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summary

Magnetic-aided navigation using unmanned aerial vehicles (UAVS) is a promising method in case tra-
ditional navigation methods fail, but aeromagnetic platform noise from electric motors, electronics, and
actuators can mask subtle geological signals. Traditional compensation methods, such as the Tolles-
Lawson (TL) model, assume linear relationships between platform orientation and platform noise, fail-
ing to capture complex, time-varying disturbances from dynamic onboard systems. Existing machine
learning approaches typically require noise-free reference measurements or known anomaly maps,
resources often unavailable in practical surveying scenarios.

This thesis develops data-driven, reference-free methods for compensating platform noise in aeromag-
netic measurements. The research addresses two key questions: whether deep learning methods can
effectively predict and compensate platform noise without ground-truth references, and which drone
subsystems contribute most significantly to platform noise.

A validation apporoach was implemented using flight data where crustal anomalies are naturally at-
tenuated, enabling reference-free performance assessment. Comprehensive data from a fixed-wing
UAV equipped with scalar and vector magnetometers, logging 273 platform-related input signals during
figure-of-merit manoeuvres over an 800 m x 800 m survey area was used.

The compensation approach employed hierarchical modelling: Extended Tolles-Lawson (ETL) com-
pensation incorporating drone inputs projected onto the magnetic field direction, followed by multilayer
perceptron (MLP) neural networks trained to predict residuals. SHAP (SHapley Additive exPlanations)
analysis provided model-agnostic feature importance assessment to identify the most influential plat-
form inputs.

Results demonstrate substantial improvements over traditional methods. ETL compensation achieved
improvement ratios averaging 7.31 for scalar magnetometers and 18.76 for vector magnetometers,
compared to 4.90 and 10.19 respectively for standard TL compensation. The combined ETLNN ap-
proach (ETL + neural network) further enhanced performance to average improvement ratios of 8.87
on total field magnetometer and 22.22 on vector magnetometer data, a significant improvement over
traditional TL methods.

SHAP analysis revealed that engine-related parameters (battery current, throttle commands), inertial
measurement data (accelerations, gyroscopic rates, vibration), and attitude information (roll, pitch, yaw)
are the primary contributors to platform noise. Features projected onto the magnetic field direction con-
sistently outperformed raw inputs, validating the physical basis for this transformation, while derivative
features contributed minimally whilst increasing overfitting.

The primary limitation is the inability to validate performance on data containing actual magnetic anoma-
lies, as the high-altitude validation approach deliberately suppressed geological signals. Future work
should prioritise validation using artificial magnetic sources or reference magnetometer configurations
to assess preservation of genuine geological signals.
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Introduction

Aerial navigation is a critical capability for both manned and unmanned aircraft, enabling precise move-
ment and positioning [1]. Navigation systems allow aircraft to determine their position, velocity, altitude,
and heading to safely traverse routes and avoid obstacles. Traditionally, aerial navigation is achieved
using the global navigation satellite system (GNSS) together with an inertial navigation system (INS)
[2]. GNSS is a satellite-based technology providing real-time geolocation and time information to users
across the globe. GNSS has become ubiquitous in navigation due to its accuracy, reliability, and avail-
ability, making it the primary method for aerial, maritime, and terrestrial navigation [1].

However, the reliance on GNSS presents vulnerabilities that can jeopardise navigation accuracy and
safety. GNSS signals, which are inherently weak and transmitted from satellites orbiting thousands of
kilometres above Earth, are susceptible to interference [3], [4]. In recent years there has been a signif-
icant increase in GNSS jamming and spoofing, most notably around regions of conflict [5], [6]. GNSS
jamming, using a signal to block or overwhelm the GNSS frequency, can prevent accurate positioning
[3]. GNSS spoofing can manipulate the signal, misleading the navigation system with false data [3].
Both techniques have been demonstrated to disrupt or even completely deceive GNSS-dependent sys-
tems, posing significant risks, particularly for aerial navigation where precise positioning is essential for
safety [3].

In response to these vulnerabilities, there is a growing interest in developing alternative navigation
methods that are resistant to interference [6]. Alternative navigation systems aim to provide reliable
positioning data without reliance on satellite signals, using techniques such as vision-based navigation
[7], dead reckoning based on inertial measurement units (IMUs) [2], radio-based [1] and magnetic
anomaly based localisation systems [8]. These technologies can potentially enhance the resilience of
aerial navigation, enabling aircraft to operate in GNSS-denied environments and safeguarding them
from intentional or accidental signal interference.A method for localisation that has showed promise
recently is magnetic-aided navigation, also called magnetic anomaly navigation or MagNav. In the
aerial domain the Earth’s magnetic anomalies are used, which is called magnetic anomaly navigation.
Magnetic anomaly navigation can be used to aid an inertial navigation system (INS). This method is
especially valuable in GNSS-denied environments, such as during military operations or in remote
regions where satellite signals are unreliable. Magnetic anomaly navigation, as demonstrated in the
work of Canciani [9], offers an unjammable alternative to GNSS by utilising the Earth’s magnetic field.
The Earth field consists of the core field and the crustal field. The core field stems from convection
currents in the liquid core of the Earth [10]. The much smaller crustal field stems from the magnetic
rock in the lithosphere of the Earth [10]. The core field can be accurately modelled by, for instance, the
international geomagnetic reference field (IGRF) model [11] which is the scientific standard [12]. The
crustal field is usually not directly modelled. Instead, the anomaly field is used, which is the difference
between the core field model and the Earth field measured by surveys. The anomaly field is used to
generate magnetic anomaly maps, like the world digital magnetic anomaly map (WDMAM) [13]. These
anomaly maps have varying degrees of accuracy in different locations depending on the quality and
quantity of surveys at those locations.
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The property that makes aerial navigation using magnetic anomaly maps so attractive is that it is prac-
tically unjammable. This is due to the fact that at sufficient distance, any magnetic field source will
behave as a magnetic dipole, for which the magnitude decreases by the cube of the distance. Mathe-

matically,

Bu%, (1.1)

r3
where B is the magnitude of the magnetic field and r is the distance to the centre of the magnetic
field [14].

One of the first to show aerial magnetic anomaly navigation was Canciani in [9]. Canciani’'s method
relies on taking very accurate scalar measurements of the magnetic field and comparing them to a
map. Canciani showed navigation with an accuracy in the range of 10’s to 100’s of metres distance
root-mean square (DRMS). The error increases with altitude, because at higher altitude, less detail in
the magnetic anomalies can be detected [9]. The navigation accuracy also depends on the accuracy
of the magnetic anomaly map.

Magnetic-aided navigation has been done in other environments as well. An example of work that has
been done in magnetic-aided navigation in an indoor environment is [15], which shows simultaneous-
localisation-and-mapping (SLAM) using magnetic field maps. Mapping is done using the magnetic
anomalies stemming from the ferromagnetic materials in the building. This approach has been directly
applied by Lee and Canciani [16] to aerial navigation. The work by Lee and Canciani shows that there
is benefit in surveying research from different domains for MagNav in the aerial domain.

1.1. Challenges in Platform Noise Compensation

The practical implementation of aerial magnetic anomaly navigation encounters significant challenges
due to the corruption of magnetic measurements by platform-induced noise [9]. Magnetometers mounted
on aircraft measure a combination of the Earth’s magnetic field and magnetic interference generated
by the aircraft itself, including engines, electronics, and moving parts. This platform noise blends with
the Earth’s natural magnetic signals, making accurate field recovery difficult. Canciani underscored the
critical importance of effective platform noise compensation to address this issue [9], as limited platform
noise compensation accuracy directly constrains navigation accuracy [17].

In Canciani’s work, platform noise was assumed negligible after being effectively compensated using
traditional methods. This assumption was valid because the magnetometer was mounted on a tail-
stinger, isolating it from time-varying platform noise sources. The aircraft used by Canciani with a
mounted tail-stinger can be seen in Figure 1.1. Under these conditions, traditional linear time-invariant
compensation methods proved effective. However, when magnetometers cannot be positioned on tail-
stingers, particularly on small UAV platforms, it becomes necessary to address time-varying platform
noise from engines, electronics, and moving components [17], [18].

Traditional compensation methods, such as the Tolles-Lawson (TL) model, assume linear and time-
invariant relationships between platform orientation and platform noise. While effective for steady-state
effects, these methods fail to capture the complex, non-linear dynamics present in real aircraft systems.
For example, control surface actuators draw current that varies non-linearly with wind resistance and
angular position, and vibrations can cause current-carrying components to move, creating position-
dependent magnetic fields. As demonstrated by Hezel [18], relationships exist between control sur-
face inputs and the resulting platform noise. The system complexity, involving numerous interacting
components with unknown dynamics, motivates the use of methods capable of modeling non-linear,
time-varying relationships.

Recent advances in deep learning have shown promise for platform noise compensation by modeling
these complex relationships between platform dynamics and platform noise [17]. However, existing
deep learning approaches typically rely on the availability of noise-free reference measurements or
accurate magnetic anomaly maps for training and validation. In practical applications, such ground
truth data is often unavailable, particularly for surveys conducted over unmapped regions or using
platforms without dedicated reference sensors.
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Figure 1.1: Geosurvey aircraft similar to the one used by Canciani. Note the tail-stinger at the rear of the aircraft. At the tip of
the tail-stinger there are magnetometers. Source: [19].

1.2. Problem Statement

To investigate platform noise compensation in a reference-free scenario, the Netherlands Organisation
for Applied Scientific Research (TNO) performed experiments using a fixed-wing drone platform oper-
ating at 250 m altitude. This resulted in a dataset that presents representative challenges: it contains
aeromagnetic measurements with no reliable anomaly map or reference magnetometer available. At
this altitude, short-wavelength magnetic anomalies are significantly attenuated, resulting in a nearly
constant background field. Consequently, compensation must be performed without ground truth ref-
erences, and evaluation depends on assumptions about the local smoothness of the Earth’s field.

The drone simultaneously records 273 inputs, including battery currents, control surface positions, in-
ertial measurements, and attitude information. Juki¢ showed these inputs are correlated with magnetic
measurements [20]. Furthermore, Juki¢ improved platform noise compensation by extending the tradi-
tional linear compensation model to include various drone inputs.

Total vs. Earth Magnetic Field

Total field
=== Earth field

Field strength [nT]

00:00 01:00 02:00 03:00 04:00 05:00
Time [min:s]

Figure 1.2: Snippet of the TNO measurements showing total magnetic field measured by the OPM magnetometer and the
theoretical Earth field as given by the IGRF model at the GNSS position. Note that the magnetic field data has been demeaned.
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To summarise, the goal of aeromagnetic noise compensation is to remove platform noise from mea-
surements, like the total field in Figure 1.2, so that the Earth’s magnetic field, shown in the same figure,
can be recovered. This thesis addresses two key limitations of existing machine learning-based com-
pensation methods:

» Dependence on ground truth: Supervised learning methods typically rely on noise-free ref-
erences or prior anomaly maps for training and validation. This is unrealistic for many practi-
cal surveying operations, especially over unmapped terrain or on UAV platforms without dual-
magnetometer configurations.

* Input relevance: With hundreds of available drone inputs, it is difficult to determine which signals
significantly contribute to platform-induced noise. Existing models do not provide a systematic
way to identify or quantify the importance of individual inputs across different flight conditions.

1.2.1. Research Questions
Given these challenges, this thesis investigates the following research questions:

* RQ1: Reference-free noise compensation
Can deep learning models effectively predict and compensate aeromagnetic platform noise in the
absence of a noise-free reference signal or accurate anomaly map?

* RQ2: Input relevance and feature selection
Which drone inputs are most relevant for predicting platform noise, and how can their contribution
to the compensation model be quantified across different manoeuvres and flights?

1.2.2. Thesis Outline

This thesis is divided into five chapters. Chapter 2 covers background information on Earth’s magnetic
field, platform noise modelling, platform noise estimation methods, and feature selection techniques.
Chapter 3 defines the problem and analyses the TNO dataset. Chapter 4 presents the theoretical
basis for approximations used in literature, the methodology for platform noise estimation and feature
selection, and the main results. Chapter 5 discusses the results, draws conclusions, and suggests
future work.



Background

This chapter covers the basic concepts and methods used in traditional magnetic-aided aerial naviga-
tion, focusing on how platform noise is modelled and reduced. We start by looking at Earth’s magnetic
field and how its different parts (the core field, crustal field, and diurnal field) create the magnetic envi-
ronment that aircraft encounter.

Next, we develop the framework for measuring magnetic fields and detecting anomalies, introducing the
scalar magnetometer approximations used in most navigation systems. The key part of this discussion
is the Tolles-Lawson model, which has been basis for compensating platform noise since the 1950s.
We explain how this model works and how to estimate its coefficients, including the problems that come
up like multicollinearity and the need for specific flight patterns to get good data.

We then look at extensions to the basic Tolles-Lawson model. These include ways to account for
onboard electronics using Biot-Savart law calculations, and linear methods that try to link leftover mag-
netic signals with aircraft control inputs. We discuss both how these extended models work and where
they fall short.

The final part of the chapter introduces ideas from physics-informed machine learning and feature
engineering that will be useful for the more advanced methods in later chapters. Feature selection
techniques like correlation analysis and SHAP (Shapley Additive Explanations) values will help to un-
derstand which input variables matter most for predicting platform noise.

2.1. The Earth's Magnetic Field

The Earth’s magnetic field is a complex superposition of several sources, each with distinct spatial and
temporal characteristics. It is typically decomposed into three main components: the core field, the
crustal field, and external fields such as the diurnal variation.

2.1.1. Core Field

The core field is the dominant contribution to the Earth’s magnetic field and originates from the motion
of molten iron within the outer core, a process known as the geodynamo. This field is largely dipolar at
the Earth’s surface [11]. It is relatively stable over short timescales but undergoes slow changes over
years to centuries. The core field is around 20000 to 70000 nT in magnitude. Global models such as
the International Geomagnetic Reference Field (IGRF) model the large-scale structures of the Earth
field, which are dominated by the core field [11]. Since magnetic-aided navigation uses small-scale
structures, the approximation is made that the IGRF model can be used to describe and predict core
field.

2.1.2. Crustal Field and Magnetic Anomalies
Superimposed on the core field is the crustal field, which arises from the magnetization of rocks in the
Earth’s lithosphere. This field reflects the geological composition and structural features of the crust and
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varies over much shorter spatial scales, ranging from a few meters to hundreds of kilometers. Local
concentrations of ferromagnetic minerals can produce magnetic anomalies that deviate significantly
from the smoother core field.

These deviations are often visualised in magnetic anomaly maps. An anomaly is defined as the dif-
ference between the observed magnetic field magnitude and the core field magnitude predicted by a
model, usually the IGRF. The order of magnitude of magnetic anomalies is around 10’s to 100’s of nT.
This magnitude depends both on the strength of the anomaly field and the distance from the surface

of the Earth. Figure 2.1 shows such a map for the Netherlands and the North Sea, where magnetic
anomalies reveal underlying crustal structures.
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Figure 2.1: Magnetic anomaly in the Netherlands and North Sea. From nlog_magnetic_gravity.
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2.1.3. Diurnal Variation

In addition to internal sources, the Earth’s magnetic field is influenced by external currents in the iono-
sphere and magnetosphere, which vary on timescales ranging from seconds to days. The most regular
of these is the diurnal variation, caused by the interaction between solar radiation and the Earth’s at-
mosphere. Solar heating drives ionospheric currents that induce magnetic variations at the Earth’s
surface with a period of approximately 24 hours. While typically small in magnitude (on the order of
tens of nanotesla), these variations can be significant in some cases. [21]. An extensive discussion
about the diurnal variation can be found in [9].

