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Abstract

This research develops a surrogate modeling framework to efficiently analyze and optimize a proposed
pump and gate system designed to mitigate compound flooding in the Clear Lake region, Texas. Tra-
ditional numerical hydraulic models are often computationally expensive for large number of simula-
tions. As probabilistic assessments can require O(103) to O(105) runs, a cheaper alternative would
be necessary for robust probabilistic assessment. This study addresses this limitation by developing a
deep-learning surrogate to approximate the complex hydrodynamic behavior.

The methodology involved three main stages. First, a 1D HEC-RAS model of the Clear Lake system
was adapted to serve as the physics-based ”ground truth” generator. Second, this model was used
to generate a training dataset of 2,400 simulations. This was achieved by systematically sampling
key infrastructure design parameters (gate width Wg, number of pumps np, and activation levels hon)
alongside a wide range of synthetic compound flood forcings (inflow hydrographs and downstream
storm surge boundaries).

Third, three distinct Long Short-Term Memory (LSTM) network architectures (Models A, B, and C) were
developed to compare different data encoding strategies. Model A, a direct sequence-to-sequence
(seq2seq) model, was provided with all dynamic inputs, including the known pump discharge time
series (Qpump). Model B tested the model’s ability to infer dynamics by replacing the Qpump time series
with static design parameters (np, hon). Model C used an autoregressive structure, feeding its own past
water level predictions back as inputs to dynamically infer the pump response.

The results demonstrate that the fully-informed LSTM (Model A) can successfully learn and reproduce
the governing hydrodynamic processes with very high accuracy. However, models that attempted to
infer dynamic behavior from static design parameters (Models B and C) show reduced performance.
These models particularly struggled to capture the sharp, transient effects of pump (de)activation, lead-
ing to overly smoothed predictions. This study concludes that while LSTMs are capable of learning the
physical patterns of the system. The main challenge lies in feature encoding, specifically, enabling the
model to capture complex, dynamic responses from static inputs. The framework demonstrates the
potential of LSTMs, but emphasizes that how the data is represented is the key factor in developing a
surrogate model suitable for design optimization.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Clear Lake Case Study 5
2.1 Socio-Geographic Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hydrodynamic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Compound Flooding Clear Lake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Performed (Modeling) Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Mitigation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 The Galveston Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Preliminary Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Theoretical Background 13
3.1 From Physics-based to Data-Driven Models . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Machine Learning vs. Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Model Training and Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Sequential Data-Driven Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Long Short-Term Memory (LSTM) Models . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methodological Overview 17

5 Hydrodynamic Modeling 19
5.1 HEC-RAS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Model Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Model Validation and Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Validation USACE Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Validation Storm Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Implementation of Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 Floodwall and Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.2 Pump Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.3 Primary Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.4 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.1 Hydrodynamic Model Validation Results . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.2 Model Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.3 Final System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Training Data Construction 31
6.1 Design Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Pump Configurations (Sampling np and hon) . . . . . . . . . . . . . . . . . . . . 32
6.1.2 Gate Width (Sampling Wg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.3 Total Design Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Forcing Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.1 Inflow Hydrographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.2 Downstream Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.3 Parameter Overview and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.4 Automation of HEC-RAS Model Runs . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



Contents iv

6.3.1 Forcing Parameter Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.2 Generated Forcing Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Final HEC-RAS Simulation Outputs . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 LSTM Modeling 38
7.1 Model-A: Baseline System Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Model-B: Static Design Evaluator (HEC-RAS Replacement) . . . . . . . . . . . . . . . . 40
7.3 Model C: Operational Forecaster (Autoregressive) . . . . . . . . . . . . . . . . . . . . . 41
7.4 Splitting and Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Overview LSTM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.1 Model Comparison and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Results 46
8.1 LSTM Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.1.1 Training and Validation Performance . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.2 Computational Efficiency: HEC-RAS vs LSTM . . . . . . . . . . . . . . . . . . . 47
8.1.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Discussion and Recommendation 55
9.1 General Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 Limitations and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.2.1 Hydrodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.2 Training Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.3 Choice for LSTM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.4 LSTM-specific Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.5 Further Exploration: Improvement of Model B . . . . . . . . . . . . . . . . . . . . 61
9.2.6 Limitations and Recommendations Overview . . . . . . . . . . . . . . . . . . . . 62

10 Conclusion 63

A System Representation 69
A.1 Additional Gate Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Models USED Mott MacDonald (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Database construction 70
B.1 Inflow Distribution Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2 Pump Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C Tidal Analysis Eagle Point 73

D Feature Engineering and Reprocessing 75
D.0.1 Lagged Correlation Analysis (LCA) . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.0.2 Cross Correlation Analysis (Cov Matrix) . . . . . . . . . . . . . . . . . . . . . . . 76

E Sensitivity Analysis of Model C 78
E.1 Sensitivity to Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.2 Sensitivity HMS Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

F Results Model D 83
F.1 Quantitative Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
F.2 Visual Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Figures

1.1 Overview of proposed infrastructure and its location (USACE, 2024) . . . . . . . . . . . 3
1.2 General workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Watershed Clear Creek and Armand Bayou with measurement stations (USGS, 2025;
HCFCD, 2025d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Clear Lake (and Armand Bayou) Watershed (Bass and Bedient, 2018) . . . . . . . . . . 7
2.3 Multiple lines of defense at Galveston Bay (USACE and GLO, 2021a) . . . . . . . . . . 9
2.4 Location of proposed infrastructure at the Clear Lake inlet . . . . . . . . . . . . . . . . . 10
2.5 Technical drawing pump station (USACE, 2021) . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Side view of infrastructure, (MacDonald and Tetra Tech, 2021) . . . . . . . . . . . . . . 11
2.7 Elevation map of area around flood wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Fully connected neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Training process in deep learning algorithms. The learning algorithm (e.g., stochastic gra-

dient descent) updates the network parameters through backpropagation, which occurs
within the model’s computational graph, even though it is illustrated here as a separate
process. (Rivas-Blanco et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 LSTM Gates within LSTM cell (Figure obtained from DSAIE Teaching Team (2024)) . . 15
3.4 LSTM overview (Figure obtained from DSAIE Teaching Team (2024)) . . . . . . . . . . 16

4.1 Flow Diagram Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Location of HEC-RAS model truncation marked by red dotted line. The model used in
this study is the part to the right of this line. . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Clear Lake model domain and required hydrodynamic boundary conditions. Q1−4 reflect
the inflow hydrograph boundary conditions. The gate operations for the existing gate are
visualized on the map (gexg(t)). The downstream boundary condition is hbay . . . . . . . 21

5.3 Inflow boundary conditions (+30% rainfall) generated by HEC-HMS. . . . . . . . . . . . 23
5.4 Rainfall time series obtained from HCFCD (2025c) for (a) Hurricane Harvey and (b) Trop-

ical Storm Beta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 HEC-HMS–simulated vs. USGS–measured discharge for (a) Hurricane Harvey and (b)

Tropical Storm Beta at the Friendswood station. . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 HEC-HMS–computed inflow hydrographs for (a) HurricaneHarvey and (b) Tropical Storm

Beta, used as upstream boundary conditions in HEC-RAS. . . . . . . . . . . . . . . . . 25
5.7 Measured downstream water levels at Eagle Point (NOAA) (for location see Figure 2.1)

for (a) Hurricane Harvey and (b) Tropical Storm Beta, applied as downstream boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.8 Implementation infrastructure in HEC-RAS model . . . . . . . . . . . . . . . . . . . . . . 26
5.9 Inline flood structure at HEC-RAS river section 3823 . . . . . . . . . . . . . . . . . . . . 26
5.10 Maximum water levels from the modified HEC-RAS model (HMS+30% rainfall). . . . . . 29
5.11 Modeled vs. Measured water levels at Clear Lake for Harvey (panel a) and Beta (panel

b). ”Modeled” refers to the ”Q Model”, while ”Modeled (HS)” refers to the ”h Model”. . . 29
5.12 Clear Lake system representation showing the location of the boundary conditions, and

the design parameters of the infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Flow Diagram Training Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 From system forcings to synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Example of a Gamma distribution fitted to a normalized inflow hydrograph. Where qp

and tp refer to the peak discharge and its offset respectively. . . . . . . . . . . . . . . . 33

v



List of Figures vi

6.4 Example of a lognormal fit (red line) to the peak discharge (qpeak, blue dots) of tributary
Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.5 Parameter distribution fits for synthetic storm surge generation. (a) Generalized Pareto
Distribution (GPD) fitted to surge height exceedances over the 0.9 m threshold. (b) Nor-
mal distribution fitted to the observed surge asymmetry coefficient. . . . . . . . . . . . . 35

6.6 Synthetic generated Q1, Q3 and Downstream boundary from sampled parameters . . . 37
6.7 HEC-RAS model inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1 LSTM Architecture Schematization (Figure from Compare, Ye, and Meyer-Baese (2023) 39
7.2 General training loop schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Schematization teacher forcing (a) vs autoregressive (b) training . . . . . . . . . . . . . 42

8.1 Computed model loss curves over epochs for Model A (blue), Model B (orange), and
Model C (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2 Scatter plots of predicted versus observed water levels for Models A, B, and C. Model A
shows the tightest clustering around the 1:1 line, indicating the highest predictive accu-
racy, while Model C exhibits larger scatter, particularly at higher water levels. Deviations
around 1–1.5 m suggest challenges in capturing the dynamics of pump activation. . . . 48

8.3 Comparison of LSTM model predictions with observed water levels for selected test set
samples. Each subplot shows the input inflows and downstream boundary conditions
(top) and the predicted and measured water levels (bottom). In light grey, the pump
response is shown, based on the pump variables np, hon, and the target variable hlake. . 50

8.4 Sequential inputs for test sample 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Sensitivity of Model C predictions to varying gate widths. Inputs are based on test sample

65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.6 Sensitivity of Model C predictions to varying numbers of pumps. Inputs are based on

test sample 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.7 Sensitivity of Model C predictions to different pump activation patterns (see Table 8.4).

Inputs are based on test sample 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.8 Sensitivity of Model C predictions to different, unseen discharge data. . . . . . . . . . . 54

9.1 Input space for (a) pump capacity over time, and (b) np and & hon . . . . . . . . . . . . 59

A.1 Hydrodynamic and hydrologic model of Clear Creek watershed (HCFCD, 2022) . . . . . 69

B.1 Gamma distribution fit to available hydrographs . . . . . . . . . . . . . . . . . . . . . . . 71

C.1 Measured tidal signal at Eagle Point over the analysis period. . . . . . . . . . . . . . . . 73
C.2 Detected tidal events using a 0.5 m threshold. . . . . . . . . . . . . . . . . . . . . . . . . 73
C.3 Detected tidal events using a 0.9 m threshold. . . . . . . . . . . . . . . . . . . . . . . . . 74

D.1 Lagged-Correlation-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
D.2 Cross-correlation matrix across model simulations . . . . . . . . . . . . . . . . . . . . . 77

E.1 Effect of gate width on Model C performance. . . . . . . . . . . . . . . . . . . . . . . . . 78
E.2 Impact of the number of pumps on Model C results. . . . . . . . . . . . . . . . . . . . . 79
E.3 Sensitivity of Model C to the pump activation stagger. . . . . . . . . . . . . . . . . . . . 80
E.4 Overview of the input configurations corresponding to the sensitivity analysis. . . . . . . 81
E.5 Model C, HMS Inflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
E.6 Model C, HMS Inflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.7 Model C, HMS Inflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.8 Model C, HMS Inflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

F.1 Scatter plots of predicted versus observed water levels for Models B and D. . . . . . . 83



List of Tables

2.1 Key hydrodynamic parameters for the Clear Lake system. . . . . . . . . . . . . . . . . . 6
2.2 Major storm events causing flooding in the Clear Lake area over the past 20 years. . . . 7
2.3 Overview of available modeling studies for compound flooding at Clear Lake. 1The report

referenced in the final row was released during the construction of this thesis. A short reflection
on its implications is added in the Limitations–Recommendations section. . . . . . . . . . . . . 8

5.1 Model characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Overview of model inputs and boundary conditions. . . . . . . . . . . . . . . . . . . . . 21
5.3 Rainfall intensity (in millimeters) for various return periods and durations. . . . . . . . . 23
5.4 Peak water levels in Clear Lake for various return periods based on USACE simulations

and the modified HEC-RAS model results (in meters, NAVD88). . . . . . . . . . . . . . 28
5.5 Summary of variables used in the framework. . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Overview of inflow parameters, forcing types, and probability distributions. . . . . . . . . 34
6.2 Overview of parameters, forcing types, and probability distributions. . . . . . . . . . . . 36

7.1 Overview of LSTM model setups and their objectives . . . . . . . . . . . . . . . . . . . . 38
7.2 Comparison of input features across the three LSTM dataset variants. . . . . . . . . . . 44
7.3 Summary of LSTM model architectures, trainable parameters, and overfitting considera-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Training duration and efficiency metrics for Models A, B, and C. The epoch of conver-
gence is defined as the first epoch after which the validation loss remains within 2% of
the final loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Computational efficiency of HEC-RAS and LSTM surrogate models. . . . . . . . . . . . 47
8.3 Performance metrics for the LSTM models. . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.4 Overview of pump activation patterns used in the analysis. Each pattern defines the

activation head (m) for all npumps = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.1 Summary of key limitations, their implications, and recommendations. . . . . . . . . . . 62

A.1 Additional gate parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 Overview of pump configurations for varying numbers of pumps, with rounded hon and
hoff levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F.1 Performance metrics for the LSTM models. . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



1
Introduction

Research Context
Compound flooding, where intense rainfall, river discharge and storm surges combine to create severe
flood hazards, forms a serious and increasing threat to many low-lying coastal watersheds in the world
(Leonard et al., 2014; Antonia Sebastian, 2022). The eastern United States coastal region is prone to
these compound flooding events. Here, hurricanes and tropical storms can generate significant wind-
driven storm surges, and at the same time, release huge amounts of rain (Wahl et al., 2015), (Antonia
Sebastian, 2022), and (Bevacqua et al., 2019).

In this region, the trend for increased compound flooding events has also been evident. Climate change
causes storms to be more extreme, developing faster, generating higher wind speeds, and even larger
rainfall amounts (Wahl et al., 2015; Nasr et al., 2023). Only in recent years (2012-2019), this area had
to deal with 12 flood events.

One of the most illustrative examples of recent compound flooding in this region, is the flood event after
Hurricane Harvey in 2017. Harvey brought record-breaking rainfall in this area, while at the same time
generating significant storm surge. The event, that hit this densely populated area with a lot of critical
infrastructure for the rest of the country, led to the death of at least 88 people. 13 million people in the
Southeast region of the U.S. were affected by the hurricane and the total damage caused was estimated
at 125 billion US dollars. Making it one of the costliest natural disasters in U.S. history (Amadeo, 2018;
NOAA, 2018).

To mitigate compound floods, storm surge barriers combined with pumping stations are increasingly
proposed to protect low-lying coastal areas from both marine and pluvial flooding (Kharoubi et al.,
2024). These large systems mitigate flood disasters by closing during storm surges while allowing tidal
movements and navigation under normal conditions (Mooyaart et al., 2014). Given their scale and the
increasing frequency of floods due to climate change, an effective and robust design of such systems
is crucial.

In modern coastal engineering, probabilistically-informed design is becoming increasingly important.
This approach enables uncertainty quantification and robustness assessments (Federal Energy Regu-
latory Commission, 2020). A probabilistic flood framework typically consists of several statistical steps.
First, boundary conditions or forcings, such as river discharges or storm surges, are analyzed to identify
extreme values (for example, using the Peaks-Over-Threshold method). Next, a probability distribution
is fitted to these data, allowing extrapolation to rare return periods (e.g. 100- or 500-year events). This
process yields a probability of exceedance, which forms the basis of classical flood frequency analysis
(FEMA, 2023; Federal Energy Regulatory Commission, 2020).

However, this approach faces limitations when dealing with non-stationary, compound events or inter-
actions. Later developments such as joint probability methods, copulas, and multivariate statistical
approaches address some of these challenges (Naseri et al., 2022), (Song et al., 2024), (Wang, 2023),
(Ai et al., 2018), but translating combinations of forcings and infrastructural settings into probabilities

1



2

of exceedance remains difficult.

A more robust way to assess how coastal infrastructure affects flood probabilities is through Monte
Carlo sampling of model simulations under a wide range of possible boundary conditions and system
parameters. Such analyses often require O(103–105) simulations. The error of a simple Monte Carlo
estimator is given by:

e =
σ√
N

,

where σ is the standard deviation and N is the number of samples. In flood risk applications, ex-
ceedance probabilities in the order of 10−2 to 10−3 (or even smaller) are common. Achieving a sta-
ble estimate therefore requires approximately N ≈ 100/P simulations, for example, 10,000 runs for
P = 0.01 and 100,000 runs for P = 0.001 (Nathan, Weinmann, and Hill, 2003; Ziya and Safaie, 2023).

It should be noted, however, that the standard error formula relates to the standard deviation of the
estimator around the mean and does not fully capture uncertainty in the tails of the distribution. For
rare events (small exceedance probabilities), the actual error in the estimated probability can be much
larger than suggested by e = σ/

√
N , especially if the sampled events are not sufficiently representative

of extreme conditions. Thus, care must be taken when interpreting Monte Carlo estimates for very low-
probability, high-impact events.

Research Problem
Traditional physic-basedmodels are powerful and intuitive but can be computationally expensive. When
thousands of scenarios must be simulated, these models become impractical. This limits the ability to
perform a Monte Carlo analysis, and hence, quantify realistic probabilistic risks and uncertainties when
pump or gate systems are implemented.

Recent advances in deep learning offer a promising alternative. Data-driven surrogate models can
approximate hydrodynamic behavior at lower computational costs (Haces-Garcia et al., 2025; Bass and
Bedient, 2018; Dang et al., 2024). Several studies have demonstrated the ability of neural networks to
reproduce water levels and flow dynamics from traditional models (A. Li et al., 2024; Ziya and Safaie,
2023; Bass and Bedient, 2018).

However, the use of alternative models for optimizing hydraulic infrastructure, particularly the primary
design and operations of pumps and gates, remains largely unexplored. This creates a knowledge gap
in how data-driven techniques can efficiently approximate the behavior of complex coastal systems,
where these flood mitigation measures are implemented.

Case study: Clear Lake, Texas
To address this research gap, this study focuses on the Clear Lake area along the Texas coast, one of
the regions prone to compound flooding from rainfall and storm surge (Bass and Bedient, 2018; Torres
Dueñas, 2018).

As part of the Coastal Texas Protection and Restoration Feasibility Study (Coastal Texas Study) by
the U.S. Army Corps of Engineers (USACE) and the Texas General Land Office (GLO), a storm surge
barrier with an integrated pump station has been proposed to protect this area (USACE and GLO,
2021a). However, the capacity, configuration, and operation of the proposed pump system have not
yet been optimized, making Clear Lake an ideal case for developing and testing a surrogate-based
optimization framework.

