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SUMMARY

The advancement in transparent screen technology has promoted adoption of full-screen
design on mobile devices, reducing the area occupied by optical sensors to maximize
the devices’ screen-to-body ratio. In modern smartphones, front-facing optical sensors,
such as ambient light sensor and camera, now must be placed under the transparent
screen to capture ambient light and visual information. Motivated by this trend, we pro-
pose Through-Screen Computing in this dissertation. It is a new concept that refers to
the processing of light signals for various computing purposes such as communication,
sensing, and imaging, where the light comes from the physical world and passes through
a special medium – the transparent screen – before reaching the under-screen optical sen-
sors. This concept opens up new challenges and opportunities in connectivity, privacy,
and security of future devices equipped with transparent screens. In this dissertation, we
outline a vision for through-screen computing and address the challenges of transparent
screens acting as both passive blockers and active interferers of input light signals.

This dissertation focuses on two subsystems in the context of through-screen com-
puting: Through-Screen Visible Light Communication (VLC) and Screen Perturbation for
Visual Privacy Protection. In the context of VLC, the full-screen trend challenges the de-
ployment of this technology. We propose Through-Screen VLC with under-screen optical
sensors as receivers. To address the attenuation of the light by the transparent screen, we
develop SpiderWeb, a system exploiting the color domain to mitigate the color-pulling
effect introduced by the transparent screen. We also leverage the Under-Screen Camera
(USC) for VLC and design novel demodulation algorithms to reduce multi-pixel screen
interference and improve performance. Experimental results show significant improve-
ments in both data rate and transmission range, using a prototype we build with two
commercial smartphones. For privacy protection, we propose Screen Perturbations, mod-
ifying pixels displayed on the transparent screen to embed speckled color blocks and
color shifts in the final image captured by the USC. Screen perturbations can be ex-
ploited to disrupt advanced deep neural networks used on image classification and face
recognition tasks. We first design two image-specific methods to add screen perturba-
tions to the images captured by USC. Next, we develop Unicorn, a universal screen per-
turbation method optimized for robustness in various conditions. All these designed
perturbations work successfully against various deep neural network-based image clas-
sification services with high success rates.

Through these two subsystems, as well as the proposed theoretical and experimental
approaches and results, we demonstrate the transformative potentials of through-screen
computing, setting the stage for future research and development on various computing
purposes in the era of transparent screen and full-screen devices.

xi
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1
INTRODUCTION

Mobile devices, such as smartphones, tablets, laptops, smartwatches, e-readers, and
handheld gaming consoles, have become ubiquitous worldwide. Now it is hard to imag-
ine a world without these mobile devices. By 2022, there were more smartphones than
people in the world, and the number of mobile devices continues to grow at nearly five
times the rate of the global human population [1]. The academic and industrial com-
munities envision an exciting ubiquitous computing future where mobile devices play
an increasingly significant role in daily life. The rapid evolution in mobile devices leads
to the fact that a flagship device from just a few years ago now seems outdated. Take the
smartphone screens for an example. The screen has become the indispensable interac-
tive interface between users and their smartphones since the launch of the first iPhone
in 2007, which revolutionized the industry by eliminating most of the physical buttons.
In the past decade, various innovative smartphone screen designs have been further re-
alized to minimize the bezels and the notch area taken up by front cameras and other
optical sensors to increase the screen-to-body ratio. These designs include the notch
screen, teardrop notch screen, and through-hole screen of Android phones, as illustrated
in Figure 1.1, and the “dynamic island” of iPhones. The ultimate goal is to achieve a bor-
derless “full-screen device”, unifying user interaction functions and aesthetic design with
the potential wide adoption of transparent screens.

1.1. THE RISE OF TRANSPARENT SCREEN
Transparent screen technology utilizes transparent electrode materials to maintain dis-
play functionality while being visually transparent. This technology has enabled a wide
range of innovative applications. For instance, it has been used in large transparent TVs
(Figure 1.2) and car windshields (Figure 1.3) that function as display screens. Moreover,
transparent screens are also being explored for sustainable smart windows, which can
serve dual purposes by providing illumination and displaying information. In more ad-
vanced use cases, they are key to enhancing Augmented Reality (AR) and Mixed Reality

1
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1

2 1. INTRODUCTION

Through Hole Full ScreenNotch Teardrop NotchNarrow Bezel

Figure 1.1: Illustration of the screen evolution of smartphones: efforts made to eliminate the notch and bezel.

Figure 1.2: LG’s transparent OLED TV [4]. Figure 1.3: Head-up display via transparent screen [5].

(MR) applications. In addition to these applications, transparent screens have revolu-
tionized mobile devices, leading to the development of full-screen devices such as lap-
tops (e.g., Thunderobot T-BOOK and Samsung Blade Bezel) and smartphones (e.g., ZTE
AXON 20/30/40, Xiaomi MIX 4, and Samsung Galaxy Z Fold) [2]. These full-screen de-
vices, with their larger screen-to-body ratios, provide a better user experience by offering
a more immersive and intelligent interface [3].

To achieve this goal, the screen of full-screen devices comprises a Transparent Screen
Region and a Normal Screen Region, as illustrated in Figure 1.4. The transparent screen
region is built with transparent electrode materials, serving two purposes: 1) display-
ing various contents, similar to the normal screen, and 2) allowing light to pass through
the screen to reach under-screen optical sensors. The transparent screen’s pixel layout
is therefore optimized to balance the display functionality and the light transmittance
to meet these two purposes [6], as shown in Figure 1.4(c). This innovative design allows
placing optical sensors under the transparent screen without sacrificing their functional-
ity, leading to the so-called Under-Screen Sensors [7], such as the Under-Screen Ambient
Light Sensors [8] and Under-Screen Cameras (USC)1.

1.2. THROUGH-SCREEN COMPUTING
Transparent screens are revolutionizing our visual experience of mobile devices. How-
ever, it also changes the traditional ubiquitous computing of light-based signals since
optical sensors now must be placed under the transparent screen instead of tradition-
ally on the screen. Motivated by this paradigm shift, in this dissertation, we propose the

1It is also referred as Under-Display Camera (UDC) or Under-Panel Camera (UPC) in the literature [9]–[12].
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1.2. THROUGH-SCREEN COMPUTING

1

3

Transparent Screen Region

Normal Screen Region

Xiaomi OPPO ZTE Samsung

Under-Screen Sensors

(a) (b) (c)

Figure 1.4: Illustration of (a) a full-screen smartphone with under-screen sensors; (b) magnified micrograph
of the transparent screen region and the normal screen region; (c) screen diversity: the comparison of

transparent screen regions and normal screen regions designed by different smartphone manufacturers.

concept of Through-Screen Computing, which we define as, through-screen computing
refers to the processing of light signals for various computing purposes such as communi-
cation, sensing, and imaging, where the light comes from the physical world and passes
through a special medium – the transparent screen – before reaching the under-screen sen-
sors. Below, we present its essential components.

• Light Source: Through-screen computing uses light signals as the computing in-
put. We mainly consider two types of light sources: (1) Passive sources: referring
to the objects that reflect light when illuminated, containing spatial information
about the object and its environment. (2) Active sources: referring to the LED lu-
minaires present in the lighting infrastructure, which are not only beneficial for
illumination but also can be modulated in light intensity or colors at a high fre-
quency to transmit information.

• Transparent Screen: In through-screen computing, the transparent screen signif-
icantly affects light propagation. It influences the visual imaging of light reflected
by passive objects (e.g., cats, see Figure 1.5(left)) or the intensity and color of light
emitted by active sources (e.g., LEDs, see Figure 1.5(right)). Additionally, the trans-
parent screen can act as an active source, featuring an array of RGB pixels in var-
ious layouts, shapes, and sizes. This array displays dynamic contents on mobile
devices and brings challenges to through-screen computing, such as attenuation,
color shift, and interference with light from other passive and active sources.

• Under-Screen Sensors: We consider two types of under-screen sensors in this dis-
sertation: (1) Single-pixel under-screen sensors, such as an under-screen photodi-
ode and an under-screen ambient light sensor. Both are semiconductor devices
that convert the detected light into electrical information. While an under-screen
photodiode only measures light intensity, an under-screen ambient light sensor,
which combines a photodiode and a color filter, can measure both the intensity
and the color of through-screen light signals; and (2) Multi-pixel under-screen sen-
sors, such as an under-screen camera, which can also detect through-screen light
signals but in an intuitive and understandable multi-pixel visual image output.
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Figure 1.5: The concept of through-screen computing: (left) passive source; (right) active source.

Through-screen computing encompasses various interdisciplinary technologies that
involve different domains: materials, structural, electrical, embedded systems, and soft-
ware engineering. We do not intend to cover all these domains in this dissertation. Given
that full-screen design represents the next frontier for innovation in mobile devices, we
focus on the computing behind the transparent screen of full-screen devices, address-
ing several critical challenges that can advance through-screen computing. Although
the considered screen is “transparent”, it still introduces new challenges to under-screen
sensors. Under-screen sensors now need to overcome the screen’s interference to detect
and recover input light signals. For instance, the imaging of passive objects becomes
blurrier when viewed through the under-screen camera compared to the original cam-
era, and the detection of input light emitted by active sources may not be as accurate
with under-screen sensors as with the original ‘on-screen’ optical sensors.

1.3. CHALLENGES
The transparent screen is not merely a passive medium like glass; it is also a dynamic,
active light source that changes unpredictably based on the displayed content. Thus,
adopting conventional mobile system designs for through-screen computing is imprac-
tical. Designing, implementing, and deploying through-screen computing brings new
challenges. Next, we discuss several primary challenges of realizing through-screen com-
puting on full-screen devices, as shown in Figure 1.6. We focus on the transparent screen’s
different states (OFF and ON), design (pixel layout), and the characteristics of different
types of under-screen sensors, including single-pixel and multi-pixel sensors.

Challenge 1: Screen as a Passive ‘Blocker’

Although the screen may appear transparent to naked eyes, it is actually not com-
pletely transparent. The light transmittance of the transparent screen used on current
mobile devices is merely 2.9% [10], [13]. This strong attenuation of light significantly
reduces the Signal-to-Noise Ratio (SNR) of light ‘signals’ at the under-screen optical sen-
sors, severely degrading the system performance. Furthermore, the basic principle of
camera imaging is the “pinhole camera”, which has a small aperture to allow a narrow
beam of light rays to pass through and reach the camera. The optimal imaging dis-
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Figure 1.6: Major challenges in realizing through-screen computing.

tance of a pinhole camera is its focal length. However, in through-screen computing,
the aperture of the under-screen camera can be regarded as a combination of the finite
screen openings in the transparent screen and the under-screen camera aperture. This
combined small aperture changes the focal length and the amount of light reaching the
under-screen camera, and it is comparable in size to the wavelength of visible light, re-
sulting in light scattering, diffraction, and absorption [10]. These optical impacts caused
by the screen lead to lower SNR, blurred visuals, and color shifts in the image captured
by under-screen cameras [10], [14], [15].

Challenge 2: Screen as an Active ‘Interferer’

The activated transparent screen region of a full-screen device significantly impacts
the captured signal in the intensity and color domains. In the intensity domain, the
detected screen light often far exceeds the input light signal, as shown in Figure 1.6(a),
since the under-screen sensor is much closer to the screen than to the light source. This
proximity poses a challenge in removing dynamic screen light interference from the de-
tected light signals. In the color domain, single-pixel photodiodes as sensors can have
differential sensitivity to light of varying frequencies, and thus the interference induced
by different screen colors is not uniform [16]. The strong and inconsistent interference
from the screen (depending on the displayed content) is superimposed on the attenu-
ated input signal, resulting in a low Signal-to-Interference-plus-Noise Ratio (SINR) at the
under-screen sensors. Furthermore, the pinhole camera alone is not sufficient to fully
capture a clear image. Modern cameras use convex (converging) lenses at small aper-
tures to collect light, refracting light rays from a reflecting object or an emitting active
source to form an image. The presence of lenses allows the object being photographed
to maintain its original shape while enlarging its size on the camera’s sensor. However,
this enlargement causes the object in the image to lose sharp boundaries, resulting in a
diffuse rendering effect with blurred edges. Hence, when the screen is lit up, different
tiny R/G/B screen pixels lead to optical perturbations: magnified and inverted speckled
color blocks and color shifts of the R/G/B screen pixels on the captured image.

Challenge 3: Screen Diversity

Variations in the design of transparent screens across different full-screen devices
affect the performance of through-screen computing in multiple ways. Firstly, differ-
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ences in the intrinsic material and manufacturing properties of device screens lead to
varying light transmittance. Secondly, different manufacturers customize screen param-
eters, such as maximum screen brightness and screen color gamut, introducing differ-
ent interference detected by the under-screen sensor. Furthermore, both academia and
industry have invested effort in designing diverse screen pixel shapes and layouts to op-
timize the screen resolution and enhance the screen’s light transmittance [6], [14]. As a
result, manufacturers have developed distinctive pixel configurations within their screen
designs (cf. Figure 1.4(c)). As mentioned, camera optics [17] indicate that even tiny illu-
minated screen pixels can result in optical perturbations on the captured image. These
specialized designs introduce unique optical perturbations on the images captured by
the under-screen camera. So far, manufacturers can only deactivate the screen display
to eliminate this interference when using the under-screen cameras for imaging. How-
ever, achieving reliable through-screen computing at all times, regardless of whether the
screen is activated or deactivated, remains a significant challenge.

1.4. PROBLEM STATEMENT
In the previous section, we have described the high-level challenges in through-screen
computing. The goal of this thesis is to tackle these challenges brought by the transpar-
ent screens and under-screen sensors to enhance the light-based connectivity, privacy,
and security performance of future full-screen devices. Hence, this thesis focuses on the
following research question:

How to build innovative through-screen systems to improve light-based connectivity,
privacy, and security performance in the context of through-screen computing?

While this thesis does not solve all the aforementioned issues, we cherry-pick a few
subsystems of through-screen computing to demonstrate the necessity of addressing
the issues and portraying ways to achieve this. We first tackle the connectivity issue ris-
ing along with deploying the new wireless communication paradigm, visible light com-
munication, on Commercial Off-The-Shelf (COTS) mobile systems equipped with trans-
parent screens. Further, the programmable illumination of screen pixels can perturb the
optical path between the under-screen camera and the object without altering the object
itself. We leverage this capability to protect sensitive visual information captured by the
under-screen camera (improving the privacy & security performance). Through a series
of comprehensive studies, this thesis explores this intricate landscape, shedding light on
the challenges and opportunities of Through-Screen Visible Light Communication and
the broader implications of Screen Perturbation for Visual Privacy Protection.

1.4.1. THROUGH-SCREEN VISIBLE LIGHT COMMUNICATION
Visible Light Communication (VLC) is considered a key enabler for future wireless net-
works such as 6G [18], [19]. VLC offers several advantages over traditional Radio Fre-
quency (RF)-based wireless communications. The visible light frequency band is about
10,000 times larger than the RF band, and does not penetrate walls, allowing VLC to
achieve higher spatial multiplexing and provide massive and secure connections to a
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(a) LiFi-XC [31] (b) LiFi-XC integrated in lap-
tops and smartphones [20]

(c) Light Antenna ONE [21]

Figure 1.7: VLC receiver modules from pureLiFi.

large number of future mobile devices to solve connectivity issues. Several leading VLC
companies, such as pureLiFi and Signify, have developed VLC products for mobile de-
vices, including smartphones and laptops. pureLiFi has launched the world’s first cer-
tified USB VLC receiver, LiFi-XC, as shown in Figure 1.7(a); two examples that integrate
the VLC receiver into mobile devices are shown in Figure 1.7(b): smartphones and lap-
tops at Mobile World Congress (MWC) 2018 [20]. Five years later, pureLiFi launched the
IEEE 802.11bb-compliant Light Antenna ONE at MWC 2023, as shown in Figure 1.7(c), a
VLC module that is ready for integration into mobile devices [21].

Although significant progress has been made in the industry for the development,
deployment, and standardization of VLC systems, a key direction has been largely ne-
glected by the VLC community: how to practically deploy VLC on current/future mobile
devices, like smartphones that are heavily used every day by billions of people? Here,
where to place VLC receivers on smartphones is of paramount importance. Since VLC
transmitters are typically placed on the ceiling (used for both illumination and com-
munication) and VLC signal quality is dominated by line-of-sight links, placing optical
receivers on the front of smartphones is both beneficial and essential. Therefore, am-
bient light sensors, front cameras, and other front-facing optical sensors widely avail-
able on commodity smartphones have significant potential as VLC receivers since these
sensors are predominantly oriented toward the LEDs in the surrounding environment
during conventional smartphone usage. Some studies [22]–[24] have explored the use of
ambient light sensors in mobile devices as VLC receivers. Other studies [25]–[30] have
proposed utilizing the front camera on COTS devices as the VLC receiver, and enhancing
the sampling rate of the VLC receiver through the rolling-shutter effect of the camera.

However, full-screen devices introduce new challenges because there is no space on
the smartphone screen to place VLC receivers. Consequently, whether it is a dedicated
VLC receiver like Light Antenna ONE, which needs to be placed on the notch screen area
of smartphones, or re-purposed COTS VLC receivers like traditional optical sensors (am-
bient light sensors and front cameras) typically placed on the screen, these are being re-
located under the screen, giving rise to under-screen sensors. The advent of under-screen
sensors introduces new challenges for the deployment of VLC receivers on COTS devices.
In light of these developments, a novel communication paradigm – termed “Through-
Screen Visible Light Communication” – is proposed and will be investigated in this thesis.
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(a) Put sticker over the laptop
camera [39]

(b) Meta CEO Mark Zuckerberg covers
the device cameras with tape [40]

(c) Zoom in tape cover [40]

Figure 1.8: A simple pre-capture protection method is to directly cover the cameras on mobile devices with
tape or stickers, which is effective but inconvenient.

1.4.2. SCREEN PERTURBATION FOR VISUAL PRIVACY PROTECTION

Cameras are prevalent in mobile devices, raising concerns about the potential misuse of
sensitive visual information, such as faces and behaviors, by hackers for purposes such
as profit or censorship. The critical visual security and privacy issues on mobile devices
have led to extensive discussions [32]–[34]. Related work can be classified into: Post-
capture Protection and Pre-capture Protection.

Post-capture protection involves safeguarding visual content after it has been digitized
by the camera. Many discussions assume the camera subsystem on mobile devices is
trustworthy and focus on other aspects of privacy protection [32]–[34], such as compu-
tational overhead [35], and timing channels [36]. However, cameras on mobile devices
are subject to various attacks in practice, making the camera subsystem insecure. Secu-
rity flaws in the camera’s firmware, processing software, and network protocols can be
exploited by attackers to access raw video content or compromise the entire camera sub-
system. Trusted computing, based on isolation and verification techniques, can ensure
that specific computing components are not easily tampered with. Early work utilized
the Trusted Platform Module (TPM) chip to build cameras [37], [38]. TPM allows for se-
cure boot and has a sealed key for hardware encryption, but it does not protect video
processing components, presenting a weaker threat model. Little work has been done to
realize trusted cameras due to the complexity of the camera driver and video processing
stack (e.g., OpenCV, TensorFlow). Hence, a better approach is to protect images/videos
on mobile devices before capturing them, which is pre-capture protection.

Pre-capture protection strategies aim to secure visual information before it is captured
by the camera. Common methods include covering the front camera with stickers or
tape, a practice even adopted by tech leaders like the Meta CEO, as shown in Figure 1.8.
However, this approach is aesthetically unpleasing, can easily fall off, and thus compro-
mises privacy. It also requires manual removal whenever the camera is needed, which is
inconvenient. Other approaches involve using optical filters or lenses [41], [42] to blur or
defocus objects, thus obscuring sensitive information, such as faces, while still allowing
for the detection of human actions. However, these methods primarily focus on specific
techniques and components and lack flexibility, making them difficult to adapt to dif-
ferent types of sensitive information. Our goal is to develop a flexible and trustworthy
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camera subsystem for future mobile devices.

Compared to the state of the art, the rise of full-screen mobile devices offers an op-
portunity for innovative protective strategies. Motivated by the new feature of placing
the transparent screen region above the under-screen camera, we aim to use this region
to introduce unique optical perturbations: Screen Perturbations, to the image formation
in through-screen computing. These perturbations will be embedded into the images
captured by the under-screen camera, effectively ensuring visual privacy in full-screen
mobile devices without affecting normal screen use.

1.5. THESIS CONTRIBUTIONS AND OUTLINE

This dissertation contains four chapters, detailing how we design and implement through-
screen VLC and screen perturbation. The contributions and outline are as follows:

SpiderWeb: Enabling Through-Screen Visible Light Communication - Chapter 2. Inten-
sity-based modulations are widely used in VLC systems. In through-screen VLC, visible
light is greatly attenuated when it passes through the screen because the transmittance
of transparent screens is still low [10], [43]. Additionally, the detected screen light inten-
sity at the receiver is much higher than the attenuated modulated visible light, making it
difficult to eliminate the interference of dynamic screen light on intensity-based VLC sig-
nals. These issues discourage the use of intensity-based modulations in through-screen
VLC. Compared with intensity-based modulations, the demodulation of Color-Shift Key-
ing (CSK) signals relies less on signal strength and more on detected color positions in
the standard color space. However, a common color sensor on mobile devices, such as
an ambient light sensor, needs a certain amount of time, known as the integration or
conversion time, to collect enough photons to output the detected color signals. There-
fore, the signal received by the color sensor is not an “instantaneous” CSK signal but an
integrated signal. In through-screen VLC, the color sensor is placed under the screen,
integrating not only the modulated CSK signal but also the ‘random’ light emitted by
the screen. In practice, canceling this screen light interference is impossible because
the screen’s ON and OFF states and the modulated CSK signals cannot be synchronized.
Thus enabling reliable through-screen VLC is very challenging.

In Chapter 2, we investigate the characteristics of through-screen VLC channel using
an off-the-shelf transparent OLED screen. The transparent screen is placed between the
VLC transmitter (i.e., LEDs) and the receiver (i.e., under-screen color sensors). This setup
helps explore various properties of the through-screen VLC channel, such as through-
screen light attenuation and screen interference. We identify a unique phenomenon
termed “color-pulling effect”, which pulls the original modulated color towards the screen’s
color. For example, when an LED emits green light and there is no screen covering the
color sensor, the detected color is green. However, when a red screen is placed between
the green LED and the color sensor, the detected color appears yellow, which is between
green and red. Further measurements show that the received color is a mixture of dif-
ferent proportions of the modulated color and the screen color. This effect is attributed
to the under-screen color sensor acting as an integrator, collecting signals of two colors
within the integration time and outputting their superposition. Based on this observa-
tion, we design the SpiderWeb CSK (SWebCSK) modulation scheme to counteract the
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color-pulling effect. We prototype the first through-screen VLC system and rigorously
evaluate its performance in various scenarios. The results demonstrate that SWebCSK
significantly reduces the bit error rate by two orders of magnitude and achieves a 3.4×
increase in data rate compared to existing solutions.

When VLC Meets Under-Screen Camera - Chapter 3. Although using color sensors as
VLC receivers can successfully realize through-screen VLC, color sensors can be a bottle-
neck as they have a relatively low sampling rate. This is because color sensors are usually
used as ambient light sensors on mobile devices, which are typically optimized for dy-
namic range rather than response speed. Meanwhile, when multiple transmitters send
data concurrently to improve throughput or enable multi-user communication, the CSK
symbol received at the single-pixel color sensor could be a superposition of the CSK sym-
bols sent from multiple transmitters, causing interference. Without a particular design of
the transceivers, the system performance can degrade significantly. A possible solution
is to exploit under-screen multi-pixel cameras as the receiver to leverage light spatiality
and overcome interference from multiple transmitters. Hence, we explore the Under-
Screen Camera (USC) as the receiver to enhance the throughput and communication
range of through-screen VLC. However, we observe a severe performance degradation
in through-screen VLC with the USC since it is susceptible not only to the color-pulling
effect but also to new multi-pixel interference from the screen. The interference at the
multi-pixel level originates from different areas of the screen, significantly degrading the
performance of through-screen VLC with USC.

In Chapter 3, we leverage the unique spatiotemporal features of the rolling shutter
effect on USC to design an algorithm to identify the sampling points with minimal in-
terference from the transparent screen. Additionally, we propose a novel demodulation
method to address the color shift caused by the screen leakage interference. We build
a proof-of-concept prototype using two COTS smartphones. Experimental results show
that the proposed designs reduce the BER by two orders of magnitude on average and
improve the data rate by 59×: from 914 b/s to 54.43 kb/s. The transmission range is also
extended by approximately 100×: from 0.04 m to 4.2 m.

Screen Perturbation: Adversarial Attack and Defense on USC - Chapter 4. Cameras
with exceptional visual sensing capabilities, ubiquitous in consumer mobile devices,
have raised significant privacy concerns. Motivated by the interference that through-
screen VLC brought in full-screen devices, we notice a new security vector: the transpar-
ent screen is placed above the USC, inevitably introducing optical perturbations on the
image formation of the USC. When the screen is lit up for display, the lighting of differ-
ent R/G/B subpixel sets embeds various perturbations – speckled color blocks and color
shifts – in the final image captured by the USC. These perturbations can be exploited for
both attacking and safeguarding purposes from a security perspective.

In Chapter 4, we propose Screen Perturbation, which modifies the pixels displayed on
the transparent screen to nullify deep learning models such as image classification and
face recognition models. These perturbations can affect deep learning models in image
classification and be employed for user privacy protection or, in the case of malicious
software, disrupt the front camera’s functionality. We first model the under-screen im-
age formation process of USC, considering perturbations introduced by the transparent
screen. Then, we design two image-specific perturbation methods to add perturbations
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to the images captured by USC and successfully fool various deep learning models. Eval-
uations with three commercial full-screen smartphones on testbed datasets and synthe-
sized datasets show that our screen perturbations can significantly decrease the average
image classification accuracy.

Unicorn: Securing USC with Universal Screen Perturbation - Chapter 5. Camfecting
[44] refers to unauthorized access and activation of device cameras without the owner’s
consent. Through camfecting, hackers can remotely capture images, record videos, or
conduct real-time monitoring. Sensitive information, such as facial data and password
notes, are often at risk of exposure through front-facing cameras [45]–[47]. Furthermore,
using advanced deep neural networks, hackers can now efficiently mine images for sen-
sitive information [48], [49]. With the emergence of full-screen devices, their equipped
transparent screen offers a good opportunity to tackle camfecting.

In Chapter 5, we propose Unicorn, utilizing the transparent screen region above the
USC to develop a universal, scene-independent screen perturbation that can prevent
hackers’ machine learning models from accurately recognizing user identity through fa-
cial images and mining password notes or other sensitive content. This perturbation is
robust and effective in various conditions including different shooting distances, angles,
and camera settings. It provides an imperceptible yet effective defense against camfect-
ing, preserving user privacy without affecting the user experience. Experimental results
show that Unicorn achieves over 90% protection against image classification under var-
ious hacker controls and shooting scenarios. We further achieve 100% success against
advanced image classification services from Google (Google Vision API [50]) and OpenAI
(ChatGPT Vision API [51]).

The contributions in these chapters have resulted in the following publications.

• Hanting Ye, Qing Wang, “Computing behind Transparent Screen”, In Proceedings
of the International Conference on Embedded Wireless Systems and Networks
(EWSN’24), 2024. (Chapter 1 and Chapter 6)

• Hanting Ye, Qing Wang, “SpiderWeb: Enabling Through-Screen Visible Light Com-
munication”, In Proceedings of the ACM Conference on Embedded Network Sen-
sor Systems (SenSys’21), 2021. (Chapter 2)

• Hanting Ye, Jie Xiong, Qing Wang, “When VLC Meets Under Screen Camera”, In Pro-
ceedings of the ACM Conference on Mobile Systems, Applications, and Services
(MobiSys’23), 2023. (Chapter 3)

• Hanting Ye, Guohao Lan, Jinyuan Jia, Qing Wang, “Screen Perturbation: Adversar-
ial Attack and Defense on Under-Screen Camera”, In Proceedings of the ACM Con-
ference on Mobile Computing and Networking (MobiCom’23), 2023. (Chapter 4)

• Hanting Ye, Guohao Lan, Jinyuan Jia, Qing Wang, “Unicorn: Securing Under-Screen
Camera via Universal Screen Perturbation”, under submission. (Chapter 5)

• Hanting Ye, Niels van der Kolk, Qing Wang, “NIRF: Detecting Cameras That Hide
Behind Screen”, Conditionally Accepted by the ACM Conference on Mobile Com-
puting and Networking (MobiCom’25), 2025. (Chapter 6)



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 24PDF page: 24PDF page: 24PDF page: 24



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

2
SPIDERWEB: ENABLING

THROUGH-SCREEN VISIBLE LIGHT

COMMUNICATION

In the previous chapter, we presented that light and radios are expected to complement
each other in 6G networks, while radio communication still dominates in 4G/5G. The key
advantage of light-based communication is that it mitigates the severe issue of spectrum
shortage, and its wide frequency band can be utilized to support a high data rate [52],
[53]. Hence, Visible Light Communication (VLC) has been considered one of the key
enablers for future wireless networks such as 6G [18], [19]. Because of these advantages,
VLC has attracted attention from both academia and industry.

Although significant progress on research, development, deployment, and standard-
ization of VLC is being witnessed, a direction has been largely neglected by the com-
munity: how to deploy VLC practically on current/future devices, especially on the smart-
phones that are heavily used by billions of people? Here, where on mobile devices, such as
smartphones, to place VLC receivers is ultra important. In state-of-the-art trials of VLC
on smartphones, the receivers are mainly deployed on the back and top edge of smart-
phones, and/or on the smartphone screen [54], [55]. Since VLC access points are usually
placed on the ceiling (used for both illumination and communication) and the VLC sig-
nal quality is dominated by line-of-sight links, placing VLC receivers onto the front part
of smartphones will be beneficial and indispensable.

Motivation. In today’s most advanced narrow-bezel and no-bezel mobile devices, tradi-
tional sensors such as fingerprint sensors, ambient light sensors, and even cameras have
been deployed or are being evaluated under the screen [56], [57]. Motivated by this exist-
ing technical evolution on mobile devices, in this chapter, we ask the following question:

13
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“Hello
World”

Glass OLED Sensor Back coverFull-screen device

VLC transmitter

Figure 2.1: Motivation of this chapter: there is no space to deploy VLC receivers on the screen of narrow- and
no-bezel smartphones. A possible solution could be to deploy VLC receivers under the screen, but the screen

will become a ‘blocker’ and an interferer for the line-of-sight light communication.

Is it possible to also place visible light receivers under the screen to create through-
screen VLC systems, as depicted in Figure 2.1?

If this exciting objective can be achieved, we can boost VLC deployment on future
smartphones because it does not sacrifice their full-screen designs.

Why CSK? Although through-screen VLC looks promising, the Organic LED (OLED) screen
in between the VLC transmitter and the receiver might seriously degrade the system per-
formance because the screen could become a blocker. After the modulated light passes
through the glass of an OLED screen, the light intensity is sharply reduced. Moreover,
the modulated light signals are seriously interfered with by the light emitted from the
screen when the screen is on. Since the VLC receiver is closer to the screen than to the
VLC transmitter, the intensity of the light emitted by the screen is often several orders of
magnitude higher than the intensity of the modulated light from the transmitter. With-
out perfect synchronization between the transmitter and the screen, it would be difficult
to demodulate intensity-based VLC signals, such as ON-OFF Keying (OOK) [58], Pulse
Position Modulation (PPM) [59], Pulse Width Modulation (PWM) [60], and Pulse Ampli-
tude Modulation (PAM) [61]. Compared with intensity-based modulations, color-based
modulations such as Color-Shift Keying (CSK) only care about the chromaticity of visi-
ble light and is not sensitive to the light intensity. Moreover, by utilizing CSK modulation,
more bits can be encoded, and the through-screen VLC data rate can be increased. For
this reason, we exploit the color domain to realize through-screen VLC.

Challenges and Contributions. It is challenging to realize reliable CSK-based VLC be-
cause the screen content dynamically changes, interfering with the CSK signals. If we
adopt the CSK constellation points specified in the IEEE 802.15.7 VLC standard [16],
these points will be severely offset. In Chapter 1, we listed the primary challenges re-
lated to the screen in through-screen computing in brief. This section comprehensively
explains the concerns in achieving the through-screen communication link between the
LED transmitters and the under-screen receivers. Thus, the first challenge in designing
a through-screen VLC system is

Challenge 1: How to decode the signal that has been interfered by the screen light? In
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Figure 2.2: Color-pulling effect caused by the transparent screen at the under-screen sensor of VLC receiver.

particular, the screen color changes dynamically when displaying different contents.

In this chapter, we observe from measurements that the received CSK constellation
points shift toward the screen color point after being interfered with by the screen, as
illustrated in Figure 2.2. The positions of the received symbols are distributed between
the transmitted CSK symbol constellation points and the detected screen color point.
That is, the transmitted CSK symbols are pulled to the screen color point. We refer to
this phenomenon as color-pulling effect introduced by the screen on the CSK signals.
Motivated by the observation that the received symbols form lines from the CSK symbol
constellation points to the screen color point, we propose using a slope-based demod-
ulation method to distinguish the received symbols. It works well for the CSK with low
modulation levels, such as 4-CSK.

Although the slope-based demodulation algorithm can reduce the Bit Error Rate (BER)
in CSK-enabled through-screen VLC, we encounter the second challenge:

Challenge 2: With higher-level CSK modulations specified in the IEEE 802.15.7 standard
(e.g., 8-CSK and 16-CSK) and under many screen colors, the slope-based demodulation
alone cannot distinguish the received constellation points.

In higher-level CSK modulations such as 8-CSK and 16-CSK, some of the lines (caused
by the color-pulling effect) that connect their constellation points with the screen color
point could overlap with each other, making the demodulation of these constellation
points almost impossible.

To tackle this challenge, we design a new color-based modulation scheme named
SpiderWeb Color-Shift Keying (SWebCSK). The design is motivated by the structure of
spiderweb. We set the detected screen color at the sensor as the hub of the spiderweb,
and search for the suitable constellation points from each ray of the spiderweb. We max-
imize not only the Euclidean distances among constellation points, but also maximize
the minimal angle between any two lines caused by the color-pulling effect. This design
ensures that the lines will not overlap with each other, benefiting the demodulation of
received color-modulated symbols at the receiver.

We have also tackled other system-level challenge:

Challenge 3: How to practical design and implement a through-screen VLC system?

When generating CSK/SWebCSK signals at the transmitter, a linear current drive could
be leveraged. However, the normalized radiant power of the tri-color RGB LEDs ver-
sus the DC drive current is not linear, additionally considerable hardware overhead and
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complexity will be introduced. In this chapter, we use three high-frequency PWM signals
to control each channel of the tri-color LED and we identify the formulation to calculate
the duty circles of each PWM signal, considering the power/non-flickering constraint
and the attenuation of visible light in the air as well as when the light passes across the
OLED screen. We also solve at the receiver an over-saturation problem that is specific in
through-screen VLC.

We successfully prototype the proposed system using off-the-shelf hardware. Com-
bining all the design components, we successfully enable through-screen VLC under
different screen colors and different screen brightness. The proposed SWebCSK mod-
ulation and the slope-based demodulation could achieve very low BER in different sce-
narios. Below we summarize our main contributions:

• We propose the concept of through-screen VLC and validate its feasibility by pro-
totyping with off-the-shelf devices.

• We observe a color-pulling effect of transparent screens on color-based signals.
This effect greatly degrades the BER performance of through-screen VLC systems.

• We design a color-based and spiderweb-inspired SWebCSK modulation scheme.
Together with our proposed slope-based demodulation, we can improve the BER
performance greatly under different screen color and brightness.

• We thoroughly evaluate the performance of our system in different scenarios. The
results demonstrate that compared to existing solutions, our methods can reduce
the BER by two orders of magnitude and achieve a 3.4× data rate.

2.1. FUNDAMENTALS OF SCREEN AND COLOR
Before we present discoveries and proposed modulation and demodulation techniques
for through-screen VLC systems, we briefly explain the fundamentals of screens used in
mobile devices, standard color spaces, and CSK modulation used in VLC systems.

2.1.1. TYPES OF SCREEN
There are currently two main types of screens: Liquid Crystal Display (LCD) and OLED.
Below we briefly introduce them.

LCD screen. It has three main components: backlight panel, liquid crystal, and two polar-
izing plates called Polarizer and Analyzer, as illustrated in Figure 2.3(a). The liquid crystal
does not emit light; thus, a backlight panel is needed (except in reflective displays) as a
light source to illuminate the display panel. The liquid crystal layer can change the po-
larization direction of incident light when applied different voltages, thereby controlling
the light/dark states of the screen. This feature has been used for passive VLC [62]–[65].

