
Computational fluid-structure interaction

Spatial coupling, coupling shell and mesh deformation

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 22 december 2008 om 15:00 uur

door

Augustina DE BOER

ingenieur toegepaste wiskunde
geboren te Allingawier

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. drs. H. Bijl
Prof. dr. D. J. Rixen

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter
Prof. dr. ir. drs. H. Bijl, Technische Universiteit Delft, promotor
Prof. dr. D. J. Rixen, Technische Universiteit Delft, promotor
Prof. dr. C. Allen, University of Bristol
Prof. dr. ir. M. J. L. van Tooren, Technische Universiteit Delft
Prof. dr. J. Vierendeels, Universiteit Gent
Prof. dr. ir. C. Vuik, Technische Universiteit Delft
Prof. dr. H. Wendland, University of Sussex

Copyright c©2008 by A. de Boer

All rights reserved. No part of this material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any other information storage and retrieval
system, without written permission from the copyright owner.

Summary

Computers and numerical algorithms have significantly advanced the last decade,
such that the simulation of problems involving more than one discipline has become
feasible. Future computational research is therefore expected to increasingly be mul-
tidisciplinary. In this thesis we mainly consider the multidisciplinary field known as
fluid-structure interaction. This field concerns the interaction between a flow and a
deformable structure and combines the two monodisciplinary fields Computational
Fluid Dynamics and Computational Structure Dynamics. The focus will be on trans-
fer algorithms for the spatial coupling, a separate coupling shell that handles the data
transfer between two solvers and a new mesh deformation scheme based on radial
basis function interpolation.

For the simulation of multidisciplinary problems it is possible to reuse proven
monodisciplinary solvers, that have been developed and tuned for tens of years. In
this case each physical system is solved individually and interaction effects are treated
as external conditions. To be able to transfer information between two solvers, gen-
erally a transfer algorithm is needed to deal with the incompatible meshes at the
interface. In fluid-structure interaction computations this transfer algorithm can ei-
ther use a conservative or consistent approach. When the transfer method is based on
a weighted residual formulation of the coupling conditions, the highest accuracy and
efficiency are obtained with the conservative approach. For other transfer methods the
conservative approach results in large unphysical oscillations in the pressure received
by the structure. When the structure is flexible enough these oscillations can result in
deviations in the displacement of the flow interface. For these methods the consistent
approach provides the best accuracy and efficiency.

During a multidisciplinary computation, two or more monodisciplinary solver pro-
grams have to share information about data at their common interface and the exe-
cution of the solvers has to be synchronized. The coordination of the different solvers
is commonly handled by a coupling shell, where the majority of coupling shells used
today are embedded subprograms that have been developed for coupling two specific
solvers. This makes it hard, if not impossible, to replace one solver by another. Also,
numerical techniques developed to accurately and efficiently handle the information
transfer between the solvers cannot be easily reused. Therefore, Flecs, a generic,
flexible coupling shell designed for implementing and applying an interface for mul-
tidisciplinary simulations is developed. The aim of Flecs is to provide a flexible
platform for developing new data transfer algorithms and coupling schemes to be

ii

able to perform large multidisciplinary computations. The design of Flecs is based
on a client-server model in which two solvers communicate with a separate program
called the coupling server that is responsible for transferring data from one physi-
cal domain to another. This design is minimally intrusive in the sense that there is
no need to change the structure of the solver programs, only some subroutine calls
have to be made. In order to make Flecs suitable for large applications, it supports
solvers that run on parallel computers. In particular, Flecs can deal with data sets
that have been distributed over multiple parallel processes and supports the imple-
mentation of parallel data transfer algorithms. Numerical acceleration techniques can
be implemented as subroutines within the coupling server without having to change
the separate solvers involved. This means that these acceleration techniques can be
reused when one or more different solvers are coupled.

In fluid-structure interaction computations the computational flow mesh has to
follow the movement of the deforming domain. For the interpolation of the displace-
ment of the boundary nodes of the mesh to the inner domain radial basis functions can
be used. This results in a new point-by-point mesh deformation scheme. The method
can handle large deformations caused by translation, rotation and deformation of a
structure for both 2D and 3D meshes. In a first comparison the new method produces
meshes of higher quality than the popular semi-torsional spring analogy for very large
deformations. The new method also preserves the performance of higher order time
integration methods, due to its smooth deformation in time. However, further inves-
tigation is needed to improve the efficiency of solving the ill-conditioned full matrix
system and to speed up the many evaluations of the interpolation function.

An FSI computation of flow around a cylinder with deformable flap is performed
to investigate the performance of four transfer algorithms in a 2D setting and the use
of Flecs and the new mesh deformation method in a real application. It is shown
that when Flecs is used, only a few subroutine calls have to be added to the flow
and structure solver. With the new deformation method the mesh quality remains
high throughout the computation. Even as the mesh deformation is performed by
solving the system and evaluating the interpolation with direct methods, the time
needed for the mesh deformation is less than 10% of the time needed for the flow
solve. The results for the non-matching case are compared with a reference solution
obtained with matching meshes. Overall we conclude that transferring pressure with
simple nearest neighbour interpolation and displacement with consistent radial basis
function interpolation gives the best results for this test case.

Samenvatting

Computers en numerieke algoritmen zijn significant verbeterd in het laatste decen-
nium, zodanig dat het mogelijk is geworden om problemen te simuleren waarbij meer
dan één discipline betrokken is. Het wordt dan ook verwacht dat toekomstig onder-
zoek steeds vaker multidisciplinair zal zijn. In dit proefschrift beschouwen we vooral
het multidisciplinaire onderzoeksgebied dat bekend staat als vloeistof-vaste stof inter-
actie. Dit betreft de interactie tussen een stroming en een vervormbare structuur en
combineert de twee monodisciplinaire onderzoeksgebieden Numerieke stromingsleer
en Numerieke structuurdynamica. De aandacht richt zich vooral op overdrachtsal-
goritmen voor de ruimtelijke koppeling, een aparte koppelingsinterface die de over-
dracht van data tussen twee rekenprogramma’s afhandelt en een nieuw roosterdefor-
matie algoritme gebaseerd op interpolatie door middel van radiale basis functies. Om
multidisciplinaire problemen te simuleren is het mogelijk om bestaande monodisci-
plinaire rekenprogramma’s her te gebruiken, die in de afgelopen tientallen jaren zijn
ontwikkeld en afgeregeld. In dit geval wordt elk fysisch systeem individueel opgelost
en worden interactie effecten als externe condities behandeld. Om informatie tussen
twee rekenprogramma’s te kunnen overbrengen is er in het algemeen een overdracht-
salgoritme nodig om met niet-aansluitende roosters om te kunnen gaan. In vloeistof-
vaste stof interactie berekeningen kan dit overdrachtsalgoritme of een conservatieve
of een consistente benaderingswijze gebruiken. Wanneer het overdrachtsalgoritme is
gebaseerd op een gewogen residu formulering van de koppelingscondities wordt de
hoogste nauwkeurigheid en efficiëntie behaald met de conservatieve benaderingswi-
jze. Voor andere overdrachtsalgoritmen resulteert de conservatieve benaderingswijze
in grote niet-fysische oscillaties in de druk die ontvangen wordt door de structuur.
Wanneer de structuur flexibel genoeg is kunnen deze oscillaties afwijkingen in de ver-
plaatsing van de interface van de stroming veroorzaken. Voor deze methoden geeft de
consistente benaderingswijze de beste nauwkeurigheid en efficiëntie.

Gedurende een multidisciplinaire berekening moeten twee of meer monodisci-
plinaire rekenprogramma’s informatie delen over data op hun gezamenlijke interface
en de uitvoering van de twee rekenprogramma’s moet worden gesynchroniseerd. De
cordinatie van de verschillende rekenprogramma’s wordt meestal afgehandeld door
een koppelingsinterface, waarbij de meerderheid van de koppelingsinterfaces die van-
daag de dag worden gebruikt ingebouwde subprogramma’s zijn die ontwikkeld zijn
voor de koppeling van twee specifieke rekenprogramma’s. Dit maakt het moeilijk,
zo niet onmogelijk, om het ene rekenprogramma te vervangen door een andere. Ook

iv

kunnen numerieke technieken die zijn ontwikkeld om nauwkeurig en efficiënt de infor-
matieoverdracht tussen de rekenprogramma’s af te handelen niet makkelijk worden
hergebruikt. Daarom is Flecs ontwikkeld, een generieke, flexibele koppelingsinter-
face, ontworpen om een interface voor multidisciplinaire simulaties te kunnen im-
plementeren en toepassen. Het doel van Flecs is om een flexibel platform te lev-
eren voor het ontwikkelen van nieuwe algoritmen voor dataoverdracht en koppelingss-
chema’s, om grote multidisciplinaire berekeningen uit te kunnen voeren. Het ontwerp
van Flecs is gebaseerd op een client-server model waarin twee rekenprogramma’s met
een apart programma, de koppelingsserver, communiceren. Deze koppelingsserver is
verantwoordelijk voor het overbrengen van data van het ene fysische domein naar
het andere. Dit ontwerp is minimaal ingrijpend wat betekent dat de structuur van de
rekenprogramma’s niet hoeft worden aangepast, alleen een paar subroutines moeten
worden aangeroepen. Om Flecs geschikt te maken voor grote toepassingen, onders-
teunt het rekenprogramma’s die op parallelle computers rekenen. In het bijzonder kan
Flecs omgaan met data die gedistribueerd is over meerdere parallelle processen en
ondersteunt het de toepassing van parallelle dataoverdracht algoritmen. Numerieke
versnellingstechnieken kunnen worden ingebouwd als subroutines binnen de koppel-
ingsserver, zonder de betrokken rekenprogramma’s aan te hoeven passen. Dit betekent
dat deze versnellingstechnieken kunnen worden hergebruikt wanneer één of meer an-
dere rekenprogramma’s worden gekoppeld.

In vloeistof-vaste stof interactie berekeningen moet het rekenrooster van de vloeistof
de beweging volgen van het vervormende domein. Om de verplaatsingen van de rand-
punten van het rooster naar het binnendomein van het rooster te interpoleren kunnen
radiale basis functies worden gebruikt. Dit resulteert in een nieuw punt-bij-punt roos-
terdeformatie schema. Deze methode kan grote deformaties aan veroorzaakt door
translatie, rotatie en vervorming van een structuur voor zowel 2D als 3D roosters. In
een eerste vergelijking genereert de nieuwe methode, voor hele grote vervormingen,
roosters van een hogere kwaliteit dan de populaire semi-torsional spring analogie. De
nieuwe methode behoudt ook de orde van hogere orde tijdsintegratiemethoden door-
dat de vervorming glad in de tijd verloopt. Er is echter verder onderzoek nodig om
de efficiëntie te verbeteren van het oplossen van het slecht geconditioneerde matrix
systeem en om de vele evaluaties van de interpolatie functie te versnellen.

Een vloeistof-vaste stof berekening van een stroming rond een cilinder met ver-
vormbare flap is uitgevoerd om de vier overdrachtsalgoritmen en het gebruik van
Flecs en de nieuwe roosterdeformatie methode te onderzoeken in een echte 2D
toepassing. Door het gebruik van Flecs hoeven er maar een paar subroutine aan-
roepen aan de rekenprogramma’s te worden toegevoegd. Met de nieuwe roosterde-
formatie methode blijft de kwaliteit van het rooster hoog gedurende de berekening.
De tijd die nodig is voor de roosterdeformatie is minder dan 10% van de tijd nodig
voor de stroming, zelfs al wordt de roosterdeformatie uitgevoerd door het systeem op
te lossen en te evalueren met directe methoden. De resultaten voor niet-aansluitende
roosters worden vergeleken met een referentieoplossing verkregen met aansluitende
roosters. In het algemeen kunnen we concluderen dat het overdragen van de druk
met simpele nearest-neighbour interpolatie en de verplaatsing met consistente radiale
basis functie interpolatie de beste resultaten geeft voor dit probleem.

Contents

Summary i

Samenvatting iii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Objectives and outline . 6

2 Conservative and consistent approaches for the coupling of non-
matching meshes 9
2.1 Conservative and consistent coupling approach 10
2.2 Transfer methods . 13

2.2.1 Nearest neighbour interpolation 13
2.2.2 Weighted residual method . 14
2.2.3 Radial basis function interpolation (RBFI) 18
2.2.4 Summary . 22

2.3 Analytical test problems . 22
2.3.1 Transferring a smooth field . 23
2.3.2 Transferring a non-smooth field 27
2.3.3 Conclusions . 30

2.4 Quasi-1D FSI problem . 31
2.4.1 Flow equations . 31
2.4.2 Structure equations . 31
2.4.3 Coupling procedure . 32
2.4.4 Results . 32
2.4.5 Conclusions . 36

2.5 Conclusions . 36

3 FLECS: a flexible coupling shell 39
3.1 Design Overview . 41
3.2 The Client Library and its Usage . 43

3.2.1 Implementation example . 47
3.3 The Coupling Server . 49

vi CONTENTS

3.3.1 The Server Program . 51
3.3.2 The transfer algorithm . 53
3.3.3 Acceleration techniques . 54

4 Mesh movement based on radial basis function interpolation 55
4.1 Radial basis function interpolation . 57
4.2 Mesh quality metrics . 60
4.3 2D mesh movement . 61

4.3.1 Test case 1: Rotation and translation 62
4.3.2 Test case 2: Rigid body Rotation 64
4.3.3 Test case 3: Airfoil flap . 66
4.3.4 Efficiency . 67
4.3.5 Flow around airfoil . 69

4.4 Including rotations . 70
4.4.1 Derivatives of RBFs . 72
4.4.2 Results . 72

4.5 Importance of smooth mesh deformation for higher order time-integration 74
4.6 3D mesh deformation . 76

4.6.1 Rotation and translation of 3D block 76
4.6.2 Flutter of the AGARD 445.6 wing 77

4.7 Improving efficiency . 78
4.8 Conclusions . 82

5 Fluid-Structure interaction between laminar flow and a deformable
flap 85
5.1 Problem statement . 86

5.1.1 Flow model . 86
5.1.2 Structure model . 87
5.1.3 Time integration and partitioning scheme 87
5.1.4 Coupling shell and transfer algorithms 87
5.1.5 Domain and mesh definition . 88
5.1.6 Boundary and initial conditions 90

5.2 Numerical results . 90
5.2.1 Matching meshes . 91
5.2.2 Non-matching meshes . 93
5.2.3 Mesh deformation . 97

5.3 Conclusions . 98

6 Conclusions 101

7 Recommendations 105

Bibliography 115

Appendix A 117

CONTENTS vii

Acknowledgments 121

Curriculum Vitae 123

viii CONTENTS

Chapter 1

Introduction

1.1 Motivation

A current trend in innovative engineering applications is that structures become
lighter, more flexible and interact with multiple physical fields. Examples can be
found in wind turbines, micro-systems, satellites, aircraft and cars. As a consequence
they are more prone to potentially dangerous oscillations resulting from different kinds
of excitations. In addition, new technologies emerge where complex interactions be-
tween different components are at the core of their functionality. An example is smart,
flexible, materials which in the future might be applied for load reduction on wind
turbine blades, or noise reduction in cars [53, 77, 106]. Another important field is
applications in bio-engineering [5, 15, 54, 117, 112]. For these new designs simulation
is an important tool to explore the interaction phenomena. As a result a growing
number of breakthroughs of the near future require interdisciplinary simulation tools
that can deal with complex multiple physical models and with very different scales.

Computers and numerical algorithms have significantly advanced the last decade,
such that the simulation of problems involving more than one discipline has become
feasible. Future computational research is therefore expected to increasingly be multi-
disciplinary, combining existing insights from different areas. However, as simulating
each of the problems separate usually is already demanding (tens of millions of un-
knowns for computations of flow around aircraft is common practice), solution of
the dynamic interaction will require enormous computational times. Computational
efficiency is therefore of the uttermost importance.

For the simulation of multidisciplinary problems it is possible to reuse proven
monodisciplinary solvers, that have been developed and tuned for tens of years. In
this case each physical system is solved individually and interaction effects are treated
as external conditions. This means that the monodisciplinary solver programs have
to share information about data at their common interface and the execution of the
solvers has to be synchronized. The coordination of the different solvers is commonly
handled by a coupling shell, where the majority of coupling shells used today are
embedded subprograms that have been developed for coupling two specific solvers

2 INTRODUCTION

[38, 51, 102, 104, 112]. This makes it hard, if not impossible, to replace one solver
by another. Also, numerical techniques developed to accurately and efficiently handle
the information transfer between the solvers cannot easily be reused. Therefore, one
of the aims of this thesis is to develop a generic, flexible coupling shell suitable to
couple different parallel solvers.

One of the oldest and most popular multidisciplinary fields investigated is fluid-
structure interaction (FSI). This field concerns the interaction between a flow and
a deformable structure and combines the two monodisciplinary fields Computational
Fluid Dynamics (CFD) and Computational Structure Dynamics (CSD) and will be
the main research field considered in this thesis. Two of the main interest areas in fluid-
structure interaction research are aeronautical [46, 47, 38, 55, 93] and biomechanical
applications [5, 15, 54, 117, 112], but there are also other examples like parachute
dynamics [99, 104], airbag deployment [86] and industrial applications [2, 36, 90, 107].
In FSI computations not only the two fields have to be coupled, but the flow solver
also has to adapt its mesh to the deforming domain caused by the deformation of
the structure. When the structure is flexible enough, these deformations can become
very large. This provides the motivation for another branch of research in this thesis,
to develop a new automatic mesh-movement technique that can deal with very large
deformations.

1.2 Background

In this section we address several of the main research topics for multidisciplinary
computations, and fluid-structure interaction in particular. They concern partitioned
coupling techniques, data transfer between non-matching meshes, the use of a generic
coupling shell and mesh deformation techniques which are needed when an Arbitrary-
Lagrangian formulation is used for the flow discretization.

Partitioned coupling

There are two ways to numerically solve interdisciplinary problems. The first is to
develop a new dedicated solver that solves the whole system at once, the so-called
monolithic approach. Major advantage is that the solver can be optimized for the
specific problem. However, for each different problem an entirely new solver has to
be developed and therefore only a few papers have appeared on monolithic solution
techniques [21, 62, 88].

The other possibility is to reuse proven monodisciplinary solvers, that have been
developed and tuned for tens of years. In this case each physical system is solved
individually and interaction effects are treated as external conditions. This is called
the partitioned approach. Major disadvantage of this approach is that the coupling
of two different solvers is not straightforward. Without much care the accuracy of the
coupled problem easily reduces to first-order in time [60], irrespective of the order of
the separate solvers. In addition, the partitioning process can lead to instabilities, such
that time step restrictions come from stability, rather than accuracy requirements.

1.2 Background 3

Basically two approaches can be found for the temporal coupling in partitioned
schemes: loosely coupled and strongly coupled algorithms. In loosely coupled schemes
the flow and structure are solved only once for each time step. This introduces a
partitioning error caused by the time lag between the two systems. This partitioning
error can lead to numerical instabilities, which can only be prevented by reducing the
time step. In literature many examples of efficient, loosely coupled algorithms can be
found, which are at most second order accurate in time [45, 47, 75, 93]. An exception
is the higher order IMEX scheme [121, 123], which can be designed for any order of
accuracy and is proven to work for up to fifth order of accuracy.

To reduce the partitioning error sub-iteration methods can be used. The flow
and structure are solved multiple times within one time step, leading to a strongly
coupled scheme. Strongly coupled schemes are generally more robust than loosely
coupled schemes, especially in problems where the structure is very flexible and/or
light compared to the surrounding flow. Therefore research is currently aimed at
limiting the number of sub-iterations using numerical acceleration techniques, such
as Aitken sub-iterations [67, 89], Newton-Krylov methods [87] and reduced order
methods [112]. The computational costs of a simple sub-iteration can be reduced by
multilevel techniques [124].

Non-matching meshes

In fluid structure interaction computations pressure loads have to be transmitted
from the fluid side of the fluid-structure interface to the structural nodes on that
interface. Also the fluid mesh points on the interface have to follow the deforming
structure. In fluid-structure interaction simulations the meshes at the fluid-structure
interface usually do not match due to the different mesh requirements for the flow and
structure. This means that there can be gaps and/or overlaps between the meshes.
The exchange of data over the discrete interface becomes then far from trivial and an
interpolation/projection step has to be carried out to enable transfer of information
between the two domains. In literature different methods can be found to transfer
data between non-matching meshes, such as nearest neighbour interpolation [108],
projection methods [37, 83, 85] and methods based on interpolation by splines [13,
100, 101].

The general opinion is that energy should be conserved over the interface. In [46]
a conservative transfer approach in space is introduced. This approach is based on the
global conservation of virtual work over the interface, where a transformation matrix
performs the transfer of displacements and the transposed of this matrix the transfer
of pressure loads between the two discrete interfaces. However, for a general transfer
method this can lead to unphysical oscillations in the pressure forces received by the
structure as is briefly mentioned by Ahrem et al [3].

Instead of using the same transformation matrix for both transferring the displace-
ment and pressure loads over the interface, two different transformation matrices can
be defined, which we will define as the consistent approach. This leads to a transfer
approach without unphysical oscillations in the pressure forces. However, conserva-
tion of energy over the interface is not guaranteed, which is generally already not the

4 INTRODUCTION

case when a partitioned coupling strategy is used. In this thesis we try to answer the
question wether conservation of energy over the interface or a consistent interpolation
is preferred.

Coupling shell

The reuse of existing solvers is one of the main benefits of the partitioned coupling
approach. Coordination of the different solvers is commonly handled by a coupling
shell. This can be a separate program, or a sub-program (a set of subroutines) em-
bedded in one of the solver programs, or a part of one large program that contains
the individual solvers as sub-programs. The coupling shell synchronizes the execution
of the solvers and handles the transfer of data from one physical domain to another.

The majority of coupling shells are embedded subprograms that have been devel-
oped for coupling two specific solvers [38, 51, 102, 104, 112], which makes it hard, if
not impossible, to replace one solver by another. One exception is the coupling library
MpCCI (Mesh based Parallel Code Coupling) [52, 56], a generic coupling shell that
can be used both as an embedded sub-program and as a separate program. MpCCI

is relatively easy to use and provides many advanced features. However, MpCCI only
contains a few simple transfer algorithms and no numerical acceleration techniques,
and since MpCCI is a commercial product, the source code is not accessible. This
means that MpCCI is not suitable for research on developing new data transfer al-
gorithms or acceleration techniques and a more generic coupling shell is needed.

A generic coupling shell should meet the following conditions:

• The software must be open source, such that everyone can make modifications and
extensions to the code.

• The coupling shell has to be minimally intrusive in the solvers. The main structure
of the solvers must remain the same and only a few subroutine calls have to be
added to the code on a high level.

• The coupling shell must be interoperable with different programming languages,
such as Fortran 90, C and C++.

• The information transfer has to be handled within a separate server program.

• The transfer algorithm must be based on a plug-in architecture, such that a new
transfer algorithm can be implemented without having to deal with the general
communication between the two solvers.

• The coupling shell must be able to deal with parallel solvers and parallel transfer
algorithms in order to perform large simulations.

• It must be possible to couple one solver to more than one other solver.

One advantage of a generic coupling shell is that numerical algorithms which are
implemented to efficiently couple two solvers, can be reused when using one or more
different solvers. The development of such a coupling shell would contribute to the
research possibilities on efficient coupling techniques. In Munich they already started
with the development of the open-source coupling shell FSIce [91], but there the focus

1.2 Background 5

lies on fast search algorithms for the coupling between Cartesian meshes. In this thesis
we introduce a flexible coupling shell which provides a platform for developing new
data transfer and coupling algorithms to be able to perform large multidisciplinary
computations and which satisfies the conditions given above.

Arbitrary Lagrangian-Eulerian formulation

The flow equations are generally discretized using the Eulerian description. In the
Eulerian description the meshes remain fixed in time and material is allowed to flow
through the mesh. This is in contrast to the Lagrangian description, where the mesh is
fixed to the material of interest and as the material deforms, the mesh deforms with it.
This description is generally used to discretize the structure equations. However, when
the flow domain moves or deforms in time due to a moving boundary caused by the
deformation of the structure, a fixed mesh becomes inconvenient, because it requires
the explicit tracking of the domain boundary. Therefore the Arbitrary Lagrangian-
Eulerian (ALE) formulation [41] is often used to discretize the flow equations on
moving meshes. In the ALE formulation the discretization is both Lagrangian and
Eulerian. Lagrangian, because it allows for a flexible mesh that follows the moving
boundaries, and Eulerian, since the flow quantities still flow through the mesh. The
ALE formulation has become standard for problems with a high Reynolds number on
moving domains in which the domain undergoes large deformations and distortions.

Mesh deformation

When an ALE formulation is used for the flow, the computational flow mesh has to
follow the movement of the deforming domain in time. Regenerating a mesh each time
step is a time-consuming and nontrivial task. Therefore, several algorithms have been
developed to update the mesh automatically. From the viewpoint of computational
efficiency, the mesh moving scheme should yield a good fluid mesh with the least
amount of computational expenses.

For structured meshes Transfinite Interpolation [103, 109, 113] is generally used
to update the mesh. The displacements of points at the boundaries of the mesh are
interpolated along grid lines to points in the interior of the mesh. However, this
technique is unsuitable for unstructured grids.

For unstructured grids two different mesh movement strategies are known: grid-
connectivity and point-by-point schemes. The first exploits the connectivity of the
internal grid points. The connection between the grid points is represented for example
by springs [6, 22, 39, 43, 119] or as solid body elasticity [65, 84, 105]. Special instances
of this continuous approach include moving grids based on Laplacian and Biharmonic
operators [64, 70]. In all the methods based on grid connectivity a (sparse) system of
equations has to be solved, involving all the flow points and can therefore be quite
expensive. Hanging nodes, encountered in unstructured meshes when only one of
the adjacent elements at an edge is subdevided, require special treatment. The grid-
connectivity methods perform very well for small deformations, but generally have
difficulties to maintain a high mesh quality when large deformations are involved.

6 INTRODUCTION

In point-by-point schemes each grid point is moved individually based on its po-
sition in space and no grid-connectivity information is needed. This can be a simple
master-slave coupling [61] or based on a volume spline interpolation [103]. However,
until now point-by-point schemes are only applied to the boundary nodes of multi-
grid blocks, the interior mesh of the blocks is adapted with fast techniques available
for structured grids.

Radial basis functions (RBFs) have become a well-established tool to interpolate
scattered data, because of their excellent approximation properties [33]. They have
been successfully applied to areas as diverse as computer graphics [34], geophysics [19,
18], error estimation [73] and the numerical solution of partial differential equations
[71, 72]. They can also be used in fluid-structure interaction computations to transfer
information over the discrete non-matching fluid-structure interface [13, 100, 101]. A
global interpolation function is used to interpolate the displacements known at the
boundary of the structural mesh to the boundary of the flow mesh. But why not
interpolate the displacement to all the nodes of the flow mesh, instead of only to the
boundary? This idea has already been applied to the block boundaries in multi-block
grids [94, 103]. There it was mentioned that applying it to the whole internal grid
would be computationally very expensive. This is because for the structured part of
multi-block meshes very efficient techniques are known and using RBF interpolation
requires to solve a dense system involving all the nodes on the boundary of the domain.
We therefore want to investigate in this thesis if it is worthwhile to use a point-by-
point scheme based on interpolating the displacement with radial basis functions to
deform totally unstructured meshes. This point-by-point mesh movement scheme has
to effectively be able to deal with large deformations.

1.3 Objectives and outline

The main objectives of this thesis are:

• To investigate the difference in accuracy and efficiency between conservative and
consistent approaches for the transfer of data between non-matching meshes.

• To design a flexible coupling shell for implementing and applying an interface for
multidisciplinary simulations, which satisfies the conditions given in Section 1.2.

• To develop a new point-by-point mesh deformation algorithm based on interpolating
the displacements of the moving boundary to the whole mesh using radial basis
functions.

• To perform a real fluid-structure interaction computation in which the three previ-
ous points are combined.

In order to meet these objectives the contents of this thesis are organized as follows.
In Chapter 2 we investigate the difference in accuracy and efficiency between

conservative and consistent approaches for the transfer of data between non-matching
meshes. This is done for an analytical test problem as well as a steady quasi-1D FSI
problem, for different transfer algorithms found in literature.

1.3 Objectives and outline 7

Flecs, a flexible coupling shell, designed for implementing and applying an inter-
face for multidisciplinary simulations is introduced in Chapter 3. The aim of Flecs

is to provide a flexible platform for developing new data transfer algorithms and cou-
pling schemes to be able to perform large multidisciplinary computations. The design
of Flecs is based on a client-server model in which two solvers communicate with a
separate program called the coupling server that is responsible for transferring data
from one physical domain to another. This design is minimally intrusive in the sense
that there is no need to change the structure of the solver programs, only some sub-
routine calls have to be made. In order to make Flecs suitable for large applications,
it supports solvers that run on parallel computers.

In Chapter 4 a new mesh movement algorithm for unstructured grids is devel-
oped which is based on interpolating displacements of the boundary nodes to the
whole mesh with radial basis functions (RBFs). The method is tested for large mesh
deformations caused by translations, rotations and deformations, for various RBFs
found in literature. These tests are preformed both on 2D and 3D meshes. Also the
effect of mesh deformation on the performance of higher order time integration meth-
ods and different techniques to improve the overall efficiency of the computation are
investigated.

The findings of Chapters 2 till 4 are incorporated to perform a real 2D FSI compu-
tation in Chapter 5. The flow and structure solver, which are separate solver programs,
are coupled with Flecs, and the flow mesh is repeatedly adapted to the deforming
flow domain with the new mesh movement method based on radial basis function
interpolation. For the FSI problem we use the numerical benchmark problem FSI3
of 2D flow around a cylinder with deformable flap described in [110]. In the numerical
experiments we investigate four transfer algorithms that can deal with data transfer
over non-matching interfaces. These four transfer algorithms are implemented within
a separate Flecs server program that handles the coordination of the two solvers.
The results for the non-matching case are compared with a reference solution obtained
with matching meshes.

Chapters 6 and 7 contain concluding remarks and suggestions for future research,
respectively. Parts of Chapters 2 to 4 have been published before. Their content is
based on the following journal publications [27, 29, 32, 123] and conference proceedings
[23, 24, 25, 26, 28, 30, 31, 92].

8 INTRODUCTION

Chapter 2

Conservative and consistent
approaches for the coupling of
non-matching meshes

Interface

Structure

Overlap Gap

Fluid

Fig. 2.1: Non-matching meshes
in 2D.

In FSI simulations it is usually not desirable to gen-
erate matching meshes at the fluid-structure interface,
because different solvers may take care of the differ-
ent physical domains. In addition, also the flow gen-
erally requires a much finer mesh than the structure.
This means that the discrete interface between the do-
mains may not only be non-conforming, but there can
also be gaps and/or overlaps between the meshes. The
exchange of data over the discrete interface becomes
then far from trivial. In Figure 2.1 a 2D example of
a non-matching discrete interface between a flow and
structure domain is shown. When the meshes are non-
matching, an interpolation/projection step has to be
carried out to enable transfer of information between
the two domains. In literature different methods can be found to transfer data be-
tween non-matching meshes, such as nearest neighbour interpolation [108], projection
methods [37, 83, 85] and methods based on interpolation by splines [13, 100, 101].