2.1.4. Magnetic field model

The magnetic field at a fixed point in the platform reference frame at time ¢ can be described as

B.(t) = B.(t) + Bi(t) + B, (1), 2.1)

where By.; ) € R3 represent the core, crustal, platform, and total fields respectively. Note that all
these variables are defined in the platform reference frame and the sensor is stationary with respect
to this reference frame. The diurnal variation is assumed to be negligible. Diurnal variation can be
assumed to be negligible in the case the duration of the measurements is smaller than the timescale
at which diurnal variation takes place. For longer duration or more precise measurements, diurnal
variation needs to be taken into account.

The platform reference frame is a coordinate system fixed to the platform on which the magnetic field
sensor is mounted, in this case a type of fixed-wing drone. This frame moves rigidly with the platform,
meaning that any point within the frame remains stationary relative to the platform itself. The axes
of the platform reference frame are aligned with the physical orientation of the platform (e.g., forward,
lateral, and vertical directions). Since the sensor is considered stationary with respect to this frame, all
magnetic field measurements (B, B;, B,) are expressed in this reference frame, ensuring consistency
in the description of the magnetic field dynamics.

For simplicity of notation, the core field B, and the crustal field B; are combined into a single variable
referred to as the Earth field
B.(t) = B.(t) + By(t). (2.2)

By substituting B, (¢) from (2.2) into (2.1), the total magnetic field becomes

B, (t) = Be(t) + B, (1), (2.3)
(2.4)

where B, (t) is expressed as the sum of the Earth field B.(¢) and the platform field B, (¢).

In literature most commonly used for magnetic navigation are scalar magnetic field values [9], [22].
Next to scalar versus vector magnetic field sensor sensitivity, there are some other factors that make
scalar magnetic fields more suitable for magnetic navigation which are discussed in [22]. That is why
the quantity that is given in anomaly field maps is not a vector field, but a scalar field. The anomaly
field, like mapped in Figure 2.1, is the magnitude of the Earth field minus the magnitude of the core
field,

B, =|B.| - B.|. (2.5)

Note that B, is not the same as the magnitude of the crustal field,
‘Bl| = ‘Be - Bc‘ 7é B, = |Be‘ - |Bc| (26)

As is explained by Canciani in [9], this quantity B, is an approximation of the projection of the crustal
field onto the Earth field. Canciani notes this approximation is only valid because B, > B;.

The core field magnitude |B.| can be found using either a high-pass filter or values obtained from the
IGRF model [9], [11]. Note that values of the IGRF model can only be obtained if the location is known.
However, since the core field changes slowly across space, it can be approximated well by using an
approximate position [9]. After the core field is accounted for, the only variable left unaccounted for in
Equation (2.1) is the platform field B,,.
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Estimating the platform field B,, in (2.3) has traditionally been done using the Tolles-Lawson model
and extensions thereof. In these models, which will be referred to as the ’traditional’ platform noise
compensation, certain assumptions and approximations are (often implicitly) made. In this thesis an
effort will be made to state all these assumptions and approximations explicitly and investigate their
efficacy. For ease of notation the dependence on time ¢ will not always be explicitly noted.

2.1.5. Scalar Magnetometer Measurements and Approximations
As mentioned in Section 2.1.4, scalar magnetometer measurements are used for calculating the anomaly
field. However, as will be seen, the vector direction of the magnetic field is still necessary and so the
vector magnetic field B, is measured using the less sensitive vector magnetometer. The total magnetic
field is modelled as

By = |By| = [B. + B,|. (2.7)

For ease of notation the magnitude of a vector B, given by |B|, will also be given by B. Using the fact
that for a vector v, v = |v| = /v - v, (2.7) can be written as

[Bil = /(B.+B,) (B. +B,)

:\/B§+Bg+2Be-Bp

B2 B, B,

B2 B2
= B./1+ By 2+2Bp 6 (2.8)
= D¢ Be BE COs U. .
Where § is the angle between B, and B,.. Let u = Z2. Now because B. > B,, (2.8) is approximated

by an expansion around v = 0. This apprOX|mat|on |s done by a first-order Maclaurin series expansion
M (u) of f(u), where

f(u) = By = B.v/1+u2 + 2ucos,
as follows,

M) = F0) + o f00)|  uteno
B, (u + cos )
\/1 + u? 4+ 2ucosf

= B, +uB,cosf + exo

=B, U+ €Ego

u=0

B
= B, + FpBeCOSQ+€HO

€

B.
:BG+B B +6HO

Assuming the higher order terms are negligible, i.e. ego ~ 0,

Bt ~ Be + Bp . %. (29)

€

This expression is useful as it can be used to determine the magnitude of the Earth field B., and con-
sequently the anomaly field B, [9]. But before (2 9) can be used for determining the anomaly field B,,
first the term Bp Ze must be determined. As £ 7 is unknown, some further steps are required.
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The direction of the Earth field, g:, must be approximated as it is unknown. Because B, > B,, the
total field is approximately equal to the Earth field, B, ~ B;. The direction of the Earth field is therefore
approximated by the direction of the total field,

B. B,
—_—~ . 2.1
B~ B, (2.10)
Filling (2.10) into (2.9) yields
B,
B.~B—B, — 21
e t § Bt, ( )
and in turn the anomaly field is
Bath—Bc—Bp-E. (2.12)
By

Even though in (2.11) B, is measured by the scalar magnetometer, to determine B, we still require
knowledge of the vector direction of the total field %:. That is why a vector magnetometer is used to
measure %ﬁ' The estimation of B, using both the scalar and vector magnetometer will be discussed in
section 2.2.1.

For completeness, another way of obtaining (2.11) is included here. This is the method in [23]. This
derivation is done by rewriting (2.8) as

- _ By ’ By
g(v)BeBt\/1+<3t> *QECObgﬁ,

where ¢ is the angle between B, and B, and performing a Maclaurin series expansion of g(v), where

v = 22 This expansion around v = 0 is done because if B. > B,, then |B. + B,| =~ B,, and

2.2. Platform Noise Modeling with the Tolles-Lawson Model

Now that we have a model that can be used to estimate the magnitude of the Earth field (2.11), and
consequently anomaly field B, in (2.12), our attention turns to the modelling and estimation of the
platform noise B,,. From the Earth field magnitude B, the anomaly field B, can be calculated as in
(2.5).

Research on modelling aeromagnetic platform noise dates back to the 1940s, starting with the model
by Tolles and Lawson [24]. The Tolles-Lawson model is the basis of traditional aeromagnetic platform
noise compensation techniques. It represents the platform field as the sum of three sources:

Bp = Bperm + Bind + Beddya (213)

where B,.;m, Bing, and B.qqy represent the permanent, induced, and eddy current magnetic fields,
respectively.

A derivation of the permanent, induced and eddy-current magnetic fields is given in [23]. Here, an
intuitive explanation of each term is given.

Permanent Magnetic Field (B,.,,) This field arises from the permanent magnetization of ferromag-
netic materials present in the platform. These materials have magnetic fields that remain fixed after
becoming magnetised, even without an external magnetic field. This creates a constant magnetic con-
tribution to the platform’s overall field.

Induced Magnetic Field (B;,;) The induced magnetic field is generated when ferromagnetic ma-
terials in the platform interact with the Earth’s magnetic field. These materials become temporarily
magnetised in alignment with the Earth field, producing an additional magnetic field that is linear with
the Earth field as defined relative to the platform.
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Eddy-Current Magnetic Field (B.qq,) This field is a result of Faraday’s law of induction. When the
platform moves through or experiences a changing magnetic field, it induces electric currents (eddy
currents) within the conductive materials of the platform. These circulating currents, in turn, generate
a magnetic field that opposes the change, as dictated by Lenz’s law.

As done in [23], the Tolles-Lawson model in (2.13) can be parameterized as
B, = a +bB, +cB,, (2.14)

where a, bB, and ¢B. correspond to the permanent, induced, and eddy-current terms respectively.
The notation (-) represents the time-derivative.

Since B, is not known this is approximated by B, [25], leading to

B, ~ a + bB; + cB;. (2.15)
The coefficients a, b, and c are defined as follows,
T 1 2ﬁ4 ﬁ5 56 51() ﬁll ﬁ12
a=1[5 B2 B3], b= 3 Bs 207 PBs|, c=|bPiz Pa Bis| -
Bs Bs 209 Bie Bir Bis

The elements in b are chosen for convenience in notation later on.

Filling in the above (2.15) in (2.11) results in

. B
Bethf(a+bBt+th)~§t, (2.16)
t
which can be rewritten as
B B . B
~ _ (TPt T, T Pt T T Dt
B.~B,— (a Bt+Btb Bt+Btc Bt). (2.17)

This can then be written as a linear system of equations

B, — B, ~ 613, (2.18)
where .
B=1[A ... Pus]

)

1 .
6= [B vec(uti(BB)))” vec(B/B])"] g
Here vec(BB”) indicates a vectorization of matrix BB and utri(BB7') selects only the upper triangular
part of matrix BB”". Now if the coefficient vector 3 is known, the Earth field magnitude can be estimated
as

B.~ B, —6"p. (2.19)

2.2.1. Estimation of Tolles-Lawson Coefficients

Using the TL model, we can try to estimate the TL coefficients 5. In [26] Leliak determined a way
of calculating the TL coefficients [26]. Let us consider the magnetic fields sampled across time from
sample n = 1,...,n = N, where N is the number of samples. The platform coefficients 3 can be
calculated by removing the low-frequency B. component from the data by high-pass filtering. There
is also some high-frequency random noise in B, [17] that can be removed with a low-pass filter. The
high- and low-pass filters are combined in a band-pass filter, bpf(). Let

y=[B.1)] |B2) ... |B«VM)]", (2.20a)
cB. = [B.(1)] |B(2)] ... BN, (2.20b)
A=[51) &2 ... &(N)]". (2.20c)
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Because the bandpass filter removes all low frequency components and the Earth field contains only
low-frequency components, bpf(cg,) = 0. Then

bpf(y — cB,) = bpf(A)B, (2.21)
bpf(y) = bpf(A)B. (2.22)

To find the coefficients a least-squares problem can be posed as
B = argmin ||bpf(y) — bpf(4)8][3. (2.23)

where the least-squares optimal solution for 3 is
B = bpf(A) bpf(y), (2.24)

with (-)* denoting the Moore-Penrose pseudo-inverse.

2.2.2. Determining TL Coefficients using the Core Field Model

If the platform is flown at high enough altitude, the anomaly field becomes negligible B, ~ 0. This is due
to the cubic decay with distance in (1.1). Filling in B, ~ 0 in (2.5), the Earth field can be approximated
by the core field B, ~ B.. Then this result can be used in (2.14) which results in

B, = a + bB, + cB.. (2.25)

The core field B, can be determined by using the IGRF [11] model for the core field. Then by numerical
approximation, B, can be calculated. Using this information (2.17) becomes

B, B, .
B.| =~ B, — (aT= + BTbT= + BTc”
| ‘ t (a’ Bt + C Bt + Cc

B

) (2.26)

Then by parameterizing in the same way as in subsection 2.2.1, a least-squares solution can be found
as

B.=Al(y—cs,). (2.27)
With
cs. = [B()] [Be(2)] ... [BN)]", (2.28)
A.=[6.(1) 6.2) ... 8.(N)]", (2.29)
éczé [BY vec(B.BI)T vec(B.BI)7]", (2.30)

and y defined as in (2.20a). This method will be referred to as map-based estimatation of the TL coef-
ficients, since one needs a map of the core field to apply it. Note that now there are 21 TL coefficients
due to BB in (2.17), which is symmetric, being replaced with B.B which is not symmetric.

2.2.3. Multicollinearity

In [26] Leliak found that there is high multicollinearity of the matrix A in Equation (2.20c). This means
that the columns are very nearly linearly dependent. This gives a problem when solving the least-
squares problem [27]. The solution involves the inverse of AT A. If the columns of A are linearly
dependent, this inversion is not possible. If the columns are nearly linearly dependent, then the result
is subject to large numerical errors. This causes the TL coefficients which are found by this least-
squares solution to vary heavily under small perturbations of the columns of A, like when there is a
slight measurement error.

There are several ways to cope with this ill-conditioned matrix A. Leach investigates multiple methods
of dealing with multicollinearity [27]. A common way in literature is to use ridge regression. Ridge
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regression, also called Tikhonov regularization, adjusts the least-squares problem in (2.23) by adding
a regularization term,

B:argﬂgHIIbpf(y)—bpf(A)ﬁ|\§+/\||ﬁ\|§~ (2.31)

The optimal solution to this problem is given by

B = (bpf(A)"bpf(A) + AT)~'bpf(A) bpf(y). (2.32)
This kind of regularization introduces an extra hyperparameter \.

The matrix A may contain features with very different scales and physical units, which can affect the
behavior of the regularization term. Specifically, features with smaller numerical values tend to produce
larger regression coefficients, leading to disproportionate penalization. To mitigate this, the columns of
A are scaled by a vector of constants, resulting in a scaled matrix

As:éa
S

where the division is performed elementwise across columns, and s is a vector of scaling constants.
These constants are chosen to have the inverse units of their respective features, rendering the scaled
matrix A, unitless. As a result, the coefficients 3, estimated from the scaled system will have the same
units as the output variable, which in this case is nanotesla (nT).

The ridge regression problem is then solved on the scaled system
B, = (bpf(A,)"bpf(A,) + \T) " bpf(A,)"y,

yielding the predicted output
@ = Asﬂs-

To recover physically meaningful coefficients, the scaling is reversed. Noting that

i=ap-(5)s.-a(%).

we define the final coefficients as:

p="

S

with elementwise division. These final coefficients 3 have units such that when multiplied with the
unscaled features in A, the result is in units of nanoTesla.

2.2.4. Flight Patterns for System Excitation

Accurate estimation of the Tolles-Lawson (TL) model coefficients relies heavily on obtaining sufficiently
rich data to ensure parameter identifiability. This can be achieved through deliberate design of flight
patterns that excite the system across a broad range of its operating conditions. Such flight patterns are
analogous to input signals in system identification, where a sufficiently diverse input spectrum enhances
the estimation of unknown parameters [28].

In the context of aeromagnetic surveys, platform manoeuvres are designed to induce measurable vari-
ations in the permanent, induced, and eddy-current magnetic field components as described in (2.14).
The objective is to expose the platform to changes in the Earth’s magnetic field B., its time derivative
B., and the platform’s relative orientation. Specifically:

* Permanent Field Excitation (a): To observe the static contribution of the permanent magnetic
field, the platform should fly a trajectory with varying orientations. This ensures that the platform’s
magnetic moment interacts differently with the Earth’s field over time.
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+ Induced Field Excitation (bB.): The induced magnetic field depends on the Earth’s field strength
and its projection onto the platform frame. To excite this term, the platform must perform manoeu-
vres such as pitch, roll, and yaw, which alter the relative alignment of the Earth’s field vector B,
with the platform frame.

« Eddy-Current Field Excitation (cB.): The eddy-current field is a dynamic effect arising from time-
varying magnetic flux. Changes in roll, pitch and yaw, which cause changes in B., are required
to sufficiently excite this component.

In practice, well-designed flight patterns include periodic manoeuvres, such as oscillatory pitch, roll,
or heading changes, to provide persistent excitation of the system. These manoeuvres ensure that
the platform’s magnetic response is rich enough such that § in (2.15) contains linearly independent
observations, mitigating issues related to multicollinearity discussed in Section 2.2.3. On the other hand,
a poor flight pattern, lacking sufficient variation in platform motion, results in near-collinear regressors.
This leads to ill-conditioned least-squares problems and unreliable coefficient estimates [27].