Figure 1.1 shows the location of the Clear Lake proposed flood mitigation plan.
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Figure 1.1: Overview of proposed infrastructure and its location (USACE, 2024)

The findings from this case are intended to support the ongoing Coastal Texas Study and to provide
insights relevant to other low-lying coastal systems worldwide.

Research Objectives
This research aims to investigate how to develop a surrogate deep-learning model that enables compu-
tationally efficient simulations of the proposed pump and gate system at the Clear Lake inlet, supporting
robust and risk-informed hydraulic design. Therefore, the central research question is:

How can deep-learning models be applied to efficiently represent and simulate the hydraulic
behavior of a pump and gate system under compound flooding conditions for the Clear Lake
area (Texas)?

To answer this question, a threefold workflow is presented. Based on the time-dependent hydraulic be-
havior of the system, the Long Short-Term Memory (LSTM) network was selected as the specific deep-
learning architecture for this study. LSTM is a recurrent neural network architecture known for effec-
tively capturing complex, delayed relationships in time-series data (Goodfellow, Bengio, and Courville,
2016). A detailed justification for the selection and theoretical background of the LSTM model is pro-
vided in Chapter 3. This workflow defines the following sub-questions:

1. System Representation: How can the Clear Lake system be represented in a hydrodynamic
model that accurately captures system responses to proposed infrastructure interventions?

2. Training Data Generation: How can this physics-based representation be used to generate a
representative and computationally-efficient training dataset that captures the system’s response
to both a wide range of compound flood forcings and key infrastructure design parameters?

3. Surrogate Encoding and Training: How can the simulation dataset be used to develop an
efficient LSTM model that is capable of capturing response in waters level to pump and gate
variations and operations?

Research Scope
The primary focus of this thesis is on developing a valid surrogate modeling framework, capable of
accurately reproducing the hydrodynamic behavior of the Clear Lake system. The study therefore
concentrates on how to build such a data-driven surrogate, including the data generation and the model
design.

To support this objective, the Clear Lake system is represented through a simplified hydrodynamic
model. Because a modular workflow is presented, this system representation can in future work be
replaced by a more detailed model, without changing the main workflow.

While the developed surrogatemodel is designed to enable fast and flexible analysis and optimization of
pump and gate configurations, these applications are not performedwithin this thesis. Themethodology
forms a foundation that can be extended in future research toward full optimization and probabilistic
assessment of coastal protection systems.
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Research Methods and Outline
Chapter 2 and Chapter 3 describe the theoretical background. Where Chapter 2 provides background
information about the Clear Lake system and Chapter 3 introduces key concepts of data-driven deep-
learning methods that form the foundation of this study’s methodology.

Chapter 4 presents an overview of the methodology, which follows a structured workflow. First, the
Clear Lake system is represented using a traditional hydrodynamic model, described in Chapter 5.
Chapter 6 explains how this model is used to generate training data, which serve as inputs for the
LSTM surrogate models developed in Chapter 7. Figure 1.2 illustrates the overall workflow of the
study.

Figure 1.2: General workflow

Chapters 5 and 6 also present intermediate results, which inform the subsequent steps of the work-
flow. The results of the surrogate LSTM model are presented in Chapter 8. Chapter 9 evaluates
these results and discusses the study’s limitations, followed by corresponding recommendations. Fi-
nally, Chapter 10 concludes the study, linking the main findings, interpretations, and limitations to the
overarching research objective.



2
Clear Lake Case Study

This chapter provides the theoretical background on theClear Lake region, outlining its socio-geographic
characteristics, hydrodynamic system, and history of compound flooding, followed by proposed mitiga-
tion strategies and an overview of previous modeling studies.

2.1. Socio-Geographic Background
Clear Lake, located in southeastern Texas near Houston (US) (Figure 2.1), is a brackish estuary con-
nected to Galveston Bay. The total Clear Creek watershed (including Armand Watershed, whose
streams also end in Clear Lake), spans approximately 660 km2 and lies within the counties Brazo-
ria, Fort Bend, Galveston and Harris (Texas Stream Team, 2024). The total watershed area holds a
population of around 320.000 people (estimates of 2020) (HCFCD, n.d.[b]; HCFCD, n.d.[a]). The land-
cover/land use in the area is roughly 50% residential/commercial, 20% industrial (including NASA’s
Johnson Space Centre) and 30% green space or wetlands. The region has a humid subtropical cli-
mate, with a mean annual precipitation around 1330 mm and a mean evaporation of roughly 50%
(Texas Stream Team, 2024).

Located along the Gulf Coast of the United States, the Clear Lake system is part of a densely populated
and economically important region, prone to tropical storms, hurricanes and sea-level rise. Its location
makes this watershed a representative study case of many coastal urban watersheds where limited
elevation, rapid historical development and climate change interact to increase flood risk (Thatcher,
Brock, and Pendleton, 2013; USACE and GLO, 2021a).

Figure 2.1: Watershed Clear Creek and Armand Bayou with measurement stations (USGS, 2025; HCFCD, 2025d)

5
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2.2. Hydrodynamic System
Figure 2.1 visualizes how a network of tributaries and drainage channels converges on the Clear Lake,
which connects to the Galveston bay through two channels; a gated channel in the north, and an
ungated main navigation channel in the south.

Under normal flow conditions, the system’s water level is strongly influenced by the downstream bound-
ary, the tidal fluctuations of Galveston Bay water surface. The water level in Clear Lake on average
fluctuates between -0.1 m and +0.3 m NAVD88. However, wind-driven setup can cause deviations
from the tidal signal. This becomes evident looking at the difference between predicted water level
and measured water level at HCFCD (2025d) and NOAA (2025). During rainfall events, most water is
discharged in Clear Lake from the Clear Creek and Armand Bayou (and their tributaries) .

The watershed is a low-lying, flat, wetland area, with elevations ranging from approximately 23 m
NAVD88 upstream to 1.5 m–2m near Clear Lake. The area has a mild slope of roughly 0.03% (HCFCD,
2022). Studies have shown that the backwater curves of a storm surge, indicating tidal influence, can
reach up to 43 km inland from the Clear Lake inlet at Galveston Bay (Bass and Bedient, 2018).

According to HCFCD (2025b), there is a probability on flooding from 1.43 m NAVD88. From 1.74 m
NAVD88, flooding is likely.

Table 2.1 summarizes key hydrodynamic parameters relevant to the Clear Lake system:

Table 2.1: Key hydrodynamic parameters for the Clear Lake system.

Parameter Value / Description
General Parameters
Average slope 0.03%.
Water levels Typically range between -0.1 and 0.3 m (NAVD88),

but can be higher due to wind set-up.
Storm surge backpropagation Approximately 43 km, governed by wind-driven

setup, bay-water level rise, and tidal interactions.
Roughness (Manning’s n) Depth-varying: n = 0.024−0.0678 s/m1/3 (Torres

Dueñas, 2018).
Flooding possible 1.43 m (NAVD88).
Flooding likely 1.73 m (NAVD88).

Flood Frequency Levels
10% (10-year) 1.83 m (NAVD88).
2% (50-year) 3.02 m (NAVD88).
1% (100-year) 3.54 m (NAVD88).
0.2% (500-year) 4.57 m (NAVD88).

Measurement Stations
Figure 2.1 shows the availability of HCFCD and USGS measurement stations. The HCFCD network
consists primarily of surface water level elevation and rainfall gauges (HCFCD, 2025a). For discharge
data, a key location is the USGS station 08077600 near Friendswood (eastern blue triangle), situated
approximately 20 km upstream of Clear Lake (USGS, 2025). This measurement station only mea-
sures discharge during high flow events, so normal conditions are not captured. The closest NOAA
measurement station is at Eagle Point (NOAA, 2025).

2.3. Compound Flooding Clear Lake
Historical events have demonstrated the regions high vulnerability to flooding. Major events topically
occur during hurricanes or tropical storms that cause compound flooding. According to Leonard et
al. (2014), a compound flood event occurs when multiple drivers, such as storm surge and high river
discharge, interact to produce extreme impacts that would not occur if these drivers acted independently.
This study focuses on compound flood events that occur when large runoff from heavy precipitation
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combine with a storm surge in the Galveston Bay. Figure 2.2 schematizes a compound effect on the
watershed.

Figure 2.2: Clear Lake (and Armand Bayou) Watershed (Bass and Bedient, 2018)

In this region compound floodings are often triggered by storm events because tropical storms and
hurricanes can generate wind-driven storm surges while at the same time release significant rainfall
(Wahl et al., 2015; Antonia Sebastian, 2022; Bevacqua et al., 2019). Recent major storm events,
such as hurricanes Ike and Harvey, have caused devastating damages, including significant economic
losses and loss of life. Hurricane Ike (2008), with its storm surge exceeding the estimated 100-year
level, resulted in billions of dollars in damages and numerous fatalities. In 2017, Hurricane Harvey
brought massive amounts of rainfall to the region, again leading to catastrophic flooding with severe
economic and human impacts (Harris County Flood Control District, 2025).

In addition to these events, several other storms over the past two decades have produced combined
storm surge and rainfall impacts that resulted in extensive flooding across the area. Recent studies
have indicated a further increase in both the intensity and frequency of hurricanes due to climate change
(Bevacqua et al., 2019; Antonia Sebastian, 2022). Table 2.2 provides an overview of the major flooding
events that have occurred in this region.

Table 2.2: Major storm events causing flooding in the Clear Lake area over the past 20 years.

Storm Year Rainfall (approx.) Description
Tropical Storm Erin 2007 200–250 mm Localized pluvial flooding along Clear Creek and

its tributaries Wikipedia contributors, 2025.
Hurricane Ike 2008 150–200 mma Severe surge-driven flooding and backwater ef-

fects within Clear Lake and adjacent bayous
Houston Chronicle, 2008.

May 2015 Floods 2015 250–300 mm Extreme short-duration rainfall causing exten-
sive urban and fluvial flooding in the Clear Creek
watershed Texas A&M University (2015).

Hurricane Harvey 2017 1000–1300 mm Catastrophic rainfall event leading to prolonged
inundation across the Clear Creek and Clear
Lake catchment Harris County WCID 50, 2017;
NOAA National Centers for Environmental Infor-
mation, 2024.

aMost flooding resulted from storm surge rather than rainfall.
Sources: Texas A&M University (2015); Harris County WCID 50 (2017); NOAA National Centers for
Environmental Information (2024); Houston Chronicle (2008); Wikipedia contributors (2025).
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2.4. Performed (Modeling) Studies
Several studies have analyzed compound flooding in the Houston–Galveston region, focusing on the
integrated effects of coastal, fluvial, and pluvial drivers to improve flood predictions (Maymandi, Hum-
mel, and Zhang, 2022; Torres et al., 2015; Couasnon, A. Sebastian, and Morales Napoles, 2018; Bass
and Bedient, 2018; Weathington, 2023; Torres & Associates, 2025). Coupled modeling frameworks,
such as ADCIRC+SWAN and HEC-RAS/HEC-HMS, have demonstrated that integrated simulations
provide more accurate flood representations compared to separate analyses as they better capture the
physical interaction between flood drivers (Torres et al., 2015). Some studies have also implemented
surrogate models to enable rapid probabilistic assessments.

Table 2.3 below provides an overview of the modeling studies performed to the Clear Creek watershed
specific.

Study / Source Model Type Scope / Application Notes
Weathington (2023) 2D HEC-RAS Spatial inundation assess-

ment
One-way coupled with AD-
CIRC storm surge data

Bass and Bedient
(2018)

Surrogate model Rapid probabilistic com-
pound flooding

Combines AD-
CIRC+SWAN + 1D
HEC-RAS + HEC-HMS

FEMA / USGS (Es-
tBFE Viewer)

2D HEC-RAS High-resolution floodplain
mapping

Developed by AECOM
under TWDB/FEMA CTP
program

HCFCD (2025) M3
system

1D HEC-RAS +
HEC-HMS

Stream-specific flooding Official watershedmodels;
includes Clear Lake and
Armand Bayou

Mott MacDonald
(2021)

1D HEC-RAS Preliminary pump and
gate design analysis

Uses HCFCD 1D model
as input

Torres & Associates
(2025)

2D HEC-RAS
(Rain-on-Mesh)

Baseline risk & hotspot
analysis

Bivariate rainfall–surge
analysis.1

Table 2.3: Overview of available modeling studies for compound flooding at Clear Lake.
1The report referenced in the final row was released during the construction of this thesis. A short reflection on its

implications is added in the Limitations–Recommendations section.

Region-specific studies at Clear Lake include a one-way coupling of ADCIRC storm surge outputs into
a 2D HEC-RAS model to evaluate proposed flood protection measures (Weathington, 2023), as well
as the combination of ADCIRC+SWAN outputs with 1D HEC-RAS and HEC-HMS for surrogate-based
joint flooding estimation (Bass and Bedient, 2018). High-resolution 2D HEC-RAS models of Clear
Lake and Armand Bayou are available via FEMA’s “EstBFE Viewer,” developed by AECOM under the
TWDB/FEMA Cooperative Technical Partners (CTP) program (FEMA, n.d.).

Additionally, FEMA has produced 1D HEC-RASmodels for multiple streams in the watershed, available
through HCFCD’s M3 webtool (HCFCD, 2022). The Mott MacDonald (2021) study utilized these official
1D models in preliminary design analyses for the proposed pump and gate system at the Clear Lake
inlet.

Recently, the GGFCD (Galveston County Consolidated Drainage District) and IDRT (Institute for a
Disaster Resilient Texas) have partnered to launch a new research study to the Clear Lake region.
This study aims to provide new insights into flood management through data collection and numerical
modeling (IDRT, 2025).

Torres Dueñas (2018) compared FEMA-computed floodplains with results from compound flood mod-
eling using SFINCS, a semi-advanced 2D model designed to capture all relevant processes in coastal
catchments efficiently (Leijnse, 2018).

However, apart from the preliminary design analysis of Mott MacDonald (2021), none of these studies
explicitly incorporate the proposed Clear Lake inlet pump and gate system in their simulations because
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of the early design stage. This gap is addressed in the present work, using the 1D HEC-RAS Clear
Lake model from HCFCD (2007) as the basis for developing a surrogate model.

2.5. Mitigation Strategies
2.5.1. The Galveston Plan
Because of the high vulnerability to tropical storms and hurricanes of the Texas coastline, the United
States Army Corps of Engineers (USACE) an the State of Texas General Land Office (GLO) have part-
nered to identify and recommend solutions, containing of multiple defense lines, to reduce the impacts
from coastal hazards (USACE and GLO, 2021a). Their final feasibility report provides a recommended
plan for the coast of Texas. This includesmultiple measures along the whole TexasGulf Coast to reduce
flood risk. Examples are the Bolivar Road Gate System, that should keep out significant storm surge
during hurricanes from the Gulf of Mexico. Figure 2.3 below provides an overview of the recommended
plans at the Galveston Bay.

Figure 2.3: Multiple lines of defense at Galveston Bay (USACE and GLO, 2021a)

Given the size and complexity of the project (estimated to cost over $40 billion) numerous local and
international research institutes and engineering firms are involved in its design and execution. The
overall project timeline is extensive, meaning that full implementation will take many years (USACE
and GLO, 2021a). Because of this long planning and construction horizon, smaller-scale protection
measures, such as the proposed pump and gate systems, could potentially be implemented much
earlier than the Bolivar Gate System. Therefore, this study considers a scenario in which the Bolivar
Gates are not yet in place. Furthermore, USACE and GLO (2021b) note that even with the Bolivar Gate
in place, significant storm surge can still develop within Galveston Bay itself due to wind-driven effects.

2.5.2. Preliminary Design Analysis
The Texas Coast Project includes the implementation of a floodgate system at the Clear Lake inlet that
should eliminate wind driven surges fromm the Galveston Bay. In Appendix D, Annex 2 of the Coastal
Texas Study, a feasibility analysis is performed by Mott MacDonald (2021), for this preliminary design.

The design, as described in the feasibility study, includes a 22.86-meter (75 ft) wide sector gate, with a
sill elevation of -3.66 m (-12 ft) to match the authorized width and depth of the main channel (USACE
and GLO, 2021a; Mott MacDonald, 2021). This sector gate is placed in the main channel within a large,
concrete, flood wall, with an elevation of +5.18 meter (+ 17 ft) NAVD88. This structure should be able
to withstand storm surge events with a 100-year return period from the Galveston Bay. To be able to
discharge water from Clear Lake to the Galveston Bay, a pump station is proposed. In the final report
of USACE and GLO (2021a) and MacDonald and Tetra Tech (2021), a design capacity of 566 m3/s
(20,000 cfs) is described. While the feasibility study of Mott MacDonald (2021) (Appendix D, Annex 2)
advised a pump capacity of more than twice that; namely 1,246 m3/s (44,000 cfs). In comparison, the
pump station at IJmuiden, currently the largest in Europe, has a capacity of only 260 m3/s.
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Figure 5.8 below visualizes the location of the proposed infrastructure. The marked existing gate is a
gate structure present in the second outlet channel. This gate was not designed to provide protection
from tides, hurricanes, or storm surges from the Galveston Bay, but rather to stimulate extra outflow for
large rainfall events (HCFCD, n.d.[b]).

More detailed technical drawings from USACE (2021) of the proposed infrastructure are shown in
Figures 2.5 and 2.6.

Figure 2.4: Location of proposed infrastructure at the Clear Lake inlet

Figure 2.5: Technical drawing pump station (USACE, 2021)
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Figure 2.6: Side view of infrastructure, (MacDonald and Tetra Tech, 2021)

The hydrologic and hydrodynamic analyses summarized in Annex 2 (Mott MacDonald, 2021) were
performed using the HEC-HMS hydrology model combined with the one-dimensional HEC-RAS hydro-
dynamic model previously developed for the Clear Lake watershed by HCFCD (2022). The objective of
the this study was to assess the system’s ability to protect the area against a 100-year storm surge com-
bined with a 25-year rainfall event. The design principle was that the flood wall and gate system should
prevent flooding for this case, while not worsening flood conditions during other event combinations
compared to the current conditions.

Modeling Approach
Several rainfall-runoff simulations were conducted for the 10-, 25, 50, 100-, and 500-year rainfall events
with a 24 hour duration. Because the analyses was performed before the release of updated NOAA
Atlas 14 precipitation data USACE applied a 30 percent increase to rainfall intensities. Each simulation
performed in the preliminary analysis covered a three day simulation, using a 30-min time step.

Before each simulated event, the water level in Clear Lake was assumed to be pre-pumped to 0.31 m
MLLW (-0.38 ft NAVD88) and allowed to rise to the target water level of MHW (+0.25 ft NAVD88). If the
gates where closed, the they remained closed throughout the whole simulation period, and wen open,
they remained open. The downstream boundary condition at Galveston Bay was always set to +0.25
ft NAVD88. The total overviews of performed simulations by Mott MacDonald (2021) is presented in
Appendix A.

