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Every belief that we hold is a leap of faith,
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Summary

Flood risk assessments heavily rely on physics-based models. These models contain
significant uncertainties that need to be quantified to adequately assess failure proba-
bilities of flood defenses. Assumptions about these uncertainties remain often hidden
within the modeling process, even though they are critical to the outcomes. Structured
expert judgment offers a method to explicitly quantify these uncertainties with proba-
bilities. One specific method for this that is used throughout this thesis is the Classical
Model, also known as Cooke’s Method. It uses performance-based weights to combine
estimates from a group of experts into a single estimate. This method is explicitly fo-
cused on estimating uncertainty. It recognizes that unknown variables are inherently
uncertain, and consequently scores experts based on their proficiency in estimating un-
certainty.

Flood risk, especially in the Dutch context, involves events with small probabilities (e.g.,
10−3 to 10−5 every year) but large consequences. The rarity of these events makes it
difficult to quantify them on an empirical basis. Their recurrence intervals typically ex-
ceed human lifespans and the length of most observational records. The severe con-
sequences, however, make it crucial to get a grasp on the extremity of such events as
best as possible. Additionally, the dependence between events or contributing factors
must be considered as well. Statistical dependence has a prominent role in hydrological
extremes leading to flooding, whether they relate to hydraulic conditions such as water
levels and waves, spatial aspects like rain across different catchment, or temporal factors
such as consecutive storms.

The objective of this thesis is to explore how expert judgment can contribute to estima-
tion of more credible failure probabilities for engineered flood defense systems. This
involves obtaining more credible estimates of the frequency of hydrological extremes
such as floods, and subsequently assessing how this affects dike failure probability, while
considering that these are rare, non-experienced, events involving probabilistic depen-
dence. This exploration is structured around four research questions concerning 1) the
measures and distributions used to evaluate expert performance in the Classical Model,
2) the types of uncertainties that are best estimated by experts, 3) the application of ex-
pert judgment as priors in a Bayesian framework to reduce uncertainty in hydrological
extremes, and 4) the experts’ capability to estimate statistical dependence.

The first research question evaluates the performance of various statistical tests and
distributions within the Classical Model for structured expert judgment. The research
evaluates two distributions to represent expert estimates, under the hypothesis that a
smooth, Metalog, distribution would better represent these than the typically used piece-
wise uniform distribution. However, the findings indicate that neither distribution ade-
quately represents expert estimates. Thus, for a more accurate representation of the dis-
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x Summary

tributions that expert have in mind, it is recommended to elicit more percentiles from
the experts. Furthermore, the research investigates alternative measures of statistical
accuracy to the chi-square test that is traditionally used to compare an expert’s esti-
mates to known outcomes (realizations). The chi-square test generates a p-value that
for a large part determines the weight of an expert’s estimates. Four alternatives, the
Kolmogorov-Smirnov, Cramer-von Mises, Anderson Darling tests, and the Continuously
Ranked Probability Score, are explored for their suitability for evaluating expert perfor-
mance. This shows that none of these tests significantly outperforms all others, and that
each test displays different biases and sensitivities. The most notable difference between
tests is the sensitivity to overconfidence, which is the tendency of experts to give too pre-
cise answers. This is the most predominant bias in structured expert judgment studies.
Tests that are less sensitive to overconfidence assign higher weights to a larger part of the
expert pool.

The second research question investigates the accuracy with which experts estimate un-
certainties for different types of variables, specifically within dike failure assessments
along the Dutch Rhine River. This analysis compares estimates for system-level failure
probability (e.g., at which discharge do you think at least one dike along the river fails?)
to detailed dike section failure probability (e.g., at what water level does this specific sec-
tion fail due to piping?) The findings show that experts provide more credible estimates
for system-level failure probabilities than for detailed dike sections. For the latter, the
experts that scored best according to the Classical Model (i.e., gave a better represen-
tation of uncertainty) did not have the technical knowledge to produce accurate failure
probabilities for all dike failure mechanisms. Scaling these single dike section results
to a system level failure probability yielded non-credible probabilities, showing that es-
timates for system-level failure probabilities provide more accurate results. While this
does not disqualify structured expert judgment for detailed dike safety assessment, it
does show the limitations of using the Classical Model where failure probabilities are
highly sensitive to small variations in tail probabilities of estimated dike parameters.