The general opinion is that energy should be conserved over the interface. The
overall conservation properties depend both on the time and the spatial coupling used,
which cannot be investigated separately if the system is solved in a partitioned way.
In this chapter we focus only on the spatial coupling. In [46] a conservative transfer
approach in space is introduced. This approach is based on the global conservation of
virtual work over the interface, where a transformation matrix performs the transfer
of displacements and the transposed of this matrix the transfer of pressure loads
between the two discrete interfaces. However, for a general transfer method this can

10 COUPLING OF NON-MATCHING MESHES

lead to unphysical oscillations in the pressure forces received by the structure as is
briefly mentioned by Ahrem et al [3]. Especially for flexible structures this can have
a large negative influence on the accuracy of the solution.

Instead of using the same transformation matrix for both transferring the displace-
ment and pressure loads over the interface, two different transformation matrices can
be defined, which we will define as the consistent approach. This leads to a transfer
approach without unphysical oscillations in the pressure forces. However, conservation
of energy over the interface is not guaranteed. When a partitioned coupling technique
is used to advance in time this does not have to be a problem. In unsteady parti-
tioned computations energy is generally already not conserved due to errors caused
by the time lag between flow and structure. When the coupling error introduced
by the information transfer is smaller than the spatial and temporal discretization
error, this coupling error does not have to affect the stability and accuracy of the
computation, especially when the spatial and time discretization themselves are very
dissipative. However, when stability must be ensured, the variation of energy caused
by the non-matching interface should be negative.

In this chapter we investigate the difference in accuracy and efficiency between
the conservative and consistent approach for the coupling methods described in [29].
First the two approaches are presented followed by a short description of the different
coupling methods. The difference in the interpolation properties between the two
approaches is investigated using two analytical test problems. Finally, a simple steady
quasi-1D FSI problem is used to investigate the performance of the methods in FSI
computations with multiple transfers between flow and structure side. The work of
this chapter has also been accepted for publication in a journal paper [32].

2.1 Conservative and consistent coupling approach

In this section the conservative and consistent coupling approach are presented. With
the conservative approach the total energy is conserved when transferring displace-
ment and pressure forces over the interface. The consistent approach ensures that a
constant displacement and a constant pressure are exactly interpolated over the inter-
face. The starting point of both approaches are the kinematic and dynamic boundary
conditions at the interface, which are commonly used to couple the fluid and structure
equation, and are given by

uf = us on Γ, (2.1a)

psns = pfnf on Γ, (2.1b)

with uf,s the displacement field, pf,s the pressure field or stress tensor and nf,s

the outward normal of the flow and structure interface, respectively. The continu-
ous interface between the flow and structure is represented by Γ. The first of these
two boundary equations, (2.1a), expresses the compatibility between the displace-
ment fields of the structure and the fluid at the fluid-structure interface. The second
equation, (2.1b), states that the tractions of the wet surface of the structure are in
equilibrium with those on the fluid side. In the continuous formulation and for steady

2.1 Conservative and consistent coupling approach 11

state problems either displacement, velocity or acceleration can be used for the kine-
matic boundary condition (2.1a). However, in the discretized form this changes the
stability properties for dynamic problems when a time integration scheme is involved
[57].

Whichever coupling method is chosen to define the discrete form of these condi-
tions, its outcome can be formulated as

Uf = HfsUs (2.2a)

Ps = HsfPf , (2.2b)

with the (nu
f × nu

s) matrix Hfs and (np
s × np

f) matrix Hsf transformation matrices
between the flow and structure interface, where nu,p is the number of unknowns on
the interface for the displacement and pressure, respectively and the subscript f or s
denotes whether this is on the flow or the structure side. The subscripts fs and sf
for the transformation matrices denote that information is transferred from structure
to flow or flow to structure, respectively. The discrete values in the interface points
of the displacement and pressure are contained in U and P, respectively. They are
defined by the approximations

u(x) =
nu∑

i=1

N i(x)Ui, p(x)n(x) =
np∑

j=1

Dj(x)Pj , (2.3)

where N(x) is a function that depends on the spatial discretization method used for
the displacement (for example, a step function in the finite volume formulation or the
shape function in the finite element formulation) and D(x) is a function that depends
on the discretization method used for the pressure. When the row-sum of H is equal
to one, constant values are interpolated exactly.

Conservative approach

The general opinion is that energy should be conserved over the interface leading
to a conservative coupling approach [46]. In this thesis we focus only on the spatial
coupling and therefore we do not consider the energy conservation properties of the
temporal discretization. This is valid when a monolithic solution procedure is used,
with the same time integration method applied for both the flow and the structure,
or in the case of steady state solutions. In this case energy is globally conserved over
the interface when

∫

Γf

uf · pfnf ds =

∫

Γs

us · psns ds, (2.4)

with u the displacement of the interface.
Writing out the left hand side of (2.4) using (2.3) gives

∫

Γf

uf · pfnf ds =

n
p

f∑

j=1

nu
f∑

i=1

UT
fi

(∫

Γf

N i
fDj

f ds

)
Pfj

= UT
f MffPf . (2.5)

12 COUPLING OF NON-MATCHING MESHES

In a similar way we find for the right hand side of (2.4)

∫

Γs

us · psns ds = UT
s MssPs, (2.6)

where matrices Mff (nu
f × np

f) and Mss (nu
s × np

s) are defined as follows

M ij
ff =

∫

Γf

N i
fDj

f ds, M ij
ss =

∫

Γs

N i
sD

j
s ds. (2.7)

Substituting (2.5) and (2.6) into (2.4) shows that energy is globally conserved when

UT
f MffPf = UT

s MssPs ⇒ UT
s HT

fsMffPf = UT
s MssPs ∀Us

⇒ MssPs = HT
fsMffPf . (2.8)

So choosing

Hsf = M−1
ss HT

fsMff (2.9)

in (2.2b) for the transformation of pressure over the interface results in global conser-
vation of energy over the interface.

Note that this is, not surprisingly, the same result as obtained in [46] for the forces.
When we define the forces Fs = MssPs and Ff = MffPf we can rewrite (2.2.3) as
Fs = HT

fsFf and the transposed transformation matrix has to be used to exchange
forces to obtain global conservation of energy over the interface.

Consistent approach

In order to obtain a consistent interpolation, a constant displacement and constant
pressure should be exactly interpolated over the interface (similar to the patch test
criterion in finite element and domain decomposition methods [63]). This means that
in the conservative approach both the row-sum of Hfs and Hsf = M−1

ss HT
fsMff

should be equal to one. For a general transformation matrix Hfs this is not the case
as we will see in the following section.

To ensure a consistent interpolation of the pressure the matrix Hsf can be directly
obtained by using one of the transfer methods, as is done to obtain matrix Hfs. In
this way Hsf is independent of Hfs and both can be created with a row-sum equal
to one. However in this way global conservation of energy over the interface is not
guaranteed and in the remainder of the thesis we will address this as the consistent
approach. The main question is whether global conservation of energy or a consistent
interpolation is preferred in fluid-structure interaction computations.

2.2 Transfer methods 13

2.2 Transfer methods

This section concerns three different transfer techniques which are commonly found
in literature to transfer information between non-matching meshes in FSI computa-
tions: nearest neighbour interpolation, the weighted residual method and radial basis
function interpolation. All methods result in a transformation matrix HBA to transfer
known values at the interface of mesh A to the interface of mesh B.

2.2.1 Nearest neighbour interpolation

Nearest neighbour interpolation (NN) is a very simple method to transfer data from
mesh A to mesh B [108]. A search algorithm determines the point xA in mesh A that
is closest to a given point xB in mesh B. The variable in xB is then assigned the
same value as in xA. In this way the transformation matrix HBA becomes a Boolean
matrix, with a single one in each row which implies that the transformation is indeed
consistent when the consistent approach is used.

In order to interpolate constant pressure values exactly when the conservative
approach is used, we need according to (2.2.3):

Mssβs = MffHT
fsβf , (2.10)

with βs and βf vectors of length np
s and np

f respectively, with all constant components
equal to a constant value β. Substituting (2.7) this becomes

np
s∑

j=1

[∫

Γs

Nk
s Dj

s dx

]
β =

nu
f∑

i=1

(HT
fs)

ki

n
p

f∑

j=1

[∫

Γf

N i
fDj

f dx

]
β for k = 1, ..., nu

s . (2.11)

When we use the fact that
∑np

α

j=1 Dj
α = 1 and define

∫
Γα

Nk
α dx = ∆xk

α (where we

assume constant or linear basis functions), we can derive for the left hand side

np
s∑

j=1

[∫

Γs

Nk
s Dj

s dx

]
β = β

∫

Γs

Nk
s

np
s∑

j=1

Dj
s

 dx = β∆xk

s for k = 1, ..., nu
s , (2.12)

and for the right hand side

nu
f∑

i=1

(HT
fs)

ki

n
p

f∑

j=1

[∫

Γf

N i
fDj

f dx

]
β = β

nu
f∑

i=1

Hik
fs

∫

Γf

N i
f

n
p

f∑

j=1

Dj
f

 dx

= β

nu
f∑

i=1

Hik
fs∆xi

f for k = 1, ..., nu
s . (2.13)

The condition for exact interpolation of constant pressure values becomes

nu
f∑

i=1

Hik
fs

∆xi
f

∆xk
s

= 1 for k = 1, ..., nu
s . (2.14)

14 COUPLING OF NON-MATCHING MESHES

For a simple equidistant grid this is equal to

nu
f∑

i=1

Hik
fs =

∆xs

∆xf

for k = 1, ..., nu
s . (2.15)

In other words, the column-sum of Hfs should be equal to ∆xs/∆xf . As Hfs is a
Boolean matrix this condition is generally not met. The difference between the left
and right side of equation (2.15) does not decrease by refining both the flow and
structure grid simultaneously, where the ratio between flow and structure cells (and
therefore ∆xs/∆xf) remains the same. This is caused by the fact that the general
structure of Hfs does not change when both the flow and structure grid are refined
simultaneously and therefore the column-sum also remains the same. Only when the
grids converge to a matching and conforming mesh the difference will go to zero.

2.2.2 Weighted residual method

The weighted residual (WR) method or Lagrange multiplier method described in this
section is based on the weak formulation of the conservation of loads or displacements
over the interface [37, 83]. Starting point is the kinematic (2.1a) or dynamic boundary
condition (2.1b) at the fluid-structure interface in the weak continuous form

∫

Γ

(wB(x) − wA(x))λ(x) dx = 0, w = {u, pn}, (2.16)

where λ(x) is the so called Lagrange multiplier. Because a Neumann-to-Dirichlet
condition has to be satisfied at the interface a separate condition for the pressure
and the displacement has to be found. This is different from the ’normal’ Lagrange
multiplier method, where the equilibrium of forces is automatically satisfied when∫
Γ
(uB(x) − uA(x))λ(x) dx = 0 is imposed.
The following discretization for the quantities is used

wB(x) =

nB∑

i=1

Ψi
B(x)WBi

, wA(x) =

nA∑

j=1

Ψj
A(x)WAj

, (2.17)

with WA,B containing the values of wA,B in the points on the interface of mesh A
and B, respectively, ΨA,B the basis function of mesh A or B and nA,B the number of
unknowns at the interface of mesh A or B. Substituting this into (2.16) gives

∫

Γ

λ(x)

nB∑

i=1

Ψi
B(x)WBi

dx =

∫

Γ

λ(x)

nA∑

j=1

Ψj
A(x)WAj

dx. (2.18)

When the mortar approach [14, 42] is used, the multiplier λ is chosen to be piecewise
polynomial and to have the same interpolation order as side A or B, so λ(x) =∑nα

k=1 Ψk
α with α ∈ {A,B}. In this way the approximation can be established to be

2.2 Transfer methods 15

optimal for non-conforming (but matching) meshes. Substituting this choice for λ into
(2.18) gives

nB∑

i=1

[∫

Γ

Ψk
αΨi

B dx

]

︸ ︷︷ ︸
Cki

αB

WBi
=

nA∑

j=1

[∫

Γ

Ψk
αΨj

A dx

]

︸ ︷︷ ︸
C

kj
αA

WAj
for k = 1, ..., nα. (2.19)

This can be written in matrix form as

CαBWB = CαAWA, (2.20)

with CαB an nα × nB matrix and CαA an nα × nA matrix.
Since we transfer data from mesh A to mesh B we need to solve for the side of

mesh B, because the value of w on mesh A is assumed to be known. This means that
we have to choose α = B to be able to solve system (2.20). As a result we obtain

WB = C−1
BBCBAWA. (2.21)

So in short the transformation matrix becomes HBA = C−1
BBCBA.

Consistent approach

In order to interpolate constant values exactly as required for a consistent interpola-
tion we need

CBBβB = CBAβA, (2.22)

with βA,B a vector of length nA or nB respectively, with all constant components
equal to a constant value β. Using (2.19) this becomes

nB∑

i=1

[∫

Γ

Ψk
BΨi

B dx

]
β =

nA∑

j=1

[∫

Γ

Ψk
BΨj

A dx

]
β for k = 1, ..., nB . (2.23)

Using the fact that
∑nα

k=1 Ψk
α = 1 we can derive for the left hand side

nB∑

i=1

[∫

Γ

Ψk
BΨi

B dx

]
β = β

∫

Γ

Ψk
B

[
nB∑

i=1

Ψi
B

]
dx = β

∫

Γ

Ψk
B dx, (2.24)

and for the right hand side

nA∑

j=1

[∫

Γ

Ψk
BΨj

A dx

]
β = β

∫

Γ

Ψk
B

nA∑

j=1

Ψj
A

 dx = β

∫

Γ

Ψk
B dx. (2.25)

All that remains is the selection of the discrete interface over which the integrals
in (2.19) are taken, because generally ΓA 6= ΓB 6= Γ. For the matrix CBB it is most
accurate to integrate over ΓB because both the values of Ψk

B and Ψi
B are known at

that discretized interface and then no projection is needed. To obtain a consistent
interpolation the integrals in matrix CBA then also have to be integrated over ΓB ,
otherwise (2.25) is unequal to (2.24).

16 COUPLING OF NON-MATCHING MESHES

Conservative approach

We now investigate the consistency of the pressure when the conservative transfer
approach is used. We start again with the discretized kinematic boundary condition
(2.2a), where the weighted residual method gives us

Hfs = C−1
ff Cfs. (2.26)

Substituting this into (2.2.3) gives

MssPs = CT
fsC

−1
ff MffPf . (2.27)

When in the derivation of the matrices Cff and Cfs in equation (2.18) the Lagrange

multiplier is chosen to be λ(x) =
∑n

p

f

k=1 Dk
f instead of λ(x) =

∑nf

k=1 Nk
f , then Cff =

Mff and (2.27) becomes

MssPs = CT
fsPf . (2.28)

In order to interpolate a constant pressure exactly we need

Mssβs = CT
fsβf , (2.29)

with βs,f a vector of length ns or nf respectively, with all constant components equal
to a constant value β. We can derive in a similar way as in (2.24) and (2.25) that
(2.29) is equal to

∫

Γs

Nk
s dx =

∫

Γf

Nk
s dx for k = 1, ..., nu

s . (2.30)

So only when the meshes are matching, Γf = Γs, equation (2.30) is always satisfied
and the method is both conservative and consistent. This means that the patch-test
is not satisfied for non-matching meshes with gaps and/or overlaps as was already
shown in [78] for the mortar element method.

For non-matching meshes, refining both the flow and structure grid simultaneously
causes the difference between Γf and Γs to become smaller. In that case the left side
of (2.30) converges to the right side and the error that is made decreases. In contrast
to NN the meshes only have to converge to a matching mesh and not to a conforming
mesh in order to obtain convergence in the error.

Gauss integration

To be able to compute the transformation matrix HBA the integrals appearing in
matrix CBA, which are defined as

Ckj
BA =

∫

ΓB

Ψk
B(x)Ψj

A(x) dx, (2.31)

have to be evaluated. The integrals can be computed using Gauss integration [37, 85]
where an overlay mesh has to be created to ensure an exact evaluation of the integral.

2.2 Transfer methods 17

The overlay mesh is actually a kind of intersection of the two meshes. Within each
element of this overlay mesh the basis function on both sides of the interface (ΨB and
ΨA) are continuous, which is needed for an accurate Gauss integration. This results
in the following evaluation

Ckj
BA ≈

nover∑

i=1

ngp,i∑

g=1

wgΨ
k
B(xg,i)Ψ

j
A(ΠA(xg,i)), (2.32)

where nover is the number of overlay cells, ngp,i is the number of Gauss quadrature
points xg in overlay cell i; wg the weight of the gth quadrature point and ΠA(xg,i)
the orthogonal projection of xg,i from mesh B on mesh A. The projection between
the two meshes is needed, because ΨA is only defined on ΓA and the integral is taken
over ΓB . The procedure to calculate (2.32) consists of the following five steps (see
also Figure 2.2):

1. Reconstruct the interfaces of mesh A and B by using their underlying basis
functions.

2. Orthogonally project the nodes of mesh A onto the reconstructed interface of
mesh B.

3. Define the overlay mesh as the nodes of mesh B together with the projected
nodes of mesh A.

4. Define Gauss quadrature points within each cell of the overlay mesh.

5. Project the quadrature points back to the reconstructed interface of mesh A
and evaluate the basis function in that point.

ΓA

ΓB

Gauss point
mesh point

overlay mesh point

reconstructed
interface
element boundary

Fig. 2.2: Orthogonal projection and over-
lay mesh.

The orthogonal projection has to accu-
rately compute the normal with respect to
the reconstructed interface, otherwise the or-
der of the total interpolation decreases. For
linear basis functions the normal with re-
spect to the reconstructed interface is equal
to the normal with respect to the line con-
necting two mesh points, but for higher or-
der basis functions this is not the case as
is depicted in Figure 2.2 for quadratic basis
functions. This means that for higher order
discretizations the projection is more elabo-
rate. The number of Gauss points to be used
should be chosen equal to the underlying or-
der of the discretization.

18 COUPLING OF NON-MATCHING MESHES

Nearest Neighbour with projection (NN proj)

Instead of using a weighted residual method also a collocated Lagrange multiplier
method can used. In this case the lagrange multiplier is chosen to be λ(x) =

∑nα

k=1 δk,
with δk the Dirac-delta function. The collocated Lagrange multiplier method is similar
to Nearest Neighbour interpolation, but instead of taking the value from the closest
node xB in the other mesh, the node xA is orthogonally projected on that mesh
and the reconstructed value of the quantity of interest in that point is taken. This
is actually the same approach as used in [46]. The transformation matrix H is no
longer a Boolean matrix, but still the error for the pressure only converges when the
conservative approach is used, when the grids converge to a matching and conforming
mesh.

2.2.3 Radial basis function interpolation (RBFI)

Interpolation with radial basis functions (RBF’s) has become a very powerful tool
in multivariate approximation theory through scattered data, because of its excellent
approximation properties [33]. They have been successfully applied to areas as diverse
as computer graphics [34], geophysics [19, 18], mesh deformation [27, 95, 96, 97], error
estimation [73] and the numerical solution of partial differential equations [71, 72].
They can also be used to interpolate between non-matching meshes in FSI compu-
tations [13, 100, 101]. The quantity to be transferred from mesh A to mesh B is
approximated by a global interpolation function which is a sum of basis functions

wi(x) =

nA∑

j=1

γjφ(||x − xAj
||) + q(x), wi = {ui, pni}, i = {1, .., d}, (2.33)

where xAj
are the centres in which the values are known, in this case the nodes at

the interface of mesh A, q a polynomial, φ a given radial basis function with respect
to the Euclidean distance ||x|| and d the dimension of the problem (d = 2 in 2D, and
d = 3 in 3D problems). The coefficients γj and the polynomial q are determined by
the interpolation conditions

wi(xAj
) = Wi

Aj
, i = {1, .., d} (2.34)

with Wi
A containing the discrete values of wi at the interface of mesh A, and the

additional orthogonality requirements for the polynomial

nA∑

j=1

γjs(xAj
) = 0, (2.35)

for all polynomials s with a degree less than or equal to that of polynomial q. The
minimal degree of polynomial q depends on the choice of the basis function φ. A
unique interpolant is given when the basis function is a conditionally positive definite
function (Definition 3.1 of [13]). If the basis functions are conditionally positive definite
of order m ≤ 2, as is the case for the functions used in this thesis, a linear polynomial

2.2 Transfer methods 19

can be used [13]. A consequence of using linear polynomials is that constant values are
exactly interpolated leading to a consistent interpolation. The interpolation function
(2.33) is defined in the whole domain in contrast to for example [44], where spline-
like polynomials are used for the Lagrange multiplier to glue together nonconforming
meshes. The spline-function is then only defined on the non-conforming interface.

The interpolation conditions (2.34) and (2.35) can be written in matrix form as
follows

[
Wi

A

0

]
=

[
ΦAA QA

QT
A 0

] [
γ

β

]
, (2.36)

with γ containing the coefficients γj , β the coefficients of the linear polynomial q,
ΦAA an nA × nA matrix containing the evaluation of the basis function φAiAj

=
φ(||xAi

− xAj
||). The matrix QA is an nA × (d + 1) matrix with row j given by

[1 x1
Aj

x2
Aj

· · · xd
Aj

].
In order to obtain the values for the unknown quantity at the interface of mesh

B we have to evaluate (2.33) in the nodes on the interface of mesh B which can be
written in matrix form as

Wi
B =

[
ΦBA QB

] [
γ

β

]
. (2.37)

Combining (2.36) and (2.37) gives the relation

Wi
B =

[
ΦAB QB

] [
ΦAA QA

QT
A 0

]
−1

︸ ︷︷ ︸
eH

[
Wi

A

0

]
. (2.38)

We now can define the transformation matrix HBA as the first nB rows and nA

columns of matrix H̃ to obtain Wi
B = HBAWi

A. Since matrix HAB only contains
spatial information it is equal for each coordinate direction and we can therefore also
compute directly WB = HBAWA. Contrary to the weighted residual method and
nearest neighbour method, no orthogonal projection and search algorithm is needed
to obtain HBA. This is because the radial basis functions are defined in all space and
not only on the interface. The computation of HBA only involves the inversion of a
relatively small matrix. The number of rows and columns of this matrix is equal to the
number of flow or structure points on the fluid-structure interface, which is usually
very small compared to the total number of structure and flow points. However, this
is a full matrix when the radial basis function does not have compact support. In
practice matrix HBA is not computed explicitly, because we are only interested in the
value of WB which can be obtained by solving system (2.36) and then evaluating the
matrix vector product (2.37).

20 COUPLING OF NON-MATCHING MESHES

Radial basis functions

RBF’s can be divided into two groups, functions with compact support and functions
with global support. Beckert and Wendland [13] use for their FSI computations com-
pact supported radial basis functions based on polynomials to interpolate between
non-matching meshes. Their C2 radial basis function gives the best results in their
computations [13]. This function is defined as

φ(||x̄||) = (1 − ||x̄||/r)
4
+ (4||x̄||/r + 1) . (2.39)

The subscript + means that only positive values are taken into account (this function
is in the remainder of the thesis abbreviated by CP, an abbreviation for Compact
Polynomial). The distance between two points is normalized with the largest distance
between two points, so ||x̄|| = ||x||/||x||max. The radius r defines the support of the
radial basis function. A large support radius yields a good approximation order, but
then a full matrix system has to be solved. What is more, too large radii lead to
singular matrices, because then all the entries of ΦAA are approximately equal to
one. A small support radius leads to a well conditioned system with a band matrix
that can be easily solved, but the interpolation is less accurate than with a large
support radius. For an accurate computation the support radius for a fluid-structure
interaction problem should be chosen at least as large as the normalized distance
between the centre which is farthest from its neighbours and its nearest neighbour.
This nearest neighbour can be in either of the two meshes.

Several global radial basis functions have been tested and evaluated for analytical
interpolation tests as well as real fluid-structure interaction computations by Smith
et al [100, 101]. From this work the following two functions are shown to be the most
robust, cost effective and accurate of the methods tested:

• Multi-quadric Biharmonic spline (MQ)

φ(||x̄||) =
√
‖x̄‖2 + a2. (2.40)

• Thin-plate spline (TPS)

φ(||x̄||) = ||x̄||2 ln ||x̄||. (2.41)

Both functions do not vanish when ||x̄|| goes to infinity as is the case for the compact
supported basis function. The MQ-method uses a parameter a that controls the shape
of the basis functions. A large value of a gives a flat sheetlike function, while a small
value of a gives a narrow cone-like function. In literature it is still an open question how
to find the optimal value of a. Smith et all choose a typically in the range 10−5−10−3

when a domain of size 1 is used [100, 101]. In this thesis we use the value a = 10−3.
In contrast with the radial basis functions used by Beckert and Wendland, these two
functions are defined on the entire domain. As a result, always a full matrix system
has to be solved.

2.2 Transfer methods 21

Conservative approach

Due to the addition of the linear polynomial constant values are exactly recovered,
and therefore the interpolation is consistent. However, when the conservative transfer
approach is used, assuming that RBF interpolation is used for the displacement, the
interpolation is not consistent for the transformation of pressure values. The reason
for this is shown below for positive definite functions (as for example the MQ). For
positive definite functions the addition of the linear polynomial is not necessary to
make the system uniquely solvable. In this case we can write, according to equation
(2.38), for the transformation of displacements

Uf = ΦfsΦ
−1
ss Us. (2.42)

According to the following requirement for the pressure must hold with the con-
servative approach

MssPs = Φ−1
ss ΦT

fsMffPf . (2.43)

We replace the pressure vectors Ps and Pf with the vectors with all constant com-
ponents βs and βf , respectively, and obtain

Mssβs = Φ−1
ss ΦsfMffβf . (2.44)

If non-equidistant grids or higher order basis function are involved in the flow domain,
the pressure force on the flow side, Mffβf , can be highly oscillatory. The multiplica-
tion with Φ−1

ss Φsf is a smoothing operation, leading to an overall smooth right hand
side. However, the pressure force on the structure side, Mssβs, can also be highly
oscillatory if non-equidistant grids or higher order basis functions are used in the
structure domain. In this case equation (2.44) does not hold.

If for example third order basis functions are used on an 1D equidistant grid,
as is the case for the test cases in this thesis, the pressure force on the flow side
Mffβf alternates with the values 2

3β∆xf and 4
3β∆xf , where ∆xf is the grid size on

the flow side. The multiplication with Φ−1
ss Φsf results in a vector with all constant

values β∆xs, with ∆xs the grid size on the structure side. However, for a constant
pressure the pressure force on the structure side, Mssβs, should be alternating with
the values 2

3β∆xs and 4
3β∆xs. This means that the error in pressure forces ǫF =

Mssβs − Φ−1
ss ΦsfMffβf is alternating with values ± 1

3β∆xs. The amplitude of this
error does decrease when the structure grid is refined, but the error in pressure itself
ǫp = βs −M−1

ss Φ−1
ss ΦsfMffβf is alternating with values ± 1

3β and its amplitude does
not decrease by refining the flow and structure grid simultaneously, only the frequency
increases. The error ǫp only converges if the meshes converge to a mesh that is both
matching and conforming at the interface, whereby we mean with conforming that
also the underlying discretization of the flow and structure mesh must be the same.

The addition of the linear polynomial for conditionally positive definite radial
basis functions does not solve this problem as is shown in sections 2.3 and 2.4. The
conclusion on the convergence of ǫp actually holds for any transfer algorithm that
uses an interpolation scheme and does not incorporate information of the underlying
basis functions.

22 COUPLING OF NON-MATCHING MESHES

2.2.4 Summary

In this section three different transfer techniques are considered which are commonly
found in literature to transfer information between non-matching meshes in FSI com-
putations. For all three methods we derived a conservative and consistent approach.
When the consistent approach is used, all three methods interpolate constant values
exactly. However, it was found that when the Weighted residual method is used with
the conservative approach, a constant pressure is only exactly interpolated when the
meshes are conforming. For Nearest Neighbour interpolation or Radial basis function
interpolation the meshes do not only have to be conforming, but also matching to en-
sure that a constant pressure is exactly interpolated with the conservative approach.

2.3 Analytical test problems

In this section the different transfer methods are compared for a smooth and non-
smooth analytical problem, to be able to investigate their general interpolation proper-
ties. For all the methods both the conservative and consistent approach are employed.

The tests consists of a single transfer of a displacement and pressure field over an
interface. This interface has the form of a sine, qe = 0.2 sin(2πx), with x ∈ [−0.5, 0.5].
The profile of the pressure and displacement fields is either smooth or non-smooth.
The procedure of the tests is as follows:

1. Start with the continuous form of the displacement and pressure field at the
flow or structure side of the interface, respectively.

2. Discretize the continuous fields using a third order order finite element method.
Because the number of cells that are used to discretize the interface differ be-
tween the flow and structure side, the interface becomes non-matching.

3. Transfer the discretized displacement field from the discrete structure side of
the interface to the discrete flow side using one of the transfer methods.

4. Compare the obtained results at the discrete flow interface to the exact values of
the displacement field at this interface by looking at the relative transfer error.

5. Transfer the discretized pressure field from the discrete flow side of the interface
to the discrete structure side using the conservative or consistent approach.

6. Compare the obtained results at the discrete structure interface to the exact
values of the pressure field at this interface by looking at the relative transfer
error.

The relative L2 transfer error is defined as

ǫ =

√∑nα

i=1 ||wi
ex − wi

α||2∑nα

i=1 ||wi
ex||2

, (2.45)

where wi
α is the vector containing the values received at the flow (α = f) or structure

(α = s) side using one of the transfer methods and wi
ex the vector with the exact

values on that side of the interface.

2.3 Analytical test problems 23

By discretizing the displacement and pressure fields, already an error is made with
respect to the continuous field. The relative L2 discretization error of a continuous
function wex(x) on the flow (α = f) or the structure (α = s) interface is defined as

ǫdisc =

√∫
Γα

||wex(x) − ∑nα

i=1 N i
α(x)wi

ex||2 dx
∫
Γα

||wex(x)||2 dx
, (2.46)

where
∑nα

i=1 N i
α(x)wi

ex is the discretized form of wex(x) using the basis functions of
the flow, Nf , or structure, Ns. The integrals are computed with Gauss integration. As
long as the transfer error is smaller than the spatial discretization error, the transfer
error does not effect the spatial discretization order of the total system.

The applications we are interested in (wing flutter, deforming wind turbine blades)
typically have 5 till 10 times more cells on the flow interface than on the structure
interface. Therefore we use nf = 26 · 2k flow cells and ns = 5 · 2k structure cells, with
k ∈ {0, 1, 2, 3, 4, 5}, leading to a ratio of about 20%.

The transfer error in the displacement field received by the discrete flow side and in
the pressure field received by the discrete structure side for both the conservative and
consistent approach is investigated for the projection of a smooth and a non-smooth
field in the following two sections.

2.3.1 Transferring a smooth field

In this section a smooth discretized displacement field is transferred from the discrete
structure side to the discrete flow side of the interface and a smooth discretized
pressure field from flow to structure using the different transfer algorithms. The values
of the transferred fields are compared to the exact values of the continuous field at
the discrete locations. Both fields have the form w(x) = 0.01 cos(2πx).