OLED screen. It also has a sandwich structure. The difference is an OLED screen does
not need a backlight panel, and the thick liquid crystal layer is replaced by a thin organic
emissive layer wrapped by the anode and cathode, as shown in Figure 2.3(b). Thus, an
OLED screen is thinner than an LCD screen. To display content, the anode of OLED is
built with transparent materials and covered with glass. An OLED screen is self-luminous.
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Figure 2.3: Simplified diagrams of screens: (a) LCD; (b) OLED. An OLED screen is thinner and lighter than an
LCD screen.
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Figure 2.4: OLED screen refresh rate and brightness control.

The cathode can also be built with transparent electrode materials such as transparent
indium tin oxide to form a transparent screen.

2.1.2. SCREEN REFRESH RATE AND BRIGHTNESS CONTROL

The refresh rate is an important screen parameter that determines the quality of the
screen. The screen refresh rate of common devices such as smartphones, monitors, and
TVs, is 60 Hz. Some high-end monitors have supported a refresh rate of 144 Hz. In re-
cent years, the refresh rate of smartphone screens is being increased to 90 Hz and 120 Hz.
For any screens, the content displayed on the screen remains unchanged between two
consecutive screen refreshes.

There are two ways to control the brightness of a screen. One is Direct Current (DC)
dimming, which changes circuit current to control the power of the emitted light. The
other one is Pulse-Width Modulation (PWM) dimming that changes the number of ON
and OFF states of the screen in a unit of time to have various brightness, as shown in
Figure 2.4. PWM dimming is widely used in OLED screens.

2.1.3. STANDARD COLOR SPACE

A popular color space chromaticity diagram is CIE 1931 [66],1 which mimics human per-
ception of color. The diagram maps all colors perceivable by human eyes to two chro-
maticity parameters - x and y - as shown in Figure 2.5, where the monochromatic light
with different wavelengths forms the line on the periphery of the horseshoe shape. Each

1CIE is the French abbreviation for the International Commission on Illumination.
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screen might have a different color display range, as shown in Figure 2.5. The sRGB and
DCI-P3 color gamuts are widely used in devices; the Adobe RGB color gamut is mostly
used in professional photography.

2.1.4. COLOR-SHIFT KEYING MODULATION

The Color-Shift Keying (CSK) modulation scheme was proposed in the IEEE 802.15.7
standard for VLC [16]. CSK exploits three separate (Red (R), Green (G), and Blue (B)) LED
channels in LED luminaires to generate white light. With three LED channels R/G/B,
such luminaires can be configured to provide a variety of colors using a mixture of Red,
Green, and Blue. CSK modulates the signal by modifying the output power combinations
of the three colors. Since different devices use different RGB color spaces, we need a
standard color space to unify color standards. Depending on the operating frequency of
the red, green, and blue LEDs of the luminary, a modulation triangle is formed within the
standard color space, as indicated in Figure 2.6. Regardless of whether the screen uses
sRGB or Adobe RGB, most of its color space is included in the modulation triangle of
this chapter. The constellation symbols are chosen inside the triangle. In addition, given
the RGB coordinates of the modulation triangle,2 the CSK constellation points, as shown
in Figure 2.6, can be directly calculated from the specification in [16]. Compared with
intensity-based modulations (e.g., OOK, PPM, PWM, and PAM), the demodulation of
color-based CSK signals does not depend on the signal strength, but exploits the position
of the detected CSK signals mapped in the CIE color space.

2.2. SPIDERWEB COLOR-SHIFT KEYING

In this section, we first introduce our observation of OLED screen’s impact on traditional
CSK signals. Then, we present SpiderWeb CSK (SWebCSK), a key scheme we designed to
enable through-screen VLC.

2In IEEE 802.15.7, IJK is used to represent the variable apex coordinates of the modulation triangle. For sim-
plification in this chapter, I is represented as the red coordinate point R, J as the green coordinate point G ,
and K as the blue coordinate point B .
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Figure 2.8: Time domain illustration of the screen’s color-pulling effect
on CSK signals.

2.2.1. SCREEN’S COLOR-PULLING EFFECT ON CSK SIGNAL
Equipped with a true color sensor, the VLC receiver can directly read the X, Y, and Z
values of detected CSK signals, which are the imaginary three primary colors after the R,
G, and B transformations to meet the CIE 1931 standard chromaticity observer function.
The transformation of coordinates from X, Y, and Z values to the CIE 1931 space is

x = X
/

(X +Y +Z ) , y = Y
/

(X +Y +Z ) . (2.1)

When the visible light passes through the color filter of a color sensor, a portion of
the photons is filtered out. To collect enough photons, a common color sensor needs to
wait for a certain amount of time, known as the integration time or the conversion time
(cf. the datasheet of the sensor TCS34725 for example [67]). Therefore, what we receive
through the color sensor is not an “instantaneous” CSK signal but an integral signal. As
introduced in Section 2.1.2, due to the simplicity of hardware, PWM dimming is usually
adopted by OLED screens for brightness control. To avoid flickering, the PWM control-
ling signal has a much higher rate than the screen refresh rate. Thus even when the color
displayed on the screen does not change between two screen refreshing actions, the state
of an OLED screen actually switches very fast between ON and OFF. In through-screen
VLC, the color sensor (ambient light sensor) is placed under the screen. Therefore, the
color sensor integrates not only the transmitted CSK signal but also the ‘random’ light
emitted by the screen. In practice, it could be impossible to cancel the screen light inter-
ference because the ON/OFF state of the screen and the transmitted CSK signals cannot
be practically synchronized.

A. COLOR-PULLING EFFECT

We use two illustration figures to show this effect. The transmitter sends the 4-CSK
symbols calculated according to [16]. The transparent OLED screen is placed between
the transmitter and the receiver, and the color sensor of the receiver is deployed under
the screen. The experimental color gamut results are shown in Figure 2.7. We could
observe a phenomenon in which the detected CSK signals at the color sensor are always
on the line segment connecting the sending symbol point and the screen color point.3

3Most modern devices, such as smartphones, use professional programs to calibrate their screen color to the
standard color spaces as introduced in Section 2.1.3. Thus, we do not need additional calibration procedures
to get the accurate screen color coordinates.
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We denote the CSK symbol for the green light as A, and the CSK symbol for the red light
as B. As shown in Figure 2.7, when symbol B is transmitted and the screen color is red, the
reception of symbol B is not affected. Nevertheless, when symbol A is transmitted and
the screen color is red (corresponding symbol B), we come with a line segment from A
to B, where the starting point of the line segment is symbol A, and the endpoint is close
to B. This means that when the screen is illuminated, the original symbol A (when the
screen is not illuminated) is pulled closer to the symbol B. We call this phenomenon as
the color-pulling effect of the screen on CSK signals, which pulls the originally sent CSK
symbol points to the color point of the screen.

From the time-domain’s perspective, we assume that the transmitter sends symbol A
and symbol B successively within 8 time slots (the length of each time slot is equal to the
integration time of the color sensor). Figure 2.8 shows the color signal receiving process,
which contains the color symbols sent by the transmitter, the color displayed on the
screen,4 and the color detected at the under-screen sensor. Because the transmitter does
not know the specific period of the screen signal, the transmitted signal and the screen
signal are not synchronized. In addition, the screen adopts PWM dimming. In other
words, the screen is ON within a certain period of time, and is OFF in another period
of time. Also, the frequency of PWM is much lower than transmitted signal frequency.
As shown in Figure 2.8, in the first two time slots, the symbols sent are wholly disturbed
by the screen, so the original green symbol point of the sensor output is pulled to the
orange symbol point. In the third time slot, a jump occurred in the middle of the screen,
changing from the original red light to no light, and thus the sending symbol A is only
disturbed by part of the red light of the screen. Therefore, the symbol points collected by
the sensor in the third time slot are yellow symbol points. The transmitter starts to send
the red symbol point B from the 5th time slot. Because the screen is transparent or red at
this time, from the 5th to the 8th time slot, the output of the sensor in the receiver is still
at the red symbol point. That is, the red symbol point A is not affected when the screen
color is red. The above analysis in the time domain explains in principle the occurrence
of screen’s color-pulling effect on the CSK signals.

B. IMPACT OF THE SCREEN BRIGHTNESS.
The distribution of the points on the line connecting the constellation point and the

screen color point depends on the screen brightness. Interestingly, when the screen
brightness increases, more points are shifted from the original constellation point to
distribute on the line. This can be observed from our measurements shown in Figure
2.9(a). The result in Figure 2.9(b) is to analyze the distribution of constellation points
under different screen brightness. When the screen is OFF, there is no interference from
the screen color. Thus, the sampled points are distributed around the original constel-
lation points. When the screen is fully ON, there is already interference from the screen,
and thus, the received points are nearly distributed around the screen color. When the
screen is ON but its brightness is less than 100%, the points are distributed on the line
as well as the constellation and screen color points. Also, we calculate the normalized

4The screen usually displays a multi-pixel image so that the overall screen shows a variety of colors. However,
the sensor has a small sensing area under the screen. Thus, we assume that the screen color perceived by the
sensor is the color of a pixel.



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 33PDF page: 33PDF page: 33PDF page: 33

2.2. SPIDERWEB COLOR-SHIFT KEYING

2

21

(a) (b)

Screen-0%

Screen-50%

Screen-100%

Screen 
color 
point

Figure 2.9: Color-pulling effect vs. screen brightness.

distance between interfered point and constellation point with respect to the distance
between the constellation point and the screen color point.

C. IS A SLOPE-BASED DEMODULATION METHOD ENOUGH FOR TACKLING THE COLOR-PULLING

EFFECT ON CSK SIGNALS?

Since the points are distributed on the lines, we could not use the traditional method
to demodulate the received data. But this line has motivated us to design a slope-based
scheme to demodulate the received signals. The color-pulling effect from the screen in-
spires us not only to use the distance between each constellation point in the CIE 1931
space to demodulate by implementing minimum Euclidean distance detection, but also
to use the slope from each constellation point to the screen color point for demodula-
tion, that is, use the angular space of CIE 1931 space. This only works with low-level
CSK modulation under certain screen colors such as the 4-CSK under the red displayed
on the screen (cf. Figure 2.7), where the slopes are different. However, when the screen
color is yellow-green, the slopes of the blue symbol point and the white symbol point of
4-CSK are overlapped. Especially, in CSK with higher modulation levels such as 8-CSK
under red screen as shown in Figure 2.10, there are more possibilities for multiple CSK
symbols to overlap with each other, which is completely indistinguishable. Therefore,
we need to redesign the distribution of the constellation points.

2.2.2. SWEBCSK OVERVIEW

Different from the traditional CSK where the constellation points in the constellation di-
agram are fixed for a certain modulation level, in our proposed SWebCSK, the constella-
tion points are optimized dynamically based on the current screen color detected at the
under-screen sensor of the VLC receiver. By doing this, we could significantly alleviate
the color-pulling effect caused by the screen and thus enable through-screen VLC.

Defining the line connecting the current screen color point and a SWebCSK constel-
lation point as a ray. To ensure the through-screen VLC signals have a low bit error rate,
we should maximize the distances between the constellation points. Due to the color-
pulling effect of the screen, we should also separate the rays as much as possible. Based
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Figure 2.10: 8-CSK.
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Figure 2.11: Structure of a spiderweb.

on these intuitions, we have the following designing principles for M-SWebCSK, where
M is the modulation level:

1. The minimum Euclidean distances among the M constellation points should be
as large as possible;

2. Rays should be separated from each other to the largest extent. In particular, two
rays should not overlap with each other (recall the issue in 8-CSK of Figure 2.10).5

Although we can form an optimization problem to find the constellation points, the
complexity is usually high because the problem would be non-conductive and non-
convex [68]. To reduce complexity, in this chapter, we instead propose a heuristic to
obtain the proper SWebCSK constellation points. Next, we present the details.

2.2.3. SWEBCSK CONSTELLATION DESIGN
Our solution is motivated in part by the structure of the spiderweb. In a spiderweb as
shown in Figure 2.11, hub/center is a place for the spider to rest; radius is composed
of non-stick lines for the spider to crawl on; capture spiral is built with sticky silk for
catching insects. The constellation design in SWebCSK is to select the most suitable in-
tersections of the capture spiral and the radius to meet with the two design principles
presented in Section 2.2.2.

Before introducing the details, we first make the following definitions. For the trian-
gle that confines the modulation space, we define the three apexes as R � (xR , yR ) (Red),
G � (xG , yG ) (Green), B � (xB , yB ) (Blue). These points are fixed. We define the screen
color at a time slot as S � (xS , yS ). This point changes based on the color displayed on the
screen. For the M-SWebCSK, we need to find M constellation points in the modulation
space. Denote the designed CSK constellation points as ui � (xi , yi ),∀i ∈ {1, · · · , M }.

Motivated by how a spider weaves its web, in our algorithm, we first establish a
spiderweb-alike frame within the modulation space. This frame will give us the list of
potential constellation points. Then we use a greedy algorithm to choose the optimal
constellation points for our SWebCSK. Without the loss of generality and for explanation
simplicity, we assume the screen is displaying Red color. That is, S and R overlap with

5An exception is when the screen color point falls in between two constellation points.
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Figure 2.12: Model and modulation angle.

each other in the constellation space, as illustrated in Figure 2.12(a). We also use this
figure to explain our proposed algorithm. The algorithm consists of three steps:

Step 1) Establish the spiderweb-alike framework. To build such a framework, we first
need to find a primary constellation point, which is similar to the hub or center of a
spiderweb where the spider rests. Since the candidate constellation point that overlaps
with the screen color point is least affected by the color-pulling effect of the screen, we
use this one as the primary constellation point. We number it as the M-th constellation
point, that is, uM = (xS , yS ).

Once we identify the hub constellation point, we calculate the modulation angle θ.
This angle determines how many rays can we embed into the modulation space, i.e.,
affecting the modulation level of our proposed SWebCSK. The larger the modulation
angle θ, the higher M will be. A higher M means more bits can be transmitted in the
unit time/symbol. But note that with a specific modulation angle, a higher M usually
leads to higher BER. For the modulation angle, there are only three cases: 1) Acute angle,
when the screen color point overlaps with one of the vertexes of the modulation space;
2) Straight angle (θ = 180°), when the screen color point falls on the edges of the modula-
tion space (excluding the three vertexes); 3) Complete angle (θ = 360°), when the screen
color point is within the triangle. These three cases are illustrated in Figure 2.12.

To meet the second requirement (cf. Section 2.2.2), the minimum angle can be maxi-
mized by evenly splitting the modulation angle θ. Therefore, the screen coordinates can
be the origin, and each ray equally divides the modulation angle. Note that to eliminate
the color-pulling effect, only a point on each ray can be selected as a constellation point
in the proposed SWebCSK to guarantee that there is a minimum angle between any two
constellation points and the screen color point. In addition to the point uM , we still need
(M −1) rays to extract another (M −1) constellation points. When θ is an acute angle or
a straight angle as shown in Figure 2.12(a) and (b), we need (M −1) rays to form (M −2)
angles; when θ is a complete angle, (M−1) rays form (M−1) angles. Denoting θray as the
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angle between each two neighboring rays, we have

θray =
{
θ/(M −2), if θ ≤ 180°

θ/(M −1), if θ = 360°
. (2.2)

Therefore, if the screen color point S is on the three edges of the modulation triangle,
then 180 degrees could be leveraged to split the (M − 1) rays, and thus, a higher level
of SWebCSK could be formed. Furthermore, if the screen color point S is within the
modulation triangle, 360 degrees can be used, and the level of the SWebCSK could be
further improved. In summary, the current screen color has a significant impact on the
levels of SWebCSK we would form.

After obtaining the rays, we continue to find the suitable constellation points on each
ray. Again, we follow the building process of a spiderweb. In the framework with the
(M − 1) rays, we draw concentric circles to connect the rays, all centered around the
primary constellation point (screen color point). The maximum radius of the circle that
has an intersection with the modulation triangle is ρmax � max{dSR ,dSG ,dSB }. Let K
denote the number of circles. The larger the K , the more potential constellation points
we will have. For simplicity, we assume the inter-circle distance is fixed and denoted
by ρeq. Then we have ρeq = ρmax

K−1 . The intersection of each ray and each circle can be a
candidate CSK constellation point for CSK on that ray. According to the law of sines, the
maximum length of the i -th ray within the modulation triangle can be calculated as

ρi ,max =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSG
sinθG

sin(θG + (i −1)θray)
, (i −1)θray ≤ 90°,

dSB
sinθB

si n(θB + (i −1)θray +θ∠GSB )
,90° < (i −1)θray ≤ 180°,

dSR
sinθR

si n(θR + (i −1)θray +θ∠GSB +θ∠BSR )
, (i −1)θray > 180°,

∀i ∈ {1, · · · , M −1}

(2.3)
The number of candidate constellation points that can be placed on each ray is com-

puted as Ci =
⌊
ρi ,max
ρeq

⌋
+1,∀i ∈ {1, · · · , M −1} .

As a result, the set of available constellation points in the modulation triangle area is
obtained. All the candidate CSK constellation points and the constructed spiderweb are
shown in Figure 2.13(a).

Step 2) Select constellation points from the candidate sets. In Step 1, we have already
selected the screen color point as the primary constellation point. For uM , ρM = 0. We
then put point uM into the set A , which is the set to store the selected SWebCSK con-
stellation points. To select the remaining M−1 points, we use the “ray-point” procedure.
We first identify on which ray to select the constellation point, then find the best con-
stellation point on that ray. The constellation points should be picked from the ray with
the smallest number of candidate constellation points first. Therefore, the index of the
starting ray is selected as j = argmini∈{1,··· ,M−1} Ci . Then we use the Max-min metric to
select a point from the j th ray as a constellation point. The Max-min metric maximizes
the minimum distance between the currently selected point and the previous points in
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(c) Testbed validation

Figure 2.13: SWebCSK constellation design (M = 8).

Algorithm 1 Select constellation points from the candidate sets

Input: A = {ρM }
Ci , i ∈B � {1, · · · , M −1}

Output: A

1: Set the screen color point as a constellation point uM

2: while B! =� do
3: Select the ray j with the least number of candidate points: j = argmini∈B Ci

4: Use the max-min metric to select the point on the j th ray.
5: A ←A ∪ρ j

6: B ←B/ j
7: end while

set A . According to the law of cosines, the Max-min metric can be expressed as follows:

n = arg max
n∈C j

min
m∈A

√
ρ2

m +ρ2
n −2ρmρn cos(θmn) , (2.4)

where C j � {1, · · · ,C j }. The distance from the selected constellation point on the j -th
ray to the screen color point S is as ρ j = (n −1)ρeq. Also, the angle between i th ray and
j th is θi j = |i − j |θray.

We repeat the above procedure until we find all the M constellation points. The
whole procedure is shown in Algorithm 1.

Step 3) Convert the constellation points from polar coordinates to xy coordinates. The
SWebCSK constellation points obtained from Step 2 are expressed in the polar coordi-
nate with the screen color point S as the origin. They need to be further transformed
into the xy coordinates in the CIE 1931 coordinate system. When the modulation angle
θ is an acute angle, the conversion from the polar coordinates to the xy coordinates can
be done as follows:

xi =ρ̃i cos θ̃i , yi = ρ̃i sin θ̃i , (2.5)
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where ρ̃i =
√
ρ2

i + ρ̃ 2
S −2ρi ρ̃S cosλi , λi � arctan | yS−yG

xS−xG
|−θray(i−1)+arctan(yS /xS ), ρ̃S �√

x2
S + y2

S , and θ̃i is expressed as

θ̃i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

yS

xS
+arccos

ρ̃ 2
i + ρ̃ 2

s −ρ2
i

2ρ̃i ρ̃s
, λ≥0,or, λ<−π

arctan
yS

xS
−arccos

ρ̃ 2
i + ρ̃ 2

s −ρ2
i

2ρ̃i ρ̃s
, −π≤λ<0

. (2.6)

Preliminary validation. We use the designed 8-SWebCSK constellation points as shown
in Figure 2.13(b) at the transmitter. We place the color sensor under the red screen to de-
tect the transmitted CSK signals. The received constellation points are shown in Figure
2.13(c). It can be seen that due to the influence of the color-pulling effect, each constel-
lation point of 8-SWebCSK shifts to the red screen point to form seven non-overlapping
line segments. The endpoints of the seven lines formed simultaneously do not overlap
with the origin of the red screen, which also helps detect the eighth CSK constellation
point at the origin of the screen.

2.3. SYSTEM DESIGN
In this section, we present the system design of our SpiderWeb. We consider a through-
screen VLC with a transmitter and a receiver, which are presented in Section 2.3.1 and
Section 2.3.2, respectively. The transmitter is equipped with an RGB LED and a driver cir-
cuit. The visible light emitted from the LED is modulated in the color domain to transmit
data wirelessly. At the receiver, we use a true color sensor that can directly output the X,
Y, and Z values of the detected light. We consider an OLED screen at the receiver. The
color sensor is placed under the OLED screen, similar to the front camera and ambient
light sensor placed in the most advanced smartphones [56], [57]. The screen color de-
tected by the color sensor of the receiver is shared with the transmitter. Next, we present
the design details of the transmitter and the receiver.

2.3.1. TRANSMITTER DESIGN
The block diagram of the VLC transmitter is shown in Figure 2.14. We use three PWM
signals to separately control the R/G/B channels of the LED to generate different colors.
The controller generates three high-frequency PWM signals with different duty cycles
through internal timers to control the average output power of the RGB LED, thereby
generating different colors. Although the linear variable current driver has been used
to generate different driving currents for producing different colors, it often requires the
polynomial fitting of more than third order to obtain accurate current combinations[68].
Leveraging PWM signals can avoid tackling the non-linearity of LEDs. The circuit is also
simple, easy to implement, and compatible with existing transmitter infrastructures.

A. GENERATING THE SWEBCSK SIGNALS

The transmitter receives the binary data and codes them by assigning designed SWe-
bCSK constellation points in the CIE-1931 space. In order to reduce the bit error rate of
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Figure 2.14: Circuit diagram of the transmitter.
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Figure 2.15: Electro-optical response of the RGB LED.

the system, SWebCSK symbols are coded by gray code from symbol 1 to symbol M . Ac-
cording to the current color of the screen, the transmitter calculates SWebCSK constella-
tion points based on the method presented in the last section. For a given color constel-
lation point, we need to know the output optical power of R, G, B LED. In order to avoid
flickering, the output optical power of R, G, B LED should satisfy PR +PG +PB = 1. Sup-
pose that, given a RGB LED in the transmitter, a desired output chromaticity of (xm , ym)
is required (the constellation point coordinates are obtained using the three steps pre-
sented in Section 2.2.3). Substitute the measured xp and yp , p ∈ {R,G ,B}, the output
optical power PR , PG and PB required for RGB light can be calculated as⎡⎣PR

PG

PB

⎤⎦=
⎡⎣xR xG xB

yR yG yB

1 1 1

⎤⎦−1 ⎡⎣xm

ym

1

⎤⎦ , (2.7)

where xm and ym are the coordinates of the mth constellation point. Note that in the
system, we do not need to calculate the inverse of the matrix in (2.7). When the LED in
the transmitter is fixed, xp and yp , p ∈ {R,G ,B} are all known to the transmitter, and the
inverse of the entire matrix can be calculated in advance. However, we are still unable to
realize accurate CSK constellation point coordinates in the transmitter based on PR , PG

and PB . For example, if we realize the white point in the CIE 1931 diagram, the output
power of the corresponding R, G, and B LEDs should all be 33.3%. In fact, if the PWM
duty cycle is configured to (33%,33%,33%), the light emitted by the transmitter is not
real white light. This is because the luminous efficiency of different colors of light is
different. Therefore, we need to know the luminous efficiency of the RGB LEDs.

Since Y represents Luminosity in the CIEXYZ space, we have tried to use Y to simulate
the result of the change in the PWM signal duty cycle. However, the actual performance
is abysmal, and the modulation of any CSK constellation point cannot be achieved. Nev-
ertheless, by consulting the datasheet of the true color sensor, X channel detects visible
light with a wavelength of 600 nm, which is close to the red wavelength range. Similarly,
Y channel can detect green light with a wavelength of 555 nm, and Z channel can detect
blue light with a wavelength of 445 nm. Therefore, we use the X, Y, and Z channels to
calculate the input red, green and blue light irradiance regarding the photodiode’s area

within the conversion time interval (Ee ), which is expressed as Ee = FSREe
NCLK

MRES, where
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FSREe is the full-scale range of detectable input light irradiance Ee , in μW/cm3 (can be
found in [69]); NC LK denotes the number of clock cycles within the predefined conver-
sion time interval; MRES is the digital output value of the conversion (X, Y, Z).

Figure 2.15 shows the measured input light irradiance of the photodiode’s area within
the conversion time interval, comparing different duty cycle signals and the correspond-
ing fitted RGB three-color power response. It is observed that red light has the lowest
and green light has the highest luminous efficiency. Consequently, we set the maximum
luminous power of the red light to equal the total emission power of the emitter. The
symbols ηmax

R , ηmax
G , and ηmax

B in the figure denote the achievable duty cycle for R, G, B
when total emission power is reached.

Therefore, after substituting the required CSK symbol coordinates, we can get the
normalized RGB LED radiation power from (2.7). Finally, the duty cycle of the PWM
signal that controls the RGB LED is calculated as: PWMp = Ppη

max
p , p ∈ {R,G ,B}.

B. CHANNEL PRECOMPENSATION

There are two types of visible light attenuation in the system: 1) the attenuation of
visible light propagating in the air, and 2) the attenuation of visible light when it passes
through the screen medium, known as the Glass Attenuation Factor [70]. Different col-
ors of light have different attenuation under these two attenuation situations. Also, the
attenuation faced by different colors of light depends on the distance. In this chapter, we
regard these two types of attenuation as the attenuation of the CSK symbol in the com-
munication channel. In RF communication, the transmitted signal is usually pre-coded
to resist channel fading. Similarly, three dynamic compensation factors can be added to
the transmitter of the SpiderWeb system to compensate for the lower light level at the
receiver according to varying distances. The calibrated duty cycle signal of the RGB LED
is PWMp = PWMp + cp , p ∈ {R,G ,B}.

To complete channel compensation, the transmitter periodically sends a pilot con-
taining a flag and three symbols of R, G, and B light in sequence. After receiving the flag,
the receiver calculates cR , cG , cB , respectively, and then feeds them back to the trans-
mitter. The transmitter will use this calibration factor until the next channel calibration.
Since the pilot is sent out periodically, the transmitter can quickly adapt to changing
channel conditions, allowing the receiver to detect accurate CSK constellation points.

2.3.2. RECEIVER DESIGN

As shown in Figure 2.16, the receiver is composed of a transparent OLED screen, and a
true color sensor is placed directly under the screen where it emits light. The sensor out-
puts the X, Y, Z from three channels after detecting the light. The X, Y, and Z channel data
streams received by the receiver first pass through the initial module to perform over-
saturation detection and restore outliers. Then through energy detection, the received
signal is divided into the part interfered by the screen color signal and the part not inter-
fered by it. Next, we use different demodulation methods to demodulate different parts
of the received signal. Finally, we detect the preamble of the demodulated signal, find
the starting point of the data, and map received symbols to the data bit stream.
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Figure 2.16: Diagram of the receiver hardware.
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Figure 2.17: Diagram of over-saturation recovery area.

A. OVER-SATURATION RECOVERY

Since the sensor is placed directly under the screen at a very close distance, the
screen light intensity detected by the sensor is extremely high. Because the ADC out-
put accuracy range of the sensor is n bits and sometimes the ambient light intensity is
too strong, the sensor at the receiver is in over-saturation, resulting in outliers in the
received CSK symbols. Although we can eliminate this kind of over-saturation by re-
ducing the gain of the sensor, it will also greatly reduce the performance of the system
because the screen light intensity is much higher than the light intensity of the modu-
lated signal. Fortunately, we find that the occurrence of over-saturation outliers often
caused one or more of the X, Y, and Z channels of the output signal to recount from
0. As a result, points not located in the CIE 1931 chromaticity diagram are those over-
saturation outliers. We design an over-saturation recovery method to handle occasional
over-saturation outliers by compensating for them based on their specific positions. We
denote the over-saturation state of the three channels of X, Y, and Z as X̂ , Ŷ , and Ẑ , re-
spectively. As shown in Figure 2.17, the outliers are all in areas I to IV. When the outlier
is in area I, the x coordinate of the outlier is very small at this time. It may be that only
the X channel is over-saturated, or both X and Z channels are over-saturated. It can be
denoted as {X̂ } and {X̂ , Ẑ }. When the outlier is in area II, the y coordinate is extremely
small. At this time, the saturation is {Ŷ } or {Ŷ , Ẑ }. When the outlier is in area III, the sat-
uration situation is {X̂ , Ŷ } or {X̂ , Ŷ , Ẑ }. Finally, since the saturation of the Z channel will
increase the x and y coordinates, the outlier saturation corresponding to area IV is {Ẑ }.

It can be found that the Z channel may be saturated from regions I to III. Therefore,
we follow the sequence of I+III, II, IV to detect outliers and compensate X, Y, Z channel,
respectively. Each compensation value is the ADC maximum output value 2n −1. Over-
saturation outliers can then be restored to the normal CSK symbol points.

B. DEMODULATION

Since CSK signals are all normalized maximum power, although the channel attenu-
ation for different colors of light is different, power compensation is performed. Never-
theless, the signal power received at the receiver remains at a constant level. Moreover,
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Figure 2.18: The received CSK signal cluster.

because the screen is closer to the receiver, the detected screen light intensity is much
higher than the intensity of the modulated light signal after channel (screen + air) at-
tenuation, far exceeding it by one to two orders of magnitude. Therefore, the threshold
can be set according to the average power of the modulated light at the transmitter, and
all received signal points can be divided into the modulated signal + screen OFF signal
points, and the modulated signal + screen ON signal points.

For the modulated signals + screen OFF signal points, we calculate ΔE [71] to mea-
sure the difference between the colors of two sampling points in the CIE 1931 diagram.
ΔE is the Euclidean distance between two colors in the x, y-plane of the CIE 1931 dia-
gram. We select the smallest ΔE to match the color of a symbol to carefully picked colors
via the SpiderWeb algorithm (cf. Section 2.2.3). The received sampling point is denoted
as ri � (xr

i , yr
i ), and the SWebCSK constellation coordinates for reference are denoted

as u j ∈ M � {1, · · · , M }. The optimal minimum distance decoder can be expressed as
u∗

i = argminu j ∈M

∥∥ri −u j
∥∥

2, where u∗
i is the decoded symbol.

The modulated signals + screen ON signal points are usually clustered together, as
shown in Figure 2.18. If we simply recover the required signal through slope detection,
when the signal point interfered by the screen is very close to the screen color signal
point, the coordinates will swing slightly affected by the noise. It will have a greater im-
pact on slope detection. Therefore, we again divide the slope detection into two parts:
for the first part when the transmitted signal is most affected by the screen color and
when it is located in a smaller modulation triangle compressed after the superimposi-
tion of the screen signal, we still use the minimum Euclidean distance detection; for the
other part that is outside the smaller modulation triangle, we use the minimum slope
detection. The optimal slope decoder can be expressed as

s∗i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arg min

s j ∈M

∥∥ri −u j
∥∥

2 , di ≤ dth,

arg min
s j ∈M

( ∣∣∣∣∣ yr
i − yS∣∣xr
i −xS

∣∣ − y j − yS∣∣x j −xS
∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣yr

i − yS
∣∣

xr
i −xS

−
∣∣y j − yS

∣∣
x j −xS

∣∣∣∣∣
)

, di > dth,
(2.8)

where s j ∈M is the set of CSK symbol points that are fully interfered by the screen, dth is
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the predefined threshold, and di �‖ri −uM‖2 is the distance between received sampling
point and screen color point in the CIE 1931 diagram.

C. PREAMBLE DETECTION

To decode data from the received signal, we first need to detect the preamble of the
frame. In VLC, the preamble is designed for frame detection and synchronization [72].
The preamble pattern is usually fixed with a total of 2K alternating ONs and OFFs (i.e.,
2K ON-OFF patterns). For example, the OpenVLC platform adopts 24 alternating ONs
and OFFs as the preamble [58], [73]. However, due to potential screen interference, it is
impossible to confirm whether the pilots that send all CSK symbols can be successfully
decoded and demodulated, and confirm the correct starting position of the data symbol.
Thus, we send several CSK symbols of the same color on the screen as pilots.

2.4. IMPLEMENTATION
In this section, we present the implementation of VLC transmitter, screen module, and
our under-screen receiver.

Transmitter. A snapshot of our implemented SpiderWeb transmitter is given in Fig-
ure 2.19. We use an off-the-shelf full-color LED (Kingbright WP154 [74]) in the transmit-
ter front-end. The peak wavelengths of R, G, B light of this LED are 640 nm, 515 nm, and
461 nm, respectively. The measured color coordinates (x, y) associated with this RGB
LED are (xR = 0.6544, yR = 0.3205), (xG = 0.1776, yG = 0.7188), and (xB = 0.1307, yB =
0.0711). An Arduino DUE, a low-cost and open-hardware embedded development plat-
form with an 84 MHz processor, is used as the processing unit at the transmitter. We
leverage three independent PWM ports of the Arduino DUE to control the RGB LED sep-
arately for generating various colors. The frequency of the PWM signals is set to 1 MHz.

OLED screen. We use the transparent OLED screen Sparkfun LCD-15079 [75] in our pro-
totype.6 The colors supported at different pixels of this screen are fixed, and a large part
of the screen is just transparent and cannot display any colors. From the rest of this
screen, we identify three parts that can display different colors and are large enough to
cover our color sensor when the sensor is placed under that part: red (0.6544,0.3205),
yellow-green (0.4400,0.5000), and white (0.3350,0.3722). The OLED screen is controlled

6Although its name has “LCD”, it is indeed an OLED screen as specified in [75].
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Table 2.1: Comparison under different screen colors (M = 4)

Screen color
dmin θmin (rad)

4-CSK 4-SWebCSK 4-CSK 4-SWebCSK

Red 0.3372 0.2330 0.4942 0.5702
Yellow-green 0.3372 0.1763 0 1.5708

White 0.3372 0.2538 1.9896 2.0944

Table 2.2: Comparison under different screen colors (M = 8)

Screen color
dmin θmin (rad)

8-CSK 8-SWebCSK 8-CSK 8-SWebCSK

Red 0.1934 0.1209 0 0.1901
Yellow-green 0.1934 0.1220 0 0.5236

White 0.1934 0.1416 0 0.8976

by a dedicated Arduino DUE. The control range of the screen brightness is from 0 to 31,
where 0 corresponds to no light on the screen, 31 corresponds to a duty cycle of 100% for
the PWM control signal of the screen, and the screen brightness is the highest.

Receiver. The prototype of the VLC receiver is shown Figure 2.20. We use the true color
sensor AMS AS73211 [69], controlled by an Arduino DUE, to detect the color-based VLC
signals. The response of AS73211 conforms to the CIE 1931 standard. Its maximum in-
ternal clock frequency is 8.2 MHz, and the maximum supported I2C clock frequency is
400 kHz. Under the maximum clock frequency, the adjustable gain range of AS73211 is
{1×,4×,16×,64×,256×}, and the sampling integration time is from 125 μs to 2048 ms. In
our implementation, we set the gain to 64x and the sampling integration time to 125 μs.7

The sensed data is transmitted through a serial port to a laptop for processing, which has
an Intel i7 CPU and 32 GB memory. The proposed signal processing and the slope-based
demodulation are implemented in Matlab.

2.5. PERFORMANCE EVALUATION
In this section, we present the evaluation of SpiderWeb in different scenarios. We use
Bit Error Rate (BER) and normalized data rate as the metrics. The default experimental
setup is shown in Figure 2.21.

2.5.1. SWEBCSK VS. CSK
Before we present the evaluations of SpiderWeb, we first compare the performance of
SWebCSK with that of traditional CSK.