Therefore, the design of flight patterns should balance two competing objectives: (1) ensuring sufficient
excitation for parameter estimation, and (2) adhering to operational constraints, such as altitude stability,
safety, and survey area coverage [26].

Leliak first describes a way to excite the system using a flight pattern. These flight patterns consist of
sinusoidal variation in roll, pitch and yaw. These manoeuvres should be done at specific frequencies,
such that they are not removed during bandpass filtering [26]. Having sufficient variation in the roll,
pitch and yaw is essential for the identifiability of the different elements of the TL model [26].

Commonly used as an input for system identification and validation is the “Figure-of-Merit” (FoM) flight
pattern [29]. In each of the four legs of the square, a sinusoidal pitch, roll and yaw manoeuvre with
amplitudes of 20°, 10° and 10° respectively is flown. This must be done in an area of low geomagnetic
gradient, so the Earth field can be properly filtered out. This square flight pattern can be seen in
Figure 2.2. The FoM pattern is used in geosurveying to calculate the Figure-of-Merit, a number that
gives some indication of how well the platform noise is compensated. This calculation is described by
Noriega in [29]. Noriega also states that the FoM pattern “does not completely represent the range of
aircraft manoeuvring normally anticipated”. In system identification terms, it can be questioned whether
the FoM pattern persistently excites the system. An input to a system is persistently exciting if the
knowledge of the response of the system to that input, allows prediction of the response of the system
to any input [28].

A flight pattern designed to validate that the identified system has no “heading effect” is the clover-leaf
flight pattern [30], which can be seen in Figure 2.3. This pattern flies over the same point from four
orthogonal headings. This allows for validation of the platform noise compensation model, because at
this point the Earth field B, should have the same value every time, regardless of heading [30].

2.3. Extensions of the Tolles-Lawson Model

This section explores improvements to the standard Tolles-Lawson (TL) model to better handle platform
noise, particularly in cases involving onboard electronics and additional inputs.

The first approach extends the TL model to include noise generated by onboard electronics, modeled
using the Biot-Savart law. This accounts for magnetic fields induced by currents, which in turn can also
generate their own eddy-current fields.

Further refinements use correlations between residual magnetic signals and drone control inputs to
improve compensation. These methods expand the model to incorporate more variables, addressing
limitations of the standard TL approach.

Finally, pre-processing techniques and adjustments to the loss function are introduced to mitigate is-
sues like multicollinearity and low-frequency bias, enabling more robust noise reduction.
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Figure 2.2: The “Figure-of-Merit” flight pattern. In
this pattern the platform performs sinusoidal roll,
pitch and yaw movements along a square path. Figure 2.3: The cloverleaf flight pattern. In this pattern the
Image adapted from [31]. platform traverses a single point from four different directions.

2.3.1. Modeling On-board Electronics

The standard TL model does not take into account the on-board electronics (OBE). These electronics
introduce magnetic noise that can have a large effect on the measurements, depending on how far
the measurements are taken from the electronics. In [32] the situation in which the magnetometers are
closer to the platform is examined. The on-board electronics are modeled based on the Biot-Savart law,
which describes the magnetic field generated by an electric current. Small distance between electronics
and magnetometers can cause current-induced magnetic field, B; in the same order of magnitude as
the Earth magnetic field, B.. The OBE interference from input k& due to current I is modeled as

BogEer = Br, + By, ind + Br, eddy, (2.33)

where By, inq and By, .qq, are the induced and eddy-current field due to By, . Since By, ;,q and By, are
both linearw.r.t I, and By, .44, is linear w.r.t. I.. Then the OBE interference of the scalar magnetometer
can be represented by )

Boger = Ixdi + Irey, (2.34)

where d; = [yok—5 Yek—1 vgk,gf and e, = [Yok—2 Yek—1 vﬁk]T with ~; scalar real values.
The Tolles-Lawson model given in (2.14) is then extended with the OBE magnetic field model in (2.34)
for each input k as

K

B, =B, + Z BoBE,k-
h=1

This can then be used to predict platform noise similarly to Section 2.2.1 by defining

5(1) 82 sy 1"
p1(1)  py(2) p1(IN)
A = | p2(1) pa(2) ... pa(N) ; (2.35)
pr) P2 oo pr(N)
B =[B" m 76K]T,
pr= 5 [LBI GB7]"
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Then,

bpf(y) = bpf(A")3', (2.36)
where the least-squares optimal solution for 3’ is

A" = bpf(A") bpf(y). (2.37)

2.3.2. Linear Model of Inputs

Juki¢ et al. extend the approach in [32] with the heuristic assumption that the magnetic field is linearly
dependent on more inputs than just current [20]. First, the standard TL model is used to find the
TL coefficients as in (2.24). Then, the remaining signal that is not accounted for by the TL model is
correlated with the drone inputs. Inputs with high correlations are then used in solving a linear system,

Y, = Arﬁrv
P P2 . pa ()]
pra(l)  pr2(2) o pa(N)

A, = ) : : . ) (2.38)
pT',KT(l) pT',KT (2) R pT',KT (N)

Pri= Ikg- Lz Ik

where y,. is a vector containing the residual magnetic field over time and I, is the k' drone input where
k € {1,..., K,}. Note that another heuristic assumption is made, namely that the drone inputs directly
have an effect on the Earth-frame magnetic field independently of the direction of B;. This is captured
by the last element of p,. ..

2.4. Evaluation Metrics
To quantify the amount of platform noise on an uncompensated total field signal, the standard deviation
is commonly used [29],

- 1NBk B,)? 2.39
Oy = N};(t()* t)» ( )

where B, is the mean of the uncompensated signal. To quantify the performance of compensation
methods the Improvement Ratio (IR), as discussed in [29], is used,

Oy

IR = (2.40)

Oc

Here o, is the standard deviation of the uncompensated signal B; and o, is the standard deviation of
the compensated signal B¢%t, which estimates the Earth field.

Sometimes we are only interested in a certain frequency band of a signal. In that case the performance
of the compensation of that signal is evaluated in that frequency band. This is done using the bandpass-
filtered improvement ratio,

IRy, = ‘;“—;”’; (2.41)
c,0p.

2.5. Physics-Informed Machine Learning

Often when studying physical systems, there is knowledge of the physical laws that govern the system.
This knowledge can be incorporated into the neural network to increase accuracy and interpretability.
This approach is called physics-informed machine learning (PIML) and is further discussed in [33]. Here
some principles of introducing physics-information into the machine learning algorithm are introduced,
namely:
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* Observational bias
* Inductive bias
* Learning bias

These biases are added into the algorithm to guide it into finding physically consistent solutions. Ob-
servational bias amounts to ensuring the data the algorithm uses to learn reflect the underlying physics.
Inductive biases can be added by mathematically imposing physical laws or hard constraints on the
system. A drawback of this method is that it may be complex and hard to scale. Learning biases come
from choosing a loss function such that during the training phase, the algorithm leans toward a solution
that complies with the underlying physics. Each of these biases comes with their own benefits and
drawbacks and can be combined to reach the best outcome.

2.6. Feature Engineering and Selection

Feature engineering is the process of transforming raw input data into informative features that improve
model performance. Feature selection helps identify which inputs are most influential in predicting mag-
netic noise. We first explore simple statistical relationships using correlation. Next, SHAP values are
introduced to interpret both the ETL and NN models, guiding feature refinement and model comparison.

2.6.1. Input Feature Engineering

The design of input features significantly influences model performance in platform noise compensa-
tion applications. Effective feature engineering incorporates domain knowledge about the underlying
physics while providing the network with informative representations.

Raw sensor inputs: Direct use of accelerometer, magnetometer, and angular rate measurements
provides the most flexibility but may require the network to learn complex transformations. Proper
normalization and scaling are crucial for stable training.

Derived features: Physics-inspired features such as magnetic field derivatives, aircraft attitude angles,
and manoeuvre-specific parameters can significantly improve performance by providing the network
with relevant inductive biases.

Temporal features: Including temporal context through sliding windows, finite differences, or explicit
time embeddings can help capture dynamic effects and time-varying magnetic field relationships.

2.6.2. Correlation
In [32] and [20], features were selected based on linear correlation, defined as follows,

oo SL(Bi-B)L-)
VENL(B - B XX, (1 - D2

where B denotes the magnetic field and I the input. This formula represents the Pearson correlation
coefficient, which measures the strength and direction of the linear relationship between two variables.
Values of r close to 1 or —1 indicate a strong positive or negative linear correlation, respectively, while
values near 0 suggest weak or no linear relationship.

Because the methods used in [32] and [20] assume linear dependencies, using linear correlation for
feature selection is appropriate in those contexts. However, relationships between inputs and platform
noise may be nonlinear.

To account for such cases, a common alternative is the Spearman rank correlation coefficient, which
measures the strength and direction of monotonic relationships (not necessarily linear) by evaluating
the linear correlation of the ranked variables,

. >l (R, — Rp)(Rr, — Ry)
VI (Ry, — Rp)? /SN (B, - Rr)?

)
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where R, and R;, are the ranks of the magnetic field and input, respectively. Here rank is the numerical
position of a value within the ordered list of data, with 1 assigned to the smallest value. The Spear-
man correlation is more robust to outliers and nonlinearities, and can uncover consistent increasing or
decreasing trends between variables even when the relationship is not linear.

2.6.3. SHAP Values

To assess the contribution of each input feature to the prediction is to compute SHAP (SHapley Additive
exPlanations) values [34]. SHAP values are grounded in cooperative game theory and provide a unified
framework to explain the output of any machine learning model.

Each SHAP value quantifies the marginal contribution of a feature to a specific prediction, averaged
over all possible combinations of input features. Formally, for a prediction function p and a set of input
features x, the SHAP value ¢; for feature i represents

o= 3 BHEZBE= sy - pis)),
SCF\{i}

where F' is the set of all features and S is a subset excluding <. While computing exact SHAP values is
computationally expensive, efficient approximations are available for tree-based models, deep learning
models, and others [34].

SHAP values provide several key advantages:

» They offer local explanations, attributing a portion of an individual prediction to each input feature.

» By aggregating SHAP values over multiple samples, one can obtain global feature importance
rankings.

+ SHAP values are model-agnostic and ensure consistency: if a model changes such that a feature
contributes more, its SHAP value will not decrease.

In this work, SHAP values are used to identify which drone inputs most significantly contribute to mag-
netic field estimation errors. This provides a more interpretable and nuanced understanding of feature
relevance than correlation-based metrics alone.

2.6.4. SHAP for Deep Learning

To interpret the neural network models used for magnetic noise compensation, we apply the Gradient-
Explainer from the SHAP library, which is an implementation of Deep SHAP [34]. This method extends
the concept of Shapley values to deep learning models.

Deep SHAP approximates SHAP values by integrating the gradients of the model output with respect
to the input features along a straight path from a baseline input z’ to the actual input z:

Yo taz—w)
o= (i) [ - do (2.42)

Here, ¢; represents the attribution assigned to input feature i, p is the prediction function, and «
parametrises the interpolation between 2’ and x. The integral is computed numerically via sampling.
We use randomly sampled inputs of the training data as the baseline «’.

While GradientExplainer is computationally efficient and interpretable, it has several limitations:
» Attributions are sensitive to the choice of baseline input.
» The straight-line integration path may traverse unrealistic regions of input space.
« It does not fully separate interaction effects between features.
» The method assumes the model is differentiable with respect to its inputs.

In this thesis, we use GradientExplainer to generate SHAP values for each feature input to our neural
network. This allows us to assess which inputs (e.g., pitch, airspeed, control signals) contribute most
to the residual magnetic noise prediction and how these contributions vary across flight manoeuvres.



Dataset Description and Preliminary
Analysis

This chapter introduces the dataset collected by TNO to investigate aeromagnetic plaform noise on a
fixed-wing drone. Note that for confidentiality reasons, all magnetic field data in this thesis has been
demeaned. The chapter begins with a discussion on the ground truth used in this dataset versus that
used in the literature. It then outlines the characteristics of the drone platform, the magnetometers, and
the drone input data used for analysis. Additionally, the chapter describes the process of data collection,
including both ground and flight tests, and highlights several practical challenges encountered during
and after data acquisition. These challenges set constraints which are taken into consideration during
the modelling approaches discussed in later chapters.

3.1. Ground Truth

Flying at high altitude naturally filters out short-wavelength magnetic anomalies, leaving primarily the
core field. This low-pass filter like effect is described in Appendix A. This creates a reference-free
ground truth where any significant variation is likely due to platform noise rather than the anomaly field.
We can estimate the presence of magnetic anomalies in our data as follows.

We start with the following assumptions satisfied by the TNO data:
» The survey is flown at an altitude of z = 250 m
» The survey area is 800 m x 800 m
* The aircraft velocity does not exceed 100 km/h = 27.8 m/s
» Crustal anomalies are modelled as sinusoidal signals with spatial wavelength A

In the Fourier domain, upward continuation of the magnetic field to height z introduces an exponential
decay factor [35], which is described in Appendix A. We can use this to estimate the decay of anomalies
of certain wavelength, shown in Table 3.1.

Table 3.1: Attenuation of sinusoidal magnetic components at 250 m altitude

Wavelength A F[y] = e~27250m/2  Attenuation (%)

50m e 3 24 x 107 ~100 %
100m e T2 15x1077 ~99.99999 %
200 m e T8 ~39x107* 99.96 %
400m e 7393 % 0.020 98 %
800m e 19 ~0.14 86 %

The significance of the anomalies also depends not only on the wavelength, but also on the magnitude.

18
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Assuming a typical anomaly in this region does not exceed 50 nT, 400 m wavelength anomalies will be
attenuated to below 1 nT. Anomalies with wavelength of 800 m will be attenuated to 7 nT. This amount
could still be significant.

To understand how this attenuation affects the temporal signal recorded by the magnetometer, we relate
the spatial wavelength to a temporal frequency using the aircraft’s velocity v = 27.8 m/s:

v
fit= N
This leads to the correspondence shown in Table 3.2.

Table 3.2: Temporal frequencies corresponding to spatial wavelengths

Wavelength A Temporal Frequency f; (Hz)

800m 0.035
400m 0.070
200m 0.140
100m 0.278
50m 0.556

The results in Table 3.2 imply that the signal measured at 250 m altitude is dominated by very low-
frequency components, with most short-wavelength features absent due to strong attenuation. In prac-
tice, this means that the recorded magnetic field will appear smooth and slowly varying if not constant.
This high-altitude signal is therefore used as ground truth and any variation in the signal is likely due to
platform noise rather than geological anomalies.

3.2. TNO Dataset Overview

The measurement platform is an electrically driven, 3600 mm wingspan Mugin fixed-wing drone [36],
shown in Figure 3.1. Scalar and vector magnetometers were attached near the wing tips below the
wing on both sides, as shown in Figure 3.2. This position was chosen due to the distance from the
expected main noise source: the electrically driven engine, which draws up to 120 A from the battery
[36]. In addition to being a source of current, which induces a magnetic field, the electric motor also
contains permanent magnets and ferromagnetic material such as iron.

Figure 3.1: Mugin fixed-wing drone. Figure 3.2: Close-up of the Mugin fixed-wing drone right side
wing tip. The MicroSAM OPM magnetometer is labelled with
'0’ and the VMR vector magnetometer is labelled with ’1’.