Displacement of the flow boundary

The L2 transfer error of the displacement (2.45) in the flow points versus the number
of structure points after one interpolation step is depicted in Figure 2.3 for NN (with
and without projection), CP with r = 2 and WR and in Figure 2.4 for the RBFI
methods (CP (r = 0.25 and r = 2), TPS and MQ). Note that the CP method is
actually no longer compactly supported with r = 2, because then all basis functions
cover the whole domain which has length one.

The number next to a line represents the order of the method represented by
the line. The gray lines (disc) represent the discretization error (2.46); the solid gray
line is the discretization error on the flow interface and the dashed line on the struc-
ture interface. Above these lines the transfer error of a method is higher than the
discretization error. The interpolation of the displacement is the same for both the
conservative and consistent approach.

It can be seen that simple NN is only first order accurate. The error of the WR
method and NN with projection are smaller than the discretization error of the struc-
ture and are almost on top of each other. For a discretization order higher than two

24 COUPLING OF NON-MATCHING MESHES

10
1

10
2

10
−8

10
−6

10
−4

10
−2

3.0

1.0

2.5

number of structure cells

er
ro

r
in

 d
is

pl
ac

em
en

t

3.0

1.0

2.5

3.0

Direct
NN
NN proj
CP 2
WR

Fig. 2.3: Error in displacement.

10
1

10
2

10
−8

10
−6

10
−4

10
−2

3.0

2.5

2.5

2.0

1.7

number of structure cells

er
ro

r
in

 d
is

pl
ac

em
en

t

3.0

2.5

2.0

1.7

Direct
CP 0.25
CP 2
TPS
MQ

Fig. 2.4: Error in displacement - RBFI
methods.

they are the most accurate methods. The CP method has an order of about 2.5, but
the accuracy depends on the value of the radius: the larger the radius r, the more
accurate the method. The MQ and TPS method are approximately second order ac-
curate where the accuracy of the TPS method is higher. With r = 2, CP is more
accurate than TPS and with r = 0.25 it is comparable to MQ.

Pressure received by the structure

The L2 transfer error of the pressure versus the number of points on the structure
interface after one interpolation step is depicted in Figures 2.5 and 2.6. The solid

10
1

10
2

10
−10

10
−5

10
0

3.0

0.0

0.0

2.0

number of structure cells

er
ro

r
in

 p
re

ss
ur

e

3.0

1.0

3.0

2.5

4.0

Direct
NN
NN proj
CP 2
WR

Fig. 2.5: Error in pressure (−: conservative
−−: consistent).

10
1

10
2

10
−10

10
−5

10
0

3.0

−0.0−0.0−0.00.0

number of structure cells

er
ro

r
in

 p
re

ss
ur

e

3.0

2.5

2.5

2.1

0.7

Direct
CP 0.25
CP 2
TPS
MQ

Fig. 2.6: Error in pressure - RBFI methods
(−: conservative −−: consistent).

lines are obtained with the conservative and the dashed lines with the consistent
approach. In the conservative approach we use the transposed of the matrix used in
the previous section to transfer the displacement, whereas for the consistent approach

2.3 Analytical test problems 25

a new transfer matrix has to be build. It can be seen that, as we expected, only the
WR method converges when the conservative approach is used. The order of the
conservative WR method is one order lower than the discretization order. When the
consistent approach is used, simple NN is again only first order accurate. For all
other methods the interpolation error is smaller than the discretization error of the
structure. This is due to the fact that the pressure is transferred from the finer flow
grid to the coarser structure grid.

−0.5 0 0.5
0.185

0.19

0.195

0.2

0.205

0.21

0.215

x

p s

exact
consistent
conservative

Fig. 2.7: Pressure received by the structure
obtained with the WR method for nf = 52
and ns = 10.

−0.5 0 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

p s

exact
consistent
conservative

Fig. 2.8: Pressure received by the structure
obtained with the CP method with r = 2
for nf = 52 and ns = 10.

The reason for the lower order of convergence for the conservative approach can
be seen in Figures 2.7 and 2.8, where the exact pressure together with the pressures
obtained with the conservative and consistent approach are shown for WR and CP
with r = 2, respectively. The difference between the exact solution and the one ob-
tained with the consistent approach is barely visible, but large oscillations are visible
in the solution obtained with the conservative approach. Except for the WR method,
the amplitude of these wiggles does not decrease when the meshes are refined simul-
taneously (see section 2.2.1 and 2.2.3), leading to the zeroth order convergence. The
reason for convergence of the WR is the weak imposition of the interface conditions.
The transfer error for WR is caused by the fact that the meshes are non-matching
(2.30), and by refining both the flow and structure mesh this error decreases. For the
other methods the transfer error only decreases when the meshes become conforming,
which is not the case when both meshes are refined simultaneously.

In the the original paper on the mortar element method [14] it is recommended
to use a lower order discretization of the Lagrange multiplier for the WR method in
the boundary elements, to avoid over-constrained gluing. Therefore we performed the
computation also with a second order discretization of the Lagrange multiplier in the
boundary elements. The results are almost identical to the ones obtained with the
third order discretization in the boundary elements. Therefore we can conclude that
the wiggles are not caused by over-constrained gluing, but are due to the non-matching
meshes at the interface.

26 COUPLING OF NON-MATCHING MESHES

Energy conservation

When energy is globally conserved over the interface, the work exerted on the flow
side of the interface, Wf = UT

f Ff = UT
f MT

ffPf , should be equal to the work exerted

on the structure side Ws = UT
s Fs = UT

s MT
ssPs as was shown in (2.2.3). In Figures 2.9

and 2.10 the difference in work exerted on the interface between the flow and struc-
ture side, dW = |Wf − Ws|, is depicted against the number of structure cells. By
construction this difference is zero for the conservative approach (and therefore not
shown in the graphs). The difference converges only with order one for the simple NN

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

number of structure cells

er
ro

r
in

 w
or

k

1.0

4.0

3.0

4.0

NN
NN proj
CP 2
WR

Fig. 2.9: Difference in work for the consis-
tent approach.

10
1

10
2

10
−10

10
−8

10
−6

number of structure cells

er
ro

r
in

 w
or

k

3.0

3.0

2.5

2.6CP 0.25
CP 2
TPS
MQ

Fig. 2.10: Difference in work for the consis-
tent approach - RBFI methods.

method. For the other methods the difference decreases with approximately one order
higher than that of the error in displacement and pressure. So for these methods, even
as the consistent approach is not strictly globally conservative for the energy transfer
over the interface, the error in the energy transfer decreases consistently with the
discretization error.

Efficiency

The efficiency of the transfer method is not the most important issue, because the
computation time needed for the transfer is usually much smaller than, for example,
the time needed for the flow solve. However, we want to investigate if the difference in
efficiency between the methods is considerable. To obtain a global estimation of the
efficiency of the methods, the computation time needed to obtain a certain accuracy
using Matlab version 7.0.1 on a 3 GHz computer is shown for the displacement and
pressure in Figures 2.11 and 2.12, respectively. The closer the line is to the lower
left corner, the more efficient the method. For the displacement the conservative
approach is most efficient for all methods, because only one transformation matrix
has to be calculated. However, when larger problems are considered the storage of the
transformation matrix might not be feasible, such that two interpolation problems
have to be solved, just as for the consistent approach. For the pressure the highest

2.3 Analytical test problems 27

10
−2

10
0

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

cpu time (sec)

er
ro

r
in

 d
is

pl
ac

em
en

t

NN
NN proj
CP 2
WR

Fig. 2.11: Efficiency for the displacement
(−: conservative −−: consistent).

10
−2

10
0

10
2

10
−10

10
−5

10
0

cpu time (sec)

er
ro

r
in

 p
re

ss
ur

e

NN
NN proj
CP 2
WR

Fig. 2.12: Efficiency for the pressure (−:
conservative −−: consistent).

efficiency is obtained using the CP method with r = 2. The other RBFI methods
show similar results with slightly larger computation times and are not shown in the
figures. The WR and NN method with projection are the least efficient because they
need a projection algorithm.

For this test case a fast and simple search algorithm is used for the WR and
NN methods which performs only a loop over the two closest elements in both di-
rections, therefore the computation time needed by simple NN is very low and does
only slightly increase with the number of elements. For the pressure the consistent
approach is most efficient, because the conservative approach converges with a lower
order (if it converges at all). The main conclusion for this simple problem is that
the WR method, although it is more accurate for higher order discretizations, does
need more computation time than the RBFI methods. The computational costs of the
WR and NN method with projection also increase when a higher order discretization
method is used. For higher order discretizations the projection algorithm becomes
more complicated, because more Gauss points are needed and the normal has to be
calculated with respect to a higher order polynomial.

2.3.2 Transferring a non-smooth field

In this section the same calculations are performed as in the previous section, but
this time a hat-shape function is transferred instead of a cosine, so

w(x) =

{
0.01 (2 − |x|/a) |x| < a,
0.01 |x| ≥ a.

(2.47)

The value of a is chosen in such a way that the two outer discontinuities are located
exactly at a grid point. For the displacement which is defined on the structure interface
we use a = 0.5 − 2/5 and for the pressure which is located on the flow interface
a = 0.5 − 9/26. The discontinuity in the centre is always located exactly at a grid
point.

28 COUPLING OF NON-MATCHING MESHES

Displacement of the flow boundary

The L2-error of the displacement (2.45) in the flow points versus the number of
structure points after one interpolation step is depicted in Figure 2.13. This time the
results for the different RBFI methods are not shown separately, because they were
all very similar to the ones obtained with CP with r = 2. The discretization error

10
1

10
2

10
−4

10
−3

10
−2

10
−1

1.0

1.4

number of structure cells

er
ro

r
in

 d
is

pl
ac

em
en

t

1.4

1.0

1.4
1.3

Direct
NN
NN proj
CP 2
WR

Fig. 2.13: Error in displacement.

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1.6

0.0

0.0

2.0

number of structure cells

er
ro

r
in

 p
re

ss
ur

e

1.0

1.5
1.6

1.5

Direct
NN
NN proj
CP 2
WR

Fig. 2.14: Error in pressure (−: conservative
−−: consistent).

−0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

x

u f−
u fex

consistent
conservative

Fig. 2.15: Error in displacement received by
the flow obtained with the WR method for
nf = 104 and ns = 20.

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−4

x

u f−
u fex

consistent
conservative

Fig. 2.16: Error in displacement received by
the flow obtained with the CP method with
r = 2 for nf = 104 and ns = 20.

on the structure side is by construction equal to zero and is therefore not depicted in
the figure. For the discretization error on the flow side the third order convergence is
not obtained, because only the discontinuity in the centre coincides with a grid point.
The resulting order of convergence for the discretization error is 1.4.

It can be seen that simple NN is again only first order accurate. For the other
methods the interpolation error is almost equal to the discretization error on the
flow side. For the WR method and CP method with r = 2 the error between the

2.3 Analytical test problems 29

displacement received by the flow and the exact displacement field, uf−uex
f , is plotted

in Figures 2.15 and 2.16, respectively. For the WR method this error has a peak at the
outer discontinuities which are not located at a grid point, but at the discontinuity in
the centre the error is almost zero. Larger oscillations are visible with the CP method
with r = 2. These oscillations are caused by the fact that the RBFI method tries to
generate a global smooth function through all grid points and therefore the highest
peak in the error is visible close to the largest discontinuity which is located in the
centre.

Pressure received by the structure

The L2-error of the pressure versus the number of points on the structure interface
after one interpolation step is depicted in Figure 2.14. The solid lines are obtained
with the conservative and the dashed lines with the consistent approach. Again only
the WR method converges when the conservative approach is used and the order is
the same as for the smooth pressure field. When the consistent approach is used,
simple NN is again only first order accurate. For all other methods the order of the
interpolation error is almost equal to the discretization error, leading to convergence
order of 1.5. This time only for the WR method the interpolation error is smaller than
the discretization error. The small wiggles in the error convergence of the consistent
WR, CP and NN with projection are caused by the fact that the discontinuity is not
always located in the same position within a structure element when the grids are
refined.

−0.5 0 0.5
−5

0

5

10
x 10

−5

x

p s−
p sex

consistent
conservative

Fig. 2.17: Error in pressure received by the
structure obtained with the WR method for
nf = 104 and ns = 20.

−0.5 0 0.5
−1

0

1

2

3

4

5
x 10

−5

x

p s−
p sex

consistent

Fig. 2.18: Error in pressure received by the
structure obtained with the CP method
with r = 2 for nf = 104 and ns = 20.

The error between the exact pressure field and the one obtained by the structure,
ps−pex

s , is depicted in Figures 2.17 and 2.18 for the WR method and CP method with
r = 2, respectively. For the CP method only the results for the consistent approach
are shown, because with the conservative approach the same large oscillations are
obtained as with the transfer of the smooth pressure field and then the error for the
consistent approach would not be visible anymore. The error for the conservative WR

30 COUPLING OF NON-MATCHING MESHES

method is almost the same as for the smooth case. This is caused by the fact that
the transformation matrix is build on the overlay mesh which is based on the discrete
flow interface, on which the pressure can be exactly represented. This also explains
the second order convergence. For the consistent WR method the transformation
matrix is build on the overlay mesh on the discrete structure interface, which can not
exactly represent the pressure at the discontinuities and we can see that the error
is the largest at these locations. However, this error is much smaller than with the
conservative approach. For the consistent CP method the error is also largest at these
locations, but we see less oscillations than for the displacement. This is due to the
fact that the structure mesh is much coarser than the flow mesh.

Energy conservation

10
1

10
2

10
−10

number of structure cells

er
ro

r
in

 w
or

k

1.3

2.0

1.8

3.9

NN
NN proj
CP 2
WR

Fig. 2.19: Difference in work for the consis-
tent approach.

In Figure 2.19 the difference in work ex-
erted on the interface between the flow and
structure side is depicted for the consis-
tent approach. The convergence rate for the
WR method and the simple NN method
are comparable to the smooth field. For
the NN method with projection and CP
with r = 2 the error converges only with
order two, but still the error decreases con-
sistently with the discretization error.

2.3.3 Conclusions

The conclusions for the above described
test cases also hold for other parameter set-
tings. Overall it can be concluded that for
these simple analytical problems the con-
sistent approach is preferred over the con-
servative approach. Simple NN is not a
good choice, because it is only first order accurate. When the discretization order
of the total system is higher than two, the WR and NN method with projection are
the best choice. However, their implementation is more elaborate due to the projection
and search algorithm and the computation time is higher than for the RBFI methods.
Therefore, when the discretization of the total system is of order two or lower, the
RBFI methods are preferred where CP with r = 2 is the best choice.

2.4 Quasi-1D FSI problem 31

2.4 Quasi-1D FSI problem

= z0

Flow
0f

qe
f

s

= z0 + uf

Structure

u (x)

p (x)e

x

Vp (x)
z(x)

u (x)

Fig. 2.20: Configuration of the
quasi-1D FSI problem.

For the investigation of the behaviour of the meth-
ods in FSI simulations, where multiple transfers of
pressure and displacement are performed, a quasi-
1D problem is used. It is chosen such that it al-
lows for the investigation of the problems arising
with non-matching meshes. We consider a quasi-1D
channel with a flexible wall. The main velocity of
the compressible flow is in the x-direction and the
structure is modeled as a membrane. The diameter
of the channel may vary due to a pressure difference
between the pressure in the flow and the pressure
behind the wall. Considering only the steady state
allows us to analyze the coupling in space separately, excluding errors based on cou-
pling in time. In order to obtain the steady state solution an iterative approach is
used. The existence of a numerical steady state solution is determined by computation
of a numerically ’exact’ solution on a very fine mesh by directly solving the steady
state problem on matching meshes.

2.4.1 Flow equations

A simple flow model is used which is valid for supersonic flow over a panel:

pf = −ρ0c0V0∂xz, (2.48)

with ρ0, c0 and V0 the density, speed of sound and velocity, respectively, assumed to
be constant, pf the pressure and z = z0 + uf the location of the panel which is equal
to the initial location of the panel, z0, plus the displacement from this initial position,
uf .

For convenience the variables are scaled as follows

x̄ =
x

L
, V̄0 =

V0

c0
, p̄f =

pf

ρ0c2
0

, z̄ =
z

L
, (2.49)

with L the length of the channel. This results in the following non-dimensional equa-
tion:

p̄f = −V̄0∂xz̄. (2.50)

For ease of notation the bars are dropped in the remainder of the thesis. To discretize
the equations, a third order finite element discretization is used.

2.4.2 Structure equations

The equation that describes the behaviour of the flexible wall is given by

κus − T∂xxus = ps − pe, (2.51)

32 COUPLING OF NON-MATCHING MESHES

where us is the displacement from the ’dry’ equilibrium position, qe(x) (when ps = pe);
ps is the pressure acting on the wall, pe is the pressure behind the wall, assumed to
be constant, κ the elasticity per unit length and T the longitudinal tension per unit
length. In this test case the ’dry’ equilibrium position is equal to the initial location
of the panel, so qe = z0. Again the variables are scaled using the non-dimensional
variables of (2.49) and the additional variables

ūs =
us

L
, p̄s =

ps

ρ0c2
0

, p̄e =
pe

ρ0c2
0

, κ̄ =
κL

ρ0c2
0

, T̄ =
T

Lρ0c2
0

. (2.52)

This results in an equation which has two non-dimensional physical parameters κ̄
and T̄ and has the same form as (2.51). In the remainder of the thesis the bars are
dropped. Again a third order finite element discretization is used to discretize the
equations.

2.4.3 Coupling procedure

Coupling between the fluid and the structure equations is obtained through the kine-
matic (2.1a) and dynamic (2.1b) boundary conditions at the fluid-structure interface.
A simple iterative coupling procedure is implemented to obtain the steady state so-
lution. This iterative approach proceeds as follows

1. Calculate ps = Hsfpf .

2. Calculate the new displacement of the structure, us from (2.51).

3. Obtain uf = Hfsus and update the location of the wall z = z0 + uf .

4. Calculate the new pressure in the flow pf from (2.50).

These four steps are repeated until the change in us is smaller than a certain threshold.

To obtain a numerically ’exact’ solution the steady state problem is solved mono-
litically on very fine matching meshes (nf = ns = 2000). When the meshes are
matching we have p = pf = ps and u = uf = us and therefore we can solve the
following equation for the displacement

κu + V0∂xu − T∂xxu = −V0∂xqe − pe, (2.53)

after which the pressure can be evaluated as

p = −V0∂xu. (2.54)

In order to obtain the ’exact’ solution a fourth order finite element discretization is
used to discretize the equations.

2.4.4 Results

2.4 Quasi-1D FSI problem 33

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

x

z 0

Fig. 2.21: Shape of the quasi-1D
channel.

For the test cases the following configuration is
used. The boundaries of the domain are xmin =
−0.5 and xmax = 0.5 and the initial shape of the
tube wall is given by

z0(x) = a0 − a1e
−a2x2

, (2.55)

where the parameters have the values a0 = 0.5,
a1 = 0.25 and a2 = 80. This means that we have
a smooth converging/diverging channel as shown in
Figure 2.21. The ’dry’ equilibrium position of the
membrane, qe, is equal to this initial shape.

The values used for the non-dimensional struc-
ture parameters are: κ = 50 and T = 0.04, which results in a rather flexible membrane.
The flow velocity is equal to V0 = 3, corresponding to a supersonic flow of Mach 3.
Initially the pressure in the flow, pf , the pressure behind the wall, pe, and the dis-

placement us are all equal to zero. We use again nf = 26 ·2k flow cells and ns = 5 ·2k

structure cells, with k ∈ {0, 1, 2, 3, 4, 5}, leading to a ratio of approximately 20%.
Instead of using the same method to interpolate displacements and pressures,

also different methods can be used as is done in [123]. We therefore investigated also
the performance where an accurate method (CP with r = 2) is used to transfer from
coarse to fine mesh (displacement) and a simpler and faster method (simple NN) from
fine to coarse mesh (pressure). The results are shown with the abbreviation CP-NN.

Location of the flow interface

The L2-error (2.45) of the position of the nodes on the flow interface, which is a
measure for the error made in the transfer of the displacement field, versus the number
of structure points is depicted in Figures 2.22 and 2.23. The solid line is obtained
with the conservative and the dashed line with the consistent approach. The gray
lines represent the discretization error (2.46) of the location: the solid gray line is
the discretization error on the flow interface and the dashed line on the structure
interface.

Simple NN is the least accurate method and the consistent approach for this
method does not converge at all. This can be explained by the fact that the error
in the energy transfer only converges with order one as was already shown for the
analytical test case. When projection is used NN is second order accurate and the
conservative approach performs slightly better than the consistent approach. The
performance of CP-NN is comparable to NN with projection. The transfer error for
the WR method is always smaller than the discretization error for both approaches.
The RBFI methods are second order accurate with the consistent approach giving the
most accurate results. Only for higher values of ns the transfer error is larger than
the discretization error, when CP or TPS is used. When the discretization of the total
system is second order or lower, instead of the third order discretization that is used
in the examples in this thesis, the transfer error is smaller than the discretization
error for all RBFI methods.

34 COUPLING OF NON-MATCHING MESHES

10
1

10
2

10
−8

10
−6

10
−4

10
−2

2.9

1.0

2.2

2.0

3.0

2.3

number of structure cells

er
ro

r
z

3.0

0.0

2.1

2.2

Direct
NN
NN proj
CP 2
WR
CP−NN

Fig. 2.22: Error in location flow interface
(−: conservative −−: consistent).

10
1

10
2

10
−8

10
−6

10
−4

10
−2

2.9

2.02.0
1.9

number of structure cells

er
ro

r
z

3.0

2.4
2.2

2.1

3.0

Direct
CP 0.25
CP 2
TPS
MQ

Fig. 2.23: Error in location flow interface -
RBFI methods (−: conservative −−: con-
sistent).

Pressure received by the structure

The relative L2-error of the pressure versus the number of points on the structure
interface is depicted in Figures 2.24 and 2.25. Because the value for the pressure is

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2.0

0.0

0.0

2.0

1.0

number of structure cells

er
ro

r
p s

2.0

0.0

2.0
1.5

2.0

1.0

Direct
NN
NN proj
CP 2
WR
CP−NN

Fig. 2.24: Error in pressure (−: conservative
−−: consistent).

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2.0

0.0

number of structure cells

er
ro

r
p s

2.0

1.5
1.5

1.0

0.9

Direct
CP 0.25
CP 2
TPS
MQ

Fig. 2.25: Error in pressure - RBFI methods
(−: conservative −−: consistent).

obtained from the spatial derivative of z, the convergence is one order lower than
for the displacement. It can be seen that the conservative approach leads again to
a zeroth order error for all methods, except for WR. The transfer error for the WR
method for both approaches and consistent NN with projection is only a little higher
than the discretization error. The reduction in order for the conservative WR as can
be seen in the analytical test case is not visible in Figure 2.24, because of the order
reduction already caused by the spatial derivative. The consistent RBFI methods are
first till 1.5 order accurate where CP with r = 2 gives the most accurate results. Only

2.4 Quasi-1D FSI problem 35

for larger values of ns the transfer error is higher than the discretization error, when
CP or TPS is used. The CP-NN method is first order accurate which can be explained
by the fact that simple NN is used for the pressure transfer.

−0.5 0 0.5
−6

−4

−2

0

2

4

6

x

p s

exact
consistent
conservative

Fig. 2.26: Pressure obtained with CP (r =
2) for nf = 52 and ns = 10.

−0.5 0 0.5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x
dz

exact
consistent
conservative

Fig. 2.27: Location of the flow interface ob-
tained with CP (r = 2) for nf = 52 and
ns = 10.

In Figures 2.26 and 2.27, the exact solution and the ones obtained with the con-
servative and consistent approach using the CP method with r = 2 are shown for
the pressure received by the structure, ps, and the displacement of the flow interface
uf , respectively. It can be seen that the large oscillations in the pressure felt by the
structure result in small deviations in the displacement of the flow interface. The
more flexible the structure, the larger these deviations become. The results for the
difference in work are similar to the ones obtained by the analytical test case.

10
0

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

cpu time (sec)

er
ro

r
z

NN
NN proj
CP 2
WR
CP−NN

Fig. 2.28: Efficiency for the location of the
flow interface (−: conservative −−: consis-
tent).

10
0

10
2

10
−3

10
−2

10
−1

10
0

cpu time (sec)

er
ro

r
p s

NN
NN proj
CP 2
WR
CP−NN

Fig. 2.29: Efficiency for the pressure (−:
conservative −−: consistent).

36 COUPLING OF NON-MATCHING MESHES

Efficiency

For this simple quasi-1D test problem the computation time needed for the transfer
algorithm is still considerable compared to the overall computation time. In Fig-
ures 2.28 and 2.29 the total cpu-time is plotted against the error in the position of
the flow interface and the pressure on the structure interface, respectively. It can be
seen that for an error of 1% in both the location of the flow interface and the pressure
received by the structure the CP-NN method is the most efficient. When going to
higher dimensions the search and projection algorithms needed by the WR method
and NN method with projection will become more elaborate. For the RBFI methods
the system to be solved is only dependent on the number of points on the interface
(and independent of the dimension of the problem). However, this is generally a sys-
tem with a large fill-in and therefore the computation time will grow fast with an
increasing number of points on the interface if no fast solution techniques [11, 82] are
used.

2.4.5 Conclusions

The conclusions drawn for the analytical test case also hold for this steady quasi-
1D FSI test case. Furthermore, the NN method is not suitable for the coupling of
non-matching meshes in FSI-computations, because the error in energy transfer over
the interface does not converge. The conservative approach should be used with the
WR method, because it gives the highest accuracy and efficiency. The other methods
show large oscillations in the pressure obtained by the structure when the conservative
approach is used. For these transfer methods the consistent approach provides the best
accuracy and efficiency.

2.5 Conclusions

In this chapter the difference in accuracy and efficiency between a conservative and a
consistent approach for different transfer methods is investigated. The performance is
investigated for two analytical test problems as well as a simple quasi-1D FSI prob-
lem. When the transfer method is based on a weighted residual formulation of the
coupling conditions, the highest accuracy and efficiency are obtained with the conser-
vative approach. For other transfer methods the conservative approach results in large
unphysical oscillations in the pressure received by the structure. When the structure
is flexible enough these oscillations can result in deviations in the displacement of the
flow interface. For these methods the consistent approach provides the best accuracy
and efficiency. Simple Nearest Neighbour interpolation should not be used, because
the error in both displacment and pressure does not converge when the consistent
approach is used in the quasi-1D testcase.

Overall, when the discretization order of the total system is higher than two, the
WR method is the best choice. However, its implementation is more elaborate and
the computation time is higher than for the methods based on radial basis function
interpolation. This is because the higher order of the WR method is only obtained

2.5 Conclusions 37

when the projection step is accurately performed. Therefore, when the discretization
of the total system is of order two or lower, the methods based on radial basis function
interpolation are preferred where the compact RBF with a large support radius is the
best choice. Using two different methods to interpolate displacements and pressures
proves also to be very efficient. An accurate method (RBF with high support radius)
is used to interpolate from coarse to fine and a less accurate, but much faster method
(simple Nearest Neighbour) is used to interpolate from fine to coarse.

Up to now only a simple steady quasi-1D fluid-structure interaction problem has
been considered. The conclusions drawn on the accuracy of using a conservative or
consistent approach for the different methods also hold for 2D and 3D. In these
higher dimensions the computation time needed by the transfer algorithm will be
small compared to the overall computation time. This is caused by the fact that the
fluid-structure interface is one dimension lower than the total domain. Therefore the
efficiency of a transfer method is not the most important issue.

In chapter 5 four of the transfer algorithms are applied to a real FSI computation
of 2D flow around a cylinder with deformable flap, to investigate their performance
for 2D applications and time-dependent problems.

38 COUPLING OF NON-MATCHING MESHES

Chapter 3

FLECS: a flexible coupling
shell

Computers and numerical algorithms have advanced significantly over the last decade
such that the simulation of complex problems involving more than one discipline has
become possible. This is good news, as today’s research more and more demands
dynamic simulation of a complex combination of systems involving multiple physical
models with very different length and time scales.

Numerical simulations involving multiple, physically different domains can be
solved effectively by coupling multiple simulation programs, or solvers. Each solver
deals with one particular physical domain, applying the numerical algorithms that
are most efficient for that domain. The solvers regularly exchange data to take into
account the effects of the other domains.

The coordination of the different solvers is commonly handled by a coupling shell.
This can be a separate program, or a sub-program (a set of subroutines) embedded
in one of the solver programs, or a part of one large program that contains the
individual solvers as sub-programs. The coupling shell synchronizes the execution of
the solvers and handles the transfer of data from one physical domain to another. In a
coupled fluid-structure simulation, for instance, through the coupling shell pressures
are transferred from the fluid to the structure interface, and displacements from the
structure to the fluid interface. The transfer operation can be a straightforward copy
operation in the case that the two solvers use compatible meshes and discretizations.
In general, however, the transfer operation involves the execution of a non-trivial
interpolation or projection algorithm when non-matching meshes are involved, see
chapter 2.

The majority of coupling shells are embedded subprograms that have been devel-
oped for coupling two specific solvers, using one or a limited set of transfer algorithms.
This makes it hard, if not impossible, to replace one solver by another, or to exper-
iment with new transfer algorithms. One exception is the coupling library MpCCI

(Mesh based Parallel Code Coupling) [52], a generic coupling shell that can be used

40 FLECS: A FLEXIBLE COUPLING SHELL

both as an embedded sub-program and as a separate program. From the users point
of view, MpCCI is a collection of subroutines and data types that can be called from
a solver program to transfer data between solvers. Although MpCCI is relatively easy
to use and provides many advanced features, it is less suitable for a scientific research
community. MpCCI only contains a few simple transfer algorithms and no numerical
acceleration techniques. These acceleration techniques, such as Aitken sub-iterations
[67, 89], Newton-Krylov methods [87], reduced order methods [112] or multi-level tech-
niques [124], are needed to increase the efficiency of partitioned multi-disciplinary
computations. However, since MpCCI is a commercial product, the source code is
not accessible and therefore the user can not modify the implementation schedule of
MpCCI. This means that MpCCI is not suitable for research on developing new data
transfer algorithms or acceleration techniques.

The flexible coupling shell Flecs is a generic, open-source coupling shell that
tries to overcome the disadvantages of MpCCI. We developed Flecs jointly with the
Dutch Centrum Wiskunde & Informatica (CWI), and Habanera, a small company
specialized in numerical software development. The contribution of the author of this
thesis to this development consists of thinking along about the functionality of Flecs

from the user’s point of view, the implementation of four transfer algorithms and the
application of the coupling shell to perform a real fluid-structure interaction simula-
tion with a separate flow and structure solver. The aim of Flecs is not to achieve
the best possible efficiency or to support a large feature set, but to provide a flexible
platform for developing new data transfer algorithms and coupling schemes. Another
advantage of Flecs is that numerical algorithms implemented within a Flecs cou-
pling server can be reused when using different solvers. A similar setup has been
started in Munich by the development of FSIce [91], but there the focus lies on fast
search algorithms for the coupling between Cartesian meshes.

Since Flecs has to deal with separate solver processes, that have been started
independently, it is not possible to use MPI-1 for exchanging data between those
processes. For that reason, Flecs will be based on MPI-2 [59]. Also the language
interoperability, that enables mixed-language programming, e.g., C++ and Fortran

90, is an interesting feature of MPI-2 for Flecs, enlarging the set of usable solvers.