To address the third question, the thesis describes the use of structured expert judgment
to reduce uncertainty in hydrological extremes. When a statistical distribution is fitted to
such discharges based on only measurements, the uncertainty in the tail is typically very
large. To reduce this, hydrologists estimated rare and extreme discharges for the river
Meuse’s tributaries. Without knowledge of observed historical discharges, we consider
the experts’ estimates of the extremes to be prior information. By evaluating the experts’
performance for more frequently occurring (and therefore more verifiable) discharges,
performance-based weights are derived to combine the experts’ estimates. This estimate
is then used together with measured discharges within a Bayesian framework, leading
to a reduction in statistical uncertainty through the experts’ estimates, particularly in
the range of extreme discharges. This demonstrates the effectiveness of combining ex-
pert judgment in statistical models using Bayesian sampling techniques, particularly to
achieve more credible outcomes.

The fourth and last research question explores the quantification of statistical depen-
dence through expert judgment. In the same case study for the river Meuse, the depen-
dence between the tributary discharges was quantified using a Non-parametric Bayesian
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Network. This network of nodes (representing tributary discharges) and edges (repre-
senting their dependence) simplifies the task of quantifying a correlation matrix that
serves as input for a dependence model. This case study demonstrates that experts can
effectively quantify dependence between nine tributaries’ discharges. Evaluated by the
d-calibration score, all experts performed better than the significance threshold. This
was not the case when they estimated the extreme discharges under the previous re-
search question. Whether this conclusion holds for more complex dependence patterns,
especially when considering different variables, remains a topic for future research. It
does however demonstrate the potential of expert judgment to quantify hydrological de-
pendence, which can be a key factor affecting the severity of flooding.

Through the four research questions, this study demonstrated that structured expert
judgment can effectively quantify the small probabilities and dependence that play an
important role in flood risk assessments, particularly for engineered flood defense sys-
tems with high protection standards. However, the quality of these outcomes strongly
depends on the types of uncertainties that are estimated, and the methods used to elicit
or process them. Through a mix of theoretical research, software development, and
applications, this thesis aims to guide future practitioners and researchers by having
showed 1) which methods perform well and which did not, 2) which findings require
further investigation, and 3) which tools are available to support expert elicitation. We
encourage future researchers to keep exploring this field, particularly integrating expert
judgment with high-level (statistical) models. In the search for more credible failure
probabilities, this is where experts and models can benefit from each other the most.





Samenvatting

Risicoanalyses van overstromingen zijn veelal gebaseerd op modellen die zijn gebaseerd
op fysica. Deze modellen bevatten aanzienlijke onzekerheden die moeten worden ge-
kwantificeerd om faalkansen van waterkeringen nauwkeurig in te kunnen schatten. Aan-
names over deze onzekerheden zijn vaak onduidelijk, ook al hebben ze een grote invloed
op de uitkomsten. Expertschattingen bieden een methode om deze onzekerheden ex-
pliciet te kwantificeren met kansen. Dit proefschrift past specifiek “the Classical Model”
(vertaald: het Klassieke Model) toe. Deze methode staat ook wel bekend als Cooke’s
Method. In deze aanpak wordt de deskundigheid van een expert op een specifiek onder-
werp bepaald, waarna een gewogen combinatie van de groep experts wordt gemaakt.
Deze methode is gericht op het schatten van onzekerheid. Ze erkent dat onbekende
variabelen inherent onzeker zijn en scoort experts op basis van hun vaardigheid in het
schatten van deze onzekerheid.

Overstromingsrisico, vooral in de Nederlandse context, betreft gebeurtenissen met kleine
kansen op voorkomen (bijvoorbeeld 10−3 tot 10−5 per jaar) maar met grote gevolgen. De
zeldzaamheid van deze gebeurtenissen maakt het moeilijk om de frequentie empirisch
te bepalen. Hun terugkeertijden overschrijden veelal de duur van een menselijk leven en
de lengte van de meeste meetreeksen. Vanwege de serieuze gevolgen van een overstro-
ming is het echter cruciaal om een inschatting te krijgen van de frequentie en extremiteit
van dergelijke gebeurtenissen. Bovendien moet de afhankelijkheid tussen gebeurtenis-
sen ook in overweging worden genomen. Statistische afhankelijkheid speelt een pro-
minente rol in hydrologische extremen die tot overstromingen leiden, of ze nu verband
houden met hydrodynamische omstandigheden zoals waterstanden en golven, ruimte-
lijke aspecten zoals regenval over verschillende stroomgebieden, of temporele factoren
zoals opeenvolgende (tweeling)stormen.