3.2.1. Magnetometers

Both scalar and vector magnetometers are used in traditional noise compensation methods, which
were described in Section 2.2. Scalar magnetometers are selected for their accuracy in determining
field magnitude. Vector magnetometers are less accurate in absolute terms, but can still be reliably
used to measure the vector direction of the magnetic field [21]. The specifications of the magnetome-
ters are given in Table 3.3. The scalar magnetometer used is an optically pumped magnetometer
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(OPM), for which the operating principle is discussed in [37]. The vector magnetometer used is a VMR
magnetometer, for which the operating principle is discussed in [38].

Table 3.3: Specifications of the magnetometers used [39], [40]

Property Scalar Magnetometer Vector Magnetometer
Type Total field Vector field
Model Twinleaf MicroSAM Twinleaf VMR
Sensitivity 20 pT/v/Hz 300 pT/vHz
Sample Frequency 250 Hz 200 Hz

Field Range 10,000 to 100,000 nT  -100,000 to 100,000 nT

Even though the sampling frequencies of these sensors are 200 to 250 Hz, using all data from these
frequencies is not desired. Frequency-dependent noise is a factor that limits the accuracy of our models
and of the reconstructed signal. The signal of interest, being the anomaly field, will only appear at
frequencies that are low compared to the sampling frequency. The frequency of the anomaly field as
measured depends on platform velocity and altitude. In [9], the formula for the maximum frequency
due to the crustal field is given as fi..x = 7, Where v is the velocity and & is the altitude. Given that
the maximum velocity of the drone is 160 km/h = 45 m/s and assuming an altitude greater than 50 m, it
was estimated that the anomaly field will not exceed 0.9 Hz. Some higher frequency components could
help in predicting the platform noise. However, too high a sampling frequency could be redundant and
computationally expensive; therefore, the magnetometers were resampled to 20 Hz.

Sampling at 20 Hz results in a noise standard deviation of 20 pT/v/Hz x v10Hz ~ 63 pT for the OPM
and 300 pT/vHz x v10Hz = 949 pT for the VMR. This gives us a noise floor and a limit to the accuracy
that can be achieved by compensating the deterministic noise.

Frequency-dependent noise is not the only factor determining the usefulness of the sensors. The VMR
sensor displays a large amount of drift across time. Furthermore, both sensors need a 'warm-up’ time
where the sensor needs to be turned on for an extended period of time, up to 45 minutes, before the
readings settle. Moreover, both sensors, but especially the VMR, vary depending on temperature. The
VMR also appears to be sensitive to movement, showing large spikes during the manoeuvres.

The drift over time and sensitivity to movement of the VMR sensor is clear in Figure 3.3. The VMR
data appears to vary much more than the OPM during manoeuvres during manoeuvres, but similar or
smaller in the ground tests. In the figure, the VMR data also drifts upward over time, while the OPM
data varies around a steady value. These characteristics make the OPM more reliable for magnitude
measurements, whilst the VMR provides useful directional information despite its limitations.

3.2.2. Drone Inputs

The drone inputs used to predict the platform noise come from data collected automatically by the drone.
They consist of a wide range of data, including but not limited to aileron, elevator and rudder control
signals, battery current, roll, pitch and yaw angles, quaternions and airspeed. There are a total of 273
features. Many of these are highly or perfectly correlated, representing the same signal at different
stages of the flight control pipeline. Initial feature selection for further examination was motivated by
empirical reasoning and a qualitative understanding of the drone. The full list of drone features can
be found in Appendix B. The traditional methods discussed in Chapter 2 are not equipped to deal with
varying sample rates; therefore, all drone features were resampled to 20 Hz, the resampled sampling
rate of the magnetometers.

3.2.3. Data Collection

Two pairs of vector and scalar magnetometers were placed on the wing tips of the platform, as can be
seen in Figure 3.2. First, ground tests were conducted to assess the impact of drone features on the
magnetic field. Next, in-flight data was collected. Multiple flights were conducted over the same area,
on different days spanning a year. Flight patterns were pre-programmed and flown by the Ardupilot
automatic pilot.
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Figure 3.3: Comparison of the magnetic field measured by the OPM versus VMR magnetometers. The VMR shows greater
variability and nonlinear response during manoeuvres compared to the more stable OPM measurements.

Ground Test

Magnetometer data was captured on-ground. Three drone inputs were tested, consisting of activating
the LED lights, steering left and right, and throttling the engine. The magnetic field measured during
the entire ground test can be seen in Figure 3.4a. The largest effect was during the section that had
the LED light blinking, shown close-up in Figure 3.4b, which disturbed the magnetic field by about 50
nT. In this figure it is also clear that there are some ringing artifacts. These are caused by the low-
pass filtering of the blinking LED input, which represents an impulse. The steering, shown in close-up
in Figure 3.4c had an effect of around 10 nT. Throttling the engine, shown in Figure 3.4d, varied the
magnetic field by around 5 nT. These value of platform noise are significant for magnetic navigation,
since they are of similar magnitude that anomalies can be.

The effect of the 150 mA LED compared to the 120 A engine is a good example of the extremely quick
falloff of magnetic field strength due to distance, because the LED wires run close to the sensor, while
the engine is relatively far away. So even though the engine has 800 times the current, the effect is 10
times less. Assuming the magnetic field strength is related to current I and distance r as B Tig the
magnetic field strength due to the LED current relative to the throttle current is

Iine/Byne  120A/5nT
ILED/BLED a 0150A/50HT

= 8000,

then the relative distance is v/8000 = 20, meaning the distance from the throttle source is 20 times
greater than the distance from the LED source. So even though the throttle source has an 800 times
larger current, the effect is 10 times smaller. Note that this proportionality does not hold exactly for
wires closeby and depends on the exact geometry of wires, but serves the purpose of showing the
effect of cubic dropoff. This quick decay can mean that any small change in platform noise can have a
large effect on the magnetic field if it occurs close to the magnetometer.

Flight Overview

In the TNO dataset, the pattern flown is a Figure-of-Merit (FoM) (discussed in Section 2.2.4), as is
shown in Figure 3.5. Each leg of the FoM square was flown in a cardinal direction. Three squares
were flown per pattern, one for each roll, pitch and yaw phase. The resulting magnetic field during a
FoM can be seen in Figure 3.6. Each background color in Figure 3.6 represents one phase of the FoM.
The roughly sinusoidal variation in the roll, pitch and yaw angles can be seen to translate to variation in
the magnetic field, as expected. The largest changes in the magnetic field occur due to heading-related
variation. This happens when the platform turns 90° in yaw angle.
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(a) Ground data magnetic field during several drone operations. (b) Ground test data during LED operation. RCOU_C7 is the LED
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(d) Ground test data during throttle operation. Note RCOU_C3 is the
throttle control.

(c) Ground test data during steering operation. RCOU_C1 is the
aileron control, RCOU_C4 is the rudder control. During steering left
and right repeatedly the aileron and rudder are actuated.

Figure 3.4: Ground test data during different drone input actuations. *Drone inputs rescaled.

For this thesis, out of the TNO dataset a selection of 5 flights was made. During each flight one or two
FoM patterns were flown. This was done to perform calibration on one FoM, and validation on another.
In some cases the FoMs were followed by a ‘clean’ manoeuvre, consisting of a completion of a single
square path without the sinusoidal attitude changes. This clean manoeuvre is done to more accurately
represent regular flight and is used to validate the calibration done during a FoM. In Table 3.4 there is
an overview of which flights have FoMs and which have clean manoeuvres. The flight numbers and
manoeuvre numbers will be referenced later to make the distinction between the different flights and
manoeuvres. During all flights both OPM and VMR data was collected. However, only some flights
contain both left- (LHS) and right-hand side (RHS) sensors and others only contain LHS sensor data,
as is indicated in Table 3.4.

Date Flight # | Manoeuvre # | Manoeuvre Type | Sensor
20-Jul-2023 2 1 FoM L+R
20-Jul-2023 2 1C Clean L+R
20-Jul-2023 2 2 FoM L+R
05-Sep-2023 7 3 FoM L+R
14-Sep-2023 9 4 FoM L+R
11-Jul-2024 10 5 FoM L
11-Jul-2024 10 6 FoM L
11-Jul-2024 10 6C Clean L
11-Jul-2024 11 7 FoM L
11-Jul-2024 11 8 FoM L
11-Jul-2024 11 8C Clean L

Table 3.4: Overview of flights by date, flight number, and manoeuvre number, as well as whether the flight collected data on
the left wing (L) or on both the left and right wing (L+R).
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Figure 3.5: Top view of a manoeuvre flight path. The color bar represents magnetic field magnitude in nT.

3.2.4. Quantization Effect

A significant challenge comes from the data captured using the scalar magnetometer. There appears
to be quantization or staircasing, where the data 'prefers’ some specific values over most other values.
In Figure 3.7, the left sensor (blue line) shows some values which occur very frequently.

Quantization is not limited to data from this specific flight but occurs in all flights. In Figure 3.8, all OPM
data is plotted as a histogram. Sharp, evenly spaced peaks can be seen, indicating that some specific,
evenly spaced magnetic field values occur far more often than most values. This is not expected,
because during flight, the magnetic field should continuously change. The fact that these peaks occur
on different flights, different days and even on different sensors at the same magnetic field values
indicates that this is not physical behaviour.

Determining the cause of quantization is not trivial. It was determined that the quantization already
occurs in the raw data, before preprocessing. This means that the quantization happens in one of the
following processes:

» Sensor measurement

* Analogue-to-digital conversion (ADC)
» Writing data to hard drive

» Reading data for processing

When looking at a narrow band around a single peak in the histogram of the raw data, it can be seen that
the data does not perfectly match one exact value. There is still some very narrow distribution around
the peaks. This means that after the quantization occurs, some small amount of noise is still added.
After the ADC, the data is in digital form, which should not be susceptible to noise. This is evidence
that the quantization happens before ADC, meaning there is an error in the actual measurement of the
magnetic field.

One way to deal with quantization is to simply remove the quantized values from the data and assume
the rest of the data is accurate. The downside is that the quantized data represents over 30% of all
data, resulting in significant reduction in the size of the dataset. To assess whether quantized data
impacts prediction accuracy, models should be trained on both the data including the quantized values
and the data with the quantized values removed. Since the quantization is most significant in the left-
side sensor, this is the one that is further examined. The histogram of the de-quantized data is shown
in Figure 3.9.

Using the algorithm introduced in Section 2.2.2, testing shows improvement in the error metric in some
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Figure 3.6: Magnetic field and orientation during the manoeuvres of a single FoM.

flights and worsening in others. Since there is no consistent improvement in the error metric between
the de-quantized data and the quantized data, all subsequent analyses in this thesis include the quan-
tized data. This decision preserves the full dataset whilst acknowledging that approximately 30% of
the OPM measurement data may contain measurement artefacts.

3.3. Chapter Summary

Having described the dataset and platform, this research is distinguished from previous work by several
constraints. The data is reference-free, as the TNO dataset provides no noise-free reference measure-
ments unlike commonly used datasets such as the MIT aeromagnetic dataset [25], requiring validation
from the assumption about the Earth field being constant. A challenge is posed by quantization ef-
fects on the OPM data. Finally, due to the large feature dimensionality a systematic feature selection
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approach is necessary. These characteristics and constraints will inform the modelling approaches

presented in subsequent chapters.
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Methods and Results

This chapter presents the implementation and evaluation of magnetic field compensation methods ap-
plied to the TNO dataset. The work progresses systematically from validating fundamental assumptions
to developing and comparing different compensation approaches.

The chapter begins by examining the validity of the approximation underlying the Tolles-Lawson model,
an assumption that has not been validated in prior literature despite its common use. This analysis
establishes the conditions under which the approximation remains accurate and gives bounds on errors.

Following this validation, the standard Tolles-Lawson compensation method is implemented and anal-
ysed. A previously unreported trivial solution is given. Then the necessity of regularization techniques
is shown. The analysis extends to the Extended Tolles-Lawson (ETL) approach that incorporates drone
inputs alongside traditional magnetic field measurements.

Next, deep learning approaches are investigated, implementing multilayer perceptron (MLP) neural
networks to model residual platform noise after initial compensation. These neural network methods
are applied both to supplement Tolles-Lawson compensation (TLNN) and to enhance the Extended
Tolles-Lawson approach (ETLNN), with systematic evaluation of their performance on both optically
pumped magnetometer (OPM) and vector magnetometer (VMR) data.

A feature analysis using SHAP (SHapley Additive exPlanations) values provides insights into which
drone inputs most significantly contribute to platform noise prediction. This analysis guides the devel-
opment of feature-informed models that balance compensation performance with model complexity to
counteract overfitting.

The chapter concludes with the implementation of feature-selected neural network architectures de-
signed to mitigate overfitting while maintaining compensation effectiveness. Results are evaluated
using the improvement ratio (IR) and overfitting ratio (OR), providing a measure of each method'’s per-
formance across multiple flight manoeuvres.

4.1. Validity of Approximation

Here the validity of the approximation of the Earth field magnitude by the difference between the total
field magnitude and the platform field projection, given in (2.11), is checked. This validation is necessary
as the approximation might introduce significant error in the estimation of the Earth field magnitude B,
and consequently in estimation of the anomaly B,. Furthermore, the author is unaware of a validation
of assumption (2.11) done elsewhere in literature, even though this approximation is done any time the
Tolles-Lawson model is used. Different values of B, and B, will be used to see when the approximation
is valid and when not. The approximation (2.11) is similar to the approximation of the projection of the
anomaly field onto the core field in (2.5). Consequently the analysis of the approximation in (2.11) is
similar to the analysis done by Canciani in [9] of the approximation in (2.5).

In Figure 4.1 and 4.2 it can be seen how the angles between the vectors and the value of B, relative

27
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to B, influence the accuracy of the approximation in (2.11). The approximation is worst when 6 = 90°.
This is because then the magnitude of the projection of the platform field onto the total field is zero. Note
that these figures do not consider realistic values, that is why the error is quite large. Next, realistic
values will be considered for validation of the approximation.

¢ = 2639 [nT], b= 0.50,6 = 90°, ¢ = 63°

15000 -

10000 -

5000

y [nT]

_5000 | | | | | | |
z [nT] «10%
Figure 4.1: Interaction of the total field B¢, the Earth field B., and the platform noise B,,. The error made in the approximation

in (2.11) depends on the angle 6 and the relative magnitude %

In [41] a realistic amount of platform noise is given as 100 nT for a surveillance aircraft and up to 1000
nT for an F16. According to the IGRF [11] the Earth field strength ranges from about 25000 nT to 70000
nT. Based on the IGRF, values can conservatively be chosen as B, > 25000 nT and B, < 1000[nT.

From this a scaling factor can be calculated as BP <53 i It can be shown that (2.11) achieves the worst

absolute error,
B.
= |p.~(5-m )|

when B, and B, are perpendicular. In the case B, < B., this can be approximated by B, and B,
being perpendicular. This worst case angle, with a realistic scaling factor, can be seen in Figure 4.3.

In the perpendicular case the relative error, calculated as ¢, = 5,asa function of the relative magni-
tude, b = &, is shown in Figure 4.4.

In the worst case assumption of BP = the relative error as a function of the angle between 0 can be
seen in Figure 4.5. It can be seen that under these conservative estimates for B. and B, the relative
error does not exceed 0.08 %. This equates to an absolute error of 40 nT, which is in the same order
of magnitude as the crustal field.

The previous scenario is based on the worst case angle. In general a component of the platform field
will be induced by the Earth field. This induced field will largely point in the same direction as the Earth
field. Therefore the platform field will have a large component pointing in the same direction, meaning
—180° <« 0 <« 180°. Then the relative error will drop significantly, as can be seen in Figure 4.5.
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Figure 4.3: Interaction of vectors B, B. and B,. When B. > B,,, B; =~ B. and the error becomes very small.