The remainder of this chapter describes the design of Flecs and explains how
Flecs can be used to couple two or more solvers. Section 3.1 starts with a high-level
description of Flecs. In particular, it explains how Flecs is composed of a client-
side library that is to be linked to the solver programs, and a server-side library that
handles the data transfer between the solvers. In section 3.2 a description is given of
the client library. The server library, together with the server program and transfer
algorithm, is discussed in section 3.3. Finally, section 3.2.1 contains an example of
the use of Flecs to couple a flow and structure solver to perform fluid-structure
interaction computations.

3.1 Design Overview 41

3.1 Design Overview

The design of Flecs is based on a client-server model in which two solvers, also
called clients, communicate with a separate program called the coupling server that
is responsible for transferring data from one physical domain to another. This design
is minimally intrusive in the sense that each solver program can be started indepen-
dently, using its standard start-up procedure; there is no need to change the structure
of the solver programs. This design also makes it possible to run the solvers on two
different computers that are located at different research institutes.

Flecs consists of a client library that is to be called from a solver program,
and a server library that can be used to implement a coupling server. The client
library provides subroutines for establishing a connection with the coupling server;
for describing the setup of the items that have to be coupled; for describing the data
that are to be transferred to and from the server; for sending data to the server; and
for receiving data back from the server. The server library provides subroutines for
establishing a connection with the solver programs; for listening for requests from
those solvers; and for handling the communication with the solvers. It does not,
however, provide subroutines for transferring data from one domain to another; these
must be implemented by the user.

Both the client library and the server library have been implemented in C. However,
they have been specifically designed in such a way that one can easily implement
bindings for other programming languages such as Fortran 90 or C++. This means
that one can use the Flecs libraries in programs that have been implemented in other
programming languages than C. In fact, the solvers and the coupling server can all be
implemented in different programming languages.

proces

client library

data exchange

Symbols:
Solver A Solver BCoupling server

Fig. 3.1: Schematic representation of Flecs.

When a solver program consists of multiple parallel processes, then each process
will be linked to its own copy of the client library, and will communicate with the
coupling server through one of the solver processes. This is illustrated schematically in
Figure 3.1. Obviously also data is exchanged between the processes within one solver,
which is not indicated in the figure. Because the data transfer is handled in a sepa-
rate program – the coupling server – it is possible to adopt different parallelization
strategies in the solvers and the transfer algorithm. In the simplest case the coupling

42 FLECS: A FLEXIBLE COUPLING SHELL

server consists of a single process (as in Figure 3.1) that executes the transfer algo-
rithm sequentially. In a more advanced setup, the transfer algorithm is executed in
parallel by multiple server processes, as illustrated in Figure 3.2. However, the data
exchange with the solvers is handled by a single server process that distributes the
data over the other server processes. This is already possible with the current version
of Flecs. The ultimate parallel strategy of the solvers and the transfer algorithm

proces

client library

data exchange

Symbols:
Solver A Coupling server Solver B

Fig. 3.2: Parallel execution of the coupling server.

is shown in Figure 3.3, where the different processes of the solvers directly exchange
data with the (multiple) processes of the coupling server. This strategy is currently

proces

client library

data exchange

Symbols:
Solver A Coupling server Solver B

Fig. 3.3: Total parallel execution.

under development.
In order to limit the complexity of the coupling server, it can only couple two

solver programs at a time. However, one can couple a solver program to two other
solver programs by starting a second coupling server, as illustrated in Figure 3.4. To
enable such a setup the client library keeps track of multiple sessions with multiple
coupling servers. Whenever a solver process calls one of the subroutines in the client
library it has to pass an additional argument that specifies the coupling server with
which it wants to exchange data.

3.2 The Client Library and its Usage 43

proces

client library

data exchange

Symbols:
Solver C

Solver B Coupling server B

Coupling server A

Solver ASolver A

Fig. 3.4: Configuration in which one solver is coupled to two other solvers through two
coupling servers.

Flecs uses MPI-2 to transfer data between the solver processes and the coupling
server. This has two advantages. First, MPI-2 hides many low-level, system-dependent
communication details so that Flecs can easily be ported to different systems. Sec-
ondly, MPI-2 implementations typically provide fast communication subroutines that
help to minimize the communication overhead. A disadvantage is that the MPI-2 stan-
dard is not yet as widely implemented as the MPI-1 standard. Note that the solver
program does not have to use MPI-2 itself to exchange data between its own processes,
it is only needed in the Flecs functions added to the program.

3.2 The Client Library and its Usage

The client library provides subroutines for establishing a connection with the coupling
server; for describing the items that define the coupling; for describing the data that
are to be transferred to and from the server; for sending data to the server; and
for receiving data back from the server. When a solver program consists of multiple
parallel processes, then each process will be linked to its own copy of the client library,
and will establish a separate connection with the coupling server.

The Flecs client library exports a number of constants (Table 3.1) and functions
(Table 3.2) with which a solver program can setup a connection to a coupling server;
define a number of item sets on the interface between two physical domains; define a
number of data sets associated with the item sets; send a data set to another solver;
receive data from the other solver; and perform a number of miscellaneous tasks,
including error handling. Most functions return an integer value that equals zero if
no error occurred, and non-zero otherwise. A more detailed description of the the
functions and their arguments is given in [80]. The constant FLECS SUCCESS – which

44 FLECS: A FLEXIBLE COUPLING SHELL

is defined as zero – can be used to check for errors. The function FLECS ErrorString

can be used to convert an error code to a human-readable string. By default Flecs

terminates a program when an error occurs. This behaviour can be changed by calling
the function FLECS SetErrorMode.

Table 3.1: An overview of the constants exported by the Flecs client library.

FLECS VERSION Expands to the version number of the client library
FLECS SUCCESS Indicates that a function call completed without errors
FLECS NULL HANDLE Represents a null-handle
FLECS ERRORS ABORT Indicates that a program should be aborted if an error

occurs
FLECS ERRORS RETURN Indicates that an error code should be returned if an error

occurs
FLECS CHAR Indicates that an array contains data of type char

FLECS INT Indicates that an array contains data of type int

FLECS DOUBLE Indicates that an array contains data of type double

Initialization

To start a coupled simulation, two solvers first have to initialize the client library
by calling the function FLECS Init. This function also initializes the MPI library by
calling MPI Init if the solver has not already done that, and must be called by all
solver processes. No other client function may be called before FLECS Init; the only
exception is FLECS SetErrorMode. After the initialization, the solvers must set up a
connection to a common coupling server by calling the client function FLECS Connect.

To be able to create a coupling between two solvers, the solvers first have to inform
the coupling server about the structure of the coupling. This is done by creating one
or more item sets. An item set is for example a description of the grid points that
lie on one side of the interface between two physical domains. It is created by calling
the function FLECS NewItemSet. With the function FLECS UpdateItems (a part of)
a specific item set can be updated or initialized. When the items are relocated over
the different processes in a parallel computation, for example after grid adaptation,
the function FLECS RemapItems has to be called to pass this information on to the
server.

After one or more item sets have been defined on each solver, a coupling be-
tween two solvers can be created. A coupling establishes a relation between two item
sets such that data can be transferred between them. It can be viewed as a pair of
item sets on different sides of an interface, and is created by calling the function
FLECS NewCoupling. More than one coupling can be created between two solvers,
for example when data has to be exchanged at several grid levels in a multi-level
approach. A single item set can also take part in more than one coupling.

The solvers also have to inform the coupling server about the structure of the
data that has to be exchanged between them. This is done by creating one or more

3.2 The Client Library and its Usage 45

Table 3.2: An overview of the functions exported by the Flecs client library

Initialization functions
FLECS Init Initializes MPI, parses the program names, opens the MPI

port, publish the name of the server, save the server ad-
dress

FLECS Connect Connects solver and coupling server
FLECS NewItemSet Registers set of items on the coupling interface with the

coupling server
FLECS NewCoupling Defines coupling between an item set on this solver to an

item set on another solver
FLECS NewDataSet Defines a data set associated with a point set

Finalization functions
FLECS Disconnect Disconnects a solver from a coupling server
FLECS Shutdown Calls MPI finalize and cleans up the allocated memory
FLECS DelItemSet Destroys a previously registered item set
FLECS DelCoupling Destroys a previously created coupling
FLECS DelDataSet Destroys a previously defined data set

Data exchange functions
FLECS SendDataSet Sends adata set to another solver via a coupling server
FLECS RecvDataSet Receives a transformed data set from another solver via a

coupling server
FLECS Send Sends an arbitrary data array to another solver
FLECS Recv Receives an arbitrary data array from another solver

Miscellaneous functions
FLECS UpdateItems Updates (a part of) all the items of a registered item set
FLECS RemapItems Remaps the items “owned” by the current client process

in parallel computations
FLECS TransferHint Sends a “hint” (a string) to the transfer algorithm on the

server
FLECS ErrorString Converts an error code to a human-readable error message
FLECS SetErrorMode Specifies how errors are to be handled

data sets. A data set is essentially a two-dimensional floating point array of which
the columns are associated with the items in an item set. A data set often represents
a physical quantity, like velocity or pressure, but it can also represent data that does
not have a direct physical meaning. Data sets are created by calling the function
FLECS NewDataSet. Obviously, more than one data set can be associated with an
item set.

46 FLECS: A FLEXIBLE COUPLING SHELL

Exchanging data

Once the solvers have set up a connection to the coupling server and have defined
one or more item sets and data sets, they can exchange data by calling the functions
FLECS SendDataSet, FLECS RecvDataSet, FLECS Send and FLECS Recv. The first pair
transfers a data set from one solver to the other, and typically invokes a transformation
algorithm on the coupling server. The second pair transfers an arbitrary data array
between the solvers and does not involve any transformation algorithm. This pair of
functions is typically used to communicate convergence and time stepping information
between two solvers. Both pairs of functions require that a send operation executed
by one solver is matched by a corresponding receive operation executed by the other
solver. To be precise, when one solver calls FLECS SendDataSet, it will wait until the
other solver has called FLECS RecvDataSet, and the other way around. The same is
true for the other pair of functions. An example of the use of the functions of the client
library in a coupled fluid-structure interaction computation is given in section 3.2.1.

To improve performance, a solver can tell the coupling server to start a certain com-
putation, or to postpone a computation by calling the function FLECS TransferHint.
This is particularly useful when the coupling scheme makes it possible to run certain
computations in parallel.

A solver can be coupled to more than one other solver by setting up connections
to different coupling servers and by defining multiple item sets and data sets. For
instance, to create the configuration in Figure 3.4, solver C makes two calls to the
function FLECS Connect: one to set up a connection to Coupling server A, and one to
set up a connection to Coupling server B. After that it creates at least two item sets
and two data sets, one for each coupling server.

The Flecs client library and coupling server manage a number of internal data
structures that are related to client-server connections, item sets and data sets. Each
data structure is identified by a unique integer number called a handle. Such a handle
is returned to a solver whenever it calls a client function that creates a new internal
data structure, and remains valid until the solver calls a function that destroys the
internal data structure.

Use with parallel solvers

The client library supports parallel solvers provided that they use the same imple-
mentation of the MPI-2 standard as the one used by Flecs. Except when indicated
otherwise, the Flecs client functions have collective calling semantics. This means
that they must be called by all solver processes at the same point in the solver pro-
gram. Formulated differently, a collective function blocks the calling process until
all other processes have called the same function. To be precise, not all solver pro-
cesses have to call the client functions, but only those that have called the function
FLECS Connect. For example, when in a fluid-structure computation a process of the
flow solver does not contain any points on the fluid-structure interaction interface,
this process does not have to exchange data with the structure solver and therefore
only has to call the function FLEC Init, but no other Flecs functions. In this way it

3.2 The Client Library and its Usage 47

is possible to limit the data exchanges between two solver programs to those solver
processes that manage one or more items on the coupling interface.

3.2.1 Implementation example

In Chapter 5 Flecs is used to couple a flow and a structure solver to perform a
fluid-structure interaction simulation. In Table 3.3 the setup of the flow and structure
solver are shown after they are adapted to work with Flecs. To be able to perform
the coupled computation only function calls from the Flecs client library have to be
added, whereas the main structure of the solvers remains the same.

Both solvers start with their own standard initialization followed by the initializa-
tion of Flecs. In this example the flow solver creates two different item sets, since
the displacement is defined in the vertices of the cells, while the pressure is definined
in the cell centres. The structure solver uses only one item set, as both displacement
and pressure force are defined in the same location. The item set of the structure is
coupled to both item sets of the flow by creating two couplings, one for transferring
the displacement (with coupling handle coupU id) and one for transferring the pres-
sure (with coupling handle coupP id). The two data sets (pressure and displacement)
are in the structure both associated with the same item set, while in the flow solver
they are each associated to a different item set, one located in the cell vertices and
the other in the cell centres. During the initialization part the solvers also exchange
information about the size and the number of the time steps, convergence criteria,
setup of the time integration scheme and the nature of the data to be transferred.

During the time-loop (and sub iterations within a time step) the flow and structure
solver repeatedly exchange their data sets and update the item sets. Also convergence
information is exchanged to synchronize the two solvers. When both solvers are fin-
ished they call the Flecs finalization functions before they invoke their own standard
finalization procedure.

For the server we use the minimalistic sequential program shown in section 3.3.1.
The functions that make up the data transfer algorithms are implemented separately
and the different transfer algorithms mentioned at the end of section 3.3.2 can be
used. Both solvers and the transfer algorithm are running sequential in this example,
but they can each be located on a different computer.

48 FLECS: A FLEXIBLE COUPLING SHELL

Table 3.3: Example of the use of Flecs in a Fluid-Structure interaction computation
FLOW SOLVER STRUCTURE SOLVER

Initialization

// * initialize flow solver * // // * initialize structure solver * //

my name = "flow"; my name = "structure";
server name = "flecs"; server name = "flecs";
FLECS SetErrorMode(FLECS ERRORS ABORT); FLECS SetErrorMode(FLECS ERRORS ABORT);
FLECS Init(&argc,&argv); FLECS Init(&argc,&argv);
FLECS Connect(server name,my name,&conn id); FLECS Connect(server name,my name,&conn id);

FLECS Send(conn id,&timeStep,1,FLECS DOUBLE); FLECS Recv(conn id,&timeStep,1,FLECS DOUBLE);
FLECS Send(conn id,&time,1,FLECS DOUBLE); FLECS Recv(conn id,&time,1,FLECS DOUBLE);
FLECS Send(conn id,&timeIter,1,FLECS INT); FLECS Recv(conn id,&timIter,1,FLECS INT);
FLECS Send(conn id,&nbTimeIter,1,FLECS INT); FLECS Recv(conn id,&nbTimeIter,1,FLECS INT);
FLECS Send(conn id,&esd order,1,FLECS INT); FLECS Recv(conn id,&esd order,1,FLECS INT);
FLECS Send(conn id,&subitNbMax,1,FLECS INT); FLECS Recv(conn id,&subitNbMax,1,FLECS INT);
FLECS Send(conn id,&subitCrit,1,FLECS DOUBLE); FLECS Recv(conn id,&subitConv,1,FLECS DOUBLE);
FLECS Send(conn id,&press out,1,FLECS INT); FLECS Recv(conn id,&press in,1,FLECS INT);

FLECS NewItemSet(conn id,"coords disp",nbDisp,
pointU ids,&isetU id);

FLECS NewItemSet(conn id,"coords struc",nbStruc,
point ids,&iset id);

FLECS NewItemSet(conn id,"coords press",nbPress,
pointP ids,&isetP id);
FLECS NewDataSet(isetP id,"pressure",1,&dsetP id); FLECS NewDataSet(iset id,"pressure",1,&dsetP id);
FLECS NewDataSet(isetU id,"displacement",dim,
&dsetU id);

FLECS NewDataSet(iset id,"displacement",dim,
&dsetU id);

FLECS UpdateItems(isetU id,coords disp); FLECS UpdateItems(iset id,coords struc);
FLECS UpdateItems(isetP id,coords pres);

FLECS NewCoupling(isetU id,&coupU id); FLECS NewCoupling(iset id,&coupU id);
FLECS NewCoupling(isetP id,&coupP id); FLECS NewCoupling(iset id,&coupP id);

During timestepping and subiterations

// * solve flow equations * //

FLECS SendDataSet(coupP id,dsetP id,press); FLECS RecvDataSet(coupP id,dsetP id,press);

// * solve structure equations * //

FLECS Recv(conn id,&subitFinished,1,FLECS INT); FLECS Send(conn id,&subitFinished,1,FLECS INT);
FLECS RecvDataSet(coupU id,dsetU id,disp); FLECS SendDataSet(coupU id,dsetU id,disp);

// * update flow mesh * //

FLECS UpdateItems(isetU id,coords disp); FLECS UpdateItems(iset id,coords struc);
FLECS UpdateItems(isetP id,coords pres);

Finalization

FLECS DelCoupling(coupU id); FLECS DelCoupling(coupU id);
FLECS DelCoupling(coupF id); FLECS DelCoupling(coupF id);
FLECS DelItemSet(psetF id); FLECS DelItemSet(pset id);
FLECS DelItemSet(psetU id);

FLECS Disconnect(conn id); FLECS Disconnect(conn id);
FLECS Shutdown(); FLECS Shutdown();

// * finalize flow solver * // // * finalize structure solver * //

3.3 The Coupling Server 49

3.3 The Coupling Server

The coupling server consists of two parts, as shown in Fig. 3.5: a communication and

coordination layer, and a transfer algorithm.

Transfer Algorithm

Communication and Coordination Layer

Fig. 3.5: The coupling server, consisting of a communication and coordination layer and a
transfer algorithm. The arrows indicate the flow of data between the coupling server and two
solver programs.

The communication and coordination layer handles the initialization and finaliza-
tion of the server; exchanges data between the server and the two solver programs;
manages the data structures – including item sets, couplings, and data sets – that
have been created by the client library on behalf of the solver programs; and manages
the coupling-specific data structures that have been created by a transfer algorithm.

A number of constants (Table 3.4) and functions (Table 3.5) are exported by
the server library that can be used to implement a coupling server. A more detailed
description of the the functions and their arguments is given in [80].

Table 3.4: An overview of the constants exported by the Flecs server library.

FLECS VERSION Expands to the version number of the client library
FLECS SUCCESS Indicates that a function call completed without errors
FLECS NULL HANDLE Represents a null-handle
FLECS ERRORS ABORT Indicates that a program should be aborted if an error

occurs
FLECS ERRORS RETURN Indicates that an error code should be returned if an error

occurs
FLECS LEFT SIDE Identifies the “left” side of a coupling
FLECS RIGHT SIDE Identifies the “right” side of a coupling
FLECS LEFT TO RIGHT Indicates that data is to be transferred from the left to

the right side of a coupling
FLECS RIGHT TO LEFT Indicates that data is to be transferred from the right to

the left side of a coupling

A server program must first initialize the server library by calling the function
FLECS Init. After that, it must call the function FLECS SetTransfer to install a data
transfer algorithm. Such an algorithm is represented by a struct of type flecs transfer t

containing a number of function pointers, see also section 3.3.2. These functions will
be called by the server library on behalf of a solver. Next, the server must set up

50 FLECS: A FLEXIBLE COUPLING SHELL

Table 3.5: An overview of the functions exported by the Flecs server library

Main functions
FLECS Init Initializes the server library
FLECS Shutdown Closes the server library
FLECS Connect Sets up a connection between the coupling server and

two solvers
FLECS Disconnect Ends a connection with the two solver programs
FLECS MainLoop Processes one transaction with a solver
FLECS SetTransfer Installs a transfer algorithm
FLECS InitTransfer Initializes a transfer algorithm
FLECS NewDataSet Defines a data set associated with a point set

Miscellaneous functions
FLECS SetLogLevel Controls the amount of informational messages
FLECS SetServerName Sets the name of the coupling server
FLECS SaveServerAddr Saves the communication address of the server to a file
FLECS ErrorString Converts an error code to a human-readable error mes-

sage
FLECS SetErrorMode Specifies how errors are to be handled

a connection with two solver programs by calling the function FLECS Connect. This
function blocks until both solvers have contacted the server. After that, the server
must repeatedly call the function FLECS MainLoop that processes one solver request
at a time. If necessary, it will call one of the data transfer functions installed by
FLECS SetTransfer to handle the request. The function FLECS MainLoop returns a
special error code to indicate that both solvers have finished and want to close the con-
nection with the server. The server should then call the function FLECS Disconnect to
close the connection with the solvers. Finally, the server should call FLECS Shutdown

to close the server library and free all resources that have been allocated by the li-
brary. After calling this function, no other server functions can be called. More details
on the setup of the server program are given in section 3.3.1.

The second part, the transfer algorithm, handles the conversion of a data set from
one point set to another point set. It is represented by a small number of functions
that are called by the communication and coordination layer to initialize the algo-
rithm; to initialize the data associated with a coupling between two point sets; and
to transfer a data set between two point sets. This part of the server is based on a
plug-in architecture, that makes it easy to implement new transfer algorithms, see also
Sect. 3.3.2. Although these functions have been written in the programming language
C, the transfer algorithm itself can be implemented in any programming language.

By splitting the coupling server into two parts, one can experiment with different
types of transfer algorithms without having to worry about non-essential details such
as communication between the server and the solver programs.

3.3 The Coupling Server 51

3.3.1 The Server Program

The server program itself is in principle not given, but must be programmed by the
user using the functions of the server library. In this way the coupling server can be
easily adapted to specific needs. An example of a minimalistic server program is shown
below in Program 1. To keep the code clear, the actual data transfer algorithm is not
included. That is, the functions making up a data transfer algorithm (NewCoupling,
DelCoupling, etc.) are declared in a separate header file transfer.h and are imple-
mented elsewhere. More details on the transfer algorithm are given in section 3.3.2.

#include <flecs_server.h>

#include "transfer.h"

int main (int argc, char** argv)

{ flecs_transfer_t transf;

int result;

FLECS_InitTransfer (&transf);

transf.NewCoupling = NewCoupling;

transf.DelCoupling = DelCoupling;

transf.InitItems = InitItems;

transf.UpdateItems = UpdateItems;

transf.TransferData = TransferData;

FLECS_SetTransfer (&transf);

FLECS_SetErrorMode (FLECS_ERRORS_ABORT);

FLECS_Init (&argc, &argv);

FLECS_Connect ();

do

{ result = FLECS_MainLoop (); }

while (! result);

FLECS_Shutdown ();

return FLECS_SUCCESS;

}

Program 1: Simpel server program

The do while loop is executed repeatedly until result becomes FALSE. The sub-
routine FLECS MainLoop ’listens’ if there is a message to be received, the server copies
the data out of the send buffer and will act accordingly. Assume that FLECS MainLoop

receives a message that a new coupling (e.g., the application demands a multigrid ap-
proach) has to be made, because solver A has called Flecs NewCoupling. Then the
coupling server expects a similar request by solver B, followed by new item sets and
associated data sets for both solvers. This means that the user has to take care that
the calls to Flecs routines, included in the programs of the solvers, match, otherwise
he/she will receive a (human-readable) error.

A coupling server may be started with multiple parallel processes so that one can
implement a parallel data transfer algorithm. However, in the current version only one

52 FLECS: A FLEXIBLE COUPLING SHELL

server process (the root) will communicate with the solver programs and will call the
transfer algorithm functions. These latter functions are responsible for sending data
to and collecting data from the other server processes. Some server functions, like
FLECS Connect, must be called by all server processes. These functions synchronize
the error status so that the same error code is returned on each process. The example
program in Program 2 shows how a parallel coupling server could be implemented.
All processes call the functions FLECS Init and FLECS Connect to initialize the server
library and to set up a connection with the solver programs. After that, only the root

calls FLECS MainLoop to process solver requests. All the other processes wait for data
to be processed from the root. Once the root has notified the workers that they
should stop, all processes close the connection with the solvers and close the server
library.

int main (int argc, char** argv)

{

int my_rank;

int ierror;

FLECS_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

/* Initialize the transfer algorithm ... */

FLECS_Connect ();

if (root)

{

do

{

ierror = FLECS_MainLoop ();

}

while (ierror == 0);

stop_workers ();

}

else

{

worker_task ();

}

FLECS_Disconnect ();

FLECS_Shutdown ();

return FLECS_SUCCESS;

}

Program 2: Parallel server program

The communication between the root and the other processes is not shown
here. This takes place in the data transfer algorithm functions, and the function

3.3 The Coupling Server 53

worker task and stop worker. The latter are not part of the server library and are
assumed to be implemented elsewhere. The initialization of the transfer algorithm has
been omitted for brevity; see the previous example program.

3.3.2 The transfer algorithm

The actual data transfer algorithm must be implemented by the user. This can be done
by specifying the functions (see Table 3.6) that are called from the server function
FLECS MainLoop. The Flecs server library uses a struct of type flecs transfer t

which contains pointers to these functions.

Table 3.6: The function pointers in a struct flecs transfer t that make up a transfer
algorithm

Essential transfer functions
NewCoupling Creates a new coupling between two point sets
DelCoupling Deletes a coupling
InitItems Initializes the items on one side of a coupling
UpdateItems Updates (a part of) all the items on one side of a coupling
TransferData Transfers data from one side of a coupling to the other side

Optional transfer functions
UseHint Handles a “hint” sent by one of the solvers

The first five functions are obligatory. The function NewCoupling should allocate
the data structures that are necessary to transfer a data set from one side of a physical
domain to the other side. It will be called when two solvers create a new coupling
between two point sets. For initializing the data structure of the items on one side
of a coupling the function InitItems is used. This function is called twice after the
transfer function NewCoupling has been called; once for the first, or ’left’ side of
the coupling, and once for the second, or ’right’ side of the coupling. During the
computation the items of one side of a coupling have to be updated by the function
UpdateItems. It will be called at least twice after the transfer function InitItems has
been called to initialize the items; once for the ’left’ side of the coupling and once for
the ’right’ side of the coupling. It may be called more than once if one of the solvers
updates its items. The actual data transfer is handled by the function TransferData.
It transfers a data set from one side of a coupling to the other side. This function will
be called when the two solvers have called the client function FLECS SendDataSet

and FLECS RecvDataSet.
The function UseHint is optional; if not specified, Flecs will use a dummy func-

tion that does nothing. It can be used to improve performance, a solver can tell
the coupling server to start a certain computation, or to postpone a computation.
This is particularly useful when the coupling scheme makes it possible to run certain
computations in parallel.

Currently, the functions are implemented for several transfer algorithms given in
chapter 2. Consistent simple nearest neighbour interpolation (section 2.2.1), consistent

54 FLECS: A FLEXIBLE COUPLING SHELL

and conservative radial basis function interpolation (section 2.2.3) and a mix of nearest
neighbour interpolation and consistent radial basis function interpolation (see also
section 2.4.4) can be used for the transfer of information.

3.3.3 Acceleration techniques

For strongly coupled multi-disciplinary problems, sub-iterations are needed within one
time step to stabilize the computation. Since performing one iteration in these coupled
problems is very computationally demanding the use of acceleration techniques is
needed to limit the number of sub-iterations in order to increase the efficiency of
the computations. When higher order time integration methods are used, which are
proven to be very efficient for FSI simulations [123], the larger time step allowed by
these methods gives the need to use even more sub-iterations within one time step
and reducing their number is crucial for further efficiency improvements.

To reduce the number of sub-iterations Aitken acceleration [67, 89], Newton-
Krylov methods [87] or reduced order models [112] can be used. All three methods can
be implemented as subroutines within the coupling server without having to change
the separate solvers involved. The server program only has to store data from previous
iterations.

The computational costs of a simple sub-iteration can be reduced by multilevel
acceleration techniques [124]. Coupling the two solvers not only on the fine meshes,
but also on coarser meshes leads to a significant efficiency improvement, since com-
putations on a coarse mesh are less computatinally demanding. The use of these
techniques is simplified by Flecs, as Flecs supports the use of multiple grids on a
single interface. In this way the information transfer over the interface at both coarse
and fine grid levels can be handled.

Chapter 4

Mesh movement based on
radial basis function
interpolation

To be able to perform the unsteady flow computations accurately and efficiently, a fast
and reliable method is needed to adapt the computational grid to the new domain.
Regenerating a grid each time step in an unsteady computation is a natural choice.
However, the generation of a complex grid is a time-consuming and nontrivial task.
Also remapping the flow state on a new grid involves a loss of accuracy. Therefore, a
fast and accurate algorithm is needed to update the grid automatically.

For structured meshes there are efficient techniques available to deform the mesh,
such as Transfinite Interpolation [113]. The displacements of points at the boundaries
of the mesh are interpolated along grid lines to points in the interior of the mesh.
However, these techniques are unsuitable for unstructured grids. The greater flexi-
bility of unstructured grids is required for the meshing of complex domains and grid
adaptation. Therefore, we are in this chapter interested in efficient mesh movement
techniques for unstructured grids.

Two different mesh movement strategies are known for unstructured grids: grid-
connectivity and point-to-point schemes. The first exploits the connectivity of the
internal grid points. The connection between the grid points is represented for example
by springs [6, 43, 39] or as solid body elasticity [84]. Special instances of this continuous
approach include moving grids based on Laplacian and Biharmonic operators [64]. All
the methods based on grid connectivity involve solving a system of equations involving
all the flow points and can therefore be quite expensive. Hanging nodes, encountered in
unstructured meshes when only one of the adjacent elements at an edge is subdivided,
require special treatment.

The other strategy moves each grid point individually based on its position in
space, the so called point-by-point schemes. Hanging nodes are no problem and also
the implementation for partitioned meshes, occurring in parallel flow computations,

56 MESH MOVEMENT BASED ON RBF INTERPOLATION

is straightforward. This might be especially useful when Finite Volume flow solvers
are adapted to deal with moving meshes, because they generally do not already in-
corporate efficient algorithms to deform the mesh with a pseudo-structural approach.
However, until now point-by-point schemes are only applied to the boundary nodes of
multi-grid blocks [94]. The interior mesh of the blocks is adapted with fast techniques
available for structured grids.

Radial basis functions (RBF’s) have become a well-established tool to interpolate
scattered data, because of their excellent approximation properties [33]. They have
been successfully applied to areas as diverse as computer graphics [34], geophysics [19,
18], error estimation [73] and the numerical solution of partial differential equations
[71, 72]. They can also be used in fluid-structure interaction computations to transfer
information over the discrete fluid-structure interface, which is often non-matching
[13, 100, 101] as is shown in chapter 2. An interpolation function is used to transfer
the displacements known at the boundary of the structural mesh to the boundary of
the aerodynamic mesh. But why not interpolate the displacement to all the nodes of
the flow mesh, instead of only to the boundary? This idea has already been applied
to the block boundaries in multi-block grids [94, 103]. There it was mentioned that
applying it to the whole internal grid would be computationally very expensive. This is
because for the structured part of multi-block meshes much more efficient techniques
are known. We want to investigate if interpolation of the displacement with radial
basis functions does result in an efficient point-by-point mesh movement scheme for
completely unstructured grids. Only recently similar investigations have started at
Bristol University with promising results [95, 96, 97].

