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Abstract:
Parameterized feedforward control is at the basis of many successful control applications with varying
references. The aim of this paper is to develop an efficient data-driven approach to learn the feedforward
parameters for MIMO systems. To this end, a cost criterion is minimized using a stochastic gradient
descent algorithm, in which both the search direction and step size are determined through system
experiments. In particular, the search direction is chosen as an unbiased estimate of the gradient which
is obtained from a single experiment, regardless of the size of the MIMO system. The approach is
illustrated using a simulation example, in which it is shown to be superior to a deterministic method in
terms of convergence speed and thus experimental cost.

Keywords: Feedforward control, MIMO systems, Iterative learning control, Basis functions,
Data-driven control

1. INTRODUCTION

Accurate parameterized feedforward control is essential for the
tracking performance of control applications with varying refer-
ences because of its ability to compensate known disturbances
before they affect the system. Approaches to feedforward con-
trol range from fully model based methods, such as in Butter-
worth et al. (2012), to methods that use data in conjunction
with approximate models (Van De Wijdeven and Bosgra, 2010).
Through these approaches high performance can be achieved
for mechatronic systems including printers (Bolder et al., 2014)
and wafer stages (Blanken et al., 2017).

Iterative learning control (ILC) is a feedforward control ap-
proach that can achieve high performance for a single task
through complete attenuation of repeating disturbances. In ILC,
a feedforward signal is updated iteratively based on the mea-
sured error of the previous iteration. Most ILC approaches,
including frequency-domain ILC (Bristow et al., 2006) and
norm-optimal lifted ILC (Gunnarsson and Norrlöf, 2001), use
measurement data in conjunction with approximate models and
as such can improve upon the performance of fully model-
based feedforward approaches. However, this performance is
only achieved for a single reference, limiting the applicability
of these ILC algorithms to systems performing repeating tasks.

The applicability of ILC for industrial applications that perform
varying tasks is improved through extensions aimed at increas-
ing the flexibility of ILC. In Hoelzle et al. (2011), a library
of basis tasks is learned that can be combined into references.
� This work is part of the research programme VIDI with project number
15698, which is (partly) financed by the NWO.

Basis function approaches to ILC increase the flexibility even
further, as shown in, e.g., Van De Wijdeven and Bosgra (2010);
Bolder et al. (2014). In these approaches, feedforward param-
eters for SISO systems are learned directly and they result
in high performance for SISO systems. However, due to the
modeling and design requirements the application to MIMO
systems with interaction is not trivial, as illustrated in Blanken
and Oomen (2020). In addition, since parameterized feedfor-
ward control for MIMO systems with interaction involves many
interdependent parameters, manual tuning approaches such as
described in Oomen (2019) are infeasible in practice. Instead,
an automated model-free approach is desired.

Existing approaches to model-free ILC for MIMO systems with
non-repetitive trajectories do not consider basis functions and
as such are limited in flexibility. In Boudjedir et al. (2021), posi-
tion and velocity-based ILC is applied to a second-order MIMO
nonlinear pick-and-place robot, the references for which vary
in magnitude and length. Through a model-free gain-based ILC
update law performance is improved after a small number of
iterations. Sammons et al. (2020) develop a similar approach in
which the gain may include system information. While these
approaches yield valuable results for certain types of applica-
tions, they are limited in the allowed reference variation and
consequently are not suitable for mechatronic systems that
demand high accuracy for references that show significantly
more variation in, e.g., magnitude, velocity and acceleration.
For these types of systems and tasks, fully parameterized feed-
forward is required instead.

Feedforward tuning for MIMO systems through basis function
ILC can be framed as an optimization problem aimed at find-
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varying tasks is improved through extensions aimed at increas-
ing the flexibility of ILC. In Hoelzle et al. (2011), a library
of basis tasks is learned that can be combined into references.
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systems with interaction is not trivial, as illustrated in Blanken
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interdependent parameters, manual tuning approaches such as
described in Oomen (2019) are infeasible in practice. Instead,
an automated model-free approach is desired.
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tion and velocity-based ILC is applied to a second-order MIMO
nonlinear pick-and-place robot, the references for which vary
in magnitude and length. Through a model-free gain-based ILC
update law performance is improved after a small number of
iterations. Sammons et al. (2020) develop a similar approach in
which the gain may include system information. While these
approaches yield valuable results for certain types of applica-
tions, they are limited in the allowed reference variation and
consequently are not suitable for mechatronic systems that
demand high accuracy for references that show significantly
more variation in, e.g., magnitude, velocity and acceleration.
For these types of systems and tasks, fully parameterized feed-
forward is required instead.