Key Takeaways
The pump capacity determined in Annex 2 was based on maintaining the water level in Clear Lake at
MHW (+0.25 m NAVD88. This represents a conservative assumption. Earlier analysis by USACE ap-
plied higher inland target water levels of +1.5 m to +1.73 mNAVD88 (Mott MacDonald, 2021), which are
more consistent with the observed flood threshold. The Harris County Flood Control District (HCFCD)
states that flooding at Clear Lake is likely to occur from 1.73 m NAVD88.

Secondly, the proposed 5.18 m (17-foot) flood wall must be integrated to a broader regional flood de-
fense line to ensure storm surge water can not reach the hinterland. The surrounding terrain generally
has an elevation much lower than 5 meter. As currently planned, the structure should tie into the nearby
highway embankment, which indeed has a higher elevation than its surroundings, but still below 5 m
NAVD88.
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Figure 2.7: Elevation map of area around flood wall

Finally, the preliminary analysis assumed that the gates would remain closed for the entire three-day
simulation period. This assumption is also conservative, since storm surges rarely persist for more
than 24 hours. Chapter 5 of this study provides a more detailed analysis of storm surge duration and
dynamic specific to this area. Maintaining the gate closed throughout the whole simulation can lead to
unnecessary water accumulation upstream of the structure, requiring more pump capacity than needed.

It is important to keep in mind that the main objective of the USACE study was not to eliminate all forms
of flooding or to maximize flood reduction, but rather to mitigate storm surge impacts while ensuring
that fluvial flooding does not worsen as a result of the proposed infrastructure.



3
Theoretical Background

This chapter provides a brief theoretical background about the key concepts of data-driven modeling
and deep learning, especially LSTM networks, needed to understand the methods used in this thesis.

3.1. From Physics-based to Data-Driven Models
Hydrodynamic systems are traditionally represented by physics-based models, such as HEC-RAS,
which solve the shallow water equations based on physical laws and boundary conditions. These
models provide interpretable results but are computationally expensive, particularly when used for large
ensembles, long-term forecasting, or optimization under uncertainty.

An alternative is data-driven modeling, where system dynamics are approximated directly from data.
Once trained, such models can reproduce input–output relationships at a fraction of the computational
cost, making them attractive for real-time applications and scenario exploration (Shen, 2018; Sit et
al., 2020). In this study, physics-based simulations are used to generate training data, enabling the
construction of a surrogate model that combines the robustness of physical modeling with the efficiency
of machine learning.

3.2. Introduction to Deep Learning
This section introduces the machine-learning and deep-learning models that will be used in this study. It
briefly explains important definitions, keywords and the basic structures for those who are less familiar
with this field of research. The section is not meant to reinvent the wheel, rather to give an overview of
the most important factors to properly understand this work.

3.2.1. Machine Learning vs. Deep Learning
Deep learning is a subset of machine learning that uses neural networks composed of multiple layers to
learn hierarchical feature representation directly from raw data. This depth allows the model to capture
complex spatial and temporal dependencies and highly non-linear relationships between inputs and
outputs (Goodfellow, Bengio, and Courville, 2016).

At the core of deep learning are artificial neural networks, inspired by the biological neural networks
of the human brain. These networks consist of interconnected nodes called neurons organized into
layers: an input layer, one or more hidden layers, and an output layer. Most layers of these networks
have trainable weights that are updated during training to make the model better fit the target output.
Each neuron receives inputs, applies a weighted sum followed by a non-linear activation function, and
passes the result to neurons in the next layer. The depth and complexity of these layers enable deep
learning models to capture intricate patterns and relationships within data, making them highly effective
for complex tasks such as image recognition, natural language processing, and speech recognition
(Goodfellow, Bengio, and Courville, 2016; Kratzert, Klotz, Brenner, et al., 2018).

Figure 3.1 below shows an example of a fully connected neural network (all the nodes of the input layer
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are connected to all the nodes of the following hidden layers).

Figure 3.1: Fully connected neural network

Alternative neural networks introduce inductive biases. These built in assumptions help constrain the
learning process to overcome the curse of dimensionality (where the number of parameters in the
model grows rapidly as input dimensions increase). Examples of these alternative neural networks
are CNNs (Convolutional Neural Networks) that apply spatial inductive biases to efficiently learn local
spatial representations across input data, andRNNs (Recurrent Neural Networks), that apply sequential
inductive biases to learn how elements in sequence relate to each other. The choice of architecture
and arrangement of layers depends on the specific problem and data type (Shen, 2018).

3.2.2. Model Training and Generalization
Training a deep learning model involves adjusting its parameters (weights and biases) to minimize the
difference between its predictions Ŷ and the actual target values Y . This difference is quantified by
a ”loss function” (e.g., mean squared or absolute error). The gradients of the weights of the network
with respect to the loss function can be calculated using the chain rule for differentiation. This is called
a backpropagation step. Gradient descent is the process of adjusting these weights to minimize the
loss function. The learning rate is a crucial hyperparameter that controls the step size during gradient
descent updates. Setting it too high can cause the model to overshoot minima, while too low a rate
leads to slow convergence (Goodfellow, Bengio, andCourville, 2016). The training process is visualized
below in figure 3.2

Figure 3.2: Training process in deep learning algorithms. The learning algorithm (e.g., stochastic gradient descent) updates
the network parameters through backpropagation, which occurs within the model’s computational graph, even though it is

illustrated here as a separate process. (Rivas-Blanco et al., 2021)

After model training, the model can be used at the interface (or in the inference stage). Model pa-
rameters remain fixed, and it generated predictions for unseen input data. The distinction between
training and inference is crucial for understanding how neural networks generalize from training data
to application.
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3.3. Sequential Data-Driven Modeling
This thesis addresses a time-dependent prediction problem: estimating water levels in Clear Lake
from sequential inflow hydrographs and pump/gate operations. In such tasks, the system state at the
current timestep depends not only on the immediately preceding state but also on delayed cause-effect
relationships that can span long durations.

Given the nature of this problem, several data-driven architectures are suited. For example, Multilayer
Perceptrons (MLPs) can approximate nonlinear relationships but lack temporal awareness. Recurrent
Neural Networks (RNNs) were developed specifically to address this by introducing sequential inductive
biases. However, standard RNNs struggle with long-term dependencies due to the ”vanishing gradient”
problem. During the backpropagation process, the signal required to update weights often diminishes
or explodes as it propagates back through long sequences (Goodfellow, Bengio, and Courville, 2016).

To address the limitations of traditional recurrent neural networks more advanced architectures have
been developed. Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) networks over-
come the limitations of standard RNNs by employing gating mechanisms. These mechanisms facilitate
a ”constant error flow” during training by truncating the gradient where it ”does no harm” (Hochreiter
and Schmidhuber, 1997). More recent Transformer architectures capture long-range dependencies us-
ing attention mechanisms instead of recurrence, and are increasingly used for time series forecasting
(Vaswani et al., 2017; Shen, 2018).

For this research, the Long Short-TermMemory (LSTM) network was selected. While Transformers are
a promising alternative, LSTMs represent a robust and well-established ”state-of-the-art” in hydrological
and hydrodynamical modeling. Their ability to model sequential dependencies has been proven in
numerous studies, being effective at capturing delayed, non-linear relations, common in these systems
(Kratzert, Klotz, Brenner, et al., 2018; Kratzert, Klotz, Shalev, et al., 2019; X. Li, Zhou, Hou, et al., 2024;
An and Ouyang, 2025).

3.4. Long Short-Term Memory (LSTM) Models
LSTMs, first introduced by Hochreiter and Schmidhuber (1997), overcome the limitations of simple
RNNs, particularly the vanishing and exploding gradient problem, by introducing gating mechanisms
that explicitly regulate the flow of information. The core innovation of the LSTM is the cell state, which
acts as a ”memory” path, allowing information to be preserved over long sequences with minimal decay.
Unlike the hidden state in standard RNNs, which is typically modified by matrix multiplications at every
step, the cell state interacts with the network primarily through linear addition operations. This addi-
tive structure is crucial as it ensures that gradients can flow backward through time without vanishing,
enabling the model to preserve relevant information (Hochreiter and Schmidhuber, 1997; Goodfellow,
Bengio, and Courville, 2016).

Each LSTM unit contains three distinct gates, visualized in Figure 3.3. These gates consist of sigmoid
neural network layers that output values between 0 and 1, effectively determining howmuch information
is allowed to pass through the cell.

Figure 3.3: LSTM Gates within LSTM cell (Figure obtained from DSAIE Teaching Team (2024))
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Figure 3.4 shows three consecutive LSTM cells at corresponding time steps.

Figure 3.4: LSTM overview (Figure obtained from DSAIE Teaching Team (2024))

The flow through an LSTM network is as follows (Goodfellow, Bengio, and Courville, 2016)

1. First, the forget gate ft decides which information from the previous cell state Ct−1 is no longer
relevant. It evaluates both the previous hidden state ht−1 and the current input xt, producing a
value between 0 (completely forget) and 1 (completely retain).

2. Second, the input gate it determines what new information from the current time step should
be stored in the cell state. This step includes two operations: the input gate it decides which
components of the cell state will be updated, while a tanh layer produces a vector of new candidate
values C̃t that may be added to the state.

3. Third, the previous cell state is updated to form the new cell state Ct, highlighting the additive
nature of LSTMs:

Ct = ft ⊙Ct−1 + it ⊙ C̃t,

where⊙ denotes element-wisemultiplication. Here, ft scales the previous state (forgetting what is
no longer needed), while it determines how much of the candidate information C̃t is incorporated.

4. Finally, the output gate ot generates the hidden state ht. The updated cell state is first passed
through a tanh activation to constrain values to [−1, 1], and then multiplied by the output gate
activation. This determines which parts of the cell state are relevant for producing the output at
the current time step.

This architecture allows the LSTM to combine external inputs xt and previous hidden states ht−1 while
carrying forward its internal memory st−1 with minimal degradation. By separating the long-term mem-
ory (cell state) from the short-term output (hidden state), the model can preserve slowly varying hy-
drodynamic base states over many time steps while still responding to immediate fluctuations such as
rainfall or pump activation.



4
Methodological Overview

This chapter provides a general overview of the adopted methodology. It explains the threefold method
structure, what the reader can expect in every subsequent section, and how the information flows
between them.

The methodology is structured around three general steps:

1. Represent the Clear Lake hydrodynamic system in a physics-based model.
2. Simulate this model N times to generate data to train an alternative, data-driven model.
3. Develop and train the surrogate model using the constructed database.

The overall methodology is visualized in Figure 4.1

Figure 4.1: Flow Diagram Methodology

Chapter 5 outlines the first part of the methodology: the representation of the Clear Lake system in
a hydrodynamic model. It defines the required model inputs, the implementation of the proposed in-
frastructure and the primary design variables of this infrastructure. The model will be validated and
compared using performed studies and historical events. The result is a physical based model, repre-
senting the hydrodynamic system of Clear Lake, directly addresses the first research question.

Chapter 6 presents how such a physical based model can be used to generate efficient and computa-
tionally feasible training data.

17



18

Chapter 7 shows how a dataset of one-dimensional HEC-RAS simulations can be used to develop and
train an efficient LSTM model that is capable of accurately capturing response in water level to pump
and gate design and operation variations. To achieve this, three LSTM Model setups were developed
and analyzed.

Chapters 5 and 7 each produce intermediate results that are essential for the subsequent methodolog-
ical steps. For this reason, the intermediate findings of those chapters are presented directly within
those chapters, as they form the necessary input for the next step of the workflow. Chapter 7 builds
upon these results and provides the trained surrogate models, forming the basis of the third research
questions as well as the overall objective of this thesis. Therefore, the final results are presented in a
dedicated chapter ”Results” following these three methodological sections.

The trained surrogate LSTM models can be used in the inference stage to efficiently simulate a large
number of potential flow scenarios across different pump/gate designs. This computationally cheap
alternative to HEC-RAS enables Monte-Carlo simulations to explore the performance of various pump
and gate designs and operation settings, supporting a probabilistic assessment of system behavior.
Although optimization itself is beyond the scope of this study, the methodology establishes a framework
for future optimization studies.



5
Hydrodynamic Modeling

This chapter outlines the first part of the methodology: how the Clear Lake system was represented
in a hydrodynamic model. The objective is to develop a physics-based HEC-RAS model to serve as
’ground truth’ for the subsequent methodological steps. The process was defined as follows: First, the
modification of an official HEC-RAS model is explained. This modified model is then validated against
performed studies and historical events. After validation, the proposed pump and gate infrastructure
is implemented. The results of the model validations are presented in the last section of this chapter,
directly leading to a system overview that answers the first research question.

5.1. HEC-RAS Model
The first step was to set up a hydrodynamic model of the Clear Creek river reach. The model used
in this study was based on the official 1D Clear Lake HEC-RAS model, obtained from HCFCD. This
model was originally developed in 2007 and last updated in 2022 (HCFCD, 2022). Although it is a
one-dimensional model, it is suitable for this research for several reasons.

First, the model is publicly available and already validated. Secondly, since the study aims to develop
a surrogate, rather than to build a full hydrodynamic model from scratch, the use of an existing model
significantly reduces development time and complexity. Moreover, the area of interest for this study,
which is the Clear Lake area, has a relatively constant water level, making a 1D model sufficient.

The model discussed was also used in the preliminary design analysis of the proposed infrastructure by
Mott MacDonald (2021), performed for USACE. This is a valuable reference, as it allows for assessment
of how the floodwall, the gate, and the pump station were implemented in their professional design study.
Moreover, it enables a comparison of simulated results, which can be used to support the validation of
the modified HEC-RAS model.

HEC-RAS
HEC-RAS 1D solves the full dynamic-wave form of the Saint-Venant equations, namely the continuity
and momentum balances (Brunner, 2021). In conservative form, these read:
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Here, A is flow area, Q discharge, h water-surface elevation, ql lateral inflow, g gravity, R = A/P
hydraulic radius, β the momentum-correction coefficient, and C the conveyance related to Manning’s
n. HEC-RAS employs an implicit finite-difference scheme, specifically a four-point box discretization in
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space and time, and solves the resulting nonlinear algebraic system simultaneously at all cross sections
using Newton–Raphson iteration at each time step (Brunner, 2021).

Limitations and Assumptions
The model is one-dimensional and steady state by default, meaning modifications are required to sim-
ulate unsteady flow. To make this model unsteady, boundary conditions produced with the accom-
panying HEC-HMS model were used. These HMS computed boundary conditions can be coupled
using the DSS file. Fully coupling these models is outside of the scope of this research, as it is too
time-consuming.

The limitations of 1D modeling must be kept in mind: although the river reach is largely 1D, significant
tributaries, side channels, and other 2D aspects in the Clear Lake area will not be properly represented.

Additionally, the original model was developed in an outdated version of HEC-RAS; version 3.0. This
limits the ability to use more recent features such as RAS-Mapper or advanced structure implemen-
tations. Therefore, the model was updated and made compatible with the most up-to-date version,
HEC-RAS 6.6.

It was assumed that the geometric and bathymetry data in the original model is still valid. This includes
cross section layouts, roughness coefficients, inactive flow paths, and other default parameters.

5.2. Model Adjustment
For this research, the full official 1D model was modified. The main adjustment is the ’cut-off’ of the
model domain to the specific area of interest of this study. The model was truncated at cross section
57171.49, ensuring two cross sections are present upstream of the bridge section at B55625 (the bridge
of FM-270 highway), which is required for unsteady flow in HEC-RAS 6.6.

The domain reduction was done for multiple reasons. First, the preliminary assessment of Mott Mac-
Donald (2021) showed that the flood infrastructure primarily affects the downstream part of the system,
specifically the Clear Lake area. To capture the hydrodynamic behavior of the system, it was advisory
to include the point where the channel widens and transitions into the Lake. To ensure the inclusion
of three important HEC-RAS control structures (I-45, Old Galveston Road, and FM-270), which signifi-
cantly influence flow patterns into Clear Lake, the model domain was extended slightly upstream of the
channel–lake transition point (see Figure 5.1).

By reducing the model domain, time and effort were saved transferring the model from HEC-RAS 3.0
into HEC-RAS 6.6, particularly in updating cross sections. It also reduced the number of tributaries
and sub-basins that needed to be manually inserted from the corresponding HMS model, simplifying
boundary condition setup.

Figure 5.1: Location of HEC-RAS model truncation marked by red dotted line. The model used in this study is the part to the
right of this line.

The model truncation resulted in a ”modified HEC-RAS model” (hereafter also referred to as such).
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Table 5.1 presents the final extent of the modified model, and Figure 5.2 illustrates its domain and
boundary conditions.

Table 5.1: Model characteristics

Parameter Value Unit
Number of cross sections 76 –
Of which inline structures 6 –
Total river length 17.43 km

Boundary Conditions
For the official developed 1D model of HCFCD (2022), the upstream boundary conditions are hydro-
graphs, obtained from the HMS Hydrologic model. All the hydrographs produced for the reaches and
sub-basins are implemented at the corresponding river sections in the hydrodynamic model.

The truncation of the 1D model reduced the number of required upstream boundary conditions. The
primary model boundary conditions are presented in Table 5.2. Figure 5.2 shows a visualization of the
final model domain, with the required hydrodynamic boundary conditions.

Table 5.2: Overview of model inputs and boundary conditions.

Label Source / Location Description
Q1 RS 57171.49 / HEC-HMS

stream 0566_J
Upstream inflow hydrograph representing the main Clear
Creek inflow.

Q2 RS 36556 / HEC-HMS
stream 0022_J

Inflow hydrograph from Cow Bayou tributary.

Q3 RS 18407.60 / HEC-HMS
stream 0022_J

Hydrograph representing inflow from Armand Bayou tributary.

Q4 RS 14000.00 / HEC-HMS
stream 0052_J

Hydrograph representing inflow from Taylor Bayou tributary.

hbay Downstream boundary
(Galveston Bay) RS 0

Stage–hydrograph defining downstream water level. For
storm surge simulations, a synthetic time series is applied; for
historical events, tidal data are obtained from NOAA (2025)

gexg(t) RS 3858 Existing lift gate operations in secondary (Nortern) outlet chan-
nel.

Figure 5.2: Clear Lake model domain and required hydrodynamic boundary conditions. Q1−4 reflect the inflow hydrograph
boundary conditions. The gate operations for the existing gate are visualized on the map (gexg(t)). The downstream boundary

condition is hbay

.
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It was chosen to neglect the sub-basin inflow to the river reach. The cumulative flow of the sub-basins
only contributes a few percent of that of the tributaries. Furthermore, including them would complicate
the input structure without a significant benefit for the surrogate model training.

Limitations and Assumptions
This truncation introduced the following limitations: Although the impact of the proposed infrastructure
is limited upstream of the cutoff point, it is not negligible. Additionally, the new upstream boundary lies
within the tidally influenced domain, meaning that defining a clear discharge–water level relationship
is challenging. This limitation was accepted within the context of this study, as the primary goal is
to develop a surrogate model that approximates the behavior of the modified HEC-RAS model. Some
inaccuracies in this underlying physics-based model are tolerable as long as the surrogate can replicate
them reliably. No recalibration of model parameters (e.g., Manning’s n) was performed after the model
domain was truncated.