Het doel van dit proefschrift is te onderzoeken hoe expertschattingen kunnen bijdragen
aan het schatten van geloofwaardigere faalkansen voor waterkeringen. Dit omvat het
verkrijgen van schattingen van de frequentie van hydrologische extremen (zoals over-
stromingen) en de beoordeling hoe deze de faalkans van dijken beïnvloedt, rekening
houdend met het feit dat dit zeldzame, niet eerder meegemaakte gebeurtenissen zijn die
probabilistische afhankelijkheid met zich meebrengen. Het onderzoek is gestructureerd
rond vier onderzoeksvragen met betrekking tot 1) de statistische methoden en kansver-
delingen die worden gebruikt om de prestaties van experts te bepalen in the Classical
Model, 2) de soorten onzekerheden die het best door experts kunnen worden geschat,
3) de toepassing van expertschattingen als a priori verdelingen in een Bayesiaanse aan-
pak om onzekerheid in hydrologische extremen te verminderen, en 4) het vermogen van
experts om statistische afhankelijkheid te schatten.

De eerste onderzoeksvraag betreft de geschiktheid van verschillende statistische tests
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en verdelingen binnen the Classical Model voor expertschattingen. Het onderzoek eva-
lueert twee kansverdelingen, onder de hypothese dat een gladde Metalog-verdeling een
betere weergave is van expertschattingen dan de normaliter gebruikte trapsgewijze uni-
forme verdeling. De resultaten geven echter aan dat geen van beide verdelingen de
schattingen van experts adequaat vertegenwoordigt. Voor een nauwkeurigere weergave
van de verdelingen die experts in gedachten hebben, is het daarom aan te bevelen om
hen meer percentielen te bevragen. Verder worden in het onderzoek alternatieve toet-
sen voor het beoordelen van experts onderzocht. Normaliter wordt hiervoor de chi-
kwadraattoets gebruikt. Deze toets genereert een p-waarde die voor een belangrijk deel
het gewicht van een experts schattingen bepaalt. Vier alternatieven, de Kolmogorov-
Smirnov, Cramer-von Mises, en Anderson Darling toets, en de Continuously Ranked
Probability Score, worden beoordeeld op hun geschiktheid als expertgewicht. Het on-
derzoek toont aan dat geen van deze toetsen significant beter presteert dan alle anderen,
en dat elke toets verschillende biases en gevoeligheden vertoont. Het meest opvallende
verschil tussen de toetsen is de gevoeligheid voor overvloedig zelfvertrouwen; de neiging
van experts om te precieze schattingen te geven. Dit is de meest voorkomende bias in
studies naar expertschattingen. Toetsen die minder gevoelig zijn voor overvloedig zelf-
vertrouwen kennen hogere gewichten toe aan een groter deel van de expertgroep.

De tweede onderzoeksvraag onderzoekt de nauwkeurigheid waarmee experts onzeker-
heden voor verschillende soorten variabelen schatten, specifiek binnen dijkbeoordelin-
gen langs de Nederlandse takken van de Rijn. Deze analyse vergelijkt schattingen voor
systeemniveau faalkans (bijv. bij welke afvoer denkt u dat ten minste één dijk langs de
rivier faalt?) met gedetailleerde faalkans van dijksecties (bijv. bij welk waterniveau faalt
deze specifieke sectie door piping?) De bevindingen tonen aan dat experts geloofwaardi-
gere schattingen geven voor faalkansen op systeemniveau dan voor gedetailleerde dijk-
secties. Voor de laatste hadden de experts die volgens the Classical Model het beste
scoorden (d.w.z. een betere weergave van onzekerheid gaven) niet de technische ken-
nis om nauwkeurige faalkansen voor alle dijkfaalmechanismen te produceren. Het op-
schalen van deze resultaten van een enkele dijksectie naar een systeemniveau faalkans
leverde vervolgens ongeloofwaardige kansen op. De schattingen voor faalkansen op sys-
teemniveau daarentegen waren nauwkeuriger. Hoewel dit het gebruik van expertschat-
tingen volgens the Classical Model niet uitsluit voor gedetailleerde dijkveiligheidsbeoor-
delingen, toont het wel de beperkingen van het gebruik van deze methode waar faalkan-
sen zeer gevoelig zijn voor kleine variaties in staartkansen van geschatte dijkparameters.