Feedforward tuning for MIMO systems through basis function
ILC can be framed as an optimization problem aimed at find-
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ing feedforward parameters that minimize the tracking error.
A similar optimization problem is considered in Bolder et al.
(2018), where non-parameterized MIMO ILC is interpreted as
an optimization problem that can be solved without requiring
model knowledge. Through experiments on the adjoint system
(Ye and Wang, 2005; Wahlberg et al., 2010), the gradient of a
cost function is determined which is then used in a gradient de-
scent ILC algorithm. However, determining the exact gradient
requires ni × no experiments per iteration for a system with
ni inputs and no outputs, and as such is not suitable for large
MIMO systems. In Aarnoudse and Oomen (2021b) a different
approach is proposed that relates to simultaneous perturba-
tion stochastic approximation (SPSA), see Spall (1988). This
stochastic approximation adjoint ILC approach uses efficient
unbiased gradient estimates obtained from a single experiment
in a stochastic gradient descent algorithm.

A different SPSA-related algorithm for finding MIMO feed-
forward parameters for a FIR basis through gradient approx-
imation is developed in Heertjes et al. (2010). Here, both the
Hessian and the gradient are estimated from a single simul-
taneous perturbation experiment and single-trial convergence
is assumed. However, as shown in Spall (1997) estimating the
Hessian without bias requires additional experiments, and since
both the Hessian and the gradient are approximated, multiple
iterations are required for convergence in practice. In addition,
this approach does not take advantage of the more accurate
gradient estimates that are available through measurements on
the adjoint system.

Although there exist many results on ILC with basis functions
and model-free ILC, a method for efficient model-free tuning of
feedforward parameters for MIMO systems is lacking. The aim
of this paper is to exploit ideas regarding efficient model-free
ILC in the practically relevant setting of automated feedforward
tuning for MIMO systems. The contribution consists of the
following cornerstones.

(1) A feedforward parameterization for MIMO systems is
proposed that takes into account interaction (Section 2).

(2) A stochastic gradient descent algorithm with optimal step
sizes is proposed to find the parameters that minimize the
tracking error in terms of the squared 2-norm (Section 3).

(3) It is shown that an unbiased gradient estimate can be
obtained from a single experiment regardless of the size
of the MIMO system (Section 4).

(4) The approach is illustrated and compared to a determinis-
tic model-free approach in simulation (Section 6).

Additionally, in Section 5 implementation aspects for motion
systems are discussed and conclusions are given in Section 7.

Earlier results related to this work appeared in Aarnoudse and
Oomen (2021b), in which stochastic approximation adjoint iter-
ative learning control is developed for massive MIMO systems,
and in Aarnoudse and Oomen (2021a) in which a conjugate gra-
dient descent algorithm is proposed to increase the convergence
speed. The current paper builds upon these results to develop
a framework for efficient model-free tuning of feedforward
parameters for MIMO systems, taking advantage of the idea
of stochastic approximation adjoint ILC to obtain inexpensive
unbiased gradient estimates. Since stochastic approximation
adjoint ILC interprets the MIMO ILC problem as an optimiza-
tion problem, it can be applied almost directly to automated
feedforward tuning for feedforward signals that are linear in the
parameters. The number of parameters for MIMO feedforward

C P
yd e

−

f

Fig. 1. Closed-loop control system.

control is typically limited, therefore the feedforward controller
can be tuned efficiently and fast through a gradient-based algo-
rithm and modeling is not required. The resulting approach is
straightforward and feasible to implement in practice.

2. PROBLEM FORMULATION

In this section, the problem of parameterized feedforward con-
trol is introduced. First, an example of mass feedforward is
used to illustrate the structure of MIMO basis functions. Then,
a general structure for the feedforward parameterization for
MIMO systems is proposed, constituting the first contribution.

Consider a MIMO LTI control system with ni inputs and no

outputs as shown in Fig. 1, the error e of which is written in
lifted form as 


e1

...
eno




︸ ︷︷ ︸
e

=



r1

...
rno




︸ ︷︷ ︸
r

−



y1

...
yno




︸ ︷︷ ︸
y

. (1)

Here the unknown exogenous disturbance r = Syd, with
unknown sensitivity S = (I+PC)−1 for plant P and controller
C, and known reference yd. The output y is given by


y1

...
yno




︸ ︷︷ ︸
y

=



J11 . . . J1ni

...
...