5.3. Model Validation and Justification
The modified one-dimensional HEC-RAS model was validated by comparing its maximum water level
outputs with the study of Mott MacDonald (2021) and evaluating its performance for two historical
(compound) storm events: Hurricane Harvey (2017) and Tropical Storm Beta (2020). The goal is to
assess whether the simplified, modified version of the 1D model from HCFCD (2022) can reproduce
the hydrodynamic behavior consistently with earlier performed studies and measurements

The required inflow boundary conditions (Q1−4) were obtained using the accompanying HEC-HMS hy-
drologic model, which uses precipitation as input. Since this thesis already involves the implementation
of the hydrodynamic model and the development of a data-driven LSTM-based surrogate model, the
scope of hydrologic validation (HEC-HMS) was limited. Hence, the model was validated for the limited
number of two design events only.

5.3.1. Validation USACE Simulations
The same conditions were replicated in the modified HEC-RAS model as Mott MacDonald (2021) per-
formed in their existing condition simulations. These were:

• Simulation duration was set to three days (72 hours).
• The downstream boundary condition was fixed at 0.24 m NAVD88 throughout the entire simula-
tion.

• The six existing gates were kept open throughout the simulation.
• The inflow hydrographs were derived from the accompanying hydrologic model that used the 10-,
50-, 100-, and 500Y +30% as input.

At the time of that study, the updated Atlas 14 HCFCD rainfall return period data were not yet available.
To compensate for the outdated 2007 values, the USACE applied a 30% increase to the rainfall inten-
sities (Mott MacDonald, 2021). For consistency, the same adjustment is adopted in this study. The
25-year rainfall event is not included, as the HEC-HMS model obtained from the FEMA M3 modeling
website (HCFCD, 2022) does not contain a corresponding basin setup for this event. The rainfall return
periods used for this study are presented in Table 5.3.
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Table 5.3: Rainfall intensity (in millimeters) for various return periods and durations.

Duration 10Y 50Y 100Y 500Y
5 min 33.0 35.6 40.6 45.7
10 min 50.8 50.8 58.4 68.6
15 min 76.2 63.5 68.6 83.8
30 min 96.5 94.0 104.1 132.1
1 hr 109.2 124.5 142.2 182.9
2 hr 121.9 165.1 188.0 254.0
3 hr 139.7 195.6 223.5 309.9
6 hr 175.3 254.0 299.7 431.8
12 hr 210.8 315.0 365.8 525.8
1 day 256.5 383.5 447.0 637.5

Using these rainfall inputs, HEC-HMS simulations were performed for 24-hour storm events. Default
model parameters and loss–transform–routing methods from HCFCD (2022) were retained. For the
500-year return period event, several storage–discharge and inflow–diversion tables required extrapo-
lation, which was carried out using linear or polynomial fits.

To improve numerical stability at the onset of the simulation, an additional 24-hour warm-up period
with very low base-flow was applied to all runs. The resulting discharge hydrographs from HEC-HMS
were then used as upstream boundary conditions for the HEC-RAS hydrodynamic model. These inflow
boundary hydrographs are shown in Figure 5.3.

Figure 5.3: Inflow boundary conditions (+30% rainfall) generated by HEC-HMS.

5.3.2. Validation Storm Events
To further evaluate the model setup under realistic conditions, two historical storm events were se-
lected: Hurricane Harvey (August 2017) and Tropical Storm Beta (September 2020). Rainfall data
for both events were obtained from the Harris County Flood Warning System (station 140) (HCFCD,
2025c), chosen for its central position within the watershed. The rainfall was assumed to be spatially
uniform across the catchment. This assumption introduced uncertainty due to the spatial variability
of the storms, but was adapted to reduce computational and data demands. This simplification is ac-
knowledged to potentially influence the results.
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The rainfall inputs applied in the HEC-HMS simulations are shown in Figure 5.4. Each simulation was
run for the duration corresponding to the plotted time series. For the base configuration, the 100-year
precipitation model from HCFCD (2022) was used. For Hurricane Harvey, several storage–discharge
and inflow–diversion tables required extrapolation to accommodate the extreme event magnitudes.

(a) (b)

Figure 5.4: Rainfall time series obtained from HCFCD (2025c) for (a) Hurricane Harvey and (b) Tropical Storm Beta.

The runoff hydrographs computed by HEC-HMSwere subsequently compared to measured discharges
from the USGS Friendswood station (Clear Lake, Texas; ID 08077600) to evaluate input accuracy
(Figure 5.5). This step served to identify potential errors in the hydrologic input rather than to assess
model performance.

(a) (b)

Figure 5.5: HEC-HMS–simulated vs. USGS–measured discharge for (a) Hurricane Harvey and (b) Tropical Storm Beta at the
Friendswood station.

For both cases, although the overall temporal behavior of the hydrographs is well captured, there is a
significant mismatch in discharge magnitudes. This indicates that the errors occurring in the modified
HEC-RAS model results are not solely due to model limitations or applied modifications, but also origi-
nate from inaccuracies in the input hydrographs generated by HEC-HMS. Consequently, distinguishing
the source of these errors becomes challenging, making the interpretation of the modified HEC-RAS
model outcomes more complex.

The four HEC-HMS hydrographs (main channel and three tributaries) were then used as inflow bound-
ary conditions in the modified HEC-RAS model (Figure 5.6). Downstream boundary conditions were
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defined using water levels from the NOAA Eagle Point gauge (NOAA, 2025), implemented as stage
hydrographs (Figure 5.7). Water levels were converted from MLLW to NAVD88 by subtracting 0.07 m,
based on the tidal datum conversion provided by National Geodetic Survey (2025).

(a) (b)

Figure 5.6: HEC-HMS–computed inflow hydrographs for (a) Hurricane Harvey and (b) Tropical Storm Beta, used as upstream
boundary conditions in HEC-RAS.

(a) (b)

Figure 5.7: Measured downstream water levels at Eagle Point (NOAA) (for location see Figure 2.1) for (a) Hurricane Harvey
and (b) Tropical Storm Beta, applied as downstream boundary conditions.

To assess the model’s sensitivity to the upstream boundary definition in a tidally influenced domain, two
configurations were tested:

1. Discharge-driven configuration (“QModel”): Uses the HEC-HMS–computed discharge hydro-
graphs (Q1–Q4) at all inflow locations.

2. Stage-driven configuration (“h Model”): Replaces the main upstream inflow (Q1) with a stage
hydrograph derived from the HCFCD upstream gauge (HCFCD, 2025d), while the tributaries
(Q2–Q4) remain discharge-driven.

5.4. Implementation of Infrastructure
The implementation of the proposed pump and gate infrastructure was based on the preliminary analy-
sis by Mott MacDonald (2021). This section explains how each component was represented within the
modified HEC-RAS model. Figure 5.8 shows the location of the infrastructure within the model domain.
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Figure 5.8: Implementation infrastructure in HEC-RAS model

5.4.1. Floodwall and Gate
The floodwall was implemented at river section 3823, consistent with the implementations of Mott Mac-
Donald (2021). The crest elevation of the floodwall was set to +5.18 m NAVD88. The wall was repre-
sented as a concrete inline structure in the HEC-RAS model. Figure 5.9 illustrates the configuration in
HEC-RAS, showing the existing sill gate on the left (North) side, and the new flood gate, visible as a
gap within the floodwall. The center of the gate is positioned approximately at the midpoint of the main
channel.

Figure 5.9: Inline flood structure at HEC-RAS river section 3823

An initial gate width of 22.86 m was implemented; however, this dimension is treated as a design vari-
able and is varied in subsequent analyses. The sill elevation was fixed at –3.66 m NAVD88. The gate
type was defined as radial that opens vertically, and default HEC-RAS parameters were adopted for the
required gate flow characteristics. The specific parameters and their assigned values are summarized
in Table A.1 in Appendix A. The

Operations
Gate operation was controlled through time series data that specifies the opening height (vertical gate)
at each time step. The total height of the gate extends from -3.66 m to +5.18 m NAVD88, corresponding
to a total height of 8.84 meters (29 feet). In this study, a simplified binary operation scheme was
applied: the gate is either fully open or fully closed, with transitions occurring within a single time step.
Although instant closure or opening is unrealistic in practice, this assumption reduces the number of
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input parameters required in the subsequent simulations and simplifies the modeling process. This
signal also allows the operational input to be interpreted as either an opening depth or width, which is
advantageous for simulations described in Chapter 6, where the gate width is given as input variable.

The currently existing gate will lose its function when the new infrastructure is implemented. Therefore,
in all simulations including the proposed design, the existing gate remains closed (HCFCD, n.d.[b]).

5.4.2. Pump Station
The pump station is located at the same cross section as the floodwall and gate. Because the pumped
discharge is directed towards the Galveston Bay, a large downstream storage area, it is assumed that
the pumped discharge does not significantly influence the downstream water level. As a result, the
pumping process can be represented as a “pump-out” of the system. This approach simplifies the
required model adjustments, as HEC-RAS does not allow direct pumping from one cross section (up-
stream of the floodwall) to another (downstream) (Brunner, 2021). Under this assumption, the pumped
discharge is effectively removed from the system.

Water volumes were extracted from river section 4937, as HEC-RAS requires at least two cross sections
between the implementation point and the extraction location. This section is the nearest feasible
position to the intended pump station site. Appendix A presents the technical drawings of the proposed
pump station and gate, where their spatial configuration is shown in detail.

Two simplifying assumptions were made for the pump modeling:

• Startup and shutdown times were not included
• Pump efficiency curves were not considered. Each pump is assumed to operate at its maximum
rated capacity, regardless of head differences.

While this approach is simplified, it provides a practical first-order estimation of the required pump
capacity and operational plan.

Operations
Pump operations were governed by activation and deactivation water levels. The activation level cor-
responds to the water level at the extraction point (RS 4937). The deactivation level was kept at a fixed
offset of 0.15 m below the activation water level for each pump. Based on the provided pump capacity,
the number of pumps, their activation and de-activation water level, HEC-RAS computes a ’pump plan’,
which is the pumped capacity over time.

5.4.3. Primary Design Variables
The previous sections described the implementation of an infrastructure configuration based on the
preliminary Mott MacDonald (2021) design. However, the primary objective of this thesis is not to
evaluate this single design, but to develop a methodological framework that can efficiently explore a
wide range of design alternatives and support future optimization.

To achieve this, the validated HEC-RAS model will be used to generate a large dataset for surrogate
modeling. This dataset is created by systematically varying the key parameters that define the flood
mitigation system. These Primary Design Variables are:

• Gate Width (Wg): The horizontal width (in meters) of the new flood gate. This directly controls
the hydraulic conveyance during open-gate conditions.

• Total Pump Capacity (Qp,total): The total combined discharge (in m3/s) of the pump station when
all pumps are active.

• Number of Pumps (np): The total number of individual, equally-sized pumps. This variable,
combined with Qp,total, defines the capacity of each individual pump (Qp = Qp,total/np) and
dictates the staging of operations.

• Pump ActivationWater Levels (hon,i): The sequence of water levels (in m NAVD88) at RS 4937
that trigger each of the np pumps to activate.

These variables were selected as they represent the most significant engineering decisions influencing
both the construction cost and the hydraulic performance of the system.
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5.4.4. Stability Enhancement
Time span
Each simulation runs over a time span of three days with a 30-minute time step. While the storms
themselves typically last 24 hours, the watershed’s time of concentration extends to about three days,
after which flows begin to recede and drainage returns to normal (Mott MacDonald, 2021). See also
Figure 5.3. Despite the relatively short model domain and the upstream locations where the inflow
hydrographs are applied, the flood-wave travel time (approximately 2–5 hours) is still fully captured
within this three-day window.

A fixed simulation period and time step was used across all runs. This simplification ensures consis-
tency in the input-output structure for the surrogate model and avoids added complexity due to varying
simulation configurations.

Warm up time
To improve model stability, a 24-hour warm-up period was added prior to the onset of flood hydrographs.
During this period, a low base flow of 1.42 m3/s (50 cfs) was applied. This low discharge flow helps the
model settle and avoids numerical problems and instabilities, caused by a sudden rise in discharge at
the start of the simulation.

Because the hydrographs from HMS start at zero flow and rise steeply, the warm-up period ensures
a smooth transition and helps define appropriate initial conditions. The base flow quantity is used to
define initial conditions of the model because the steady-state simulation gives unrealistic results for
low flows.

5.5. Results and Discussion
This section presents the results of the validation of the modified model, after which a total system
overview is presented.

5.5.1. Hydrodynamic Model Validation Results
Validation USACE Simulations
The modified HEC-RAS model was validated by comparing its maximum water level outputs with the
study of Mott MacDonald (2021).

Table 5.4 compares the maximumwater levels in Clear Lake predicted by the modified HEC-RASmodel
and those reported by Mott MacDonald (2021). The longitudinal distribution of maximum water levels
is shown in Figure 5.10.

Table 5.4: Peak water levels in Clear Lake for various return periods based on USACE simulations and the modified HEC-RAS
model results (in meters, NAVD88).

Return Period USACE [m NAVD88] Modified HEC-RAS [m NAVD88]
10Y 1.51 1.43
50Y 1.91 1.84
100Y 2.08 1.98
500Y 2.60 2.43

The results show a consistent underestimation of water levels compared to the reference simulations.
This behavior was expected because sub-basin runoffs in the modified setup were neglected, and the
modified HEC-RAS model only considers inflow from the main tributaries (Q1−Q4). Consequently, the
total discharge entering the system is slightly underestimated.
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Figure 5.10: Maximum water levels from the modified HEC-RAS model (HMS+30% rainfall).

The difference between the modeled peak water levels presented in Table 5.4 and the flood frequency
water levels obtained from HCFCD (2025b) (Table 2.1) directly illustrates the influence of storm surge.
The modeled peak water levels represent only the probabilistic contribution of precipitation, as the
downstream boundary was fixed at mean sea level. In contrast, the HCFCD values are derived from
observed water level records and therefore include both precipitation and storm surge effects, resulting
in higher water level values.

Validation Historical Storm Events
The simulated water levels for both configurations are compared against measured data in Figure 5.11.

(a) (b)

Figure 5.11: Modeled vs. Measured water levels at Clear Lake for Harvey (panel a) and Beta (panel b). ”Modeled” refers to the
”Q Model”, while ”Modeled (HS)” refers to the ”h Model”.

The results show that both models, the ”Q Model” and the ”h Model” show slightly different results, but
both have inaccuracies. This implies that errors originate from two sources: the simplified boundary
conditions provided by the HMS model (based on uniform rainfall data) and the implementation of the
upstream boundary and tributaries in tidally influenced locations. The slightly better performance of the
”h Model,” which uses a stage hydrograph as input, indicates that both types of errors are present.
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5.5.2. Model Justification
Despite the mismatches shown in Figure 5.11, the modified HEC-RAS model will be used for the sub-
sequent analysis. Because further calibration is outside the project scope and the model provides a
reasonable representation (especially the main temporal pattern), the modified HEC-RASmodel is con-
sidered appropriate for this study. Furthermore, in the subsequent simulations where the flood gate is
implemented, the estuary is closed off, which will limit the influence of these complex boundary dynam-
ics. The modular threefold method described in Chapter 4 allows to replace this model by one with
better performance in future work.

5.5.3. Final System Overview
Figure 5.12 shows the resulting total system overview. The variables are summarized and explained
in Table 5.5.

Figure 5.12: Clear Lake system representation showing the location of the boundary conditions, and the design parameters of
the infrastructure

Table 5.5: Summary of variables used in the framework.

Symbol Variable Type Unit
Q1 −Q4 Inflow hydrographs Forcing (upstream B.C.)

[
m3/s

]
hbay Water level Galveston Bay Forcing (downstream B.C.) [m]

Qp,total Total Pump Capacity Design variable
[
m3/s

]
np Number of pumps Design variable [−]
ha,n Activation water level for pump n Design variable [m]
Wgate Width of the flood gate Design variable [m]

This system is defined by the upstream and downstream forcings, as well as the design variables
controlling the pumps and gates. By systematically varying and sampling these inputs, a comprehen-
sive dataset of system responses can be generated. The methodology for constructing this dataset is
presented in the next chapter.



6
Training Data Construction

The development of a reliable deep-learning surrogate model requires a training dataset that is both
representative of the underlying hydrodynamic processes and computationally feasible to generate.
Since HEC-RAS simulations can be computationally expensive, the construction of the database must
be performed strategically. The sampling of input conditions should maximize the information content of
the dataset (entropy) while limiting the number of required model runs. In this section, the methodology
for constructing such a dataset is presented. The methodology aligns with the framework presented in
Chapter 4 and is visualized in Figure 6.1.

Figure 6.1: Flow Diagram Training Data Generation

This methodology consists of two main components:

• Defining the Design Configurations: A ’configuration’ is a unique combination of these vari-
ables, such as the number of pumps (np), their activation water levels (hon), and the gate width
(Wg). These are derived from the Primary Design Variables (PDVs) identified in Section 4.7.
The parameters are sampled to generate construct set of design configurations.

• Creating the Forcing Scenarios: Generating a set of external hydrodynamic conditions imposed
on the system. A ’scenario’ is defined as a set of boundary conditions, namely the four inflow
hydrographs and the downstream water level (tidal signal plus storm surge).

31
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Each design configuration was tested under multiple forcing scenarios. By combining the selected
configurations with the generated synthetic hydraulic scenarios, a comprehensive set of HEC-RAS
simulations can be computed. Each simulation produces time series of the water level of Clear Lake,
considered the target variable. The HEC-RAS simulations were performed in an automated framework
to ensure efficient execution. The model inputs and outputs were then systematically stored and post-
processed into a structured database, forming the foundation for training the deep-learning surrogate
model.

6.1. Design Configurations
As established in Section 4.7, the flood mitigation system is defined by the Primary Design Variables
(PDVs): Gate Width (Wg), Total Pump Capacity (Qp,total), Number of Pumps (np), and Pump Activation
Water Levels (hon,i). To create a feasible and efficient dataset, several simplifying assumptions were
made:

• The total pump capacity (Qp,total) was not sampled directly. Instead, the individual pump ca-
pacity was fixed at Qp = 56.7 m3/s. The total capacity is then a function of the number of pumps
(Qp,total = np × Qp). This simplification was performed to reduce the number of pump input
parameters and enhance efficient variations of design configurations. However, the reduction in
flexibility should also be acknowledged.

• The pump deactivation levels (hoff ) were fixed at 0.15 m below their corresponding activation
level.

This leaves three PDVs to be sampled: gatewidth (Wg), number of pumps (np), and pump activation
water levels (hon,i). The following sections describe how these variables were sampled.