7A very short integration time of the color sensor will lead to the detection failure of the modulated signals;
however, with a very long integration time, the color sensor will be over-saturated. Similar results apply to
the gain setting of the color sensor. In our implementation, we use the minimum sampling integration time,
together with the color sensor gain of 64x, to obtain the highest data sampling rate and under these settings,
we can still detect the modulated visible light signals after screen attenuation.
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Table 2.3: 8-SWebCSK constellation points (under red screen)

Gray code Constellation coordinates (PWMR ,PWMG ,PWMB )

000 (0.3819, 0.5481) (43, 60, 0)
001 (0.1886, 0.5785) (4, 42, 9)
011 (0.4013, 0.4032) (49 ,35, 16)
010 (0.2141, 0.3762) (12, 42, 22)
110 (0.4773, 0.3091) (65, 15, 18)
111 (0.3108, 0.2312) (33, 16, 27)
101 (0.1736, 0.0915) (8, 0, 42)
100 (0.6544, 0.3205) (100, 0, 0)

Constellation. We compare our SWebCSK constellation design with the traditional CSK
design specified in the IEEE 802.15.7 standard [16]. The results for M = 4 and M = 8 are
shown in Table 2.1 and Table 2.2, respectively. The minimum distance among the 4-CSK
and 8-CSK constellation points in the IEEE standard is always larger than the minimum
distance under our 4-SWebCSK and 8-SWebCSK. However, in the angle space formed by
the screen color point on the CIE 1931 diagram, the angle between different constellation
points of 8-CSK to screen color point (i.e., the rays; cf. Section 2.2.2) overlap. For 4-CSK,
when the screen color is yellow-green, the angles from the two constellation points to
the screen also overlap. In our 4-SWebCSK and 8-SWebCSK, we not only optimize the
minimum angle between different rays, but also adapt the optimal constellations based
on the detected screen color. Thus, the minimum angles (important when the screen
is in the ON state) among 4-SWebCSK and 8-SWebCSK constellations are higher than
those of 4-CSK and 8-CSK. Additionally, we present other simple heuristic algorithms to
search for CSK constellation points, as shown in Figure 2.22. For instance, in the case
of bisection θ, the constellation points are selected sequentially according to the left-
hand or right-hand spiral. However, the minimum distance (important when the screen
is in the OFF state) between these points remains lower than in the 8-CSK design we
developed. We also list the constellation points of 8-SWebCSK, as shown in Table 2.3. It
also gives the corresponding PWM duty cycles to achieve these constellation points.

BER. In this experiment, three brightness of the screen are considered: 0%, 50%, and
100%. we place the transmitter and the receiver at a distance of 10 cm. For the traditional
CSK modulated signals, we consider two demodulation methods: 1) use the minimum
Euclidean distance to distinguish different symbols; 2) use the proposed slope-based
demodulation (CSK+SD) method, cf. Section 2.3.2. For our SWebCSK modulated signals,
we use our slope-based demodulation. For the modulation level M = 4 and M = 8, the
BER results are shown in Figure 2.23 and Figure 2.24, respectively. We can observe that
the BER of 4-CSK and 8-CSK detected by the minimum Euclidean distance are close to
0.5 when the screen is lit up. Under this BER, data transmission is not possible. Using
our slope-based detection, 4-CSK reduces the BER to 0 when the screen colors are red
and white; when the screen color is yellow-green, under which the angles from the two
CSK symbol points to the screen color point overlap, the BER is still below 10−1, showing



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

2

34 2. SPIDERWEB: ENABLING THROUGH-SCREEN VISIBLE LIGHT COMMUNICATION

Spiral line Subtense

(a) Left-handed spiral

min min( 0.0888, 0.1901)d �� �

(b) Right-handed spiral

min min( 0.0829, 0.1901)d �� �

(c) Bisect subtense

min min( 0.1082, 0.1562)d �� �

Figure 2.22: Heuristic suboptimal CSK solutions: example design of 8-CSK under red screen. All performance
metrics are lower than our 8-SWebCSK solution (dmin = 0.1209, θmin = 0.1901).
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Figure 2.23: BER under different screen colors when M = 4.

the advantage of our proposed slope-based demodulation. In 8-CSK, the angles from
several constellation points to the screen color point overlap with each other. Thus the
BER falls below 10−1. For our designed 4-SWebCSK and 8-SWebCSK, the BER is lower
than 10−3 regardless of the screen color and the screen brightness, demonstrating that
SWebCSK is a key enabler for through-screen VLC.

Normalized data rate. We also evaluate the date rate obtained from traditional CSK and
our SWebCSK. For M-CSK, a CSK symbol represents log2 M bits. With a larger M , the
transmitter can send more bits in a unit time slot. However, a larger M often leads to
a higher BER. The achievable data rate of M-CSK and our M-SWebCSK changes with
different colors and brightness. Figure 2.25 shows the normalized data rate averaged
over different scenarios (i.e., different screen color: red, yellow-green, and white; and
3 different screen brightness: 0%, 50%, and 100%). We can observe that system data
rate is increased by at least 300%. This means SWebCSK can carry more data than the
traditional CSK under dynamic screen color and brightness changes. We can observe
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Figure 2.24: BER under different screen colors when M = 8.

Original CSK Our SWebCSK
0

100%

200%

300%

400%

500%

600%

N
or

m
al

iz
ed

 d
at

a 
ra

te

M=4
M=8
M=16

Figure 2.25: Data rate vs. schemes.
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Figure 2.26: BER results vs. brightness.

that when the modulation level M = 4, our SWebCSK can improve the data rate by 200%.
When M = 16, the data rate of CSK is almost zero because the BER is too high; while 16-
SWebCSK achieves 5× data rate when normalized to that of the 4-CSK. On average, our
proposed SWebCSK could achieve 3.4× data rate when compared to the traditional CSK.

2.5.2. SPIDERWEB EVALUATION
Now we evaluate the system performance of SpiderWeb.

Impact of screen brightness. The brightness of the transparent OLED screen determines
how much the transmitted signal is interfered by the screen. Usually, the brighter the
screen, the more transmitted symbols are interfered with. When the screen brightness
is 100%, all the signals are interfered by the screen. The experimental BER under differ-
ent screen brightness is shown in Figure 2.26. Here, 16-SWebCSK is evaluated under the
screen color of yellow-green (cf. Figure 2.31(a)). Overall, the BERs of 8-SWebCSK and
16-SWebCSK are below 10−3 and below 10−2, respectively. We observe that with both
8-SWebCSK and 16-SWebCSK, in general, the BER gradually increases with a brighter
screen. An exception is that when the screen is fully lit, the BER of 8-SWebCSK is 0 and
the BER of 16-SWebCSK reduces to 10−3. The main reason is that the screen signal and
the transmitted VLC signals are not synchronized. Since the screen brightness is not
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Figure 2.27: Data rate vs. brightness.
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Figure 2.28: BER results vs. distance.
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Figure 2.29: BER results vs. angle.
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Figure 2.30: BER results vs. ambient light.

constant, with energy detection, we cannot perfectly distinguish all the VLC signals that
have been interfered by the screen from those that have not, which brings inevitable mis-
judgments when the screen is ON but not fully lit. When the screen is fully lit, it is easy
to get a priori information that all the received VLC signals are interfered by the screen.
Thus, the slope-based SWebCSK detection can still achieve a significantly low BER. We
also measure the achievable data rate of SpiderWeb under different screen brightness,
as shown in Figure 2.27. For 8-SWebCSK, the data rate is between 1.7 kb/s and 2 kb/s;
for 16-SWebCSK, the data rate changes from 2 kb/s and 2.6 kb/s. The current bottle-
neck is the slow response of the low-cost color sensor. The achievable data rate could be
significantly improved with advanced color sensors.

Impact of distance. Next, we evaluate the system performance when the transmitter
is placed at different distances from the screen/ receiver. Here, we use the maximum
gain 256× of the color sensor to maximize the communication distance. Because the
channel attenuation of RGB light is different, the corresponding CSK constellation point
correction is performed at the transmitter for each distance. The BER results are shown
in Figure 2.28. With an OFF screen, the BER is lower than 10−3 at 30 cm. When the screen
brightness reaches 50% and 100%, the BER at 20 cm is still lower than 10−2.

Impact of angle. We also evaluate the performance of SpiderWeb when the receiver is
placed in different directions to the transmitter. We fix the distance between the trans-
mitter and screen to 10 cm and vary the relative angle between them. The results are
shown in Figure 2.29. We can see that the BER performance decreases severely when the
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angle between the transmitter and the receiver exceeds 30°. On the other hand, the BER
performance is still better when the screen is fully lit, although the angle exceeds 30°.
At an angle of 50°, the BER is close to 10−2. The reason behind this could be that when
the angle is large, the intensity of the CSK signals detected by the under-screen sensor
is minimal and does not exceed its output threshold, resulting in a sharp increase in the
BER when the screen brightness is OFF. However, if the screen is fully lit, the intensity
of the CSK signal detected by the sensor exceeds its output threshold after adding the
screen light, thereby reporting the detection value. In other words, when the angle is
large, the screen light could help the signal detection in SpiderWeb.

Impact of the ambient light conditions. Lastly, we study the impact of different ambient
light conditions on the system performance. Three different ambient light conditions
are considered: (1) Darkness (average light intensity: 3 lux); (2) Night with indoor illu-
mination (average light intensity: 280 lux); (3) Cloudy day (average light intensity: 1070
lux). The impact of the ambient light level on the BER is shown in Figure 2.30. When
the screen is either OFF or fully bright, the BER is 0 under all three conditions. With a
screen brightness of 50%, the BER in all three conditions is still lower than 10−3. Note
that due to our over-saturation recovery method (cf. Section 2.3.2), even in the presence
of ambient light, our system can still achieve a BER of 0 when the screen is fully bright.

2.6. RELATED WORK

CSK modulation in VLC. It has been adopted in the IEEE 802.15.7 VLC standard [16] and
studied in [30], [68], [76]. The authors in [68] optimize the CSK constellations to improve
the system performance. In [76], the authors design a light-to-frequency converter as
a CSK receiver to avoid using ADC, leading to a low-cost VLC system. CSK is also used
in LED-to-camera communication systems to increase the data rate [30]. These studies
mainly optimize and utilize CSK-based VLC with different receivers. In our SpiderWeb,
we consider a more challenging and very promising scenario where the screen at VLC
receivers could “block” and interfere with the communication with visible light. We ob-
serve the color-pulling effect and propose the SWebCSK modulation scheme to solve
it. Accordingly, we can enable through-screen VLC with an extremely low bit error rate,
which cannot be achieved by the above state-of-the-art studies.

Sensing with under-screen line-of-sight sensors. The trend toward narrow-bezel and
no-bezel smartphone designs depicts future devices. Therefore, the line-of-sight sensors
(e.g., front camera) are being tested under the screen for sensing. The authors in [11],
[15] study how to recover the images captured by an under-screen camera. In their study,
a camera is placed under a transparent and a pentile OLED screen, respectively, to obtain
a degradation image dataset [15]. Two types of neural networks are proposed to tackle
image degradation [11]. Compared with these studies, we focus on communication with
ambient light/color sensors placed under an OLED screen, and we have identified the
screen’s color-pulling effect on color-based VLC signals. We further design SWebCSK
modulation to eliminate this effect and thus enable through-screen VLC.

Screen-enabled VLC. Some studies use screens as multi-pixel transmitters to increase
the data rate [77], [78]. They exploit standard screens and monitors to achieve screen-
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(a) 16-SwebCSK (dmin = 0.0846, θmin = 0.2244). (b) 32-SwebCSK (dmin = 0.0550, θmin = 0.2027).

Figure 2.31: Examples for high-order SwebCSK: (a) 16-SwebCSK under yellow-green screen and (b)
32-SwebCSK under white screen.

to-camera communication. There are also studies using the Liquid Crystal (LC) of LCD
screens as reflectors for VLC. PassiveVLC uses a single LC cell to modulate visible light [79].
ChromaLux employs multi-layer LC cells to increase the communication distance and
speed [80]. The authors in [81] leverage LCs to enable selective reception of light beams
from multiple transmitters. In our system, we use a transparent OLED screen instead
of an LCD screen. The OLED screen brings opportunities (being transparent) but also
challenges (being an interferer) for the realization of through-screen VLC.

2.7. CONCLUSION
We have studied how to enable through-screen VLC with sensors under a transparent
OLED screen that displays different colors at different pixels. We manually move the
screen to various locations to change its displayed color to investigate the screen’s im-
pact on the light signal. We discovered a color-pulling effect caused by the screen on
CSK signals: transmitted CSK symbols are pulled to the detected screen color. We further
designed the SWebCSK modulation and proposed a slope-based demodulation to elimi-
nate the color-pulling effect. Our proposed solutions for through-screen VLC could work
under such a dynamic screen because the refresh rate of a screen is usually about 60 Hz,
which is much lower than the symbol rate (several kHz) in our current implementation.
The screen refresh interval can be interpreted as channel coherence time. The transmit-
ter could know the current screen color in two ways: 1) the transmitter detects the screen
color directly; 2) the receiver detects the screen color and sends the information to the
transmitter through an uplink channel. Based on the color of the screen, the transmitter
and the receiver can establish new SWebCSK constellations for the data transmission.
We prototyped a system and validated the feasibility of achieving through-screen VLC.
We envision that our work could stimulate follow-up studies on through-screen visible
light communication and sensing.

Future work. Currently, the communication distance of SpiderWeb is limited due to the
low power of the RGB LED used, which has a maximum power dissipation of only 120
mW. Utilizing higher-power RGB LEDs designed for indoor illumination can enhance
communication distance. The different luminous efficiencies of the R/G/B channels also
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contribute to low light emission power. To prevent flickering, the power envelope of CSK
symbols is fixed, with the transmission power determined by the highest optical output
power of the color with the lowest luminous efficiency, such as the red color. Meanwhile,
the highest data rate we can achieve in the current SpiderWeb is about 2.6 kb/s, though
it is about 3.4× compared to that of the traditional CSK. The main bottleneck is the low
speed of the color sensor. The minimum sampling time of the color sensor is 125 μs (we
have configured the color sensor to its fastest speed mode). We also use oversampling
to remove the sampling points affected by inter-symbol interference. When multiple
transmitters send data concurrently, the received CSK symbol at the single-pixel color
sensor may be a superposition of symbols from multiple transmitters, causing interfer-
ence and degrading system performance without specific transceiver design enhance-
ments. These factors collectively limit the SpiderWeb data rate. One potential solution
is that when the screen color is within the modulation triangle area (with a modulation
angle of 360°) we could further increase the modulation level, such as to 32-SWebCSK, as
shown in Figure 2.31(b), to further improve the data rate of the system. However, these
methods cannot fully overcome the rate constraints imposed by the hardware. Once
hardware limitations are addressed, the aforementioned high-order modulation tech-
niques can be applied to the new through-screen VLC system to further boost data rates
through advanced signal processing.

In the next chapter, we aim to exploit another critical under-screen multi-pixel cam-
era on commercial full-screen smartphones with fully dynamic OLED screens to over-
come interference from multiple transmitters and enable advanced signal processing
methods and a faster sampling rate to break the rate bottleneck at the receiver. Under-
screen cameras are being adopted in today’s advanced full-screen smartphones, such
as ZTE AXON30 and Xiaomi MIX4. Additionally, a single transmitter can employ multi-
ple RGB LEDs to transmit more data. When combined with an under-screen multi-pixel
camera at the receiver, we can leverage light spatiality to potentially increase the system
data rate. We will also use LEDs with higher visible light output power, particularly in the
red color, to further extend the communication range to several meters.
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3
WHEN VLC MEETS

UNDER-SCREEN CAMERA

While the first-generation VLC systems mainly employ LEDs as transmitters and single-
pixel sensors as receivers, recently, cameras widely available on commodity smartphones
are utilized as the receiver for VLC. So in terms of hardware, both VLC transmitter (i.e.,
LED) and receiver (i.e., smartphone) are already pervasive in our everyday lives with-
out incurring any extra hardware burden. Most smartphones nowadays have two cam-
eras, i.e., a front camera and a back camera. Between them, the front camera is consid-
ered a better option to serve as the VLC receiver because during our routine use of the
smartphone, the front camera faces the LEDs in our surrounding environment most of
the time. The communication modality of LED-to-front-camera can be a good supple-
ment to existing wireless technologies. Several LED-to-front-camera applications, such
as museum narration, have been proposed in recent works [26], [28], [30], [82]–[84]. An-
other exciting application is to transfer sensitive data that needs to be confined within
an area of interest, such as a room.

LED-to-front-camera communication. As a subset of VLC, LED-to-front-camera com-
munication employs LEDs as the light emitter. To achieve a fast data rate, the rolling
shutter effect is normally used in state-of-the-art solutions. A significantly faster com-
munication can be realized compared to solutions without using the rolling shutter ef-
fect [83]. In an image sensor generally used in smartphone cameras, exposure is per-
formed per scan-line based on the rolling shutter effect [25], [85]. When a smartphone
camera photographs the rapidly blinking LED at a time interval of several milliseconds,
white stripes appear when the LED is ON, and black stripes appear when the LED is OFF.
In addition, the lengths of the frame time and the gap time are reflected in the pixel width
of the stripe pattern; hence, temporal blink information can be converted to spatial in-
formation as stripes in the frame. Meanwhile, color information can be further leveraged
to improve the throughput by several times using RGB LEDs [30].

However, the trend towards full-screen devices poses challenges for LED-to-front-
camera communication, as the integration of the front camera under the screen, result-

41
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Figure 3.1: Illustration of the proposed through-screen VLC with Under-Screen Cameras (USC). USC makes
VLC on full-screen devices challenging.

ing in Under-Screen Cameras (USC), critically impacts VLC performance. As shown in
Figure 3.1, although the under-screen camera design has little impact on the photo and
video quality due to a dedicated transparent screen layer, it severely degrades the per-
formance of VLC: the transmission range is reduced from a few meters to merely 0.04 m,
and the data rate is decreased by more than 90%.

Challenges and Contributions. We dig deep to identify the causes of this performance
degradation. The first cause is signal attenuation brought in by the transparent screen.
The second cause, which is more severe, is the interference induced by the transpar-
ent screen. This transparent screen region is still part of the screen, and therefore, the
dynamically changing screen content can severely affect the VLC performance. In this
chapter, we ask the following research question:

Can we utilize the camera under the screen for VLC without incurring a perfor-
mance degradation?

To make VLC work with under-screen cameras, we must deal with the two causes of
performance degradation. Note that the first issue is also the main challenge for the orig-
inal function of camera, i.e., image and video taking. Therefore, a tremendous amount
of effort has been devoted to addressing this issue. The state-of-the-art solution uses a
small piece of transparent screen on top of the camera. However, even with the state-of-
the-art solutions, we still observe a significant decrease in signal amplitude [10], [86].

To address this issue, we still use Color Shift Keying (CSK) modulation instead of con-
ventional ON-OFF modulation. Unlike ON-OFF modulation, color-based CSK modula-
tion utilizes the color positions, which are much less sensitive to light intensity. Also, by
utilizing color modulation, more bits can be encoded to achieve a higher data rate.

To address the second issue, we need to tackle multiple challenges. As cameras on
commodity devices such as smartphones usually have a low image rate, i.e., less than 200
images per second, to achieve a high data rate, a unique property of camera imaging, i.e.,
the rolling shutter effect [25], [85] is utilized in LED-to-front-camera communication.
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The basic idea is that within a single image, all the pixels are not captured simultaneously
but are recorded row by row at different timestamps. We can therefore zoom in to extract
the color of light at the granularity of the row level. When there is no screen on top of the
camera, the light source can be easily identified in the image as the light source area’s
brightness is much higher than other areas. When the camera is under the screen, a lot
of other areas also have high brightness as the screen itself is also a light source. For
accurate demodulation, we need to make sure we are extracting the color information of
LED light but not other areas on the image. Therefore, the first challenge is

Challenge 1: How to accurately identify the light source, i.e., the LED in the captured
images in the presence of strong interference?

To address this challenge, we propose a color compensation method leveraging an
observation of the color composition of the transparent screen: when CSK-modulated
images are converted into grayscale for detecting the VLC transmitter, the grayscale val-
ues of the red and blue components are lower than that of the green component. We
thus increase the brightness of the blue and the red components at the captured image,
which helps us detect the VLC transmitter area in the captured image of an under-screen
camera. We further apply the vertical averaging scheme to distribute the same bright-
ness to all three colors. This vertical average scheme also strengthens the low-frequency
data while weakening the high-frequency noise. The VLC transmitter has the same color
for pixels in a row, while the other area has random colors for pixels in a row. After this
step, the VLC transmitter area is further highlighted. We can then apply a median filter to
remove the background and keep the identified VLC transmitter for further processing.

Although the LED (transmitter) area is detected, the image still contains interference
from the transparent screen. The second challenge is

Challenge 2: How to remove the interference caused by the transparent screen?

We propose two novel steps to address the interference. The first step is based on
the key fact that the transparent screen (the piece of glass) on top of the camera has a
unique design which is very different from ordinary screens. While an ordinary screen
has a much larger pixel area for each pixel point (cf. Figure 3.3), the transparent screen
has a much smaller pixel area in order to let more light go through the screen. Because
of this design, the image taken with an under-screen camera has two groups of area, i.e.,
screen-pixel-interference area and non-screen-pixel-interference area. We thus identify
the non-screen-pixel-interference area for more accurate demodulation. The good news
is that the transparent screen design for each manufacturer is fixed and we just need to
obtain the pixel layout design once for each model of smartphone.

The second step is to identify the optimal pixel point for demodulation. This is be-
cause the under-screen camera exposure duration can be long enough to have two dif-
ferent colors from LED. Note that the camera does not show both colors (one color in
the first part and the other color in the second part) but just shows a mixed color for the
row.1 We, therefore, need to identify the optimal pixel point without color mixing for
demodulation. To solve this problem, we propose a vertical scanning method. The basic
idea is to model the color information as a transition graph. While mixed colors are on

1The camera can be understood as a sensor that integrates incoming light signals within a specified exposure
time window, resulting in a mixed color.
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the transition links, the pure colors are the transition nodes. We can thus identify those
nodes with an obvious direction change for the best demodulation performance.

After we apply the methods described above to identify those non-screen-pixel-inter-
ference areas, we still find some interference leaked from those pixel-interference areas
and this leakage does affect the performance. The leakage can cause the color to vary.
So the third challenge we encounter is

Challenge 3: How to address the leakage interference to improve the performance?

To solve this challenge, we propose a series of methods. First, we observe that the
color change due to the leakage is not random. For example, if a red color is interfered
by blue color leakage, then the red color will be shifted to a different color between red
and blue. We can therefore use a line to connect these two colors and the color only
changes along the line. This property enables us to recover the original color we trans-
mitted even if the color is shifted. A more challenging scenario is that a random screen
color leakage can be on the line connecting two colors used for communication. In this
case, the two colors change following the same line, confusing the method above to re-
cover the original color. Interestingly, we find that in this case, while the colors’ absolute
values (locations) are not accurate, the relative information between the two colors is
still reserved, i.e., if one shifted color is further away from the interfering color, the orig-
inal color is also further away from the interfering color. We can thus utilize the relative
information for demodulation.

With the design components, we successfully implement a proof-of-concept system
for the proposed through-screen VLC system with under-screen camera using off-the-
shelf smartphones. Our system is able to achieve low BER and long transmission range
with under-screen camera for the first time. Below we summarize our contributions.

• We propose the concept of VLC with under-screen camera for emerging full-screen
devices. We analyze the unique spatiotemporal characteristics of the rolling shut-
ter effect on under-screen camera. We design a pixel-sweeping algorithm based
on the spatiotemporal characteristics of the image/frame captured by the under-
screen camera and identify the sampling points with the least amount of interfer-
ence for communication. We further propose a novel slope-boosting demodula-
tion method to deal with color shifts brought by leakage interference.

• We build a proof-of-concept testbed and thoroughly evaluate the system perfor-
mance in different scenarios. The results show that our system can achieve a max-
imum throughput of 54.43 kb/s with four LED transmitters and one under-screen
camera receiver. Compared to state-of-the-art solutions, our methods can reduce
the BER by two orders of magnitude on average, and improve the throughput by
59× (914 b/s vs. 54.43 kb/s). The transmission range is extended from 0.04 m to
4.2 m, with an improvement of roughly 100×.

3.1. ROLLING-SHUTTER EFFECT OF CAMERA RECEIVER
The rolling-shutter effect, which is a fundamental property of CMOS image sensors com-
monly used in smartphone cameras, allows exposure to be performed on a per-row ba-
sis [25], [85]. A rolling-shutter camera controls the exposure row-by-row (or column-by-
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Figure 3.2: Rolling-shutter effect principle.

column), as shown in Figure 3.2. The first row is exposed for Te and the second row starts
being exposed after Tr . Tr is a measure of the time required to capture and transfer im-
age data from the camera to the processor, which is fixed for each camera. Note that Tr

is usually smaller than Te and therefore to fully utilize the channel, the adjacent expo-
sures are overlapped. In the traditional rolling-shutter (without the effect of the screen),
all pixels in a row contain the same modulated information. The strip width (w) is de-
fined as the number of pixel rows occupied by the same color strip in a captured image.
Therefore, the width of the stripe is determined by w = T /Tr , where T donates the sym-
bol period. Thus, the higher the frequency of the transmitted symbol, the narrower the
stripes (i.e., the less number of rows) with the same color will be in the image.

3.2. SYSTEM OVERVIEW

3.2.1. ARCHITECTURE

Transmitter. We adopt the standard Color-Shift Keying (CSK) modulation [16] at the re-
ceiver. The CSK constellation symbols are chosen inside a modulation triangle that is
formed within the standard color space (cf. Section 2.1.4 in Chapter 2). To transmit CSK
symbols, the transmitter modulates the signal by varying the output power combina-
tions of the three channels R/G/B of the LED.

Receiver. We consider a full-screen device (e.g., a smartphone) as the receiver. It does
not have any notches/bezels on its screen to host line-of-sight sensors such as a camera
and ambient light sensor. Instead, full-screen devices introduce a special region on the
screen, i.e., a small transparent screen region. This region is composed of transparent
substrates and cathodes and is usually placed at the top section of the screen. The cam-
era is placed directly under the transparent screen region. The transparent screen region
is still part of the screen and can be lit up to display various contents. Compared to other
screen regions, the transparent screen region utilizes a transparent electrode material,
and the pixel layout is also redesigned. A common transparent screen region’s structure
used by commercial transparent OLED screens is shown in Figure 3.3. The transparent
screen region can be further divided into two parts:
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Figure 3.3: Screen-pixel layout.

• Screen-pixel area: It hosts specially designed R/G/B pixels that can be lit up to dis-
play various contents. A large screen-pixel area benefits the displaying function of
transparent screen region but sacrifices the imaging quality of under-screen cam-
era as well as the performance of through-screen VLC.

• Screen-non-pixel area: It allows visible light to pass through – but still at the cost
of strong attenuation – to reach the under-screen camera. A large screen-non-
pixel area brings more light to the under-screen camera, which benefits the under-
screen camera’s imaging quality and the performance of through-screen VLC, but
reduces the transparent screen region’s displaying performance.

The industrial effort has been devoted to optimizing the pixel layout to balance the
performance of screen displaying and imaging quality [6], [87]. The density and size
of the screen-pixels in the transparent screen region have been carefully adjusted to
increase the proportion of screen-non-pixel area in the transparent screen region, as
shown in Figure 3.3. However, no matter how the transparent screen region is designed,
it still requires the screen-pixel area to display content, and the screen-non-pixel area
cannot be made fully transparent. It thus still has large impacts on through-screen VLC.
Next, we present the major impacts.

3.2.2. TRANSPARENT SCREEN’S IMPACT ON USC COMMUNICATION

As a passive ‘blocker’ (The corresponding solution will be presented in Section 3.3.1). The
transparent screen region blocks a significant portion of the incident light. The amount
of light that can travel through the transparent screen region is only 2.9% [10]. This dis-
courages us from adopting intensity-based modulations widely used in state-of-the-art
VLC [59], [61], [79]. We leverage CSK modulation to mitigate this impact since the de-
modulation of color-based CSK signals does not depend much on signal strength. In-
stead, it relies on mapping the CSK signals to the CIE color space. However, the signal
strength attenuation still makes it difficult to detect the position of the VLC transmitter
(i.e., region of interest) on the image captured by the under-screen camera.

As an active interferer. The pixels in the transparent screen region are light sources,
inducing diffractive blur and color shifts on under-screen camera’s captured images.
This interference can significantly affect the whole image and lead to a low Signal-to-
Interference-plus-Noise Ratio (SINR) of the captured image.
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Figure 3.4: Illustration of screen-pixel and rendering interferences, using green pixel as an example.
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Figure 3.5: Color-pulling effect caused by the rendering interference.

• Screen-pixel interference (The corresponding solutions will be presented in Sections
3.3.3 and 3.3.4). An under-screen camera, like traditional cameras, is composed of
a lens and a CMOS image sensor. Figure 3.4 is a micrograph illustration of a Green
pixel in the transparent screen region and its mapping to the imaging plane of the
under-screen camera. This illustration is based on the principle of pinhole imag-
ing [17]. The dashed circle illustrates the interference area on the camera’s imaging
plane, where the interference comes from the transparent screen region’s Green
pixel because this area is exactly under the Green pixel. We term it as screen-pixel
interference, which maintains the original screen-pixel shape but is larger in size
on the imaging plane. Note that the area of this screen-pixel interference caused
by the transparent screen region’s R/G/B pixels is different, which depends on the
color and size of the pixels in the transparent screen region.

• Rendering interference. On the camera’s imaging plane, there is also leakage from
the transparent screen region’s illuminating pixel, causing rendering interference
as denoted by the solid square in Figure 3.4. This rendering interference is induced
by the diffusion effect of the screen-pixel. Compared to the screen-pixel interfer-
ence, the strength of the rendering interference is weaker, but the interference area
on the camera’s imaging plane is larger.

This rendering interference leads to the so-called color-pulling effect [88] (cf. Chap-
ter 2) on the received CSK symbols. When the screen is lit up, the original color of a
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Figure 3.6: Screen diversity: The interference of different pixel layouts on images captured by the
under-screen camera. (Transparent Screen Region: TSR)

CSK symbol will be pulled closer to the corresponding transparent screen region’s
pixel color, as shown in Figure 3.5. To give an example, let us consider when we
send the red and blue symbols alternately, and the transparent screen region is
displaying blue. We pick some sampling points from the area (on the camera’s
imaging plane) that is affected by rendering interference, and show their color
coordinates in the CIE 1931 diagram in Figure 3.5(a). We can see the location of
blue light is not affected when the screen color is blue. However, the received red
coordinates are pulled closer to the blue screen from the original red coordinate,
leading to decoding errors. When sending the same symbols, the example of a
transparent screen region showing red is shown in Figure 3.5(b). We will present
our solution to this problem in Section 3.4.

Screen diversity. The transparent screen region designs on different smartphones are not
the same, bringing different levels of impact on through-screen VLC. Due to patent pro-
tection, different manufacturers adopt various pixel designs and arrangements in the
transparent screen region (cf. Chapter 1). These unique transparent screen region de-
signs bring different interference to the images captured by under-screen camera, as
shown in Figure 3.6. In Section 3.3.3 (Steps 1 & 2), we will present a solution that can
work with different transparent screen region designs.

Pipeline of our solution. Next, we present how to address these challenges. First, we pro-
pose a method to extract the Region of Interest from the captured images (Section 3.3.1).
Then, we design a pixel-sweeping algorithm, including a horizontal scanning module to
address screen diversity issues and remove screen-pixel interference (Section 3.3.3) and
a vertical scanning module to deal with CSK’s inter-symbol interference (Section 3.3.4).
Finally, we propose a slope-boosting algorithm to demodulate the CSK symbols by re-
moving the color shift caused by rendering interference (Section 3.4).

3.3. PIXEL-SWEEPING ALGORITHM

3.3.1. REGION OF INTEREST (ROI) EXTRACTION
To decode data, the prerequisite is to detect the transmitter’s centroid and size – the
Region of Interest (RoI) that contains transmitted information – on captured images.
Existing methods such as grayscale threshold-based mask methods [28] and computer
vision-empowered methods [82] do not work well on detecting the RoI from the CSK-
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Figure 3.7: RoI is submerged in the displayed light. Figure 3.8: An example of shape filter working.
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Figure 3.9: Rolling-shutter effect of under-screen camera.

modulated images captured by under-screen camera. The reasons are as follows: 1)
When CSK-modulated images are converted into grayscale, the grayscale values of each
color component are different. The grayscale values of the red and blue components
are lower than that of the green component. Thus, the mask method does not work in
through-screen VLC; 2) The transparent screen region weakens the overall intensity of
the RoI and brings extra interference. As a result, the RoI’s contour has more jagged
edges and can be easily submerged in displayed screen light, as shown in Figure 3.7.

To extract the RoI in through-screen VLC, we propose a new method, as shown in
Figure 3.10. First, we compensate the blue and red components. Then, we apply a ver-
tical blur filter on the whole image. The kernel size of the blur filter is at least one stripe
width to average the grayscale between all stripes. To cancel transparent screen region’s
impact, we add median and binary OTSU filters [89] to filter out the pixels of the trans-
parent screen region, allowing us to obtain a smooth contour of the RoI. Finally, we use
a shape filter with a circle area of 4πNr /C 2

r , where Nr is the number of pixels in the area
and Cr is the length of the area boundary. When the output of the shape filter is greater
than 0.8, the shape of the detected RoI is regarded as a circle. The illustrating results after
applying shape filters as shown in Figure 3.8.

3.3.2. ROLLING SHUTTER ON USC: SPATIOTEMPORAL FEATURES

We continue to detect the positions of CSK symbols within the RoI. We first analyze the
spatiotemporal characteristics of the rolling-shutter effect on under-screen camera.

Spatial characteristics. Compared to traditional rolling-shutter effect (cf. Section 3.1),
for image captured by the under-screen camera, which is affected by transparent screen
region, the pixels in different parts of a row are exposed to different levels of interference
(screen-pixel interference and rendering interference). Figure 3.9(a) shows that the pix-
els are subject to different R/G/B interference with different intensities. The main rea-
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sons are i) the interference intensities of the screen-pixel interference and the rendering
interference are different; ii) the pixel layouts are different due to screen diversity. This
spatial characteristic of the sampling points of under-screen camera makes it impossible
to arbitrarily pick a pixel from each row to decode the transmitted information.

Temporal characteristics. Due to the uncontrollable read-out duration (Tr ), it is diffi-
cult to control the exposure duration (Te ) of under-screen camera to synchronize with
the transmitted CSK symbols (T ). As illustrated in Figure 3.9(b), this results in inter-
symbol interference on both sides of a stripe, caused by the mix of the current stripe
and the previous/next stripe. Also, due to different R/G/B screen-pixel layout designs
of transparent screen region in different smartphones, the total levels of interference in-
duced by screen light on pixels of each row are different. Thus, for the rolling shutter
on under-screen camera, pixels are subject to double interference from the transparent
screen region’s displayed screen light and also from the inter-symbol interference. Also,
this temporal characteristic makes the symbol width and the symbol boundary vague
for detection. Therefore, it is infeasible to average the color values of the entire stripe to
decode the transmitted CSK symbol represented by a stripe.

Based on the above spatiotemporal features, we design a pixel-sweeping scheme for
demodulation (cf. Figure 3.12). Next, we present the details.

3.3.3. HORIZONTAL SCAN IN THE SPATIAL DOMAIN

To decode information from the stripes, we should first identify a stripe where to sample
a pixel that has less transparent screen region interference in RoI. Compared to pixels
in the screen-pixel area, pixels in the screen-non-pixel area are interfered by the same
color (e.g., white when all R/G/B pixels are lit up) with less intensity. Note that the light
transmittance from the screen-pixel area is lower than that from the screen-non-pixel
area [14]. The characteristics of the transparent screen region require higher through-
screen light intensity to facilitate under-screen camera photographing, and thus the ra-
tio of the screen-non-pixel area is increased in the transparent screen region. Thus, we
can always find a sampling point that is not in the screen-pixel area when we scan each
row in the RoI, as detailed below:

Step 1: Obtain the placements of transparent screen region’s R/G/B pixels. We first need
to know the layout of the pixels in the transparent screen region. The layouts from differ-
ent manufacturers mainly differ in the following aspects: location, shape, and size. We
use a one-time calibration to identify the transparent screen region’s R/G/B pixels to
handle the transparent screen region diversity challenge: a) For location, since a screen
must light up R/G/B screen-pixels together to display white color, we first let the trans-
parent screen region display white color and configure a large exposure period on the
under-screen camera before communication. Since different color screen-pixels have
different luminous efficiency, we use a multi-level OTSU threshold algorithm [90] to ob-
tain the exact position of each screen-pixel for each R/G/B channel. b) For shape, we
find that the final interference formed by screen-pixels of different shapes is still ap-
proximately circular due to the isotropy of screen-pixel emission. Therefore, we unify
the interference area of each screen-pixel as their minimum circumcircle, as shown in
Figure 3.11, and identify the circumcircle location using Hough transform method [91].
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Figure 3.12: Pixel-sweeping workflow.

There are some smaller noise points after Hough transformation. We filter out the noise
points by setting the mean of all contour radii as the radius threshold and the mean
distance between contour centroids as the distance threshold. c) For size, we light up
the R/G/B screen-pixels in turn, and apply procedure �-� in Figure 3.11 to each single
R/G/B channel. Finally, we take the maximum radius of the detected contour as the ra-
dius of the R/G/B screen-pixel. Note that since the relative positions of the transparent
screen region and the under-screen camera are fixed, each smartphone only needs to
perform this calibration procedure once.