Jno1 . . . Jnoni




︸ ︷︷ ︸
J



f1

...
fni




︸ ︷︷ ︸
f

, (2)

with feedforward input f and the unknown process sensitivity
(I + PC)−1P denoted by J . Here, en, rn, yn, fn ∈ RN×1

and J ∈ RNno×Nni for finite signal length N ∈ Z+. In this
setting both r and J are unknown, yd and f can be chosen and
e can be measured. Note that for yd = 0, e = Jf and therefore
we can experiment on J .

2.1 Example: MIMO mass feedforward

The aim of parameterized feedforward control is to achieve
both high accuracy, i.e., small tracking errors, and flexibility
for varying references. To this end, feedforward input f(yd, θ)
is chosen to be a function of the reference and consists of basis
functions ψ(yd) that are linear in the parameters θ such that

f(yd, θ) = ψ(yd)
Tθ. (3)

To illustrate a suitable structure for MIMO basis functions for
motion control that takes into account interaction, consider the
example of mass feedforward for a 2× 2 system with reference
yd =

[
y1d y2d

]T
. The acceleration of the reference is taken as

basis function, and the resulting feedforward signal is given by

[
f1
m(yd, θ)
f2
m(yd, θ)

]
=

[
ÿd

1 ÿd
2 0 0

0 0 ÿd
1 ÿd

2

]

︸ ︷︷ ︸
ψ(yd)T



θ1
θ2
θ3
θ4


 . (4)

Each of the four transfers in the MIMO system, i.e., both the
diagonal and off-diagonal interaction terms, is approximated by
a mass line. Feedforward tuning aims to find the mass estimates,
the parameters θ, that minimize the tracking error.

2.2 General structure for MIMO parameterized feedforward

A general structure for parameterized feedforward for MIMO
systems is given by (3), with basis functions structured as

ψ(yd)
T = (5)


ψ1(yd) ψ2(yd) . . . ψnb

(yd) . . . 0 0 . . . 0
...

...
0 0 . . . 0 . . . ψ1(yd) ψ2(yd) . . . ψnb

(yd)




with the nb basis functions ψn(yd), n = 1, 2, ..., nb given by
ψn(yd) =

[
ψ1
n(y

1
d) ψ2

n(y
2
d) . . . ψno

n (yno

d )
]
. (6)

Here ψ1
n(y

1
d) ∈ RN×1 such that ψ(yd)

T ∈ RniN×nbnoni . The
parameter vector is structured as

θ = [θ1 . . . θnbnoni ]
T ∈ Rnbnoni×1. (7)

Thus, ψ(yd)T consists of a set of nb basis function matrices,
which is applied to each input direction, ni times in total. Each
of the basis function matrices ψn(yd) consists of a specific
basis function applied to each of the no output references.
The parameter vector θ contains a separate parameter for each
column in each of the ni × nb matrices ψn(yd). This results in
ni feedforward signals of the form

fn(yd, θ) =

no∑
k=1

nb∑
l=1

ψk
l (y

k
d)θ(n−1)nonb+(l−1)no+k. (8)

Note that for each input direction, the same set of nb basis
functions is used and only the parameters are different. In
addition, to take into account couplings in the MIMO system,
the input in each direction contains basis functions based on the
reference in all output directions. The framework allows for any
type of basis functions that is linear in the parameters, including
finite impulse response (FIR) bases or, e.g., non-causal rational
basis functions with fixed poles (Blanken et al., 2020).

For SISO systems, the parameters θ can be tuned in different
ways, including intuitive tuning by hand or through model-
based iterative learning control. For MIMO systems tuning
by hand is not trivial since the couplings between system
directions may be complex. In addition, it is often difficult to
obtain the accurate MIMO models required for model-based
ILC. Therefore, the aim of this paper is to develop a method to
find the optimal parameters θ automatically through a series of
experiments without requiring model knowledge.

3. OPTIMAL PARAMETERS THROUGH STOCHASTIC
GRADIENT DESCENT

In this section, the approach to automated feedforward tuning
for MIMO systems is introduced. First, the problem of tuning
the feedforward parameters is written as an optimization prob-
lem in which a cost function is to be minimized. An iterative
algorithm is proposed to minimize this cost function through
stochastic gradient descent with unbiased gradient estimates
and optimal step sizes, leading to the second contribution.
Lastly, an overview of the approach is presented.