6.1.1. Pump Configurations (Sampling np and hon)
A representative set of pump configurations was constructed by varying the number of pumps and their
activation rules:

• Number of Pumps (np): Chosen to vary from {4, 6, 8, 10}. This range accounts for redundancy
and the maximum number of pumps per station in HEC-RAS.

• Activation Staggering (hon): Three different staggering patterns were considered:

– Uniform: all pumps activated at the same lake level,
– Moderate stagger: activation levels evenly distributed between 0.91 m and 2.06 m,
– Strong stagger: larger spread of activation levels with incremental offsets.

In practice, pump stations often consist of multiple pumps with different capacities and efficiency curves.
This is neglected for this study, as we are interested in the primary design capacities (i.e., total capacity
required, first estimation of number of pumps, etc.).

This approach balances maximizing entropy with keeping the data generation manageable.

6.1.2. Gate Width (Sampling Wg)
For the gate width (Wg), two representative values were selected:

• Wg = 22.86 m, corresponding to the minimum navigation width required for the main channel
(USACE and GLO, 2021b).

• Wg = 60.0 m, representing the maximum feasible width without substantial dredging.

For the gate operation signal, the gate was modeled as either fully open or fully closed, transitioning
from open to closed within a single time step (as described in the previous chapter). To prevent the
surrogate model from implicitly learning that the gate always closes during high water levels, 2% of the
simulations were run with the gate kept open throughout the entire event. This ensured that the model
was exposed to a broader range of hydraulic responses.
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6.1.3. Total Design Configurations
By combining the sampled pump and gate variables, a total set of K design configurations was de-
signed.

K = (12 Pump Configurations)× (2 Gate Widths)

Resulting in a total of 24 Design Configurations

6.2. Forcing Scenarios
Synthetic forcings were generated to evaluate each configuration under a range of flow and storm
conditions. The process is visualized in Figure 6.2.

Figure 6.2: From system forcings to synthetic data

6.2.1. Inflow Hydrographs
The inflow hydrographs were represented using a three-parameter Gamma distribution because a quick
analysis revealed a good fit of the simulated HMS inflows from previous chapter (Appendix B. This
allowed the characterization of each inflow hydrograph (Q1–Q4) by three parameters (Figure 6.3):

• qpeak: peak discharge,
• α: rising limb shape parameter,
• β: falling limb (decay) parameter.

Figure 6.3: Example of a Gamma distribution fitted to a normalized inflow hydrograph. Where qp and tp refer to the peak
discharge and its offset respectively.

The base hydrograph shape was generated using the Gamma probability density function (Casella and
Berger, 2002):

g(t; α, β) =
1

Γ(α)βα
tα−1e−t/β , t ≥ 0,

The Gamma curve was normalized and scaled using qpeak, as previously done by Nadarajah (2007):

Q(t) = qpeak
g(t;α, β)

max
t

g(t;α, β)
.
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By maintaining a consistent simulation duration, the time to peak of each hydrograph can be expressed
as a function of the Gamma parameters:

tpeak = (α− 1)β

This relation allows the gamma distribution to implicitly capture the timing and offset of the hydrograph
peak, eliminating the need to explicitly define the time lag between inflows by an additional parameter.
Hence, the three parameters (qpeak, α, and β) jointly describe both the discharge magnitude and the
temporal characteristics of each tributary inflow.

Parameter Distributions
For each tributary (Q1–Q4), multiple HEC-HMS simulations were available, including:

1. 10-, 50-, 100-, and 500-year events based on historical precipitation return periods,
2. the same events with +30% discharge, to align with Mott MacDonald (2021).
3. simulations based on Hurricane Harvey rainfall.
4. simulations based on Tropical Storm Beta rainfall.

Gamma distributions were fitted to these hydrographs to obtain representative values for qpeak, α, and
β for each tributary. To link the return periods to probabilistic peak discharges, an additional HEC-HMS
simulation was performed using the updated HCFCD Atlas 14 precipitation statistics (HCFCD, 2025c).

The statistical distributions adopted for each inflow parameter are summarized in Table 6.1.

Parameter Forcing Type Distribution
qpeak,Qn

Inflow Lognormal
αQn

Inflow Uniform
βQn

Inflow Uniform

Table 6.1: Overview of inflow parameters, forcing types, and probability distributions.

The lognormal distribution for qpeak was fitted to the available return period data, representing the prob-
abilistic variability in peak discharge (Figure 6.4). The shape (α) and scale (β) parameters were as-
sumed to follow a uniform distribution. Their lower and upper bounds were directly obtained from the
fitted Gamma distributions of the available hydrographs for each tributary.

Figure 6.4: Example of a lognormal fit (red line) to the peak discharge (qpeak, blue dots) of tributary Q1.

6.2.2. Downstream Boundary Condition
The downstream boundary condition at the Clear Lake outlet was parameterized to represent realistic
storm-surge events originating from Galveston Bay. First an analysis was performed on tong-term
water level observations from NOAA Station 8771013 (Eagle Point, TX), covering data from 1995-2025.
The first step was to extract these data from NOAA database and convert the water levels and tidal
predictions from MSL to NAVDD88 using a vertical offset of -0.107 m (National Geodetic Survey, 2025).
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From this data, the non-tidal residuals (NTR), representing the storm surge, was computed as:

NTR(t) = WL(t)− Tide(t),

where WL(t) and Tide(t) are the observed water level and tidal prediction, respectively.

Surge events were identified through threshold exceedance of the NTR. An event was defined when the
residual exceeded 0.9 m above the tidal prediction for a minimum duration of 24 hours. The threshold
was calibrated by comparing observed surge peaks to return periods reported by Mott MacDonald
(2021).

For each detected surge event, the following parameters were extracted and analyzed:

• Peak surge height hpeak = max(NTR),
• Asymmetry coefficient hasym = trise/(trise + tfall).

To be consistent with the sampled hydrographs, the duration (D) of all synthetic storm events was fixed
at 24 hours. The surge can then simply be characterized by the peak surge height (hpeak) and the
asymmetry coefficient (hasym).

Parameter Distributions
The statistical properties of these parameters were then quantified as follows:

• Peak height (hpeak): modeled using aGeneralized Pareto Distribution (GPD) fitted to exceedance
above the 0.9 m threshold:

FX(x) = 1−
(
1 + ξ

x

σ

)−1/ξ

,

where ξ and σ denote the shape and scale parameters, respectively. The fitted GPD was used
to estimate return-level water heights for 10-, 50-, 100-, and 500-year events.

• Asymmetry (hasym): approximated by a normal distribution with mean ā and standard deviation
sa, truncated to the physical range (0, 1).

(a) GPD fit to surge exceedances (b) Normal fit to surge asymmetry

Figure 6.5: Parameter distribution fits for synthetic storm surge generation. (a) Generalized Pareto Distribution (GPD) fitted to
surge height exceedances over the 0.9 m threshold. (b) Normal distribution fitted to the observed surge asymmetry coefficient.

6.2.3. Parameter Overview and Sampling
To efficiently explore the parameter space, Latin Hypercube Sampling (LHS) was applied. A total of n =
100 forcing scenarios were generated across 14 dimensions (12 inflow parameters and 2 downstream
parameters). These sampled values were scaled according to their fitted distributions and combined
into a dataframe of forcing scenarios.
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Parameter Forcing Type Distribution
αQn

Inflow Uniform
βQn Inflow Uniform
qpeak,Qn

Inflow Lognormal
hpeak Downstream water level Generalized Pareto
hasym Downstream water level Normal

Table 6.2: Overview of parameters, forcing types, and probability distributions.

6.2.4. Automation of HEC-RAS Model Runs
To automate the 2,400 HEC-RAS simulations, the base model was duplicated into run-specific fold-
ers. Upstream inflows were generated from the sampled gamma-distribution parameters. To improve
stability, a small base flow of 50 cfs was added to each inflow (see Chapter 4).

These inflows, together with the downstream water level time series and the gate operation schedule,
were implemented in each run by modifying the .u01 HEC-RAS unsteady flow file. Structural parame-
ters, including the number of pumps, their activation and deactivation water levels, and the width of the
flood gate, were added to each run by adjusting the HEC-RAS geometry file.

Both file modifications were fully automated using Python scripts, which used the base model files
containing placeholders for each parameter. Each customized model run was then executed using
the HEC-RAS 6.6 Controller (COM interface) in silent mode, enabling full automation. This approach
ensures consistent input formatting, reproducibility, and efficient handling of a large number of simula-
tions.

6.3. Results and Discussion
The training dataset was constructed by combining 24 unique design configurations with 100 synthet-
ically generated forcing scenarios. This section presents the results of that data generation process,
which forms the basis for training the LSTM models.

6.3.1. Forcing Parameter Distributions
The synthetic forcings were generated by sampling from statistical distributions fitted to data from HEC-
HMS simulations and historical observations. The methodology and statistical fits for this process were
detailed in Section 6.2.

For the inflow hydrographs, peak discharge (qpeak) was modeled using a lognormal distribution, as
shown in Figure 6.4 (in the Methods section) for the main Q1 tributary. For the downstream boundary,
storm surge height (hpeak) was modeled using a Generalized Pareto Distribution (GPD), and surge
asymmetry (hasym) was approximated by a normal distribution (see Figure 6.5).

6.3.2. Generated Forcing Scenarios
Using Latin Hypercube Sampling (LHS) on the parameter distributions described above, 100 unique
forcing scenarios were generated. Figure 6.6 provides an illustrative example of the resulting synthetic
time series for the dominant inflows (Q1 and Q3) and the downstream boundary condition, demonstrat-
ing the variability in the generated events.
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Figure 6.6: Synthetic generated Q1, Q3 and Downstream boundary from sampled parameters

6.3.3. Final HEC-RAS Simulation Outputs
The 24 design configurations were run against the 100 forcing scenarios, resulting in a total dataset of
2,400 HEC-RAS simulations. These automated runs took approximately 8 hours to complete. The final
dataset consists of the time-series inputs (forcings, gate operations) and the corresponding HEC-RAS
outputs. As visualized in Figure 6.7, the key outputs of interest for surrogate modeling were the Clear
Lake water level time series (hlake) and the resulting pump discharge time series (Qpump).

Figure 6.7: HEC-RAS model inputs and outputs



7
LSTM Modeling

This chapter shows the methodology for the development of the surrogate LSTMmodels. The objective
is directly linked to the research sub-question: ”How can the simulation dataset be used to best develop
an efficient LSTMmodel that is capable of capturing response in water level to pump and gate variations
and operations?”

To answer this, a comparative approach was employed, involving the development of three distinct
LSTM Models: A, B and C, representing an information-rich baseline to a more realistic setup (Table
7.1. All models use a single-task-learning framework: The target remains the the same for all three
approaches: a time series of the Clear Lake water level hlake.

Table 7.1: Overview of LSTM model setups and their objectives

Model Description Main Inputs
A Baseline model designed to test the LSTM’s ability to learn

the system’s physics when provided with full information, in-
cluding the dynamic pump discharge time series. It evalu-
ates whether the model can accurately reproduce the hydro-
dynamic model output under ideal conditions.

(Q1–4, hbay, g(t), Qpump)

B Represents a realistic design-oriented scenario. Instead
of the pump discharge time series, the model receives only
static pump parameters such as the number of pumps and the
pump activation water levels. It predicts water levels directly
from the design setup, serving as a surrogate for HEC-RAS
in design evaluation.

(Q1–4, hbay, g(t), p)

C Autoregressive forecaster that augments inputs with
lagged water levels and computes pump discharge from pre-
dicted states, trained with scheduled sampling to transition
from teacher forcing to self-fed predictions.

(Q1–4, hbay, g(t), p, Qpump,
hlake, t−1:t−nlag)

7.1. Model-A: Baseline System Replication
The primary objective of Model-A is to establish a best-case performance baseline. By providing the
model with complete sequential information about all forcings and operational conditions, its funda-
mental capacity to replicate the hydrodynamic system is evaluated. If Model-A successfully learns the
system dynamics under these idealized conditions, it validates the suitability of the LSTM architecture
for this application.

Data Preparation and Features
Hydrodynamic forcings. The four upstream inflows (Q1–Q4) and the downstream boundary condi-
tion (hbay) were used directly as input features for the LSTM model.
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Gate operation. The gate opening was represented as a time-dependent signal g(t) representing the
effective gate width at each timestep. The operation schedule was derived deterministically from the
sampled gate width W and prescribed opening/closing times topen and tclose:

g(t) =

0, t < topen or t > tclose,

W, topen ≤ t ≤ tclose.
(7.1)

This step function allows the model to learn the impact of discrete gate operations combined with con-
tinuous hydrodynamic forcings. The sequence was added to the input feature matrix as sixth feature.

Pump discharge. The HEC-RAS output time series Qpump was extracted and used as the seventh
input feature.

Final input matrix. The final input matrix for each run is X ∈ RT×7.

X =
[
Q1, Q2, Q3, Q4, hbay, g(t), Qpump

]
(7.2)

Target (y): The target variable is the time series of the lake water levels:

y = hlake ∈ RT×1. (7.3)

Model Architecture
The core architecture was based on the common default settings used in hydrology/hydrodynamic
modeling and was not extensively optimized in this study. Two stacked LSTM layers with 64 hidden
units per layer were used. This configuration was selected as preliminary testing indicated no significant
performance gain with a larger hidden size. The output from the last LSTM layer at each timestep was
passed through a fully connected (linear) layer, mapping the hidden representation to a single scalar
water level value per time step. This resulted in a sequence-to-sequence prediction of the same length
as the input sequence.

A dropout rate of 0.2 was used to reduce overfitting. The input dimension was set to match the number
of features in the dataset variant used (e.g., F = 7). The output dimension is always equal to 1. Figure
7.1 shows a schematic representation of the architecture.

Figure 7.1: LSTM Architecture Schematization (Figure from Compare, Ye, and Meyer-Baese (2023)

Training and Evaluation
Training was performed using mini-batches of input–target pairs (X,y), drawn from the preprocessed
and normalized datasets. Each batch contained B = 32 sequences of length T , with F input features.
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The models were optimized using the Adam optimizer with a learning rate of 10−3, which was found to
provide convergence without excessive tuning. The loss function was the Mean Squared Error (MSE),
penalizing deviations between predicted and observed lake levels:

LMSE =
1

BT

B∑
b=1

T∑
t=1

(
ŷb,t − yb,t

)2
.

The Mean Squared Error (MSE) provides a smooth, differentiable measure of the average prediction
error, which is well-suited for continuous regression problems such as water level prediction. MSE
penalizes larger errors more strongly due to the squared term, making the model sensitive to outliers
and encouraging accurate prediction of extreme water levels. At the same time, this also means that
large deviations can dominate the loss, potentially biasing the model towards reproducing peak rather
than average conditions (Goodfellow, Bengio, and Courville, 2016).

The following training loop structure (Figure 7.2)
was followed for this sequence-to-sequence LSTM
model.
1. Sample a mini-batch (X,y) from the training

set.
2. Forward pass: propagate X through the

LSTM and fully connected output layer, ob-
taining ŷ ∈ RB×T×1.

3. Compute the loss LMSE between ŷ and y.
4. Backpropagates gradients through time

(BPTT) and update parameters using Adam.
5. Evaluate periodically on the validation set us-

ing teacher forcing for consistency.
This setup ensures that the model learns to mini-
mize sequence-wide error while being exposed to
realistic time dependencies.

Figure 7.2: General training loop schematic

7.2. Model-B: Static Design Evaluator (HEC-RAS Replacement)
Model B replaces the Qpump time series with static parameters to avoid data leakage, as the pump
discharge time series would not be available at inference time.

Dynamic features. Includes the inflows (Q1–Q4), downstream BC (hbay), and gate signal g(t) as in
Model A.

Static pump parameters (p). The pump operation rules (np and hon,i) were encoded as a fixed-length
static vector. A maximum of 10 pumps was defined, so the vector has 11 entries (1 for np, 10 for hon,i),
with unused slots padded with -999. This vector p was repeated at every timestep.

p = [np, hon,1, hon,2, . . . , hon,10] (7.4)

Final input matrix. Concatenating these features resulted in X ∈ RT×17.

X =
[
Q1, Q2, Q3, Q4, hbay, g(t),p

]
(7.5)

The target remains y = hlake.
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Model Architecture
The network architecture is identical to Model-A, except for the reduced input dimensionality resulting
from the removal of Qpump(t). The model comprises two stacked LSTM layers with 64 hidden units per
layer and a dropout rate of 0.2. Static design features are concatenated to the dynamic forcings at
each time step, allowing the model to infer the hydraulic effects of different pump configurations over
time. The output is a sequence-to-sequence prediction of water levels with one output per timestep.

Training and Evaluation
Training followed the same procedure as in Model-A, minimizing the Mean Squared Error (MSE) be-
tween the predicted and reference water levels. Optimization was again performed using the Adam
optimizer with a learning rate of 10−3 and mini-batches of size B = 32.

The performance of Model-B was expected to be lower than that of Model-A, as it must infer operational
effects indirectly through the static parameters. The key metric of interest is the performance gap
between both models: A small gap would indicate that the static design variables alone are sufficient
for the LSTM to capture system behavior accurately, confirming its value as a computationally efficient
surrogate for HEC-RAS.

7.3. Model C: Operational Forecaster (Autoregressive)
Model C modifies Model B by adding autoregressive features (past target water levels) and reintroduc-
ing Qpump as a dynamic, computed input. This leverages the LSTM’s memory capabilities for forecast-
ing, where past water levels are strong predictors of future values.

Base features. Includes all dynamic inputs from Model B (inflows, hbay, g(t)), the static pump vector
p, and the pump discharge Qpump.

Autoregressive lag features. The input vector at each timestep t was augmented with the previous
nlag observed lake levels. A lag length of nlag = 20was selected based on iterative testing. For a starting
point, a Lagged Correlation Analysis was performed on the main hydrodynamic drivers (Q1−4 and hbay),
included in Appendix D. This analysis indicated that Q3 had a strong positive lagged correlation with
the target at a lag of 13 timesteps. Further testing showed that using nlag = 20 provided the best
forecasting performance.

x̃t =
[
xt, hlake,t−1, . . . , hlake,t−nlag

]
(7.6)

This expands the feature dimension to 38 (from D = 18 base features + nlag = 20 lag features). The
first nlag timesteps are discarded to accommodate the lagged features, resulting in a shorter sequence
length of (T − nlag) or 173 timesteps.

Model Architecture
The architecture builds on the sequence-to-sequence LSTM structure used in previous models but
accommodates multiple outputs and autoregressive feedback:

• Input layer: concatenates dynamic forcings, static parameters, and lagged water levels.
• LSTM stack: a set of 2 layers with 64 hidden units, capturing nonlinear temporal dependencies.
• Output layer: A fully connected (linear) layer, mapping the hidden representation to a single
scalar water level value per time step. This results in a prediction of the target of the same length
as the input sequences, which is now reduced by 20 (173 time steps in total).