The objective of this chapter is to develop a new mesh movement scheme for un-
structured meshes based on interpolation with radial basis functions. The principle
of interpolation with RBF’s applied to mesh movement is introduced in section 4.1.
There are various RBF’s available in literature that can be used for the new method
and we want to determine which one generates the best meshes and which one is the
most efficient. To be able to compare the deformed meshes generated with the differ-
ent RBF’s, a mesh quality metric is introduced in section 4.2. This metric is used in
section 4.3 to determine the best RBF’s for our mesh movement scheme, by applying
the method to several severe test cases. For one of the test cases the results are also
compared with mesh deformation using semi-torsional springs. Furthermore, realistic
results on a distorted 2D mesh are presented, where flow computations are performed
around a NACA-0012 airfoil. In section 4.4 it is investigated whether incorporating
rotational information is beneficial for the new mesh movement strategy. The impor-
tance of smooth mesh deformation for higher order time-integration schemes is shown
in section 4.5. To show the capability of the new method for 3D applications two
test cases are considered in section 4.6. Finally, in section 4.7, different techniques are
investigated to improve the overall efficiency of the computation.

4.1 Radial basis function interpolation 57

4.1 Radial basis function interpolation

For mesh deformation, radial basis function interpolation can be used to derive the
displacement of the internal fluid nodes given the displacement of the structural nodes
on the interface. The interpolation function, s, describing the displacement in the
whole domain, can be approximated by a sum of basis functions

s(x) =

nb∑

j=1

γjφ(||x − xbj
||) + q(x), (4.1)

where xbj
= [x1

bj
, x2

bj
, xd

bj
] are the centres in which the values are known, in this

case the boundary nodes, with d the dimension, q a polynomial, nb the number of
boundary nodes and φ a given basis function with respect to the Euclidean distance
||x||. The coefficients γj and the polynomial q are determined by the interpolation
conditions

s(xbj
) = dbj

, (4.2)

with db containing the discrete known values of the displacement at the boundary,
and the additional requirements

nb∑

j=1

γjp(xbj
) = 0, (4.3)

for all polynomials p with a degree less or equal than that of polynomial q. The
minimal degree of polynomial q depends on the choice of the basis function φ. A
unique interpolant is given if the basis function is a conditionally positive definite
function. If the basis functions are conditionally positive definite of order m ≤ 2, a
linear polynomial can be used [13]. In this thesis we only apply basis functions that
satisfy this criterion. A consequence of using a linear polynomial is that rigid body
translations are exactly recovered.

The values for the coefficients γj and the linear polynomial can be obtained by
solving the system

[
db

0

]
=

[
Φbb Qb

QT
b 0

] [
γ

β

]
, (4.4)

with γ containing the coefficients γj , β the coefficients of the linear polynomial q, Φbb

an nb × nb matrix containing the evaluation of the basis function φbibj
= φ(||xbi

−
xbj

||) and Qb an nb× (d+1) matrix with row j given by [1 xbj
]. The possibilities

of solving the system in a more efficient way than with a direct solve are discussed in
section 4.7.

The values for the displacement in the interior of the flow mesh din, can then be
derived by evaluating the interpolation function (4.1) in the internal grid points:

dinj
= s(xinj

). (4.5)

58 MESH MOVEMENT BASED ON RBF INTERPOLATION

The displacement can be interpolated separately for each spatial direction. The pro-
cess of mesh deformation with RBF’s for one direction is visualized in Figures 4.1
and 4.2. The block in the middle is moved to the right and the resulting interpolation
function is shown in Figure 4.2. This interpolation function is equal to zero at the

Fig. 4.1: Initial mesh. Fig. 4.2: Interpolation function and re-
sulting deformed mesh.

outer boundaries and equal to the displacement of the block at the location of the
block boundaries. The displacement of the nodes in the interior of the mesh can then
be derived from this interpolation function and the resulting deformed mesh is shown
in Figure 4.2. Each individual grid point is moved individually based on its position in
space according to the interpolation function, which means that no mesh-connectivity
information is needed at all.

The size of the system that has to be solved in (4.4) is equal to (nb +4)× (nb +4)
which is usually very small compared to the systems that have to be solved in mesh-
connectivity schemes. The systems encountered there are approximately as large as
nin×nin, with nin the total number of mesh points. The total number of mesh points is
a dimension higher than the number of points on the boundary of the mesh. However,
the systems encountered in the mesh connectivity schemes are very sparse, whereas
for the radial basis function interpolation generally a dense system has to be solved.
The new moving mesh technique is very easy to implement, even for 3D applications,
because no mesh-connectivity information is needed. Also the implementation for
partitioned meshes, occurring in parallel flow computations, is straightforward.

Radial basis functions with compact support

There are various radial basis function available in literature which are suitable for
interpolating multivariate data. They can be divided in two groups: functions with
compact and functions with global support. Functions with compact support have the
following property:

φ(x) =

{
f(x) 0 ≤ x ≤ 1,
0 x > 1,

(4.6)

4.1 Radial basis function interpolation 59

where f(x) ≥ 0. The function is generally scaled with a support radius r to control
the compact support, so φr = φ(x/r). When a radial basis function with compact
support is used, mainly the mesh nodes inside a circle (2D) or sphere (3D) with
radius r around a centre xj are influenced by the movement of this centre. Higher
values for the support radius lead generally to more accurate solutions. However, high
values of the support radius r also result in dense matrix systems, whereas low values
of r result in sparse matrix systems which can be solved more efficiently.

nr. name f(ξ)

1 CP C0 (1 − ξ)2

2 CP C2 (1 − ξ)4(4ξ + 1)

3 CP C4 (1 − ξ)6(35
3 ξ2 + 6ξ + 1)

4 CP C6 (1 − ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)

5 CTPS C0 (1 − ξ)5

6 CTPS C1 1 + 80
3 ξ2 − 40ξ3 + 15ξ4 − 8

3ξ5 + 20ξ2 log(ξ)

7 CTPS C2
a 1 − 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log(ξ)

8 CTPS C2
b 1 − 20ξ2 + 80ξ3 − 45ξ4 − 16ξ5 + 60ξ4 log(ξ)

Table 4.1: Radial basis functions with compact support, from [114].

In Table 4.1 various radial basis functions with compact support are given. In this
thesis all compact RBF’s are scaled with r, so we use ξ = x/r. The first four are
based on polynomials [114]. These polynomials are chosen in such a way that they
have the lowest degree of all polynomials that create a Cn continuous basis function
with n ∈ {0, 2, 4, 6}. The last four are a series of functions based on the thin plate
spline which create Cn continuous basis functions with n ∈ {0, 1, 2} [114]. There are
two possible CTPS C2 continuous functions which are distinguished by subscript a
and b.

Radial basis functions with global support

Functions with global support are not equal to zero outside a certain radius, but cover
the whole interpolation space, which leads to dense matrix systems. In Table 4.2 six
radial basis functions are given which are frequently used, for example in neural net-
works, the computer graphics community [34] and for data transfer in fluid-structure
interaction computations [100]. The MQB and IMQB methods use a parameter a,
that controls the shape of the basis functions. A large value of a gives a flat sheetlike
function, whereas a small value of a gives a narrow cone-like function. The value of
a is typically chosen in the range 10−5 − 10−3 and in this thesis we use the value
a = 10−3. More information about RBF’s and their error and convergence properties
can be found in [33, 116, 115].

60 MESH MOVEMENT BASED ON RBF INTERPOLATION

nr. name abbrev. f(x)

9 Thin plate spline TPS x2 log(x)

10 Multiquadric Biharmonics MQB
√

a2 + x2

11 Inverse Multiquadric Biharmonics IMQB
√

1
a2+x2

12 Quadric Biharmonics QB 1 + x2

13 Inverse Quadric Biharmonics IQB 1
1+x2

14 Gaussian Gauss e−x2

Table 4.2: Radial basis functions with global support.

The new mesh movement scheme based on interpolation with radial basis functions
is tested with the different RBF’s introduced in this section, but first a mesh quality
metric is given to enable the comparison of the quality of the meshes after deformation.

4.2 Mesh quality metrics

To be able to compare the quality of different meshes after mesh movement we in-
troduce mesh quality metrics [74]. The mesh quality metrics are based on a set of
Jacobian matrices which contain information on basic element qualities such as size,
orientation, shape and skewness.

It is assumed that the initial mesh is generated in an optimal way and therefore the
element shapes should be changed as little as possible after deformation. This means
that both the volume and the angles of the elements should be preserved. These two
properties can be measured with the relative size and skew metric.

The relative size metric measures the change in element size. Let τ be the ra-
tio between the current and initial element volume. The relative size metric [74] is
then given by fsize = min(τ, 1/τ). Essential properties of the relative size metric are:
fsize = 1 if and only if the element has the same total area as the initial element and
fsize = 0 if and only if the element has a total area of zero or infinity. The relative
size metric can detect elements with a negative total area (degenerate) and elements
which change in size due to the mesh deformation. Actually, the mesh quality does
not decrease when all elements change in size equally. Therefore it would be better to
measure the change in size relatively to the adjacent elements. However, in the cases
used in this thesis the total computational domain is fixed and a decrease in element
size in one part of the domain automatically means that the size of at least one other
element in the domain is increased.

The skew metric measures the skewness and therefore the distortion of an element.
When a node of an element possesses a local negative area, this metric value is set to
zero. The expressions for the skew metric for triangular, quadrilateral, tetrahedral and
quadrilateral elements can be found in [74]. Essential properties of the skew metric

4.3 2D mesh movement 61

are: fskew = 1 if and only if the element has equal angles and fskew = 0 if and only
if the element is degenerate.

In finite element methods the aspect ratio is also very important for the mesh
quality. A high aspect ratio leads to a decrease of the numerical accuracy. This can
be taken into account by using the shape metric instead of the skew metric [74]. The
shape metric is equal to one if and only if the element has equal sides and equal angles
and zero if the element is degenerate. However, the main consideration of this thesis
is on finite volume methods and therefore the skew metric is used.

To measure both the change in element size and the distortion of an element, the
size-skew metric [74] is introduced which is defined as the weighted product of the rel-
ative size and skew metrics: fss =

√
fsizefskew, since changes in element volume have

a smaller influence on the mesh quality than element distortion. Essential properties
of the quadrilateral size-skew metric are:

• fss = 1 ⇔ element has equal angles and same size as the initial element.

• fss = 0 ⇔ element is degenerate.

This is the quality metric we will use to measure the quality of a mesh after deforma-
tion.

The average value of the metric over all the elements indicates the average quality
of the mesh. The higher the average quality of the mesh, the more stable, accurate
and efficient the computation will be. The minimum value of the metric over all the
elements indicates the quality of the cell with the lowest quality. This value is required
to be larger than zero, otherwise the mesh will contain degenerate cells. Degenerate
elements have a very negative influence on the stability and accuracy of numerical
computations and usually the computation is terminated. In the next section we will
use both the average and minimal value of the size-skew metric to compare meshes
after mesh movement.

4.3 2D mesh movement

The new mesh movement strategy is tested with the 14 radial basis functions intro-
duced in section 4.1. First, three simple 2D test problems are performed to investigate
the difference in quality of the mesh obtained with the RBF’s after movement of the
boundary. The tests include mesh movement due to rigid body rotation and transla-
tion of a rectangle block and deformation of an airfoil-flap configuration. After that the
efficiency of the most promising RBF’s is investigated. Furthermore realistic results
on a distorted mesh are presented, where flow computations are performed around
a NACA-0012 airfoil. An incremental approach is used to perform the mesh defor-
mation, where several intermediate steps are performed to arrive at the final mesh.
The displacement is always taken with respect to the mesh at the previous step and
not to the initial mesh. In this way large deformations are subdivided in a number of
smaller deformations.

The quality and robustness of the new method depend on the value of the support
radius when a radial basis function with compact support is used. When the support

62 MESH MOVEMENT BASED ON RBF INTERPOLATION

radius is chosen large enough, the quality and robustness converge to an optimum.
Therefore, a relatively high value, r is 2.5 times the characteristic length of the com-
putational domain, is used in the first three test cases, where we only investigate
the accuracy of the different RBF’s. This means that the support of the radial basis
functions cover the whole domain and are not really compact anymore. The effect of
varying the compact support radius r on the computation time is investigated for the
most promising RBF’s in section 4.3.4.

4.3.1 Test case 1: Rotation and translation

The first test case consists of mesh movement due to severe rotation and translation
of a block in a small domain. The mesh nodes on the block follow its movement, while
the nodes on the outer boundary are fixed. The block has dimension 5D × 1D, with
D the thickness of the block, and is initially located in the center of a domain which
has dimension 25D×25D. The initial mesh is triangular and given in Figure 4.5. The
block is translated 10D down and to the left and is rotated 60 degrees around the
center of the block. The mesh deformation is performed in a variable number of steps
between the initial and final location, with a minimum of 1 step and a maximum of
15 steps. The less intermediate steps are taken, the larger the deformation between
two steps.

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of iterations

m
in

(f
ss

)

 1. CP C0

 2. CP C2

 3. CP C4

 4. CP C6

 5. CTPS C0

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS
10. MQB
11. IMQB
12. QB
13. IQB
14. Gauss
Semi−Tors

Fig. 4.3: Quality of the worst cell of the
mesh for the different RBF’s (test case 1).

0 5 10 15
0.6

0.65

0.7

number of iterations

m
ea

n(
f ss

)

 1. CP C0

 2. CP C2

 3. CP C4

 4. CP C6

 5. CTPS C0

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS
10. MQB
11. IMQB
12. QB
13. IQB
14. Gauss
Semi−Tors

Fig. 4.4: Average quality of the mesh for the
different RBFs (test case 1).

The minimum value of fss after mesh movement with the different RBF’s is shown
in Figure 4.3 for an increasing number of intermediate steps. It can be seen that for
all RBF’s the minimum value of fss indeed increases when more intermediate steps
are taken. In Table 4.3 the ranking of the RBFs is given for both the minimum value
(min) and the average value (mean) of fss . The numbers in the table correspond to
the numbers of the RBFs which are given in Tables 4.2 and 4.1. Only the five best
performing RBFs (nr. 2, 6, 7, 8 and 9) are included. The first row of the table contains
the number of the RBF that performs best, the second row the number of the RBF
that performs second best, etc. When more RBFs perform equally well, they are listed

4.3 2D mesh movement 63

on the same line. Figure 4.4 shows the average value of the mesh quality metric. The

Table 4.3: Ranking of the five best RBFs for the three test cases for both the minimum value
(min) and the average value (mean) of fss.

test-case 1 test case 2 test case 3
rank min mean min mean min mean

first 6 9 2, 8 2, 8 2, 7, 8 6, 9
second 9 7 7 7, 9 6, 9 7
third 7 6 9 6 2, 8
fourth 2, 8 2, 8 6

Gaussian basis function (nr. 14), has the best average quality, however, the minimum
of fss for this function is equal to zero. This results in highly distorted meshes as can
be seen in Figure 4.6 where the final mesh generated with the Gaussian basis function
with 15 intermediate steps is shown. Only cells at a certain distance from the block

Fig. 4.5: Initial mesh. Fig. 4.6: Final mesh using Gaussian basis
function with 15 intermediate steps.

are heavily deformed, resulting in a high average mesh quality, but the flow solver will
probably crash due to the degenerate cells. The mesh with the highest minimum value
for the mesh quality is generated with CTPS C1 (nr. 6) and is shown in Figure 4.7.
The average value of the mesh quality metric is lower than for the Gaussian function,
because all cells are deformed, but this results in a much smoother mesh. This will
have a positive effect on the accuracy, stability and efficiency of an unsteady flow
computation. In the next two test cases we will only consider the RBF’s 6, 9, 7, 2 and
8, because they are the most promising.

To show the performance of the new method in comparison with existing mesh
moving methods, the mesh deformation is also performed with a method based on

64 MESH MOVEMENT BASED ON RBF INTERPOLATION

Fig. 4.7: Final mesh using CTPS C1 with
15 intermediate steps.

Fig. 4.8: Final mesh using semi-torsional
springs with 15 intermediate steps.

semi-torsional springs [119], which is an improvement of the popular spring analogy
[6]. This method is based on elastic deformation of element edges where element
edges are modeled as springs producing forces to propagate boundary displacements
into the interior of the mesh. The formation of mis-shaped elements is penalized by
incorporating angle information into the spring stiffness. A boundary improvement
technique [22] is implemented which increases the stiffness of springs close to the
moving boundary so that surface displacement spreads further into the mesh. In
accordance with [119] we imposed one layer of boundary stiffness by increasing the
spring stiffness with a factor 3.5. The difference between the semi-torsional spring
method and the torsional spring method [39, 43], lies in the fact that the latter
models real torsional springs at the element vertices, whereas the former incorporates
the angle information in the spring stiffness of the element edges.

The results for the minimal and average value for the mesh quality metric are
added to Figures 4.3 and 4.4, respectively (bold dashed line). More than 8 intermediate
steps are needed to avoid degenerate cells, where each step means that the total system
has to be solved, and the minimum value of the mesh quality metric is very low. The
final mesh using 15 intermediate steps is shown in Figure 4.8. It can be seen that
the displacement does not spread very far into the domain and the cells close to the
moving block are heavily deformed. The mesh quality obtained with the 5 best RBF’s
is much higher, because the deformation is more evenly spread through the domain.

4.3.2 Test case 2: Rigid body Rotation

For rigid body translations the interpolation is exact and therefore the initial mesh is
recovered when the domain returns to its initial form. However, it is not guaranteed
that this is the case when rotations are present when the meshes are deformed with

4.3 2D mesh movement 65

an incremental approach. Therefore we investigate the mesh quality when the block
is severely rotated and brought back to its initial position. The nodes on the outer
boundary can freely move along this boundary. The initial mesh is the same as for
test case 1 (Figure 4.5). First the block is rotated 180◦ counterclockwise, then 360◦

clockwise and back to the starting position by rotating it again 180◦ counterclockwise.
The rotation is performed with a variable number of intermediate steps. In Figure 4.9

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of iterations

m
in

(f ss
)

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.9: Quality of the worst cell of the
mesh for the different RBF’s.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of iterations

m
ea

n(
f ss

)

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.10: Average quality of the mesh for
the different RBF’s.

again the minimal value and in Figure 4.10 the average value of the mesh quality
metric is shown against the number of intermediate steps. The resulting ranking for
the RBF’s is shown in Table 4.3.

As can be seen from Figure 4.9, more than 10 intermediate steps are needed with
all functions to obtain a positive value of fss for all cells. Figures 4.11 and 4.12 show

Fig. 4.11: Final mesh using CTPS C2

b af-
ter 40 intermediate steps.

Fig. 4.12: Final mesh using CTPS C1 af-
ter 40 intermediate steps.

the final meshes with 40 intermediate steps using the best RBF, CTPS C2
b (nr. 8) and

the worst RBF, CTPS C1 (nr. 6), respectively. Figure 4.12 shows that especially the

66 MESH MOVEMENT BASED ON RBF INTERPOLATION

cells close to the block and boundary are deformed. With the CTPS C2
b function the

mesh is also distorted compared to the initial mesh. However, this distortion is rather
small considering the very large rotation of the block. The final meshes obtained with
TPS, CP C2 and CTPS C2

a are very similar to that of CTPS C2
b .

4.3.3 Test case 3: Airfoil flap

Until now we only studied rigid body rotation and translation of a block. In the
third test case we investigate a more realistic situation of an airfoil-flap configuration.
The test case starts with the initial mesh given in Figure 4.13. A close up of the
mesh around the gap between the airfoil and flap is shown in Figure 4.14. The flap
is rotated 30 degrees in clockwise direction around an axis a tenth of a cord below
the trailing edge of the airfoil. In Figure 4.15 the minimal value and in Figure 4.16

Fig. 4.13: Initial mesh. Fig. 4.14: Close up of initial mesh.

0 5 10 15
0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

number of iterations

m
in

(f ss
)

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.15: Quality of the worst cell of the
mesh for the different RBF’s.

0 5 10 15
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

number of iterations

m
ea

n(
f ss

)

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.16: Average quality of the mesh for
the different RBF’s.

the average value of fss is shown for the remaining RBF’s. It can be seen that all

4.3 2D mesh movement 67

the RBF’s are able to deform the mesh well, and all functions give meshes of similar
quality. The ranking is given in Table 4.3.

Fig. 4.17: Final mesh using CTPS C2

a with
10 intermediate steps.

Fig. 4.18: Zoom of final mesh using CTPS
C2

a with 10 intermediate steps.

The final configuration of the airfoil-flap and the resulting mesh is shown in Fig-
ure 4.17 using 10 intermediate steps with the CTPS C2

a function. Figure 4.18 displays
a close up of this mesh and shows that the mesh quality is still very good in the
region where the largest deformation takes place and suitable for flow computations.
The final meshes obtained with the other functions look very similar.

4.3.4 Efficiency

The first test case with a rotating and translating block is also used to investigate
the efficiency of the five remaining RBF’s. The number of boundary nodes, the total
number of nodes and the support radius is varied to investigate their effect on the
computation time needed for the mesh movement with the different RBF’s. At this
time we are not interested in the most efficient way to implement the new method, but
only in the effect of the different RBF’s on the computation time. For the comparison
the same implementation of the new method is used, only the RBF is changed. The
system is solved directly by a decomposition algorithm. The possibilities for improving
the efficiency of the computation are discussed in section 4.7.

In Figure 4.19 the computation time needed for the mesh movement with an
increasing number of structure nodes is shown. The number of nodes in the inner
domain of the mesh is kept at a constant value of 100. It can be seen that CP C2

requires the least computation time, followed by TPS. The functions CTPS C1, CTPS
C2

a and CTPS C2
b require exactly the same computation time, but more than the other

two functions. The difference in computation time can be explained by the difficulty
of the evaluation of the RBF. CP C2 only involves the evaluation of a fifth order
polynomial, whereas in the other functions an evaluation of a log-function has to be

68 MESH MOVEMENT BASED ON RBF INTERPOLATION

10
1

10
2

10
3

10
0

10
1

number of boundary nodes

cp
u

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.19: Influence of the number of
boundary nodes on CPU time.

10
3

10
1

10
2

number of grid nodes

cp
u

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.20: Influence of the total number of
nodes on CPU time.

carried out. On top of that, CTPS C1, CTPS C2
a and CTPS C2

b , require the evaluation
of a higher order polynomial and are therefore more computational expensive than
TPS. The difference in computation time between CP C2 and CTPS C2

b is about 20
percent.

Figure 4.20 shows again the computation time needed for the mesh movement
but this time the number of internal nodes is varied. The relative results between
the RBF’s are the same as when only the number of boundary nodes is varied. The
difference between the two figures is caused by the fact that the number of boundary
nodes determines the size of the system to be solved, whereas increasing the number
of internal nodes only results in more function evaluations. Therefore the computation
time increases much faster with an increasing number of boundary nodes than with
an increasing number of internal nodes. Note that scaling of the y-axis is different for
Figures 4.19 and 4.20.

Finally the effect of the support radius r on the computation time is investigated.
For radial basis functions with compact support the matrix system to be solved be-
comes less dense, when the support radius is decreased. This means that less function
evaluations are needed and the system can be solved more efficiently. In Figure 4.21
the computation time is plotted against the support radius. Since TPS is a global
radial basis function the CPU-time does not change with r. The CPU time needed
by CP C2 only mildly increases with r, whereas the computation time needed for
mesh movement with the remaining three functions CTPS C1, CTPS C2

a and CTPS
C2

b , is very sensitive to the support radius. Only for very small values of the support
radius they are approximately as fast as CP C2. However, for these small values of r
the quality of the resulting meshes is very poor as is shown in Figure 4.22 where the
minimum value of the mesh quality is plotted against the support radius. Especially
for the CTPS C1 function a very high support radius is needed to avoid degenerate
cells. Overall it can be concluded that CP C2 requires the least computation time,
followed by TPS.

4.3 2D mesh movement 69

0 20 40 60 80 100
11

12

13

14

15

16

17

18

support radius

cp
u

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.21: Influence of support radius on
CPU time.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

support radius

m
in

(f ss
)

 2. CP C2

 6. CTPS C1

 7. CTPS C2
a

 8. CTPS C2
b

 9 TPS

Fig. 4.22: Influence of support radius on
mesh quality.

4.3.5 Flow around airfoil

Until now only the mesh quality of the deformed meshes has been investigated without
solving a single physical problem. In this section more realistic flow results on a
distorted mesh are presented. We perform two calculations of viscid flow around a
NACA-0012 airfoil. The airfoil is rotated 8◦ and moved 5 cords downstream and 2
cords upwards. A steady state solution of Mach 0.3 with Re = 1000 is computed
around the airfoil. In the first computation a new unstructured hexahedral mesh is
generated around the moved airfoil. A close-up of the mesh together with the pressure
field is shown in Figure 4.23. In the second computation the mesh is deformed in one

Fig. 4.23: Pressure field around wing on a
new generated mesh.

Fig. 4.24: Pressure field around wing on a
deformed mesh.

step with the thin plate spline from its original position. The result is shown in
Figure 4.24. The resulting pressure distributions over the wing are identical as can
be seen in Figure 4.25. The difference in lift computed on the two different meshes is
only 0.8%.

70 MESH MOVEMENT BASED ON RBF INTERPOLATION

0 0.2 0.4 0.6 0.8 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

cord

pr
es

su
re

re−mesh
TPS

Fig. 4.25: Pressure distribution over the wing.

4.4 Including rotations

Sometimes rotational information is also known in the boundary points. In [4] a
method is presented to take this rotational information into account for the data
transfer with radial basis functions between non-matching flow and structure meshes.
In this section we investigate if incorporating rotational information is also beneficial
for our new mesh movement strategy.

For small angles, rotations can be recovered from derivatives of translations through

θ = 1
2

(
∂xdby

− ∂ydbx

)
= 1

2∇× db, (4.7)

for 2D mesh movement or

θx

θy

θz

 =

1

2

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

dbx

dby

dbz

 = 1

2∇× db (4.8)

in three dimensions.

When only translations are taken into account, the displacement can be interpo-
lated separately for each spatial direction, as shown in the previous sections. With the
inclusion of rotational information the displacements for the spatial directions become
coupled. According to [4], the interpolation functions for the spatial directions in 2D
then become:

s1(x) =

nb∑

j=1

[
α2j−1φ∗j + α2(N+j)

∂2

∂y
φ∗j

]
+ p1(x) (4.9a)

s2(x) =

nb∑

j=1

[
α2jφ∗j + α2(N+j)

∂2

∂x
φ∗j

]
+ p2(x), (4.9b)

4.4 Including rotations 71

where φ∗j = φ(||x − xj ||), and in 3D:

s1(x) =

nb∑

j=1

[
α3j−2φ∗j + α3(N+j)−1

∂2

∂z
φ∗j − α3(N+j)

∂2

∂y
φ∗j

]
+ p1(x) (4.10a)

s2(x) =

nb∑

j=1

[
α3j−1φ∗j − α3(N+j)−2

∂2

∂z
φ∗j + α3(N+j)

∂2

∂x
φ∗j

]
+ p2(x) (4.10b)

s3(x) =

nb∑

j=1

[
α3jφ∗j + α3(N+j)−2

∂2

∂y
φ∗j − α3(N+j)−1

∂2

∂x
φ∗j

]
+ p3(x). (4.10c)

The linear polynomials are defined as pi(x) = βi + βi+2x + βi+4y in 2D and pi(x) =
βi + βi+3x + βi+6y + βi+9z in 3D.

When both translation and rotation are taken into account the interpolation con-
dition (4.2) is extended to

s(xbi
) = dbi

, (4.11a)

(∇× s)(xbi
) = 2θ(xbi

), (4.11b)

for i = 1 . . . nb, where s(x) = (s1(x), ..., sd(x))T . The first condition ensures that the
translational information is exactly recovered in the centres and the second condi-
tion ensures that the interpolation function incorporates the rotational information.
Together with the additional orthogonality requirements for the polynomial:

3nb∑

j=1

αjpi(xbj
) = 0,

3nb∑

j=1

αjβi+2 = 0,

3nb∑

j=1

αjβi+4 = 0, i = {1, 2}, (4.12)

in 2D, or

6nb∑

j=1

αjpi(xbj
) = 0,

6nb∑

j=1

αj(βi+9 − βi+6) = 0,

6nb∑

j=1

αj(βi+3 − βi+9) = 0,

6nb∑

j=1

αj(βi+6 − βi+3) = 0, i = {1, 2, 3}, (4.13)

in 3D, this results in a coupled symmetric system of linear equations of the form
[

Aφ,b Pb

PT
b ∅

] [
α

β

]
=

[
r
0

]
. (4.14)

The entries of the (3(d + 1)nb × 6(d + 1) matrix Pb and the 3(d − 1)nb vector r are
given in more detail in Appendix A, where d is the dimension of the problem and nb

the number of points on the boundary. The (3(d − 1)nb × 3(d − 1)nb) symmetrical
block matrix Aφ,b is given by

Aφ,b =

[
A11 A12

A21 A22

]
. (4.15)

72 MESH MOVEMENT BASED ON RBF INTERPOLATION

The exact setup of the (dnb×dnb) symmetrical matrix A11, the (2d−3)nb×(2d−3)nb

symmetrical matrix A22 and the (dnb × (2d− 3)nb matrix A12 = AT
21 is also given in

Appendix A.
The dimension of the problem to be solved now grows with 3nb for 2D and 6nb for

3D rather than nb, which was the case for the problem without rotations. Therefore
the recovery of rotations is expensive and should only be used with small models.
However, especially for small models (for example reduced order models) it is crucial
to incorporate as much information as possible, which means that the additional
recovery of rotations may yield a better solution.

4.4.1 Derivatives of RBFs

Taking into account rotations is only possible with C2 continuous RBFs because the
second derivative of the basis function is needed in matrix A22. This means that we
can not use TPS, for example, because it has a discontinuity in the second derivative
around zero.

The general form of an RBF is φ(a(x)) with a(x) = ||x||/r, and r a given constant.
The first and second derivative with respect to ξ ∈ {x1, . . . ,xd}, are then given by

∂φ

∂ξ
=

∂φ

∂a
· ∂a

∂ξ
, (4.16)

∂2φ

∂ξ2
=

∂

∂ξ

(
∂φ

∂a
· ∂a

∂ξ

)
=

∂2φ

∂a2
·
(

∂a

∂ξ

)2

+
∂φ

∂a
· ∂2a

∂ξ2
, (4.17)

where

∂a

∂ξ
=

1

r
· ξ

||x|| =
ξ

ar2
, (4.18)

∂2a

∂ξ2
=

1

r
· ||x||

2 − ξ2

||x||3 =
a2r2 − ξ2

a3r4
. (4.19)

With this information available rotations can be included.

4.4.2 Results

We only tested incorporation of rotations with the CP C2 function, because it per-
formed best in earlier test cases. The TPS, which also gave very good results, is not
considered, because it is only C1 continuous and we need an evaluation of a second
derivative. We start with a square domain meshed with all equal triangles. The point
in the middle is rotated 60◦ in clockwise direction. This rotation is performed in 1 and
10 intermediate steps. The results are shown in Figures 4.26 and 4.27 respectively.
It can be seen that the rotation is interpolated through the whole domain and the
smaller the rotation per step (with 10 intermediate steps), the better the interpola-
tion, especially close to the rotated point. This can be explained by the fact that a
small angle approximation is used in (4.7) to incorporate the rotational information.

4.4 Including rotations 73

Fig. 4.26: Rotation of the centre point in
1 step.

Fig. 4.27: Rotation of the centre point in
10 steps.

When only displacements are taken into account the internal grid points do not move
at all.