3.1 Optimization-based feedforward tuning

The aim is to find parameters that minimize the tracking error in
terms of the squared 2-norm, i.e., to minimize the cost function

J (θ) = ‖e(θ)‖22, (9)

where the 2-norm is defined as ‖x‖2 =
√
xTx, and

e(θ) = r − Jψ(yd)
Tθ (10)

according to (1)-(3). The optimal parameters are given by
θ∗ = argmin

θ
J (θ), (11)

and since J (θ) in (9) is quadratic and convex the parameters
can be found through gradient-based optimization. The gradient
of (9) is given by

g(θ) =
∂J (θ)

∂θ
= 2ψ(yd)J

TJψ(yd)
Tθ − 2ψ(yd)J

Tr, (12)

which through substitution of (10) is rewritten to
g(θ) = −2ψ(yd)J

Te(θ). (13)
In Section 4 it is shown that an unbiased estimate ĝ(θ) of g(θ),
which includes the transpose of the system J which is unknown
in a model-free setting, can be found efficiently using a single
experiment regardless of the size of the MIMO system. The gra-
dient estimate is used in a stochastic gradient descent algorithm,
in which the parameters are updated iteratively according to

θj+1 = θj + εj ĝ(θj), (14)
with optimal step size εj in direction ĝ(θj) as defined next.

3.2 Optimal step sizes

Given a search direction ĝ(θj) in the parameter update (14), the
optimal step size can be found by taking

εj = argmin
ε

J (θj+1)

= argmin
ε

‖r − Jψ(yd)
T(θj + εĝ(θj))‖22. (15)

The optimal step size is given in the following theorem.
Theorem 1. The optimal step size εj that minimizes (15) given
a search direction ĝ(θj) is given by

εj =
ej(θj)

TJψ(yd)
Tĝ(θj)

(Jψ(yd)Tĝ(θj))TJψ(yd)Tĝ(θj)
. (16)

Proof. The quadratic criterion (15) is minimized by setting
∂J (θj+1)

∂ε
= 0. (17)

Taking the derivative to ε gives
∂

∂ε
‖r − Jψ(yd)

T(θj + εĝ(θj))‖22 (18)

= θTjψ(yd)J
TJψ(yd)

Tĝ(θj) + ĝ(θj)ψ(yd)J
TJψ(yd)

Tθj

+ 2εĝ(θj)
Tψ(yd)J

TJψ(yd)ĝ(θj)− ĝ(θj)
Tψ(yd)J

Tr

− rTJψ(yd)
Tĝ(θj).

Substituting (18) in (17) gives

εj =
ĝ(θj)ψ(yd)J

T(r − Jψ(yd)
Tθj)

2ĝ(θj)Tψ(yd)JTJψ(yd)Tĝ(θj)
(19)

+
(r − Jψ(yd)

Tθj)
TJψ(yd)

Tĝ(θj)

2ĝ(θj)Tψ(yd)JTJψ(yd)Tĝ(θj)
.

Substitution of (10) and rewriting leads to

εj =
ej(θj)

TJψ(yd)
Tĝ(θj)

(Jψ(yd)Tĝ(θj))TJψ(yd)Tĝ(θj)
, (20)
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Each of the four transfers in the MIMO system, i.e., both the
diagonal and off-diagonal interaction terms, is approximated by
a mass line. Feedforward tuning aims to find the mass estimates,
the parameters θ, that minimize the tracking error.

2.2 General structure for MIMO parameterized feedforward

A general structure for parameterized feedforward for MIMO
systems is given by (3), with basis functions structured as

ψ(yd)
T = (5)


ψ1(yd) ψ2(yd) . . . ψnb

(yd) . . . 0 0 . . . 0
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
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with the nb basis functions ψn(yd), n = 1, 2, ..., nb given by
ψn(yd) =
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d) . . . ψno
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d) ∈ RN×1 such that ψ(yd)

T ∈ RniN×nbnoni . The
parameter vector is structured as

θ = [θ1 . . . θnbnoni ]
T ∈ Rnbnoni×1. (7)

Thus, ψ(yd)T consists of a set of nb basis function matrices,
which is applied to each input direction, ni times in total. Each
of the basis function matrices ψn(yd) consists of a specific
basis function applied to each of the no output references.
The parameter vector θ contains a separate parameter for each
column in each of the ni × nb matrices ψn(yd). This results in
ni feedforward signals of the form

fn(yd, θ) =

no∑
k=1

nb∑
l=1
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d)θ(n−1)nonb+(l−1)no+k. (8)

Note that for each input direction, the same set of nb basis
functions is used and only the parameters are different. In
addition, to take into account couplings in the MIMO system,
the input in each direction contains basis functions based on the
reference in all output directions. The framework allows for any
type of basis functions that is linear in the parameters, including
finite impulse response (FIR) bases or, e.g., non-causal rational
basis functions with fixed poles (Blanken et al., 2020).