Step 2: Establish the correct screen-pixel mask. After obtaining all the R/G/B screen-
pixels, we need to know the current color of the transparent screen region to establish the
correct screen-pixel mask since the screen’s interference on decoding depends on screen’s
displayed colors. To achieve this, we filter the pixels in the non-RoI by setting a threshold
based on the average brightness level of these pixels, as shown in Figure 3.12. This step
is necessary to remove the effect of black image noise. After converting the filtered pixels
from the RGB color space to the standard CIE 1931 XYZ space, we obtain the screen-non-
pixel area color point (xs , ys ) corresponding to the current color of transparent screen
region. We then compare it with the screen color space used in smartphones [71]. For
example, if the screen color point is on the vertex of the screen color triangle, we only
need to set the screen mask with one set of R/G/B pixels. The sampling points under the
screen-pixels which are not lit up, can still benefit demodulation. Step 2 presents us with
more space to pick up better sampling points in Horizontal scanning.

Step 3: Pick up pixels outside the R/G/B screen-pixel area. We set the middlemost pixel
of the first row of RoI as the origin to start our scan. We scan each pixel in the row from
left to right until one pixel located outside of the screen-pixel area is identified and this
pixel is selected as the output sampling point. Then we jump to the closest pixel in the
next row and repeat the above scanning process. Note that when the scanning process
reaches the end of a row, we resume from the beginning of the same row.
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Figure 3.13: Color mixing.
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Figure 3.14: Transition graph in CIE 1931 diagram (node: pure colors; edge: mixed colors).

3.3.4. VERTICAL SCAN IN TIME DOMAIN
According to the Rolling-Shutter effect, the maximum number of rows in one stripe with-
out inter-symbol interference can be expressed as n = �(T −Te )/Tr �, where T is the pe-
riod of the transmitted symbol. When �(T−Te )/Tr � = 3, there are at most2 three pure CSK
symbols (i.e., red color) in a stripe without inter-symbol interference (cf. Figure 3.9(b)).
However, we can also see that, even after the previous horizontal scan step, there are still
CSK symbols with mixed colors (cf. Figure 3.9(b)). We therefore need to pick those CSK
symbols with a pure color3 for best communication performance.

We propose a vertical scan method to identify the pure-color CSK symbols. Specifi-
cally, we model the color information as a transition graph in Figure 3.13. The pure col-
ors are denoted as nodes while mixed colors are denoted as lines connecting the nodes.
Note that without inter-symbol interference, we can obtain the color transition graph in
Figure 3.13(a) with all the nodes (i.e., pure colors) clearly separated. When there is more
inter-symbol interference, we have more mixed colors and the color transition graph is
shown in Figure 3.13(b). Our objective is to clearly identify the nodes (i.e., pure-color

2When the initial exposure timestamp of the first red stripe is not synchronized with the symbol’s starting
point, the number of pure red CSK symbols is less than 3.

3Here pure color means one of the colors used in our CSK modulation/demodulation without a mixture of
other colors.
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Figure 3.15: Illustrating for transition nodes found in vertical scan process.

CSK symbols) even in the presence of inter-symbol interference. We show all the possi-
ble color transition cases in Figure 3.14. We can see that while there exist clear direction
changes at the nodes in the first three cases, there is no obvious direction change on the
color transition graph in Case 4.

As shown in Figure 3.14, we denote the color change in the x coordinate as fx , and
the change in the y coordinate as fy . For the first three cases, we have either f ′

x = 0
or (and) f ′

y = 0 at the nodes. In the challenging Case 4, the transition nodes have no clear
direction change. However, due to the continuity of the color changes, we have f ′′

x = 0
and f ′′

y = 0. We thus leverage these properties to identify the transition nodes on the
graph. We present an identification result using data collected in our experiment. As
shown in Figure 3.15, we can accurately identify those transition nodes, circling those
for the first three cases in green and those for Case 4 in red.

3.4. DEMODULATION
After pixel-sweeping, the original two-dimensional sampling points in the RoI are signif-
icantly reduced to a N ×1 sampling points vector, where N is the number of transmitted
symbols in the corresponding frame. Even if we have identified the pure-color sampling
points for each stripe, the sampling points are still affected by the color-pulling effect of
rendering interference (cf. Section 3.2.2).

3.4.1. CLASSIFICATION OF CSK SYMBOLS

The received CSK symbols (colors) can be divided into two groups, i.e., 1) one CSK sym-
bol close to the screen color and 2) other CSK symbols. For the CSK symbol in 1), we can
directly use distance detection to establish symbol mapping because they are minimally
interfered by the screen. For the CSK symbols in 2), we define the line connecting the
currently displayed screen color point and a CSK constellation point as a ray. Except for
the screen color point, if there are multiple CSK symbols on a ray, we define this ray as
overlapping ray, and these CSK symbols are regarded as overlapping symbols on this ray.
If there is no overlapping, we can apply slope detection for demodulation. The slope
here refers to the slope of the ray connecting the currently displayed screen color point
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Figure 3.16: The overlapping cases.

and a CSK constellation point in the CIE 1931 diagram. We denote the screen color point
and CSK symbol as us = (xs , ys ) and um = (xm , ym), respectively. The slope of the ray is
then calculated as (ym − ys )/(xm −xs ).

3.4.2. ANALYSIS OF OVERLAPPING CASES
We take the case of two overlapping CSK symbols (red symbol 1 and magenta symbol 2)
on a ray as an example to illustrate the concept, and the rest cases–when there are multi-
ple overlapping CSK symbols on a ray–can be deduced by analogy. The final positions of
the two CSK symbols affected by the color-pulling effect of the screen light are analyzed,
as shown in Figure 3.16. We can first rule out Case 1, as the color-pulling effect can only
cause unidirectional movement. Cases 2, 3, and 4, however, are all possible. In Case 2,
both symbols 1 and 2 experience minor interference. In Case 3, symbols 1 and 2 are both
subjected to significant screen interference. Case 4 arises when symbol 1 experiences
substantial interference while symbol 2 encounters minor interference. By applying the
pixel-sweeping algorithm, we filter out non-uniform and strong interference within the
screen-pixel area. Consequently, all N ×1 sampling points undergo uniform rendering
interference, which is either the same strong or weak, depending on the screen’s bright-
ness. As a result, only Cases 2 and 3 hold true. This implies that the CSK symbols on the
same ray can always be accurately distinguished under rendering interference. We lever-
age the relative positions of these CSK symbols rather than the absolute positions for
precise demodulation. For instance, we can map sampling points closer to the screen
color point in Cases 2 and 3 to symbol 2, and the more distant points to symbol 1.

3.4.3. SLOPE-BOOSTING DEMODULATION
Motivated by reserved relative position information on the overlapping ray, we design a
slope-boosting scheme for demodulation. With the slope of the ray, we can correctly de-
modulate the CSK symbols on non-overlapping rays and distinguish those CSK symbols
on overlapping rays. The details are as follows:

Step 1: Color classifier. First, we need to obtain the transparent screen region’s color co-
ordinates in the captured frames. Accurate demodulation of the overlapping ray using
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the relative information between CSK symbols can only be achieved with rendering in-
terference of the same color. To acquire the interference color coordinates in a frame, we
refer to step 2) in Section 3.3.3 to determine the color of the transparent screen region.
When the screen content changes at a high frequency, the color transitions within the
transparent screen region occur frequently. Consequently, each frame captured by the
under-screen camera may contain multiple color interferences.4 However, owing to the
screen’s row-by-row scan mechanism [92], we can still detect color changes within the
same frame/image and differentiate the sampling points in an image affected by differ-
ent transparent screen region colors.

Step 2: Slope classifier. We denote all preset M-CSK symbols as um = (xm , ym), m ∈M �
{1, · · · , M }. If the distance from the screen color point to the preset CSK symbol is less
than the threshold dth , we determine that this preset CSK symbol is a screen color sym-
bol, i.e., us = (xs , ys ). The threshold dth = 0.05 is determined empirically to minimize
the decoding errors. All the rest of the preset CSK symbols are applied with the slope
classifier defined as ∣∣∣ ym−ys

|xm−xs | −
yn−ys
|xn−xs |

∣∣∣+ ∣∣∣ |ym−ys |
xm−xs

− |yn−ys |
xn−xs

∣∣∣∣∣∣ ym−ys
xm−xs

∣∣∣+ ∣∣∣ yn−ys
xn−xs

∣∣∣ < sth , (3.1)

where the slope is normalized to prevent slight jitter from causing severe slope fluctua-
tion due to different distances from each preset CSK symbol to the screen color origin,
and sth = 1 is determined empirically as the slope change tolerance. For the output of
the slope classifier, we have two types of sets A and B. The non-overlapping CSK sym-
bols are stored in Ai , i = {1, · · · , I }, where I ≤ M is the number of non-overlapping rays,
and the number of CSK symbols in Ai is denoted as |Ai | = 1. Also, B j , j = {1, · · · , J } stores
all the CSK symbols with at least one overlapping case, where J ≤ M is the number of the
overlapping rays, and |B j | ≥ 2 represent the number of overlapping CSK symbols on the
ray j . When the slope difference between symbol m and symbol n is smaller than sth

in Equation (3.1), the rays formed by the color-pulling effect of symbol m and symbol n
overlap at ray j . Thus, m and n are put into the set B j , i.e., B j =B j ∪ {m,n}, otherwise,
Ai =Ai ∪m and Ai+1 =Ai+1 ∪n.

Step 3: Distance decoder. We denote the input sampling point sequence as rl = (xr
l , yr

l ), l =
{1, · · · ,L}, where L is the length of sequence. The distance decoder is expressed as ‖rl −
us‖2 < dth . Thus, all transmitted symbols with the least color-pulling effect are detected.
Note that when the color of the transparent screen region is detected as black, all sam-
ple point sequences are input into the distance decoder for demodulation. The optimal
minimum distance decoder is calculated as

r∗
l = arg min

m∈M
‖rl −um‖2 , (3.2)

where r∗
l is the decoded symbol.

Step 4: Slope-boosting decoder. We do slope-boosting detection on all remaining sample
points except those processed by the distance decoder. The optimal slope decoder can

4Currently, due to limitations in the output frame rate of under-screen camera and refresh rate of the screen,
there are at most two different transparent screen region colors in a single captured frame.
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Algorithm 2 Slope-boosting demodulation

Input: B j : preset overlapping CSK symbols on ray j , C j : overlapping sampling points

on ray j , K : the number of clusters, Dm,n � ‖pm −pn‖2 ;
Output: rrr∗;

1: Sort C in descending order of |C |;
2: for j = 1 to J do
3: K = |B j |;
4: while B! =� do
5: eeei , i = {1, · · · ,K } with centroid pi are obtained by K-means clustering [93] on the

set C j ;
6: if Dm,n > dth ,∀m,n ∈ {1, · · · ,K } then
7: r∗

l ∈ eeei ←B j , sort eeei and B j in ascending order of Dm,n ;
8: else if Dm,n < dth then
9: K = K −1;

10: end if
11: end while
12: end for

be expressed as

r∗
l = arg min

m∈M

∣∣∣∣∣ yr
l −ys∣∣∣xr
l −xs

∣∣∣ − ym−ys
|xm−xs |

∣∣∣∣∣+
∣∣∣∣∣
∣∣∣yr

l −ys

∣∣∣
xr

l −xs
− |ym−ys |

xm−xs

∣∣∣∣∣∣∣∣ yr
l −ys

xr
l −xs

∣∣∣+ ∣∣∣ ym−ys
xm−xs

∣∣∣ . (3.3)

If r∗
l ∈Ai , then it means that the ray where the demodulated symbol is located does

not overlap, and the sampling point is directly mapped to r∗
l . Otherwise, if r∗

l ∈ B j ,
we put this sample point into set C j , i.e., C j = C j ∪ r∗

l . The sampling points in set C j

correspond to those sample points falling on the overlap ray represented by set B j .
The slope-boosting procedure is shown in Algorithm 2. We can group CSK symbols

interfered by the same screen color to increase the number of symbols used for cluster-
ing in Step 1. A larger number of sample points can improve the decoding accuracy.

3.5. IMPLEMENTATION
In this section, we present the implementation details of our practical through-screen
VLC with under-screen camera system.

LED transmitter. A snapshot of our implemented transmitter is presented in Figure 3.17(a).
It includes a full-color LED chip, a lampshade, an LED driver board, and a control unit.
The full-color LED chip has a maximum power consumption of 5 Watts and a maximum
brightness of 450 lumens, powered by a 24V DC voltage. We use a long-strip lampshade
with a dimension of 35 cm×160 cm in our experiment. The shape and length of the lamp-
shades are similar to the commonly seen fluorescent luminaires in offices. An Arduino
DUE–a low-cost embedded platform–is used as the control unit at the LED transmitter.
We leverage three independent PWM ports of the Arduino DUE to control the full-color
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(a) Our Implemented LED Transmitters (b) Our Implemented Receivers (c) Basic Setup
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Figure 3.17: The evaluation setup.

LED separately for generating different CSK symbols. The LED driver has three transis-
tors (ON MOSFET 20N06L) and three transistor drivers (TC4420). The PWM ports of the
Arduino DUE trigger the transistors to modulate the full-color LED.

Receiver. The receivers we implement for the through-screen VLC are presented in Fig-
ure 3.17(b). We use two different models of full-screen smartphones that are equipped
with under-screen cameras, i.e., ZTE AXON30 and Xiaomi MIX4, both are available in the
market since late 2021. AXON30 employs an AMOLED screen that can reach a maximum
brightness of 475 cd/m2. MIX4 also has an AMOLED screen but with a maximum bright-
ness of 903 cd/m2. The screen refresh rate of the two smartphones both supports 60 Hz
and 120 Hz, and uses the color gamut of DCI-P3. For both smartphones, the pixel den-
sity of the transparent screen region is 400 pixels per inch, but the shape, size, and layout
of pixels in the transparent screen regions are different. We develop an APP to control the
displayed color in the transparent screen region to evaluate the performance of our sys-
tem under different screen colors. The APP can run with Android 4.4.2 and above. For
the under-screen camera, a 16-megapixel front camera and a 20-mega-pixel front cam-
era are originally used in the AXON30 and the MIX4, respectively. The recorded frames
are transferred to a laptop for further processing.

3.6. PERFORMANCE EVALUATION
We evaluate the performance of our proposed through-screen VLC with under-screen
cameras in various scenarios. We use Bit Error Rate (BER), data rate, and transmission
range as the metrics for performance evaluation.

3.6.1. PRELIMINARY EVALUATION
The default experiment setup is shown in Figure 3.17(c). We place the transmitter and
receiver with a distance of 1 m in between. At the transmitter, we adopt the traditional
CSK design specified in the IEEE 802.15.7 standard [16]. The frequency of the PWM sig-
nals is set to 1 MHz to support 5 kHz CSK symbol rate. At the receiver, the screens are
set to 100% full brightness. We turn off automatic exposure/gain control of the under-
screen camera to capture frames with a size of 640×480 at the highest frame rate of 200
Frames Per Second (FPS). We set the ISO (sensitivity of the camera) to the highest value
of 1600. We fix the under-screen camera exposure time to 1/5400 s, slightly lower than
the period of the transmitted CSK symbols, which is 200 μs. The read-out duration of
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Figure 3.18: BER results vs. screen color (8-CSK).
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Figure 3.19: BER results vs. screen color (16-CSK).

the under-screen camera is estimated to be around 10 μs, using the method presented
in [26]. We mainly use AXON30 for evaluation (except in Section 3.6.4). To evaluate the
performance of our system, we compare the performance of four solutions:

• Ours: As presented in the previous sections, our solution leverages i ) the proposed
pixel-sweeping algorithm to obtain the pixels that represent each color stripe (cf.
Section 3.3), and i i ) the proposed slope-boosting detection algorithm to decode
the CSK symbols (cf. Section 3.4).

• Original: It uses a conventional method to sample pixels at a fixed width instead
of our pixel-sweeping algorithm; It also only adopts conventional minimum Eu-
clidean distance detection for CSK symbol decoding [30], [94].

• Only pixel-sweeping: It only adopts our pixel-sweeping algorithm to obtain the
pixels; For decoding the CSK symbols, it uses the conventional minimum Euclidean
distance detection method [30], [94] instead of our proposed slope-boosting de-
tection algorithm.

• Only slope-boosting: It samples the pixels at a fixed width instead of our proposed
pixel-sweeping algorithm; It adopts our proposed slope-boosting detection algo-
rithm to decode the CSK symbols.

BER results versus screen color. We evaluate the system performance under eight dif-
ferent colors of the screen: black,5 red, blue, green, magenta, cyan, yellow, white. We

5This is achieved when the smartphone’s screen is not lit up.
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Figure 3.20: Impact of size and shape of the light source.

use our designed APP to switch the smartphone’s screen color among these eight colors.
The BER results under 8-CSK are shown in Figure 3.18. We first observe that without our
proposed algorithms, i.e., with the ‘Original’ solution, the BER under all the eight screen
colors goes beyond 10−1, which fails the through-screen VLC link. However, with our
proposed solution (‘Ours’), the BER can be as low as 10−4 when the smartphone’s screen
is not lit up (‘black’), and around 10−3 when the smartphone displays other seven col-
ors. An interesting observation is that among the three colors: red, green and blue, the
BER under the green screen is the highest. This is because in OLED, the number of green
pixels is much larger than that of red and blue pixels. Therefore, more interference is
generated when the smartphone displays green color. We observe that the BER under
‘Only pixel-sweeping’ is lower than the BER under ‘Only slope-boosting’. Also for both
of them, the BERs under different screen colors (except ‘black’) are always higher than
10−2. We further evaluate the system performance when 16-CSK is used at the transmit-
ter. The results are presented in Figure 3.19. We can observe that under all eight different
screening colors, our proposed solution can still achieve a BER below 10−2.

In the rest of the evaluations in this section, unless otherwise specified, we use 8-
CSK at the transmitter and consider the most challenging scenario, i.e., the smartphone
displays white color (all the R/G/B pixels of the screen are lit up).

Impact of transmitter size/shape. We next investigate the impact of transmitter shape
and size on the achieved data rate. As shown in Figure 3.20(a), we use four lampshades
with distinct shapes and sizes at the transmitter: (i) a circular lampshade with a diame-
ter of 40 cm (Circle-40cm); (ii) a square lampshade with a side length of 40 cm (Square-
40cm); (iii) a rectangular lampshade with a size of 30 × 120 cm (Rectan-120cm); and
(iv) a rectangular lampshade with a size of 35 × 160 cm (Rectan-160cm). Figure 3.20(b)
shows the impact of these lampshade shapes and sizes on the achieved system data rate.
Rectangular lampshades of 160 cm and 120 cm exhibit a data rate drop when the com-
munication distance exceeds 4 m and 3 m, respectively, while square and circular lamp-
shades show a data rate drop beyond 1 m. This is due to the rolling-shutter effect, as
the system’s data rate is significantly influenced by the number of pixel rows of the light
source in the image captured by the under-screen camera. The smaller the captured
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Figure 3.22: BER results vs. TX frequency

light source in the image, the less information can be decoded at the receiver. The cir-
cular lampshade achieves a slightly lower data rate compared to the square lampshade
due to a smaller light source area. Note that even when small lampshades (e.g., a circu-
lar lampshade with a diameter of 40 cm) are employed, a data rate larger than 4 kb/s can
still be achieved within a range of 2 m.

Impact of screen brightness and transparency. To avoid possible damage to human
eyes, smartphones’ screens adopt DC dimming instead of PWM dimming [95]. There-
fore, the brightness of the screen determines how much interference it causes on the
transmitted CSK signals. We carry out experiments to evaluate the effect of screen bright-
ness on through-screen VLC. The BER results are shown in Figure 3.21. Overall, as the
brightness increases, the BER gradually increases. When the brightness is lower than
50%, the BER is lower than 10−3. When the brightness is higher than 50%, the BER is
higher but still lower than 10−2. On the other hand, as a well-known concept in com-
puter graphics, the alpha channel is widely used to form a composite image with partial
or full transparency [96]. It stores a value between 0 and 1 to indicate pixel translucency:
0 means that the pixel is fully opaque and 1 means that it is fully transparent. We also
evaluate the impact of screen transparency on the performance of our system by chang-
ing the alpha value. The results are shown in Figure 3.21. We observe that changing
the transparency of a pixel does not affect the color coordinates. The BERs under red
and white screens both gradually decrease when the transparency increases, while the
screen color coordinates detected do not change. This result is interesting because it
means changing pixel transparency can be equivalent to adjusting screen’s brightness.

Impact of transmitter frequency. To capture the effect of transmitter frequency (CSK
symbols transmitted per second), we vary it from 1 kHz to 5 kHz at a step size of 1 kHz.
Figure 3.22 shows the BER results when 8-CSK is used. We observe that as we increase
the transmitter frequency, the BER increases. At 1 kHz, the BER is 0; at 2 kHz, the BER
is around 10−4; and at 4 kHz, the BER increases to 10−3. This is because the width of
the color stripe decreases with a higher transmitter frequency. This increases the inter-
symbol interference as it becomes more difficult to distinguish colors with fewer pixels.

3.6.2. ROBUSTNESS EVALUATION

Impact of angle. We evaluate the robustness of our system when the receiver is placed
in different directions with respect to the LED transmitter. We fix the distance between
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Figure 3.24: BER results vs. ambient light.

the transmitter and screen to 1 m and vary the relative angle between them. The results
are shown in Figure 3.23. We can observe that the BER maintains almost at the same
level when the angle between the transmitter and the receiver does not exceed 45°. At
the angle of 60°, the BER increases to around 10−2. The results show that our system can
work well when the transmitter-receiver angle is below 60°.

Impact of ambient light conditions. Next, we evaluate the system’s robustness under
different ambient light conditions. Three ambient light conditions are considered: (1)
Darkness (average light intensity: 2.4 lux); (2) Night with indoor illumination (average
light intensity: 323 lux); and (3) Sunny day (average light intensity: 2540 lux). The impact
of ambient light conditions on BER is presented in Figure 3.24. First, we observe that the
BER under all three conditions is lower than 10−2. Thus, the performance of the system
is not affected much by the ambient light level. This is because the exposure time of
the camera is usually set very small to exploit the rolling-shutter effect of the camera to
detect the rapidly changing stripes. This makes the impact of interference from ambient
light very limited on our system. In addition, even in a bright indoor environment (sunny
day), with our proposed RoI detection algorithm, we can still accurately detect the light
source, which further alleviates the impact on the BER performance.

Impact of distance. Lastly, we evaluate the system robustness when the transmitter is
placed at different distances from the receiver. The BER results are shown in Figure 3.25.
As the incident light attenuates with distance, a longer distance causes a lower signal
strength at the receiver. The variance of the cluster formed by received CSK symbols on
the CIE 1931 diagram becomes larger due to the decrease in SINR. Therefore, the larger
the distance, the higher the BER. However, even at a distance of 4 m, the achieved BER
is still lower than 10−2. Following the state-of-the-art studies [62], [97], we define the
transmission range as the maximal communication distance between the transmitter
and receiver with a BER below 10−2. The transmission ranges under different solutions
as shown in Figure 3.26. We can observe that in the presence of the transparent screen
that covers the under-screen camera, the ‘Original’ solution can only achieve a trans-
mission range of 4 cm. On the other hand, by adopting the proposed pixel-sweeping
and slope-boosting detection algorithms, the transmission range is extended to 4.24 m,
bringing a gain of over 100×.
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Figure 3.26: Communication range comparison.

3.6.3. DYNAMIC CONTENTS ON SCREEN
Next, we display dynamic contents on the transparent screen region and evaluate the im-
pact on through-screen VLC. We change the transparent screen region’s displayed color
periodically following the order of black, red, blue, green, magenta, cyan, yellow, and
white. We test four content update rates: 1 Hz, 25 Hz, 50 Hz, and 100 Hz, all of which
are within the content update rate range of commonly used APPs.6 The achieved BERs
under different content update rates and different screen refresh rates are shown in Fig-
ure 3.27. We can observe that at all the content update rates, the BERs are always below
10−2. We note that when the content update rate is 25 Hz, the BER is slightly higher. This
is because the frame rate of the screen is extremely unstable at 25 Hz.

3.6.4. SCREEN DIVERSITY
We also evaluate the system performance with different commercial smartphones as
the receiver. We test two commercial smartphones, ZTE AXON30 and Xiaomi MIX4 (cf.
Figure 3.17(b)). The transparent screen regions of the two smartphones have dramat-
ically different pixel layouts, sizes, and shapes. Also, their screens differ in maximum
brightness. We fix the distance between the transmitter and receiver as 1 m and mea-
sure the BER of the through-screen VLC link when different smartphone screens are
adopted. The results are shown in Figure 3.28. We can observe that although there
are some performance variations under different smartphone screens, the BERs are al-
ways below 10−2, demonstrating the effectiveness of our proposed pixel-sweeping algo-
rithm. Interestingly, we find that the BER under the screen of MIX4 is higher than that of
AXON30, even when the screen is not lit up (i.e., ‘black’). We believe this is because MIX4
has a lower light transmittance compared to AXON30 due to intrinsic screen material
and thickness diversity. When smartphones display white color at full brightness, MIX4
causes higher interference to the captured frames because it has a higher brightness.

3.6.5. MULTIPLE TRANSMITTERS
Finally, we carry out experiments to evaluate the system performance under multiple
transmitters. The under-screen camera is a multi-pixel receiver. Therefore, an under-
screen camera can detect the CSK signals from multiple LED transmitters by splitting
a captured frame into several slices and detecting the RoI in each slice independently.

6In the experiment, we find that even when we set the screen refresh rate to 60 Hz and the content update rate
to 100 Hz, due to the screen optimization mechanism in OS [98], the phone still displays contents at 60 Hz.
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Figure 3.29: Multiple transmitters results.

With multiple transmitters, the system data rate can be significantly increased. In our
evaluation, we test up to four transmitters. We place the transmitters in a row at a dis-
tance of 3 meters from the receiver. A snapshot of the experiment setup with four trans-
mitters is shown in Figure 3.29(a). We test both 8-CSK and 16-CSK. The evaluation results
are shown in Figure 3.29(b). We can observe that under 8-CSK, the date rates achieved
in our through-screen VLC system can reach 10.59 kb/s, 21.19 kb/s, and 42.38 kb/s with
one transmitter, two transmitters, and four transmitters, respectively. Under 16-CSK, the
maximum system data rate can go up to 54.43 kb/s with four transmitters.

3.7. RELATED WORK

Image restoration on under-screen cameras. Under-screen cameras for smartphones
have spurred interest in techniques that can restore images captured by them. A recent
work [99] presented a method to recover dimmed and blurred images by restoring an-
gular frequencies in the scene. Other works [9]–[13] also applied deep neural networks
to handle the blur and low SNR issues associated with under-screen images. However,
these works mainly addressed the passive interference on the camera induced by the
screen when the screen is OFF. Instead, our work aims to remove the impact of active
interference from the screen on VLC when the screen is on, which has never been con-
sidered in previous works.

LED-to-camera communication. It utilizes the existing lighting infrastructure as trans-
mitters and pervasively available rolling shutter cameras as the receivers [28]–[30], [100].
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Table 3.1: Summary of LED-to-Camera communication systems (in the one-transmitter
and one-receiver setup).

Name Modulation Throughput Range

VLandmark[101] Binary FSK 10 b/s 1.2 m
RollingLight [26] FSK 90.56 b/s Not Specified
CamCom [102] OOK 15 b/s Not Specified

Seminal[25] OOK 148 b/s 9 cm
ReliableVLC[27] OOK 700 b/s 3 m

IoTorch [103] PWM 2.92 kb/s 1 m
CeilingTalk [28] OOK-PWM 1 kb/s 5 m
ReflexCode [29] GSK 1.07 kb/s 3 m

Martian [100] Prefix code 1.6 kb/s 25.4 cm
ColorBars [30] CSK 5.2 kb/s 3 cm

Our work with USC CSK 13.61 kb/s 4.2 m

The work in [28], [29] investigated a high-order intensity modulation by encoding data
into different luminance levels. ColorBars exploited CSK to improve the data rates [30].
The data rate using pulse-based optical camera communication modulation methods
such as OOK and FSK does not exceed 4.2 kb/s as shown in Table 3.1. ColorBars uses
CSK modulation to reach a data rate of 5.3 kb/s, but the communication distance is only
3 cm. In our work, the dynamic contents on screens bring unique challenges for realiz-
ing through-screen VLC. Still a higher data rate and a longer communication range can
both be achieved with our designed algorithms.

Screen-to-camera communication. This communication modality employs images or
videos on a standard monitor to transmit data information [104]–[108]. However, these
coded images are typically visible to users, comprising the confidentiality of the data
content. Thus, hidden screen-to-camera communication was proposed to achieve com-
munication without comprising the confidentiality [77], [78], [109]–[112]. In through-
screen VLC, the screens become receivers with cameras under the screen as antennas.
Transmitters are those ceiling lamps which are used for both illumination and commu-
nication. We utilize the color information and apply dedicated signal processing meth-
ods to achieve a throughput of 54.43 kb/s and a range of 4.2 m with four transmitters.

3.8. CONCLUSION

In this chapter, we studied how to enable through-screen VLC with under-screen cam-
eras on full-screen devices such as smartphones. Unlike the SpiderWeb system dis-
cussed in Chapter 2, which discovered the color-pulling effect and proposed the SWe-
bCSK modulation scheme to address screen-induced challenges, our design does not re-
quire any modifications to LED transmitters. SpiderWeb necessitated transmitters to be
aware of the receiving device’s current screen color and to optimize its modulation con-
stellation points accordingly, introducing significant overhead for transmitter-receiver
synchronization and constellation optimization. In contrast, proposed approach in this
chapter allows for a higher data rate without such modifications. We identified key chal-
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lenges associated with the transparent OLED screen covering the under-screen cam-
era and proposed solutions such as the pixel-sweeping algorithm and slope-boosting
demodulation method to address these challenges. Our comprehensive experiments
demonstrated the feasibility of through-screen VLC, and we anticipate that our work will
inspire further research on communication and sensing using under-screen cameras.

Future work. Our system works well when the entire transparent screen region dis-
plays a single color (the color can change over time), as shown in our evaluation. The
transparent screen region is located at the top of the smartphone and this part usually
hosts the status bar. Thus, the transparent screen region usually only displays a sin-
gle color at a time, such as white in many APPs. However, for APPs running on a full
screen such as games, complex contents with different colors could be displayed in the
region. In this case, every single frame captured by the under-screen camera is disturbed
by a different color, making decoding more challenging. For this scenario with multi-
color screen contents, one potential solution is to cancel the effect of the screen color
at each single screen-pixel. This approach, however, introduces new challenges, such as
accurately determining color interference at the pixel level. In high-order CSK modula-
tion, an inability to accurately decode color interference can lead to higher bit error rates
and significant information loss. Beyond communication, full-screen devices also hold
promise for sensing applications. For example, the screen can serve as a light source
and under-screen sensors as receivers to enable through-screen air-writing recognition,
using reflections from a finger close to the screen. This design benefits from having a
fixed screen light source, eliminating the need for additional external light sources, for
instance, fingertip air-writing [113] could be a typical application for through-screen vis-
ible light sensing system.

Up till now, we have demonstrated how to overcome screen interferences and achieve
through-screen light communication using Commercial Off-The-Shelf (COTS) compo-
nents on mobile devices. However, we must also consider the original utility of these
COTS components, such as the primary visual imaging function of the under-screen
camera. In the next chapter, we will discuss our findings on how the screen impacts the
imaging function of under-screen cameras and explore the implications for user security
and privacy on mobile devices.
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4
SCREEN PERTURBATION:

ADVERSARIAL ATTACK AND

DEFENSE ON USC

To allow visible light to reach the Under-Screen Camera (USC) and thereby preserve its
photographic capabilities [8], a special region, transparent screen region, is positioned
above the USC. Unlike pressure or fingerprint sensors that can be easily integrated into
a screen, maintaining the full functionality of an original front camera after mounting
it behind a transparent screen is relatively challenging. The imaging quality of an USC
is severely degraded due to lower light transmittance and diffraction effects, resulting in
noisy and blurry images. Consequently, while enhancing user experience and interac-
tion, the USC may compromise the quality of photography, face processing, and other
downstream vision tasks. Numerous recent research and industry efforts have focused
on restoring and enhancing images captured by USC systems [10]–[12], [14], [114]. How-
ever, a more critical issue that has not been adequately addressed is the security concern
associated with USCs. In this chapter, we explore the following research question:

What are the key security impacts of the screen on the visual imaging of the under-
screen camera?

Motivated by this new feature of full-screen mobile devices, we investigate how the
transparent screen region lighting significantly impacts the images captured by USC.
This phenomenon is corroborated by the findings and conclusions in Chapter 3. How-
ever, in this chapter, we explore it from a security perspective, considering how it can be
exploited for both attacking and safeguarding purposes.

In this chapter, we propose the concept of Screen Perturbation, which modifies the
pixels displayed on the transparent screen region to nullify deep learning models such

67
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Conventional 
Front Camera

Alice

Face Recognition

Screen Perturbation

Under-Screen 
Camera

Bob

Face Recognition

TSR

Figure 4.1: Illustration of screen perturbation on an example of in defending unauthorized face recognition:
carefully-selected pixels on the transparent screen are lit up, which are ‘imperceptible’ to human eyes, but

could cause an unauthorized system to misrecognize the user Alice as Bob. (Transparent Screen Region: TSR)

as image classification and face recognition models. The proposed screen perturbation
is a double-edged sword. On one hand, it can serve as a defensive mechanism. Like
traditional front cameras, hackers can exploit USCs through camfecting [44] to capture
images and record videos. With the rise of deep learning models in security-critical ap-
plications like face authentication [115], these illegally captured images can be used to
train extensive models capable of recognizing millions of individuals without their con-
sent. To tackle this security risk, users can leverage the transparent screen region to
embed adversarial perturbations into captured images, thereby protecting themselves
from unauthorized deep-learning models. For instance, an unauthorized face recogni-
tion system would fail to correctly identify users based on these perturbed images, as
depicted in Figure 4.1. Users can proactively activate specific screen pixels during their
interactions with the smartphone, ensuring that any images covertly captured by USC
are not correctly identified by unauthorized facial recognition models. Importantly, this
does not interfere with other functionalities, such as the motion detection capability of
USC. On the other hand, the transparent screen region can be exploited by malicious
attackers. They can embed adversarial perturbations into captured images to launch
adversarial attacks, aiming to disrupt legitimate face recognition systems or fool image
classification models. To fully harness the potential of screen perturbation and mitigate
its risks, we must address several unique challenges. For simplicity of presentation, we
describe these challenges and our solutions and contributions from the attacker’s per-
spective in the rest of this section.

Challenges and Contributions. To launch adversarial attacks that can fool applications
such as face recognition and image classification, the attacker needs to manipulate the
content displayed in the transparent screen region to embed adversarial perturbations
in the formed images. This is challenging because the modification in the transparent
screen region needs to be carefully designed such that the changes are imperceptible to
the users, while the generated image perturbations are powerful enough to fool the deep
learning models. To achieve this goal, the first challenge is

Challenge 1: How to understand the impact of the transparent screen region’s perturba-
tion on the formed image at the USC?

Current studies [10], [14], [15] have discovered that when the transparent screen is
not illuminated, it can still scatter and absorb light, leading to a lower signal-to-noise
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ratio and a color shift in the formed image; we refer to this as passive perturbation. How-
ever, the effect of the screen’s illuminated pixels on the images captured by the USC has
never been explored. Our research reveals that when the transparent screen region is lit
for displaying content, the illuminated screen pixels embed various translucent speckled
color blocks and color shifts in the formed image. We term this active perturbation. Fac-
tors such as whether the pixels in the transparent screen region are illuminated, their col-
ors, and their brightness levels strongly affect these perturbations in the formed image.
To address this, we develop a comprehensive model to study the impact of both passive
perturbations and active perturbations on USC’s image formation. Building upon this
model, we successfully create an USC image simulator that generates both passive and
active perturbations on captured images simultaneously, allowing us to quantitatively
understand the impact of screen perturbation on under-screen image formation.

After analyzing the impact of screen perturbations on images captured by the USC,
caused by activated and inactivated screen pixels on the transparent screen region, it is
essential to carefully select the pixels on the transparent screen region to produce screen
perturbations that achieve the desired attack effect. Although the size of the transpar-
ent screen region is small (only about 0.1 cm2), it contains several thousand to twenty
thousand pixels. For example, the smartphone Fold4, AXON30, and MIX4 have 58×58,
108×60, and 108×60 pixels within their transparent screen region, respectively. Each
pixel has multiple R/G/B sub-pixels, making it challenging to identify the most suitable
pixels for creating the screen perturbation and how to light them up (using optimal col-
ors and brightness). The simplest way could be to light up all the pixels in the trans-
parent screen region at a proper brightness level to create the screen perturbation. How-
ever, this is inefficient and the created screen perturbation will be striking, and therefore,
users can perceive it. Hence, the second challenge is

Challenge 2: How to determine which transparent screen region pixels to manipulate and
how, in order to ensure that the created screen perturbation can successfully fool deep
learning models?