It can be shown that for small relative magnitude, the relative error grows quadratically. This is shown
in Appendix C. It is also shown that for small relative magnitude, the relative error is upper bounded by

b2
eT§§ forb <« 1.
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Figure 4.5: The relative error is plotted against the angle. When the angle between the Earth field B, and the platform noise
B, is small, 6 =~ 0 (equivalently 6 ~ 360), the relative error is small as well. In practice this is the case due to the induced field,
which has the same direction of B, being a large part of B, [9].

From this, it can be determined how large the approximation error will be if the platform noise and
Earth field magnitude are known. If this upper bound is less than the noise after compensation, the
approximation can be ruled out as cause of the remaining noise. In the TNO data, platform noise is
maximally 200 nT, while the Earth field is around 50000 nT. This results in a relative magnitude of
b = 1/250, a maximal relative error due to approximation of about 0.0008%, and a maximal absolute
error of 0.4 nT.

4.2. Tolles-Lawson Compensation

In this section a trivial solution is shown to exist in the frequency-based method for estimating the Tolles-
Lawson coefficients. Then, the results of TL compensation applied to data is shown and the effect of
regularization is investigated.
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4.21. Trivial Solution
In literature there does not appear to be any mention of a trivial solution to (2.21). Here this trivial
solution is derived. Applying bandpass filtering to both sides of (2.19) yields

_ (7 Bi(t) 7y, Be(t) s 7. Bi(t)
opf(B.()) = b (1Be(0)] — (a” F11 + Bel) b g1 + BT g0 ) ) @)

_ (B B B

0= oot (1Bt~ (o By + BOTD R + B et ) ). 62

Where the dependency on time has been explicitly written because the bandpass operation is applied
to a continuous time signal.

Then setting the TL coefficients to a = 0341, b = I'3x3 and ¢ = 03«3, (4.1) reduces to

-~ B.(t)
0= bt (1B(0) ~ Bl ). “3)
0 = bpI(B (1) ~ By (1)), @4
0=0, (4.5)

which is a perfectly valid solution and will be the optimal value of the least-squares problem if bpf(|B.(¢)|) =
0. These TL coefficients reduce (2.16) to B. ~ 0, which demonstrates that this is not a physically correct
solution. This trivial solution highlights the need for careful validation of the Tolles-Lawson coefficients

B.

The source of this trivial solution can be traced back to the assumption that (2.15) can be used as a
definition for B,,. If this assumption is not made the solution given in (4.3) does not exist. However,
this assumption is necessary because otherwise the problem is that knowledge of B, is required to
calculate B..

Typically regularization is used when estimating TL coefficients [27], [42], [43], as discussed in Section
2.2.3. It can be shown that regularization can prevent the trivial solution from occurring. In the case
of ridge regression, the trivial solution will have a loss value of A\(1%2 + 1% + 12) = 3)\. Because the
trivial solution has zero error and the non-trivial solution is not perfect, the non-trivial solution will have
a larger error. With this regularization, the non-trivial solution can then still be more optimal by having
smaller 5 coefficients. This is the case as long as the loss is below 3.

Using the map-based TL from (2.27), discussed in Section 2.2.2, also avoids this trivial solution.

4.2.2. Tolles-Lawson Compensation

The TL compensation method, shown in Figure 4.6 is investigated. The vector magnetometer (VMR)
inputs the normalized magnetic field vector B,, while the total field magnetometer (OPM) gives the
magnetic field magnitude B;. The results for each manoeuvre can be seen in Table 4.1.

B Bl B
TL
-
OPM

Figure 4.6: Diagram of Tolles-Lawson estimation.

In Figure 4.7 the estimate of the Earth field after compensation with the TL model can be seen. There is
already significant improvement with respect to the original uncompensated signal. The heading related
field change is removed quite well. Most of the sinusoidal variation is compensated for, although during
the pitch phase, around 02:00 to 03:00, some sinusoidal oscillation remains.
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Table 4.1: Standard deviations and Improvement Ratios for TL compensation without regularization.

std uncomp

std comp

std uncomp

std comp

Man.# Cal.# "\ usmm  LHsm] 'RUYHS Ruspm)  RHs[nm 'RRHS
2 1 37.96 14.40 2.64 31.52 14.05 2.24
6 5 43.15 8.41 5.13 - - -
8 7 35.32 6.30 5.61 - - -
1C 1 33.95 4.35 7.80 23.38 5.58 4.19
6C 5 45.94 11.06 4.15 - - -
8C 7 30.76 6.86 4.49 - - -
Mean 37.85 8.56 4.97 27.45 9.81 3.22
Tolles-Lawson Compensation
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Figure 4.7: Tolles-Lawson compensation of manoeuvre 8.

In Figure 4.9 the 21 TL coefficients can be seen of the both left-hand side (LHS) and the right-hand side
(RHS) for each manoeuvre. Shapes are used to indicate which manoeuvre each coefficient belongs to.
The manoeuvres with the same shape but different coloring, being either filled or empty, belong to the
same flight. From this figure it appears that these coefficients vary wildly between flights. This could
indicate high multicollinearity as discussed in Section 2.2.3.

To counter this large variation, regularization by ridge regression is employed as in (2.32)
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Figure 4.8: TL coefficients of manoeuvre 8.
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large difference in magnitude of columns, some columns of matrix A from (2.20c) are much more sub-
ject to regularization than others. To prevent this, an intermediate step was done where the columns
were scaled. The scaling factors were found empirically by taking the mean of each column of matrix
A from a representative manoeuvre. The regularization parameter A was found by using the L-curve,
as is explained in [44]. Ridge regression is a trade-off between minimizing the unregularized cost and
minimizing the /5-norm of the TL coefficients. The plot of these two variables is called an L-curve. De-
termining a good trade-off point is done by finding the A that maximizes the curvature of the L-curve [44].
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Figure 4.9: Tolles-Lawson coefficients for all flights, separated by left and right sides.

10(

T]L Coefficients with Regularization, LHS

TL Coefficients with Regularization, RHS

e Man. 1
F0.004 o an 2 407 ¢ F0.004
50 i ®m  Man. 3 L4
7 - F0.002 @ Man. 4 904 F0.002
4 ‘ oia A Man. 5 g om 8 o
- ® ; o o 1o} ~
= o emE A Man. 6 60® L] 8 =
- 0oug |°‘0Ai‘;‘o-'8i§i§—o.ouo « Mam 7 0 stety ' osglgﬁh £0.000 1
A 3 L n " ¢ = Man. 8 s ® .
A
i o ¥ L —0.002 20{%s = s ® L 0.002
501 m ¢
o8 o ®
s® F—0.004 10 1 F—0.004
—100 Lt
1 4 7 10 13 16 19 1 4 710 13 16 19
Index Index

(a) TL coefficients of the left side for all flights. (b) TL coefficients of the right side for all flights.

Figure 4.10: Tolles-Lawson coefficients for all flights, separated by left and right sides.

Looking at Figure 4.10, we can see the TL coefficients with regularization. Comparing Figure 4.10
to the unregularized coefficients in Figure 4.9 it becomes clear that the TL coefficients are not only
much smaller valued, but more consistent between manoeuvres and between flights. This increased
consistency within a flight and also between flights suggests that these coefficients might be closer the
‘true’ TL coefficients. However, there is still some variation between flights. It is unknown where the
variation in TL coefficients between flights comes from. In [45] it is speculated that the variation stems
from vibration of the ferromagnetic material during landing, which alters the ferromagnetic properties
of the platform.

Another possible benefit of regularizing the TL coefficients is decreased overfitting. To test this, coef-
ficients estimated during the first FoM of a flight were used to compensate for platform noise on the
second FoM of a flight. Furthermore, the ‘clean’ manoeuvres were also compensated for using coeffi-
cients found on the first FoM of the same flight. In other words, compensation was tested on unseen
data. The results of this test can be seen in Table 4.2. Here 'Man. # refers to the manoeuvre that
was compensated and 'Cal. # refers to the manoeuvre that was used to estimate the TL coefficients.
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Table 4.2: Improvement Ratios (IR) for TL compensation of the OPM sensor with and without regularization.

IRLHS IRLHS |IRRHS IRRHS

Man. #  Cal. # w/o Reg. w/Reg. w/oReg. w/Reg.
2 1 2.64 2.61 2.24 2.10
6 5 5.13 5.18 - -
8 7 5.61 5.54 - -
1C 1 7.80 7.50 4.19 5.95
6C 5 4.15 4.15 - -
8C 7 4.49 4.41 - -
Mean 4.97 4.90 3.22 4.03

Table 4.3: Standard deviations and Improvement Ratios for TL compensation with regularization of VMR signal.

std uncomp std comp std uncomp std comp

Man.# Cal.# “\usmm  LHsm] 'RUYHS Rusm  RHs[nm 'RRHS
2 1 296.87 24.29 12.22 200.46 24.05 8.34
6 5 247.87 34.41 7.20 - - -
8 7 231.68 28.23 8.21 - ; -
1C 1 264.43 14.34 18.44 160.09 18.46 8.67
6C 5 248.85 34.73 7.16 - - -
8C 7 222.24 28.16 7.89 - ; -
Mean 251.99 27.36 10.19 180.28 21.25 8.51

Next, the IR of the compensated signals with and without regularization were compared for the left-
and right-hand side of every test manoeuvre. From the table, it can be seen that in most cases there is
not a significant difference in IR on the left-hand side, giving either a slight increase or slight decrease.
This suggests that the unregularized left-hand side TL coefficients did not overfit much to begin with.
On the right-hand side there is an improvement, which could be because of decreased overfitting.

As discussed in Section 3.2.4, the OPM magnetic field sensor may be limited by an unusual quantization
error. Therefore, another set of experiments was done where compensation is applied to the VMR
instead. The results of the regularized TL applied to VMR data can be seen in Table 4.3. An example
from manoeuvre 8 is shown in Figure 4.12.

Compared to compensation of the OPM sensor, the improvement ratio is much larger for the VMR
compensated data. However, the standard deviation for the VMR data, both compensated and un-
compensated is much larger. This is because the VMR has much larger variation due to the platform
noise than the OPM. Sitill, this confirms that the VMR sensor can be used to investigate the efficacy of
different noise compensation methods.

4.3. Extended Tolles-Lawson

In this work another variant is introduced where similarly to section 2.3.2 all drone inputs are considered
for to be used to predict the platform noise. However the estimation of the coefficients belonging to the
drone features happens simultaneously with the estimation of the TL coefficients, similarly to section
2.3.2. This should give a better fit to the data when solving the standard least squares problem. Similarly
to Section 2.2.2 a scaling step is applied to adjust for unit correctness and scale of the columns of Agry.
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Figure 4.11: Diagram of Tolles-Lawson estimation using VMR.
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Figure 4.12: TL compensation of the VMR signal.

The variables in question are defined as

AETL = [Ac Ar] 5 (46)

for which the solution to the least-squares problem is

BETL = AJ}rETL(y —-cB,). 4.7)
(4.8)

Now the ETL compensation method introduced in Section 4.3 is applied to the TNO dataset. This is
done to validate the implementations and create a baseline against which other compensation methods
can be compared. The diagram for this method is shown in Figure 4.13. In this method inputs are used
as well. Drone inputs were selected based on the most linearly correlated signals, as discussed in
Section 4.5. The same regularization approach was used as in the ridge regression regularized TL
method. In Figure 4.14 the ETL compensated signal can be seen compared to the TL compensated
signal. The ETL compensated signal appears flatter than the TL compensated signal. The pitch related
oscillation in the center of the figure is also mitigated to a certain extent. Similar improvements were
seen in other manoeuvres. In all except one case improvement in IR relative to the IR of the TL
compensated manoeuvres is seen, as shown in Table 4.4.
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Figure 4.13: Diagram of Extended Tolles-Lawson estimation.

Now let us look at the results of ETL applied to the VMR sensor. These results can be found in Table
4.5, which also includes the TL results for comparison.
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Figure 4.14: Extended Tolles-Lawson compared with regular Tolles-Lawson compensation.

Table 4.4: Improvement Ratios (IR) for TL and ETL compensation of the OPM signal.

Man.# Cal.# IRLHSTL IRLHSETL IRRHSTL IRRHSETL

2 1 2.61 4.62 2.24 3.22
6 5 5.18 8.52 - -
8 7 5.54 7.39 - -
1C 1 7.50 6.09 4.19 4.63
6C 5 4.15 11.48 - -
8C 7 4.41 5.79 - -
Mean 4.90 7.31 3.22 3.92

From this table it can be seen that ETL generally has a much larger IR than TL. What this increase in
IR looks like can be seen in Figure 4.15. The increase of ETL IR relative to TL IR is also greater than in
the OPM results. This could indicate that the VMR is closer to magnetic field sources on the platform.
Another explanation is that, since the IR in the VMR results are calculated in a specific frequency range,
the bandpassed magnetic field signal contains relatively more platform noise and therefore will benefit
more from compensation. In any case, the compensation results here show an improvement when
taking into account drone inputs, and provide a baseline to compare more advanced methods against.

4.4. Deep Learning

In this section, an MLP is designed to compensate for the platform noise in TNO data. First, the MLP
itself is designed. Then, it is used to predict the residual after TL compensation. Next, it is used to
predict the residual after ETL compensation. This is done for both OPM and VMR sensors. Finally, the
results are analysed to guide further model design and feature selection in the sections that follow.

4.4.1. Network Design

To model the residual platform noise, a multilayer perceptron (MLP) was chosen as the neural network
architecture. The MLP is a natural starting point due to its simplicity and general applicability to regres-
sion problems. While limited in its ability to capture temporal dependencies, the MLP has shown good
performance in literature [17], [46].

The activation function used throughout the network is the sigmoid-weighted linear unit (SiLU), selected
based on the findings of Gnadt et al. [47], who demonstrated its effectiveness in a similar context. Input
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Table 4.5: Improvement Ratios (IR) for TL and ETL compensation of VMR signal.

Man.# Cal.# IRLHSTL IRLHSETL IRRHSTL IRRHSETL

2 1 12.22 16.07 8.34 14.88

6 5 7.20 21.32 - -

8 7 8.21 21.86 - -

1C 1 18.44 22.74 8.67 20.31

6C 5 7.16 12.75 - -

8C 7 7.89 17.84 - -
Mean 10.19 18.76 8.51 17.60

Extended Tolles-Lawson Compensation VMR
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Figure 4.15: ETL vs. TL compensation of the VMR signal during manoeuvre 8.

features were normalised by removing the mean and scaling to unit variance, a standard preprocessing
step that improves optimization stability and convergence speed.

The network is trained using the Adam optimizer, which uses adaptive learning rates and momentum
[48]. Hyperparameters such as the number of layers, number of neurons per layer, learning rate, batch
size, and number of epochs were tuned using the Optuna framework [49], which performs efficient
hyperparameter optimization through Bayesian search. It was found that a single hidden layer with 11
neurons provided the best performance, and this architecture was used consistently for both the OPM
and VMR compensation models.

The target for the neural network is the residual platform noise after TL compensation. The diagram
in Figure 4.16 shows that the MLP uses drone inputs to predict the residual of the TL platform noise.
This is then added to the TL predicted platform noise to calculate the total platform noise, which is then
subtracted from the total magnetic field to get the Earth field. Later on we will see that this can also be
done for the ETL model.