Om de derde vraag te beantwoorden, beschrijft het proefschrift het gebruik van expert-
schattingen om onzekerheid in hydrologische extremen te verkleinen. Wanneer een sta-
tistische verdeling wordt gefit aan dergelijke afvoeren op basis van alleen metingen, is
de onzekerheid in de staart meestal zeer groot. Om dit te verminderen schatten hydro-
logen zeldzame en extreme afvoeren in een casestudie voor de zijrivieren van de Maas.
Zonder kennis van waargenomen historische afvoeren beschouwen we hun schattingen
als a priori informatie. Door de prestaties van de experts te evalueren op basis van vaker
voorkomende (en dus beter verifieerbare) afvoeren, worden expertgewichten afgeleid
om hun schattingen te combineren. Deze schatting wordt vervolgens samen met geme-
ten afvoeren toegepast volgens een Bayesiaanse aanpak met als effect dat, met name in
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het extreme bereik, de statistische onzekerheid beperkt wordt door de expertschattin-
gen. Dit toont de effectiviteit aan van het combineren van expertschattingen en statisti-
sche modellen met behulp van Bayesiaanse technieken om geloofwaardigere kansschat-
tingen te verkrijgen.

De vierde en laatste onderzoeksvraag onderzoekt het kwantificeren van statistische af-
hankelijkheid met expertschattingen. In dezelfde casestudie voor de Maas werd de af-
hankelijkheid tussen de zijafvoeren gekwantificeerd met een niet-parametrisch Bayesi-
aans netwerk. Dit netwerk van knopen (die afvoeren in zijrivieren vertegenwoordigen)
en kanten (die hun afhankelijkheid vertegenwoordigen) vereenvoudigt de taak van het
kwantificeren van een correlatiematrix die als invoer dient voor een afhankelijkheids-
model. Deze casestudie toont aan dat experts effectief de afhankelijkheid tussen de
afvoeren van negen zijrivieren kunnen kwantificeren. Evaluatie met de “d-calibration
score” toont aan dat alle experts beter presteerden dan de significantiedrempel. Dit was
niet het geval toen zij extreme afvoeren schatten onder de vorige onderzoeksvraag. Of
deze conclusie standhoudt voor complexere afhankelijkheden, vooral bij combinaties
van verschillende typen variabelen, blijft een onderwerp voor toekomstig onderzoek.
Het toont echter wel het potentieel van expertschattingen voor het kwantificeren van
hydrologische afhankelijkheid, een potentieel belangrijke factor voor de ernst van over-
stromingen.

Aan de hand van de vier onderzoeksvragen toont deze studie aan dat expertschattingen
effectief kunnen worden gebruikt om de kleine kansen en afhankelijkheid te kwantifi-
ceren die een belangrijke rol spelen in overstromingsrisico en dijkfalen, met name voor
waterkeringen met een hoog beschermingsniveau. De kwaliteit van deze uitkomsten
hangt echter sterk af van de soorten variabelen waarvoor onzekerheden worden geschat
en de methoden die worden gebruikt om ze te verkrijgen of te verwerken. Door een
mix van theoretisch onderzoek, softwareontwikkeling en toepassingen, poogt dit proef-
schrift toekomstige beoefenaars en onderzoekers te helpen door te laten zien 1) welke
methoden goed werken en welke niet, 2) welke bevindingen verder onderzoek vereisen,
en 3) welke hulpmiddelen beschikbaar zijn om expertschattingen te ondersteunen. We
moedigen toekomstige onderzoekers aan om dit onderzoeksveld verder te verkennen,
met name door expertschattingen te integreren met globale (statistische) modellen. In
de zoektocht naar geloofwaardigere faalkansschattingen is dit het punt waar experts en
modellen elkaar het best kunnen versterken.





1
Introduction

Humankind has always had the tendency to live close to water. Water is indispensable
for both individuals and societies. It provides a source of food and drinking water, op-
portunities for transport and trade, but also exposure to the risk of flooding. This applies
to most of the world to a varying degree. Rentschler et al. (2022) calculated that 23%
of the world population is directly exposed to floods that happen on average once per
100 years, most of them living in low- or middle-income countries. The Netherlands
are, in terms of flood risk, a particularly dire case, with the world’s highest relative expo-
sure to flood risk (58.7% of the population). Much of its area was created through land
reclamation and is therefore relatively flat and at similar elevations to mean sea level.
Consequently, 60% of the country’s land surface is prone to flooding, either from the
sea or rivers (Kok et al., 2017). To drain water from this area is challenging, hence the
reliance on extensive water infrastructure to keep dry feet. The windmill, a Dutch na-
tional symbol, was originally used for ‘pumping’ water from lower to higher drains. In
light of climate change, sea-levels have risen over the past century and are projected to
rise further during the next century (IPCC, 2023). Increased rainfall intensities and peak
river flows combined with ongoing urbanization will make flood risk, if anything, a more
relevant topic in the near future.