To address this challenge, we present the chromaticity destruction and morphology
destruction modules. Specifically, the chromaticity destruction determines the optimal
color of the screen perturbation and maximizes its attacking region and energy inten-
sity. The morphology destruction module optimizes the position and brightness of the
screen-pixel perturbations. Leveraging these two modules, we design a one-pixel pertur-
bation approach, wherein modifying only a single pixel on the screen (less than 1‰ of
the pixels in the transparent screen region) we can reduce the average image classifica-
tion accuracy of six deep learning models from 85% to 14%, and reduce the average face
recognition accuracy of two deep learning models from 91% to 1.8%. To enhance at-
tack efficiency, we propose a multiple-pixel perturbation that modifies only a few screen
pixels (less than 1% of the pixels in the transparent screen region) to generate perturba-
tion with higher adversarial strength, thereby further decreasing the average accuracy of
image classification and face recognition to as low as 5.5% and 0.25%, respectively. We
summarize our contributions as follows:

• To our best knowledge, we are the first to discover this critical security phenomenon
at USC.
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Transparent screen regionscsc
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Figure 4.2: Illustration of (a) smartphone with a under-screen camera; (b) micrograph of the transparent
screen region and the normal screen region; and (c) a typical structure of the screen-pixel unit.

• We analyze the imaging formation of USC both theoretically and experimentally.
Theoretical models are successfully established, and we build an image captured
on the USC simulator based on those models.

• We design and implement one-pixel and multiple-pixel perturbations including
chromaticity and morphology destruction modules, which could generate imper-
ceptible but powerful screen perturbations to fool deep learning models.

• We thoroughly evaluate the system on a dataset collected by three smartphones
equipped with USC and synthesized datasets generated using our USC image for-
mation simulator.

4.1. PRIMER ON SCREEN PERTURBATION

4.1.1. STRUCTURE OF TRANSPARENT SCREEN REGION
In Under-Screen Camera (USC) smartphones [88], [113], [116]–[118], the front-facing
camera is placed under a small ‘transparent’ screen area known as the transparent screen
region built on transparent electrode material. As shown in Figure 4.2(b), the transpar-
ent screen region has a different pixel layout from the normal screen region, and can be
considered as an RGBG array that consists of multiple screen-pixel units. Figure 4.2(c)
shows a typical structure of the screen-pixel unit, which is made up of three R/G/B sub-
pixel sets. Depending on the manufacturer, a R/G/B subpixel set can contain multiple
subpixels of the same color. For example, in the design shown in Figure 4.2(c), the R/G/B
subpixel set is made up of two red subpixels, four green subpixels, and two blue subpix-
els. We can further divide the transparent screen region into three functional areas:

• Screen-non-pixel area (the white area) allows light to pass through the screen.

• Control-circuit area (the black area) is mainly used to control the circuit wiring of
the screen, and has a lower light transmittance than the screen-non-pixel area.

• Screen-pixel area (the RGB color matrix) consists of R/G/B subpixel sets that can
be lit up to display contents.
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Active TSR

Conventional camera

USC

Inactive TSR

(a)

(b)

(c)

USC

Figure 4.3: Images formed in different scenarios: (a) pristine image is captured by a traditional front-facing
camera; (b) the transparent screen region is inactive but still introduces passive screen perturbation to the

captured image, i.e., color shift and low signal-to-noise ratio; (c) the transparent screen region is active and
introduces both passive and active screen perturbations to the final image, i.e., translucent speckled color

blocks and color shifts. (Transparent Screen Region: TSR)

4.1.2. UNDER-SCREEN IMAGE PERTURBATIONS

The unique structure of the transparent screen region provides an intriguing way to max-
imize the display area. However, it inevitably introduces two types of perturbation dur-
ing image formation. First, as the transparent screen region is placed above the camera,
the screen-non-pixel and the control-circuit areas introduce passive perturbations on
the formed images. As shown in Figure 4.3(b), passive perturbations are embedded into
the image even when the transparent screen region is inactive and the screen is com-
pletely turned off due to light scattering and absorption from the fine pixel pitch [10].
The passive perturbation causes a lower signal-to-noise ratio and color shifts in the im-
age [10], [14], [15]. In addition, as shown in Figure 4.3(c), when the screen is lit up for
display, the screen-pixel area introduces active perturbations to the image. The lighting
of different R/G/B subpixel sets embeds various translucent speckled color blocks and
color shifts in the final image captured by the under-screen camera.

4.2. SYSTEM OVERVIEW

4.2.1. THREAT MODEL

In this chapter, we investigate and demonstrate that the new type of screen perturba-
tion is a double-edged sword for users. On one hand, malicious attackers can exploit
it to embed adversarial perturbations into captured images, launching adversarial at-
tacks aimed at disrupting the performance of legitimate face recognition systems [119]
or fooling image classification models [120]. On the other hand, benign defenders, e.g.,
users, can leverage screen perturbation to protect themselves from unauthorized deep
learning models. For instance, users can proactively activate specific screen pixels in
use. Thus, any images covertly captured by the under-screen camera would not be cor-
rectly identified by unauthorized facial recognition models [115], [121], while other func-
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tionalities, such as the motion detection capability of the under-screen camera, would
remain unaffected. Next, we motivate our system design from the perspective of the
attacker/defender’s goal, capability, and background knowledge.

Attacker/defender’s goal. We consider an attacker/defender aims to manipulate the con-
tent displayed in the transparent screen region to generate and embed adversarial per-
turbations to images captured by the under-screen camera. As a result, a machine learn-
ing model (referred as target model) trained on images captured by a standard camera
should exhibit low accuracy for those corrupted images. The alterations to the displayed
content should be imperceptible and not interfere with the normal content displayed in
the transparent screen region.

Attacker/defender’s capability and background knowledge. We begin by assuming that a
benign or malicious application is installed by the attacker or defender. This applica-
tion has the ability to control all screen-pixel units in the transparent screen region and
can modify the content displayed on the screen. Android platforms do not restrict UI
settings, allowing any applications to set their own UI displays and perturb the camera
input. For devices such as Samsung Galaxy Z Fold 4, ZTE AXON 30, and Xiaomi MIX 4
which we investigate in this chapter, the content displayed on the transparent screen
region can be easily modified using the Android Canvas Drawing API [122]. We also as-
sume that these screen-pixel modifications are not confined to a single application but
can be implemented across different applications, as Android systems support UI mod-
ifications between various applications, including multi-window settings [123] and no-
tification pop-ups [124]. Next, we assume that the attacker or defender has access to a
pristine image for obtaining object information. Lastly, the attacker/defender can gener-
ate different screen perturbations by modifying the content displayed on the screen for
various usage scenarios. These modified pixels on the screen are invisible to the naked
eye, ensuring that they do not affect the user’s normal use of the smartphone in benign
applications and do not alert the user to the embedded screen perturbation in malicious
applications. To consider a more realistic scenario, we assume the attacker/defender
lacks knowledge about the target model’s implementation details used to classify cap-
tured images, but they have access to a surrogate model for the task, which could have
different architecture and hyper-parameters from target models. For simplicity, we de-
scribe our design from the attacker’s perspective in the rest of the chapter.

4.2.2. OVERALL DESIGN

In a nutshell, we propose a suite of algorithms that manipulate only a few screen-pixel
units with optimized pixel location, color, and brightness in the transparent screen re-
gion to embed adversarial perturbations in the formed images. The screen modifications
are imperceptible to the human eyes (cf. Figure 4.10), but are powerful enough to fool
machine learning models. To this end, we first establish a body of image formation mod-
els that serve as the theoretical basis of our design. Specifically, we devise the active per-
turbation function to model the image perturbation introduced by the screen-pixel area
(in Section 4.3.2), and simulate how different color, brightness, and position of the sub-
pixel set affect the active perturbation. Further, we introduce the under-screen aperture
function to model the passive perturbation caused by the screen-non-pixel area in the
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transparent screen region (in Section 4.3.3). Finally, we design an under-screen image
formation pipeline to model and synthesize images that are corrupted by both passive
and active perturbations in various under-screen imaging settings. Building on our the-
oretical models, we introduce two novel mechanisms to determine the configuration of
the transparent screen region to generate effective but imperceptible screen perturba-
tions. Specifically, we propose the chromaticity destruction module (in Section 4.4.2) to
determine the optimal color, and the morphology destruction module (in Section 4.4.3)
to optimize the position and brightness of the screen-pixel unit in generating active per-
turbations. To improve the attack efficiency, we introduce the multiple-pixel perturba-
tion (in Section 4.4.4) that maximizes the adversarial strength of the active screen per-
turbation while being imperceptible to human eyes.

4.3. MODELING USC’S IMAGE FORMATION
Below, we introduce the modeling of image formation for the under-screen camera.
Firstly, we discuss the concept of the blur-kernel, and then specialize it to model the
active and passive perturbation introduced in Section 4.1.2.

4.3.1. BLUR KERNEL
Light diffraction through the transparent screen region in a camera system can cause im-
age degradation due to the comparable size of the screen-non-pixel area and the visible
light wavelength [10]. Following Fourier optics principles [125], we model this diffrac-
tion phenomenon using the blur-kernel, which is also known as the point spread func-
tion [14]. The blur kernel mathematically depicts the spread of light around a point light
source in an image, characterizing the blurring effect of an imaging system or physical
medium on the image. The blur kernel is the squared magnitude of the scaled Fourier
transform of the under-screen aperture function f (x, y), derived from the product of the
camera lens aperture and the transparent screen region:

f (x, y) = g (x, y)o(x, y), (4.1)

where (x, y) represents the coordinates of the screen-pixel unit. The camera lens is ap-
proximated as a thin lens with an aperture function g (x, y), while the transparent screen
region is modeled as a function o(x, y) that maps the light transmittance properties of
coordinates (x, y) in the transparent screen region to a range between 0 and 1. A value
of 1 indicates that light can fully pass through the transparent screen region, whereas a
value of 0 indicates that light cannot pass through the transparent screen region. The
blur kernel is defined as follows:

k(λ,F ) =
∣∣∣∣ 1

λr0
F

(
x

λr0
,

y

λr0

)∣∣∣∣2

, (4.2)

where λ is the wavelength of light, r0 is the focal length of the camera lens, and F (u, v)
is the Fourier transform of the under-screen aperture function f (x, y). The (u, v) is the
mapping of coordinates (x, y) in the frequency domain.

Based on the blur-kernel model, obtaining the under-screen aperture function of ac-
tive and passive perturbations for the transparent screen region is necessary to generate
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the corresponding blur kernels. The under-screen aperture functions for both types of
perturbations will be presented below, as illustrated in Figure 4.4.

4.3.2. MODELING SCREEN’S ACTIVE PERTURBATION
USCs in mobile devices like smartphones are placed near the screen for a slim profile,
leading to the transparent screen region co-locating with the thin lens aperture. This
proximity allows the R/G/B subpixel sets on the transparent screen region to be approx-
imated as point light sources per the Huygens-Fresnel principle [125]. The transparent
screen region’s screen-pixel area is periodic, with identical screen-pixel units, enabling
modulation of the entire area via a single unit. Let D μm be the inter-pixel distance of the
pixels in the transparent screen region. D actually determines the screen resolution as
25,400/D pixels per inch (= 25,400 μm). The light intensity of screen-pixel area within
a screen-pixel unit is denoted as ma(x, y,c), where c ∈ {R,G ,B} represents the R/G/B
subpixel sets. This ma(x, y,c) repeats at a periodicity of D along both axes to form all
screen-pixel areas on the transparent screen region. Here, we can set R/G/B subpixel
sets shape, size, and brightness in the screen-pixel unit to impact the active screen-pixel
perturbation. However, the shape and size of each R/G/B subpixel set are typically pre-
determined during manufacturing. The active perturbation can still be manipulated by
selectively lighting up different R/G/B subpixel sets on the transparent screen region to
form different patterns. Using n1 and n2 to represent the horizontal and vertical indices
in the spatial domain and N1 and N2 for the frequency domain, we can express the light
intensity of (x, y) of different R/G/B subpixel sets on the transparent screen region as:

oa(x, y,c) = ma(x, y,c)∗∑
n1

∑
n2

δ(x −n1D)δ(y −n2D), (4.3)

where δ(·) is the Dirac delta function, also known as the unit impulse [125]. Multiplica-
tion in the space domain leads to convolution in the frequency domain, which allows
us to obtain Fa(u, v,c), the Fourier transform of the effective aperture at different wave-
lengths (R/G/B) for active perturbation:

Fa(u, v,c) =∑
N1

∑
N2

Ma

(
N1

D
,

N2

D
,c

)
G

(
u − N1

D
, v − N2

D

)
, (4.4)

where Ma(u, v,c) represents the Fourier transform of R/G/B subpixel set in the screen-
pixel area ma(x, y,c), G(u, v) is the Fourier transform of the camera lens aperture g (x, y),
and N1 and N2 are the indexes corresponding to n1 and n2 in the frequency domain.

4.3.3. MODELING SCREEN’S PASSIVE PERTURBATION
We present a specialized under-screen aperture function expression, focusing on passive
perturbation from the screen-non-pixel area. Given its higher light transmittance com-
pared to the control circuit and screen-pixel areas, we can neglect the latter [14]. The
screen-non-pixel area within a screen-pixel unit, denoted as mp (x, y) (cf. the white area
in Figure 4.2), also exhibits periodicity. This allows us to mathematically express the light
transmittance properties of (x, y) on transparent screen region’s screen-non-pixel area,
op (x, y), and the Fourier transform of the effective aperture for passive perturbation:

op (x, y) = mp (x, y)∗∑
n1

∑
n2

δ(x −n1D)δ(y −n2D), (4.5)



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

4

76 4. SCREEN PERTURBATION: ADVERSARIAL ATTACK AND DEFENSE ON USC

Fp (u, v) =∑
N1

∑
N2

Mp

(
N1

D
,

N2

D

)
G

(
u − N1

D
, v − N2

D

)
. (4.6)

4.3.4. UNDER-SCREEN IMAGE FORMATION PIPELINE
Based on the analysis in the previous sections, and given a calibrated screen-pixel unit as
shown in Figure 4.4, we can model the degraded images from a scene with both passive
and active perturbation of transparent screen. For the scene III , the degraded observation
III ⊕zzz formed on the sensor can be modeled as a convolution process, given by:

III ⊕zzz = (γẑzz)⊗∑
c k(λ,Fa(c))︸ ︷︷ ︸

Active Perturbation

+ (γIII )⊗k(λ,Fp )︸ ︷︷ ︸
Passive Perturbation

+ n︸︷︷︸
Noise

, (4.7)

where γ is the intensity scaling factor considering camera gain and screen attenuation.
The blur kernels for active and passive screen perturbations are

∑
c k(λ,Fa(c)) and k(λ,Fp ),

respectively. The noise is represented by n, which includes both shot noise and read-out
noise. ẑzz (in pixels) represents an active perturbation image on USC projected from the
R/G/B subpixel sets on the transparent screen region, represented by zzz (in mm). The
camera’s imaging process projects three-dimensional objects onto a two-dimensional
plane (cf. Figure 4.3). Given the screen’s proximity to the USC, the projection process can
be approximated as a conversion from the camera to the pixel coordinate system. Fol-
lowing the perspective camera model [96], we denote this projection as ẑzz = Resize(zzz,r0),
where r0 is the USC’s focal length.

4.4. SCREEN-PIXEL PERTURBATION
In this section, we first introduce how to identify the potential attacking region in images
captured by USC (Section 4.4.1). We then present the chromaticity destruction module
that selects the optimal color for the screen-pixel perturbation (Section 4.4.2), followed
by the morphology destruction module that determines the optimal position and bright-
ness of the screen-pixel perturbation (Section 4.4.3). Combining the above two mod-
ules, we can activate a single screen-pixel unit on a transparent screen region and add
corresponding perturbation in images captured by USC, and we call it one-pixel pertur-
bation. Lastly, we introduce the multiple-pixel perturbation to improve the attacking
efficiency by illuminating multiple screen-pixel units simultaneously (Section 4.4.4).

Design space. Different from the theoretical model, the design space when generat-
ing screen-pixel perturbation on practical under-screen camera smartphones is smaller.
Specifically, hardware-related parameters, such as shape, size, and the number of pixels
on the screen, are fixed by the manufacturer. Instead, we have access to each screen-
pixel unit in the transparent screen region, and can program the color and brightness of
the R/G/B subpixel set in the screen-pixel unit.

4.4.1. CALCULATING THE ATTACKING REGION
Our goal is to generate adversarial perturbations by modifying as few screen-pixel units
as possible (to be less perceptible), while greatly degrading the classification accuracy
of the victim deep learning model. To achieve this, we first need to localize the region
in the targeted image that has the highest influence on the decision making of the deep
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(c)(b)(a)

Figure 4.5: Example of using the Grad-CAM for attacking region estimation: (a) taking an image captured by
the USC as input, (b) we leverage the Grad-CAM to generate the heatmap of the most significant region in the

image, and then (c) obtain the attacking region.

(a)

Finch (88.4%)

(b)

Finch (93.6%)

(c)

Finch (67.1%)

(d)

Finch (62.1%)

Figure 4.6: The adversarial strength of the screen-pixel perturbation with different colors: (a) image without
active perturbation; by contrast, in (b), (c), and (d), the red, blue, and green subpixel set is used to create the

screen-pixel perturbation, respectively.

learning model. We leverage the Gradient-weighted Class Activation Mapping (Grad-
CAM) [126] to estimate the attacking region where the screen perturbation will be added.

Figure 4.5 shows the pipeline in calculating the attacking region. Taking an image
captured by the USC as input, we first leverage the Grad-CAM to calculate a heatmap
of the image based on the surrogate model. As shown in Figure 4.5(b), the heatmap
highlights the most significant region in the image that drives the surrogate model to
its final prediction. Then, by calculating the average value of the heatmap and thresh-
olding it, we can calculate the attacking region that indicates the potential image area
where adversarial perturbations should be added to. Note that for a given image, the
heatmap generated by the Grad-CAM varies when different architectures and training
datasets are used by the surrogate model. However, because of the transferability effect
(cf. Section 4.5), different models trained for similar tasks will share highly similar prop-
erties and vulnerabilities, even when they have different architectures and are trained
on different datasets [127]–[131]. Thus, we can leverage one representative model as the
surrogate model for attacking region estimation, but still be able to apply and transfer
the resulting adversarial perturbations to different models in the attacking stage.

4.4.2. CHROMATICITY DESTRUCTION

The ability of an adversarial perturbation to fool the classifier is known as the adversarial
strength. In general, for colorization-based perturbation [132], its adversarial strength is
proportional to the number of perturbed pixels [133], [134] and the energy change in the
pixels [135]. Based on these facts, we introduce the chromaticity destruction to generate
the screen-pixel perturbation in three steps.
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(a)

Finch (56.7%) Ant (21.4%)

(b)

Ant (27.8%)

(c)

Figure 4.7: Attacking with different brightness levels and number of subpixel sets used: (a) lighting up the
green subpixel set; (c) lighting up the green subpixel set with a high brightness; (d) lighting up both green and

blue subpixel sets but with a lower brightness.

Step 1: Identifying the dominant color channel. First, we identify the dominant chan-
nel of the attacking region. The dominant channel is one of the R/G/B channels with
the highest color intensity. Next, for a given screen-pixel unit, we light up one or two of
its R/G/B subpixel sets that are distinct from the dominant channel to generate corre-
sponding screen-pixel perturbations. By doing so, the color of the resulting screen-pixel
perturbation will be distinct from the dominant channel of the attacking region, which
causes the ‘color shift’ effect on the targeted image with maximized energy change in the
perturbed region. Figure 4.6 shows the adversarial strength of the screen-pixel perturba-
tions generated by lighting up different subpixel sets. Figure 4.6(a) exhibits the baseline
scenario where no active perturbation has been added. The surrogate classifier utilizes
ResNet-50 and is trained on miniImageNet dataset. As shown, the surrogate classifier
can correctly recognize the object as ‘finch’ with a probability score of 88.4%. In Fig-
ure 4.6(b), because R channel is the dominant channel of the attacking region, lighting
up the red subpixel set to generate the screen-pixel perturbation does not lead to the ex-
pected mis-classification. Instead, the ‘finch’ can still be correctly recognized with a high
probability score of 93.6%. By contrast, as shown in Figures 4.6(c) and (d), a screen-pixel
perturbation generated by lighting up the blue or the green subpixel set can dramatically
degrade the probability score of the surrogate model to 67.1% and 62.1%, respectively.

Step 2: Prioritizing R/G/B subpixel sets. As a larger image perturbation has a higher ad-
versarial strength [133], [134], [136], we prioritize the three color subpixel sets in the or-
der of green, blue, and red, according to their actual sizes in the screen-pixel unit. Specif-
ically, the green subpixel set has the highest preference, as the screen-pixel unit in most
OLED screens utilizes an RGBG structure, resulting in twice as many green subpixel sets
as red and blue subpixel sets (cf. Figure 4.2). Thus, green subpixel set can perturb more
image pixels and has the largest perturbation size. The blue subpixel set is the second
preference, as it has the second-large area. This is because the blue subpixel material
has the shortest lifespan, and the area of the blue subpixel set is always maximized to
extend the lifespan of the screen [86].

Step 3: Lighting up two subpixel sets. Figure 4.6 shows that lighting a single subpixel set
cannot ensure the perturbation is strong enough to fool the classifier. To improve the
adversarial strength, we can either increase the number of perturbed subpixels (by light-
ing up two subpixel sets simultaneously) or enhance the energy change in the subpixels
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(by increasing the brightness of the subpixel set). However, as the human visual system
is more sensitive to luminance than chrominance, we opt to light up two subpixel sets
simultaneously while minimizing their brightness. Figures 4.7(a) and (b) show that by
increasing the brightness of the green subpixel, the ‘Finch’ is misclassified as ‘Ant’, but
the perturbation becomes more perceptible. By contrast, Figure 4.7(c) shows that light-
ing up both green and blue subpixels at a lower brightness can still fool the classifier.

4.4.3. MORPHOLOGY DESTRUCTION
Below, we introduce the morphology destruction, which optimizes the location and bright-
ness of the screen-pixel perturbation. We use the following notations in our design.

• III : is the targeted pristine image with true label l .

• zzz: is the original configuration of the unperturbed screen-pixel units in the trans-
parent screen region.

• zzz j ,ccc,bbb : the configuration of the screen-pixel units when generating the adversarial
perturbation, which is configured by screen-pixel index j , color vector ccc, and sub-
pixel brightness vector bbb. Specifically, j indicates that the j th screen-pixel unit in
the transparent screen region will be manipulated; ccc is a three-dimensional vector
that indicates which of the three R/G/B subpixel sets will be light up; similarly, bbb is
a three-dimensional vector that indicates the brightness of the three subpixel sets.

• ⊕: denotes the image formation process of the under-screen camera, which is de-
fined in Equation (4.7).

• Φ: denotes the surrogate classifier.

• Φ(III , l ): denotes the probability of surrogate classifier Φ in classifying the image III
with label l .

The goal of the morphology destruction is to search for a configuration zzz j ,ccc,bbb that can
fool the surrogate classifier Φ. As we only change a single screen-pixel, we aim to find
the screen-pixel index j such that the surrogate classifier is most likely to misclassify the
object of interest. Assuming a perturbation at the j th screen-pixel, we need the proba-
bility of an incorrect label surpassing the true label l to trick Φ. To reach the goal, we aim
to find the most susceptible label when the perturbation is added at j th screen-pixel.
In particular, we use the growth rate of the output probability of the surrogate classifier
Φ to measure the susceptibility for each incorrect label l̂ (l̂ �= l ). Our intuition is that
the output probability of the surrogate classifier Φ for an incorrect label is more likely
to increase more when it has a larger growth rate. Formally, the growth rate for l̂ can be
computed as follows:

s(l̂ , j ) = Φ(III ⊕zzz j ,ccc,bbb , l̂ )−Φ(III ⊕zzz, l̂ )

Φ(III ⊕zzz, l̂ )
, (4.8)

where s(l̂ , j ) is the growth rate; term III ⊕ zzz is the image captured by the under-screen
camera with unperturbed screen configuration zzz; term III ⊕ zzz j ,ccc,bbb is the image captured
with the perturbed configuration zzz j ,ccc,bbb ; ccc is calculated by the chromaticity destruction,
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which indicates the lighting of the R/G/B subpixel sets given input III ⊕zzz; bbb is set to a low
brightness level of bbb0 = 0.01. Given the growth rate for each incorrect label, we view the
label whose growth rate is the largest as the most susceptible label, i.e., l̃ j =l̂ �=l s(l̂ , j ).

Recall that our goal is to find the screen-pixel index j that is most likely to cause the
misclassification of the surrogate classifier. We reach the goal by finding the j whose
most susceptible label has the largest growth rate. Formally, we can find j by solving the
following optimization problem:

j = ĵ s(l̃ ĵ , ĵ ), (4.9)

where s(l̃ ĵ , ĵ ) is the growth rate of the most susceptible label l̃ ĵ when the perturbation is

added at ĵ th screen-pixel.
After finding the optimal index j , we calculate the minimum required brightness bbb

by a one-directional search process. Initially, we set the brightness of the screen-pixel
unit to a small value bbb =bbb0. We then gradually increase bbb with a small step size Δτ. The
search is terminated when:

Φ(III ⊕zzz j ,ccc,bbb , l ) <Φ(III ⊕zzz j ,ccc,bbb , l̂ ),∃l̂ �= l , or bbb > ε, (4.10)

which means either the perturbation generated by zzz j ,ccc,bbb is able to fool the surrogate clas-
sifier with brightness bbb or the maximum screen-pixel intensity budget ε is reached. This
process repeats for each subpixel set of the chosen colors until the optimal set requiring
the least brightness is found.

4.4.4. MULTIPLE-PIXEL PERTURBATION
We are motivated by the fact that when using the smartphone and looking at the screen
at a certain distance, the human visual system has a high tolerance for screen pixel
changes. Current research has shown that a change of 120 screen-pixels is indistinguish-
able [137] per degree of viewing angle when viewing at a normal distance. Thus, instead
of lighting up single screen-pixel unit, we can potentially manipulate multiple screen-
pixel units to enable a larger perturbation area. This can greatly improve the adversarial
strength of the generated screen-pixel perturbation while ensuring the changes on the
transparent screen area are unnoticeable.

First, we introduce the process of selecting multiple screen-pixel units to generate
the perturbation. As shown in Figure 4.8, we apply the morphology destruction method
(cf. Section 4.4.3) to determine the position and brightness of multiple screen-pixel units
for perturbation generation when the one-pixel perturbation fails. The added screen-
pixel units are adjacent to the screen-pixel unit selected for the one-pixel perturbation
due to the regional aggregation effect [138].

In one-pixel perturbation, the color of subpixel sets is selected based on the dom-
inant color channel of the captured image. However, this strategy may not always be
applicable, as the object of interest can be obscured by the color of the screen. For in-
stance, when the screen displays a red status bar, the object of interest will be concealed
by red screen-pixels, and makes it difficult to discern the original dominant color chan-
nel of the object. To solve this problem, we propose the differential incremental mod-
ule, which estimates the impact of each individual R/G/B subpixel set on the adversarial
strength of the generated perturbation.
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Red statusbar: 
no pixels changed

1 Red statusbar: 
one pixel changed

2 Red statusbar: 
two pixels changed
3 Red statusbar: 

three pixels changed
4

Figure 4.8: Example of pixel spread process: transitioning from no manipulated screen-pixel units to activate
three screen-pixel units.

Specifically, we add a small increment to the brightness vector by bbb
′ =bbb+Δτ for each

R/G/B subpixel set. Then, we select the colors of subpixel sets perturbation (c1/c2) by:

c1/c2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G/B , R = argminc∈{R,G ,B}(

Φ(III⊕zzz
j ,ccc,bbb

′ ,l̂ )

Φ(III⊕zzz,t̂ )
),

G/R, B = argminc∈{R,G ,B}(
Φ(III⊕zzz

j ,ccc,bbb
′ ,l̂ )

Φ(III⊕zzz,t̂ )
),

B/R, G = argminc∈{R,G ,B}(
Φ(III⊕zzz

j ,ccc,bbb
′ ,l̂ )

Φ(III⊕zzz,t̂ )
).

(4.11)

By adding the incrementΔτ to the corresponding screen pixel color ccc, we can identify
the two subpixel sets that have the highest impact on the adversarial strength. Addition-
ally, we use a second-order difference for brightness calculation, instead of the linear
search used for the one-pixel perturbation. Specifically, we use the second-order differ-
ence of the probability score as the searching condition:

Φ(III ⊕zzz j ,ccc,bbb′′ , l̂ )−Φ(III ⊕zzz j ,ccc,bbb′ , l̂ ) <Φ(III ⊕zzz j ,ccc,bbb′ , l̂ )−Φ(III ⊕zzz j ,ccc,bbb , l̂ ), (4.12)

where bbb
′ =bbb+Δτ and bbb

′′ =bbb+2Δτ. If the second-order difference satisfies the above con-
dition, we stop increasing the current screen-pixel unit’s brightness and start calculating
the next selected screen-pixel unit’s position and brightness.

Finally, to ensure the changes in the multiple screen-pixel units are less perceptible
by human visual system, we add a constraint on Equation (4.12) when searching zzz j ,ccc,bbb :

DSSIM(Resize(L(zzz),α),Resize(L(zzz j ,ccc,bbb),α)) < ρ, (4.13)

where DSSIM(·) calculates the structural dis-similarity index, a common measure of
user-perceived image distortion [121], [139]. Resize(·) and L(·) represent image resiz-
ing and low-pass filtering functions, used to simulate the pixel density and viewing dis-
tance changes during smartphone use, and to determine the visual impact of screen
pixel changes on human perception. Lastly, ρ denotes the perceptual perturbation bud-
get. We leverage the downsampling scale α to simulate human visual perception, influ-
enced by the viewing angle, screen resolution, and viewing distance [140], [141].
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4.5. PERFORMANCE EVALUATION

4.5.1. METHODOLOGY

Goal and metrics. For simplicity, we evaluate our method from the attacker’s perspec-
tive: the aim is to manipulate transparent screen region’s screen-pixel units, generating
perturbed images to fool different target models. The screen-pixel perturbation’s per-
formance is measured by the target model’s accuracy in classifying perturbed images.

Applications & Target Models. We consider two widely used image-based applications.

• Image classification. We consider three deep learning architectures with six mod-
els: (1) ResNet [142], which includes ResNet-18 and ResNet-50; (2) MobileNet [143],
which includes MobileNet V3 Large (MobileNetL) and Small (MobileNetS); and (3)
ShuffleNet V2 [144], which has two variants ShuffleNet V2 with half of the network
parameters (ShuffleNetS) and with all network parameters (ShuffleNetL). All mod-
els are pre-trained on the ImageNet dataset [145].

• Face recognition. We consider two representative backbone models IncepResNet
V1 [146] (IncepResNet) and MobileNet V2 [147] (MobileNet) that are pre-trained
on the VGGFace2 dataset [148] and WebFace dataset [149], respectively.

Synthesized Datasets. We leverage the theoretical model to embed screen perturbations
to images from two datasets. Specifically, we use the miniImageNet dataset [150], with
60,000 images across 100 classes, to evaluate the image classification task. We use the
FaceScrub dataset [151], with 38,202 images from 530 people, to evaluate the face recog-
nition task. We randomly select 500 and 530 images from miniImageNet and FaceScrub,
respectively, to add screen perturbations. In simulation, our model employs a trans-
parent screen region on OLED screens with a pixel density of 400 Pixels Per Inch (PPI),
utilizing a circular R/G/B subpixel shape that completely fills the screen-pixel area. To
ensure consistency with the USC in Commercial Off-The-Shelf (COTS) smartphones, we
utilize camera parameters that are identical to those employed in commercial devices.
We also incorporate peak wavelength values for the R, G, and B channels based on prior
research [10], [14] with values of 0.61 μm, 0.53 μm, and 0.47 μm, respectively.

Dataset collected by testbed. We setup a testbed to acquire practical USC images. The
setup is shown in Figure 4.9, which consists of a 4K LCD monitor displaying pristine im-
ages, and three COTS USC smartphones, i.e., Samsung Fold4, ZTE AXON30, and Xiaomi
MIX4. The pixel density of the transparent screen region in these devices is 400 PPI. The
size of the transparent screen region is 58×58 pixels, 108×60 pixels, and 108×60 pixels
for the Fold4, AXON30, and MIX4, respectively. A custom Android application is devel-
oped to control the screen-pixel units for perturbation generation. The smartphone is
positioned at the center of the monitor and is adjusted to cover the monitor’s full range.

We then leverage high-resolution full-face images from the XGaze dataset [152] to
generate perturbed images. Specifically, we select a subset of 12,720 images from 110
subjects, and randomly sample a total 549 images to add screen perturbations. The se-
lected images are displayed on the 4K monitor in full-screen mode and adjusted to main-
tain the aspect ratio through rotation or resizing. As an example, Figures 4.9(b-d) shows
the perturbed images captured by the three smartphones with one-pixel perturbation
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4K Monitor

Full-Screen 
Smartphone

(a)

(b) (c)

(d)

Figure 4.9: The testbed setup: we use COTS smartphones to generate images containing screen perturbations,
and images captured by (b) ZTX AXON30, (c) Xiaomi MIX4, and (d) Samsung Fold4, respectively.

(b)

(c)

(a)

(d)

Figure 4.10: Screenshots of the smartphone status bar when running the one-pixel perturbation on (a) ZTE
AXON30, (b) Xiaomi MIX4, and (c) Samsung Fold4. The transparent screen region is highlighted by the red

dotted rectangle, and magnified in (d). These changes are imperceptible.

added. The resulting screen-pixel perturbations differ as different screen layouts. More-
over, Figure 4.10 shows the screenshots of the status bar when the three smartphones
are generating one-pixel perturbation. As highlighted in the red dotted rectangle, the
changes of screen-pixel units in the transparent screen region are imperceptible.

4.5.2. PERFORMANCE ON SYNTHESIZED DATASETS

Performance on image classification. We first investigate the effectiveness of screen
perturbation in disrupting image classification on the miniImageNet dataset. We con-
sider five different scenarios, including (1) pristine image with no screen perturbation,
(2) passive perturbation when the status bar is black, (3) passive perturbation when the
status bar is white, (4) passive perturbation with the additional active perturbation gen-
erated by one-pixel perturbation, or by (5) multiple-pixel perturbation. The results are
shown in Table 4.1. Even with a black status bar, the accuracies of all models are de-
creased by 20% due to the passive perturbation. Furthermore, with a white status bar,
the accuracy of all models decreased by 30%, due to the uncontrolled active perturba-
tion. In comparison, when applying the one-pixel and multiple-pixel perturbation, the
accuracies of all examined models are degraded below 20% and 10%, respectively. The
results demonstrate the effectiveness of the proposed screen-pixel perturbation in dis-
rupting image classification.
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Table 4.1: Performance of both one-pixel and multiple-pixel perturbations on miniImageNet.

Target Pristine Black screen White screen One-pixel Multiple-pixel
model image Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred Blurred/Deblurred

ResNet-18 87.4% 62.4% / 86.8% 56.8% / 75.2% 16.6% / 20.6% 5.0% / 7.6%
ResNet-50 94.2% 74.4% / 94.6% 66.8% / 86.2% 20.8% / 26.8% 5.8% / 9.2%

MobileNetS 82.4% 58.8% / 81.6% 50.6% / 70.2% 10.2% / 14.8% 5.4% / 10.0%
MobileNetL 91.6% 69.8% / 90.8% 66.2% / 79.2% 13.4% / 17.4% 6.4% / 11.4%
ShuffleNetS 71.0% 49.8% / 70.2% 29.6% / 46.0% 7.2% / 9.0% 4.6% / 5.4%
ShuffleNetL 85.4% 64.4% / 85.2% 47.8% / 62.2% 16.0% / 21.0% 5.8% / 6.2%

Performance against deblurring algorithms. We also evaluate the performance when
state-of-the-art deblurring method is applied. Specifically, we use the unsupervised
Wiener filter to alleviate the blurring effect caused by screen passive perturbation [10],
[14]. The results are shown in Table 4.1. The deblurring method can effectively elimi-
nate the impact from the passive perturbations, i.e., the accuracy of all examined mod-
els is increased after deblurring when there is only passive perturbation on the image.
However, the deblurring method does not help when one-pixel or multiple-pixel pertur-
bations have been applied, i.e., only a modest 5% accuracy improvement after applying
the deblurring method.

Transferability. The perturbation should be effective even when the target model is dif-
ferent from the surrogate model. Current work [131] suggests that the transferability of
perturbation between models depends on the robustness of the surrogate model used
to create it, and more robust surrogate models are less reactive to small perturbations.
Thus, to ensure the transferability of the screen perturbations, we first retrain the sur-
rogate model using perturbed images generated from a white status bar. This provides
the surrogate model with exposure to fixed screen perturbation. We then use the up-
dated surrogate models to generate multiple-pixel perturbations on the miniImageNet
dataset. The results shown in Table 4.2 demonstrate that the multiple-pixel perturba-
tions transfer almost perfectly across different models.