The results of the TLNN model are reported in Table 4.6, expressed in terms of improvement ratio (IR)
and compared to the TL method. The neural network outperforms the standard TL model, which is not
a surprise. Compared to the ETL results however, the results are similar for the left-hand side, and
better for the right-hand side.

The TLNN method was also applied to the VMR, shown in Figure 4.17. As the VMR data is prone to drift,
we should be careful about defining our target. Therefore we will use the bandpassed uncompensated
signal as a reference and try to decrease the standard deviation of that. The frequency band was
chosen to be 0.02-2Hz. The aim for this is to remove the low frequency drift, while still being low
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Figure 4.16: Diagram of (E)TLNN estimation. The dashed lines are only included during training.

Table 4.6: Improvement Ratios (IR) for TL and TLNN compensation of the OPM signal.

Man.# Cal.# IRLHSTL IRLHSTLNN IRRHSTL IRRHS T TLNN

2 1 2.61 6.30 2.24 6.03
6 5 5.18 8.51 - -
8 7 5.54 8.67 - -
1C 1 7.50 4.98 4.19 8.27
6C 5 4.15 8.89 - -
8C 7 4.41 6.38 - -
Mean 4.90 7.29 3.22 7.15

enough to capture possible anomaly variation, and selecting a high enough frequency that the anomaly
variation presumably does not reach.

Bres [---- + Loss fn [«----- |
L _p\N E —BéE)TLNN (E)TLNN
_pBTL
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By

Figure 4.17: Diagram of (E)TLNN estimation for the VMR sensor. The dashed lines are only included during training.

Similar results were found for the TLNN method as in the case using OPM data. The NN improves
compared to the TL but is generally worse than ETL. Furthermore, the NN seemed to to fit much better
to the training data opposed to the test data.

To further investigate this overfitting, we can look at the learning curve. The learning curve is the
epoch number of the training and validation data plotted against the loss. A representative example
for one manoeuvre is given in Figure 4.18. If both training and validation curve decrease in unison,
this indicates a good learning of the true underlying system. If the validation loss increases while the
training loss decreases this indicates the model is overfitting to the training data. In Figure 4.18 it can be
seen that even for NN the learning loss quickly decreases at the start and then continues to decrease.
The validation loss however, quickly decreases and then almost no improvement is made. So there is
still overfitting happening, but it is not necessarily decreasing performance on the validation set.

Experimenting with Optuna shows that increasing the number of layers decreases performance and
increases overfitting. To improve our model further without overfitting we can do a number of things:

+ Early stopping
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Figure 4.18: Learning curve for the NN model of manoeuvre 7.

* Increase training data

* Decrease model size

» Regularization by dropout

» Decrease number of features

+ Make features more representative

A way to increase training data is to include data from different flights. The reason a model was trained
for each manoeuvre is that the TL coefficient change between flights. However, there might still be
some things that stay the same even between the flights. Then using the model trained on data from
all flights simultaneously can be further refined by training on data from only one flight.

442. ETLNN

Another method we can consider is trying to fit the neural network to the residual after ETL compensa-
tion. Since ETL already provides a large improvement with respect to TL, this residual could be simpler
to learn than the TL residual.

The results of this ETLNN method can be found in Table 4.7. From this it is clear ETLNN generally
outperforms ETL. Especially on the right-hand side the increase in IR is significant. The ETLNN com-
pensated signal next to the uncompensated signal can be seen in Figure 4.19.

As before, the ETLNN method is also applied to the VMR data. The result for this can be seen table
4.8. The improvement with respect to the ETL method is similar for the VMR and OPM for the left-hand
side. The right-hand side sees similar improvement as the left-hand side.

In the model tested on manoeuvre 1C, there was a very large IR of 31.18, which comes down to a
standard deviation of only 8.5 nT. This is quite significant, compared to the uncompensated standard
deviation of 264 nT. This comparison is made more clear in Figure 4.20.
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Table 4.7: Improvement Ratios (IR) for ETL and ETLNN compensation of the OPM signal.

Man.# Cal.# IRLHSETL IRLHSETLNN IRRHSETL IRRHS ETLNN

2 1 4.62 6.85 3.22 6.80

6 5 8.52 9.51 - -

8 7 7.39 10.00 - -

1C 1 6.09 7.34 4.63 10.07

6C 5 11.48 12.72 - -

8C 7 5.79 6.81 - -
Mean 7.31 8.87 3.92 8.44
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Figure 4.19: ETLNN compensated magnetic field versus the uncompensated magnetic field of manoeuvre 8.
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Figure 4.20: ETLNN compensated magnetic field versus the uncompensated magnetic field of manoeuvre 1C.

4.4.3. Analysis
The average IR from the TL compensation of the OPM signal is 4.48, the average IR from the ETLNN
compensation of the OPM signal is 8.77. So the ETLNN models improve on the TL models with a factor
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Table 4.8: Improvement Ratios (IR) for ETL and ETLNN compensation of VMR signal.

Man.# Cal.# IRLHSETL IRLHSETLNN IRRHSETL IRRHS ETLNN

2 1 16.07 19.37 14.88 18.87

6 5 21.32 23.67 - -

8 7 21.86 27.25 - -

1C 1 22.74 31.18 20.31 22.95

6C 5 12.75 12.65 - -

8C 7 17.84 19.18 - -
Mean 18.76 22.22 17.60 20.91

1.95 on average. The average IR from the TL compensation of the VMR signal is 9.77, the average IR
from the ETLNN compensation of the VMR signal is 21.89. So the ETLNN models outperform the TL
models by a factor 2.24 on average when applied to the VMR.

The hyperparameters were chosen using Optuna. This search included a broad search area searching
learning rate, number of epochs, batch size, layer width and number of layers. The results suggest
that the model is prone to overfit as the best network was the one with lowest number of epochs, small
batch size, and only a single layer with 11 nodes. This could explain why training end-to-end with an
MLP, i.e. without the (extended) Tolles-Lawson model in between did not perform well.

To counteract overfitting some experiments were done using dropout layers, which during training ran-
domly eliminate connections between features and neurons. However, this did not improve or degrade
performance significantly.

The good performance increase when adding a neural network to predict the residual of a base linear
model suggests that perhaps some kind of hierarchical model might be suited for this task, where
models are successively trained on the residual of the previous model. The ETLNN model is already
a kind of hierarchical model with first the ETL model predicting the noise and the NN predicting the
residual. A step further would be to add another model, perhaps another NN, which predicts the residual
of the first NN.

Another observation is that ETLNN increases more w.r.t. TL on the VMR data than the OPM data. This
could be because the VMR platform noise is only predicted in a frequency range between 0.02 and 2
Hertz. This could make the signal less complex and easier to predict.

4.5. Feature Selection

Understanding which drone inputs are most relevant for predicting platform noise is essential for build-
ing effective compensation models. A common first step in the literature is to compute correlations
between inputs and the magnetic signal. While this provides initial insight, it does not account for how
these signals project onto the external magnetic field or how they interact in multivariate models. This
section begins with a correlation analysis of the raw inputs, then extends the analysis by projecting
these inputs onto the direction of the magnetic field, better reflecting the physics underlying the plat-
form noise. Finally, SHAP values are used to assess the true importance of each feature in both linear
and nonlinear models, providing a more complete picture for informed feature selection.

The result of the correlations between every drone input and the OPM magnetic field signal can be seen
in Figure 4.21. Only inputs which which were in the top 20 highest correlations for either manoeuvre
are shown. The result of the Spearman correlations can be seen in Figure 4.22. This result resembles
the linear correlation plot of Figure 4.21 very closely.

As was shown in (2.9), the platform noise is equal to the dot product between the platform field and the
total field direction. In other words, the platform noise is the magnitude of the projection of the platform
field onto the total field. Now if we consider that the drone inputs stay in the reference frame of the
platform, we should also project the drone inputs onto the total field. This means we can multiply the
drone inputs by the direction cosines, i.e. the direction of the total field, we take into account the angle
between the total field and the platform. The result of this can be seen in Figures 4.23 and 4.24. An
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Figure 4.21: Pearson correlation coefficients of various Figure 4.22: Spearman correlation coefficients of various
drone inputs with the magnetic field captured on two flights. drone inputs with the magnetic field captured on two flights.

unprocessed input has suffix _1, an input multiplied by the first, second or third direction cosine has
suffix _2, _3 and _4. Furthermore, since the ETL model also takes into account drone input derivatives
multiplied by direction cosines, these features are also taken into account and are given suffix _5, _6
and _7. From these figures it can be seen that the top 20 features for both type of correlation consist
mostly of features related to:

* Engine current and throttle (Batt2_Curr, RCOU_C3, AETR_Thr)
+ IMU data (GyrX/Y/Z, AccX/Y/Z, VIBE_VibeX/Y)
+ Attitude (ATT_Roll, ATT_Pitch)

The highest correlated feature is the acceleration in the X direction. This acceleration is caused by an
increase in engine power which is related to the also highly correlated battery current.In the 20 highest
correlated features the drone input derivatives are absent. This is evidence that the derivative terms
might be superfluous. It should be noted that some features might be purely becoming highly correlated
due to being multiplied by direction cosine terms, which could themselves be correlated.

These correlations give an indication how much each feature is linearly or monotonically related to the
platform noise, but they do not give the complete picture. This is because the features are not neces-
sarily linearly independent. Furthermore, the features could be influencing platform noise at the same
time, which the correlations cannot account for. Finally, they do not show what the different models
actually use to predict the platform noise. Neither can they account for nonlinear behaviour, like that
of neural networks.

45.1. SHAP for TL

A measure of how much each feature influences a model is the SHAP value, which is introduced in
Chapter 2. We begin by examining the contribution of the standard TL features to the model output
using SHAP values in order to investigate the effect of the standard TL features on model output.
This shows the use of SHAP values for feature selection. Previously, the TL coefficients were shown.
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Figure 4.23: Top Pearson correlation coefficients of various Figure 4.24: Top Spearman correlation coefficients of
drone features with the magnetic field captured on two flights. various drone features with the magnetic field captured on
two flights.

However, this obscures the true effect on the output of the model. SHAP gives a better measure for
this, as it can show how many nanoTesla specific features have changed the outcome of the prediction.
In Figure 4.25 this effect is shown for every feature in the form of a distribution of SHAP values. The
features are sorted by the mean absolute SHAP value, so the largest average impact on the model
prediction. The feature values, indicated by color, can be seen to change linearly with the SHAP value.
This is because we are using a linear model. We can also see that TL20 and TL21 have some outliers.
This could be because the numerical derivative introduces some error. It looks like the top features are
all occupied by either permanent or induced TL features, TL1 - TL3 and TL4 - TL12 respectively.

Instead of looking at each individual TL feature, we can look at the permanent, induced and eddy-current
groupings in Figure 4.26. From this we can see that the biggest terms are usually the permanent fea-
tures. The induced features also have a relatively large effect. The eddy-current features have very
little effect compared to the permanent and induced features. The small effect of the eddy-current fea-
tures could have multiple causes. First of all, since eddy currents are induced by a changing magnetic
field in a conductive material, it could be that there is not a significant conductive loop near the sensor.
In this case we should also not expect large eddy-currents induced by drone inputs, since they too
require a conductive loop near the sensor to have an effect. Another possible cause of the small eddy-
current feature effects has to do with the derivative which is necessary to calculate the eddy-current
features. Numerically calculating the derivative is subject to large influence of high-frequency noise. A
fast changing measurement due to random noise will have a large effect on the derivative even though
this is not causes by a magnetic field.

4.5.2. SHAP for ETL

The top features for the ETL method, shown in Figure 4.27, beside the standard TL terms, consist
mostly of terms relating to the attitude (quaternions AHR2_Q1/Q4, yaw angle ATT_YAW) and engine throttle
(battery curent BAT2_Curr and AETR_Thr). Notably there are few inputs that directly affect the model,
those with suffix _1. Furthermore there are features related to the derivative of the drone inputs, i.e.
those with suffix _5, _6 or _7. Most of the features relate to the drone inputs multiplied by the direction
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Figure 4.25: SHAP values for manoeuvre 8.
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Figure 4.26: Mean absolute SHAP values for the grouped terms for manoeuvre 8.

cosines, which are those with suffix _2, 3, or _4.

To further investigate the effect of the different sets of features we can group them by the TL features,
raw drone inputs (group 1), drone inputs multiplied by direction cosines (group 2), and derivative drone
inputs multiplied by direction cosines (group 3). This is shown in Figure 4.28. From this it is clear the
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Figure 4.27: SHAP value distribution of ETL model trained on manoeuvre 7 applied to manoeuvre 8.

group 3 features have very little effect. This is similar to what we saw when analyzing the different TL
components. Next there are the group 1 components. The effect of this group is caused mainly by
the angle features. From a physical perspective, it makes sense that this group has little effect, as the
fact that drone inputs are in the platform reference frame is not taken into account. Furthermore, the
angle features could have an effect because they describe a difference between the platform reference
frame and the Earth reference frame. We should then expect the group 2 features to have a much
larger effect, since they are in the correct reference frame, which is indeed the case. The group 2
features, representing drone inputs projected onto the field direction, exhibit a greater influence than
the TL features, suggesting that they may capture similar or addition physical effects more effectively.
Furthermore, the effect of the TL features is diminished with respect to the effect of the TL components
in the standard TL approach. This could be explained by the group 2 features taking over some of the
impact of the TL features, especially the permanent TL features which are just the direction cosines. If
there is a drone input which is approximately constant throughout and is then multiplied by the direction
cosines to produce features, these features will be linear with the permanent TL features.
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Figure 4.28: Mean absolute SHAP values for the grouped terms for manoeuvre 8.

4.5.3. SHAP for (E)TLNN

In Figure 4.29 the SHAP values for each NN feature can be seen. To make conclusions about the
importance of these features, the features are grouped and their SHAP values are summed and av-
eraged. The grouping by suffix is shown in Figure 4.30. Grouping by drone input is shown in Figure
4.31. Only the SHAP values for manoeuvre 8 are shown. This is mostly representative of the models
used on the other manoeuvres. The set of features with the highest average absolute SHAP value was
always those in group 2. In some models those with in group 1 also had a significant contribution. This
contribution consisted mostly of features having to do with drone attitude. The group 3 features, which
are drone input derivatives multiplied by direction cosines, consistently had the lowest SHAP values.

In Figure 4.32 the SHAP values for the ETLNN model are shown. The SHAP values grouped by drone
input and suffix are shown in Figure 4.33 and 4.34 respectively. Interestingly, in the SHAP values for
the ETLNN model, the group 1 features become more important. Furthermore, in the SHAP values for
manoeuvre 8 there is a large importance of the yaw features. In general the derivative terms are again
the least important, while attitude terms, especially yaw, have large influence.

4.5.4. Feature selection

The SHAP values discussed for both ETL and NN will inform the selection of features for further models.
In both ETL and NN we saw low importance of derivative drone features. This motivates to leave out
these derivatives. Furthermore, for both ETL and NN there was some importance of direct drone inputs
(group 1 features), but they came mostly from attitude related features. This motivates the choice to
use the attitude information directly in the form of direction cosines. This is already an input used
by Tolles-Lawson, however a non-linear relation could exist which could be captured by the neural
network. Such non-linear relationship might also exist for other TL components, like the induced and
eddy-current components. That is why the induced TL features are also added as a feature for this
next model. The eddy-current components showed little importance in TL so this will be not used as a
feature in the NN.

To summarise, feature analysis reveals which drone inputs contribute most to magnetic field prediction,
motivating a reduced feature set. This refined input will be used in subsequent retraining of both ETL
and NN models for improved performance and interpretability.