When there is translation information available, such as in the case when a block
is rotated, the advantage of including rotations is not very clear as is shown in the
following test case. We start with the same initial mesh as for test case 1 (Figure 4.5).
Now the block in the middle is rotated 60◦ in clockwise direction in one step. The
results without rotational information included are shown in Figure 4.28 and with
rotational information in Figure 4.29. There is hardly any difference visible between
the two figures and also the difference in the mesh quality metrics is negligible. When

Fig. 4.28: Rotation of the block in 1 step
without including rotations.

Fig. 4.29: Rotation of the block in 1 step
with rotations included.

74 MESH MOVEMENT BASED ON RBF INTERPOLATION

the number of intermediate steps is increased to 10, as is shown in Figures 4.30
without and in Figure 4.31 with rotations, the difference is still very small. And again

Fig. 4.30: Rotation of the block in 10 steps
without including rotations.

Fig. 4.31: Rotation of the block in 10 steps
with rotations included.

the difference in the mesh quality metrics is negligible.
The small difference can be explained by the fact that when the rotation becomes

smaller, the small-angle approximation (4.7) is more accurate, but also only taking
into account displacements gives then better results (see also section 4.3). Therefore we
can conclude that when there is displacement information available, the additional
recovery of rotations does not improve the solution. Especially when we take into
account the much higher computational costs. Even for this simple 2D problem, the
computational costs are approximately 3 times higher when rotations are included.
This means that in practical applications only the translation has to be taken into
account.

4.5 Importance of smooth mesh deformation for higher
order time-integration

In order to investigate the effect of the mesh deformation algorithm on the temporal
accuracy of higher order time integration schemes we consider the one-dimensional
piston problem [120]. The flow equations are solved in a two-dimensional domain on an
“imperfect” mesh which has cells that are not perfectly orthogonal, see Figure 4.32.
The nodes on the upper and lower boundary of the piston can freely move along
this boundary. We use the fourth order IMEX scheme [120] for the partitioned time
integration.

The mesh deformation technique based on RBF interpolation is compared to a
technique which solves the Laplace equation to create a displacement field [76]. After
displacing the flow vertices with this second method, the mesh is optimized with a

4.5 Importance of smooth mesh deformation for higher order
time-integration 75

Fig. 4.32: Part of the “imperfect” pis-
ton mesh.

-2 -1 0
10

log ∆t

-8

-6

-4

-2

0

10
lo

g
ε

Laplace smoothing

-2 -1 0
10

log ∆t

|| ρ ||
2

|| u ||
2

|| v ||
2

|| p ||
2

RBF interpolation

Fig. 4.33: Convergence for the L2-norm of the den-
sity, pressure and u- and v-velocity components for
the piston problem with Laplace smoothing and ra-
dial basis function interpolation.

smoothing procedure [76] which is necessary to avoid degenerate cells. In Fig. 4.33 the
L2-norms of the fluid density ρ, pressure p, velocity in x-direction u and y-direction
v for the different meshes and mesh deformation schemes are shown.

The results obtained with the Laplace smoothing are not satisfactory. The fourth
order of the scheme is not observed and although the test problem is essentially one-
dimensional, the v-velocity is not zero due to the imperfect mesh. For the large time
steps this error in the v-velocity is only small compared to the other errors. How-
ever, since the convergence for the v-velocity is clearly not fourth order, its influence
becomes more apparent at smaller time steps. RBF interpolation for the imperfect
mesh has the same nonzero v-velocity for the large time steps. This time, however,
the perturbation does converge with fourth order accuracy and therefore its influence
on the solution remains negligible. Therefore we can conclude that the RBF interpo-
lation does not aggravate imperfections in the flow mesh sot that design order of the
IMEX scheme is recovered.

In order to explain the bad convergence with the Laplace smoothing we study the
mesh face velocities for the cell faces which are displayed in Fig. 4.34. These mesh
face velocities are computed according to the Discrete Geometric Conservation Law
(DGCL) as derived in [123]. The line with η = 0 corresponds to a stationary cell
face and the line with η = 1 to a cell face on the piston. It shows that the Laplace
smoothing introduces irregularities (wiggles) in the mesh face velocities which are
worse for small ∆t. It is not clear what causes these irregularities, but in our opinion
they are generated during the smoothing process. The mesh face velocity does not
converge to a consistent solution so the design order of the IMEX scheme can not be
expected. Due to the high accuracy and regularity of the displacement field obtained
with RBF interpolation the RBF mesh deformation algorithm does not exhibit these
convergence problems.

76 MESH MOVEMENT BASED ON RBF INTERPOLATION

0 1 2 3 4 5 6 7
Time [-]

-0,4

-0,2

0

0,2

0,4

m
es

h
ve

lo
ci

ty

η = 1

η = 0

(a) ∆t = 1/16.

0 1 2 3 4 5 6 7
Time [-]

-0,4

-0,2

0

0,2

0,4

m
es

h
ve

lo
ci

ty

η = 0

η = 1

(b) ∆t = 1/64.

Fig. 4.34: Mesh face velocities with Laplace smoothing. The line with η = 0 corresponds to
a stationary cell face and the line with η = 1 to a cell face on the piston.

When higher order time integration methods are used it is possible to take larger
time steps. This means that the mesh deformation within a time step becomes larger.
It is therefore needed to use a mesh deformation method that is capable of dealing with
large deformations, otherwise the time step is limited by the mesh deformation method
which destroys the efficiency gain obtained with the higher order time integration
method. As the RBF mesh deformation algorithm can deal with large rotations and
translation it very well suited for the use with higher order time integration methods.

4.6 3D mesh deformation

To show the capability of the new method for 3D applications we consider in this
section a test case where a block is rotated and translated in a 3D domain and a real
FSI computation considering the AGARD 445.6 test case.

4.6.1 Rotation and translation of 3D block

We consider a test case in a 3D domain. A cross-section showing the initial mesh and
location of the block is given in Figure 4.35. The block is translated 2.5 times the
thickness of the block and rotated 15 degrees in all three directions. A cross-section
of the final mesh and location of the block is shown in Figure 4.36. Visually it is quite
hard to judge the quality of the mesh and therefore the values of the mesh quality
metric in the cross-sections is displayed in Figures 4.37 and 4.38 for the CP C2 and
TPS function, respectively. It can be seen that the mesh quality is everywhere larger
than 0.5 and therefore the meshes are suitable for computational analysis. The main
difference between the two figures is that with CP C2 the mesh quality close to the
moving structure remains a little higher than with TPS.

4.6 3D mesh deformation 77

Fig. 4.35: Cross-section of initial mesh. Fig. 4.36: Cross-section of final mesh.

Fig. 4.37: Mesh quality in cross-section
using CP C2.

Fig. 4.38: Mesh quality in cross-section
using TPS.

4.6.2 Flutter of the AGARD 445.6 wing

To demonstrate the practical applicability for real-world three-dimensional fluid-
structure interaction the AGARD 445.6 test case [118, 123] is used. For the inves-
tigation into the performance of the third order IMEX scheme [120] with the RBF
mesh deformation a time step convergence study is performed. The solution obtained
with ∆t = 0.001 is taken as the temporally exact solution. In Fig. 4.39 the results for
the pressure field, velocity in vertical direction w, structural displacement and lift at
the end of the simulation are shown. The figures show a clear third order convergence
for all the properties in all the norms, which shows that the combination of the third
order partitioned IMEX scheme with RBF mesh deformation retains the order of the

78 MESH MOVEMENT BASED ON RBF INTERPOLATION

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8
10

log ∆t

-6

-5

-4

-3

-2

-1

0

10
lo

g
ε

| p |
|| p ||

2
|| p ||

max

(a) Pressure.

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8
10

log ∆t

-6

-5

-4

-3

-2

-1

0

10
lo

g
ε

| w |
|| w ||

2
|| w ||

max

(b) w-velocity.

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8
10

log ∆t

-6

-5

-4

-3

-2

-1

0

10
lo

g
ε

| Q |
|| Q ||

2
|| Q ||

max

(c) Displace-
ment.

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8
10

log ∆t

-5

-4

-3

-2

-1

0

10
lo

g
ε

| L |

(d) Lift.

Fig. 4.39: Time step convergence for the third order IMEX scheme.

time integration scheme without the necessity to sub-iterate.
The displacements generated in the AGARD 445.6 test case are rather small and

do not place a large demand on the mesh deformation method. To investigate the
performance of the mesh deformation method for large displacements we also enforced
a large deformation on a 3D beam. The resulting mesh on the beam and the mirror
plane is shown in Figure 4.40.

Fig. 4.40: Mesh obtained with RBF interpolation around a heavily deformed 3D beam.

It can be seen that the mesh is still regular and also the mesh quality metrics
indicate a high mesh quality, such that accurate flow calculations are possible.

4.7 Improving efficiency

The computational costs of the new mesh deformation method increase very fast with
an increasing number of boundary and internal points when direct methods are used.
In this section we investigate different techniques to improve the overall efficiency of
the computation.

4.7 Improving efficiency 79

The two main computational challenges of interpolation with radial basis function
interpolation are:

(A) Fitting: given the points xbj
and values dbj

determine the coefficients γj and
β (solve system (4.4)). Because Φbb is generally a dense nb × nb symmetric
matrix, standard direct solvers require O(n3

b) operations.

(B) Evaluation: given the points xbj
and coefficients γj and β, evaluate (4.1) at all

nin internal grid points. The cost of direct summation is O(nbnin).

For large 2D and 3D meshes both (A) and (B) can become rather computationally
expensive when direct methods are used. To indicate whether the computational costs
of (A) or (B) are the bottleneck in the mesh deformation we consider a square domain
in 2D and 3D with an equidistant Cartesian grid, with N nodes on each edge of the
square. The number of internal and boundary nodes for this configuration are given in
Table 4.4 for both the 2D and 3D case. The order of magnitude of the computational
costs for fitting and evaluation with a direct approach are given in the last two columns
of this table. It can be seen that for the 2D mesh the computational costs for fitting

Table 4.4: Number of internal and boundary nodes and the computational costs for fitting
and evaluation for a 2D and 3D square domain with equidistant Cartesian grid.

internal # boundary Fitting Evaluation

nodes nodes (A) (B)

2D N2 4N 64N3 4N3

3D N3 6N2 216N6 6N5

and evaluation both scale with N3. This means that (A) and (B) are equally expensive.
For the 3D mesh the computational costs for fitting are a factor N higher than for
the evaluation and therefore (A) is the bottleneck in the computation.

Fitting

It is not necessary to solve (A) and (B) exactly, because the movement of the internal
grid points can be arbitrary, as long as it results in a good quality mesh. This means
that an iterative method with a weak convergence criterion can be used for (A). A
few Krylov-subspace iterative methods have been developed especially for the fitting
of radial basis functions. These methods are based on preconditioning the matrices
with approximate cardinal functions [7] or using a Lagrange form of the interpolation
function for the preconditioning [48, 49, 50]. The iterative algorithms require the
ability to efficiently multiply Φbb with a vector. Thus, improving the efficiency of
(B) is also important to improve the efficiency of (A). For our mesh deformation
application the interpolation problem is most of the times very ill conditioned. For
example, when the Thin Plate Spline is used the condition number for the simple
test problems in sections 4.3.1 and 4.3.2 is O(1010). This is due to the fact that the
centers are clustered at the boundaries of the flow domain and therefore there is a

80 MESH MOVEMENT BASED ON RBF INTERPOLATION

large difference in distances between points. For these ill conditioned problems the
iterative methods are still quite expensive. In this case a direct solver working in
parallel might be a better choice, for example SuperLU [40, 79] (mainly developed for
sparse systems) or ScaLAPACK [20] (a parallel version of the linear algebra package
LAPACK).

Another way to improve the efficiency of the computation is to reduce the number
of centres involved in computing and evaluating the interpolation function. This can
be obtained by removing the centres on the fixed outer boundary and multiplying
the interpolation function with a cut-off function instead [68]. This cut-off function is
equal to one close to the moving boundary and decays to zero at the outer boundaries.
Furthermore, when there is a clustering of centres at certain locations it is possible
to only take into account a selection of these centres that are positioned at a minimal
distance dref from each other. This both reduces the number of centres and improves
the condition number of the problem [68]. This approach is further improved in [95,
96, 97] by choosing the involved centres in an optimal way such that geometrical
accuracy is preserved.

Evaluation

For large meshes the number of internal grid points is very high, especially in 3D. In
these cases the evaluation of the interpolation function (B) is very time consuming.
The evaluation part (B) can easily be performed in parallel as the displacement in
each point can be computed independently of all other points once the location of
the centers and the coefficients γ and β computed in (A) is known. In literature also
various fast evaluation algorithms can be found and three of them are listed below:

• Fast Multipole Method (FMM) [8, 9, 10, 12]: The evaluation complexity is
O((nb + nin)(ln(nb))(ln(1/δ))d+1), where δ is the desired accuracy and d the di-
mension of the problem. This method is inspired by fast methods to perform many-
body computations. The total domain is subsequently subdivided into child panels,
such that a tree data structure is formed. The algorithm uses the data structure to
separate contributions of the interpolation function into ’near field’ and ’far field’
components. For all the fine level panels a Laurent series expansion is formed and
translated to all higher (less refined levels). This Laurent series is then used to form
local Taylor series expansions of the ’far field’ for each panel at the fine level. To
evaluate the interpolation function in a point, the fine level panel containing this
point has to be located. The evaluation is then performed by direct calculation of
the ’near field’ and using the Taylor series expansion to approximate the ’far field’.

While this method is successfully applied in applications [18, 19, 35], it is rather
complicated to program, especially in higher dimensions, because of the complex
hierarchical structure and tree codes required to decompose φ into ’near field’ and
’far field’ components. Therefore this method is not further investigated for the new
mesh movement strategy in the first instance.

• Fast Gauss Transform (FGT) [98]: The algorithm’s cost is O(m + n), where the
constant increases with the desired accuracy and dimension. The method exploits

4.7 Improving efficiency 81

the conditionally positive definite properties of certain radial basis functions to
replace (4.1) with the Gaussian basis function using the Fast Gauss Transform [58],
followed by an appropriate Gaussian quadrature rule to translate the Gaussian
result back to the original basis function. The FGT algorithm can not be used for
the compactly supported Wendland functions, because no Gaussian basis functions
are defined for them (yet).

For the TPS a complicated quadrature rule is needed, which turns out to reduce the
efficiency of the method considerably. Also the computational costs increase when
the sum of the absolute values of the coefficients,

∑
j |γj |, increases. Unfortunately

this sum is very large in our mesh deformation problems. In a number of 2D tests in
Matlab and C++ the use of the FGT algorithm did not decrease the computational
costs for the mesh deformation method. The conclusion is therefore that FGT is
not suited to improve the efficiency of the new mesh movement strategy.

• Fast Multilevel Evaluation (FMLE) [81, 82]: The computational complexity
is O((nb + nin) ln(1/δ)d). The method interpolates the coefficients α to a coarser
Cartesian mesh using a pth order Lagrange interpolation. A coarse level summation
of (4.1) is performed to obtain an interpolation function on the coarse mesh. This
coarse interpolation function is then interpolated back to the points in which the
information is needed. The order p of the Lagrange interpolation and the grid size
H of the coarse mesh depend on the desired accuracy δ, the dimension of the
problem d and the ’shape parameter’ a and are different for various radial basis
function. The method can be applied to smooth radial basis functions and indeed
gives an efficiency increase in these cases. For the evaluation with the multiquadric
biharmonic (function 10 in Table 4.2, with a = 1.8) of 100.000 points uniformly
distributed in a square 3D domain the fast multilevel evaluation is 35 times faster
for an accuracy of 10−13 and 2000 times faster for an accuracy of 10−3, compared
to direct evaluation.

For the TPS a hierarchy of coarse grids is needed because the function has a singu-
larity around r = 0 and is therefore not smooth enough. The TPS is decomposed
into a smooth polynomial softened part and a local part. The smooth part can be
evaluated with the fast multilevel evaluation technique described above, and the
local part is evaluated directly, since its is compactly supported. Results for the 1D
case are published in [81] and show promising results. We extended the method for
TPS to higher dimensions, using the coefficients of the 1D case, but encountered
that working with a hierarchy of coarse grid levels in higher dimensions decreases
the computational efficiency to a large extent, especially because the density of the
original centres (the boundary points) is highly non-uniform in our mesh-moving
problems. An Adaptive Mesh Refinement (AMR) strategy might overcome this
problem, as suggested in [81]. The FMLE algorithm is not suitable (yet) for the
compactly supported Wendland functions. The Wendland functions have a singu-
larity around r = 1 instead of r = 0. This means that the decomposition in a
smooth and local part, in the exact same way as for the TPS, is not possible.

82 MESH MOVEMENT BASED ON RBF INTERPOLATION

Overall it can be concluded that improving the efficiency of the mesh moving based
on radial basis function is not straightforward and needs further investigation. First
a fast evaluation technique has to be found, because fast evaluation is also needed
in iterative solution methods. It is worthwhile to extend the FMLE method with
an Adaptive Mesh Refinement strategy to increase the efficiency for the highly non-
uniform located centres encountered in our mesh deformation problems. If this gives
no satisfactory results, using the FMM method is the second option. This method,
although rather complicated to program, shows promising result, but until now only
results with uniformly distributed centres are published. It remains therefore to be
seen if these efficiency gains are also obtained in our mesh deformation problems.

Once a suitable fast evaluation technique has been found, the next step is to further
investigate the use of an iterative solution technique for (A). For the preconditioning
with approximate cardinal functions only results with uniformly distributed centres
are published [7]. When a Lagrange form of the interpolation function is used for the
preconditioning, an efficiency increase is obtained for various positions of the centres
[49]. However, when the TPS is used and the distance between the centres is locally
very small, the convergence rate in the iterative procedure becomes very slow. These
locally small distances between centres are typically the case in our mesh deformation
problems and therefore it is suggested to first investigate the iterative technique based
on approximate cardinal functions.

4.8 Conclusions

In this chapter a point-by-point mesh movement algorithm is presented for the de-
formation of unstructured grids. Radial basis functions (RBF’s) are used to interpo-
late the displacements of the boundary nodes of the mesh to the inner domain. The
method requires solving a small system of equations, only involving the nodes on the
boundary of the flow domain. The implementation of the method is relatively simple,
even for 3D applications, because no grid-connectivity information is needed. Also
the implementation for partitioned meshes, occurring in parallel flow computations,
is straightforward.

The new algorithm is tested with fourteen RBF’s for a variety of problems. The
method can handle large deformations of a mesh caused by translation, rotation and
deformation of a structure both on 2D and 3D meshes. The performance of the method
is not the same for all RBF’s. Five RBF’s generate meshes of high quality after defor-
mation. However, when efficiency is more important, the CP C2 RBF with compact
support is the best choice, closely followed by the thin plate spline.

In a first comparison the RBF-method produces meshes of higher quality than
the popular semi-torsional spring analogy for very large deformations. The quality of
the meshes after deformation is high enough to perform accurate flow calculations.
If there is translation information available, the additional recovery of rotations does
not improve the solution, but it increases the computation time dramatically.

It is shown that working with higher quality meshes can increase the efficiency of
the computation. This is due to the fact that the new method preserves the design

4.8 Conclusions 83

order of higher order time integration methods, due to its smooth deformation in
time. Also the larger deformations due to a larger time step, which are possible when
using higher order time integration methods, can be handled with the RBF mesh
deformation algorithm. The capability of the method to deform 3D meshes is shown
by rotating and translating a 3D block and performing a case study on flutter of the
AGARD 445.6 wing.

The two main computational challenges of mesh moving with radial basis func-
tion interpolation are: (A) solving a dense, ill-conditioned matrix system, and (B)
evaluating the interpolation function in all internal grid points. The computational
costs of both (A) and (B) increase fast with an increasing number of boundary and
internal points when direct methods are used. For 2D problems the computational
costs of both (A) and (B) are of the same order of magnitude, while for 3D problems
the costs for (A) are approximately a factor

√
nb higher than for (B), with nb the

number of boundary points. It is not necessary to solve (A) and (B) exactly, because
the movement of the internal grid points can be arbitrary, as long as it results in a
good quality mesh. This means that an iterative method with a weak convergence cri-
terion can be used for (A). However, iterative techniques require also the evaluation
of the interpolation function in the centres during each iteration. Thus, improving
the efficiency of (B) is also important to improve the efficiency of (A). When iterative
methods are still too expensive for the very ill conditioned problems encountered in
our mesh deformation problems, a direct solver working in parallel might be a better
choice

The evaluation of the interpolation function in the internal grid points (B) can
easily be parallelized. In literature also various fast evaluation algorithms can be
found. The use of the Fast Gauss Transform did not decrease the computational costs
for the mesh deformation method in a number of 2D tests. Therefore we extended
the Fast Multilevel Evaluation (FMLE) method for TPS to higher dimensions, using
the coefficients of the 1D case. Here we encountered that working with a hierarchy of
coarse grid levels in higher dimensions decreases the computational efficiency to a large
extent, especially because the density of the original centres (the boundary points) is
highly non-uniform in our mesh-moving problems. It would be worthwhile to extend
the FMLE method with an Adaptive Mesh Refinement strategy to try to increase
the efficiency. If this gives no satisfactory results, using the Fast Multipole Method
method is the next option. This method, although rather complicated to program,
shows promising result, but until now only results with uniformly distributed centres
are published. It remains therefore to be seen if these efficiency gains are also obtained
in our mesh deformation problems.

84 MESH MOVEMENT BASED ON RBF INTERPOLATION

Chapter 5

Fluid-Structure interaction
between laminar flow and a
deformable flap

In this chapter a real two-dimensional FSI computation is performed in which the find-
ings of the three previous chapters are combined. To couple the flow and structure
solver, which are separate solver programs, the flexible coupling shell Flecs, intro-
duced in Chapter 3, is used. The transfer of data over the non-matching interface is
performed with four of the transfer algorithms which were investigated in Chapter 2.
These four transfer algorithms are implemented within the separate Flecs server
program that handles the data transfer between the two solvers. During the unsteady
computation, the flow mesh is repeatedly adapted to the deforming flow domain with
the new mesh movement method based on radial basis function interpolation pro-
posed in Chapter 4. For the FSI problem we use the numerical benchmark problem of
2D flow around a cylinder with deformable flap described in [110]. In contrast to the
quasi-1D FSI problem in section 2.4 both the flow and structure are two dimensional
and the solution is time-dependent.

In our numerical experiments on the 2D FSI problem, we investigate the difference
in the results obtained with the four different transfer algorithms for non-matching
meshes. These results are compared with the results obtained with matching meshes.
We also study the performance of the new mesh deformation method based on radial
basis function interpolation.

The contents of this chapter are organized as follows: Section 5.1 presents the
benchmark problem of 2D flow around a cylinder with a deformable flap [110]. The
numerical experiments and results with both matching and non-matching meshes are
presented in Section 5.2 and Section 5.3 contains concluding remarks.

86 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

5.1 Problem statement

In this section we present the benchmark problem of 2D flow around a cylinder with
a deformable flap. First the flow and structure model are given in Sections 5.1.1
and 5.1.2, respectively. The time integration and partitioning scheme are outlined in
Section 5.1.3. Section 5.1.4 contains a short description of the coupling of the flow
and structure solver with Flecs and the used transfer algorithms. The definition of
the computational domain and the meshes used for the flow and structural part are
presented in 5.1.5. Finally, in Section 5.1.6 a description of the initial and boundary
conditions is given.

5.1.1 Flow model

The flow used in this chapter is laminar and compressible, where the fluid is an ideal
gas. The governing equations for the flow are the Navier-Stokes equations and the
ideal gas law: p = ρfRgT , with p the pressure, ρf the density, T the temperature and
Rg the gas constant. Since the fluid domain is deforming, the Navier-Stokes equations
are written in the Arbitrary Lagrangian-Eulerian (ALE) formulation [41]. The general
purpose, compressible Finite Volume flow solver Hexstream, developed by NUMECA
Int. is used to solve the equations on an unstructured, hexahedral mesh [17].

The semi-discrete system for a cell l can be written as

d(ΩU)l

dt
+

Nl,face∑

i=1

(Φi − Uiκl,i) · Sl,i = 0, (5.1)

where Ul is the fluid state in conservative variables in the cell centre, Ω is the cell
volume, Nl,face denotes the number of faces that define cell l, Φi is the numerical flux
for the fluid dynamics equations as computed on static meshes for face i, Ui the fluid
state at face i, Sl,i is the face surface times its normal and κl,i the velocity of the face
surface in the moving mesh. In our case the numerical flux Φ is computed using the
standard second order central scheme with Jameson type artificial dissipation [69] for
the inviscid part of the flux. The semi-discrete system can be written more compactly
as

d(ΩU)

dt
+ Rf(U,κ) = 0, (5.2)

wherein Rf the semi-discrete fluid dynamics model. The exact values of the system
parameters are given in Section 5.2.

The deformation of the flow mesh is performed with the method based on radial
basis function interpolation introduced in Chapter 4. For the radial basis function we
use the Thin Plate Spline, which was shown to give good quality meshes and does not
depend on a user-defined parameter. The deformation of the mesh is each step defined
with respect to the initial configuration to ensure that the initial mesh is obtained
when the computational domain is back in its initial position.

5.1 Problem statement 87

5.1.2 Structure model

The structure model is a linear structure dynamics model without damping:

M
d2Q

dt2
+ KQ = Fsf , (5.3)

with M the mass matrix, K the stiffness matrix, Fsf the pressure load from the
flow that acts on the structure and Q the structural displacement vector. A separate
structure solver is used to simulate the structural dynamics, where we use OpenFEM

[1], a Finite Element toolbox for Matlab, to construct the matrices M and K according
to the structure density ρs, Poisson ratio νs and Young modulus Es. The values of

these parameters are given in Section 5.2. The structure state vector W = (MQ̇

Q
),

which contains the structural momentum vector MQ̇ and the structural displacement
vector Q, is used to write the structure dynamics as a system of ordinary differential
equations

dW

dt
+ AsW =

(
Fsf

0

)
, (5.4)

with

As =

[
0 K

−M−1 0

]
, (5.5)

which is the semi-discrete formulation of the structure dynamics. A more general
formulation of (5.4) is

dW

dt
+ Rs(W,Fsf) = 0, (5.6)

with Rs the semi-discrete structure dynamics model.

5.1.3 Time integration and partitioning scheme

A mixed implicit/explicit (IMEX) higher order Runge-Kutta (RK) scheme [122] is
used for the coupled time integration of the flow and the structure. This scheme
uses an implicit ESDIRK scheme [16] for the integration of the fluid and structure
dynamics and an explicit RK scheme to integrate the coupling term of the flow to the
structure. In this chapter we use the third order version of the IMEX scheme.

Since the integration of the coupling term is explicit, sub-iterations are needed
to obtain a stable simulation in strongly coupled systems. The sub-iteration process
takes place within each stage of the IMEX scheme. In order to reduce the number of
sub-iterations within a stage, Aitken acceleration [67, 89] is used on the explicit part:
the coupling term Fsf .

5.1.4 Coupling shell and transfer algorithms

The flow and structure solver are separate programs. In order to perform a coupled
fluid-structure interaction simulation they are coupled by using the flexible coupling
shell Flecs, introduced in Chapter 3. In Table 3.3 of Chapter 3 the setup of the flow

88 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

and structure solver are shown after they are adapted to work with Flecs. To be
able to perform the coupled computation, only function calls from the Flecs client
library have to be added, whereas the main structure of the solvers remains the same.

To transfer information between non-matching meshes, different transfer algo-
rithms can be used with either a conservative or a consistent approach as discussed
in Chapter 2. In the current chapter we consider four of the transfer algorithms
introduced in Chapter 2: consistent simple nearest neighbour (NN) interpolation
(section 2.2.1), consistent and conservative radial basis function (RBF) interpolation
(section 2.2.3) and a method that uses consistent radial basis function interpolation
to transfer displacement and simple nearest neighbour interpolation for the pressure
function (RBF-NN, see section 2.4.4). As we are using a Finite Volume flow solver, we
do not investigate the weighted residual method (section 2.2.2), because this method
explicitly uses the shape functions at the interface, which are in this case constant
for the flow. The four transfer algorithms are implemented within the separate server
program that is created to couple the two solvers using Flecs.

5.1.5 Domain and mesh definition

The domain is the same as in the well-known CFD benchmark of 2D flow around a
cylinder [111], only this time a deformable flap is attached to the cylinder. The exact
configuration is shown in Figure 5.1. The domain dimensions are given by the length

L

Hh

l

Fig. 5.1: Computational domain.

L = 2.5 and height H = 0.41. The centre of the cylinder is positioned at C = (0.2, 0.2)
from the left bottom corner of the channel and its radius is r = 0.05. The elastic flap
has length l = 0.35 and height h = 0.02 and the right bottom corner is positioned
at (0.6,0.19), where the left end is fully attached to the fixed cylinder. The setting is
intentionally non-symmetric to prevent the dependence of the onset of any possible
oscillation on the precision of the computation. A close-up of the structure part is
given in Figure 5.2.

For the flow mesh we use 20.737 hexahedral elements and the initial mesh is shown
in Figure 5.3. A close-up of the mesh on the cylinder with flap is given in Figure 5.4
and 244 vertices of the flow mesh lie on the moving interface with the flap.

For modeling the two-dimensional solid for the case with non-matching meshes,
we use the standard 8 node, 16 degrees-of-freedom (DOF), quadrilateral-element [66]
which uses quadratic shape functions. For the case with matching meshes the standard
4 node, 8 DOF quadrilateral-element is used, which uses linear shape functions. To

5.1 Problem statement 89

l

h
r

A

Fig. 5.2: Detail of the structure part.

Fig. 5.3: Initial mesh.

Fig. 5.4: Close-up of initial mesh

obtain matching meshes at the fluid-structure interface 1287 (117 × 11) elements are
needed. In Figure 5.5 the error in the y-displacement of the free moving end of the
flap versus 1/N is plotted for the linear and quadratic basis functions, where N is
the number of elements. The solutions are obtained by performing the CSM2 test
case, given in [110], which consists of placing the flap in a gravitational field with
g = 2m/s2 and looking at the steady state solution. The error is computed with

90 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

−3.5 −3 −2.5 −2 −1.5 −1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1/N

er
ro

r

linear

quadratic

N = 1287 N = 40

Fig. 5.5: A loglog plot of the error in the y-displacement of the free moving end of the flap
versus 1/N , with N the number of elements, for linear and quadratic elements.

respect to the solution obtained with a very fine mesh. It can be seen that using 1287
linear elements gives approximately the same error as using 40 quadratic elements.
Therefore we use 40 (20 × 2) quadratic elements in the non-matching case, to obtain
an FSI solver which is comparable to the one with matching meshes.

5.1.6 Boundary and initial conditions

For the flow a parabolic velocity profile is prescribed at the left channel inflow such
that the mean inflow velocity is v̄ and the maximum of the inflow velocity profile is
1.5v̄. At the outflow the static pressure is prescribed. On the solid boundary parts
of the flow (top and bottom wall, cylinder and flap) a no-slip condition is prescribed
for the fluid. For the structure the left end of the flap is fully attached to the fixed
cylinder. The right end can move freely according to the structure dynamics.

As initial condition we use fully developed flow with vortex-shedding obtained
when performing the flow computations with a rigid flap, where the flap is in the
position as shown in Figure 5.2.