Ablation Study. First, we investigate the impact of the maximum screen-pixel intensity
budget (ε) on the performance of the one-pixel perturbation attack (cf. Equation (4.10)).
The initial intensity of the screen-pixel is 0.01 and the step size of each iteration is 0.01.
Then, we vary the maximum screen-pixel intensity constraint from 0 to 1. The results
are shown in Figure 4.11. the accuracy gradually decreases with the increase of the max-
imum screen-pixel intensity constraint. Even when the maximum screen-pixel intensity
is limited to 0.2, the accuracy still drops by more than 30%.

Next, we examine the step size (Δτ) effect on the screen-pixel intensity search (cf.
Equation (4.10)), determining the optimal intensity for one-pixel perturbation. We fix
the maximum screen-pixel intensity to 1 and the initial screen-pixel intensity to 0.01, and
then vary the step size. Results in Figure 4.12 show image classification accuracy grad-
ually increases with the step size, as a larger step size complicates finding the optimal
intensity. To reduce the computational overhead of calculating one-pixel and multiple-
pixel perturbations, we employ a step size of 0.01 in the following experiments.

We also investigate the impact of initial screen-pixel intensity (b0) (cf. Equation (4.8))
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Figure 4.11: Accuracy vs. max intensity (ε).
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Figure 4.12: Accuracy vs. step size (Δτ).
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Figure 4.13: Accuracy vs. initial intensity (b0).

0 0.01 0.02 0.03 0.04 0.05

DSSIM perturbation budget

0

5

10

15

20

25

A
cc

ur
ac

y 
(%

)
Figure 4.14: Accuracy vs. DSSIM budget (ρ).

on the results of one-pixel perturbation, by fixing the maximum pixel intensity and step
size to 1 and 0.01, respectively, and varying the initial intensity of the screen-pixel. As
shown in Figure 4.13, the variation in initial intensity has a negligible impact on the final
performance. We chose to use a smaller initial intensity of 0.01.

Finally, we evaluate the impact of the DSSIM in multiple-pixel perturbation (cf. Equa-
tion (5.4)). The results are shown in Figure 4.14. As the DSSIM perturbation budget (ρ)
increases, the accuracy decreases. Specifically, when ρ is set to 0.05, the accuracy drops
to the same level as that of one-pixel perturbation, at around 20%. Furthermore, when ρ

exceeds 0.03, the accuracy of multiple-pixel perturbation falls below 10%. Existing work
[153] suggests that higher DSSIM values (up to 0.2) are imperceptible to human eyes.

Performance on face recognition using FaceScrub. We also evaluate our method in the
face classification task using the FaceScrub dataset. The results are shown in Table 4.3.
The passive screen perturbation leads to a substantial accuracy degradation of up to 40%
and 60% for IncepResNet and MobileNet, respectively. Both one-pixel and multiple-pixel
perturbation can decrease the accuracy of all models to less than 1%. Moreover, we also
apply the deblurring method to mitigate the adverse impact of the screen perturbations.
The deblurring method can mitigate the impact of passive screen perturbations, but fails
to remove the impact of the proposed one-pixel and multiple-pixel perturbations.

4.5.3. PERFORMANCE ON TESTBED DATASET

Overall performance. Table 4.4 shows that the proposed one-pixel perturbation can
reduce the accuracy of both IncepResNet and MobileNet to less than 5%. The multiple-
pixel perturbation further reduces the accuracy of both IncepResNet and MobileNet to
under 1%, demonstrating the effectiveness of our proposed screen perturbation meth-
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Table 4.5: The PSNR and SSIM when one-pixel and multiple-pixel perturbations are embedded in the image.

Metrics One-pixel Multiple-pixel

PSNR 23.72 dB 21.50 dB
SSIM 0.84 0.80

ods in real-world scenarios. The results in Section 4.5.2 and Section 4.5.3 align with each
other, as shown in Table 4.3 and Table 4.4.

Different color in status bar. We also evaluate the multiple-pixel perturbation with four
different status bar colors: red, blue, green, white. Note that when the status bar is dis-
played in red, green, or blue, only the corresponding primary color subpixel sets are
illuminated. When the status bar is white, all three primary color subpixel sets are illu-
minated. The results are presented in Figure 4.15. Without active perturbation, we can
achieve 40% to 50% of accuracy in all four background colors. With the multiple-pixel
perturbation, the face recognition accuracy drops to 1% for all four colors.

Screen Diversity. We evaluate one-pixel perturbation with different smartphones. The
results are shown in Figure 4.16. In the absence of screen-pixel perturbation and rely-
ing solely on passive perturbation, the performance of images captured by under-screen
cameras from different smartphone manufacturers is relatively similar, hovering around
80%. However, after adding one-pixel perturbation, the classification performance of
under-screen camera captured images dropped below 20%. Specifically, the classifica-
tion accuracy of ZTE AXON30 declined the most, falling below 5%, while that of Sam-
sung Fold4 decreased the least. This is because the pixel size of the Samsung transpar-
ent screen region is too large, causing the screen-pixel perturbation on the under-screen
camera captured image to be too diffuse, thereby reducing the perturbation intensity of
the attacking region in the USC-captured images.

Image Quality. We further evaluate the impact of screen-pixel perturbation on image
quality by comparing a set of unperturbed images with the corresponding perturbed
images, all captured using the ZTE AXON30. We use two widely adopted metrics: Peak
Signal-to-Noise Ratio (PSNR) [96] and Structural Similarity Index Measure (SSIM) [154].
Specifically, PSNR quantifies the variations in individual pixel intensity levels, while SSIM
assesses the structural distortions within an image, e.g., stretching, banding, and twist-
ing. The PSNR typically ranges from 0 to 50 dB, where a higher PSNR indicates greater
similarity between the unperturbed and perturbed images. The value of SSIM ranges
from 0 to 1, with 1 denoting minimal quality loss between the unperturbed and per-
turbed images. The results are shown in Table 4.5. For images containing one-pixel per-
turbations, the PSNR and SSIM are 23.72 dB and 0.84, respectively. For images added
with multiple-pixel perturbations, the PSNR and SSIM are 21.5 dB and 0.8, respectively,
as more screen-pixel perturbations have been added to the captured images. Note that
for images with acceptable viewing quality, the minimum PSNR and SSIM are in the
range of 20∼40 and 0.8∼0.9, respectively [155], [156]. Thus, the perturbed images have
acceptable image quality.
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Figure 4.15: Accuracy vs. status bar color.
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Figure 4.16: Accuracy vs. smartphone model.

4.5.4. USER STUDY
Below, we conduct a user study to investigate if the added perturbation is visible in im-
ages captured by the under-screen cameras. We also examine if and how changes in the
smartphone transparent screen region, i.e., added single-pixel and multi-pixel screen
perturbations, affect the user’s experience with smartphone use. We recruit 30 partici-
pants from our university (13 female and 17 male, aged between 20 and 45) to conduct
a user study. We advertised our study through university mailing lists, social networks,
and advertising boards in our department building. All participants had little or no ex-
perience with USC smartphones. Ethical approval for the user study has been granted by
our organization. The entire study session took 30 minutes on average, and we provided
each participant with a 10 euro gift card as a token of appreciation for participating.

Study design. After arriving at the lab, participants are told a brief introduction to the
study session. Participants sit down at a fixed position and the study session begins. We
design two tasks in the study.

• Perturbed images task. We investigate if users perceive the screen perturbation
added to images. Using the three USC smartphones (cf. Section 4.5.3), Samsung
Fold4, ZTE AXON30, and Xiaomi MIX4, we prepare two image sets: one-pixel and
multiple-pixel paired sets. We randomly select ten different subjects from the
XGaze [152] dataset each time. In the one-pixel paired set, each smartphone cap-
tures ten unperturbed images without adding any screen perturbation and ten per-
turbed images with one-pixel perturbation from these subjects. The multiple-pixel
paired set consists of ten unperturbed images captured by AXON30 when the status
bar is in red, green, blue, or white, and ten perturbed images captured by AXON30
with added multiple-pixel perturbation. Images in two image sets are displayed
on a 27-inch monitor in a random order, and each image is played for 10 seconds.

Results. Participants answer two 5-point Likert scale questions (1: strongly dis-
agree; 5: strongly agree) after viewing each displayed image:

- Q1: Can you see a person in this image?

- Q2: Do you think there is a perturbation in this image?

A standard two-sample t-test [157] is conducted to compare user visual perception
for unperturbed and perturbed image sets. The null hypothesis (H0) posits no true
difference between the means of the two sets, while the alternate hypothesis (Ha)
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Table 4.6: T-test results of the one-pixel paired set.

Device AXON30 MIX4 Fold4
Question Q1 Q2 Q1 Q2 Q1 Q2

p 0.8822 2.83×10−7 0.3416 2.67×10−5 0.3367 0.0545
Results H0 Ha H0 Ha H0 H0

suggests a non-zero difference. Setting a significance level α = 0.05, we calculate
p to get the t-test result, where p is the likelihood that the observed difference is
occurred by chance. If p > α, we accept H0 and conclude that participants have
similar responses on both sets. Otherwise, we reject H0 at the significance level
of 0.05, and conclude that participants have different responses on the two sets.
The t-test results are shown in Tables 4.6 and 4.7. H0 is all accepted in Q1, show-
ing similar user perception for seeing a person in all unperturbed and perturbed
images. In Q2, images captured by Fold 4 accept H0, suggesting less perceptible
one-pixel perturbation, while images from AXON30 and MIX4 reject it, indicating
more visible perturbations due to their different transparent screen region designs.
Recall that different transparent screen region designs of smartphones result in
diverse one-pixel perturbations (cf. Figure 4.9). However, images captured with
different status-bar colors accept H0, suggesting participants cannot perceive the
added multiple-pixel perturbation since the color of the status bar has added a
fixed perturbation to captured images.

• Smartphone usage task. Next, we investigate the perceptibility of screen-pixel
changes in the transparent screen region and their impact on user experience dur-
ing typical smartphone usage. We adopt the three USC smartphones used (cf. Sec-
tion 4.5.3), and randomly assign ten participants to use each of the smartphones.
We developed two smartphone apps, i.e., image app and text app, for image and
text viewing. To reduce individual differences in visual perception of screen per-
turbations, we conduct a within-subject study [158] and consider two screen set-
tings: (1) with screen perturbation, and (2) without screen perturbation. We ask
the participant to use the two developed apps on the assigned smartphone, and
each app is used for two minutes. We configure the app with both screen settings
and load them in random order, thus ensuring one-minute usage for each screen
setting. We consider both one-pixel and multiple-pixel perturbations in the exper-
iment and modify the screen pixel in the transparent screen region accordingly.

Results. We provide a short questionnaire to the participants, and ask them if
they have noticed any screen perturbation during the use of the apps. The re-
sults show that none of the 30 participants notice the added one-pixel or multiple-
pixel screen perturbation. We also conduct a standard two-sample t-test [157] to
investigate the visual perception of the user in the two screen settings, i.e., with
and without screen perturbation added. The result shows that H0 is accepted with
p > 0.99, which indicates that two screen settings on image app and text app have
the same visual perception.
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Table 4.7: T-test results of the multiple-pixel paired set.

Color Red Green Blue White
Question Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

p 0.1326 0.4063 0.7063 0.8051 0.6367 0.9484 0.3007 0.2298
Results H0 H0 H0 H0 H0 H0 H0 H0

Table 4.8: Accuracy of one-pixel and multiple-pixel perturbations with adversarial training on XGaze.

Model Pristine image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 85.79% 7.29% 4.19% 3.83% 1.82%
MobileNet 81.42% 8.20% 4.92% 4.00% 1.64%

4.5.5. COUNTERMEASURES

Below, we investigate possible countermeasures against the proposed method. Many
defenses [159]–[164] have been proposed to defend against adversarial perturbations.
Depending on whether those defenses have formal robustness guarantees, we can cate-
gorize them into empirical defenses [159], [161], [162] and certified defenses [163]–[165].
We consider state-of-the-art defenses from both categories. For empirical defenses, we
consider adversarial training [161] as it is viewed as one of the most effective empirical
defenses. For certified defenses, we consider randomized smoothing [164] as it is appli-
cable to any classifier and scalable to large deep learning models.

Adversarial training [159], [161] leverages adversarially perturbed training examples to
train a model to enhance its robustness. First, we generate adversarial examples using
the Project Gradient Descent (PGD) attack [161]. We employ an L∞-based PGD attack
on the XGaze dataset, with a maximum distortion of 0.1 and an untargeted attack mode.
We run the PGD attack for 50 steps with a step size of 0.01. We train IncepResNet-V1
and MobileNet-V2 for 200 epochs with a learning rate of 0.1, decayed by 0.1 after 100
and 150 epochs, respectively [161], [166]. Subsequently, we evaluate the performance of
the resulting models against one-pixel and multiple-pixel perturbations using the XGaze
dataset [152]. The results are shown in Table 4.8, with adversarial training, the classifica-
tion accuracy of the two deep learning models has still degraded below 8% and 4% when
one-pixel and multiple-pixel perturbations have been added.

Moreover, we also perform adversarial training with a dataset that comprises pristine
images paired with corresponding perturbed images containing one-pixel perturbation.
The results are presented in Table 4.9. When comparing with the results reported in Ta-
ble 4.4, we can observe a decline in classification accuracy when perturbed images are
utilized for training. However, the accuracy is below 10% and 5%, respectively, when the
captured images contain one-pixel or multiple-pixel perturbations. Overall, the results
indicate that adversarial training is not sufficient to mitigate the perturbations added by
the proposed method. While this doesn’t conclusively negate the possibility of develop-
ing robust models, it indicates the inherent challenges in such pursuits.

Randomized smoothing. Given an arbitrary classifier H (called base classifier) and a
testing input x, randomized smoothing builds a certifiably robust smoothed classifier G
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Table 4.9: Accuracy of proposed perturbations when adversarial training is enhanced with perturbed images.

Model Pristine image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 87.07% 10.56% 5.83% 4.37% 2.00%
MobileNet 86.52% 10.20% 5.28% 1.82% 2.37%

Table 4.10: Accuracy of one-pixel and multiple-pixel perturbations under randomized smoothing on XGaze.

Model Pristine image
One-pixel Multiple-pixel

IncepResNet MobileNet IncepResNet MobileNet

IncepResNet 93.99% 6.01% 3.46% 0.73% 0.36%
MobileNet 94.90% 6.19% 3.64% 1.09% 0.91%

by adding zero-mean isotropic Gaussian noise N (0,σ2I) to the testing input x, where σ

is the standard deviation and I is the identity matrix. Formally, the predicted label of the
smoothed classifier G for the testing input x is G(x) =c=1,2,··· ,C Pr(H(x+N (0,σ2I )) = c),
where C is the total number of classes. Existing work [164] shows that the predicted label
of the smoothed classifier G for the testing input x does not change when the adversarial
perturbation added to x is bounded. To compute G(x) in practice, randomized smooth-
ing first adds random Gaussian noise to the testing input x to create M noisy versions of
the testing input, then use the base classifier H to predict labels for those M noisy inputs,
and finally take a majority vote over the M predicted labels as the final prediction for the
testing input. Following previous work [164], we set σ= 0.5 and M = 105. Moreover, we
train the base classifier on training inputs augmented with Gaussian noise to improve
the robustness of the smoothed classifier. Table 4.10 shows our experimental results,
which show that the classification accuracy of the smoothed classifier built by random-
ized smoothing is still very low. The reason is that randomized smoothing can only cer-
tify a very small perturbation. Our results demonstrate that randomized smoothing is
insufficient to mitigate our proposed one-pixel and multiple-pixel perturbations.

4.6. RELATED WORK

Image processing for the under-screen camera. There are efforts in modeling and restor-
ing images that are affected by passive perturbations caused by the transparent screen
[10]–[12], [14], [114]. Specifically, Zhou et al. [10] and Yang et al. [14] modeled the pas-
sive perturbation of the screen and proposed an unsupervised Wiener deconvolution
method. Moreover, they employed deep neural networks to address the issues of large
blur and low signal-to-noise ratio in under-screen images [10]–[12]. Feng et al. [167] and
Gao et al. [168] explored simulation pipelines to generate synthetic datasets with real-
captured passive perturbation. While existing studies focused solely on passive pertur-
bations, we are the first to consider the active perturbations caused by the screen dis-
plays. We apply the Huygens-Fresnel principle to model the impact of different color
pixels and screen parameters on image formation. This allows us to analyze the impact
of active screen perturbations on deep neural networks.

Programmable aperture. Our work is related to the concept of programmable aperture



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

4

92 4. SCREEN PERTURBATION: ADVERSARIAL ATTACK AND DEFENSE ON USC

that has been implemented in some new types of cameras such as DiffuserCam [169] and
FlatCam [170]. Existing works of programmable aperture leverage amplitude or phase
masks to code the aperture of a camera lens, and operate at scales that are larger than
screen pixels. This is different from the under-screen camera apertures we consider,
which coexist with R/G/B OLED arrays and can be dynamically manipulated to generate
screen-pixel perturbation when the transparent screen region is illuminated.

Adversarial attacks can be categorized into digital space attacks [161], [171], [172] or
physical space attacks [119], [173]–[175]. Digital space attacks directly change pixel val-
ues in the digital pixel domain, typically using methods such as PGD [161] and C&W
[172]. However, they may not generalize to real-world scenarios due to the constraints
present in the physical environment. Physical space attacks, such as those utilizing graf-
fiti [173], rectangular stickers [174], eyeglasses [119], or LED lamps [176], [177], have
been explored for privacy protection but are often limited by artificial settings or hard-
ware modifications. By contrast, ours is the first to generate adversarial perturbation on
USC-captured images utilizing both passive and active screen perturbation of full-screen
devices. Our threat model is unique in that we inject a perturbation into the optical path
between the camera and the object, disrupting any object without physically tampering
with the object itself.

4.7. CONCLUSION
We show for the first time the screen can be used for adversarial attack and defense on
Under-Screen Camera (USC). Directly modifying captured images is challenging for at-
tackers, as it requires write access from smartphone OS to a set of media files [178]. How-
ever, attacking the optical path (camera input) is relatively easier, as Android does not
have permission restrictions on UI settings, allowing any app to set the screen content
and potentially perturb camera’s input. We identify the activated screen-pixel that can be
exploited for applying perturbation on images captured by USC. In typical smartphone
usage scenarios, successive frames captured by the camera are similar. Thus, we only
need to compute the proposed screen-pixel perturbation once, rather than for each im-
age separately, making the attack more feasible. We derive an imaging formation model
for the USC, which facilitates the generation of screen-pixel perturbations on synthe-
sized datasets. We design and implement a method to successfully fool different deep
learning models. We believe this is a pioneer work which can stimulate a lot of follow-up
works either to attack or safeguard current USCs on full-screen mobile devices.

Future work. A potential defensive strategy is to prohibit a single application from ren-
dering content on the screen and accessing the camera simultaneously. However, this
approach is inconvenient for users, especially when using video communication appli-
cations that require camera access alongside other applications. In fact, many modern
smartphones, e.g., Samsung Fold 3/4, ZTE AXON 20/30/40, Xiaomi MIX4, and K50S, are
designed to support simultaneous operation of one app’s camera usage while another
app utilizes the screen. The current system design in this chapter requires a pristine
image to compute the attacking region for the screen perturbation. This image can be
obtained from many sources, e.g., selfies of the subject published on social media, and
does not need to be taken in run-time. For instance, with the aim to defend against
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unauthorized face recognition systems, users can take a selfie in run-time or upload a
previously taken selfie to compute the attacking region. Since the face of the subject is
always located in the center of the selfie, it leads to similar attacking regions as long as
the image contains the same subject. Similarly, in the attacking scenario, malicious par-
ties can find and leverage the selfie of the victim published on social media to achieve the
same purpose. In the next chapter, we can release the requirement of a pristine image
by designing a universal and scene-independent perturbation.
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5
UNICORN: SECURING USC WITH

UNIVERSAL SCREEN

PERTURBATION

George Orwell’s novel 1984 introduced the Telescreen, a surveillance device transmit-
ting visuals and sounds to monitor people’s actions and thoughts. This fiction mirrors
reality today as front-facing cameras on mobile devices pose privacy risks, i.e., Camfect-
ing [44]. A lot of sensitive information is often at risk of exposure in typical camfecting
scenarios, as illustrated in Figure 5.1. While manually analyzing a large volume of cap-
tured images to find needed sensitive information in the past is challenging, hackers
can now employ advanced deep neural networks for efficient extraction of critical and
sensitive information from these images [48], [49]. A significant risk is facial data expo-
sure through front-facing cameras [45]. Users’ regular interactions with devices make
facial data vulnerable to misuse for identification, location tracking, and severe threats
like stalking or extortion. Another incident of such sensitivity included a password note
captured in a photograph [46]. One instance saw hackers extracting a password from an
employee’s office selfie at TV station TV5Monde, leading to signal disruptions in 11 sta-
tions [47]. Furthermore, a survey by Keeper Security [179] also highlights the severity of
this issue, showing that 57% of American employees record work-related passwords on
sticky notes, a trend that has escalated in the post-COVID-19 remote work environment.

Traditional physical isolation countermeasures, like sticking tape over the camera,
compromise user experience. The emergence of full-screen devices with transparent
screen regions presents an opportunity to develop innovative, non-intrusive privacy safe-
guards. In this chapter, we aim to explore new privacy protection mechanisms - ‘cover-
ing your camera with a transparent screen, instead of tape’ - that are user-friendly and
effective, redefining privacy standards in the modern age without diminishing the user
experience. Hence, we ask the following research question:

95
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Identity

Credit card

Sensitive 
information:

Password

:

Figure 5.1: Illustration of a typical office scenario highlighting sensitive information to exposure through
camfecting, such as facial data, password notes, and credit card information.

How to deploy a visually sensitive information protection tool on full-screen de-
vices without affecting the normal use of users?

In this chapter, we propose Unicorn, which utilizes the transparent screen region
above the Under-Screen Camera (USC) as a dynamic shield. The design of Unicorn is
based on our key observation that the translucent screen region can carefully activate
specific screen patterns and generate a kind of image-agnostic perturbations (which we
refer to as “universal screen perturbations”) on USC captured images that can fool hack-
ers’ machine learning models from accurately recognizing user identity through any fa-
cial images and mining password notes or other sensitive content. This technique pro-
vides an imperceptible, yet effective defense against camfecting, preserving user privacy
without affecting the user experience.

Why universal perturbations? Universal perturbation is able to fool deep neural net-
works on any image with high probability. Universality refers to the property of a pertur-
bation being image-agnostic, as opposed to having good transferability. A fundamen-
tal property of existing image perturbations is their intrinsic dependence on a pristine
input image: the perturbations are specifically crafted for each input image indepen-
dently. Consequently, generating a perturbation for a new input image requires solving
a data-dependent optimization problem from scratch. Therefore, the proposed screen
perturbation method in Chapter 4 is a typical image-specific method and is not suit-
able for practical privacy protection scenarios. It requires a pristine image to generate
the screen perturbation for each scene and object, making it ineffective for real-world
dynamic scenarios. This is different from the universal perturbation considered in this
chapter, as we seek a single perturbation vector that fools the network on most unseen
images in a sensitive class or multiple sensitive classes. Perturbing a new input image
then only involves the mere addition of the universal perturbation to the image, without
solving an optimization problem or computing gradients again. We focus on develop-
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ing a universal, scene-independent screen perturbation without the need for a pristine
image. Universal screen perturbations offer greater scalability and generalizability com-
pared to image-specific screen perturbations, making them more suitable for real-world
physical perturbations and deceiving classifiers in diverse contexts.

Challenges and Contributions. The universal perturbation can be deployed as a back-
ground process on devices to effectively and consistently preserve user privacy at all
times. It remains imperceptible to the user while successfully preventing hackers’ neural
networks from accurately recognizing unseen images containing diverse sensitive infor-
mation. The image-specific screen perturbation method introduced in Chapter 4 em-
ploys a heuristic search algorithm to empirically test which screen-pixel has the most
impact on neural networks’ final decisions for a given input image [180]. However, with-
out the real-time pristine image’s input, such an empirical trial-and-error method is im-
practical for generating universal screen perturbations. Thus, the first challenge is

Challenge 1: How to design universal perturbations without a pristine image input?

The core of Unicorn is a novel optimization framework that learns latent features
from the data distributions of multiple sensitive classes that need protection, enabling
the perturbations to work universally across unseen images belonging to these sensitive
information classes. Our design incorporates three novel loss functions to meet three
key requirements: (1) the post-processing loss to counter potential image manipulations
by hackers; (2) the visual loss to minimize the impact on user experience and ensure the
perturbations remain imperceptible; and (3) the pixel-level energy loss to reduce power
consumption, making the solution energy-efficient. A naive approach would involve op-
timizing these losses to create a digital perturbation and letting screens reproduce it on
USC images. However, realizing the digital perturbation on a physical screen is close
to impossible, as the digitally optimized perturbations require perfect pixel-level preci-
sion and changes on the captured image, e.g., altering one specific pixel in the image from
[200,200,200] to [201,201,201]), which, in practice, state-of-the-art smartphone screens
cannot reliably produce at such precision. This limitation arises from the complex inter-
play between the optical synthesis of information in the target scene, the screen configu-
rations, and the USC’s response.

To make screens generate universal perturbations in a physically realizable way and
meet the optimization requirements as well, we need to tackle multiple challenges. Screens
in different commodity devices usually have different configurations, e.g., layouts, shapes,
and positions of screen-pixels. These specialized designs introduce unique perturba-
tions to USC images. Such variations pose a severe challenge in accurately representing
the perturbations induced by various screens. Hence, the second challenge is:

Challenge 2: How to represent screens from different manufacturers?

We observe that screens from different manufacturers are tiled by a minimum screen
pixel unit. Hence, we use reverse engineering to learn this unit and then compose the
screen model with the learned unit. By simply substituting the learned unit, the screen
model can adapt to different manufacturers, enhancing its versatility. While this screen
model can accurately recreate practical screen configurations on USC devices, we no-
tice a significant discrepancy between the modeled screen perturbations and the actual
perturbations observed in USC images. To uncover the root causes of this gap, we con-
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ducted an in-depth analysis and identified two key factors. First, each USC employs a
unique Bayer filter [17], resulting in distinct color responses. Second, variations in the
screen’s finite pixel openings and the USC’s lens aperture jointly affect how screen light
diffracts and scatters. These factors introduce complex optical variations that are not
fully captured by the initial screen model. This leads to our third challenge:

Challenge 3: How to bridge the gap between the screen model and the practical universal
screen perturbations on the USC image?

To develop a deep learning-based computational architecture to bridge the gap be-
tween the screen model and the final USC image, encapsulating both active and passive
perturbations from screens. The active generator simulates the effects of different in-
tensities, colors, and positions of screen pixels on USC images. The passive generator
models the screen’s impact on USC imaging, including scenarios with inactive screen
pixels. This comprehensive, differentiable model facilitates gradient propagation during
perturbation crafting. To protect sensitive information in diverse environmental con-
ditions, we propose a training approach to strengthen Unicorn’s real-world robustness.
Experimental results show that Unicorn can achieve over 90% protection against image
classification under various hacker controls and shooting scenarios. We further achieve
100% success against advanced image classification services from Google (Google Vision
API [50]) and OpenAI (ChatGPT Vision API [51]). We summarize key contributions:

• We propose Unicorn, a novel USC defense vector in the physical world using a
transparent screen, offering flexibility, unobtrusiveness, and energy efficiency.

• We propose a neural USC architecture to craft universal screen perturbation. The
method models a tripartite relationship between sensitive information, screen con-
figurations, and USC response. We enhance the robustness by accounting for vary-
ing environmental conditions during the optimization process.

• We evaluate the Unicorn in real world with two smartphones, demonstrating its
robust performance across diverse USC settings and environmental conditions.

• Our user study demonstrates that the screen-pixel changes are imperceptible dur-
ing normal device usage, ensuring a imperceptible experience. Besides, Unicorn is
also energy-efficient, only increasing screen power consumption by 0.14 mW (i.e.,
0.024%) of typical smartphone usage.

• Finally, we demonstrate that Unicorn maintains 90+% success rates against a vari-
ety of perturbation disruptions from both empirical and certified perspectives.

5.1. CHALLENGES ON PRACTICAL PERTURBATION DEPLOYMENT

5.1.1. FROM DIGITALITY TO PHYSICALITY
To deceive the Deep Neural Networks (DNNs) used by hackers, we need to introduce an
image perturbation technique. Recent studies have shown that DNNs are susceptible
to carefully constructed small noise called image perturbations, which, when added to
an input image, cause the network output to change drastically [181], [182]. These per-
turbations, crafted by exploiting the gradient information of DNNs, are added to digital
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images to deceive DNNs. However, their real-world effectiveness is limited since dig-
ital perturbations are often too subtle to be detected by USCs. For instance, printed
images with perturbations yield the same recognition results as those without pertur-
bations [181]. Moreover, even if an image is digitally perturbed, it retains traces (as a
pristine version exists somewhere), posing a potential privacy leakage risk. Therefore,
it is crucial to ensure that images containing the sensing information are safeguarded
from the moment they are created. Consequently, we need a more robust physical per-
turbation to secure sensitive information before the digital image is output. Screens in
USC devices can introduce the powerful physical perturbations necessary during image
acquisition. To protect the sensitive information of the user, our Unicorn techniques not
only need powerful physically-realizable perturbations necessary during image acquisi-
tion, but also need to meet the requirements of universality.

5.1.2. FROM IMAGE-SPECIFIC TO IMAGE-AGNOSTIC

For existing image perturbation techniques [175], [180], [182]–[185], the perturbations
generated are different for each image, meaning a separate optimization must be per-
formed for each image to generate a perturbed version. This generation of image-specific
perturbations is hence also called per-instance generation. In our case, image-specific
perturbations vary for different samples in a dataset and do not apply to practical sce-
narios [174], [175], [180], [183], [185], [186] since they need access to the pristine image
to compute the screen perturbation. However, at that point, the image has been taken
already and it would be too late for the computed perturbation to be realized on screen.
Hence, we need to design image-agnostic perturbations called universal screen perturba-
tions that even can fool advanced DNNs on many unseen images with high probability.
Since only a single perturbation vector is needed to fool all images, they are much more
efficient in terms of computation time and cost compared to image-specific perturba-
tions. Unicorn focuses on developing a scene-independent, universal screen perturba-
tion without the need for a pristine image. Unicorn is optimized for robustness and
effectiveness in various conditions, including different shooting distances, angles, and
USC settings. Universal screen perturbations offer greater scalability and generalizabil-
ity compared to image-specific perturbations, making them more suitable for real-world
physical perturbations and deceiving classifiers in diverse contexts.

5.2. SYSTEM OVERVIEW

5.2.1. THREAT MODEL

As shown in Figure 5.2, we consider the camfecting scenario [44], where a hacker ex-
ploits some loopholes [187], [188] to take full control of the USCs. This allows the hacker
to capture a large collection of images. Given that most of the captured images may not
contain sensitive information, it could be extremely inefficient for the hacker to manu-
ally inspect each captured image. For instance, the chance of capturing a password note
is very low, occurring only when the USC is oriented toward the location of the pass-
word note. Recent reports [48], [49] indicate that attackers have employed deep learning
classification models to automatically sift through large volumes of data gathered online
for sensitive information. Such models have also been integrated into malware, notably



668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye668880-L-sub01-bw-Ye
Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024Processed on: 23-12-2024 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

5

100 5. UNICORN: SECURING USC WITH UNIVERSAL SCREEN PERTURBATION

••• •••

••• •••

••• •••

••• •••

Insensitive Sensitive

Without 
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Figure 5.2: Illustration of the threat model & defense scenario. When an USC without Unicorn is hacked to
gather a large collection of images, the hacker can leverage DNNs to identify sensitive user information.

However, if an USC with Unicorn is hacked, the Unicorn’s protection prevents the recognition.

Emotet [189], to filter through victims’ data efficiently. Thus, we consider that the hacker
utilizes a deep learning classification model to automatically identify sensitive informa-
tion from those captured images.

Hacker’s goal. The hacker leverages a classification model (referred to as target model)
to infer sensitive information from a large collection of captured images. For instance,
the hacker could utilize the target model to recognize identities of users from captured
images. The hacker could also identify whether the captured images contain sensitive
information such as password notes and credit cards. We note that obtaining those sen-
sitive information could be the first step in conducting advanced and targeted cyber-
attacks. According to [190], the majority of illicit camera access is related to gathering
information for financial gain. With access to credit card details or passwords, a hacker
can execute financial fraud or gain unauthorized access to secured systems [190].

Hacker’s capability and knowledge. We consider a hacker with strong capabilities and
knowledge. The hacker has full control over the USC parameters, e.g., exposure time,
ISO, and can apply any post-processing to the captured images. The hacker knows all
sensitive information classes of interest. The hacker has a dataset that consists of peo-
ple’s facial images and other sensitive objects sourced via web scraping. They also have
sufficient computational resources to train powerful target models (e.g., IncepResNet [146],
MoileNet [147], and ResNet [142]) by themselves or utilize other advanced, publicly avail-
able image classification services (e.g., Google Vision API [50] and ChatGPT Vision API [51]).
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5.2.2. PROBLEM FORMULATION

Design goals. In this chapter, we aim to design a protection method that could be de-
ployed by a user to its device with USC. In particular, the protection method adds care-
fully designed “screen pattern” on the transparent screen region to embed a universal
screen perturbation to the captured images. For convenience of expression, the term
“screen” will be used from now on to specifically refer to the transparent screen region.
Specifically, we have the following goals when designing the protection method:

• The perturbation should be unnoticeable to the user when using the device, i.e., it
will not disrupt the user’s normal use of the device.

• When the perturbation is embedded into captured images, target models have low
recognition accuracy on the captured images that contain sensitive information.

• It will be energy-efficient, enabling it to operate constantly in the background of
mobile devices with minimal energy consumption.

Assumptions for the user. We assume the user has access to some computing resources
to calculate the screen pattern to apply for universal screen perturbation. Moreover, the
user has some sensitive information classes of interest to be protected. We also assume
that the user has no knowledge about the target model utilized by the hacker for image
classification. However, the user can train a surrogate model for the task, which may
differ in architecture and hyper-parameters from the target models.

5.3. UNIVERSAL SCREEN PERTURBATION

5.3.1. DESIGN SPACE
The pixels on the screen are arranged in an RGB array, which is composed of multiple
screen-pixel units, each with three R/G/B subpixel sets. A single R/G/B subpixel set can
include multiple identical-color subpixels due to the control circuitry designs (cf. Fig-
ure 4.2 in Chapter 4). We use θ to denote the parameters that affect the screen perturba-
tion generation and divide into the following two categories:

• Manufacturing-fixed parameters (θfixed): correspond to hardware-level parame-
ters set by the screen manufacturer including density, shape, size, and the number
of R/G/B subpixels. They vary across different full-screen models.

• Dynamic optimization parameters (θfree): correspond to color, position, and bright-
ness of R/G/B subpixel sets that we aim to optimize during the perturbation gen-
eration. Unicorn modulates these screen-pixels via software-level controls in full-
screen devices.

5.3.2. SCREEN PERTURBATION GENERATION
We aim to generate a universal screen perturbation U that by configuring a set of screen
parameters {θfixed,θfree}, i.e., U (θfixed,θfree). When embedding U with any USC-captured
image I drawn from the sensitive scene distribution Is , the resulting perturbed image
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can fool the target model Φ in recognizing the sensitive information containing in I . This
objective can be formulated as:

Φ(I ) �=Φ(I ⊕U ),∀I ∈Is , (5.1)

where ⊕ is the image formation process of the USC that will be described later in §5.4.4.
To achieve our objective, we start by optimizing the following loss function:

min
U

J ( f (I ⊕U ), l∗), (5.2)

where f is a surrogate model that approximates the behavior of Φ used by the hacker.
We rely on the transferability effect between Φ and f , as models trained for similar tasks
often share properties and vulnerabilities, even when trained on different architectures
and datasets [127], [129]–[131]. J (·, ·) is the loss function measuring the difference be-
tween the prediction of f and the target insensitive label l∗. In our current design, l∗ is a
set of insensitive labels selected by the user, which are different from the sensitive ones.

Post-processing loss. Images captured by USC also contain passive screen perturbation
that will affect the recognition accuracy of the target model Φ. To improve recognition
accuracy, hackers can use advanced deblurring algorithms to obtain sharper and more
detailed images. We incorporate the deblurring algorithm into our loss function as:

J ( f (Pd (I ⊕U )), l∗), (5.3)

where Pd is a surrogate deblurring algorithm (detailed in §5.4.3).