For SISO systems, the parameters θ can be tuned in different
ways, including intuitive tuning by hand or through model-
based iterative learning control. For MIMO systems tuning
by hand is not trivial since the couplings between system
directions may be complex. In addition, it is often difficult to
obtain the accurate MIMO models required for model-based
ILC. Therefore, the aim of this paper is to develop a method to
find the optimal parameters θ automatically through a series of
experiments without requiring model knowledge.

3. OPTIMAL PARAMETERS THROUGH STOCHASTIC
GRADIENT DESCENT

In this section, the approach to automated feedforward tuning
for MIMO systems is introduced. First, the problem of tuning
the feedforward parameters is written as an optimization prob-
lem in which a cost function is to be minimized. An iterative
algorithm is proposed to minimize this cost function through
stochastic gradient descent with unbiased gradient estimates
and optimal step sizes, leading to the second contribution.
Lastly, an overview of the approach is presented.

3.1 Optimization-based feedforward tuning

The aim is to find parameters that minimize the tracking error in
terms of the squared 2-norm, i.e., to minimize the cost function

J (θ) = ‖e(θ)‖22, (9)

where the 2-norm is defined as ‖x‖2 =
√
xTx, and

e(θ) = r − Jψ(yd)
Tθ (10)

according to (1)-(3). The optimal parameters are given by
θ∗ = argmin

θ
J (θ), (11)

and since J (θ) in (9) is quadratic and convex the parameters
can be found through gradient-based optimization. The gradient
of (9) is given by

g(θ) =
∂J (θ)

∂θ
= 2ψ(yd)J

TJψ(yd)
Tθ − 2ψ(yd)J

Tr, (12)

which through substitution of (10) is rewritten to
g(θ) = −2ψ(yd)J

Te(θ). (13)
In Section 4 it is shown that an unbiased estimate ĝ(θ) of g(θ),
which includes the transpose of the system J which is unknown
in a model-free setting, can be found efficiently using a single
experiment regardless of the size of the MIMO system. The gra-
dient estimate is used in a stochastic gradient descent algorithm,
in which the parameters are updated iteratively according to

θj+1 = θj + εj ĝ(θj), (14)
with optimal step size εj in direction ĝ(θj) as defined next.

3.2 Optimal step sizes

Given a search direction ĝ(θj) in the parameter update (14), the
optimal step size can be found by taking

εj = argmin
ε

J (θj+1)

= argmin
ε

‖r − Jψ(yd)
T(θj + εĝ(θj))‖22. (15)

The optimal step size is given in the following theorem.
Theorem 1. The optimal step size εj that minimizes (15) given
a search direction ĝ(θj) is given by

εj =
ej(θj)

TJψ(yd)
Tĝ(θj)

(Jψ(yd)Tĝ(θj))TJψ(yd)Tĝ(θj)
. (16)

Proof. The quadratic criterion (15) is minimized by setting
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∂ε
= 0. (17)

Taking the derivative to ε gives
∂
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‖r − Jψ(yd)

T(θj + εĝ(θj))‖22 (18)

= θTjψ(yd)J
TJψ(yd)

Tĝ(θj) + ĝ(θj)ψ(yd)J
TJψ(yd)

Tθj

+ 2εĝ(θj)
Tψ(yd)J

TJψ(yd)ĝ(θj)− ĝ(θj)
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Tr

− rTJψ(yd)
Tĝ(θj).

Substituting (18) in (17) gives
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Tθj)
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+
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Tθj)
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.
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which concludes the proof.

The optimal step size is determined without requiring any
model knowledge. Given ej(θj)

T and ĝ(θj), εj in (16) follows
from a single experiment on the system J . The experiment
with reference yd = 0 takes as feedforward input ψ(yd)Tĝ(θj),
resulting in the output Jψ(yd)

Tĝ(θj) from which both the
numerator and the denominator term of (16) are determined.