Training Procedure: Teacher Forcing and Autoregression
Model C required a modification of the general training procedure due to its explicit autoregressive
character. Instead of always providing the true water levels to the model, predicted values were pro-
gressively fed back as inputs during training. This mechanism required two additional concepts:

• Teacher forcing: during early training, the true lake level hlake,t−1 was used as input for the next
timestep, ensuring stable learning and faster convergence.
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• Autoregression: later in training, the model’s own prediction ĥlake,t−1 replaced the true value,
simulating deployment conditions.

During teacher forcing, at each time step the model predicts the target variable hlake based on the input
feature vector Xt. This vector includes the sequential drivers, static pump features, and the past nlag
target values. The predicted yt is used as the output for that time step but not as input for the next one.
Instead, the true water level is again provided for the following step.

Figure 7.3: Schematization teacher forcing (a) vs autoregressive (b) training

At the inference stage, however, the true target water levels are not available. Therefore, the model
must rely on its own predictions: the value predicted at t becomes the input for t + 1. This process
represents the essence of autoregression and is visualized in Figure 7.3

To provide the LSTM with additional information about system response, the predicted water level
(ĥlake) was also used to compute the corresponding pump discharge Qpump(t). During teacher forcing,
the true Qpump values were provided (as in Model A), while during autoregression, Qpump(t) was com-
puted dynamically using the predicted water level and the pump operation parameters stored in X6:16.
Figure 7.3 also illustrates this feedback loop.

It is important to note that while Model C incorporates a feedback loop were predicted water level is used
to compute the pump discharge (Qpump), it remains a single-task-learning model. The Qpump value
is not predicted by the neural network. Instead, it is deterministically computed using the predicted
water level hlake and the static pump parameters.This approach contrasts with a multi-task-learning
framework, which was not explored in this research. Such an approach would involve training a model
to predict multiple targets (e.g., hlake and Qpump).

During training, the model gradually goes from teacher forcing towards autoregression. The process
called scheduled sampling was applied: a probability pTF determined whether teacher forcing or
autoregression was used at each step. This probability decreased linearly over epochs:

pTF (e) = pstart −
e

E − 1

(
pstart − pend

)
,

where E is the total number of epochs.

This setup allowed the model to learn the system dynamics and operational feedback based on, during
inference, available data. By feeding back past lake water levels and the computed pump capacity per
time-step. Valuable extra predictors are added to the input features to allow consistent and accurate
predictions that are capable of capturing system response to pump operations.
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Loss Function and Evaluation
Training followed the same procedure as in Model-A, minimizing the Mean Squared Error (MSE) be-
tween the predicted and reference water levels. Optimization was again performed using the Adam
optimizer with a learning rate of 10−3 and mini-batches of size B = 32.

7.4. Splitting and Normalization
Splitting
Before training, the training dataset was split into a training (70%), validation (20%), and test (10%) set:

Ntrain = 0.7N, Nval = 0.2N, Ntest = 0.1N.

Where N is the total number of simulations (input-output sets). Indices were randomly assigned and
saved to ensure same splitting for the distinct models. The training set was used to optimize the model
parameters, the validation set to monitor overfitting and tune hyperparameters, and the held-out test
set to evaluate the generalization performance. Randomized splitting ensured that the subsets were
disjoint.

Scaling and Normalization
To ensure numerical stability and improved model convergence, all datasets were normalized before
training. The input features and target variable were first extracted from the preprocessed PyTorch
tensors and converted to NumPy arrays. To apply normalization consistently across all samples and
timesteps, the three-dimensional tensors X ∈ RN×T×F and y ∈ RN×T×1 (with N the number of se-
quences, T the sequence length, and F the number of features) were reshaped into two-dimensional
arrays.

Normalization was then performed using a Standard scaling transformation fitted only on the training
data:

x′ =
x− µ

σ

Where:

• µ is the mean of the feature
• σ is the standard deviation of the feature
• x is the original feature value
• x′ is the scaled feature value

Separate scalers were fitted for the inputs and the target, after which the normalized data were reshaped
back to the original three-dimensional format required by the recurrent network:

Xscaled ∈ RN×T×F , yscaled ∈ RN×T×1.

For Model C, the lagged target values were scaled using the same standardization parameters as the
target variable y These scaled lagged water levels were then appended to the input feature matrix X.

Finally, the NumPy arrays were converted to PyTorch tensors and wrapped in TensorDataset objects
for training, validation, and testing. DataLoaders were created with batch sizes of 32 and shuffling for
training, ensuring efficient feeding of sequences to the LSTM.

7.5. Overview LSTM Models
Table 7.2 shows a summary of which inputs features are used per model set-up.

Models A and B were trained for a predefined number of 50 epochs, while Model C was trained for 30
epochs. The values were based on preliminary model runs and experiments in which the validation
loss was used to identify the point of convergence. Convergence was defined where the validation
loss remained within 2% of the final loss, chosen as a practical threshold indicating that the loss had
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Table 7.2: Comparison of input features across the three LSTM dataset variants.

Feature Model A Model B Model C
Upstream inflows Q1–Q4 ✓ ✓ ✓
Downstream BC hbay ✓ ✓ ✓
Gate width g(t) ✓ ✓ ✓
Pump discharge Qpump ✓ × ✓
Static pump config p × ✓ ✓
Lagged water levels hlake,t−1:t−nlag × × ✓
Input dimension per timestep 7 17 38
Sequence length 193 193 173

effectively stabilized. The training and validation losses were monitored at each epoch to assess con-
vergence and potential overfitting. Overfitting was considered minimal if the validation loss remained
close to the training loss and did not exhibit sustained increases.

LSTM Model Parameterization
All LSTMs used 2 stacked layers with a hidden dimension of 64 and a dropout of 0.2 between layers.
The final output layer maps the hidden state(s) to a single predicted value per time step. The total
number of trainable parameters for each model was calculated using PyTorch’s model.parameters()
function, which accounts for all weights and biases.

The available training data contained 1,680 sequences, each with 193 time steps, resulting in 324,240
target values per model. Comparing the number of trainable parameters to the number of labels (target
values per model for training) can provide a rough indication of overfitting risk. While this relation is
merely a rough guideline, the underlying principle is well known in machine learning: Models with a high
capacity compared to the dataset size are more prone to overfitting (Goodfellow, Bengio, and Courville,
2016; Hastie, Tibshirani, and Friedman, 2009). Table 7.3 summarizes the model configurations, total
parameters and the label-to-parameter ratio. As the three models show a label-to-parametric ratio of
roughly 5-6, there is no immediate sign that the model complexity is too large for the available data.
However, this ratio can only serve as indicative check and does not serve as a reliable predictor whether
a model will generalize well.

Table 7.3: Summary of LSTM model architectures, trainable parameters, and overfitting considerations.

Model Input dim Hidden dim Layers Total Params Label/Param Ratio
A 7 64 2 52,289 6.2
B 17 64 2 54,081 6.0
C 38 64 2 59,457 5.5

7.5.1. Model Comparison and Evaluation
To systematically evaluate the performance of Models A, B, and C, a comparison was conducted. The
effectiveness of the trained models was assessed in four main ways:

• Training and Validation Performance: The training and validation loss curves for each model
were compared to evaluate convergence speed, stability, and any evidence of overfitting.

• Quantitative Metrics: The models’ predictive accuracy was measured on the held-out test set
using standard regression metrics, including Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and the Nash-Sutcliffe Efficiency (NSE).

RMSE penalizes larger errors more strongly than smaller ones, making it sensitive to occasional
large deviations. MAE measures the average magnitude of errors without considering their direc-
tion, providing a more intuitive sense of overall accuracy. The Nash–Sutcliffe Efficiency (NSE)
assesses how well the predicted values follow the observed variance.

These metrics were adopted in this research as they together can indicate a good overall perfor-
mance, where RMSE highlights large errors, MAE gives an average error magnitude, and NSE/R²
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indicate overall goodness of fit. These metrics are commonly used in hydrodynamic/hydrology
modeling, and have been employed in comparable studies of surrogate models (A. Li et al., 2024).

• Visual Assessment: Model performance was visually inspected by comparing their predicted
water level time series against the HEC-RAS ground truth for several representative test scenar-
ios.

• Robustness and Sensitivity Analysis: A sensitivity analysis was performed on Model C to
assess its robustness and ability to generalize to input parameters outside of the original training
distribution. However, this analysis serves purely as indication, as ground truths of the target
were not simulated.



8
Results

This chapter presents the results of the LSTM models developed in the previous chapter. It covers the
training and validation performance, evaluates the models on the test dataset, and includes a visual
assessment of their predictions. Finally, a sensitivity and robustness analysis is presented for Model
C.

8.1. LSTM Model Results
8.1.1. Training and Validation Performance
The training-validation loss is presented in Figure 8.1. Both Model A and B reach stable validation
losses after approximately 40 epochs, indicating good convergence without severe overfitting. Model
C, trained for 30 epochs instead of 50. Hence, the shorter green line shows faster convergence, but
also oscillates after that point, which might indicate instability.

Training and validation loss curves

Figure 8.1: Computed model loss curves over epochs for Model A (blue), Model B (orange), and Model C (green).

Training Duration
The training efficiency is summarized in Table 8.1. Model C requires much longer training due to its
autoregressive character. The nearly identical computational efficiency of Models A and B suggests
that replacing one sequential feature with static values has a negligible effect on training cost.

Generally, all models successfully learn the underlying temporal patterns, but the validation loss behav-
ior of Model C hints that the increased complexity does not lead to improved generalization but likely
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Table 8.1: Training duration and efficiency metrics for Models A, B, and C. The epoch of convergence is defined as the first
epoch after which the validation loss remains within 2% of the final loss.

Model Epochs Total Time (h:min:s) Avg / Epoch (s) Epoch of Convergence
Model A 50 00:02:07.5 2.55 44
Model B 50 00:02:09.0 2.58 38
Model C 30 01:37:55.2 195.84 (3.26 min) 8

the opposite.

8.1.2. Computational Efficiency: HEC-RAS vs LSTM
The full training dataset required 2,400 HEC-RAS simulations, resulting in a total runtime of 6 h 15 m
20 s, corresponding to an average of 9.38 s per simulation. This is already computational cheap due
to the very small spatial and temporal extent of the used hydrodynamic model.

Once trained, the LSTM surrogate models still provide a strong reduction in inference time. A single
forward pass (reflecting 1 simulation) requires only 4.14 ms for Model A, 4.05 ms for Model B, and 313
ms for the fully autoregressive Model C. Even the slowest surrogate (Model C) is approximately 30×
faster than a full HEC-RAS simulation, while Models A and B achieve speed-ups of more than 2,000×.

Table 8.2: Computational efficiency of HEC-RAS and LSTM surrogate models.

Metric Value
HEC-RAS runtime (2400 simulations) 6 h 15 m 20 s
Average HEC-RAS runtime per simulation 9.38 s
LSTM runtime per forward pass (Model A) 4.1408 ms
LSTM runtime per forward pass (Model B) 4.0536 ms
LSTM runtime per forward pass (Model C) 313.1254 ms
Speed-up Model A vs HEC-RAS ∼2260×
Speed-up Model B vs HEC-RAS ∼2316×
Speed-up Model C vs HEC-RAS ∼30×

8.1.3. Model Evaluation
Quantitative Metrics
The performance of the three surrogates was evaluated on the test data (unseen) using four commonly
applied regression metrics: the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the
coefficient of determination (R2), and the Nash–Sutcliffe Efficiency (NSE). Table 8.3 summarizes the
obtained results.

Table 8.3: Performance metrics for the LSTM models.

Metric Model A Model B Model C
RMSE (m) 0.0520 0.0756 0.1234
MAE (m) 0.0343 0.0484 0.0878
NSE (-) 0.9990 0.9979 0.9944

Across all metrics, Model A demonstrates the best overall performance, with the lowest RMSE (0.0520),
lowest MAE (0.0343), and highest NSE (0.9990). This indicates that the model reproduces the system
dynamics with very high accuracy and minimal error.

Model B shows a small increase in predictive error and a slightly lower NSE, but the values still indicate
good capability in capturing overall hydrodynamic responses. The slight decrease in performance
suggests that the model may be limited by less sequential information compared to Model A.

Model C exhibits notably larger errors. The larger increase of the RMSE compared to the MAE error
indicates the model especially struggles with the higher water level values. Given that most water levels
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range from 0 to 2.7 m, the errors (RMSE = 0.123 m, MAE = 0.09 m) are relatively large compared to
the target values, likely exceeding what would be considered ideal. However, they are not so large
as to make the predictions completely unreliable or meaningless, suggesting that the model can still
reproduce water levels in a generally reasonable way for inputs within the training dataset.

The decreased performance is likely due to error accumulation inherent in the autoregressive setup.
Despite receiving the same inputs as Model B, along with additional historical water levels and pumped
capacities, Model C’s predictions show more error than expected. This suggests that in the autoregres-
sive configuration, the gradual accumulation of small errors over time outweighs the potential benefit
of including additional input information.

Overall, these results highlight the trade-off between model complexity and sequential prediction stabil-
ity, emphasizing that Model A is the most robust for accurate surrogate modeling of the hydrodynamic
system.

The scatter plot (Figure 8.2) between the predictions and targets for each model strengthens these
statements.

Visual Assessment
Figure 8.2 further supports the observations described above. For Model A, the points are tightly
clustered around the 1:1 line, indicating an excellent match between predicted and observed val-
ues. Model B also shows strong alignment, although the scatter is slightly larger, consistent with its
marginally higher RMSE and lower NSE. In contrast, Model C exhibits noticeably greater scatter around
the 1:1 line, particularly at higher values, confirming that while the model captures the overall trends,
its predictions are less precise compared to Models A and B.

Figure 8.2: Scatter plots of predicted versus observed water levels for Models A, B, and C. Model A shows the tightest
clustering around the 1:1 line, indicating the highest predictive accuracy, while Model C exhibits larger scatter, particularly at

higher water levels. Deviations around 1–1.5 m suggest challenges in capturing the dynamics of pump activation.

An interesting feature is observed in the central region of the scatter plots (between 1 and 1.5 m for both
predicted and observed values). Here, a small deviation from the 1:1 line appears, most pronounced in
Model A because of its tighter clustering. This region corresponds to the period when pump activation
is initiated in most test runs, suggesting that all models experience some difficulty capturing the precise
dynamics of pump operations.

Because evaluatingmodel performance solely usingmetrics (e.g., RMSE, NSE) can be limiting, a visual
assessment of model predictions against ground truth water levels was also conducted. The ground
truth corresponds to water levels computed by HEC-RAS for the test set simulations. The test set
comprised a total of 240 simulations.

Here, three representative samples are presented to illustrate model performance under different flow
scenarios and gate configurations:
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• Test sample 83: The gate did not close, allowing a storm surge to enter the system.
• Sample 111: Pump activation settings caused significant variations in water levels, highlighting
the models’ response to dynamic pump operations.

• Sample 169: A small timing offset between the surge and discharges, combined with high flows,
led to very high lake water levels and triggered all pumps.

Figure 8.3 shows the predicted water levels for each model compared to the target (black line), along
with the corresponding hydraulic forcings (inputs).
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(a) Sample 83: Model predictions and corresponding input signals. Wg = 60.05 m;
6 pumps activate at Hon = 1.49 m.

(b) Sample 111: Model predictions and corresponding input signals. Wg = 22.86 m;
6 pumps activate at Hon = 1.49 m.

(c) Sample 169: Model predictions and corresponding input signals. Wg = 60.05 m;
6 pumps activate between 0.91 m and 2.21 m.

Figure 8.3: Comparison of LSTM model predictions with observed water levels for selected test set samples. Each subplot
shows the input inflows and downstream boundary conditions (top) and the predicted and measured water levels (bottom). In

light grey, the pump response is shown, based on the pump variables np, hon, and the target variable hlake.
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Sensitivity and Robustness Model - C
Until now, the LSTM models have only been evaluated on the test set, which lies entirely within the
solution space of the training data. Model performance outside of this space has not yet been assessed.
To provide a first estimate of Model C’s capability to generalize beyond the training data, a series of
sensitivity and robustness analyses were conducted. Despite its worse performance, Model C was
chosen because it was intended to be used best in an operational inference setting. Testing this model
specifically investigates the model robustness if it would be used for inference.

It should be noted that this assessment is purely indicative: ground truth water levels for these sce-
narios were not generated in HEC-RAS, and the goal is to evaluate whether the LSTM captures the
relationships encoded in the training dataset, particularly with respect to feature selection and imple-
mentation.

Sensitivity Primary Design Variables
The base case used for visualization was Sample 65, because it average forcings conditions in the test
dataset. The hydrodynamic forcings for Sample 65 can be found in figure 8.4. However, the sensitivity
analyses were also repeated for multiple base forcings to ensure a more comprehensive evaluation.
The results of these can be found in Appendix E.

Gate Width Sensitivity The first parameter tested was gate width. During training, the LSTM was
exposed only to two gate widths (22.86 m and 60.96 m). To examine whether Model C can interpolate
or extrapolate between these values, simulations were conducted with all other inputs held constant
(8 pumps activate between 0.91 m and 2.27 m) while varying gate widths across a wider range. This
analysis evaluates whether the model captures the physical response of the system to different gate
sizes.

Number of Pumps Next, the number of pumps was varied. The base inflows and other operational
parameters were kept the same as in the gate width analysis. Pumps were initially activated uniformly
at a water surface elevation of 0.91 m. Sensitivity tests included values both within the training input
space (4, 6, 8, 10 pumps) and interpolated or extrapolated scenarios (5, 7 and 3, 12 pumps) to assess
the model’s ability to generalize.

Pump Activation Levels With gate width and number of pumps fixed (Wg = 22.86 m and 8 pumps),
the pump activation levels were varied. This analysis tested whether Model C can reproduce system
dynamics under different operational rules, while keeping the hydraulic forcing consistent with previous
scenarios. The varying activation levels tested for this analysis are presented in Table 8.4 below.

Table 8.4: Overview of pump activation patterns used in the analysis. Each pattern defines the activation head (m) for all
npumps = 8.

Pattern name Type Value range [m] Example (first–last)
uniform_low Uniform 2.5 – 2.5 2.5, 2.5, …, 2.5
uniform_mid Uniform 3.5 – 3.5 3.5, 3.5, …, 3.5
uniform_high Uniform 4.5 – 4.5 4.5, 4.5, …, 4.5
moderate_low Linear 2.5 – 3.5 2.5, 2.6, …, 3.5
moderate_mid Linear 3.0 – 4.0 3.0, 3.1, …, 4.0
moderate_high Linear 4.5 – 5.5 4.5, 4.6, …, 5.5
strong_low Linear 2.0 – 4.5 2.0, 2.4, …, 4.5
strong_mid Linear 3.0 – 5.5 3.0, 3.4, …, 5.5
strong_high Linear 4.5 – 6.5 4.5, 4.8, …, 6.5
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Figure 8.4: Sequential inputs for test sample 65

Figure 8.5: Sensitivity of Model C predictions to varying gate widths. Inputs are based on test sample 65.