5.2 Numerical results

In [110] three different benchmarks for the fluid, structure and the fluid-structure
interaction solver are presented. We consider here only the FSI3 test case for the fluid-
structure interaction, which results in a periodic motion of the flap. The parameter
settings for this test case are: ρf = ρs = 103kg/m3, v̄ = 2m/s, νf = 10−3m2/s,
νs = 0.4 and Es = 5.6 · 106kg/ms2. This corresponds to a flow with a Reynolds
number of Re = v̄d

νf
= 200, with d = 2r the diameter of the cylinder, a density ratio

between structure and flow of β = ρs/ρf = 1 and a ratio between the stiffness of the
structure and aerodynamic forces of the flow of Ae = Es

ρf v̄2 = 1.4·103. The values of Rg

and T in the compressible flow solver are chosen in such a way that the Mach number

5.2 Numerical results 91

Ma = v̄/
√

γRgT is equal to 0.1, such that incompressible flow can be assumed. The
displacement is each time step computed with regard to the initial configuration.

To compare the results of the different computations the following quantities of
comparison are defined: the lift force on the total body (cylinder and flap together) and
the displacement in y-direction of point A (see Figure 5.2). The lift force is calculated
by integrating the pressure and viscous forces over the surfaces of the cylinder and
the flap. The lift force is then the force in vertical direction.

As the motion of the flap is periodic, so are the quantities of comparison. Therefore
these quantities are represented by the mean value, amplitude, standard deviation of
the amplitude (stdv) and frequency of the last two full periods:

mean = 1
2 (max + min), (5.7)

amplitude = max − mean, (5.8)

stdv = 1
2 (stdv(max) + stdv(min)) , (5.9)

frequency =
1

period
, (5.10)

where ’max’ is the average of the maximum values, ’min’ the average of the minimum
values, ’stdv(max)’ the standard deviation of the maximum values, ’stdv(min)’ the
standard deviation of the minimum values and ’period’ the average time of the last
two periods.

We do not expect to obtain the exact same results as in [110] as a linear struc-
ture and a compressible flow solver are used instead of a non-linear structure and
an incompressible flow solver. However the order of magnitude of the quantities of
comparison should be the same. First, the results for matching meshes are presented
in section 5.2.1. Here we investigate the difference between transferring pressure or
the pressure force over the interface for two different time steps. After that the re-
sults obtained with different transfer algorithms for non-matching meshes are given
in section 5.2.2.

5.2.1 Matching meshes

When the meshes are matching, either the pressure force or the pressure itself can
be transferred from the flow interface to the structure interface. In the first case the
pressure force in a flow vertex is obtained by first computing the pressure force on
a cell face by multiplying the pressure in a cell face with the area of this face. The
pressure force on a cell face is then equally distributed over the adjacent vertices. This
corresponds to using constant basis functions for the pressure forces. In the second
case the pressure values in the cell faces are linearly interpolated to the vertices. To
obtain the pressure force on the structure these pressure values are multiplied with
a ’mass matrix’ of the structure interface, which corresponds to using linear basis
functions for the pressure forces.

As starting condition for the comparison we use a fully developed solution, where
the flap exhibits a periodic motion due to the vortex shedding from the cylinder.
This solution is obtained with a time step of ∆t = 0.01 s where the pressure force

92 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

is transferred over the interface. From here we advance one second (approximately 5
periods) with four different settings: transferring forces or pressure with the same time
step (∆t = 0.01 s) and transferring forces or pressure with a 10 times smaller time
step (∆t = 0.001 s). For the time step of ∆t = 0.01 s on average ten sub-iterations
were performed within one stage of the IMEX scheme, while for the time step of
∆t = 0.001 s three sub-iterations per stage were performed on average.

Lift

The results for the lift force are plotted in Figure 5.6 and in Table 5.1 the mean,
amplitude, standard deviation and frequency are given for the four different settings.
These quantities are computed using the last two full periods. It can be seen that

20 20.25 20.5 20.75 21

time
-200

-100

0

100

200

lif
t

force (dt = 0.001)
pressure (dt = 0.001)
force (dt = 0.01)
pressure (dt = 0.01)

Fig. 5.6: Lift force on the cylinder+flap for
matching meshes.

20 20.25 20.5 20.75 21

time

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

y-
di

sp
la

cm
en

t

force (dt = 0.001)
pressure (dt = 0.001)
force (dt = 0.01)
pressure (dt = 0.01)

Fig. 5.7: Displacement in y-direction of
point A for matching meshes.

Table 5.1: Lift results for matching meshes.

mean amplitude stdv frequency

(N) (N) (N) (Hz)

∆t = 0.01 s forces 9.3 166.5 0.34 5.34

pressure 9.5 168.0 0.66 5.36

∆t = 0.001 s forces 9.3 167.2 0.59 5.34

pressure 9.6 168.7 0.97 5.35

the results are very similar for all four settings and the difference between the lines
in Figure 5.6 is barely visible. Using a smaller time step results both for transferring
forces and pressures in a slightly larger amplitude, which can be explained by the
fact that the numerical damping decreases with decreasing time steps. However, the
difference is only 0.4% and falls within the error range given by the standard deviation.
When pressure is transferred instead of force, the mean and amplitude are a little
higher (3% and 0.9%, respectively). The difference can be explained by the fact that

5.2 Numerical results 93

with transferring pressures a linear approximation of the pressure forces is used and
with transferring forces a constant approximation.

Displacement

The results for the displacement in y-direction of point A are shown in Figure 5.7
and Table 5.2. The difference between the results of the four settings is very small

Table 5.2: Displacement in y-direction of point A for matching meshes.

mean amplitude stdv frequency

(10−3 m) (10−3 m) (10−3 m) (Hz)

∆t = 0.01 s forces 1.00 31.4 0.037 5.35

pressure 1.01 31.7 0.099 5.36

∆t = 0.001 s forces 0.99 31.6 0.073 5.34

pressure 1.01 31.8 0.14 5.36

and the lines in Figure 5.7 lie almost on top of eachother. Again the amplitude is
slightly higher (0.5%) for the smaller time step, but falls within the error range of the
standard deviation. We therefore can conclude that a time step of ∆t = 0.01 s is small
enough for an accurate solution. Also the difference between transferring pressure and
force is only 1.9% for the mean and 0.7% for the amplitude.

Reference solution

As a reference solution for the case with non-matching meshes we will use the results
obtained with a time step of ∆t = 0.01 s and where the pressure is transferred over the
interface, because it was shown that this time step is small enough for an accurate
solution and with the transfer of pressures a linear approximation of the forces is
obtained.

5.2.2 Non-matching meshes

In this section we compare the results obtained when different transfer methods
are used to transfer the pressure (or pressure force) and displacement between the
non-matching flow and structure mesh. For the structure we use the mesh with 40
quadratic elements and for the flow the mesh as is shown in Figure 5.3.

As starting condition for the comparison we use a fully developed solution, where
the flap exhibits a periodic motion due to the vortex shedding from the cylinder.
This solution is obtained by starting from the initial solution given in section 5.1.6:
fully developed flow with vortex-shedding obtained when performing the flow com-
putations with a rigid flap. To obtain the starting condition for the comparison we
advance from the initial condition with a time step of ∆t = 0.01 s where the pressure
and displacement are transferred over the interface using the consistent radial basis
function interpolation method until periodic motion is obtained. In Section 5.2.1 it

94 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

was shown that a time step of ∆t = 0.01 s is small enough to obtain a time accurate
solution.

From here we compute one second (approximately 5 periods) with the same time
step using one of the four transfer methods: transferring pressures and displacements
with nearest neighbour interpolation (NN), transferring pressures and displacements
with consistent radial basis function interpolation (RBF consis), transferring forces
and displacements with conservative radial basis function interpolation (RBF conserv)
or transferring displacements with consistent radial basis function interpolation, but
pressures with nearest neighbour interpolation (RBF-NN). For the radial basis func-
tion the thin plate spline is used, which was shown to give good results in Chapter 2
and does not depend on a user-defined parameter. For all transfer methods on average
7 sub-iterations were performed within one stage of the IMEX scheme.

Lift

The results for the lift force are plotted in Figure 5.8 and in Table 5.3 the mean,
amplitude, standard deviation and frequency are given for the four different transfer
algorithms. These quantities are computed using the last two full periods. The dif-
ference with the reference solution with matching meshes is given between brackets.

15.5 15.75 16 16.25 16.5
time

-200

-150

-100

-50

0

50

100

150

200

lif
t

NN
RBF consistent
RBF conservative
RBF-NN

Fig. 5.8: Lift force on the cylinder+flap for
non-matching meshes.

15.5 15.75 16 16.25 16.5
time

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

y-
di

sp
la

ce
m

en
t

0

NN
RBF consistent
RBF conservative
RBF-NN

Fig. 5.9: Displacement in y-direction of
point A for non-matching meshes.

Table 5.3: Lift results for non-matching meshes. Between brackets the difference with the
reference solution is given.

mean amplitude stdv frequency

(N) (N) (N) (Hz)

NN 9.50 (0.12%) 139.0 (17.28%) 3.28 5.46 (1.95%)

RBF consis 9.48 (0.29%) 169.8 (1.08%) 0.75 5.38 (0.35%)

RBF conserv 10.23 (7.63%) 164.5 (2.09%) 0.72 5.37 (0.18%)

RBF-NN 9.47 (0.39%) 168.9 (0.56%) 0.82 5.38 (0.51%)

5.2 Numerical results 95

It can be seen that the solution obtained with NN deviates the most from the
reference solution. This can be explained by the fact that transferring the displace-
ment from the coarser structure mesh to the fine flow mesh with nearest neighbour
interpolation results in a ’staircase’ shape of the flap as shown in Figure 5.10. This

Fig. 5.10: Deformed flap with ’staircase’ shape obtained when transferring displacements
with nearest neighbour interpolation.

gives an incorrect representation of the flap, resulting in a smaller lift force.
The results obtained by transferring both pressure and displacement with con-

sistent RBF (RBF consis) or transferring pressure with NN and displacement with
consistent RBF (RBF-NN) are closest to the reference solution of the four methods
investigated, and the difference between them is negligible. However, the computa-
tional costs for nearest neighbour interpolation are much smaller than for consistent
radial basis function interpolation, as is shown in Chapter 2. Therefore, RBF-NN is
preferred over RBF consis.

The results obtained with the conservative approach (RBF conserv) deviate more
from the reference solution than the results obtained with the consistent approach
(RBF consis), especially for the mean value. The larger deviation can be explained
by the fact that quadratic shape functions are used for the structure. In Figure 5.11
the difference between the pressure and the reference pressure is plotted versus the
length of the flap. The results are shown for the pressure calculatated by the flow
and the pressure received by the structure. The pressure received by the structure
is computed both with RBF consis and RBF conserv. It can be seen that pressure
on the structure obtained with RBF consis is almost equal to the pressure calculated
by the flow. In the pressure obtained with RBF conserv oscillations are visible. This
can be explained by the fact that using the conservative approach with radial basis
function interpolation results in a highly oscillatory pressure force on the structure
when higher order shape functions are used, as was shown in Section 2.2.3.

Displacement

The results for the displacement in y-direction of point A are shown in Figure 5.9
and Table 5.4. Again NN is the least accurate and the reason is the same as for the
lift force. The results obtained by the other three transfer methods are all within 2%

96 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

x

∆
p

flow

consistent

upper conserv

lower conserv

Fig. 5.11: Pressure difference over the flap.

Table 5.4: Displacement in y-direction of point A for non-matching meshes.

mean amplitude stdv frequency

(10−3 m) (10−3 m) (10−3 m) (Hz)

NN 1.17 (15.13%) 28.6 (9.50%) 0.250 5.44 (1.49%)

RBF consis 1.00 (1.35%) 32.1 (1.45%) 0.032 5.38 (0.40%)

RBF conserv 1.02 (0.27%) 31.1 (1.72%) 0.079 5.36 (0.05%)

RBF-NN 1.00 (1.35%) 32.1 (1.33%) 0.038 5.38 (0.42%)

from the reference solution, and there is no method that performs significantly better
than the others. RBF conserv is closer to the reference solution for the mean value
and the frequency, while RBF consis and RBF-NN perform better for the amplitude.
The difference between RBF-NN and RBF consis is again negligible.

With RBF conserv we did not observe oscillations in the shape of the structure
due to the large oscillations in the pressure force as was the case in the quasi-1D
channel with a flexible curved wall of Section 2.4. This can be explained by the fact
that the flap is stiffer than the flexible wall in the quasi-1D case. When the structure
is rather stiff, oscillations in the pressure force are not ’felt’ by the structure, because
the structure only responds to the global force.

Conclusions

Nearest neighbour interpolation should not be used to transfer displacements from
a coarse to a fine mesh, because it results in a ’staircase’ shape of the flap. The
difference in the results obtained with transferring both pressure and displacement
with consistent RBF (RBF consis) or transferring pressure with NN and displacement
with consistent RBF (RBF-NN) is negligible, but the computational costs of RBF-

5.2 Numerical results 97

NN are smaller than those of RBF consis. The results obtained with RBF conserv are
comparable to the ones obtained with RBF consis and RBF-NN for the displacement
in y-direction of point A, located at the free moving end of the flap. For the lift the
results obtained with RBF consis and RBF-NN are closer to the reference solution
than the results obtained with RBF conserv. This is due to the fact that quadratic
shape functions are used for the structure and therefore a highly oscillatory pressure
force is obtained. Overall we conclude that RBF-NN is preferred to transfer pressure
and displacement between non-matching meshes for this FSI3 test case.

5.2.3 Mesh deformation

The deformation of the mesh each step is defined with respect to the initial config-
uration. This means that the deformations can become quite large within one step,
but it ensures that the mesh is equal to the initial mesh when the domain returns to
its initial form. A close-up of the mesh when the flap is at its maximum deflection is
shown in Figure 5.12. The mesh movement is smoothly spread through the domain

Fig. 5.12: Deformed mesh at maximum deflection of the flap.

and close to the flap the cells follow almost exactly its movement, therefore the mesh
quality remains high throughout the computation.

98 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

The mesh deformation is performed with a direct solve of the matrix system and
direct evaluation in the internal grid points. For this small 2D test case the time
needed for the mesh deformation is less than 10% of the time needed for the flow
solve. With the original mesh deformation method, based on solving the Laplace
equation to create a displacement field [76], the time needed for the deformation is
about 10% more than the time needed for the flow solve. This means that the new
mesh deformation method is more than a factor 10 faster for this particular problem.

For large 2D and 3D meshes it is not possible anymore to solve the matrix sys-
tem directly and the direct evaluation in the internal grid points becomes very time
consuming. For these meshes it is needed to improve the efficiency of the new mesh
deformation method by using a combination of a reduction of the number of centres,
parallel computation strategies, iterative techniques and fast evaluation algorithms as
discussed in Section 4.7.

5.3 Conclusions

To investigate the performance of four transfer algorithms introduced in Chapter 2
for a 2D test case, we performed an FSI computation of 2D flow around a cylinder
with deformable flap. The flow and structure solver are coupled by using the flexible
coupling shell Flecs, introduced in Chapter 3, and only function calls from the Flecs

client library have to be added to the solvers, whereas their main structure remains
the same.

To obtain a reference solution we first performed computations with matching
meshes. A time step of ∆t = 0.01 s was shown to be small enough for an time-accurate
solution. Furthermore, when pressures are transferred over the interface an approxi-
mation with linear functions is obtained for the forces is contrast to the approximation
with constant functions obtained by directly transferring pressure forces.

For the non-matching case we investigated four of the transfer algorithms in-
troduced in Chapter 2: consistent simple nearest neighbour (NN) interpolation (sec-
tion 2.2.1), consistent and conservative radial basis function (RBF) interpolation (sec-
tion 2.2.3) and a mix of consistent radial basis and nearest neighbour interpolation
function (RBF-NN) interpolation (see section 2.4.4). The four transfer algorithms are
implemented within the separate Flecs server program that handles the data transfer
between the two solvers.

The solution obtained with NN deviates the most from the reference solution,
because transferring the displacement from the coarser structure mesh to the fine
flow mesh with nearest neighbour interpolation results in a ’staircase’ shape of the
flap. This gives an incorrect representation of the flap, resulting in a smaller lift force
and smaller amplitude of the displacement of the flap.

The difference between transferring both pressure and displacement with con-
sistent RBF (RBF consis) or transferring pressure with NN and displacement with
consistent RBF (RBF-NN) is negligible. However, the computational costs for near-
est neighbour interpolation are much smaller than for consistent radial basis function
interpolation, as is shown in Chapter 2. Therefore, RBF-NN is preferred over RBF

5.3 Conclusions 99

consis.
The results obtained with conservative RBF are comparable to the ones obtained

with RBF consis and RBF-NN for the displacement in y-direction of point A. However,
the results for the lift deviate further from the reference solution compared to RBF
consis and RBF-NN. This is due to the fact that quadratic shape functions are used
for the structure and therefore a highly oscillatory pressure force is obtained. Overall
we conclude that RBF-NN is preferred to transfer pressure and displacement between
non-matching for this FSI3 test case.

The deformation of the flow mesh is performed with the method based on radial
basis function interpolation introduced in Chapter 4, where the Thin Plate Spline is
used for the radial basis function. The deformation of the mesh is each step defined
with respect to the initial configuration. This means that the deformations can be-
come quite large within one step, but it ensures that the mesh is equal to the initial
mesh when the domain returns to its initial form. During the computation the mesh
movement is smoothly spread through the domain and close to the flap the cells follow
almost exactly its movement, therefore the mesh quality remains high throughout the
computation. The mesh deformation is performed by using direct methods for solving
the matrix system and the evaluation of the interpolation function. For this 2D test
case the time needed for the mesh deformation is less than 10% of the time needed for
the flow solve and the method is more than a factor 10 faster then the original mesh
deformation method, based on solving the Laplace equation to create a displacement
field.

100 FSI BETWEEN LAMINAR FLOW AND A DEFORMABLE FLAP

Chapter 6

Conclusions

In this thesis we investigated several aspects of fluid-structure interaction computa-
tions. To be able to transfer information between the flow and the structure solver,
a transfer algorithm is needed to deal with incompatible meshes at the interface. We
showed that generally a consistent approach should be used to avoid unphysical os-
cillations and the best choice for a particular transfer method depends on the spatial
discretization order of the total system. To facilitate the computation of multidisci-
plinary problems and fluid-structure interaction simulations in particular, a flexible
coupling shell for the coupling of different solvers is developed. Also the flow do-
main, and the mesh defined on it, has to adapt itself to the deforming structure. We
developed a new point-by-point mesh deformation technique that can handle large
deformations. Finally, a real 2D fluid-structure interaction computation is performed
in which the three previous findings are incorporated. We summarize here the main
conclusions with respect to these developments.

Conservative and consistent transfer algorithms

The difference in accuracy and efficiency between conservative and consistent ap-
proaches for different transfer methods between non-matching meshes is investigated.
When the transfer method is based on a weighted residual formulation of the coupling
conditions, the highest accuracy and efficiency are obtained with the conservative ap-
proach. For other transfer methods the conservative approach results in large unphys-
ical oscillations in the pressure received by the structure leading to a zeroth order
convergence for the pressure. When the structure is flexible enough these oscillations
can result in deviations in the displacement of the flow interface. For these methods
the consistent approach provides the best accuracy and efficiency. Simple Nearest
Neighbour interpolation should not be used, because the error in both displacement
and pressure does not converge when the consistent approach is used in the quasi-1D
test case.

Overall, when the spatial discretization order of the total system is higher than
two, the weighted residual method is the best choice. However, its implementation is

102 CONCLUSIONS

more elaborate and the computation time is higher than for the methods based on
radial basis function interpolation. This is because the higher order of the weighted
residual method is only obtained when the projection step is accurately performed.
Therefore, when the discretization of the total system is of order two or lower, the
methods based on radial basis function (RBF) interpolation are preferred where the
compact RBF with a large support radius is the best choice.

Using two different methods to interpolate displacements and pressures proves also
to be very efficient: an accurate method (RBF with high support radius) is used to
interpolate from coarse to fine and a less accurate, but much faster method (simple
Nearest Neighbour) is used to interpolate from fine to coarse.

Flecs: a flexible coupling shell

A generic, flexible coupling shell, Flecs, designed for implementing and applying
an interface for multidisciplinary simulations, is developed. The aim of Flecs is to
provide a flexible platform for developing new data transfer algorithms and coupling
schemes to be able to perform large multidisciplinary computations. The design of
Flecs is based on a client-server model in which two solvers communicate with a
separate program called the coupling server that is responsible for transferring data
from one physical domain to another. This design makes it possible to run the solvers
on two different computers that are located at different research institutes. Flecs

satisfies the following specifications:

• The software is open source, such that everyone can make modifications and exten-
sions to the code.

• The coupling shell is minimally intrusive in the solvers. The main structure of the
solvers remains the same, only a few subroutine calls have to be added in a high
level of the code.

• The coupling shell is interoperable with different programming languages, such as
Fortran 90, C and C++.

• The information transfer is handled within a separate server program.

• The transfer algorithm is based on a plug-in architecture, such that a new transfer
algorithm can be implemented without having to deal with the general communi-
cation between the two solvers.

• The coupling shell can deal with parallel solvers and parallel transfer algorithms,
which means that large simulations can be performed.

• It is possible to couple one solver to more than one other solver by starting up a
separate coupling shell for each combination of solvers.

Numerical acceleration techniques can be implemented as subroutines within the cou-
pling server without having to change the separate solvers involved. This means that
these acceleration techniques can be reused when one or more different solvers are
coupled. Flecs supports the use of multiple grids on a single interface and therefore
simplifies the use of multilevel acceleration techniques.

103

Mesh deformation based on radial basis function interpolation

Radial basis functions (RBFs) can be used to interpolate the displacements of the
boundary nodes of the mesh to the inner domain, to obtain a point-by-point mesh
deformation scheme. The method requires solving a small system of equations, only
involving the nodes on the boundary of the flow domain. The implementation of the
method is relatively simple, even for 3D applications, because no grid-connectivity
information is needed. The method can handle large deformations of a mesh caused
by translation, rotation and deformation of a structure both on 2D and 3D meshes.
When efficiency is important, the CP C2 RBF with compact support is the best
choice, closely followed by the thin plate spline.

In a comparison the RBF-method produces meshes of higher quality than the
popular semi-torsional spring analogy for very large deformations. The quality of the
meshes after deformation is high enough to perform accurate flow calculations. If
there is translation information available, the additional recovery of rotations does
not improve the solution, but it increases the computation time dramatically.

It is shown that working with higher quality meshes obtained by the RBF-method
can increase the efficiency of the computation. This is explained by the fact that the
new method preserves the performance of higher order time integration methods, due
to its smooth deformation in time. Also the larger deformations due to a larger time
step, which are possible when using higher order time integration methods, can be
handled with the RBF mesh deformation algorithm.

Two dimensional application

An FSI computation of flow around a cylinder with deformable flap is performed to
investigate the performance of four transfer algorithms in a 2D setting and the use
of Flecs and the new mesh deformation method in a real application. It was shown
that when Flecs is used only a few subroutine calls had to be added to the flow and
structure solver. With the new deformation method the mesh quality remains high
throughout the computation. Even as the mesh deformation is performed by solving
the system and evaluating the interpolation with direct methods, for this testcase
the new method is more than a factor 10 faster than a method based on solving the
Laplace equation to create a displacement field.

The solution obtained with the transfer algorithm based on only nearest neigh-
bour interpolation deviates the most from the reference solution, because transferring
the displacement from the coarser structure mesh to the fine flow mesh with near-
est neighbour interpolation results in a ’staircase’ shape of the flap. The difference
between transferring both pressure and displacement with consistent RBF or trans-
ferring pressure with nearest neighbour and displacement with radial basis function
interpolation is negligible. However, the computational costs for nearest neighbour
interpolation are much smaller than for consistent radial basis function interpolation.
Therefore, the former is preferred over the latter.

The use of quadratic shape functions for the structure, results in a highly os-
cillatory pressure force when radial basis function interpolation with a conservative
approach is used. However, this has only an effect on the results for the lift and not

104 CONCLUSIONS

on the displacement of the structure. Overall we conclude that transferring pressure
with simple nearest neighbour interpolation and displacement with consistent radial
basis function interpolation gives the best results for this FSI test case.

Chapter 7

Recommendations

Based on the outcome of the investigations presented in this thesis, some recommen-
dations can be given for further investigations.

In Chapter 2 it was shown that a transfer algorithm using a consistent approach
does not conserve total energy over the interface. However, in unsteady partitioned
computations energy is generally already not conserved due to errors caused by the
time lag between flow and structure. When the coupling error introduced by the
information transfer is smaller than the spatial and temporal discretization error, this
coupling error does not have to affect the stability and accuracy of the computation,
especially when the spatial and time discretization themselves are very dissipative.
However, the conservation properties of consistent transfer algorithms in combination
with a partitioned method in unsteady computations needs further investigation. Also
the effect of spatial transfer algortithms on the accuracy of the global time integration
scheme has not been investigated yet.

In Chapter 3 a generic, flexible coupling shell, Flecs is developed. So far, Flecs

has only been applied to sequential solvers and sequential data transfer algorithms.
As Flecs fascilitates the coupling of parallel solvers and the use of parallel data
transfer algorithms it is recommended that Flecs is tested for these configurations.
In the current setup for parallel computations, the data exchange with the solvers
is handled by a single server process that distributes the data over the other server
processes as shown in Figure 3.2. A more advanced setup is shown in Figure 3.3,
where the different processes of the solvers directly exchange data with the (multiple)
processes of the coupling server. This setup is currently under development.

The Flecs server library provides subroutines for establishing a connection with
the solver programs; for listening for requests from those solvers; and for handling
the communication with the solvers. It does not, however, provide subroutines for
transferring data from one domain to another; these must be implemented by the
user. However, it would be usefull to provide some standard transfer algorithms. In
Chapter 5 nearest neighbour and radial basis function interpolation algorithms are
implemented in a separate server program. These algorithms could be added to the
server library, such that they can be applied by other users.

106 RECOMMENDATIONS

For strongly coupled multi-disciplinary problems, sub-iterations are needed within
one time step to stabilize the computation. Since performing one iteration in these
coupled problems is very computationally demanding the use of numerical acceleration
techniques is needed to limit the number of sub-iterations in order to increase the
efficiency of the computations. These acceleration methods could be implemented
as subroutines within the Flecs server library, because they only need information
located on the interface. The server program only has to store data from previous
iterations. In this way numerical algorithms which are implemented to efficiently
couple two solvers, can be reused when using one or more different solvers.

The computational costs of a simple sub-iteration can be reduced by multilevel
acceleration techniques. Coupling the two solvers not only on the fine meshes, but also
on coarser meshes leads to a significant efficiency improvement, since computations
on a coarse mesh are less computatinally demanding. Untill now, these multi-level
techniques are only tested for (quasi) 1D problems and need further investigation
for mulitdimensional problems. The application of these multilevel techniques with
existing solvers is simplified by Flecs, as Flecs supports the use of multiple grids
on a single interface.

In Chapter 4 a new mesh movement algorithm for unstructured grids is developed
which is based on interpolating displacements of the boundary nodes to the whole
mesh with radial basis functions. The method can handle large deformations with
good quality meshes, but further investigation is needed to increase the efficiency
of the method. This can be obtained by reducing the number of centres involved
and to improve the efficiency of the computation itself. The two main computational
challenges of mesh moving with radial basis function interpolation are: (A) solving
a dense, ill-conditioned matrix system, and (B) evaluating the interpolation function
in all internal grid points. The computational costs of both (A) and (B) increase fast
with an increasing number of boundary and internal points when direct methods are
used. It is not necessary to solve (A) and (B) exactly, because the movement of the
internal grid points can be arbitrary, as long as it results in a good quality mesh.
This means that an iterative method with a weak convergence criterion can be used
for (A). However, first a fast evaluation technique has to be found for (B), because
fast evaluation is also needed in iterative solution methods. It is worthwhile to extend
the Fast Multilevel Evaluation method with an Adaptive Mesh Refinement strategy
to increase the efficiency for the highly non-uniform located centres encountered in
our mesh deformation problems. If this gives no satisfactory results, using the Fast
Multipole method is the second option. This method, although rather complicated to
program, shows promising result, but until now only results with uniformly distributed
centres are published. It remains therefore to be seen if these efficiency gains are also
obtained in our mesh deformation problems.

Once a suitable fast evaluation technique has been found, the next step is to further
investigate the use of an iterative solution technique for (A). For the preconditioning
with approximate cardinal functions only results with uniformly distributed centres
are published. When a Lagrange form of the interpolation function is used for the
preconditioning, an efficiency increase is obtained for various positions of the centres.
However, when the Thin plate spline is used and the distance between the centres

107

is locally very small, the convergence rate in the iterative procedure becomes very
slow. These locally small distances between centres are typically the case in our mesh
deformation problems and therefore it is suggested to first investigate the iterative
technique based on approximate cardinal functions.

Another way to improve the efficiency of the computation is to reduce the number
of centres involved in computing and evaluating the interpolation function. This can
be obtained by removing the centres on the fixed outer boundary and multiplying the
interpolation function with a cut-off function instead. This cut-off function is equal
to one close to the moving boundary and decays to zero at the outer boundaries.
Furthermore, when there is a clustering of centres at certain locations it is possible
to only take into account a selection of these centres that are positioned at a minimal
distance dref from each other. This both reduces the number of centres and improves
the condition number of the problem. However, the exact shape of the cut-off function
and the value for the minimal distance are problem dependent and need further
investigation.

In Chapter 5 the numerical benchmark problem FSI3 of 2D flow around a cylin-
der with deformable flap is performed. However, we used a linear structure and a
compressible flow solver, instead of a non-linear structure and an incompressible flow
solver as given in the benchmark problem. Therefore we did not expect to obtain
the same results. In order to compare the results with the benchmark problem, the
computations should be repeated with the appropriate solvers. Also more extensive
convergence studies should be performed both for the time step and the grid size, in
order to draw stronger conlusions on the accuracy of the data transfer algorithms.
Furthermore, further investigation is needed on the efficiency of the transfer algo-
rithms for this two-dimensional problem and their computation time relative to the
overall computation time.

108 RECOMMENDATIONS

Bibliography

[1] OpenFEM – A Finite Element Toolbox for Matlab and Scilab, 2006.

[2] D. Abouri, A. Parry, A. Hamdouni & E. Longatte, A stable fluid-structure-interaction algo-
rithm: Application to industrial problems, Journal of Pressure Vessel Technology-Transactions

of the Asme, vol. 128, no. 4, pp. 516–524, 2006.

[3] R. Ahrem, A. Beckert & H. Wendland, A new multivariate interpolation method for large-scale
coupling problems in aeroelasticity, Conference proceedings IFADS, Munich, 2005.

[4] R. Ahrem, A. Beckert & H. Wendland, Recovering rotations in aeroelasticity, Journal of Fluids

and Structures, vol. 23, no. 6, pp. 874–884, 2007.

[5] F. P. T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction,
International Journal for Numerical Methods in Fluids, vol. 35, pp. 743–761, 2001.

[6] J. T. Batina, Unsteady euler algorithm with unstructured dynamic mesh for complex-aircraft
aeroelastic analysis, Tech. Rep. AIAA-89-1189, 1989.