1.1. Dutch flood risk framework
Protecting against floods from rivers or seas is a task that benefits from collaboration.
It takes fewer flood defenses to protect a larger area (with twice the dike length a four
times larger area can be protected). More often, collaboration is a necessity, as the task
of protecting against floods is simply too large to be done by a single person. This, in
combination with the just described geographical properties of the Netherlands, has led
to the establishment of so-called water authorities. These organizational structures have
emerged over the past centuries to limit the threads of flooding together. This has cre-
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2 1. Introduction

ated a situation in which flood defenses protect substantial areas that would otherwise
flood regularly.

These defenses have high levels of safety. This implies a high probability that a flood
defense is safe and, conversely, a very small probability that it might fail. These proba-
bilities are expressed as a failure probability in a year, and typically range from 0.01 for
areas where floods would have relatively limited impacts to 0.00001 (once per 100,000)
for densely populated areas that would suffer severely from a flood. Another way to ex-
press them is as return periods or average recurrence intervals: In a very long time series,
a 0.01 probability in a year corresponds to an average of 100 years between subsequent
floods exceeding a specific size. These are periods that exceed most humans’ lifetimes as
well as the duration of most measured data records. This complicates estimating the ex-
tremity of such events on empirical basis, introducing a need for statistics and modeling
to describe such rare events.

Flood risk is typically defined by the product of flood probability and flood consequences.
The flood probability has two components, load, and resistance. Loads are the water
levels or waves exerting forces on the flood defenses. The magnitude of the loads is de-
termined by meteorological conditions, hydrology, and river or coastal hydraulics. The
resistance is the structural or geotechnical strength of the flood defenses. The conse-
quences are the impact of a flood on society, such as the mortality of both individuals,
groups of people, and economic losses. For more background on the Dutch flood risk
framework, refer to (Kok et al., 2017).

1.2. Models for failure probabilities and consequences
The easiest way to assess the probability of a flood event is by counting historical ob-
servations. However, because flood events are rare in the Netherlands and we only have
roughly a hundred years of representative data, this method cannot be relied upon for
accurately estimating flood probabilities. Instead, models and simulations are needed
to estimate failure probabilities and consequences. Moreover, in the Netherlands, safety
levels are defined by law. This encourages the use of standardized methods and mod-
els to determine flood defense safety. Within the Dutch flood risk framework, different
models are used for various parts of the flood probability calculations. The principles on
which these models are based differ. For example:

• The hydraulics of water flow (e.g., water flowing through a river) can largely be
modeled from first principles. This means that the model reflects physical laws,
such as conservation of mass or energy. The finer details, such as the interaction
between the water and the riverbed, are however modeled with a “lumped” rough-
ness parameter.

• Flood defense failure is an interaction between water and the flood defense. Flood
defenses are often geotechnical structures. Different model types are used to de-
termine flood defense failures. For example, the Sellmeijer piping model (Sellmei-
jer, 1988), which is often used in this case, is based on the pressure gradient caused
by a physical quantity such as the difference in water level across a dike. Detailed
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processes, such as the erosion of the soil, are however based on empirical relations
derived from research.

• Hydrological modeling from rainfall to river discharge is an example of a process
with many unknowns. Even for something as visible as runoff resulting from rain-
fall, physical processes are a challenge to describe. This only gets more difficult for
subsurface flow. Hydrological modeling is therefore an example where the physi-
cal process is modeled with significant simplification or is based on empirical re-
lationship.

Models do not need to be based on physical processes or a causal chain of events. For
example, linear regression (drawing a relational line through a cloud of points) can de-
scribe the relationship between two variables without explicitly stating how they are con-
nected, and which causes which. Joint probability distributions extend such a model by
expressing the relation between two (or more) variables including the probabilistic un-
certainty (how far the points are from the line).

Models used for flood risk assessment are generally physics-based models, which are
usually deterministic and have no explicit representation of uncertainty. Given the hy-
draulic loads, the model will return a single answer (e.g., failure or not, or a specific wa-
ter level) and not a probability that a certain value is exceeded. However, a probabilistic
model outcome can still be achieved by defining the uncertainty in the input parameters
and propagating this through the model. Two approaches can be distinguished for doing
this. Firstly, the probabilistic approach. In this approach all combinations of (uncertain)
model input parameters and their dependence, and the outcome of each combination,
are integrated in the failure probability assessment. While the approach is in theory most
accurate, it can be a challenging task to correctly resolve all uncertainties. The second
approach is a simplification of this, called the “semi-probabilistic” approach, in which
a design value of a model uncertainty parameter is calibrated beforehand using a (fully)
probabilistic approach. Such design values contain a safety factor and can, for example,
be derived from the most likely combination of model parameters that led to failure in a
fully probabilistic assessment. While this approach is much more straightforward, semi-
probabilistic design values are (or should be) more conservative, as they could be applied
in varying conditions where failure can be sensitive to different parameters. The Dutch
flood risk approach combines semi-probabilistic and probabilistic elements and distin-
guishes itself from more widely used approaches by putting more emphasis on (fully)
probabilistic assessments. This increases the importance of deriving uncertainties on a
case-by-case base.