Figure 8.6: Sensitivity of Model C predictions to varying numbers of pumps. Inputs are based on test sample 65.
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Figure 8.7: Sensitivity of Model C predictions to different pump activation patterns (see Table 8.4). Inputs are based on test
sample 65.

Figure 8.5 shows the effect of varying gate width. The model can interpolate and even extrapolate
beyond the training values. The predicted water levels remain within physically reasonable ranges,
suggesting that the model captures the effect of gate width well. No ground truth is available, so these
results are indicative only.

Figure 8.6 presents the model response to changes in the number of pumps. When extrapolating below
the training range, the model is unstable. Within the training range, it captures the general trends but
does not fully reproduce the expected decrease in water level for more pumps. This indicates that the
static pump rules are not perfectly encoded in the model and the model is unable to learn the underlying
hydrodynamic patterns.

Figure 8.7 shows results for different pump activation levels and staggering patterns. The model cor-
rectly reflects higher water levels when pumps turn on later, but it does not clearly capture differences
between staggered and uniform pump operation. Higher activation levels also appear to flatten the
water level peaks. Whether this behavior is physically realistic should be compared with HEC-RAS
results.

Sensitivity Inflow Discharges
Finally, the model was also tested by using HMS-derived discharges for the 10-, 50-, 100-, and 500-
year rainfall events. Several primary design variables were analyzed. Figure 8.8 presents the results
for one specific set of design configurations, while the appendix (Appendix D) shows the outcomes for
additional design sets.
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Figure 8.8: Sensitivity of Model C predictions to different, unseen discharge data.

Since no ground truth data are available, these results do not reflect the model’s actual predictive
performance. However, they indicate that themodel remains stable when exposed to previously unseen
inflow data.

In summary, the sensitivity analysis suggests Model C learned a physically reasonable relationship for
gate width, allowing it to interpolate and even extrapolate reasonably. Although a definitive conclusion
cannot be made due to the absence of a ground truth. However, its understanding of pump operations
is less robust. It struggles to generalize to pump numbers outside the training range and, while it
correctly identifies that higher activation levels lead to higher lake levels, it fails to capture the nuances
between different staggering patterns. This indicates that the static encoding of pump rules was not
learned successfully.
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Discussion and Recommendation

This chapter discusses the main outcomes of the study. The first section provides a general interpre-
tation of the results presented in the previous chapter, linking them to broader insights and the overall
research objectives. Section 8.2 outlines the main limitations of the study and offers recommendations
for future research.

9.1. General Interpretation of Results
The systematic design of the three model setups allows to isolate key aspects of data-driven hydro-
dynamic modeling. Model A demonstrates that the LSTM can successfully learn the governing water
balance, when all essential drivers are known (including the pump capacity time series). Although the
model does not use explicit physical equation, it effectively captures relations between inflow, outflow,
and storage by adjusting the weights in its hidden layers.

However, Model A must be interpreted with care. It requires the pump plan (Qpump(t), which is an
output of the HEC-RAS model, as an input. This ”data leakage” means Model A is not a direct replace-
ment for HEC-RAS and cannot be used for a one-to-one comparison. The primary role of Model A is
therefore not the practical application. Its good performance simply validates that an LSTM architecture
is capable of learning the complex relations of the Clear Lake water balance when all information is
provided.

However, the setup for Model A does open a path for a different use case, where the trained model
could be used to test the water level impact of any arbitrary pump plan. The challenge is that the HEC-
RAS setup should be changed to accept the pump plan as input time series instead of its internal rules.
This makes the validation of the LSTM model with the ground truth model more complex.

For future work, this suggests an interesting optimization loop where Model A could be used to find a
theoretically ’optimal’ pump plan, and then work backward to determine the design parameters (e.g.,
hon, np) that would be required to reproduce that optimal plan in practice.

Model B highlights the importance of complete sequential dynamic driver features. By replacing the
time-varying pump capacity with static pump features, the model loses access to temporal coupling
information (on/off behavior) and compensates by interpolating the average relationship between the
resulting water level (figure 8.3b). The resulting smoother predictions indicate that the network struggles
to capture the system’s response to sharp pump (de)activations. This confirms that data-driven models
struggle without complete, high-resolution temporal information (Mohammed et al., 2025).

Model C was designed to overcome the limitation of lacking pump responses by reintroducing feed-
back through an autoregressive target. The idea was to improve on Model B by: 1) providing extra
information in the form past target water levels, and 2) using the predicted target water level at time t
to predict pump capacity at the same time. This approach aimed to re-implement the information that
Model A had, but Model B missed.
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However, Model C performed worse than Model B. The increased complexity did not improve per-
formance. Error accumulation caused the model to misinterpret trigger points that Model A correctly
identifies. Because of the autoregressive character, errors propagate over time, reducing overall ac-
curacy. The model does not capture the timing of pump operations and instead tends to smooth out
fluctuations by interpolating expected water levels between (de)activation events.

In summary, however the results for Model C were not as expected, this staged framework: Model A
→ B→ C provides a clear view of how LSTM models handle temporal, and feedback information. The
comparison between dynamic and static pump features, confirms that feature encoding is a key aspect
of model behavior. While replacing time series of pumped capacity with static attributes improved the
presentability and reduced data requirements at interface, it removed the model’s ability to directly
perceive on-and off triggers. This also demonstrates that for this hydrodynamic system, increasing
complexity does not necessarily improve predictive accuracy. Instead, the quality and structure of the
input data have a much stronger influence on performance.

Practical Implications
Even with the relatively small and computationally inexpensive hydrodynamic model used in this study,
all LSTM surrogate models show a strong increase in computational efficiency. The HEC-RAS model
was kept simple to facilitate the generation of training data and to allow straightforward testing of the
LSTM training procedure. Despite this simplicity, the LSTM models achieve forward-pass times on the
order of milliseconds, representing speed-ups of several orders of magnitude compared to the physics-
based simulations.

While for this specific case the HEC-RAS model would still be feasible for Monte-Carlo analyses, the
computational gains observed for the surrogate models highlight the potential efficiency benefits for
larger, more complex hydrodynamic models. For such expensive simulations, replacing the solver
with an LSTM surrogate could reduce computation time from hours or days to seconds, enabling rapid
exploration of design and operational scenarios that would otherwise be unreasonable.

9.2. Limitations and Recommendations
As this study aims to develop a comprehensive framework to replace a hydrodynamic model with a
data-driven alternative, the work consists of multiple connected steps. Throughout these steps, several
assumptions, simplifications, and methodological choices were made. Some of these proved realistic
and well-justified, while others turned out to be less effective. As a result a number of aspects remain
open for discussion. This section presents the main discussion points and limitations of the thesis and
links them to recommendations for future work.

9.2.1. Hydrodynamic Model
1. The first aspect to discuss is the justified choice of the hydrodynamic model. For future design

studies, the hydrodynamic model can be replaced by one with improved performance while main-
taining the same framework. However, the nature of hydrodynamic forcings (boundary conditions)
determine the foundation of the entire framework.

Although a full coupling between HEC-HMS and HEC-RAS was not feasible for this study, explor-
ing this approach would be highly valuable. A fully coupled setup would be only driven by storm
parameters. This would completely change the boundary conditions (from inflow discharges to
wind speeds and pressure fields). This would require significant adjustment of the surrogate
framework. The sampling process would need to be performed on storm parameters (e.g., wind
and pressure fields), which would then be used to generate storm surge and rainfall via hydro-
dynamic wave, and rainfall-runoff models respectively. Calibration would shift toward matching
simulated water levels against the storm-driven forcing conditions.

Although this approach has been shown to be accurate (for example by Bass and Bedient (2018)),
it introduces a trade-off in uncertainty: Overall predictive performance may improve due to a more
physically consistent representation of the system, but errors can propagate through the entire
model flow and therefore, compound. As a result, it becomes more difficult attribute uncertainty
to a specific source compared to separate model frameworks.
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In this work, a simplified coupling with a HEC-HMS model was implemented and the downstream
boundary condition was imposed separately. This approach does increase the variability of pos-
sible scenarios, which potentially improves surrogate model training because of larger entropy.
Nonetheless, literature indicates that fully coupled models generally provide more accurate repre-
sentation of compound flooding (Maymandi, Hummel, and Zhang, 2022; Torres et al., 2015; Bass
and Bedient, 2018).

Therefore, it is recommended that future work will investigate a surrogate of a fully coupled mod-
eling approach. Often these models are computationally also more expensive, so it would benefit
even more from a faster alternative model

2. The short computational domain of the modified HEC-RAS lies entirely within the tidal range
and likely also in the range of backwater curves induced by the pump and gate. As a result,
backwater effects are not fully covered within the model boundaries, which limits the accuracy of
simulated water level dynamics. For a real assessment of the pump/gate system it is therefore
recommended to replace the used, simplified HEC-RAS Model by a model with a large spatial
domain. Or to use the full official 1D model (of HCFCD (2022)).

3. Another limitation of this model concerns the representation of storage areas north of Clear Lake,
where Armand and Taylor Bayou connect to the lake. In their setup, Mott MacDonald (2021)
explicitly included these river sections (B100-00-00 and A104-00-00 for Armand Bayou and Taylor
Bayou respectively) because of their storage capacity (HCFCD, 2022).

This study only represents the inflows from these tributaries (Q3 and Q4). This simplification
neglects potential reverse flows from Clear Lake back into the upstream storage areas during
high water events. Since rainfall discharges were derived from HEC-HMS (which did not compute
backflows) and the downstream boundary condition wasmostly cut-off by the flood gat, the effects
of this backflow was expected to be limited. However, including these river reaches in future
models would allow amore complete representation. Especially under the flow dynamics imposed
by the pump/gate infrastructure.

4. Another limitation concerns the simplified representation of the flood gate and pump station. The
assumption that the gate can close within a single 30-minute time step is unrealistic in practice. As
is the use of a constant pump efficiency or capacity curve. These simplifications are acceptable
only in the early design stages but should be replaced by more detailed formulation. Furthermore,
the default parameter values described in Chapter 4 and Appendix A should be calibrated and
optimized in future studies.

5. The use of a constant time step represents another limitation. Fixing this value at 30 min restricts
the model’s ability to capture important short-term fluctuations in flow and water levels, particularly
those induced by pump and gate operations. Therefore, a smaller time step could also improve
the overall model accuracy, especially near the infrastructure.

6. A final limitation and recommendation concerns the recent study by Torres & Associates (2025),
which was published during the development of this thesis and could therefore not be fully incor-
porated into the modeling approach. Their coupled 2D Rain-on-Mesh framework allows rainfall
and coastal surge to be applied as boundary conditions, directly addressing the first limitation
identified in this section regarding the absence of a fully coupled hydrodynamic setup.

In addition, the study provides a validated model for the Clear Creek watershed, which could
potentially serve as a benchmark for the inflow boundary conditions (Q1−4 used in this work.
Especially given the absence of streamflow gauges at these locations.

9.2.2. Training Data Generation
The setup of the training database contains several important limitations that influence the diversity of
model input data, and hence, the performance. The most important limitations are summarized below;

1. The most significant limitation concerns the implementation of the downstream boundary condi-
tion and the gate operations. During the database construction, the timing of the gate closure
is kept constant and coinciding with the timing of the storm surge. As a result, the gate always
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”cuts-off” the full storm surge, except for the simulations where the gate remains open for the
entire simulation. This strongly restricts the patterns the LSTM can learn in two ways:

(a) The timing/offset between the storm surge and the peak discharges can vary. However, the
training dataset does not capture the full range of this variability as only the discharge offset
was (inertly in the gamma parameters) varied and the start of the storm surge was fixed
over all simulations. This means the model learns only a small subset of possible system
responses.

(b) Secondly, in most simulations, the storm surge is completely cut off, which does not repre-
sent a realistic scenario. Ideally, the gate should open when the inland water level exceeds
that of Galveston Bay, allowing for gravitational outflow. A better approach would be to
implement this operational strategies in the HEC-RAS model.

2. Another limitation lies in the representation of the downstream boundary condition itself. The
simplified triangular shape used for the storm surge may be acceptable for first representation,
but in this case, extensive modeling studies and datasets of historical surge events already exist
for Galveston Bay.

In this study, surge events were characterized by calibrating a threshold on peak water levels
corresponding to specific return periods from these studies. This approach is debatable since
other parameters such as duration and asymmetry also influence the probability of occurrence.
Moreover, the limited number of characterized eventsmakes it difficult to reliably relate peak surge
levels to return periods. This also becomes evident when comparing the performed analysis to the
described literature of the storm surges. Where especially the storm duration was underestimated
by the performed analysis compared to the studies of USACE and GLO (2021b).

These limitation leads directly to the following recommendations. For this specific case, it would
be more appropriate to sample the downstream storm surge boundary condition, based on the
synthetic storm modeling by USACE and GLO (2021b). This would not only yield more realistic
surge scenarios but also allow for more consistent translation between storm surge parameters
and their return periods. If the synthetic surge events also account for relative timing to the riverine
discharges, a robust and realistic range of hydrodynamic forcing conditions can be generated,
leading to more robust models.

3. A key limitation observed in this framework lies in the encoding of the pump operations for Model B
and Model C. In HEC-RAS, a pump plan, meaning the pumped capacity over time, is generated
based on the described inputs in Chapter 5.1; the number of pumps and their activation levels.
This produces a time series signal describing exactly when each pump turns on or off and hence,
the total pump flow over time.

• Model A uses the full pump time series as input. A sampling strategy of the pump parameters
(np and hon) was applied to maximize the coverage of the input space (the pump time series),
allowing the LSTM to learn the full temporal behavior and total effects of the pumps.

• For Model B and Model C, this dynamic pump feature was replaced by the sampled static
parameters (np and hon).

The problem is that the LSTM no longer directly observes when pumps are turned on or off, but
instead has to infer this behavior from the static parameters, which is inherently more difficult.

Furthermore, the pump time series contains more information, such as the total or maximum
pump capacity and the total pumped volume, information that is not explicitly calculated by the
LSTM model but contributes valuable input for updating the hidden state weights.

Finally, the sampling of the parameters np and hon was designed to maximize the entropy of
the resulting pump time series Qp(t), ensuring a wide coverage of possible pump operation se-
quences. This can be seen in Figure 9.1a, where the generated pump signals span a broad range
of temporal patterns.
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(a) Input Space Pump Plan (Capacity over Time) (b) Input Space Pump Variables

Figure 9.1: Input space for (a) pump capacity over time, and (b) np and & hon

While the time series appear diverse, the actual range of parameter values is relatively narrow
and does not fully reflect realistic pump operation scenarios (Figure 9.1b). Therefore, if an LSTM
model is used with a parameter-sampling approach, it is important that the static features are
sampled in a physically meaningful and realistic way. For this specific case, for example, the
inclusion of three different staggering patterns introduced unnecessary complexity in the encoding
while providing limited additional information.

A more effective approach would be to fix the staggering pattern and vary only the activation level
(hon) and pump capacity. This would enable the model to focus on learning the key indicators,
namely; the timing of activation and the maximum pumping capacity, while requiring fewer data
samples. Furthermore, despite the limited input space of activation levels, in the current approach
the model already seems to learn the pattern of an increased/decreased activation water level
(visible in Figure 7.6) in section 7.4).

This consideration also forms the main recommendation for future work: to investigate how static
pump design parameters can be best represented to train an LSTM model efficiently. An illustra-
tive example is the gate width, which in this study is included in the time series representation.
Although the gate width is not ideally encoded here (as previously discussed), the model was still
capable of interpolating between widths, despite being trained on only two distinct configurations.

4. Finally, the report of Torres & Associates (2025) also includes a bivariate analysis of coastal
rainfall–surge interactions. This information could be used to construct a more realistic, high-risk
training dataset for future surrogate models.

Sampling boundary conditions directly from the joint distribution presented in their study would fur-
ther support robust scenario generation at the inference stage. Overall, integrating these findings
represents a valuable direction for future work.

9.2.3. Choice for LSTM Architecture
The Long Short-Term Memory (LSTM) network was selected for this study due to its ability to cap-
ture temporal dependencies and retain information over extended time periods, making it well suited
for modeling sequential hydrodynamic processes (Hochreiter and Schmidhuber, 1997; Kratzert, Klotz,
Brenner, et al., 2018). The choice for the LSTM model was primarily guided by examples in literature,
as well as by the temporal nature of the data. Hence, alternative data-driven approaches and model
architectures that also may be effective for this type of system, were not analyzed. This subsection
discusses key considerations and limitations related to the adopted LSTM architecture and suggests
directions for future work.

1. Model capacity. While the LSTM architecture offers strong temporal learning capabilities, its
full representational power may exceed what is necessary for this relatively low-dimensional
system. Simpler dynamics may be sufficiently captured by less complex architectures. The
LSTM becomes more advantageous when modeling longer sequences, finer temporal resolu-
tions, or systems with pronounced memory effects and delayed responses (Goodfellow, Bengio,
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and Courville, 2016).
2. Hybrid Modeling for Pump Operations. This study attempted to include all variables within a

single LSTM structure. An alternative and potentially more robust approach could be a hybrid
modeler setup. The LSTM could focus on predicting the hydrodynamic response to variables/fea-
ture it models well (inflows Q1−4 and gate g(t)). The pump operations, that where poorly repre-
sented in Model B and Model C, could be handled by a separate, external model/algorithm. This
could be a simple rule based algorithm or small physical-based model. Exploring this separa-
tion/hybrid approach in future work could improve interpretability and stability.

3. Alternative architectures. Given the high accuracy achieved by some of the current LSTM
configurations, future studies could examine simpler neural models such as fully connected Multi-
Layer Perceptrons (MLPs), Gated Recurrent Units (GRUs) (Cho et al., 2014), or one-dimensional
Convolutional Neural Networks (1DCNNs) (Bai, Kolter, and Koltun, 2018). Particularly for Model A,
where the input structure is straightforward and the temporal dependencies are limited, an MLP
or GRU could offer comparable performance with reduced computational cost and training com-
plexity.

4. Advanced architectures. Conversely, more sophisticated architectures such as Temporal Con-
volutional Networks (TCNs) (Bai, Kolter, and Koltun, 2018) or transformer-basedmodels (Vaswani
et al., 2017) have shown strong performance in capturing long-range dependencies and spatial–
temporal patterns. The self-attention mechanism at the core of the Transformer allows the model
to look at all timesteps in the input sequence simultaneously and learn direct, non-local relation-
ships between inputs and outputs (Vaswani et al., 2017). This may be highly effective for this
problem, as a pump’s activation depends on a complex interaction of recent inflows and gate
operations (that determine the Clear Lake water level linked to pump triggering). Therefore, a
recommendation for future work is to research this type of model, specifically Transformers, for
this application.