4.6. Feature-Informed NN

Overfitting can negatively impact model performance. One reason for overfitting could be having too
many parameters which cause the model to be highly flexible and fit to random noise, instead of fitting
to true platform noise caused by drone inputs. That is why here a feature selection is used to train mod-
els which will be compared in terms of performance and amount of overfitting. Models fit to OPM data
and models fit to VMR data will be examined separately. Four different feature sets were evaluated to
study the impact of feature selection on model performance and overfitting. Feature selection will be
done for the best performing model, which is ETLNN. The base feature set, FSO0, included all features
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Figure 4.29: SHAP value distribution for top feature in manoeuvre 8 for the TLNN model. The top features consist of group 1
and group 2 features.

previously discussed, including both raw inputs, inputs multiplied with direction cosines and derivatives.
To assess the influence of derivative features specifically, FS1 was created by removing all derivative-
based features from FS0. Building on FS1, SHAP values were computed, and two reduced subsets
were created: FStop50, which contains the top 50% most important features, and FStop10, which con-
tains only the top 10%. The top 10% of features were AETR_Thr_1, IMU_AccZ_1, ARSP_Airspeed_1,
ATT Yaw_1, IMU AccZ_3, IMU_AccX_1, ATT Pitch_ 2, AETR_Thr 3, BAT2 Curr_1 and IMU_ AccX_2. Both
FStop sets exclude derivatives and represent increasingly aggressive levels of pruning. These fea-
ture sets enable a comparison between full-feature and pruned models, isolating the effects of feature
reduction on compensation and overfitting.

4.6.1. Feature-Informed ETLNN for OPM data

First the group 3 features were removed. The tables with the full results of each model trained for each
combination of manoeuvre, left and right side, and sensor type is given in Appendix D. To evaluate the
compensation performance for the OPM sensor, average improvement ratios (IR) were computed for
both the left and right sensor sides across various feature sets, as can be seen in Table 4.9. Feature
set FStop50 achieved the highest improvement on the left-hand side (IR = 8.95), slightly outperforming
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Figure 4.30: Average absolute SHAP value for top features in manoeuvre 8 for the TLNN model, grouped by drone input.
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Figure 4.31: Average absolute SHAP value for top features in manoeuvre 8 for the TLNN model, grouped by suffix group. The
derivative features of group 3 has the lowest contribution on average.

FSO0 and FStop50. However, the difference is not significant. The FStop10 set showed a notably lower
improvement (IR = 7.72), suggesting that reducing the number of features too aggressively can hurt
model performance. For the right-hand side, FSO performed best (IR = 8.44), while FStop10 again
performed the worst (IR = 5.31). These results suggest that derivative features contribute positively to
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Figure 4.32

the model’s effectiveness on the right-hand side but did not contribute on the left-hand side. Since the
right-hand side only has data for manoeuvre 1 and 2, the variance in model performance is expected
to be larger, which could explain the decrease in IR on the right side but not the left side.

To assess model generalization and evaluate our intermediate goal of reducing overfitting, the overfit
ratio (OR) is introduced, which is the ratio of training to test set standard deviations (OR),

OR = Jtest (4.9)
Otrain

where higher OR indicates more overfitting. The OR for various feature sets can be seen in Table 4.10.
For the left-hand side, all feature sets resulted in relatively mild overfitting, with OR values ranging
between 1.22 and 1.33. The lowest overfitting occurred with FStop50 (OR = 1.22), while FS1 showed
the highest (OR = 1.33). This suggests that feature pruning can help slightly reduce overfitting. On the
right-hand side, which was only evaluated for one manoeuvre pair, FS1 showed the highest OR (1.75),
while FStop10 had the lowest (1.55). Although the differences are modest, they suggest that smaller
feature sets may help mitigate overfitting, but this may come at the cost of performance.
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Figure 4.34

4.6.2. Feature-Informed ETLNN for VMR data

The VMR sensor showed substantially higher improvement ratios (IR) than the OPM sensor across
all feature sets, reflecting the stronger signal and greater potential for compensation. As shown in
Table 4.11, FS1 yielded the highest IR on the left-hand side (22.58), followed closely by FS0 (22.22)
and FStop50 (22.19). FStop10 resulted in a slightly lower IR of 22.00, but the differences between
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Table 4.9: Average Improvement Ratios (IR) over all manoeuvres for Left and Right sensor sides, Feature Sets, Sensor Type:
OPM

Feature Set AvgIRLHS AvgIRRHS

FSO 8.87 8.44
FS1 8.91 7.28
FStop50 8.95 7.21
FStop10 7.72 5.31

Table 4.10: Average Overfitting Ratios (OR) for Left sensor side and Right sensor side, Feature Sets. Sensor Type: OPM

Feature Set Avg ORLHS ORRHS

FSO 1.32 1.61
FS1 1.33 1.75
FStop50 1.22 1.67
FStop10 1.23 1.55

feature sets were relatively small. On the right-hand side, FSO achieved the highest improvement
(IR = 20.91), while FStop50 had the lowest (IR = 19.91). These results suggest that the VMR signal
can be compensated effectively even with reduced feature sets, although performance does not seem
to be enhanced by decreasing the number of features.

The full results for the VMR sensor feature selected models can be found in Appendix D. Removing
Group 3 features had similar effect on IR and OR as in the OPM case, as can be seen in Table 4.11.
Performance was not changed much and OR decreased very slightly. Similarly to OPM, more features
are removed to further reduce overfitting.

Table 4.11: Average Improvement Ratios (IR) over all manoeuvres for Left and Right sensor sides, Feature Sets, Sensor Type:
VMR

Feature Set AvgIRLHS AvgIRRHS

FSO 22.22 20.91
FS1 22.58 20.05
FStop50 2219 19.91
FStop10 22.00 20.60

Overfitting was more pronounced for the VMR sensor than for the OPM sensor, with training-to-test
standard deviation ratios exceeding 2.0 in most cases. As shown in Table 4.12, the left-hand side
overfitting ratio was highest for FSO (OR = 2.48), followed closely by FS1 (2.27). Pruning the feature
set reduced overfitting noticeably: FStop50 achieved an OR of 2.00, and FStop10 reduced it further to
1.66. On the right-hand side, which was only evaluated for one manoeuvre pair, the trend was similar.
Feature set FSO exhibited the highest OR (2.31), while FStop10 achieved the lowest (1.50). These
results suggest that aggressive feature reduction is effective at mitigating overfitting in models trained
on the VMR signal, without significantly reducing performance in terms of IR.

The top 50% and top 10% features have very similar performance to the previous models with all
features and the model without derivative features. However, the overfitting ratio has decreased signifi-
cantly. This is evidence for the 90% of features that were not removed mainly contributing to overfitting
and not test set performance. The features left are AHR2_Q2_3, AHR2_Q4_3, AHR2_Q4_1, AHR2_Q2_1,
IMU_AccX_2, AHR2_Q1_4, AHR2_Q2_4, ATT_Pitch_1, ATT_Yaw_2, AHR2_Q4_2. Except for IMU_AccX_2,
these features all have to do with orientation of the platform. Quaternions are estimated using an
extended Kalman filter (EKF). Roll, pitch and yaw are calculated from the estimated quaternions. Ac-
cording to the documentation of the flight system which was used, called Ardupilot, a magnetometer is
used to correct for heading drift, influencing the yaw angle. This raises the possibility of magnetic field
disturbances influencing quaternion estimates, a form of data leakage. As a result, features derived
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Table 4.12: Average Overfitting Ratios (OR) for Left sensor side and Right sensor side, Feature Sets. Sensor Type: VMR

Feature Set Avg ORLHS ORRHS

FSO 2.48 2.31
FS1 2.27 1.92
FStop50 2.00 1.87
FStop10 1.66 1.50

from these quaternions, especially those sensitive to yaw, can implicitly contain information about the
magnetic field including both platform noise and Earth field. This could explain why a small subset of
orientation features still achieves high performance while reducing overfitting.

Looking more closely into the influence of the onboard magnetometers onto quaternion estimation, from
documentation [50] [51] it seems that the specific quaternion estimation algorithm used in our features
includes magnetic field magnitude information. The way in which this is incorporated is as follows. An
EKF estimates the quaternions. Next, the direction cosine matrix (DCM), which is a rotation matrix, is
calculated from the quaternions. Then the platform-frame magnetic field is calculated by multiplying
the IGRF model with the DCM. This vector is compared with onboard vector magnetometer values, and
the EKF estimation of the quaternions is adjusted based on how much the two vectors differ. To further
investigate the possible effect we can look at the magnetometers used by the drone.

The drone magnetometers can be identified as BMM350 magnetometers. Given the BMM350’s noise
characteristics, low resolution[52] of 100nT, and the fusion behavior of the ArduPilot EKF, it seems
infeasible for platform noise in the 100—-300 nT range to reliably influence fused quaternion outputs.
Any influence would be highly attenuated, non-linear, and inconsistent, making data leakage through
quaternions or derived orientation features negligible for the purposes of magnetic compensation mod-
eling. However, it is difficult to rule out data leakage for sure without validating with test data gathered
in an area with known magnetic anomalies.

4.6.3. Pre-training MLP

One other way of reducing overfitting is to use more data to train the model. By including data from all
training manoeuvres, even those from different flights, the amount of training data is increased. Fur-
thermore, by covering multiple flights, the model could be more general than the other models which
are trained for a specific flight. However, since models do appear to benefit from training for manoeu-
vres done on the same flight, performance is expected to be worse for the model trained on data from
multiple flights. That is why this more general model is used as a kind of 'pre-trained’ model, which can
then be further trained on flight-specific data.

After training and testing a pre-trained model, it was found that it did not predict the residual of ETL
well at all. After further examination, it does make sense that it is difficult for the MLP to predict the
residual. Each manoeuvre has its own ETL model for noise compensation. The platform noise that is
left after ETL compensation is the residual the pretrained model tries to predict. However, since each
ETL model has different coefficients, the way it uses the features is different and the pretrained model
cannot generalise to all flights.



Discussion and Conclusion

This research addressed two questions about reference-free magnetic compensation. The following
sections try to answer those questions based on experimental results.

The first research question asked: Can deep learning models effectively predict and compensate aero-
magnetic platform noise in the absence of a noise-free reference signal or accurate anomaly map? The
answer is yes, but with limitations. Neural network approaches significantly outperformed traditional
methods. The ETLNN method achieved improvement ratios of 8.87 (OPM) and 22.22 (VMR), com-
pared to standard Tolles-Lawson ratios of 4.90 and 10.19. This represents approximately a twofold
increase in performance. Moreover, the best OPM results achieved 2.3 nT standard deviation. Since
geological anomalies vary by tens to hundreds of nanoteslas, this noise level suggests practical viabil-
ity for magnetic-aided navigation. Therefore, this thesis showed reference-free validation by exploiting
altitude filtering effects. At 250 m survey height, anomalies shorter than 400 m wavelength are at-
tenuated below 1 nT, allowing assumption of constant background field. This removes the need for
reference magnetometers during validation. However, the critical limitation is that compensation per-
formance was only evaluated on anomaly-free data. The ability to preserve actual anomaly signals
remains unverified.

The second question asked: Which drone inputs are most relevant for predicting platform noise, and
how can their contribution be quantified across different manoeuvres and flights? SHAP analysis sug-
gests the following drone inputs are important:

» Engine-related parameters (e.g., battery current, throttle)

+ Inertial measurement unit (IMU) data (e.g., accelerations, vibrations)

+ Platform attitude information (e.g., roll, pitch, yaw angles, quaternions)
» To a lesser extent, aileron and elevator control signals

The feature analysis revealed that features projected onto the magnetic field direction (Group 2) con-
sistently outperformed raw inputs (Group 1), validating the Extended Tolles-Lawson approach. Further-
more, derivative features added little value while increasing overfitting. Next, using only the top 10% of
SHAP-identified features reduced overfitting (from >2.0 to 1.66 for VMR) without hurting performance.

However, there are some important limitations. The method of determining SHAP value for the (E)TLNN
was only an approximation, as determining the exact SHAP value would be too computationally expen-
sive. Furthermore, SHAP values are not a perfect measure of the actual effect a drone input has on
the platform noise. It only tries to quantify the effect on a specific model. This is another reason why
it is important to prevent overfitting, as a model which has overfit can falsely assign importance to
unimportant drone inputs. Another limitation is that the analysis was limited to one platform (Mugin
drone), and Tolles-Lawson coefficients varied across flights, requiring per-flight calibration. This limits
generalization to across flights, meaning the MLP needs retraining for every new flight.
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A methodological contribution was made by exploiting the low-pass filtering effect of altitude (250 m).
By showing attenuation of certain wavelengths at that altitude on crustal magnetic anomalies, it was
established that anomalies with wavelengths shorter than 400 m are attenuated significantly. This en-
abled the assumption of a near-constant background field for validation and removed the need for a
reference magnetometer. Furthermore, a kind of hierarchical model was used effectively. Linear ETL
compensation addresses primary platform effects, while a neural network models nonlinear residuals.
This architecture outperformed direct neural network models, suggesting that physics-based prepro-
cessing improves learning efficiency. Finally, the feature study highlighted the importance of projecting
drone inputs onto the magnetic field direction, grounded in physical principles. Features transformed
using direction cosines (Group 2) consistently showed higher SHAP values than raw inputs (Group 1).

5.1. Limitations and Challenges

Several limitations and challenges emerged during the development and evaluation of the proposed
compensation framework. One key issue was the quality of the magnetometer data. Quantisation
artefacts in the OPM measurements affected over 30% of samples. This highlights the importance of
thorough sensor characterisation and preprocessing.

Another challenge was model overfitting, particularly in neural network models trained on VMR sensor
data, where overfit ratios exceeded 2.0. Reducing the input space to the top 10% of SHAP-identified
features helped mitigate overfitting (e.g., OR = 1.66 for VMR) without significant degradation in overall
performance. Reducing the feature set size resulted in less overfitting and decreased overfitting up
to a point for OPM as well. Nonetheless, ensuring generalisation across varied datasets remains a
concern, especially given the absence of a noise-free reference.

The analysis was also constrained by its reliance on a single UAV platform (the Mugin fixed-wing drone)
and a specific sensor configuration. While the proposed methods could generalise to other platforms,
this assumption was not empirically validated. Furthermore, because (Extended) Tolles—Lawson coef-
ficients exhibited noticeable variation across flights, calibration needs to be done every flight.

A final and significant limitation lies in the validation approach. Since compensation performance was
evaluated on anomaly free data, the ability of the model to preserve magnetic anomalies remains
unverified. Although compensation effectively reduced measurement variance, it is unclear whether
this came at the cost of suppressing subtle geological signals.

5.2. Future Work

Future work should focus on validating the compensation methods with data that contains known mag-
netic anomalies. This could be done by generating artificial anomalies with large coils, using reference
magnetometers placed far from the drone, or flying over areas where geological anomalies are already
mapped. These tests would help to check whether real signals are preserved during compensation.

There is also room to improve the algorithms. Temporal models such as recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), or temporal convolutional neural networks (CNNs)
could be useful for capturing time-dependent patterns in the data. It may also be worth trying models
that include simple physical constraints, or using loss functions such as Huber or mean absolute error
(MAE), which are less sensitive to outliers.

A recent study [53] presented a differentiable architecture search-guided physics-informed neural net-
work (DARTS-PINN) for aeromagnetic compensation. This method adds the physics-based Tolles—
Lawson model to the loss function of a PINN, while the differentiable architecture search selects the
network structure. The approach reduces the amount of training data needed, lowers the standard
deviation of residuals, and adapts to different scenarios by finding suitable architectures for different
inputs. Although the study used a dataset with reference measurements, the method could also work
in a reference-free setting, as it performs well with limited data. Its adaptability makes it a promising
option for experiments on other platforms.