1.3. Uncertainties and their impact
To understand the types of uncertainties involved in flood risk, consider a dike along
a river that fails due to overflow. The hydrology of the upstream catchment determines
the amount of water flowing through the river during extremes and is expressed with dis-
charge statistics. Typical sources of uncertainty in these are (Fig. 1.1 a): 1) the need for ex-
trapolation from relative short time series of historical observations, 2) a non-stationary
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(a) River discharge time series

Only 30 year of data available for
estimating once per 100+ year events

1.

Is changing land-use or climate change
causing an increase in peak flows?

2.

Converted levels rather than
measured discharges

3.

The event peak
was not captured

4.

(b) Topography top view

Water flow is modelled on a gridded,
simplified, representation of reality

1.

Calibrating to extreme events is complicated by lack of data2.

Channel bathymetry changes during floods,
hydraulic structures may be blocked

3.

(c) Dike cross section

2. How strong is the grass cover?

1. What is the duration and intensity of overflow?

3. How does the dike body erode after the cover fails?

?

?

Figure 1.1: Illustration of different sources of uncertainty in hydrology, hydraulic modeling, and flood defense
failure.
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system, for example a changing catchment or climate, 3) missing observations (floods
often exceed or destroy measuring devices), and 4) inaccuracies in stage-discharge re-
lation that is used to transform the measured water level to a discharge. Subsequently,
these (transformed) discharges are converted to water levels in the river using a hydro-
dynamic model. Typical sources of uncertainty in this are (Fig. 1.1 b): 1) a lack of detail
in the model, 2) the absence of suitable calibration events, or 3) a changing river dur-
ing the event. Finally, uncertainties in overflow failure could be caused by (Fig. 1.1 c):
1) the duration and intensity of overflow, 2) uncertainty about the quality of the grass
cover and its ability to withstand overflow, and 3) the erosion of the dike body after grass
cover failure. Many of these uncertainties can be interrelated. For example, a changing
catchment may not only affect runoff but also affect the stage-discharge relation. Or per-
haps the quality of the grass-cover is partly related to the same aspect that affects erosion
speed of the subsoil.

All these uncertainties can be related to a physical parameter like peak discharge, local
water level, or critical flow velocity. These are considered random variables, variables
that do not take on a single value but follow a probability distribution. The peak dis-
charge is an example of a random variable that serves as input for the subsequent flood
models. It stems from a non-stationary stochastic process and is known as an aleatoric
(random) uncertainty. The uncertainty in using historical data (counting occurrences) is
an aleatoric uncertainty because we never have infinite data (all possible occurrences).
Another example of uncertainty is the uncertainty that results from lack of knowledge.
These could in theory be reduced by taking more measurements or using a modeling
with a finer resolution. Such uncertainties are called epistemic (knowledge-related) un-
certainties and are often related to model parameters rather than boundary conditions.
There are other uncertainties that do not fall within one of these categories. For exam-
ple, uncertainties introduced by errors, human actors, or ethical and legal constraints
(French, 2023). Epistemic and aleatoric uncertainties are however the most common
uncertainties in modeling physical processes.

So how do we handle these uncertainties? The preferred way of quantifying uncertain-
ties is through data. However, empirical data are often unavailable for model parameters
with large spatial variation or parameters that are not visible to the naked eye (e.g., grain
sizes or permeability). In absence of field data, a modeler will likely use default values
and parameter values available in literature. If these uncertainties do not represent the
actual situation, the modeled failure probability will be inaccurate. If the failure proba-
bility is very large, for example one in 5 years, and no failure has been observed over the
last 30 years, the result can be invalidated with relative certainty. However, if the results
would be a one in 30 years probability (i.e., a 63% chance of at least one failure over the
last 30 years), the data are not conclusive and it comes down to the modeler’s perception
to discover a potential error or inaccurate assumption, which might then be traced back
to the input. Assuming that experienced practitioners are well able to identify such er-
rors, perhaps they can also use that knowledge to estimate the failure probability, model
parameters, or model outcomes directly? This is where expert judgment comes into play,
a main topic of this research.
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1.4. Structured expert judgment in flood risk
Expert Judgment involves a large variety of techniques to gather estimates for unknown
variables from experts. This can be an informal estimate from your experienced col-
league but also a formal process in which probability assessments are elicited and vali-
dated. Structured expert judgment (SEJ) falls in the last category. It formalizes the elic-
itation of expert judgments in such a way that the results can be treated as scientific
data. Structured expert judgment is used to quantify variables that are difficult to quan-
tify using other methods, for example because field measurements or experiments are
infeasible, too costly, or unethical. The Classical Model, also known as Cooke’s method,
is one method of SEJ and plays a central role in this thesis. Section 2.1 explains the Clas-
sical Model in detail. To already get an idea of the method, these are the steps involved
in an expert elicitation following the Classical Model:

1. The person or team in need of uncertainty estimates prepares a questionnaire with
questions regarding the variables to quantify. Extra questions (usually 10 to 20) are
added to this for the analyst already knows the answer.

2. A group of experts (usually 5 to 15) is gathered to participate in the elicitation.

3. The session takes place during one or a few days, preferably in-person. The par-
ticipants will be introduced to the Classical Model as well as the topic, after which
they will fill out the questionnaire individually.

4. After this, the experts will be weighted based on their performance in the extra
questions with the known answer. These performance-based weights are used to
combine the expert distributions for the questions of interest.

Flood risk is a field in which causal, physics-based, models dominate. Compared to this,
expert judgment has a subjective connotation. After all, it does not ensure that an an-
swer is based on physical principles. However, the alternative of relying on a model
to generate an answer can similarly mask hidden assumptions. Models require inputs
and schematization, which are mostly based on an expert’s interpretation or judgment.
Structured expert judgment does not aim to replace or exclude the use of physics-based
models, it is usually done in conjunction with models. It is a method to quantify the
experience from practitioners, with or without models, in a scientific manner.

Several studies have applied structured expert judgment in flood risk, considering ei-
ther the hydrological or dike failure aspects (e.g., Cooke & Slijkhuis, 2002; Hathout et al.,
2019; Kindermann et al., 2020; Slijkhuis et al., 1998). More applications of SEJ are found
in the wider fields of reliability analysis, nuclear safety, public health, aviation, climate,
and natural hazards (Cooke & Goossens, 2008). Guidelines for practical applications of
SEJ (not exclusively the Classical Model) in flood risk are available in the United States
(Ayyub, 2000), and in the Netherlands (RWS-WVL, 2020). Despite this, structured expert
judgment plays a minor role in flood risk, particularly in addressing the specific chal-
lenges of this field, such as large uncertainty, rare events, and dependence between risk
factors. This thesis aims to address this gap by conducting research and applications on
expert judgment in flood risk applications, thereby focusing these specific aspects.
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1.5. Research objective
This thesis’ objective is to research how structured expert judgment can enrich the model-
based approach typically found in flood risk. Two characteristics that distinguish this
field from (some of the) other fields in which expert judgment is applied, are:

• Flood risk, especially in the Dutch context, is characterized by very small prob-
abilities (10−3 to 10−5 per year). These correspond to events that have likely not
occurred in the lifetime of a practitioner and are likely not on record.

• Extreme flood risk events involve many uncertainties. It is not unlikely that a fail-
ure is caused by a combination of “outliers” rather than a single variable being
extreme. This makes the dependence between different uncertainties a relevant
aspect to consider.

These two characteristics, small probabilities, and the dependence between them, are
not well covered in existing expert judgment research and literature, while their impact
on flood risk can be substantial in flood risk assessments. The objective of this research
is to consider how expert judgment can contribute to more credible failure probabili-
ties for engineered flood defense systems, in the context of rare non-experienced events
and their probabilistic dependence. This objective is addressed through four research
questions:

1. What measure should be used to score experts, to obtain the best results in struc-
tured expert judgment studies following the Classical Model?

2. Which variables’ uncertainties are most accurately estimated by experts?

3. How can expert judgment reduce uncertainty in the tails of probability distribu-
tions?

4. How do experts perform in estimating probabilistic dependence?

1.6. Approach and outline
Each of Chapters 4, 5, 6 and 7, is based on a publication or manuscript that treats one
of these questions. Sections 1.6.1 to 1.6.4 give a brief description of the followed ap-
proaches. The conclusions (Chapter 8) present the learnings from these chapters in the
context of the four questions, thereby addressing the main research objective.