An intermediate step could also be to implement an attention mechanism into the standard LSTM
used here. Such an ”Attention-LSTM”model, has shown successes in other hydrological sequence-
to-sequence modeling tasks (Dai et al., 2023)

9.2.4. LSTM-specific Considerations
1. The LSTM models were not extensively tuned or optimized. Hyperparameter selection was re-

stricted to a limited set of key parameters in order to maintain a balance between model accuracy,
computational efficiency, and training time. While this pragmatic approach ensured stable model
convergence, it likely constrained the achievable performance. Future work could apply more
systematic optimization techniques such as grid search, Bayesian optimization, or evolutionary
algorithms to better explore the hyperparameter space.

2. Smooth pump activation representation. Models B and C exhibited difficulties in accurately re-
producing the sharp activation and deactivation moments of the pumps, resulting in overly smooth
transitions in the predicted water level time series. This effect is partly attributed to the inher-
ently smooth nature of the LSTM’s activation functions (typically sigmoid or tanh), which tend
to blur abrupt changes in the input signal. Future research could explore whether alternative
formulations—such as step-like or threshold-based activation functions, or hybrid physical–data-
driven approaches—can improve the representation of such discrete events. Implementing these
custom activations in PyTorch, however, remains non-trivial and may require custom gradient def-
initions.

3. Evaluation and generalization. A comprehensive evaluation of the LSTM models on indepen-
dent, unseen datasets was not conducted within this study. Consequently, the generalization
capability of the trained models remains uncertain. Future work should incorporate a more struc-
tured and extensive validation procedure, ideally supported by a consistent and representative
database that captures a wide range of operational and hydrological conditions.

4. A key limitation of Model C is the accumulation of prediction errors during the autoregressive
forecasting. This study did not incorporate error-encapsulation. A technique where a second
model is trained to predict the residuals of the primary LSTM to correct its output. These residual
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models could learn systematic biases of the primary LSTM and can therefore reduce the drift
of error accumulation (e.g., study of Wenchuan et al. (2024)). Implementing a small residual
predictor is therefor a promising direction for improving the robustness and stability of Model C.

5. Future work could explore Physics-Informed Neural Networks (PINNs), specifically by modifying
the LSTM architecture itself. For instance, the LSTM cell state ct, which is responsible for the
preserved long-term memory (Chapter 3), could be adjusted or constrained to carry a physical
state variable (e.g., Hoedt et al. (2021)), such as a flag for the pumps to be ”on” or ”off”. This
would force the LSTM model to respect the operational logic rather than learn a statistical approx-
imation. This combines the learning capabilities of an LSTM with hard constrains of the physical
system, potentially improving results. Such implementation was not researched in this study, but
is definitely interesting to investigate further in future work.

9.2.5. Further Exploration: Improvement of Model B
While Model C attempted to improve Model B by feeding the predicted pump discharge back into the
model, its performance remained limited. As discussed in Section 9.2.4, alternative approaches exist
to enhance Model B. To explore this, an additional strategy was developed as an iterative improvement
of Model B, referred to as Model D.

Model D aimed to better preserve the system’s response to pump (de)activation by explicitly forcing the
water-level predictions to reflect the correct triggering behavior. The model structure remained a single-
task framework, predicting only the water level, but incorporated the following changes compared to
Model B:

• The static pump variables np and hon,i were provided once as input conditions instead of being
repeated at each time step as in Model B.

• Trigger events for both the true and predicted water-level time series were determined and trans-
lated into a binary signal, where a value of 1 indicates that the pumps are triggered (activated or
deactivated).

• This binary signal was smoothed using a Gaussian window centered around each triggering point
(value 1). This smoothing avoids the instability of hard binary labels and enables gradient-based
optimization using Adam (Janocha and Czarnecki, 2017).

• The loss function was extended to a hybrid form, combining the standard regression MSE with
a binary cross-entropy term applied to the smoothed trigger signals. A weighting parameter con-
trolled the balance between the two parts, with a value of 0.1 yielding the best performance.

L = αLMSE + (1− α)LBCE, (9.1)

where α ∈ [0, 1] controls the weighting between the two components. The value of α = 0.1 was
calibrated interactively. The MSE term LMSE was described in Section 7.1.

The binary cross-entropy on the smoothed trigger signals, where s̃t,p and ˜̂st,p denote the Gaussian-
smoothed true and predicted trigger signals for pump p, is given by:

LBCE = − 1

TP

T∑
t=1

P∑
p=1

[
s̃t,p log

(
˜̂st,p

)
+
(
1− s̃t,p

)
log

(
1− ˜̂st,p

)]
. (9.2)

Despite the theoretical promise of incorporating explicit trigger information, Model D did not produce
substantial improvements compared to Model B when evaluating the performance metrics.

Further gains may be achievable through a more flexible design. For example, treating the binary
trigger sequence as an additional predicted output rather than computing it deterministically. Such a
multivariate formulation would allow the trigger head to be passed through a dedicated prediction layer
and trained with its own loss function, likely improving consistency between predicted water levels and
operational behavior.

A more detailed presentation of the experimental results for Model D is provided in Appendix F.
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9.2.6. Limitations and Recommendations Overview
In summary, the LSTM architecture provides a robust and interpretable framework for sequence mod-
eling in this context. Nonetheless, exploring both simpler and more advanced model types could offer
valuable insights into the trade-offs between model complexity, interpretability, and computational effi-
ciency.

The limitations and their coupled recommendations are summarized in the table 9.1

Table 9.1: Summary of key limitations, their implications, and recommendations.

Limitation Implication Recommendation
Hydrodynamic model not fully
coupled

Reduced realism of boundary
conditions; uncertainty harder to
attribute

Explore fully coupled
HEC-HMS-HEC-RAS so
precipitation can replace simplified
inflows

Short HEC-RAS domain Backwater effects partially missed;
limits water level accuracy

Use larger spatial domain like full
official 1D model

Simplified storage areas (Armand &
Taylor Bayou)

Potential reverse flows ignored;
incomplete representation under
high flows

Include upstream storage areas
and river reaches in future models

Simplified flood gate and pump
representation

Unrealistic gate closure; constant
pump efficiency; limits temporal
accuracy

Use more detailed pump/gate
modeling; calibrate parameters

Constant 30-min time step Misses short-term fluctuations,
especially near infrastructure

Reduce time step for improved
resolution and accuracy

Downstream boundary condition
fixed (storm surge timing)

LSTM sees limited patterns; may
not capture realistic variability

Sample surge events based on
historical/synthetic data with
variable timing relative to river
inflows

Simplified storm surge shape Duration and asymmetry of surge
misrepresented

Use synthetic storm datasets to
better represent surge
characteristics

Pump operations represented by
static parameters (Models B & C)

Temporal dynamics not directly
observed; harder for LSTM to learn
system response

Represent key pump indicators
dynamically or sample static
parameters realistically; limit
unnecessary complexity

Error accumulation in
autoregressive forecasts (Model C)

Reduced robustness and stability Implement residual correction
models to mitigate systematic bias

Single-task LSTM Limits learning for features like
pump triggers

Explore multi-output LSTM or
hybrid architecture with separate
pump predictor

LSTM architecture not optimized Potential sub-optimal performance Apply systematic hyperparameter
tuning

Smooth LSTM activations Sharp pump events blurred in
predictions

Explore alternative activations or
hybrid physical–data-driven
approaches

Limited evaluation on unseen data Generalization uncertain Use extensive, independent
datasets for validation

Recent studies not incorporated
(Torres & Associates (2025))

Missing benchmark and improved
boundary conditions

Integrate new rainfall-surge
coupling and inflow datasets
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Conclusion

This master’s thesis aimed to develop a deep-learning surrogate modeling framework capable of ef-
ficiently simulating the hydrodynamic response under different design configurations of the proposed
pump and gate system at Clear Lake inlet.

The first objective, to represent this system, was addressed by simplifying an existing 1D HEC-RAS
model. Although the validation of this modified model indicated limited performance, it was considered
sufficiently accurate to serve as a ground truth for generating the training data required by the surrogate
model. The modular approach of the framework ensures that the hydrodynamic model can be replaced
by one with better performance.

The second objective addressed how this physical-based model could be used to generate representa-
tive and efficient training data. A total of 2400 simulations were produced by sampling key infrastructure
parameters and compound flood forcings. The models performed well within sampled parameter space
but showed reduced accuracy when applied to unseen conditions, although extensive testing outside
of training data was beyond the scope of this study.

Equally important is the choice of sampling parameters itself. In this study, the gate operation schedule
was kept constant, and only a limited offset between surge and river peaks was explored. These
limitations restricted the analysis of interactions between hydraulic forcings and gate operation controls
even though such interactions strongly influence the system behavior. Future work should therefore
broaden the sampling of these boundary conditions.

The final objective was to use the simulation dataset for training a surrogate capable of predicting dy-
namic system behavior from static design parameters. Two key findings were found. First, LSTM net-
works can successfully capture the governing hydrodynamic processes when provided with all relevant
dynamic inputs. Model A, which included the pump discharge as sequential input, successfully repro-
duced complex water balance dynamics. Second, LSTMs struggle to infer such dynamics from static
inputs. When the dynamic pump discharge was replaced by static operational parameters (Model B),
performance dropped. A more complex, autoregressive version (Model C) decreased performance
due to error amplification. These findings underline that feature encoding is a key component of the
framework.

To conclude, LSTM-based surrogate models can emulate hydrodynamic behavior governed by pumps
and gates when trained with well-structured, dynamic data. The main challenge lies in teaching the
model to predict dynamic behavior based on static design input. A successful framework should there-
fore either (a) use an LSTM model like Model A, where pump operation logic is given as a time series
input or (b) adopt a simpler static surrogate structure with more direct relationships. Future research
should prioritize incorporating realistic gate and boundary conditions and testing model robustness
under scenarios beyond the training domain before applying the framework for design optimization.
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A
System Representation

A.1. Additional Gate Parameters
Parameter Value
Gate type Radial

Radial Discharge Coefficient 0.7
Trunnion Exponent 1
Opening Exponent 0.5
Head Exponent 0.5
Trunnion Height -11
Orifice Coefficient 0.8
Head reference Sill (Invert)
Weir Shape Broad Crested

Weir Coefficient 1

Table A.1: Additional gate parameters

A.2. Models USED Mott MacDonald (2021)

(a) HEC-RAS model Clear Creek (b) HMS Model Clear Creek Watershed

Figure A.1: Hydrodynamic and hydrologic model of Clear Creek watershed (HCFCD, 2022)
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B
Database construction

B.1. Inflow Distribution Fitting

Figure B.1: Gamma distribution fit to available hydrographs
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B.2. Pump Configurations
#
Pumps

Qpump
(m3/h)

hon (m) hoff (m) Pattern Gate
Width (m)

4 2000 [4.88, 4.88, 4.88, 4.88] [4.38, 4.38, 4.38, 4.38] uniform 75
6 2000 [3.00, 3.75, 4.50, 5.25,

6.00, 6.75]
[2.50, 3.25, 4.00, 4.75,
5.50, 6.25]

moderate 75

8 2000 [3.00, 3.64, 4.27, 4.91,
5.54, 6.18, 6.81, 7.45]

[2.50, 3.14, 3.77, 4.41,
5.04, 5.68, 6.31, 6.95]

strong 75

10 2000 [4.88, 4.88, 4.88, 4.88,
4.88, 4.88, 4.88, 4.88,
4.88, 4.88]

[4.38, 4.38, 4.38, 4.38,
4.38, 4.38, 4.38, 4.38,
4.38, 4.38]

uniform 75

4 2000 [3.00, 4.25, 5.50, 6.75] [2.50, 3.75, 5.00, 6.25] moderate 75
6 2000 [3.00, 3.85, 4.70, 5.55,

6.40, 7.25]
[2.50, 3.35, 4.20, 5.05,
5.90, 6.75]

strong 75

8 2000 [4.88, 4.88, 4.88, 4.88,
4.88, 4.88, 4.88, 4.88]

[4.38, 4.38, 4.38, 4.38,
4.38, 4.38, 4.38, 4.38]

uniform 75

10 2000 [3.00, 3.42, 3.83, 4.25,
4.67, 5.08, 5.50, 5.92,
6.33, 6.75]

[2.50, 2.92, 3.33, 3.75,
4.17, 4.58, 5.00, 5.42,
5.83, 6.25]

moderate 75

4 2000 [3.00, 4.35, 5.70, 7.05] [2.50, 3.85, 5.20, 6.55] strong 75
6 2000 [4.88, 4.88, 4.88, 4.88,

4.88, 4.88]
[4.38, 4.38, 4.38, 4.38,
4.38, 4.38]

uniform 75

8 2000 [3.00, 3.54, 4.07, 4.61,
5.14, 5.68, 6.21, 6.75]

[2.50, 3.04, 3.57, 4.11,
4.64, 5.18, 5.71, 6.25]

moderate 75

10 2000 [3.00, 3.52, 4.03, 4.55,
5.07, 5.58, 6.10, 6.62,
7.13, 7.65]

[2.50, 3.02, 3.53, 4.05,
4.57, 5.08, 5.60, 6.12,
6.63, 7.15]

strong 75

Table B.1: Overview of pump configurations for varying numbers of pumps, with rounded hon and hoff levels.



C
Tidal Analysis Eagle Point

Figure C.1: Measured tidal signal at Eagle Point over the analysis period.

Figure C.2: Detected tidal events using a 0.5 m threshold.
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Figure C.3: Detected tidal events using a 0.9 m threshold.



D
Feature Engineering and

Reprocessing

Before training the surrogate model, additional steps were applied to the input-output database to gain
understanding between de relations between feature and target. By getting better understanding of the
relations and correlations, more insight is gained and the training dataset can potentially be structured
in a more efficient way.

Two complementary analyses were conducted: First, a lag correlation analysis (LCA to quantify time
shifted dependencies between predictors and the target water level. Secondly, a cross-correlation
analysis to asses mutual dependencies between inputs themselves and the target. These analyses
were performed on the dynamic forcing features, meaning the 5 hydrodynamic input forcings (inflows
and downstream water level), as the gate and pump signal as they are also sequences and impact the
behavior of the target water level. These steps serve to indicate leading/lagging relationships in the
time series and to identify potentially collinear predictors that can than be removed from the training
set.

D.0.1. Lagged Correlation Analysis (LCA)
The LCA quantifies the strength of correlation between each input feature xf (t) and the target water
level y(t) at different temporal lags. To efficiently compute correlations over a range of time lags, a Fast
Fourier Transform (FFT)-based cross-correlation method was employed. For each run r and feature f ,
the cross-correlation function was evaluated as

ρf,r(τ) =
1

σxf
σy

T∑
t=1

(
xf,r(t)− µxf

)(
yr(t+ τ)− µy

)
, (D.1)

where τ ∈ [−τmax, τmax] is the considered lag window, µ and σ denote mean and standard deviation,
and T is the sequence length. By convention, a positive lag τ > 0 indicates that the input leads the
target. The resulting lag-correlation curves ρf (τ) were then averaged across all runs to obtain robust
estimates of temporal dependencies, with ±1 standard deviation envelopes used to indicate variability.

Figure D.1 below shows the results of the mean lagged correlation over the runs with their standard
deviation per time lag for a maximum time lag τmax = 60 timestep of 30 minutes.
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Figure D.1: Lagged-Correlation-Analysis

The results of the analysis in Figure D.1 shows that Q1 is clearly the strongest predictor of lake water
levels, with a maximum correlation near 1 and no noticeable lag, likely because the timing of inflows
from faster tributaries closely matches the lake response. Q3 also provides useful forecasting infor-
mation, with a moderate correlation of 0.55 leading the target by about 13 time steps (≈6.5 hours),
reflecting its smaller watershed and quicker contribution. In contrast, Q2 and Q4 show weaker corre-
lations, peaking at 38 and 13 time steps respectively, since they contribute smaller volumes of water
and their flood waves reach the lake at different times. The gate and downstream water level show a
strong but inverted correlation with the lake, peaking around 40 time steps (≈20 hours). The gate tends
to be open when the lake level is low and closed during storm surges, while the downstream level rises
earlier due to the storm surge. Finally, pumped capacity, which is controlled by the lake water level in
HEC-RAS, shows a strong correlation at a small negative lag because it essentially follows the target.

D.0.2. Cross Correlation Analysis (Cov Matrix)
To evaluate dependencies and redundancies among all variables, correlation and covariance matrices
were computed over the concatenated dataset. For each feature f , the time series were flattened over
all runs and timesteps into a single vector xf .

The covariance matrix was computed as

C = cov(X) ∈ RNf×Nf , (D.2)

and normalized to obtain the correlation matrix

Rij =
Cij√
Cii Cjj

. (D.3)

The correlation matrix is visible in D.2.
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Figure D.2: Cross-correlation matrix across model simulations

The correlation matrix (Figure D.2 confirms that the target water level is strongly related to Q1 and
the pumped capacity, which is expected since the pump operation is determined by the target. Q3
also shows a notable correlation with the target and the pump. In contrast, Q2 and Q4 exhibit very
weak correlations with the target and other features, with the exception of a small apparent correlation
between Q2 and the downstream water level and gate, which is likely coincidental. Q1 and Q3 are
moderately correlated, reflecting the similar contributions of their watersheds.

Based on these observations, a few improvements to the dataset were proposed: removing Q2 and Q4,
as they contain limited information for predicting the target; shifting Q3 by 13 time steps to better align
with the target response; and applying a time shift of approximately 38 steps for the gate opening and
downstreamwater level. Implementing these adjustments would create amore efficient and informative
training dataset. However, these changes were not applied because it showed a small decrease in
performance and did not result in faster convergence. Hence, it was chosen to keep all input features.

For the development of Model C, the analysis was used to obtain an initial estimate of the time series
lag parameter, nlag. This estimate was compared to the observed lags of 13 and 38 time steps, and
ultimately a value of 20 was selected, as it yielded the best results.



E
Sensitivity Analysis of Model C

E.1. Sensitivity to Design Variables

Figure E.1: Effect of gate width on Model C performance.
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Figure E.2: Impact of the number of pumps on Model C results.
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Figure E.3: Sensitivity of Model C to the pump activation stagger.
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Figure E.4: Overview of the input configurations corresponding to the sensitivity analysis.

E.2. Sensitivity HMS Discharges

Figure E.5: Model C, HMS Inflows
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Figure E.6: Model C, HMS Inflows

Figure E.7: Model C, HMS Inflows

Figure E.8: Model C, HMS Inflows



F
Results Model D

F.1. Quantitative Metrics
Table F.1 presents the performance metrics of all models as described in 8.3, but adds the values of
later developed Model D.

Table F.1: Performance metrics for the LSTM models.

Metric Model B Model D
RMSE (m) 0.0756 0.0734
MAE (m) 0.0484 0.0476
NSE (-) 0.9979 0.9980

As described, does the model, based on these metrics, not show increased performance compared to
Model B. Although, the metrics indicate better fit compared to Model C.

F.2. Visual Assessment
A scatter plot where this new Model D is compared with Model B is visualized below:

Figure F.1: Scatter plots of predicted versus observed water levels for Models B and D.

From this, the slightly improved performance of Model D compared to B is also visible, aligning with
the values found in Table F.1
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