3.3 Overview of the approach

The unbiased gradient estimate in Section 4 is combined with
the optimal step size in (16) to obtain parameter update θj+1

according to (14). In addition to the experiment to determine
the error ej(θj) of iteration j, the parameter update requires
only two experiments to determine the optimal step size and
gradient estimate, regardless of the size of the MIMO system.
The complete approach is summarized in Algorithm 1.

Algorithm 1 Model-free automated feedforward tuning

1: for j = 1 : niteration
2: Apply input fj = ψ(yd)

Tθj and measure
ej(θj) = r − Jψ(yd)

Tθj .
3: Find unbiased estimate ĝ(θj) using one experiment

according to Section 4, Eq. (23).
4: Measure Jψ(yd)

Tĝ(θj) to find step size εj in (16).
5: Update θj+1 = θj − εj ĝ(θj).
6: end

4. UNBIASED GRADIENT ESTIMATES

The approach introduced in Section 3 uses unbiased estimates
of the gradient of (9) for automated tuning of the feedforward
parameters. In this section, a single experiment on system J is
used to obtain these estimates, leading to the third contribution.

The gradient at the point θj is given by

g(θj) =
∂J
∂θ

(θj) = −2ψ(yd)J
Tej(θj), (21)

with JT the adjoint operator of J , which is defined as follows.
Definition 2. Let 〈f, g〉 = fTg denote the inner product of two
signals f, g ∈ RN×1. The adjoint J∗ of J is defined as the
operator that satisfies the condition

〈f, Jg〉 = 〈J∗f, g〉, ∀f, g ∈ RN×1.

The adjoint J∗ of J is given by JT, which follows from
f�Jg = (J∗f)Tg = fT(J∗)Tg, ∀f, g ∈ RN×1.

The adjoint operator relates to J through a time reversal,
resulting in the following lemma for SISO LTI systems.
Lemma 3. The adjoint of a SISO LTI system J = J11 is given
by

(
J11

)T
= T J11T , where the involutory permutation matrix

T =




0 . . . 0 1
... 1 0

0 . .
. ...

1 0 . . . 0


 ∈ RN×N

has the interpretation of a time-reversal operator.

For SISO systems, Lemma 3 enables direct experiments on JT

through a single experiment on J with two time reversals. For

non-symmetric MIMO systems this is not applicable, as follows
from the following lemma.
Lemma 4. The adjoint of a MIMO LTI system J is given by

JT =



(J11)T . . . (Jno1)T

...
...

(J1ni)T . . . (Jnoni)T


 (22)

=



T 0

. . .
0 T




︸ ︷︷ ︸
T ni



J11 . . . Jno1

...
...

J1ni . . . Jnoni




︸ ︷︷ ︸
J̃



T 0

. . .
0 T




︸ ︷︷ ︸
T no

.

For non-symmetric MIMO systems, J̃ �= J , such that the term
JTej in (21) cannot be determined from a single experiment
on J . However, an unbiased estimate ĝ(θj) can be determined
from a single experiment according to the following theorem.
Theorem 5. An unbiased estimate ĝ(θj) of (21) is given by

ĝ(θj) = −2ψ(yd)T niAjJAjT noej(θj). (23)

The matrix Aj ∈ R(Nni)×(Nno) is given by

Aj =



a11j . . . a1no

j
...

. . .
...

ani1
j . . . anino

j


⊗ IN (24)

where IN is the N × N identity matrix and the entries almj
are samples from a symmetric Bernoulli ±1 distribution, i.e.,
almj ∈ {−1, 1} and the probabilities are given by P (almj =

1) = 1/2 and P (almj = −1) = 1/2.

Proof. It holds that
T niAjJAjT noej(θj) = JTej(θj) + ηj , (25)

where ηj is interpreted as an unbiased disturbance term, i.e.,
E{ηj} = 0, (26)

and therefore
E{T niAjJAjT noej(θj)} = JTej(θj), (27)

according to the proof of (Aarnoudse and Oomen, 2021b,
Theorem 1). Substituting unbiased estimate (25) in (21) gives

ĝ(θj) = −2ψ(yd)J
Tej(θj)− 2ψ(yd)ηj . (28)

Since E{ηj} = 0, it follows from the linearity of the expected
value operator that E{ψ(yd)ηj} = 0. Therefore,

E{ĝ(θj)} = −2ψ(yd)J
Tej(θj) = g(θj) (29)

which concludes the proof.