Larger datasets could further improve results by reducing overfitting and allowing the models to learn
more complex patterns. Data collected from multiple flights would capture differences in conditions.
Ground tests with each drone input actuated separately could also help in understanding platform



5.3. Conclusion 55

noise and refining feature selection. In Figure-of-Merit flight patterns there is a risk of data leakage due
to the platform performing the same movements in the same position for each square. To prevent data
leakage, cloverleaf flight patterns, as described in Section 2.2.4, could be used provide a way to test
compensation methods. This flight pattern crosses a single point from four different headings, which
makes it well suited for checking whether the Earth’s magnetic field is preserved. Since the true field at
the crossing point should be the same regardless of direction, any differences in compensated results
would indicate limited accuracy.

The assumption of rigid platform movement, outlined in Section 2.1.4, could also be examined further.
In practice, wings and drone structures bend during flight, changing the relative positions of magne-
tometers, ferromagnetic materials, and other magnetic sources. Future work could develop models
that account for this flexibility.

The numerical derivative calculations discussed in Section 4.5.1 also leave room for improvement.
More advanced differentiation methods could be tested to help reduce the noise amplification that
comes with numerical differentiation. Furthermore, the uniform 20 Hz resampling described in Section
3.2.2 may not be the best choice for all inputs, especially high-frequency inputs. Perhaps there is a
method better suited for those inputs.

The fact that ETLNN models perform better on VMR data than on OPM data, possibly because of the
restricted 0.02—-2 Hz prediction band, suggests that frequency-domain methods could be useful. Future
work could look at splitting magnetic signals into different frequency bands and training separate models
for each. Modelling by frequency band may capture different levels of complexity across ranges and
improve performance compared with traditional models.

Finally, the pre-training experiments described in Section 4.6.3 showed that creating models that gen-
eralise across flights remains difficult. Future work could explore transfer learning to capture flight-
specific differences while keeping some generality. Possible solutions include hierarchical models with
both common and flight-specific components, or online adaptation methods that adjust quickly to new
conditions while making use of knowledge from earlier flights.

5.3. Conclusion

This research demonstrated that MLP models in combination with linear ETL models can effectively
compensate for aeromagnetic platform noise in the absence of reference magnetometers. The ETLNN
approach yielded approximately 2 times the improvement of standard Tolles-Lawson methods.

SHAP-based feature analysis provided interpretable insights into platform dynamics, highlighting the
influence of engine-related parameters, inertial measurements, and attitude data.

However, the lack of validation on magnetic anomaly data remains the main limitation. While the
reference-free validation confirmed noise reduction, it did not confirm the preservation of true geological
signals.

Overall, the combination of hierarchical modelling and interpretable feature selection provides a useful
approach for future development. With appropriate anomaly validation, these methods can improve
magnetic-aided navigation in reference-free situations.
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[Low-Pass Filter Effect of Altitude

Crustal magnetic anomalies, measured by airborne magnetometers, become progressively smoother
and more uniform as altitude increases. This behavior can be understood by examining upward con-
tinuation in the spatial frequency domain. According to [35], the Fourier transform of the magnetic field
at an elevated plane z + Az is given by

]:[szLAz} :]:[Bz] ]:[’(/}]7

where the upward continuation operator is defined as

Fly] = e 22K with |k| = /k2 + k2,

where k is the wavenumber of the magnetic anomaly [9].

This exponential decay term shows that components with large wavenumbers, corresponding to small-
scale, high-frequency variations in the magnetic field, are rapidly attenuated with height. As a result,
the signal at higher altitudes is dominated by low-wavenumber components, leading to a smoother,
more slowly varying magnetic field. This low-pass filtering effect of upward continuation is useful for
noise compensation when trying to isolate the platform noise during calibration.
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Figure B.1: List of drone inputs available for model input. A description of each input can be found in [54].
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Relative Error Derivation

Let the Earth magnetic field vector be

B, . _ cos
B. = { 0 } , and the platform noise vector be B, = B.b {sin 6} ,
where b = ng” is the relative magnitude, and ¢ is the angle between B, and the z-axis.

The total field vector is then:

B,=B.+B, =8, [1—|—bcos9] .

bsin 6

The magnitude of B, is:

|B¢|| = Ben/(1+ bcos0)2 + (bsin )2 = Bey/1 + 2bcos 6 + b2.

The projection of B, onto B; is:

B;Bt = B?b[cos O(1 + bcos 0) + sin O(bsin 0)] = B>b(cos 0 + b).

The estimated magnitude of || B.|| is:

~ B'B b 0+b
Be:||Bt||_ﬁ:Be <\/1+2bcos6‘+b2— 1J£c;)bs +6)+b2>.
t V cos

The relative error is defined as:
€ _ ’Be - Be
B.  B.

= 11—

B.
67(97b)— ? .

e

Substituting in the expression for B., we get:

1-— [\/1+2bc059+b2— blcos6 +b) ]
V1 +2bcos + b2

67«(0, b) =

Finally, simplifying:

beosf + b
er(ﬁ,b)’1+ cosv+ — /17 2bcosl + b2
V14 2bcosf + b2

This function is shown in Figure C.1. In this figure, there is a peculiar jump from at relative magnitude
equal to 1 and angle equal to 180 i.e. 7 rad.
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Relative Error vs. Relative Magnitude and Angle
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Figure C.1: Relative error surface e, (0, b) plotted as a function of perturbation direction 6 and relative magnitude b = B}, /Be.

Special Case: 0 = 7

At 6 = 7, we have cos§ = —1. The expression inside the square root becomes:

V1+2bcosf+b2 =1 -2b+02=/(1-b)2=|1-1.

The numerator of the second term becomes

beos® +b* = —b+b* = b(b—1).

Substitute into the expression for ¢,

b(b— 1)
=0

e(m,b) =1+ — |1 —b].

Now, consider the three cases:

Casel: b <1
Then|l—b|=1—-band b(b—1) = —b(1 —b), so:

e(mb)=1-b—(1-5)=0.
Case2:b=1
Then |1 —b|=0and b(b—1) =0, so:

0
er(n,1)=1+6—0.

This expression is indeterminate, but taking the limit as b — 1 yields
%gni e-(m,b) = 1.

Case3:b>1

Then |1 —b| = b—1 and b(b — 1) remains positive,

b(b—1)
b—1

e(m,b) =1+

—(b-1)=(1+b—(b—1))=2.
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Thus, the relative error at 8 = 7 evaluates to

0 ifb<1
e(mb)=<¢1 ifo=1
2 ifb>1

Small-0 Approximation and Upper Bound of the Relative Error

When the relative magnitude b = ||B,||/||B.|| is small (i.e., b <« 1), the relative error can be approxi-
mated by expanding the expression

bcos b + b?
e-(0,b) = (1 + cost+ — v 1+4+2bcos + b2)
V14 2bcosf + b2

using a second-order Taylor expansion of the square root,

1
V1+2bcosO +b2~14bcosl + §bQSiH29.

Substituting this into the original expression yields the approximation:

€r(0,b) = L2 gin2p.
2

This indicates that, for small b, the relative error increases quadratically with b, and reaches its maximum
when B, is perpendicular to B, (i.e., § = 7/2 or 3w/2). The error vanishes when the vectors are aligned
or anti-aligned (i.e., § = 0 or ).

In the worst-case scenario where 6§ = /2, we obtain a simple upper bound,
b2
€ ~2 ‘1—\/1—&—()2‘ %57
so that
2

qg% forb <« 1

and the absolute error is

B 2
GSH ol forb < 1.



Extended Results

Here are results from all ETLNN models that were trained using different feature sets. This includes
standard deviations (std), improvement ratios (IR) and overfit ratios (OR). Tables D.1 to D.8 are based
on OPM data. Tables D.9 to D.16 are based on VMR data.

Table D.1: Standard deviations and Improvement Ratios for ETL + NN compensation.

std uncomp std comp std uncomp std comp

Man.# Cal.# “\usmm  LHsm] 'RYHS Ruspm  RHs[nmp 'RRHS
2 1 37.96 5.54 6.85 31.52 4.63 6.80
6 5 43.15 4.54 9.51 - - -
8 7 35.32 3.53 10.00 - - -
1C 1 33.95 4.63 7.34 23.38 2.32 10.07
6C 5 45.94 3.61 12.72 - - -
8C 7 30.76 4.52 6.81 - - -

Mean 37.85 4.39 8.87 27.45 3.48 8.44

Table D.2: Ratio of training to test set standard deviations for ETLNN compensation using FSO (all features).

Train Test

ORLHS ORRHS

Man. 1 Man. 2 1.34
Man. 5 Man. 6 1.31
Man.7 Man. 8 1.32

1.40
1.34

Table D.3: Standard deviations and Improvement Ratios for ETLNN, FS1 compensation.

std uncomp std comp std uncomp std comp

Man.# Cal.# i nusmm  LHsmm) 'R'MS  RHspm  RHsm 'RRHS
2 1 37.96 5.62 6.75 31.52 4.98 6.33
6 5 43.15 4.10 10.52 - - -
8 7 35.32 3.82 9.25 - - -
1C 1 33.95 5.20 6.53 23.38 2.84 8.23
6C 5 45.94 3.28 13.99 - - -
8C 7 30.76 4.80 6.41 - - -

Mean 37.85 4.47 8.91 27.45 3.91 7.28
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Table D.4: Ratio of training to test set standard deviations for ETLNN compensation using FS1 (no derivative features).

Train Test ORLHS ORRHS

Man. 1 Man. 2 1.35 1.75
Man. 5 Man. 6 1.29 1.25
Man. 7 Man. 8 1.35 1.27

Table D.5: Standard deviations and Improvement Ratios for ETLNN compensation with FStop50 features.

std uncomp std comp std uncomp std comp

Man.# Cal.# =\ pysit]  LHs[1] 'RUMS Rusn1p  RHs[p1p 'RRHS
2 1 37.96 5.40 7.04 31.52 5.19 6.07
6 5 43.15 4.32 9.99 ; ] ]
8 7 35.32 3.51 10.06 - ; -
1C 1 33.95 5.18 6.55 23.38 2.80 8.34
6C 5 45.94 3.43 13.39 ; ] ]
8C 7 30.76 4.59 6.70 - ; -
Mean 37.85 4.41 8.95 27.45 4.00 7.21

Table D.6: Ratio of training to test set standard deviations for ETLNN compensation using FStop50.

Train Test ORLHS ORRHS

Man. 1 Man. 2 1.24 1.67
Man. 5 Man. 6 1.23 1.18
Man. 7 Man. 8 1.20 1.25

Table D.7: Standard deviations and Improvement Ratios for ETLNN compensation with FStop10 features.

std uncomp std comp std uncomp std comp

Man.# Cal.# "\ usmm LHsm] 'RUYHS Ruspm  RHs[nm 'RRHS
2 1 37.96 6.21 6.12 31.52 7.43 4.24
6 5 4315 5.01 8.61 - - -
8 7 35.32 4.57 7.73 - ; -
1C 1 33.95 4.84 7.02 23.38 3.67 6.37
6C 5 45.94 4.08 11.25 - - -
8C 7 30.76 5.52 5.57 - ; -
Mean 37.85 5.04 7.72 27.45 5.55 5.31

Table D.8: Ratio of training to test set standard deviations for ETLNN compensation using FStop10.

Train Test ORLHS ORRHS

Man. 1 Man. 2 1.24 1.55
Man. 5 Man. 6 1.20 1.20
Man.7 Man. 8 1.25 1.22

Table D.9: Standard deviations and Improvement Ratios for ETLNN compensation of VMR signal with FSO features.

std uncomp std comp std uncomp std comp

Man.# Cal.# =\ ysit]  LHs[1] 'RUMS Rusn1p  RHs[p1p 'RRHS
2 1 296.87 15.33 19.37 200.46 10.62 18.87
6 5 247 87 10.47 23.67 ] ] ]

8 7 231.68 8.50 27.25 - ; -
1C 1 264.43 8.48 31.18 160.09 6.98 22.95
6C 5 248.85 19.67 12.65 i ] ;
8C 7 222 .24 11.58 19.18 - ; -

Mean 251.99 12.34 22.22 180.28 8.80 20.91
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Table D.10: Ratio of training to test set standard deviations for ETLNN compensation using FSO (all features).

Train Test ORLHS ORRHS

Man. 1 Man. 2 2.94 2.31
Man. 5 Man. 6 2.47 2.36
Man. 7 Man. 8 2.04 1.91

Table D.11: Standard deviations and Improvement Ratios for ETLNN compensation of VMR signal with FS1 features.

std uncomp std comp std uncomp std comp

Man.# Cal.# =\ pysit]  LHs[1] 'RUMS Rusn1p  RHs[p1p 'RRHS
2 1 296.87 15.73 18.88 200.46 10.77 18.62
6 5 247 87 10.43 23.77 ] ] ]
8 7 231.68 8.37 27.67 - ; -
1C 1 264.43 8.36 31.63 160.09 7.45 21.49
6C 5 248.85 18.94 13.14 ] ; ]
8C 7 222.24 10.91 20.37 - ; ;
Mean 251.99 12.12 2258 180.28 9.1 20.05

Table D.12: Ratio of training to test set standard deviations for ETLNN compensation using FS1 (no derivative features).

Train Test ORLHS ORRHS

Man. 1 Man. 2 2.56 1.92
Man. 5 Man. 6 2.23 2.29
Man. 7 Man. 8 2.02 1.90

Table D.13: Standard deviations and Improvement Ratios for ETLNN compensation of VMR signal with FStop50 features.

std uncomp std comp std uncomp std comp

Man.# Cal.# "\ usmm LHsm] 'RUYHS Ruspm  RHs[nm 'RRHS
2 1 296.87 15.61 19.01 200.46 10.89 18.40
6 5 247.87 10.93 22.68 - - -
8 7 231.68 7.99 28.98 - ; -
1C 1 264.43 9.09 29.10 160.09 7.48 21.41
6C 5 248.85 19.49 12.77 - - -
8C 7 222.24 10.79 20.59 - ; -
Mean 251.99 12.32 22.19 180.28 9.19 19.91

Table D.14: Ratio of training to test set standard deviations for ETLNN compensation using FStop50.

Train Test ORLHS ORRHS

Man. 1 Man. 2 2.12 1.87
Man. 5 Man. 6 2.15 2.22
Man.7 Man. 8 1.73 1.66

Table D.15: Standard deviations and Improvement Ratios for ETLNN compensation of VMR signal with FStop10 features.

std uncomp std comp std uncomp std comp

Man.# Cal.# =\ ysit]  LHs[1] 'RUMS Rusn1p  RHs[p1p 'RRHS
2 1 296.87 16.47 18.03 200.46 10.83 18.51
6 5 247 87 10.86 22.83 ] ] ]

8 7 231.68 8.40 27.59 - ; -
1C 1 264.43 0.81 26.96 160.09 7.06 22.69
6C 5 248.85 18.32 13.58 i ] ;
8C 7 222 .24 9.67 22.99 - ; -

Mean 251.99 12.25 22.00 180.28 8.94 20.60




67

Table D.16: Ratio of training to test set standard deviations for ETLNN compensation using FStop10.

Train Test ORLHS ORRHS
Man. 1 Man. 2 1.81 1.50
Man. 5 Man. 6 1.87 1.81
Man. 7 Man. 8 1.30 1.30
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