[7] R. K. Beatson, J. B. Cherrie & C. T. Mouat, Fast fitting of radial basis functions: Methods
based on preconditioned GMRES iteration, SIAM Journal fo Scientific Computing, vol. 22,
no. 5, pp. 1717–1740, 2000.

[8] R. K. Beatson, J. B. Cherrie & D. L. Ragozin, Fast evaluation of radial basis functions: Methods
of four-dimensional polyharmonic splines, SIAM Journal on Mathematical Analysis, vol. 32,
pp. 1272–1310, 2001.

[9] R. K. Beatson & L. Greengard, A short course on fast multipole methods, in Wavelets, Multi-

level Methods, and Elliptic PDEs (edited by J. Levesley, W. Light & M. Marletta), pp. 1–37,
Oxford University Press, Oxford, 1997.

[10] R. K. Beatson & W. A. Light, Fast evaluation of radial basis functions: Methods for 2-
dimensional polyharmonic splines, IMA Journal of Numerical Analysis, vol. 17, pp. 343–372,
1997.

[11] R. K. Beatson, W. A. Light & S. Billings, Fast solution of the radial basis function interpolation
equations: Domain decomposition methods, Advances in Computational Mathematics, vol. 11,
pp. 253–270, 1999.

[12] R. K. Beatson & G. N. Newsam, Fast evaluation of radial basis functions: part I, Computers

and Mathematics with Applications, vol. 24, pp. 7–19, 1992.

[13] A. Beckert & H. Wendland, Multivariate interpolation for fluid-structure-interaction problems
using radial basis functions, Aerospace Science and Technology, vol. 5, no. 2, pp. 125–134,
2001.

[14] C. Bernardi, Y. Maday & A. T. Patera, A new nonconforming approach to domain decompo-
sition: The mortar element method, Nonlinear Partial Differential Equations and their Appli-
cations, College de France Seminar, 1994.

[15] C. Bertram & D. P. G. DP, Biofluid mechanics of the pulmonary system, Annals Of Biomedical

Engineering, vol. 33, no. 12, pp. 1681–1688, 2005.

110 BIBLIOGRAPHY

[16] H. Bijl, M. H. Carpenter, V. N. Vatsa & C. A. Kennedy, Implicit time integration schemes for
the unsteady compressible Navier-Stokes equations: Laminar flow, Journal of Computational

Physics, vol. 179, pp. 313–329, 2002.

[17] H. Bijl, A. H. van Zuijlen & A. van Mameren, Validation of adaptive unstructured hexahedral
mesh computations of flow around a wind turbine airfoil, International Journal for Numerical

Methods in Fluids, vol. 48, pp. 929–945, 2005.

[18] S. D. Billings, R. K. Beatson & G. N. Newsam, Interpolation of geophysical data with contin-
uous global surfaces, Geophysics, vol. 67, pp. 1810–1822, 2002.

[19] S. D. Billings, G. N. Newsam & R. K. Beatson, Smooth fitting of geophysical data with
continuous global surfaces, Geophysics, vol. 67, pp. 1823–1834, 2002.

[20] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker & R. C. Whaley, ScaLAPACK Users’

Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[21] F. J. Blom, A monolithical fluid-structure interaction algorithm applied to the piston problem,
Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 3–4, pp. 369–391,
1998.

[22] F. J. Blom, Considerations on the spring analogy, International Journal for Numerical Methods

in Fluids, vol. 32, pp. 647–668, 2000.

[23] A. de Boer, H. Bijl & A. van Zuijlen, Comparing different methods for the coupling of non-
matching meshes in fluid-structure interaction computations, 17th AIAA Computational Fluid
Dynamics Conference, 2005.

[24] A. de Boer, H. Bijl & A. van Zuijlen, Coupling of non-matching meshes in fluid-structure
interaction computations, ECCOMAS Thematic Conference: Coupled Problems 2005, 2005.

[25] A. de Boer, M. S. van der Schoot & H. Bijl, Moving mesh algorithm for unstructured grids
based on interpolation with radial basis functions, 3th European Conference on Computational
Mechanics, ECCM 2006, 2006.

[26] A. de Boer, M. S. van der Schoot & H. Bijl, New method for mesh moving based on radial basis
function interpolation, European Conference on Computational Fluid Dynamics, ECCOMAS
CFD 2006, 2006.

[27] A. de Boer, M. S. van der Schoot & H. Bijl, Mesh deformation based on radial basis function
interpolation, Computers and Structures, vol. 85, no. 11—14, pp. 784–795, 2007.

[28] A. de Boer, A. H. van Zuijlen & H. Bijl, Comparison of a conservative and a consistent
approach for the coupling of non-matching meshes, European Conference on Computational
Fluid Dynamics, ECCOMAS CFD 2006, 2006.

[29] A. de Boer, A. H. van Zuijlen & H. Bijl, Review of coupling methods for non-matching meshes,
Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 8, pp. 1515–1525,
2006.

[30] A. de Boer, A. H. van Zuijlen & H. Bijl, Comparison of conservative and non-conservative
coupling approaches for non-matching meshes, in 2nd GACM Colloquium on Computational

Mechanics, German Association for Computational Mechanics, 2007.

[31] A. de Boer, A. H. van Zuijlen & H. Bijl, Mesh movement based on radial basis function
interpolation, in Computational Methods for Coupled Problems in Science and Engineering

II , ECCOMAS / International Center for Numerical Methods in Engineering, 2007.

[32] A. de Boer, A. H. van Zuijlen & H. Bijl, Comparison of conservative and consistent approaches
for the coupling of non-matching meshes, Computer Methods in Applied Mechanics and En-

gineering, vol. 0, pp. 1–16, 2008.

[33] M. D. Buhmann, Radial basis functions, Acta Numerica, vol. 9, pp. 1–38, 2000.

[34] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan & T. J. Mitchell,
Smooth surface reconstruction from noisy range data, First International Conference on Com-
puter Graphics and Interactive Techniques, 2003.

BIBLIOGRAPHY 111

[35] J. C. Carr, W. R. Fright & R. K. Beatson, Surface interpolation with radial basis functions
for medical imaging, IEEE Transactions on Medical Imaging, vol. 96–107, 1997.

[36] V. Carstens, R. Kemme & S. Schmitt, Coupled simulation of flow-structure interaction in
turbomachinery, Aerospace Science and Technology, vol. 298–306, no. 4, 2003.

[37] J. R. Cebral & R. Löhner, Conservative load projection and tracking for fluid-structure prob-
lems, AIAA Journal , vol. 35, no. 4, pp. 687–692, 1997.

[38] C. H. Charbel Farhat & D. J. Rixen, Expanding a flutter envelope using accelerated flight
data: Application to an F16 fighter configuration, AIAA 2000-1702, 41th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2000.

[39] C. Degand & C. Farhat, A three-dimensional torsional spring analogy method for unstructured
dynamic meshes, Computers and Structures, vol. 80, pp. 305–316, 2002.

[40] J. W. Demmel, J. R. Gilbert & X. S. Li, An asynchronous parallel supernodal algorithm for
sparse gaussian elimination, SIAM J. Matrix Analysis and Applications, vol. 20, no. 4, pp.
915–952, 1999.

[41] J. Donea, An arbitrary lagrangian-eulerian finite element method for transient fluid-structure
interactions, Computer Methods in Applied Mechanics and Engineering, pp. 689–723, 1982.

[42] D. Dureisseix & H. Bavestrello, Information transfer between incompatible finite element
meshes: Application to coupled thermo-viscoelasticity, Computer Methods in Applied Mechan-

ics and Engineering, vol. 195, no. 44–47, pp. 6523–6541, 2006.

[43] C. Farhat, C. Degrand, B. Koobus & M. Lesoinne, Torsional springs for two-dimensional dy-
namic unstructured fluid meshes, Computer Methods in Applied Mechanics and Engineering,
vol. 163, pp. 231–245, 1998.

[44] C. Farhat & M. Géradin, On a component mode synthesis method and its application to
incompatible substructures, Computers and Structures, vol. 51, pp. 459–473, 1994.

[45] C. Farhat & M. Lesoinne, Improved staggered algorithms for the serial and parallel solution of
three dimensional nonlinear transient aeroelastic problems, Tech. Rep. CU-CAS-97-11, 1997.

[46] C. Farhat, M. Lesoinne & P. Tallec, Load and motion transfer algorithms for fluid/structure
interaction problems with non-matching discrete interfaces: Momentum and energy conserva-
tion, optimal discretization and application to aeroelasticity, Computer Methods in Applied

Mechanics and Engineering, vol. 157, pp. 95–114, 1998.

[47] C. Farhat, K. van der Zee & P. Geuzaine, Provably second-order time-accurate loosely coupled
solution algorithms for transient nonlinear computational aeroelasticity, Computer Methods in

Applied Mechanics and Engineering, vol. (in press), 2004.

[48] A. C. Faul, G. Goodsell & M. J. D. Powell, A Krylov subspace algorithm for multiquadric
interpolation in many dimensions, IMA Journal of Numerical Analysis, vol. 25, pp. 1–24,
2005.

[49] A. C. Faul & M. J. D. Powell, Krylov subspace methods for radial basis function interpolation,
in Numerical Analysis 1999 (edited by D. F. Griffiths), pp. 115–141, Chapman and Hall,
London, 1999.

[50] A. C. Faul & M. J. D. Powell, Proof of convergence of an iterative technique for thin plate
spline interpolation in two dimensions, Advances in Computational Mathematics, vol. 11, pp.
183–192, 1999.

[51] C. A. Felippa, K. C. Park & C. Farhat, Partitioned analysis of coupled mechanical systems,
Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 3247–3270, 2001.

[52] Fraunhofer Institut for Algorithms and Scientific Computing SCAI, MpCCI, Mesh-based par-

allel Code Coupling Interface - Specification of MpCCI Version 2.0 , 2003.

[53] P. P. Friedmann, Vibration reduction in rotorcraft using active control: A comparison of various
approaches, Journal of Guidance, Control and Dynamics, vol. 18, pp. 664–673, 1995.

112 BIBLIOGRAPHY

[54] J.-F. Gerbeau & M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-
structure interaction problems in blood flows, Mathematical Modelling and Numerical Analy-

sis, vol. 37, no. 4, pp. 631–647, 2003.

[55] P. Geuzaine, G. Brown, C. Harris & C. Farhat, Aeroelastic dynamic analysis of a full F-16
configuration for various flight conditions, AIAA Journal , vol. 41, no. 3, pp. 363–371, 2003.

[56] M. Gluck, M. Breuer, F. Durst, A. Halfmann & E. Rank, Computation of wind-induced vibra-
tions of flexible shells and membranous structures, Journal of Fluids and Structures, vol. 17,
no. 5, pp. 739–765, 2003.

[57] A. Gravouil & A. Combescure, Multi-time-step explicit-implicit method for non-linear struc-
tural dynamics, International Journal for Numerical Methods in Engineering, vol. 50, no. 1,
pp. 199–225, 2001.

[58] L. Greengard & J. Strain, The fast gauss transform, SIAM Journal of Scientific Computing,
vol. 1, pp. 79–94, 1991.

[59] W. Gropp, E. Lusk & R. Thakur, Using MPI-2: Advanced Features of the Message Passing

Interface, The MIT Press, 1999.

[60] H. Guillard & C. Farhat, On the significance of the geometric conservation law for flow com-
putations on moving meshes, Computer Methods in Applied Mechanics and Engineering, vol.
190, pp. 1467–1482, 2000.

[61] P. M. Hartwich & S. Agrawal, Method for perturbing multiblock patched grids in aeroelastic
and design optimization applications, AIAA-97-2038, 1997.

[62] M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure
interaction problems, Computer Methods in Applied Mechanics and Engineering, vol. 193, no.
1–2, pp. 1–23, 2004.

[63] M. W. Heinstein & T. A. Laursen, A three dimensional surface-to-surface projection algorithm
for non-coincident domains, Communications in Numerical Methods in Engineering, vol. 19,
pp. 421–432, 2003.

[64] B. T. Helenbrook, Mesh deformation using the biharmonic operator, International Journal for

Numerical Methods in Engineering, vol. 56, pp. 1007–1021, 2003.

[65] S.-Y. Hsu & C.-L. Chang, Mesh deformation based on fully stressed design: The method and
2d examples, International Journal of Numerical Methods in Engineering, vol. 72, no. 5, pp.
606–629, 2007.

[66] T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis,
Prentice-Hall Int., 1987.

[67] B. Irons & R. Tuck, A version of the Aitken accelerator for computer iteration, International

Journal of Numerical Methods in Engineering, vol. 1, no. 3, pp. 275–277, 1969.

[68] S. Jakobsson & O. Amoignon, Mesh deformation using radial basis functions for gradient-based
aerodynamic shape optimization, Computers & Fluids, vol. 36, no. 6, pp. 1119–1136, 2007.

[69] A. Jameson, W. Schmidt & E. Turkel, Numerical solutions of the Euler equations by finite
volume methods using Runge-Kutta time-stepping schemes, Tech. Rep. AIAA-81-1259, 1981.

[70] H. Kanchi & A. Masud, A 3D adaptive mesh moving scheme, International Journal for Nu-

merical Methods in Fluids, vol. 54, no. 6–8, pp. 923–944, 2007.

[71] E. J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to
computational fluid-dynamics – I: Surface approximations and partial derivative estimates,
Computers & Mathematics with Applications, vol. 19, pp. 127–145, 1990.

[72] E. J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to com-
putational fluid-dynamics – II: Solutions to parabolic, hyperbolic and elliptic partial differential
equations, Computers & Mathematics with Applications, vol. 19, pp. 147–161, 1990.

[73] B. B. T. Kee, G. R. Liua, G. Y. Zhanga & C. Luc, A residual based error estimator using
radial basis functions, Finite Elements in Analysis and Design, vol. 44, no. 9–10, pp. 139–181,
2008.

BIBLIOGRAPHY 113

[74] P. M. Knupp, Algebraic mesh quality metrics for unstructured initial meshes, Finite Elements

in Analysis and Design, vol. 39, pp. 217–241, 2003.

[75] B. Koobus & C. Farhat, Second-order time-accurate and geometrically conservative implicit
schemes for flow computations on unstructured dynamic meshes, Computer Methods in Applied

Mechanics and Engineering, vol. 170, pp. 103–129, 1999.

[76] K. Kovalev, Unstructured Hexahedral Non-conformal Mesh Generation, Ph.D. thesis, Vrije
Universiteit Brussel, 2005.

[77] G. A. M. van Kuik & J. W. M. Dekker, The flexhat program, technology development and
testing of flexible rotor systems with fast passive pitch control, Journal of Wind Engineering

and Industrial Aerodynamics, vol. 39, pp. 435–448, 1992.

[78] T. A. Laursen & M. W. Heinstein, Consistent mesh tying methods for topologically distinct
discretized surfaces in non-linear solid mechanics, International Journal for Numerical Methods

in Engineering, vol. 57, pp. 1197–1242, 2003.

[79] X. S. Li & J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems, ACM Transactions on Mathematical Software, vol. 29, no. 2,
pp. 110–140, 2003.

[80] E. J. Lingen, FLECS, a Flexible Coupling Shell , 2007.

[81] O. E. Livne & G. B. Wright, Fast multilevel evaluation of 1D piecewise smooth radial basis
function expansions, SIAM Conference on Geometric Design and Computing, 2005.

[82] O. E. Livne & G. B. Wright, Fast multilevel evaluation of smooth radial basis function expan-
sions, Electronic Transactions on Numerical Analysis, vol. 23, pp. 263–287, 2006.

[83] R. Löhner, C. Yang, J. Cebral, J. D. Baum, H. Luo, D. Pelessone & C. Charman, Fluid-
structure interaction using a loose coupling algorithm and adaptive unstructured grids, in
Computational Fluid Dynamics Review (edited by M. Hafez & K. Oshima), John Wiley, 1995.

[84] D. Lynch & K. ONeill, Elastic grid deformation for moving boundary problems in two space
dimensions, in Finite Elements in Water Resources (edited by S. Wang), 1980.

[85] N. Maman & C. Farhat, Matching fluid and structure meshes for aeroelastic computations: A
parallel approach, Computers and Structures, vol. 54, no. 4, pp. 779–785, 1995.

[86] P. O. Marklund & L. Nilsson, Simulation of airbag inflation processes using a coupled fluid
structure approach, Computational Mechanics, vol. 29, no. 4–5, pp. 289–297, 2002.

[87] C. Michler, E. H. van Brummelen & R. de Borst, An interface Newton-Krylov solver for fluid-
structure interaction, International Journal for Numerical Methods in Fluids, vol. 47, no.
10–11, pp. 1189–1195, 2005.

[88] C. Michler, S. J. Hulshoff, E. H. van Brummelen, S. J. Hulshoff & R. de Borst, A monolithic
approach to fluid-structure interaction, Computers & Fluids, vol. 33, no. 5–6, pp. 839–848,
2004.

[89] D. P. Mok, W. A. Wall & E. Ramm, Accelerated iterative substructure schemes for instation-
ary fluid-structure interaction, in First MIT Conference on Computational Fluid and Solid

Mechanics, pp. 1325–1328, 2001.

[90] G. Morgenthal & A. McRobie, A comparative study of numerical methods for fluid structure
interaction analysis in long-span bridge design, Wind and Structures, vol. 5, no. 2–4, pp.
101–114, 2002.

[91] T. Neckel, FSIce for fluid-structure interactions on cartesian grids, in 2nd GACM Colloquium

on Computational Mechanics, Fakultät für Informatik, Technische Universität München,
München, Germany, 2007.

[92] M. Nool, E. J. Lingen, A. de Boer & H. Bijl, Flecs, a flexible coupling shell application to
fluid-structure interaction, in PARA’06: State-of-the-Art in Scientific and Parallel Computing,
Umeøa, Sweden, 2006.

114 BIBLIOGRAPHY

[93] S. Piperno, , C. Farhat & B. Larrouturou, Partitioned procedures for the transient solution of
coupled aroelastic problems part I: Model problem, theory and two-dimensional application,
vol. 124, pp. 79–112, 1995.

[94] M. A. Potsdam & G. P. Guruswamy, A parallel multiblock mesh movement scheme for complex
aeroelastic applications, Tech. Rep. AIAA-2001-0716, 2001.

[95] T. Rendall & C. Allen, Unified cfd-csd interpolation and mesh motion using radial basis func-
tions, International Journal for Numerical Methods in Engineering, vol. 74, no. 10, pp. 1519–
1559, 2008.

[96] T. C. S. Rendall & C. B. Allen, Efficient mesh motion using radial basis functions with data
reduction algorithms, AIAA 2008-305, 46th AIAA Aerospace Sciences Meeting, Jan. 2008.

[97] T. C. S. Rendall & C. B. Allen, Improved radial basis function fluid-structure coupling via
efficient localised implementation, AIAA 2008-4058, 38th AIAA Fluid Dynamics Conference,
June 2008.

[98] G. Roussos & B. J. C. Baxter, Rapid evaluation of radial basis functions, Journal of Compu-

tational and Applied Mathematics, vol. 180, pp. 51–70, 2005.

[99] S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein & T. E. Tezduyar,
Fluid-structure interaction modeling of complex parachute designs with the space-time finite
element techniques, Computers & Fluids, vol. 36, no. 1, pp. 127–135, 2007.

[100] M. J. Smith, C. E. S. Cesnik & D. H. Hodges, Evaluation of some data transfer algorithms for
noncontiguous meshes, Journal of Aerospace Engineering, vol. 13, no. 2, pp. 52–58, 2000.

[101] M. J. Smith, D. H. Hodges & C. E. S. Cesnik, Evaluation of computational algorithms suitable
for fluid-structure interactions, Journal of Aircraft , vol. 37, no. 2, pp. 282–294, 2000.

[102] A. Soria & F. Casadei, Arbitrary lagrangian-eulerian multicomponent compressible flow with
fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol. 25,
pp. 1263–1284, 1997.

[103] S. Spekreijse, B. Prananta & J. Kok, A simple, robust and fast algorithm to compute defor-
mations of multi-block structured grids, Tech. rep., 2002.

[104] K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard & M. Accorsi, Parachute fluid-
structure interactions: 3-d computation, Computer Methods in Applied Mechanics and Engi-

neering, vol. 190, pp. 373–386, 2000.

[105] K. Stein, R. Benney & T. E. Tezduyar, Mesh moving techniques for fluid-structure interactions
with large displacements, Journal of Applied Mechanics-Transactions of the ASME , vol. 70,
no. 1, pp. 58–63, 2003.

[106] F. K. Straub, A feasibility study of using smart materials for rotor control, Smart Material

Structures, vol. 5, pp. 1–10, 1996.

[107] P. le Tallec & J. Mouro, Fluid structure interaction with large structural displacements, Com-

puter Methods in Applied Mechanics and Engineering, vol. 190, pp. 3039–3067, 2001.

[108] P. Thévenza, T. Blu & M. Unser, Interpolation revisited, IEEE Transactions on Medical Imag-

ing, vol. 19, no. 7, pp. 739–758, 2000.

[109] H. M. Tsai & A. S. F. Wong, Unsteady flow calculations with a parallel multiblock moving
mesh algorithm, AIAA Journal , vol. 39, no. 6, pp. 1021–1029, 2001.

[110] S. Turek & J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between
an elastic object and laminar incompressible flow, in Fluid-Structure Interaction: Modelling,

Simulation, Optimisation (edited by H.-J. Bungartz & M. Schäfer), Springer, 2006.

[111] S. Turek & M. Schäfer, Benchmark computations of laminar flow around cylinder, in Flow

Simulation with High-Performance Computers II (edited by E. H. Hirschel), no. 52 in Notes
on Numerical Fluid Mechanics, Vieweg, 1996.

[112] J. Vierendeels, lieve Lanoye, J. Degroote & P. Verdonck, Implicit coupling of partitioned fluid-
structure interaction problems with reduced order models, Computers and Structures, vol. 85,
no. 11–14, pp. 970–976, 2007.

BIBLIOGRAPHY 115

[113] Z. J. Wang & A. J. Przekwas, Unsteady flow computation using moving grid with mesh en-
richment, Tech. Rep. AIAA-94-0285, 1994.

[114] H. Wendland, Konstruktion und untersuchung radialer basisfunktionen mit kompaktem träger,
Tech. rep., 1996.

[115] H. Wendland, Error estimates for interpolation by compactly supported radial basis functions
of minimal degree, Journal of Approximation Theory, vol. 93, pp. 258–272, 1998.

[116] H. Wendland, On the smoothness of positive definite and radial functions, Journal of Compu-

tational and Applied Mathematics, vol. 101, pp. 177–188, 1999.

[117] J. White & M. Heil, Three-dimensional instabilities of liquid-lined elastic tubes: A thin-film
fluid-structure interaction model, Physics of Fluids, vol. 17, no. 3, p. 031506, 2005.

[118] E. C. Yates jr., AGARD standard aeroelastic configurations for dynamic response. candidate
configuration I.-Wing 445.6, Tech. Rep. Technical Memorandum 100492, 1987.

[119] D. Zeng & C. R. Ethier, A semi-torsional spring analogy model for updating unstructured
meshes in 3D moving domains, Finite Elements in Analysis and Design, vol. 41, pp. 1118–
11139, 2005.

[120] A. H. van Zuijlen, Fluid-structure interaction simulations - Efficient higher order time inte-

gration of partitioned systems, Ph.D. thesis, Delft University of Technology, 2006.

[121] A. H. van Zuijlen & H. Bijl, A higher-order time integration algorithm for the simulation of
non-linear fluid-structure interaction on moving meshes, Nonlinear Analysis-Theory Methods

& Applications, vol. 63, pp. 1597–1605, 2005.

[122] A. H. van Zuijlen & H. Bijl, Implicit and explicit higher-order time integration schemes for
fluid-structure interaction computations, International Journal of Multiscale Computational

Engineering, vol. 4, no. 2, pp. 255–263, 2006.

[123] A. H. van Zuijlen, A. de Boer & H. Bijl, Higher-order time integration through smooth mesh
deformation for 3D fluid-structure interaction simulations, Journal of Computational Physics,
vol. 224, pp. 414–430, 2007.

[124] A. H. van Zuijlen, S. Bosscher & H. Bijl, Two level algorithms for partitioned fluid-structure
interaction computations, Computer Methods in Applied Mechanics and Engineering, vol. 196,
no. 8, pp. 1458–1470, 2006.

116 BIBLIOGRAPHY

Appendix A

This appendix contains the entries of the matrices and vectors given in (4.14) in more detail, both
for the inclusion of rotations in 2D and 3D, where φij = φ(||xbi

− xbj
||) and we use N = nb for

lay-out purposes.

Including rotational information in 2D

In 2D Aφ,b is a symmetric (3N × 3N) matrix with

A11 =

2

6

6

6

6

6

6

6

6

6

6

6

4

φ11 0 φ12 0 . . . φ1N 0

0 φ11 0 φ12 . . . 0 φ1N

φ21 0 φ22 0 . . . φ2N 0

0 φ21 0 φ22 . . . 0 φ2N

.

..
.
..

.

..
.
..

. . .
.
..

.

..

φN1 0 φN2 0 . . . φNN 0

0 φN1 0 φN2 . . . 0 φNN

3

7

7

7

7

7

7

7

7

7

7

7

5

,

A12 =

2

6

6

6

6

6

6

6

6

6

6

6

4

−∂yφ11 −∂yφ12 . . . −∂yφ1N

∂xφ11 ∂xφ12 . . . ∂xφ1N

−∂yφ21 −∂yφ22 . . . −∂yφ2N

∂xφ21 ∂xφ22 . . . ∂xφ2N

.

..
.
..

. . .
.
..

−∂yφN1 −∂yφN2 . . . −∂yφNN

∂xφN1 ∂xφN2 . . . ∂xφNN

3

7

7

7

7

7

7

7

7

7

7

7

5

,

and

A22 =

2

6

6

6

6

4

∇2φ11 ∇2φ12 . . . ∇2φ1N

∇2φ21 ∇2φ22 . . . ∇2φ2N

..

.
..
.

. . .
..
.

∇2φN1 ∇2φN2 . . . ∇2φNN

3

7

7

7

7

5

,

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
.

Pb is an (3N × 6) matrix and the vector r contains the displacements and rotations in the

118 APPENDIX A

following way:

Pb =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 xb1
0 yb1

0

0 1 0 xb1
0 yb1

1 0 xb2
0 yb2

0

0 1 0 xb2
0 yb2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 xbN
0 ybN

0

0 1 0 xbN
0 ybN

0 0 0 1 −1 0

0 0 0 1 −1 0

..

.
..
.

..

.
..
.

..

.
..
.

0 0 0 1 −1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, r =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

d1
x

d1
y

d2
x

d2
y

.

.

.

dN
x

dN
y

2θ1

2θ2

.

..

2θN

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Including rotational information in 3D

Aφ,b is now a (6N × 6N) matrix with

A11 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

φ11 0 0 φ12 0 0 . . . φ1N 0 0

0 φ11 0 0 φ12 0 . . . 0 φ1N 0

0 0 φ11 0 0 φ12 . . . 0 0 φ1N

φ21 0 0 φ22 0 0 . . . φ2N 0 0

0 φ21 0 0 φ22 0 . . . 0 φ2N 0

0 0 φ21 0 0 φ22 . . . 0 0 φ2N

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

φN1 0 0 φN2 0 0 . . . φNN 0 0

0 φN1 0 0 φN2 0 . . . 0 φNN 0

0 0 φN1 0 0 φN2 . . . 0 0 φNN

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

A22 =

2

6

6

6

6

4

∂Φ11 ∂Φ12 . . . ∂Φ1N

∂Φ21 ∂Φ22 . . . ∂Φ2N

.

..
.
..

. . .
.
..

∂ΦN1 ∂ΦN2 . . . ∂ΦNN

3

7

7

7

7

5

and

A22 =

2

6

6

6

6

4

∂2Φ11 ∂2Φ12 . . . ∂2Φ1N

∂2Φ21 ∂2Φ22 . . . ∂2Φ2N

..

.
..
.

. . .
..
.

∂2ΦN1 ∂2ΦN2 . . . ∂2ΦNN

3

7

7

7

7

5

,

with

∂Φij =

2

4

0 ∂zφij −∂yφij

−∂zφij 0 ∂xφij

∂yφij −∂xφij 0

3

5 ,

and

∂2Φij =

2

4

∂2
yφij + ∂2

zφij −∂xyφij −∂xzφij

−∂xyφij ∂2
xφij + ∂2

zφij −∂yzφij

−∂xzφij −∂yzφij ∂2
xφij + ∂2

yφij

3

5 .

119

Pb is an (6N ×12) matrix and the vector r contains the displacements and rotations in the following
way:

Pb =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 xb1
0 0 yb1

0 0 zb1
0 0

0 1 0 0 xb1
0 0 yb1

0 0 zb1
0

0 0 1 0 0 xb1
0 0 yb1

0 0 zb1

1 0 0 xb2
0 0 yb2

0 0 yb2
0 0

0 1 0 0 xb2
0 0 yb2

0 0 yb2
0

0 0 1 0 0 xb2
0 0 yb2

0 0 yb2

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

1 0 0 xbN
0 0 ybN

0 0 ybN
0 0

0 1 0 0 xbN
0 0 ybN

0 0 ybN
0

0 0 1 0 0 xbN
0 0 ybN

0 0 ybN

0 0 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 −1 0 0 0 1 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 −1 0 0 0 1 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 −1 0 0 0 1 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, r =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

d1
x

d1
y

d1
z

d2
x

d2
y

d1
z

.

.

.

dN
x

dN
y

dN
z

2θ1
x

2θ1
y

2θ1
z

2θ2
x

2θ2
y

2θ2
z

.

.

.

2θN
x

2θN
y

2θN
z

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

120 APPENDIX A

Dankwoord

Veel mensen hebben bijgedragen aan het tot stand komen van dit proefschrift. Ten eerste wil ik
mijn promotor Hester Bijl bedanken voor haar onafgebroken steun en niet-aflatend enthousiasme
gedurende de laatste vier jaar en mijn collega en kamergenoot Sander van Zuijlen voor de vele
discussies en ondersteuning. Ik wil ook mijn waardering uitspreken voor het werk van Martijn van
der Schoot, Erik Jan Lingen en Margreet Nool, want zij zijn hiermee verantwoordelijk voor een deel
van wat in dit proefschrift beschreven staat.

Verder zou ik dit proefschrift niet hebben kunnen voltooien zonder de continue steun van mijn
familie en Martijn in het bijzonder. Als laatste wil ik Elske bedanken voor het verrijken van ons leven
gedurende het laatste jaar van mijn onderzoek en hopelijk blijft ze dat nog vele jaren volhouden.

Aukje Spruyt-de Boer
Zoetermeer, November 2008

122 APPENDIX A

Curriculum Vitae

28 August 1980 Born in Allingawier

1992 – 1998 Marne College, Bolsward

Graduated in seven core and one basic subject

Sept. 1998 – Aug. 2003 Twente University, Enschede

Masters degree in Applied Mathematics

Chair: Numerical Analysis and Computational Mechanics

Graduated cum laude

Feb. 2004 – June 2008 Delft University of Technology, Delft

Ph.D.-student at the Aerodynamics group

of the Faculty of Aerospace Engineering