Visual loss. Changes made by Unicorn on the transparent screen should not affect the
user’s visual experience when using the mobile device. Thus, we impose a visual con-
straint on U such that the changes in multiple screen-pixel units are not perceptible to
the human visual system. Specifically, the visual constraint ensures that the modifica-
tions made by Unicorn, in screen-pixel position, color, and intensity, will not deviate
significantly from the original screen display. The visual loss is defined as:

Lvis : |DSSIM(Resize(L(Sori),κ),Resize(L(U−1)),κ))−ρ|, (5.4)

where Sori is the original unaltered screen, while U−1 is the screen pattern for generat-
ing universal screen perturbation. DSSIM(·) calculates the structural dissimilarity index
that measures the user-perceived image distortion [121], [139]. Resize(·) and L(·) are
image resizing and low-pass filtering functions. We use them to simulate changes in
screen-pixel density and viewing distance during smartphone use and assess the visual
impact of screen-pixel changes. Lastly, ρ denotes the perceptual perturbation budget.
We leverage the downsampling scale κ to simulate human visual perception, influenced
by screen resolution, the viewing angle, and distance [140], [141].

Energy loss. Lastly, to ensure energy efficiency, we incorporate an energy loss into the
optimization. First, the power consumption of the OLED screen pixel linearly correlates
with its RGB values, specifically the gamma decoding from its sRGB values [191]. Mean-
while, the number of screen pixels that have been light up also affects the overall power
consumption. Therefore, we define the energy loss as:

Len :
N (U )∑

i
Ppixel(ci (U )), (5.5)
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where ci = [R,G ,B ] represents the color combinations of the activated screen-pixel i ,
while N denotes the number of activated color screen-pixel units. Since the activated
screen pixels are used to generate universal screen perturbation, they are all determined
by U . The power model for each screen-pixel unit can be derived from [191] as:

Ppixel(R̂,Ĝ , B̂) = hr (R̂)+hg (Ĝ)+hb(B̂), (5.6)

where hr (·), hg (·), and hb(·) represent power consumption of red, green and blue sub-
pixel sets, respectively. Note that R̂, Ĝ , and B̂ are the values of R, G , and B after gamma
decoding in the color space, i.e., Rγ = R̂, Gγ = Ĝ , Bγ = B̂ , where γ denotes gamma cor-
rection coefficient. This is because the human visual system perceives brightness loga-
rithmically, prompting screens to use gamma correction to enhance display quality.

Total loss function. After integrating all loss terms, our final optimization problem is
formulated as:

min
U

λbl J ( f (I ⊕U ), l∗)+λdebl J ( f (Pd (I ⊕U )), l∗)+λvisLvis +λenLen, (5.7)

whereλbl, λdebl, λvis andλen are Lagrangian multipliers used to balance these loss terms.
To optimize the above loss function, a naive solution is to employ the gradient de-

scent method. However, digital perturbations obtained by gradient descent are hard to
practically reproduce using USC devices. This difficulty arises because the real universal
screen perturbation emerges from a complex interplay between the optical synthesis of
sensitive scene light, screen light, and USC’s response. When a screen pixel is activated,
the emitted color captured by an USC depends on multiple factors including (i) different
pixel layouts on various device screens; (ii) varying colors and brightness of screen pixels
at different positions, which affect the active perturbations in the captured images; (iii)
the Bayer RGB filter’s [17] unique color response in the USC; (iv) different USC parame-
ter settings, such as the exposure time and ISO. Consequently, it is challenging to ensure
that, by displaying a specific screen pattern, the transparent screen can accurately gen-
erate the effective perturbation, i.e., U (θfixed,θfree), to fool the target model used by the
hacker. Thus, rather than directly using gradient descent to optimize Equation (5.7), we
must first understand the gradient relationship between the changes of screen-pixel pa-
rameters in the design space and the changes of the target model in classification. This
requires U being a differentiable function for the parameter set {θfixed,θfree}. In Section
5.4 we design a deep learning-based under-screen camera model to capture the gradient
relationship of parameter changes in I ⊕U (θfixed,θfree).

5.4. NEURAL UNDER-SCREEN CAMERA ARCHITECTURE
The overview of the neural USC architecture is shown in Figure 5.3, which consists of the
screen model (Section 5.4.1; § 5.4.1), the active screen perturbation generator (Section
5.4.2; § 5.4.2), the passive screen perturbation generator (Section 5.4.3; § 5.4.3), the expo-
sure module (Section 5.4.4; § 5.4.4), and the USC noise generator (Section 5.4.5; § 5.4.5).
Lastly, we also propose a data augmentation technique (Section 5.4.6) in the optimiza-
tion process to enhance the robustness of the generated screen perturbations. Below, we
introduce each of the system components in detail.
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AXON30

MIX4

(a) (b) (c)

Figure 5.4: Reverse engineering the screen models of two COTS full-screen smartphones, i.e., ZTE AXON30
and Xiaomi MIX4. (a) different screen-pixel layout images captured by the USC are taken as inputs; (b)
screen-pixel units obtained by the proposed minimum unit search method; (c) the final screen model

generated by composing the obtained screen-pixel units.

5.4.1. SCREEN MODEL
Camera optics [17] indicate that even tiny illuminated screen pixels can result in an array
of translucent, speckled color variations and shifts on the captured image. The genera-
tion of U is determined by the configuration of the screen, i.e., θfixed,θfree, making U a
function of the screen model S(θfixed,θfree). Thus, our first step is to obtain the screen
model of the smartphone. However, as shown in Figure 5.4, screen models vary across
devices (θfixed) and exhibit diverse screen-pixel shapes and layouts. These factors affect
the images captured by the USC, as shown in Figure 5.4(a). Such variations make accu-
rately representing screen perturbation U challenging. Below, we introduce how to learn
screen models from different manufacturers in detail.

A. SCREEN-PIXEL TILING

Motivated by [14], we propose a minimum unit search method. This method is used
to find the screen-pixel unit, as screen-pixels on the screen are tiled into numerous iden-
tical units (see Figure 5.4(a)). This tiling arrangement is characterized by a periodic
pattern where each screen-pixel unit is periodically positioned at a constant distance
D μm. Given that the screen resolution, denoted as N screen-pixels per inch, can be ob-
tained from the smartphone’s specifications, we can calculate the tiling period D from
D = 1 inch/N . Therefore, knowing the layout of R, G, and B subpixels in a screen-pixel
unit allows us to infer the complete screen-pixel layouts on the screen. Specifically, the
spatial distribution of screen-pixels across the entire screen, denoted as S, can be math-
ematically represented by the following equation:

S = m ∗∑
nx

∑
ny

δ(x −nx D)δ(y −ny D), (5.8)

where m denotes the layout of a screen-pixel unit. δ(·) represents the Dirac delta func-
tion, which serves as the unit impulse function [192]. nx and ny are indices for the hori-
zontal and vertical positions of screen-pixels, respectively, in the spatial domain.
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Figure 5.5: (a) Relative illumination: the relative illumination phenomenon causes light intensity in the
corners of images captured by the USC to be lower than in the center of the image. Therefore, the OTSU filter
cannot accurately identify screen-pixels in the corners of the images. (b) Relative position: slight variations in
the relative positions between the image sensor in the USC and the transparent screen can lead to significant

changes in the screen-pixel layout of the final obtained screen model.

Color space theory states that a screen emitting light from all its screen-pixels is per-
ceived as white due to the combined emission [71]. In our study, we display white light
on the screen and capture ground truth images of screen-pixel positions with an USC.
The captured images show both the direct emissions from screen-pixels and the diffused
light emissions from adjacent ones. To mitigate the effect of this diffused light and ac-
curately localize each screen-pixel, we employ the OTSU thresholding method [89]. This
technique segments the image into foreground and background based on the light in-
tensity, utilizing the fact that light intensity at screen-pixel positions is inherently higher
than that of the diffused light. By applying the OTSU method, we effectively isolate and
eliminate the diffused light, preserving only the essential screen-pixel position infor-
mation in the foreground. However, this intensity-based segmentation faces challenges
from the phenomenon of relative illumination.

B. RELATIVE ILLUMINATION

Relative illumination refers to the brightness variability in USC-captured images,
with central areas typically appearing brighter than corners. This relative illumination
effect is evident in screen photographs captured by USCs, as illustrated in Figure 5.5(a).
In USC-captured image, the screen-pixels in the lower left corner exhibit lower bright-
ness after grayscale thresholding. To overcome this challenge, we implement the mask-
correction technique [118] proposed in Chapter 3. This technique involves generating a
mask M that keeps only the active screen perturbations using a combination of filtering
and contour detection methods, as depicted in Figure 5.6. This mask is crucial in uni-
forming the size of the speckle patterns produced by lit screen-pixels and in mitigating
unneeded noise in the image. This preprocessing step facilitates a more accurate learn-
ing of the screen-pixel unit layout. Consequently, the final ground truth image can be
mathematically represented as follows:

Ĝ =G ∗M . (5.9)

Due to the camera lens’s optical properties, illuminating even a tiny screen-pixel can
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(a) (b) (c)

Figure 5.6: (a) Captured lit-up screen-pixels; (b) A foreground mask focused solely on the screen-pixel area
using a filtering method; (c) The final ground truth image Ĝ .

create slightly larger colored speckles in the captured image. The projection relation-
ship between the lit screen-pixel size and speckle size is fundamentally influenced by
the USC’s focal length [96].

C. FOCAL LENGTH

Focal length plays a vital role in the imaging process: Increasing it narrows the USC’s
field of view and magnifies the scene, reducing the number of screen-pixels in the cap-
tured image. Conversely, decreasing focal length broadens the view, capturing a wider,
more distant scene, and thus including a greater number of screen-pixels in the cap-
tured image. Consequently, the screen-pixels of the entire screen are projected onto the
ground truth image captured by the USC. This projection’s transformation can be ap-
proximated as follows:

Gs = Resize(S,r0) (5.10)

where Gs is the synthesized image projected by the screen-pixels, S is the lit-up screen-
pixels on screen, and r0 represents the scaling factor associated with the focal length. To
accurately reconstruct the screen model via periodic tiling of screen-pixel units, the USC
correct focal length can be determined through a one-dimensional search algorithm.
This ensures screen model construction through periodic tiling of screen-pixel units.

Besides understanding the focal length’s influence, accurately modeling the screen
also requires considering the relative position between the screen and the USC.

D. RELATIVE POSITION

The spatial relationship between the screen and the imaging sensor of an USC varies
across different smartphone models, as illustrated in Figure 5.5(b). Therefore, calibrating
the screen model to align precisely with the actual positioning of the USC is crucial. To
address the misalignment of the screen-pixel patterns, we apply two-dimensional affine
transformations [193], which enable accurate control of the position and orientation of
each screen-pixel group. These transformations are expressed mathematically as:

Ĝs = R ∗Gs , (5.11)

R =
(
cosϕ −sinϕ −x0 cosϕ+ y0 sinϕ+x0

sinϕ cosϕ −x0 sinϕ− y0 cosϕ+ y0

)
, (5.12)

where R denotes the affine transformation matrix, incorporating rotation through an-
gle ϕ and centroid (x0, y0). Since the USC’s position is defined by discrete coordinates,
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using gradient-based optimization with continuous parameters is challenging. Affine
transformations offer a continuous, differentiable approximation of the USC’s relative
position, facilitating precise, tunable screen model construction.

E. SCREEN MODEL GENERATION

To better understand screen-pixel behavior, we set all screen-pixels to emit light, dis-
playing a pure white screen. We captured 100 successive frames utilizing the USC to form
the training dataset, ensuring the USC remained stationary throughout the data collec-
tion process. This method helps mitigate the impact of USC noise in the optimization
process. For the optimization phase, we treat the screen-pixel unit as a variable. Em-
ploying the gradient descent technique, we optimized a loss function aimed at deriving
the screen-pixel unit configuration for the specific smartphone model. Our optimiza-
tion goal is to minimize the differences between the captured ground-truth images and
the synthesized images composed of the screen-pixel units. We also find that image ar-
eas with consistent colors are easier to recreate. To ensure that these easier areas help
improve the overall accuracy of the loss function, we implement a technique known as
hard-sample mining [194]. This strategy involved calculating the residuals, ΔG = Ĝ −Ĝs ,
converting them into vector form, and sorting the absolute values of these residuals,
|Δ�Gt |, in descending order. We then select the top 10 percent of these residuals for L2

loss computation. The loss function is expressed as:

Lscr een =
T∑

t=1
|Δ�Gt |2, (5.13)

where T represents the number of elements within the top 10 percent tier of total loss.
To this end, we employ reverse engineering to learn the screen-pixel layout of dif-

ferent smartphone models. An example is shown in Figure 5.4, in which we obtain
the screen models of two COTS full-screen smartphones, i.e., ZTE AXON30 and Xiaomi
MIX4. First, as shown in Figure 5.4(a), we repeatedly display a white screen on the smart-
phone screen and capture a series of images with the USC. They will be used as the inputs
for reverse engineering. Then, we apply the reverse engineering method to determine
the screen-pixel unit layouts shown in Figure 5.4(b). Finally, we approximate the loca-
tions of the output screen pixels and compose the screen model SAXON30 and SMIX4 for
both the AXON30 and MIX4, as shown in Figure 5.4(c). By obtaining the screen model,
we can manipulate screen pixels with varying brightness and colors at different positions
on the screen model to create distinct active screen perturbations.

5.4.2. ACTIVE SCREEN PERTURBATION GENERATOR
Constructing the screen model S alone is not enough to replicate the screen perturba-
tions appearing in practical images captured by USCs when the transparent screen is
active. This is because each smartphone USC has a different Bayer filter [17] that leads
to a different color response [195]. Moreover, the variation in screen’s finite openings and
USC’s lens will influence how screen light diffracts and scatters after passing through this
combined USC aperture. To fill the gap between the screen pixels in the screen model to
the final captured image, we develop a deep learning-based computational model Pa to
find the universal screen perturbation U , which is defined as:

U =Pa(S(θfixed,θfree)), (5.14)
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Synthesized Ground truthScreen model Screen model Ground truthSynthesized

(a) ZTE AXON30 (b) Xiaomi MIX4

Figure 5.7: Comparison of output results of the tone mapper on USCs of ZTE AXON30 and Xiaomi MIX4. The
figure shows synthesized active screen perturbation and the captured ground truth when different R/G/B

subpixel sets on the screen model are activated.

where Pa is a neural network with a UNet architecture [196], [197], consisting of the tone
mapper and the PSF booster. Below, we introduce these two components in detail.

A. TONE MAPPER

Different USCs exhibit distinct color responses due to their unique Bayer filters. Thus,
the tone mapper aims to learn the tone-mapping function [195] for each USC. In our de-
sign, the UNet structure maps the illuminated screen pixels of the screen model to the
active screen perturbations in USC-captured images. The input for the tone mapper is
the lit screen pixels generated by screen model S, as shown in Figure 5.7, and its output
is the active screen perturbation image. The pyramid architecture of the UNet enables
multi-scale analysis of the input screen-pixel model’s characteristics. In the meantime,
its encoding-decoding structure, enhanced by skip connections, effectively integrates
features across different scales. This design successfully simulates the color response
of the USC to various colored screen pixels and the image degradation caused by the
limited aperture, such as blurring. For data collection, we set the smartphone’s screen
to sequentially display seven different colors: red, green, blue, cyan, magenta, yellow,
and white. This procedure sequentially activates the respective subpixel sets, with the
primary colors (red, green, blue) lighting up the subpixel set individually, the secondary
colors (cyan, magenta, yellow) illuminating combinations of two subpixel sets, and white
engaging all subpixel sets simultaneously. This approach reflects the screen model’s op-
erational dynamics. For each color, the USC captured 300 sequential frames. This pro-
cess allows us to mitigate the effects of USC noise through averaging. By selecting these
distinct hues, we approximate the screen’s continuous spectral output using the screen
model’s discrete spectrum. This enables accurate mapping of the screen model’s output
onto the USC’s response spectrum, establishing a comprehensive model for the USC.

B. PSF BOOSTER

The active screen perturbation generator, relying solely on the tone mapper, falls
short in robustly mapping the screen model to active screen perturbations. As Figure
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(a) Screen model (c) Ground truth(b) Synthesized

Figure 5.8: Only a subset of the screen-pixels in the screen model is lit in (a). The active screen perturbation
synthesized by the tone mapper in (b) exhibits color shifts and artifacts, highlighted by the red dotted oval.

The USC captured ground truth in (c) naturally diffuses.

5.8 shows, when only a subset of screen-pixels on the screen model is illuminated and
processed through the tone mapper, it leads to significant color aberration and artifact
in captured active perturbations. This limitation highlights the insufficiency of the tone
mapper in faithfully replicating the diffusion behavior of screen-pixel illumination.

Inspired by the Point Spread Function (PSF) concept [14], [180], we introduce a PSF
booster. The PSF characterizes an optical system’s response to a point light source, de-
tailing how the system’s aperture affects optical signal diffraction. Ideally, the PSF is in-
finitesimally small for maximum resolution at the point light source. However, even in
an ideal aberration-free system, aperture diffraction in USCs prevents the convergence
of point light sources into a single point. Instead, it results in a PSF “diffusion” pattern.
The property of the PSF effectively simulates how light diffuses from a specific targeted
area of screen pixels to create the active screen perturbations captured in the image.
Specifically, we incorporated two additional modules: a random mask generator and a
PSF generation network, augmenting the original UNet-structured tone mapper. The
random mask generator module creates a variable screen-pixel activation mask, deter-
mining which screen pixels to illuminate on the screen model. This mask then guides
the PSF generation network module in producing a screen perturbation mask that de-
picts the diffusion of screen pixels as captured by the USC. The PSF generation network
adopts the PSF model of the USC proposed in Chapter 4, which treats the screen as part
of the USC aperture. The actual active screen perturbation image is constructed by su-
perimposing this screen perturbation mask onto the ground truth image. The original
lit screen-pixel image is processed through the tone mapper to generate a synthesized
active screen perturbation image. By minimizing the L2 loss between the actual and
synthesized active screen perturbations, we effectively train the entire active screen per-
turbation generator Pa . Details of Pa are in Figure 5.9.

We applied our method to two full-screen smartphones, the ZTE AXON30 and the
Xiaomi MIX4, which have distinct active screen perturbations. To validate the similarity
between synthetic and ground truth images, we utilized two image metrics: the Struc-
tural Similarity Index (SSIM) [154] and the Peak Signal-to-Noise Ratio (PSNR) [96]. The
SSIM and PSNR values for synthesized images from the AXON30 are measured at 0.98
and 32.44 dB, respectively. For the MIX4, these metrics are 0.95 and 31.89 dB, respec-
tively. Note that SSIM>0.9 and PSNR>30 dB indicate a high degree of similarity between
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(a) Input (b) Synthesized (c) Ground truth

Figure 5.10: Abnormal blurring and artifact in the (b) synthesized image arise from training the blur module
with an unaligned dataset lacking strict spatial constraints between (a) the input pristine image and (c) the

USC captured ground truth.

two images. At this level, differences become imperceptible to the naked eye [156].

5.4.3. PASSIVE SCREEN PERTURBATION GENERATOR
The USC also introduces passive screen perturbation on the formed image even when
the screen is inactive, and makes the captured image blurry. We define the pristine image
as Î and the actual captured blurry image as I , the network (blur module) simulating this
passive screen perturbation as Pb , and the network (deblur module) that can remove
this passive screen perturbation as Pd . We have:

I =Pb(Î ), Ĩ =Pd (I ), (5.15)

where Ĩ is the deblurred image. Below, we introduce how to obtain Pb and Pd in detail.

A. ALIGNED DATASET GENERATION

Effective modeling of passive perturbation requires training with pixel-wise aligned
pairs of pristine (perturbation-free) and captured images. However, it is very difficult to
collect large-scale and perfectly aligned paired training data. Directly training with mis-
aligned pairs leads to undesirable outcomes. Our preliminary results indicate that using
misaligned image pairs for pixel-wise supervision when training P b and P d tends to
produce images with blur and notable artifacts, as shown in Figure 5.10, which is con-
sistent with existing work [198]. This issue arises due to the lack of strict spatial con-
straints on regions prone to blur, with the majority of operations conducted in the fea-
ture space. Consequently, the synthesized images suffer from significant abnormal blur-
ring and spatial displacement, as the network prioritizes image scaling and gap-filling to
simulate alignment with the captured images, rather than accurately learning the char-
acteristics of passive screen perturbation given by the screen. This highlights the chal-
lenge of obtaining perfectly aligned paired data for passive screen perturbation genera-
tion. To address this issue, we employ the PSNR > 20 dB metric as an alignment index
and leverage transformer-based frameworks [199] to “clone” pristine images onto USC
images, aiding in the collection of aligned datasets for USCs. This enables us to select a
well-aligned subset for our training dataset.
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Figure 5.11: Results of the blur & deblur modules: the synthesized images are quite close to the ground truth.

B. BLUR/DEBLUR MODULE

We use the same UNet network as tone mapper but with L1 loss to train both Pb and
Pd using the collected aligned dataset, as L1 loss is less sensitive to outliers and spatial
displacement compared to L2 loss. For the blur module, the input is a pristine image
with the corresponding blurred image, captured by the USC, serving as the ground truth
for loss calculation. Conversely, for the deblur module, the input is the blurred USC-
captured image, and the loss is calculated against the pristine image.

As shown in Figure 5.11, the blur module accurately simulates images actually cap-
tured by the USC. The deblur module can potentially be used by hackers to deblur all
images captured by USCs, thereby improving classifier recognition accuracy. To coun-
teract such vulnerabilities, we integrate the deblur module within Equation (5.7), boost-
ing our universal screen perturbation’s resistance to hacker-employed deblurring tech-
niques. The PSNR and SSIM calculated between the blurred image synthesized by the
blur module and the ground truth image are 33.69 dB and 0.96, respectively. For the
deblurred image synthesized by the deblur module and the ground truth image, these
metrics are 34.59 dB and 0.95, respectively. These results show that both the blur and
deblur modules perform well in simulating and removing passive screen perturbation.

5.4.4. EXPOSURE MODULE

The image formation process (⊕) of the USC is determined by USC settings, such as ex-
posure time, which decides the duration that the USC’s shutter remains open. The ex-
posure time is proportional to the number of photons that hit the image sensor. Sim-
ilarly, ISO settings influence the image sensor’s sensitivity to light. A higher sensitivity
results in an increase in the recorded light intensity. These USC settings proportion-
ally impact captured image luminance, affecting both blurry image luminance and ac-
tive screen perturbation strength. Excessively bright screens can induce over-saturation
when coupled with high-gain settings. To manage this, we adopt the gain and satura-
tion framework as outlined in [200], [201] and use β and cl i p to denote USC gain and
saturation constraints, respectively. On the other hand, due to the transparent nature of
the screen, the superposition of the captured blurry image I and the optical perturba-
tion generated by the screen can be regarded as an alpha-blending process [202], [203].
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Eventually, our imaging model is:

I ⊕U (θfixed,θfree) = cl i p(β∗ (αI + (1−α)U (θfixed,θfree))), (5.16)

where cl i p(x) = min(max(x,0),1), and α denotes the screen perturbation’s opacity.

5.4.5. USC NOISE GENERATOR
We model the shot and read-out noise from the USC as Poissonian (σp ) and Gaussian
noise (σg ) [204]. These noise patterns are superimposed onto images including both
active and passive screen perturbations. The specific parameters for σp and σg are cal-
ibrated based on the noise characteristics of USCs from different smartphone models.
To measure the noise statistics σp and σg , we collect 100 consecutive frames in a dark
environment where there is no ambient light and the smartphone screen is turned off.
We then compute their differences to estimate the noise distribution.

5.4.6. TRAINING DATA AUGMENTATION
Making universal screen perturbations that remain effective in the physical world re-
quires consideration of varying environmental factors. Previous work has demonstrated
that digital perturbations derived using direct printing methods, as discussed in [159],
often fail under diverse viewing angles and distances [181]. To improve the physical
robustness of universal screen perturbation, it is essential to integrate a variety of in-
put transformations within the optimization process. We employ the expectation over
transformation methodology [173], which enhances robustness by averaging the opti-
mization loss across a set of synthesized training images. These synthesized images are
manipulated through linear transformations to mimic differing environmental condi-
tions, such as variations in lighting or perspective, thereby enhancing the generalizabil-
ity of the universal screen perturbation. Thus, we have:

min
θfree

EÎ∼Iv
λbl J ( f (Pb(Î )⊕Pa(S(θfixed,θfree))), l∗)

+λdebl J ( f (Pd (Pb(Î )⊕Pa(S(θfixed,θfree)))), l∗)

+λvisLvis +λenLen, (5.17)

where Iv represents a distribution over specific sensitive objects, such as face, pass-
word note, etc. Given images taken in the physical world, it is essential to ensure that
the universal screen perturbation U , when added to captured image Pb(Î ), can fool the
classifier under different physical conditions. By sampling instance Î from Iv , which
includes pristine images of the sensitive object under variable distances, angles, envi-
ronments, and lighting settings, we aim to more accurately reflect real-world dynamics.
In this chapter, we have expanded the set of transformations to include additional envi-
ronmental conditions. Figure 5.12 shows a complete optimization process.

USC Settings Adjustment. A hacker could control USC parameters like exposure time and
ISO, either increasing USC gain (raising exposure time and ISO) to potentially enhance
image details or decreasing it to reduce screen perturbations’ effectiveness, aiding image
recognition. To counteract such manipulations and enhance the resilience of universal
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Figure 5.12: Overview of the universal screen perturbation generation pipeline. We optimize the screen
pattern which passes through the neural USC architecture in order to minimize the total loss on a given

surrogate model for a set of randomly generated permutations of the input. (Unicorn: Uni)

screen perturbations against varying USC gains, we randomly change the gain parame-
ter, α from [0.3,0.7] and β from [0.1,10] throughout the gradient descent iterations. The
efficacy of this approach in maintaining the robustness against USC setting manipula-
tions by hackers will be demonstrated in Section 5.5.3.

5.5. PERFORMANCE EVALUATION
In this section, we first describe the models, datasets, and experimental configurations
used in our evaluation. We then extensively test the Unicorn against image classifica-
tion models in physical environments and real-world settings. We also explore factors
affecting defense efficiency.

5.5.1. EXPERIMENTAL SETUP

Smartphones. We employ two Commercial Off-The-Shelf (COTS) full-screen smartphones
in the experiments, i.e., ZTE AXON30 and Xiaomi MIX4. Both devices feature a screen-
pixel density of 400 Pixels Per Inch, with screen sizes of 2460×1080 (AXON30) and 2400×1080
(MIX4) pixels. We develop an Android application to turn on/off the screen pixels for
generating the screen perturbations. Both USCs output images with a resolution of
1920×1080 pixels. The USC settings that hackers could potentially adjust, such as expo-
sure time and ISO, are within the ranges of [1/5000 s, 10 s] and [100, 1600], respectively.

Tasks and target models. Our analysis focuses on two image classification applications
used by hackers:

• Identity recognition. We use two representative backbone models: IncepResNet
V1 [146] and MobileNet V2 [147], both pre-trained on the WebFace dataset [149].

• Sensitive information mining. We consider ResNet [142], which includes ResNet-
18 and ResNet-50 with different network depths and parameters. All models are
pre-trained on the ImageNet dataset [145].

Datasets. The identity recognition model is trained using 12,720 high-resolution facial
images from the XGaze dataset [152]. These images are selected based on varied head
poses and ambient lighting conditions. For the sensitive information mining task, we
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Under-Screen 
Camera

Figure 5.13: The testbed setup: we leverage a 4K monitor to display the original image and use COTS
full-screen smartphones to capture images containing screen perturbations.

build our dataset using web crawlers. This dataset includes four classes of sensitive infor-
mation (password notes, credit cards, files, and combination locks) and one insensitive
class (vases, trash cans, etc.). Each class contains 1,000 images. The images containing
sensitive information are all gathered through web crawlers. Conversely, the insensitive
class comprises randomly chosen insensitive objects, such as vases and trash cans. This
class’s images are selected from miniImageNet dataset [150], which contains 60,000 im-
ages across 100 different classes.

Testbed. We build a monitor-USC imaging testbed to collect images captured by USCs.
This monitor-based method, offering a controlled, efficient, and automated way to cap-
ture diverse scene contents, is also commonly employed in various USC image quality
restoration tasks [10]. Images from our chosen dataset are displayed in full-screen mode
on a 4K monitor. We adjust the aspect ratio as needed, either through rotation or resiz-
ing. To capture these images with USCs, we mount the smartphones on a stand, guaran-
teeing stable capturing of the images. For more setup details, please refer to Figure 5.13.

Metrics. For the identity recognition task, the goal is to prevent the hacker’s target model
from accurately identifying individuals. Thus, we use the non-targeted misclassifica-
tion rate of target models on USC-captured images as the metric to assess the protection
success rate. For the sensitive information mining task, the aim is to mislead the tar-
get model to classify images containing sensitive information as a unique insensitive
class. Thus, we employ the targeted insensitive classification rate of target models on
USC-captured images as the metric to represent the protection success rate.

5.5.2. OVERALL PERFORMANCE

Identity recognition task. We first evaluate Unicorn’s performance in protecting iden-
tity using the XGaze dataset. We randomly select a user identity (“Subject-0119”) from
the XGaze dataset as the target identity and aim to prevent its identification from being
recognized by applying our universal screen perturbation. We evaluate the performance
of Unicorn under two scenarios: screen perturbation synthesized using the neural USC
architecture, and perturbation captured by practical USC. We compare the performance
with three benchmark cases: (i) a pristine image without perturbation, (ii) passive per-
turbation with the screen OFF, and (iii) perturbation with randomly lit screen pixels. Ta-
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Figure 5.14: Protect on “Subject-0119” with different head pose and ambient light conditions.

(a) Screen pattern 1 (b) Screen pattern 2 (c) Screen pattern 3

Figure 5.15: Universal screen perturbations generated by different optimized screen patterns obtained by
changing the optimization starting point. They can all play a very good role in protecting user identity.

ble 5.1 shows the results. We can observe that even with only a passive perturbation like
a black status bar, the protection success rate across all models increases by 15%. This
rate further increases to 40% with random screen-pixel illumination due to the active
yet unoptimized perturbation. In comparison, when applying both the synthesized and
captured universal screen perturbations, the protection success rate on all target models
reaches 100%. These results demonstrate the effectiveness of our Unicorn in disrupting
identity recognition. An illustrating example is further shown in Figure 5.14, where the
user’s identity is protected under different head postures and ambient light conditions.
We also investigate the performance of other optimized solutions in our screen pertur-
bations. By varying the initial activation screen-pixel values and employing the gradient
descent method, we generate diverse screen patterns. Figure 5.15 displays different uni-
versal screen perturbations generated by three screen patterns, each achieving a 100%
protection success rate (cf. Table 5.4). Section 5.5.8 will discuss their resilience against
potential adversarial training techniques employed by hackers.

Sensitive information mining task. Next, we assess the performance of Unicorn in pro-
tecting sensitive information, particularly focusing on password notes. The results are
shown in Table 5.2. We can observe that with only passive perturbation, the protection
success rate is only 5%. This rate further increases to approximately 7% with added ran-
dom active screen perturbations. In comparison, when applying the synthesized univer-
sal screen perturbation on images in digital space, the protection success rate is boosted
to higher than 95%. When employing universal screen perturbation on practical cap-
tured images, the protection success rate slightly drops to around 90%. This suggests
that our established neural USC architecture effectively simulates the actual image for-
mation process of the USC. Figure 5.16(a) illustrates the protection success rates across
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Table 5.4: Protection success rate of universal screen perturbations generated by different screen patterns.

Model Screen pattern 1 Screen pattern 2 Screen pattern 3

IncepResNet 100% 100% 100%
MobileNet 100% 100% 100%

(a) Blurred images (b) Deblurred images
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Figure 5.16: Protection performance on sensitive information mining task. All sensitive information classes
are targeted classified as insensitive information class.

different classes of sensitive information, with Figure 5.17 providing corresponding ex-
amples. Our results demonstrate that images within sensitive classes are predominantly
misclassified as insensitive class, achieving a targeted misclassification accuracy of over
90%, validating the effectiveness of our Unicorn in protecting sensitive information.

5.5.3. ROBUSTNESS RESULTS

Next, we evaluate the robustness of Unicorn. This assessment is particularly important
given that hackers might use various technical methods and adjust physical device pa-
rameters to bypass the added universal screen perturbation.

Performance against image post-processing. We evaluate the performance of Screen-
Shield against state-of-the-art deblurring methods [10], [15], which hackers might use
to reduce blur from passive screen perturbations and improve classifier accuracy. The
results are presented in Tables 5.1 and 5.2. The effectiveness of the deblurring network
is shown by the improved accuracy of all target models after deblurring, especially when
the image contains only passive perturbations. However, applying universal screen per-
turbations results in only minor drops in protection success rates. This result is further
illustrated in Figure 5.16(b), which shows that the deblurring network only marginally
reduces the protection success rate of various classes by approximately 5%. This mod-
est impact results from integrating our developed deblur module (cf. Section 5.4.3) into
our loss function, strengthening our universal screen perturbation against hacker’s ex-
ploiting of deblurring methods. This strategy ensures robustness against such advanced
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Password Note Credit Card File Combination Lock

Insensitive Information

Figure 5.17: Examples of images contain sensitive/insensitive information with universal screen perturbation.

(a) Identity recognition (b) Sensitive information 

Figure 5.18: Protection performance vs. screen differences.

image restoration methods.

Screen diversity. We also evaluate Unicorn across different full-screen smartphones.
The results are shown in Figure 5.18. Initially, when relying solely on passive screen per-
turbation, we note consistent performance across USCs from different manufacturers,
below 20% in identity recognition task and 5% in sensitive information mining task.
However, once implementing universal screen perturbation, there is a significant in-
crease in the protection success rate, approximately reaching 100% in identity recog-
nition and about 80% in sensitive information mining tasks. Specifically, ZTE AXON30
exhibits a higher protection success rate compared to that of Xiaomi MIX 4. This differ-
ence can be attributed to the distinct pixel layouts on the screens of these smartphones,
which affects the effectiveness of the generated universal screen perturbations.

Different color in status bar. We assess the effectiveness of universal screen perturba-
tion across four different status bar colors: red, green, blue, and white (see Figure 5.19 for
the detailed setup). It is important to note that when the status bar is displayed in red,
green, or blue, only the respective primary color subpixel sets are activated. Conversely,
displaying a white status bar results in the illumination of all three primary color subpixel
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Figure 5.19: Universal screen perturbation with different color status bars at two commercial smartphones.

(a) AXON30 (b) MIX4
Figure 5.20: Protection performance vs. status bar color.

sets. The results are presented in Figure 5.20. Without universal screen perturbation, the
protection success rate for each of the four original background colors is approximately
40%. However, once implementing the universal screen perturbation, there is a marked
improvement in protection success rate. Specifically, the protection success rate reaches
100% on AXON30 and exceeds 90% on MIX4 for all four colors.

Under-screen camera settings. Considering that hackers might have full access to the
USC, a potential physical countermeasure against the Unicorn involves adjusting the
USC settings. These adjustments could either mitigate the impact of the universal screen
perturbation or capture more detailed images. Actual shooting examples demonstrating
the change in shutter time and ISO are reported in Figures 5.21 and 5.22, respectively.
Figure 5.23 illustrates the impact of exposure time on images captured by the USC. Un-
der automatic exposure (100 ms), images captured without the universal screen pertur-
bation exhibit the highest recognition accuracy. However, further manual adjustments
in exposure time, either increasing or decreasing, lead to decreased recognition accu-
racy. Reduced exposure times result in lower image quality, while increased exposure
times cause overexposure. Both scenarios hinder the normal recognition capabilities of
the target model. Similarly, Figure 5.24 examines the effects of varying ISO settings. The
optimal automatic exposure setting is observed at ISO 800. Manually adjusting the ISO to
either 400 or 1600 results in only a slight decrease in recognition accuracy for images cap-
tured without universal screen perturbation. Conversely, lowering the ISO further to 100
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Figure 5.21: Example of images captured by USC with different exposure times. The first row shows images
without universal screen perturbation, while the second row shows images with universal screen perturbation.
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Figure 5.22: Example of images captured by USC with different ISO settings. The first row shows images
without universal screen perturbation, while the second row shows images with universal screen perturbation.

or 200 leads to a rapid decline in accuracy, approaching zero. Notably, the recognition
accuracy of images captured with universal screen perturbation remains consistently at
0% across all exposure time and ISO settings. These findings highlight the efficacy of
the universal screen perturbation in maintaining its protective capabilities, regardless of
manual exposure adjustments, thereby demonstrating its robustness against such man-
ual exposure attacks.

DSSIM budget. We further evaluate the impact of the DSSIM budget on universal screen
perturbation. The findings of this evaluation are presented in Figure 5.25. As the DSSIM
perturbation budget (ρ) increases, there is a corresponding rise in the protection success
rate. Specifically, at a ρ value of 0.005, the protection success rate decreases to a level
comparable to that achieved with passive perturbation alone, around 20%. However,
when ρ exceeds the threshold of 0.04, the protection success rate for universal screen
perturbation increases to 100%. Consistent with prior research [153], this suggests that
even higher DSSIM values (up to 0.2) are generally imperceptible to human eyes.