Thus, a single experiment gives an unbiased gradient estimate.

5. IMPLEMENTATION FOR MOTION SYSTEMS

In this section, suitable basis functions for MIMO motion sys-
tems are given and some implementation aspects are discussed.

5.1 Basis functions

Parameterized feedforward control aims to minimize the error
for any reference. From (1) and (2) it follows that zero tracking
error requires

f = J−1r = (SP )−1Syd = P−1yd. (30)
Therefore, the basis functions that construct the feedforward
signal should approximate the inverse plant well. For typical

motion systems, suitable basis functions are the position refer-
ence and its derivatives: velocity, acceleration and snap terms
compensate respectively viscous friction, mass dynamics and
the compliance of the flexible dynamics (Oomen, 2019; Bolder
et al., 2014). This leads to the following basis functions.

ψ(yd)
T =



yd,τ y′d,τ . . . y

(4)
d,τ . . . 0 0 . . . 0

...
...

0 0 . . . 0 . . . yd,τ y′d,τ . . . y
(4)
d,τ


 (31)

in which
yd,τ =

[
y1d y2d . . . yno

d

]
. (32)

This parameterization, which relates each of the output refer-
ences to each input direction, models both the diagonal and off-
diagonal terms of the MIMO system and is therefore suitable
for MIMO systems with strong interaction.

5.2 Implementation considerations

Some practical considerations are of importance for the imple-
mentation of the experiments to obtain the gradient estimate
and the step size. Many motion systems show stick-slip friction
due to which small input signals may not result in useful out-
puts. When small error and gradient signals are used as inputs,
their magnitude may be too small to push the system outside of
the stick regime. This is solved by using scaling factors αj ∈ R
and βj ∈ R, implemented as

ĝ(θj) = −2ψ(yd)T niAj
1

αj
JαjAjT noej(θj), (33)

Jψ(yd)
Tĝ(θj) =

1

βj
Jβjψ(yd)

Tĝ(θj). (34)

It is assumed that αj and βj are chosen such that the system
is outside of the stick regime during the experiment, and that it
therefore behaves linearly. Since the units of feedforward and
error signals typically differ, αj may also be used to reduce the
magnitude of the input for the gradient estimation experiment.

6. SIMULATION EXAMPLE

The proposed method is illustrated using an industrial flatbed
printer in simulation. First, the setup is introduced. Then, sim-
ulation results are given and lastly, the stochastic approach is
compared to a deterministic approach that uses exact gradients.

6.1 Setup

The approach is illustrated using a simulated Arizona flatbed
printer, schematically represented in Fig. 2. In the simulation a
2×2 version of the system is used with force input

[
f1 f2

]T
=

[Fx Fϕ]
T and position output

[
y1 y2

]T
= [x ϕ]

T. A Bode
diagram of the process sensitivity J = (I +PC)−1P is shown
in Fig. 3. The fourth-order reference yd consists of a translation
and a small rotation of the gantry as shown in Fig. 4.

6.2 Results

Model-free automated feedforward tuning is applied to the
Arizona printer in simulation. The basis functions are chosen,
according to Section 5, as the position reference, velocity, ac-
celeration, jerk and snap such that nb = 5. In accordance with
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Fig. 2. Schematic representation of the Arizona flatbed printer.
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Fig. 3. Bode diagram of the transfer function J = (I+PC)−1P
for the gantry of the Arizona flatbed printer.
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Fig. 4. Reference consisting of a translation in x-direction ( ,
[m]) and a small rotation in ϕ-direction ( , [rad])

Algorithm 1, each iteration requires three experiments to deter-
mine respectively the error, the unbiased gradient estimate and
the step size. For the model-free algorithm the error converges
within five iterations, requiring fifteen experiments in total, see
Fig. 5.

6.3 Comparison to a deterministic model-free approach

An alternative model-free approach uses exact gradient expres-
sions that require ni × no experiments to obtain according to

g(θj) = −2ψ(yd)T ni

(
l=1∑
ni

m=1∑
no

ElmJElm

)
T noej(θj),

(35)

where Elm consists of zeros, with a one on the lmth entry, see
also Bolder et al. (2018) where this is applied to norm-optimal
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motion systems, suitable basis functions are the position refer-
ence and its derivatives: velocity, acceleration and snap terms
compensate respectively viscous friction, mass dynamics and
the compliance of the flexible dynamics (Oomen, 2019; Bolder
et al., 2014). This leads to the following basis functions.

