mesh0379 residential house
mesh0422 residential house
mesh0456 residential house
mesh0477 residential house
mesh0498 residential house
mesh0571 residential house
mesh0648 residential house
mesh0658 residential house
mesh0717 residential house
mesh0718 residential house
mesh0829 residential house
mesh0836 residential house
mesh0924 residential house
mesh0944 residential house
mesh0946 residential house
mesh0974 residential house
mesh0976 residential house
mesh0989 residential house
mesh0992 residential house
mesh0993 residential house
mesh1104 residential house
mesh1113 residential house
mesh1131 residential house
mesh1138 residential house
mesh1146 residential house
mesh1156 residential house
mesh1271 residential house
mesh1329 residential house
mesh1373 residential house
mesh1404 residential house
mesh1442 residential house
mesh1498 residential house
mesh1522 residential house
mesh1538 residential house
mesh1694 residential house
mesh1704 residential house
mesh1720 residential house
mesh1891 residential house
mesh1935 residential house
mesh2174 residential house
mesh2200 residential house
mesh2215 residential house
mesh2266 residential house
mesh2277 residential house

name typology type

mesh2326 residential house
mesh2331 residential house
mesh2523 residential house
mesh2529 residential house
mesh2575 residential house
mesh2627 residential house
mesh2633 residential house
mesh2651 residential house
mesh2720 residential house
mesh2842 residential house
mesh2874 residential house
mesh2965 residential house
mesh2993 residential house
mesh3002 residential house
mesh3007 residential house
mesh3034 residential house
mesh3083 residential house
mesh3094 residential house
mesh3134 residential house
mesh3176 residential house
mesh3240 residential house
mesh3251 residential house
mesh3367 residential house
mesh3372 residential house
mesh3433 residential house
mesh3480 residential house
mesh3513 residential house
mesh3844 residential house
mesh3857 residential house
mesh3979 residential house
mesh3998 residential house
mesh4182 residential house
mesh4195 residential house
mesh4333 residential house
mesh4362 residential house
mesh4466 residential house
mesh4580 residential house
mesh4668 residential house
mesh4729 residential house
mesh4844 residential house
mesh4893 residential house
mesh4904 residential house
mesh4972 residential house
mesh5054 residential house
mesh5076 residential house
mesh5145 residential house
mesh5173 residential house
mesh5211 residential house
mesh5257 residential house

Table A.2.: Data set model list
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Figure A.2.: Images of a selection of models used for training the WGAN models while tuning hyper-
parameters.

A.3. Larger Data Set for Training

Certain experiments in Chapter 10 used a data set of 200 models. Table A.3 indicates which models
were used for the training. These models are in addition to those listed in Table A.2. Figure A.3 shows
images of selected 3D models in the training data set.
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name typology type

mesh5203 residential house
mesh5360 residential house
mesh5387 residential house
mesh5438 residential house
mesh5503 residential house
mesh5560 residential house
mesh5582 residential house
mesh5634 residential house
mesh5640 residential house
mesh5678 residential house
mesh5686 residential house
mesh5742 residential house
mesh5819 residential house
mesh5951 residential house
mesh5955 residential house
mesh5957 residential house
mesh6035 residential house
mesh6036 residential house
mesh6051 residential house
mesh6114 residential house
mesh6207 residential house
mesh6415 residential house
mesh6424 residential house
mesh6450 residential house
mesh6505 residential house
mesh6614 residential house
mesh6622 residential house
mesh6668 residential house
mesh6742 residential house
mesh6762 residential house
mesh6816 residential house
mesh6837 residential house
mesh6840 residential house
mesh6883 residential house
mesh6897 residential house
mesh6960 residential house
mesh6995 residential house
mesh6999 residential house
mesh7024 residential house
mesh7219 residential house
mesh7233 residential house
mesh7234 residential house
mesh7377 residential house
mesh7439 residential house
mesh7447 residential house
mesh7474 residential house
mesh7555 residential house
mesh7563 residential house
mesh7583 residential house
mesh7780 residential house

name typology type

mesh7882 residential house
mesh7901 residential house
mesh7919 residential house
mesh8041 residential house
mesh8042 residential house
mesh8290 residential house
mesh8299 residential house
mesh8452 residential house
mesh8525 residential house
mesh8528 residential house
mesh8547 residential house
mesh8612 residential house
mesh8772 residential house
mesh8882 residential house
mesh9002 residential house
mesh9022 residential house
mesh9023 residential house
mesh9145 residential house
mesh9339 residential house
mesh9405 residential house
mesh9492 residential house
mesh9498 residential house
mesh9532 residential house
mesh9582 residential house
mesh9640 residential house
mesh9803 residential house
mesh9808 residential house
mesh9834 residential house
mesh0439 residential villa
mesh0476 residential villa
mesh0823 residential villa
mesh1061 residential villa
mesh1261 residential villa
mesh1337 residential villa
mesh1410 residential villa
mesh1794 residential villa
mesh1796 residential villa
mesh2615 residential villa
mesh2816 residential villa
mesh3101 residential villa
mesh3275 residential villa
mesh3500 residential villa
mesh3665 residential villa
mesh5116 residential villa
mesh5389 residential villa
mesh5507 residential villa
mesh5860 residential villa
mesh5915 residential villa
mesh5948 residential villa