Impact of protected label density. The effectiveness of our universal screen perturba-
tion is influenced by the number of labels designated for protection. Specifically, when
the goal is to shield a single target label, the perturbation can focus on the distinct fea-
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Figure 5.23: Identity recognition accuracy vs. exposure time.
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Figure 5.24: Identity recognition
accuracy vs. ISO.
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Figure 5.25: Protection rate vs. DSSIM budget.
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Figure 5.26: Protection rate vs. No. protected labels.

tures of that particular class within the feature space. However, as the number of pro-
tected labels increases, the perturbation strategy must adapt to find a common direction
that diverges from the combined feature spaces of these multiple classes, as explained
in [205]. The challenge grows as the number of classes to be protected increases, making
it more difficult to identify such a common direction in the feature space, which leads to
a decrease in the performance of universal screen perturbation. Figure 5.26 shows that
the protection success rate drops from 100% when protecting 1 label to over 90% when
4 labels need to be protected.

5.5.4. REAL WORLD PROTECTION PERFORMANCE

To evaluate the practical applicability of Unicorn, we conduct a field test with real-world
settings, which is a more challenging scenario.

Setup. Five participants (2 females and 3 males, aged between 20 and 40) were recruited.
The participants were provided with stickers of different colors, shapes, and sizes (Fig-
ure 5.27(a)). Participants were asked to place these stickers in their living spaces with
randomly generated password combinations, ensuring these combinations had no cor-
relation with any passwords they currently use. Subsequently, participants were asked
to take images containing these password notes. These images were captured using the
front-facing cameras of their own smartphones, as well as using the USCs of full-screen
smartphones provided by us. Specifically, user 1 was allowed to use AXON30 and MIX4,
both with and without universal screen perturbation, to capture images as a reference
group. All information collection and experimental protocols have been reviewed and
approved by our Institutional Review Board (IRB). All taken images were checked by
participants to ensure that no other identity-revealing or private objects were included.
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(a) Note setup

(b) AXON30

(c) MIX4

Figure 5.27: (a) Password note setup. (b)-(c) Examples of collected password note images in real-world
settings at different angles, distances, environments, and ambient light conditions.

Table 5.5: Universal screen perturbation is effective against large model-based vision APIs
(Google and ChatGPT).

Target Model w/o perturbation w perturbation
Google Vision 0% 100%

ChatGPT Vision 0% 100%

These images are used to form our dataset, with explicit consent obtained from their
respective participants. All participants were compensated for their time.

Results. The collected images showcase password notes captured under various con-
ditions, including different angles, distances, environments, and lighting settings, as
shown in Figures 5.27(b) and (c). The results from this field test, summarized in Table 5.3,
align closely with our testbed findings. Universal screen perturbation typically achieves
a protection success rate of about 90%. In comparison, all smartphones without uni-
versal screen perturbation exhibit protection success rates below 15% across different
environments. These findings confirm the effectiveness and generalizability of the op-
timized universal screen perturbations: Images captured in the diverse living spaces of
participants with universal screen perturbation lead to similar protection success rates.

5.5.5. PERFORMANCE AGAINST LARGE MODELS

Hackers may employ more powerful large-scale models to analyze captured images. In
this section, we evaluate the efficacy of Unicorn against the proprietary models of Google
Vision API [50] and ChatGPT Vision API [51].

Setup. The Google Vision API returns a list of labeled objects found in an image along
with associated confidence scores, including the “note” label. We set the detection thresh-
old at 0.5, meaning that a “note” is considered detected in an image if the API identifies
a note object with a confidence level above 0.5. For the ChatGPT Vision API, we use
the prompt “What’s in this image?”1 and determine whether “note” is mentioned in the
response. A mention of “note” indicates successful recognition.

1We also tested other prompts from the official documentation [206], such as “What’s it?” and “Can you please
describe this image?” and found that they yielded the same results.
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Results. The results of our evaluation are presented in Table 5.5. They indicate that with-
out perturbation, both the Google Vision and ChatGPT Vision APIs successfully identify
the “note” in the image. However, when universal screen perturbation is added, neither
API is able to recognize the “note”. Furthermore, responses from ChatGPT Vision do not
include mentions of any other sensitive objects, such as “file” or “credit card”. These test
results demonstrate that our universal screen perturbation achieves a 100% protection
rate against these two large-scale models.

5.5.6. USER STUDY
This section describes a user study conducted to assess visual impact on users of screen
patterns implemented in smartphone screens. We recruited 30 participants of diverse
genders (16 females and 14 males), ethnicities, nationalities, and age groups (from 18 to
45) through university mailing lists, social networks, and notice boards.

Study design. Our aim is to evaluate the perceptibility of optimized screen patterns em-
bedded in smartphone screens and their effect on user experience during typical use.
We utilize the two USC smartphones from Section 5.5.1 and let each participant use
both devices. To minimize individual differences in perceiving screen perturbations, a
within-subject study design [158] is employed. We consider two screen settings: (1) Ac-
tive Unicorn, and (2) Inactive Unicorn. Participants are asked to use each smartphone
for ten minutes, at least five minutes for each screen setting presented in random order.
We also explore five status bar color states (red, green, blue, white, and black) as shown
in Figure 5.28. The smartphones are randomly assigned a color for each user, ensuring
each color appears at least ten times throughout the user study. This study was reviewed
and approved by our IRB. All participants were compensated for their time.

Results. After interacting with the smartphones, participants completed a brief ques-
tionnaire regarding the noticeability of added screen patterns during smartphone us-
age. The findings reveal that none of the participants detected the presence of an op-
timized screen pattern on either full-screen smartphone. This result suggests that the
implemented Unicorn does not noticeably impede the typical user experience, thereby
confirming its inconspicuousness and user-friendliness.

5.5.7. ENERGY CONSUMPTION ANALYSIS

Power consumption model. The power modeling (in Equation (5.6)) of OLED screens at
the pixel level for smartphones was proposed by [191]. This model has been validated for
accuracy in practical applications by subsequent studies [207], [208]. According to [191],
the blue subpixel exhibits the least energy efficiency. At full brightness, the power con-
sumption of a blue subpixel is approximately 25 μW, compared to about 10 μW for both
red and green subpixels. Although each color subpixel’s power consumption is linearly
proportional to its RGB value, the use of a standard gamma correction of 2.2 for signal
input, which enhances display quality, creates a nonlinear relationship between OLED
screen power consumption and gray levels, as depicted in Figure 5.29(a).

Results. To assess the energy efficiency of our universal screen perturbation, we use
AXON30 as an example. We measure the device’s power consumption in two states:
Screen-OFF state, where the screen displays complete blackness with only the screen-
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(a) AXON30 (b) MIX4

Figure 5.28: Screenshots of the full-screen smartphone status bar when running the Unicorn on (a) ZTE
AXON30, (b) Xiaomi MIX4. The screen pattern is highlighted by color-dotted rectangles and magnified below.
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Figure 5.29: Power consumption analysis: (a) power consumption model on smartphones; (b) comparison of
power consumption with and without universal screen perturbation.

pixels responsible for generating the screen perturbation activated,2 and Screen-ON state,
where the screen displays content along with a white status bar and additional screen-
pixels activated for screen perturbation. In these scenarios, the numbers of screen-pixels
modified in the Screen-OFF and Screen-ON states are 40 and 52, respectively. Given
AXON30’s screen resolution of 2460×1080, these modifications amount to merely about
0.0016% and 0.0020% of the total screen-pixels, respectively. A comparative analysis of
the specific energy consumption in these scenarios is presented in Figure 5.29(b). The
additional power consumption in the Screen-OFF and Screen-ON states is 0.086 mW and
0.138 mW, respectively. An additional power consumption of only 0.0240% is observed,
which is negligible compared to the screen’s unmodified state. These findings indicate
only a marginal difference in energy usage between scenarios with and without screen
perturbation. This observation highlights the energy efficiency of Unicorn, demonstrat-
ing that its deployment requires minimal additional energy costs.

2The Unicorn in the OFF state of the screen is similar to the always-on-display function commonly seen in
smartphones [209].
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Figure 5.30: Normal classification accuracy increases as image quality increases using JPEG compression but
protection success rate remains high.

Table 5.6: Protection success rate of universal screen perturbation with adversarial training on XGaze.

Model Pristine image Screen pattern 1 Screen pattern 2 Screen pattern 3
IncepResNet 16% 70% 96% 94%

MobileNet 20% 80% 99% 97%

5.5.8. COUNTERMEASURES

Below, we investigate possible countermeasures against Unicorn. Many defenses have
been proposed to combat adversarial perturbations. These defenses can be categorized
into empirical defenses [159], [161], [162] that lack formal robustness guarantees, and
certified defenses [163], [164] that offer such assurances. We consider state-of-the-art
defenses from both categories. For empirical defenses, we examine the classic image
transformation defense method [210] and adversarial training [161], known as one of the
most effective methods in this category. For certified defenses, we consider randomized
smoothing [164], which is applicable to any classifier and scalable to large DNNs.

Image transformation. A simple technique to mitigate the impact of embedded pertur-
bations is to transform captured images before inputting them into DNNs. One success-
ful transformation-based defense method is JPEG compression [210]. The image quality
ranges from 5 to 95 (lower value = higher compression). As shown in Figure 5.30, the
protection success rate against screen perturbations remains at 100%, while the image
compression more significantly degrades normal classification accuracy.

Adversarial training in [159], [161] uses adversarially perturbed training examples to im-
prove a model’s robustness. In our study, we conduct adversarial training with a dataset
containing both pristine images and their corresponding perturbed images with screen
perturbations. The training results are summarized in Table 5.6. The protection success
rate increases for pristine images when perturbed images are included in the training
dataset (cf. Table 5.1). However, the protection success rate for images with the same
screen perturbations drops from 100% to 70%. It is important to note that this adver-
sarial training only used perturbed images generated by screen pattern 1. Incorporat-
ing other screen perturbations (cf. Figure 5.15), derived from screen patterns 2 and 3,
into the captured images maintains a protection success rate exceeding 90%. This in-
dicates that users can effectively counter potential hacker-employed adversarial train-
ing by pre-computing and dynamically alternating among different optimized screen
patterns. This strategy allows users to vary the screen perturbation applied, thereby
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Table 5.7: Protection success rate of universal screen perturbation under randomized smoothing on XGaze.

Model
σ= 0.5 σ= 1

Pristine images Perturbed images Pristine images Perturbed images
IncepResNet 0% 100% 0% 100%

MobileNet 0% 100% 8% 100%

strengthening the resilience of their devices against such adversarial training methods.

Randomized smoothing [163], [164] employs a technique where a base classifier H is
used alongside a test input x to develop a robust smoothed classifier G . This process
involves adding zero-mean isotropic Gaussian noise N (0,σ2I) to x, with σ representing
the standard deviation and I the identity matrix. Prior research [164] has indicated that
the predicted label by classifier G remains stable even when the adversarial perturbation
to x is constrained within certain limits. In practice, randomized smoothing generates
M noisy variants of the test input x by adding random Gaussian noise, utilizes the base
classifier H to predict labels for these noisy inputs, and then employs a majority vote
from these M predictions as the final output. Moreover, we augment the training inputs
with Gaussian noise to enhance the robustness of the smoothed classifier. Following
[164], we set M = 105 and test σ at both 0.5 and 1. Our experimental results, presented
in Table 5.7, reveal that the protection success rate of the smoothed classifier remains
high under both σ = 0.5 and σ = 1 settings. This observation suggests that randomized
smoothing primarily certifies smaller perturbations and therefore is not effective enough
to mitigate the proposed screen perturbations.

5.6. RELATED WORK

Digital perturbations change pixel values in the digital domain, using algorithms like
PGD [161] and C&W [172]. These perturbations, crafted by exploiting the gradient in-
formation of DNNs, are added onto digital images to deceive DNNs. Subsequent stud-
ies explored their transferability, examining if attacks on one model can affect another
[127], [129]–[131]. These findings imply that perturbations have model-agnostic prop-
erties, enabling cross-model vulnerabilities. However, their real-world effectiveness is
limited since digital perturbations are often too subtle to be detected by cameras due to
output resolutions. Our work, in contrast, focuses on physical screen perturbations and
their real-world effectiveness under various environmental conditions.

Physical perturbations. Not all images with digital perturbations, once printed and ob-
served through a camera, maintain their deceptive characteristics [120], [211]. Thus, the
physical perturbations that can be realized in the real world have gained significant in-
terest [212]. Athalye et al. [213] created images with perturbations that resist various
two-dimensional transformations, although these did not alter physical objects but only
printed perturbed images. Such studies are crucial in understanding the performance of
physical perturbations under diverse environmental conditions. The adversarial patch
[214] is a notion that manifests as a physical sticker designed to disrupt autonomous
driving [215] or facial recognition systems. Further advancements by Eykholt et al. [173]
involved developing graffiti-like perturbations that persist under real-world conditions.
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Subsequent innovations include embedding adversarial attacks in eyeglass frames to
trick facial recognition systems [119], and using LED lamps to create subtle perturba-
tions [176], [185], [186]. The creation of accessories such as attaching stickers to hats
[174], and applying conspicuous patches to clothes [183] or wearable items [216] have
presented alternative strategies. The SLAP [175], which uses a projector to generate con-
trollable physical perturbations, is limited by the flatness and material of the projection
surface. However, these patch-based perturbations often face real-world constraints as
they require direct modification of each target object for effective deception.

Other methods, like attaching a transparent patch on a camera lens [202], [203], are
less invasive but have drawbacks. These patches cause misclassification of all objects,
which is essentially equivalent to removing the camera from the device or covering it,
and also hinders the camera’s normal visual function. However, with full-screen devices’
emergence, their bezel-less, transparent screens offer a special advantage to their under-
screen cameras. The screens act as dynamic mediums, adjusting color and brightness for
screen-pixel-level attacks on the under-screen cameras. This method exhibits flexibility,
as it allows users to temporarily switch the potentially short-lived screen perturbation
on and off as they please, ensuring the usability of benign services of the under-screen
camera. Also, it is robust since it does not require any hardware modifications.

5.7. CONCLUSION

Protecting sensitive information in passive indoor environments remains a critical yet
unresolved issue. In this chapter, we propose Unicorn, a novel defense mechanism that
creates physical perturbations using the transparent screen. Given the physical con-
straints of displaying specific patterns on various device screens under different condi-
tions, we formulated an optimization problem. This problem was addressed by fitting
a neural USC architecture and enhancing its robustness through a data augmentation
pipeline. We evaluated Unicorn on two commercial full-screen smartphones across di-
verse environments and USC settings, and against state-of-the-art image classifiers such
as IncepResNet, MobileNet, ResNet, as well as other large models deployed by Google
and OpenAI. The results show that the generated universal screen perturbations are ro-
bust in real-world scenarios. Unicorn offers a flexible approach to image source protec-
tion, emerging as a key defense vector and prompting further research in USC security.

Future work. While the added pixel perturbation on captured images is indeed visu-
ally apparent, it is crucial that these changes do not disrupt the user’s normal use of the
smartphone, especially in scenarios where users utilize the proposed universal screen
perturbations as a defense against unauthorized face recognition systems. This is par-
ticularly relevant in applications involving face verification, where users generally can-
not access the photos taken during the verification process and thus do not care about
perceptible perturbations on images. Therefore, our results demonstrate that the mod-
ifications made to the screen pixels are almost imperceptible. However, it is important
to note that if the perturbation added by Unicorn to the image is imperceptible, it may
also prevent hackers from realizing that the image has been protected. Future work for
Unicorn could involve preventing the misuse of technologies such as Deepfake. For ex-
ample, the imperceptible screen perturbation on the image could be used as a potential
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watermark technology for the user’s device, helping third parties verify whether a photo
was taken by an actual physical device or generated by generative AI models.
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6.1. LOOKING BACK
The advancement in transparent screen technology has led to the development of full-
screen devices, enhancing the screen-to-body ratio and user experience by integrating
front-facing optical sensors under the transparent screens. This dissertation is the first
academic attempt to apply transparent screen features to expand the connectivity and
user privacy & security of full-screen devices in the context of through-screen comput-
ing. We have explored the primary challenges related to Visible Light Communication
(VLC) by recovering attenuated modulated light information from LED luminaires with
strong screen light interference, and realizing visual privacy protection by generating
perturbation from transparent screens. To this end, we consider two subsystems of
through-screen computing: Through-Screen VLC and Screen Perturbation for Visual Pri-
vacy Protection. We provide innovative solutions to overcome or utilize the screen’s light
interference and perturbation. In this chapter, we briefly discuss the accomplishments
and contributions of this dissertation in Section 6.2, and discuss the advantages, appli-
cability, broader implications, and future research directions in Section 6.3.

6.2. ACCOMPLISHMENTS AND CONTRIBUTIONS
In this section, we recapitulate the major contributions of this dissertation.

A. Redesigning Color Shift Keying for Through-Screen VLC
The bezel/narrow bezel on today’s devices, which hosts various line-of-sight optical

sensors, is disappearing. This trend not only forces optical sensors like ambient light
sensors to be placed under the screen but also challenges the deployment of the emerg-
ing VLC technology, a paradigm for next-generation wireless communication. In Chap-
ter 2, we proposed the concept of through-screen VLC with under-screen sensors, such
as ambient light sensors placed under the Organic Light-Emitting Diode (OLED) screen.
A transparent OLED screen greatly attenuates the intensity of passing-through light, de-
grading the efficiency of intensity-based VLC systems. To address this shortcoming, we

131
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exploited the color domain to build SpiderWeb, a through-screen VLC system. For the
first time, we observed that an OLED screen introduces a color-pulling effect at under-
screen sensors, which pulls the original modulated colors toward the screen’s color. This
severely affects the decoding of color-based VLC signals. Motivated by this observation
and the structure of spider’s web, we designed a new SpiderWeb Color-Shift Keying (SWe-
bCSK) modulation scheme and a novel slope-based demodulation method, which can
eliminate the color-pulling effect. We prototyped SpiderWeb with off-the-shelf hardware
and evaluated its performance thoroughly under various scenarios. The results showed
that compared to existing solutions, our approach can reduce the bit error rate by two
orders of magnitude and achieve a 3.4× data rate.

B. Through-Screen VLC with Under-Screen Camera
In addition to under-screen color sensors with single-pixel output, recent studies

have shown that the pervasive front camera of mobile devices is an ideal candidate
to serve as the VLC receiver, which has higher signal sampling speed and native spa-
tiotemporal characteristics. While promising, the full-screen trend of mobile devices
also forces front cameras to be placed under the devices’ screen – leading to the so-
called Under-Screen Camera (USC). We observed severe performance degradation in
VLC with USC: the transmission range is reduced from a few meters to merely 0.04 m,
and the throughput is decreased by more than 90%. To address this issue, we leveraged
the unique spatiotemporal characteristics of the rolling shutter effect on USC to design
a pixel-sweeping algorithm to identify the sampling points with minimal interference
from the transparent screen. We further proposed a novel slope-boosting demodulation
method to deal with color shifts brought by leakage interference. We built a proof-of-
concept prototype using two commercial smartphones. Experiment results showed that
our proposed design reduces the BER by two orders of magnitude on average and im-
proves the data rate by 59×: from 914 b/s to 54.43 kb/s. The transmission range was also
extended by roughly 100×: from 0.04 m to 4.2 m.

C. Screen Perturbation for New Security Vector
The widespread use of mobile device cameras, especially in sensitive environments

like home and office, has raised significant privacy concerns due to cameras’ visual sens-
ing capabilities. The advent of full-screen devices integrating USC, brings a new secu-
rity vector. Although screens pose great challenges to under-screen sensors in receiving
light signals, the USC can detect different screen perturbations produced by transpar-
ent screens when they are activated and deactivated in the captured photos. In Chapter
4, we first utilized the transparent screen’s features to inconspicuously modify its dis-
played screen-pixels, imperceptible to human eyes but inducing perturbations on USC
images. These screen perturbations affect deep learning models in image classification
and face recognition. This proposed new type of screen perturbation is a double-edged
sword for users. On one hand, malicious attackers can exploit it to embed adversarial
perturbations into captured images, launching adversarial attacks aimed at disrupting
the performance of legitimate face recognition systems or fooling image classification
models. On the other hand, benign defenders, e.g., users, can leverage screen pertur-
bation to protect themselves from unauthorized deep learning models. For instance,
users can proactively activate specific screen pixels in use. Thus, any images covertly
captured by the under-screen camera would not be correctly identified by unauthorized
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facial recognition models. We designed two methods, one-pixel and multiple-pixel per-
turbations, that can add screen perturbations to images captured by USC and success-
fully fool various deep learning models. Our evaluations on three commercial full-screen
smartphones using testbed and synthesized datasets showed that screen perturbations
significantly decrease the average image classification accuracy, dropping from 85% to
14% for one-pixel perturbation and 5.5% for multiple-pixel perturbation. For face recog-
nition, the average accuracy drops from 91% to merely 1.8% and 0.25%, respectively.

D. An Universal Screen Perturbation to Secure USC
From the perspective of privacy protection, the image-specific perturbation method

is not sufficient for real-world scenarios, as it requires a pristine image to generate image
perturbations for each scene and object, making it ineffective for dynamic and complex
real-world situations. Instead, we need to develop a universal, scene-independent active
perturbation without the need for a pristine image. Furthermore, the developed method
should be optimized for robustness and effectiveness in various conditions, including
different shooting distances, angles, and camera settings. Universal screen perturba-
tions offer greater scalability and generalizability compared to image-specific screen
perturbations, making them more suitable for real-world physical perturbations and de-
ceiving classifiers in diverse contexts. In Chapter 5, we design Unicorn, a novel system
that subtly alters the pixels on the transparent screen to create perturbation in images
captured by USC. These modifications are imperceptible to human eyes but effectively
induce universal screen perturbations on USC images without any hardware modifica-
tion. The inclusion of perturbations renders images with sensitive content, such as per-
sonal identity or password information, unrecognizable by unauthorized image classi-
fication models. We formulated Unicorn as an optimization problem and developed a
differentiable neural USC architecture to solve it. Extensive real-world experiments with
two commercial smartphones across various settings confirmed Unicorn’s robustness,
offering over 90% success rates in protecting against state-of-the-art neural networks,
including advanced image classification services from Google and ChatGPT Vision APIs.

In this dissertation, we have introduced transparent screens and full-screen devices
as a new field of study. Through-screen computing is an emerging area that, while build-
ing on decades-old mobile device technology, offers new dimensions and possibilities
for innovation. This interdisciplinary technology integrates material, structural, me-
chanical, electrical, communications, and importantly, embedded systems and software
engineering. There are numerous opportunities and challenges to address in the devel-
opment of through-screen computing. This dissertation represents the first step toward
realizing this vision and exploring the potential of through-screen computing. We have
demonstrated how to progress towards making this vision a reality. While the field is vast,
this dissertation has only focused on the aspects of embedded and networked systems.
Next, we discuss other opportunities and potentials of through-screen computing.

6.3. NEXT HORIZON
The unique features of transparent screens, along with their interdisciplinary nature, of-
fer fertile ground for the ubiquitous computing community to conceive new problems
and solutions or revisit existing ones in the new context of through-screen computing.
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While not all the potential research directions can be presented here, we discuss some
examples that would achieve breakthroughs and become integral to future daily life.

6.3.1. UNDER-SCREEN IMAGING

Maintaining the full functionality of a camera after placing it under a transparent screen
is challenging. The imaging quality of a camera will be severely degraded due to the low
light transmittance and diffraction effects. As a result, the captured images are noisy and
blurry. While improving the user experience by providing a full screen, USC sacrifices the
quality of photography, face recognition, and other vision tasks. Restoring and enhanc-
ing the images captured by USC are essential. Methods to mitigate these effects include
techniques to restore diminished spatial frequencies in the captured images [99] and
conventional deep neural networks for correcting the significantly blurred images and
enhancing the SNR in the images [11]–[13], [217]. This is an important research direc-
tion of through-screen computing. Further work could continue to restore the quality of
images captured by USC through advanced under-screen computational imaging system
design driven by large foundation models.

6.3.2. TRANSPARENT ‘SCREEN’ FOR RF COMMUNICATIONS

With the advent of self-driving vehicles, there is a growing need for more reliable wireless
connectivity. Besides enabling through-screen VLC, transparent screens can be designed
as Radio-Frequency (RF) antennas to receive modulated RF signals. Transparent screen
antennas offer excellent signal reception capability. Due to their transparency and ultra-
thin nature, these antennas provide placement options that traditional antennas cannot
match. They can be integrated into vehicle windows, sunroofs, or windshields to deliver
connectivity in areas where it is most needed, which enables unparalleled high conduc-
tivity while retaining exceptional transparency. For example, the world’s first transpar-
ent screen antenna for extended reality applications was presented at AWE USA 2022, as
shown in Figure 6.1. Moreover, Reconfigurable Intelligent Surface (RIS) has been pro-
posed to intelligently control wireless channels by reflecting or refracting RF signals.
Transparent screens can be designed for RIS and seamlessly integrated into windows
without affecting their transparency [218]. For instance, Figure 6.2 shows how transpar-
ent screen windows help signals reflect at design-specific angles to eliminate blind spots
in communications of street blocks and help RF signals penetrate throughout buildings.

Figure 6.1: Transparent 5G antenna in
ARfusion smart lens [219].

Figure 6.2: Transparent screen antenna reflects signal to
cover dead zones [220].
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Figure 6.3: Sage smart window
with transparent screen [226].

Figure 6.4: Flexible, see-through
transparent battery [227].

Figure 6.5: Transparent flexible
screens for skin-like wearables [228].

6.3.3. CHARGING BEHIND/ON TRANSPARENT SCREEN

Energy harvesting could replace traditional batteries in low-end mobile devices [221],
[222]. The energy can be harvested from various sources, including light, radio waves,
vibrations, temperature differentials, wind, etc. Transparent screen can enable energy
harvesting behind/on the screen, promoting battery-free through-screen computing.
Specifically, the transparent screen can absorb and harvest energy from infrared and
ultraviolet light, as well as portions of visible light, while allowing the remaining light
to pass through [223], [224]. Therefore, transparent screens can be used to design smart
windows, as shown in Figure 6.3. Meanwhile, transparent screen can maintain their elec-
trochemical properties under wearable conditions, and thus have great potential in act-
ing as batteries [225], as shown in Figure 6.4. With these features, a transparent screen
can be fitted to the entire mobile device body, including on top of the device, to simul-
taneously display information, harvest energy, and store energy to enable battery-free
through-screen computing. Besides, transparent screen can be seamlessly integrated
into various parts of the human body or accessories like arms and necks without affect-
ing the wearer’s vision (See Figure 6.5). This through-screen computing on the human
body can empower applications such as motion detection and health monitoring.

6.3.4. MORE NATURAL INTERACTION WHEN FACING THE SCREEN

Positioning the camera behind the screen eliminates the constraints imposed by the de-
vice’s bezel, notch, or hole, thereby enhancing gaze awareness during video calls and
conferencing–key functions of a front-facing camera. In conventional setups, cameras
are often positioned at the top or bottom of the screen, causing an offset from the nat-
ural interaction where the user’s eyes focus on the screen’s center. These offset camera
positions disrupt natural eye contact, as participants must choose between looking di-
rectly at the camera or at the screen, resulting in a loss of subtle non-verbal cues [229].
This misalignment between the camera’s perspective and the on-screen image of the
remote participant persists in modern video conferencing systems. We could optimize
camera placement behind the screen based on the UI design of traditional video apps.
For example, by positioning both the camera and the speaker’s face at the center of the
screen, the offset between the user’s viewpoint and the displayed face of the speaker can
be minimized, enabling a more natural eye contact experience. We envision that this
new through-screen computing paradigm could refine the user’s on-screen appearance
and perspective by optimizing the positions of under-screen sensors and applying gaze
correction technology, creating a more natural and immersive interaction experience.
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6.3.5. THROUGH-SCREEN SENSING WITH REFLECTED SCREEN LIGHT

Since the light spectrum is license-free and fine-grained optical sensors such as cameras
are widely deployed on mobile devices, pervasive sensing with light has received signif-
icant interest. Existing sensing systems with light rely on identifying the shadow caused
by a moving object blocking the light source [230], [231] or the reflected light [232], [233].
Future work could leverage the screen as the light source and the under-screen sensors
as the receiver to enable through-screen sensing with reflected screen light: under-screen
sensors sense various information from the light emitted by the screen and reflected by
objects. The advantage is that an additional active light source is not required. Below we
discuss some directions on this topic.
Gesture recognition. One direction is to sense people’s movements (motions, postures,
positions, etc.) in a two-dimensional or three-dimensional (3D) plane, utilizing the light
emitted by smartphone screens or TVs. The users can perform the gestures in front of a
device and the gestures can be perceived and recognized by under-screen sensors, en-
abling convenient and non-invasive control of future mobile devices. This can also be
combined with popular motion-sensing games to achieve higher recognition accuracy
and finer resolution in 3D human body modeling.
Novel authentication scheme. One existing novel under-screen authentication scheme
is under-screen fingerprint sensors. We can design similar authentication schemes, for
instance, facial liveness detection using an under-screen camera. The screen can emit
light with carefully designed brightness or color; our faces with unique shapes and flat-
ness can reflect screen light differently to the under-screen sensors, enabling novel face
authentication. Another important biometric measure is cardiac patterns, uniquely de-
fined by the heart, lung, and vein structures of individuals. These cardiac patterns can be
obtained with a photoplethysmogram (PPG), which measures changes in blood volume
via light absorption. Traditionally, PPG is obtained using a pulse oximeter on a finger,
consisting of a small LED that emits light and an optical sensor that captures how much
light is absorbed through the body. With through-screen sensing with reflected light, the
screen could utilize its RGB pixels to emit the light, without using an additional LED.
Integrated sensing and communication behind screen. In future through-screen com-
munication, there will still be a need for sensing. It is essential to design new protocols in
through-screen computing to integrate communication and sensing. At the communi-
cation level, overcoming the dynamic interference of the screen and designing a scheme
to address signal interruptions caused by real-world actions that need to be sensed is
necessary. At the sensing level, overcoming the influence of dynamic modulated signals
and screen interference to complete sensing is essential. Hence, new communication
signal processing and intelligent sensing recognition schemes must be designed. We
could develop a hierarchical system to accomplish various sensing tasks alongside com-
munication functions.

6.3.6. RISK AND PROTECTION

Visual sensors are not only pervasive in the cameras of mobile devices but also ubiqui-
tous in Internet of Things (IoT) devices, including security cameras, doorbell cameras,
smart TVs [234], refrigerators [235], pet monitors [236], and more. However, visual sen-
sors are bringing privacy issues in the advanced artificial intelligence era. In today’s dig-
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ital world, the visual sensors on mobile devices have become our eyes to connect, work,
and share moments. However, this incredible convenience has pitfalls. Privacy con-
cerns have appeared as hackers could turn any visual sensors into instruments of intru-
sion. Networked mobile devices are often neither transparent nor secure, with recorded
videos being subject to various vulnerabilities [237] and unauthorized leakages. Nest
security cameras might leak videos about the former user [238], and when Xiaomi IoT
cameras are connected to the Google Hub, the monitoring images might show scenes
of other users [239]. Cybercriminals, equipped with sophisticated artificial intelligence
like deep neural networks, can now mine images for valuable information. This high-
lights the pressing need for innovative privacy solutions that not only protect us but also
maintain the aesthetic integrity of our devices.

On the other hand, the idea of programmable apertures involves using an ampli-
tude/phase mask to code the aperture of the camera lens [240], [241]. They are usually
used to construct a new type of programmable-aperture-based camera that encodes the
measurements of the scene and requires carefully designed computational algorithms
to decode the target scene. Programmable apertures have potentially wide-ranging pri-
vacy protection uses, but they are typically only available in custom cameras. Transpar-
ent screens can offer an alternative flexible protection solution. Transparent screens can
also be considered a special type of programmable aperture due to their self-luminous
nature, allowing them to dynamically display screen pixels to change the scenes cap-
tured on cameras. The proposed Screen Perturbations in this dissertation can be ex-
tended beyond under-screen cameras, with potential applications involving transparent
screen cover for any visual device to create a visual shield. For example, users could at-
tach a transparent screen over any visual sensors to obscure sensitive information while
preserving core visual sensing functions, such as gesture or motion recognition. Overall,
the transparent screen cover has the potential to unlock a range of new applications and
possibilities, building trustworthy mobile devices with any visual sensors. The list below
provides a glimpse into the near future:
Side information leakage. Side-channel attacks exploit unintended leakage information
from mobile devices to launch unexpected attacks and violate user privacy. In through-
screen computing, the advent of transparent screens not only provides opportunities
to implement new side-channel attacks but also brings new possibilities for preventing
potential side-channel attacks and protecting user privacy. Below, we outline potential
side information leakage in through-screen computing:

• Side App activity leakage. Wireless data transmission patterns could reveal the ac-
tivities of common mobile apps (e.g., YouTube, Facebook, and WhatsApp) across
different categories: video, music, social media, communication, and gaming [242],
[243]. The screen, as a crucial interface, can also be used to reveal the activity of
mobile devices. UI design is prioritized for each app upon launch, and under-
screen sensors can track screen light emissions during app usage to infer user ac-
tivities on mobile devices, thereby compromising user privacy. The primary rea-
sons for this include: 1) Each app has a distinct design style and color scheme. For
example, YouTube predominantly uses red, Facebook uses blue, and WhatsApp
uses green. By detecting the main color of the screen display, under-screen sen-
sors can infer the app in use. 2) Apps exhibit different interactive behaviors. Social
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media apps, for instance, do not update displays as frequently as gaming or video
apps and often display static content. The content presentation and user interac-
tion logic of these apps can further expose app activity on the screen. Additionally,
distinctive startup animations of different apps can help hackers infer app activity
history solely by analyzing the reflected screen light.

• Side visual leakage. Side visual leakage refers to sensors whose main function is
not visual imaging, such as ambient light sensors and Time-of-Flight (ToF) sen-
sors, which can recover visual information from their readings after applying sig-
nal processing algorithms. Recent studies [244] show that ambient light sensors
could present imaging privacy threats. Also, ToF measurements not only can dis-
play depth information, such as the three-dimensional structure of a face used in
Face-ID, but also can be manipulated to expose visual information, including key
facial details of users [245], [246]. To address these leakage concerns, the screen
can slightly and infrequently change its brightness, color, and displayed contents,
modifying the under-screen sensor’s single-pixel readings in through-screen com-
puting. This slight modification will not trigger the entire screen brightness or al-
ter the measured Face-ID but will prevent the optical sensor’s low-resolution and
even single-pixel readings from being restored to a high-resolution visual image
through generative AI models.

Under-screen hidden spy camera detection. Hidden spy cameras monitoring people in
private spaces have increasingly become a worldwide problem. For example, in South
Korea alone, a total of 5541 spycam-related crimes were reported in 2021 [247]. Loca-
tions such as Airbnb accommodations are particularly attractive for attackers to install
these hidden cameras. Recent surveys show that 11% rental accommodation visitors had
found a hidden camera in one of their rental visits [248]. Further, hackers can customize
devices to hide spy cameras behind transparent screens, such as large TVs and moni-
tors. The transparent screens allow light to reach the under-screen spy camera while
displaying content, making the camera unnoticeable to the human eye, especially when
content like videos is being displayed. This makes the under-screen camera a new attack
vector in the field of spy camera crimes. Detecting hidden under-screen spy cameras is
a challenging task and needs to be addressed. There are research opportunities to detect
under-screen spy cameras using network traffic [249], [250], thermal emissions [251], or
interesting optical reflections [252] due to the limited field of view for combined screen
and under-screen spy cameras.

6.3.7. SPATIAL INTELLIGENCE OVER SCREEN
Spatial intelligence represents advanced AI capabilities, enabling large models to per-
form complex visual reasoning and action planning, akin to human abilities. High-
resolution transparent screens can create realistic AR objects and scenes [253], seam-
lessly integrating with the real world to facilitate spatial intelligence. Depth information
is another critical factor for large models to understand the 3D world, significantly influ-
encing their interaction with objects in space. Transparent screens can aid under-screen
sensors in obtaining depth information, enhancing spatial intelligence. Innovative 3D
holographic AR glasses [254], using transparent screens and under-screen sensors, can
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present vivid full-color 3D objects, offering immersive experiences without bulky de-
vices like Apple’s Vision Pro or Meta’s Quest headset. By using the feedback from the
under-screen sensor and the AI algorithm to calibrate the depth information, we can
better present the future of spatial intelligence. This novel screen application promises
substantial impacts across gaming, social media, training, and education.
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Epilogue

Transparent screen, like a magical “window”, has quietly broadened our horizons, trans-
forming the way we interact with the world. This journey of development has been
marked by relentless technological advancement and the ingenious integration of de-
sign aesthetics. Each leap in pixel design and each material innovation represents the
splendid bloom of technological power in the microscopic world. It has not only revo-
lutionized our visual experience but also fundamentally reshaped human interactions.
Let us follow the light through the transparent screen into the vibrant and colorful under-
screen world, exploring the infinite possibilities behind the “window” that lies ahead.
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