ψ(yd)
T =



yd,τ y′d,τ . . . y

(4)
d,τ . . . 0 0 . . . 0

...
...

0 0 . . . 0 . . . yd,τ y′d,τ . . . y
(4)
d,τ


 (31)

in which
yd,τ =

[
y1d y2d . . . yno

d

]
. (32)

This parameterization, which relates each of the output refer-
ences to each input direction, models both the diagonal and off-
diagonal terms of the MIMO system and is therefore suitable
for MIMO systems with strong interaction.

5.2 Implementation considerations

Some practical considerations are of importance for the imple-
mentation of the experiments to obtain the gradient estimate
and the step size. Many motion systems show stick-slip friction
due to which small input signals may not result in useful out-
puts. When small error and gradient signals are used as inputs,
their magnitude may be too small to push the system outside of
the stick regime. This is solved by using scaling factors αj ∈ R
and βj ∈ R, implemented as

ĝ(θj) = −2ψ(yd)T niAj
1

αj
JαjAjT noej(θj), (33)

Jψ(yd)
Tĝ(θj) =

1

βj
Jβjψ(yd)

Tĝ(θj). (34)

It is assumed that αj and βj are chosen such that the system
is outside of the stick regime during the experiment, and that it
therefore behaves linearly. Since the units of feedforward and
error signals typically differ, αj may also be used to reduce the
magnitude of the input for the gradient estimation experiment.

6. SIMULATION EXAMPLE

The proposed method is illustrated using an industrial flatbed
printer in simulation. First, the setup is introduced. Then, sim-
ulation results are given and lastly, the stochastic approach is
compared to a deterministic approach that uses exact gradients.

6.1 Setup

The approach is illustrated using a simulated Arizona flatbed
printer, schematically represented in Fig. 2. In the simulation a
2×2 version of the system is used with force input

[
f1 f2

]T
=

[Fx Fϕ]
T and position output

[
y1 y2

]T
= [x ϕ]

T. A Bode
diagram of the process sensitivity J = (I +PC)−1P is shown
in Fig. 3. The fourth-order reference yd consists of a translation
and a small rotation of the gantry as shown in Fig. 4.

6.2 Results

Model-free automated feedforward tuning is applied to the
Arizona printer in simulation. The basis functions are chosen,
according to Section 5, as the position reference, velocity, ac-
celeration, jerk and snap such that nb = 5. In accordance with
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Algorithm 1, each iteration requires three experiments to deter-
mine respectively the error, the unbiased gradient estimate and
the step size. For the model-free algorithm the error converges
within five iterations, requiring fifteen experiments in total, see
Fig. 5.

6.3 Comparison to a deterministic model-free approach

An alternative model-free approach uses exact gradient expres-
sions that require ni × no experiments to obtain according to

g(θj) = −2ψ(yd)T ni

(
l=1∑
ni

m=1∑
no

ElmJElm

)
T noej(θj),

(35)

where Elm consists of zeros, with a one on the lmth entry, see
also Bolder et al. (2018) where this is applied to norm-optimal
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Fig. 5. Stochastic approximation adjoint ILC for MIMO feed-
forward tuning ( ) converges within 15 experiments (for
five iterations) while the deterministic approach (×) re-
quires 18 experiments (for three iterations) to converge.

ILC. This deterministic approach scales badly for large MIMO
systems due to the ni × no experiments required per iteration
to determine the gradient (Aarnoudse and Oomen, 2021b). In
Fig. 5 it is shown that even for a 2 × 2 system, the stochastic
approach requires fewer experiments to converge.

7. CONCLUSION

In this paper a new approach is developed for model-free
automated feedforward tuning for MIMO systems that uses
efficient unbiased gradient estimates in a stochastic gradient
descent optimization algorithm. Through specific pre- and post-
multiplications, the estimate of the gradient of a cost criterion
is determined from a single experiment regardless of the size of
the MIMO system. An additional experiment is used to deter-
mine the optimal step size in the direction of the gradient esti-
mate, resulting in fast convergence. The approach is illustrated
in a simulation example, where it is shown to require fewer
experiments to converge than a deterministic approach that uses
exact gradients, even for a relatively small 2× 2 system. Since
the number of parameters in feedforward tuning is limited, the
required number of iterations is small such that the approach is
feasible in practice. Future developments involve experimental
implementation of the proposed approach and extension of the
set of basis functions to further increase performance.
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