Table A.3.: Data set model list
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Figure A.3.: Images of a selection of models used for training the WGAN model when using 200 data
points.

A.4. Visualizations of Selected Models from Released Training Data
Set

The pre-processed data set, HouseNet, discussed in this report can be found on 4TU.ResearchData at
https://doi.org/10.4121/4d82052e-650c-4775-8bd9-623df68991b6.v1.

The data set contains models that originated from the BuildingNet v0.1 data set that Selvaraju et al.
[2021] released in 2021. The steps that I took to modify the existing data set so that the data aligns
with the needs of generative deep learning tasks are outlined in Chapter 5. Figure A.4 shows images
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A. Additional Data Set Information

of selected 3D models in the training data set. The modified files that are located on 4TU.ResearchData
include the following files for each building model:

• a modified point cloud file (.ply) which came from the original data set and was modified by
removing site geometry and relabeling the points with only four labels to make the models
suited for deep learning for generative design

• a modified file containing label information (.json) which came from the original data set and
was modified to make the models suited for deep learning for generative design

• a pickle file (.pkl) generated through pre-processing which contains information about the point
cloud including the file name, label array, color array, typology, and building type information

HouseNet uses the following labels: 1:’wall’ 2:’window’ 4:’roof’ 6:’door’.
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Figure A.4.: Images of a selection of models from the pre-processed data set.
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B. Experiment Results

This appendix visualizes geometry that was the output of the generator from the different architectures
tested during this thesis. The output was visualized after a certain number of training epochs as noted
in the images.

B.1. DCGAN and WGAN Base Architecture

These experiments were run using network width and depth of Architecture 11 as indicated in Table
9.1. These experiments were run with a training data set size of 1 model described in Appendix A.1.
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B.2. DCGAN and WGAN Architectures A through H

DCGAN was tested with Architectures C, D, E, F, G, G-A, G-B, and H. WGAN was tested with Architec-
tures A, B, and G. For descriptions of the architectures, please see Table 7.2. These experiments were
run using network width and depth of Architecture 11 as indicated in Table 9.1. These experiments
were run with a training data set size of 1 model described in Appendix A.1.
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B.3. WGAN Architectures G, J through W

For descriptions of the architectures, please see Table 8.1. These experiments were all run using
network width and depth of Architecture 11 as indicated in Table 9.1 and they all had the same
training data set with a size of 100 models described in Appendix A.2.
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B.4. Network Width and Depth

For descriptions of the architectures, please see Table 8.1. These experiments were run using network
width and depth of different architectures indicated in Table 9.1. These experiments were run with a
training data set size of 100 models described in Appendix A.2.
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B.5. Padding

These experiments were run with select architectures indicated in Table 9.2 and a training data set size
of 100 models described in Section A.2.
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B.6. Solid Model Input

These experiments were run with select architectures indicated in Table 10.1 and a training data set
size of 100 models described in Appendix A.2.
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B.7. 200 Model Training Data Set

These experiments were run with select successful architectures indicated in Table 10.2 and a training
data set size of 200 models described in Appendix A.3.
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B.8. Rectangular Prism Input

These experiments were run with select architectures indicated in Table 10.3 and a training data set
size of 100 models described in Appendix A.2.

142



B. Experiment Results

B.9. Best Performing Architecture Results

After various experiments were conducted, there were a number of architectures that performed the
best. These are the following.
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After identifying the best performing architecture, the top three (16R, 17R, and 17R with equal
padding) were used to generate 100 images each. These 100 images are shown here.
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From the complete set of 100 images, select images that represented good results and select images
that represented not as good results were enlarged to make it easier to see some of the detail. These
images are shown in the following pages.
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B.10. Jupyter Notebook Examples

The code for architecture 16R and 17R along with code for a selection of the rest of the experiments is
located on the public GitHub repository. The public GitHub repository for this project can be found

at https://github.com/lm2-me/3DWGANHouses.

It contains three Jupyter notebooks that aim to demonstrate how some of the code works. Images of
selections from two of the notebooks are shown here for reference.
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