Because not every reader might be familiar with the concepts and methods used in this
thesis, Chapter 2 provides an accessible explanation of these, being 1) structured expert
judgment, 2) statistical dependence, and 3) Bayesian statistics. Additionally, two soft-
ware programs were developed and extensively used throughout the research. Chap-
ter 3 presents these. The first, ANDURYL, is used for eliciting univariate uncertainty.
The second, Matlatzinca, is a specialized software to quantify dependence using Non-
Parametric Bayesian Networks. This software is publicly available for future users to re-
duce the burden of processing elicitation results.



1

8 1. Introduction

In summary, the research has three elements: applications, theory, and software. The
research presented in this thesis involves applications of structured expert judgment
through the second and third question. The first and fourth question involve research
on the theoretical side of the structured expert judgment. Additionally, software that
supports expert elicitation was developed during the research. Figure 1.2 shows how the
different chapters and research questions tie together.

1.6.1. Methods for evaluating expert estimates in the Classical Model

When applying the Classical Model for structured expert judgment, experts are asked
to express their estimates typically through three or five percentiles. Together, these un-
certainty estimates form a probability distribution for the variables. For part of the ques-
tions, the outcome is known to the researcher. The Classical Model evaluates the expert’s
accuracy by examining in between which estimated percentiles the answer is located.
Doing this for all questions with known outcomes results in a set of ratios (observed over
expected outcomes per interval) that can be evaluated using the statistical test based
on the chi-square distribution. The resulting p-value expresses the probability that an
expert is accurate and consequently contributes to the expert’s weight accordingly.

If a probability distribution is assumed to connect the estimated percentiles, the out-
comes can be transformed into a set of quantiles rather than quantile intervals. This
creates possibilities for using different statistical tests as measure of statistical accuracy.
Chapter 4 demonstrates this, by calculating quantiles using the normally used piecewise
uniform distribution and the smooth Metalog distribution. These were then evaluated
using statistical tests such as the Kolmogorov-Smirnov-, Cramer-von Mises- and An-
derson Darling-test and the recently published Continuously Ranked Probability Score.
This reveals biases in the original chi-square-based test as well as the newly evaluated
tests, and shows which distribution best represents expert estimates. Through this, re-
search question 1 is answered.

1.6.2. Different types of uncertainty assessments for dike safety

To find out how the Classical Model performs for dike failure assessment, dike system
failure is estimated for the branches of the Dutch Rhine River. Part of this research, de-
scribed in Chapter 5, involves learning which type of variable’s uncertainty is most accu-
rately estimated by experts in this flood risk context. To find out, the failure probability of
dikes along the Dutch River Rhine is estimated using two approaches. First, experts esti-
mate the full conditional failure probability, i.e., the discharge at which at least one dike
in the system would fail. Combining this with discharge statistics results in the failure
probability. In the second approach, failure is assessed for detailed dike sections. These
estimates are compared to model results to determine the model bias as perceived by the
experts. These estimates and biases are then combined with existing model-results to
obtain, again, a system-wide failure probability. Comparing the two approaches shows
1) how conservative experts think models are, 2) how safe they think the dikes currently
are, and 3) how consistent their detailed estimates are with the high-level estimates and
which of the two are more credible. From this last point, research question 2 is answered.
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Ch.1. Introduction

Ch.2. Theory and methods

Ch.3. Software for expert elicitation

Ch.4. Continuous distributions and
measures of statistical accuracy

RQ1. What measure should be used to score experts, to obtain
the best results in structured expert judgment studies fol-
lowing the Classical Model?

Ch.5. Reliability analysis of the Dutch
flood defense system

RQ2. Which variables’ uncertainties are most accurately esti-
mated by experts?

Ch.6. Estimating extreme discharges
on the Meuse’s tributaries

RQ3. How can expert judgment reduce uncertainty in the tails of
probability distributions?

Ch.7. Dependence elicitation using non-
parametric Bayesian Networks

RQ4. How do experts perform in estimating probabilistic depen-
dence?

Ch.8. Conclusions and recommendations

RO. How can experts improve failure probability assessment for
engineered flood defense systems, in the context of rare,
non-experienced, events and their probabilistic depen-
dence?

Figure 1.2: Relationship between chapters, research questions, and research objective.
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1.6.3. Limiting uncertainty in extreme discharges with expert judgment

Determining the frequency of extreme hydrological events is an important task in flood
risk, as it is the main driver of potential floods. Often no more than a few decades of
observations are available. Based on this an estimate of, for example, a discharge that
is exceeded on average once per 1000-year needs to be made, which leads to extrapolat-
ing with great uncertainty. Chapter 6 describes a case study to assess if expert judgment
can contribute to reducing the uncertainty for such rare hydrological events. Seven hy-
drologists estimated extreme discharges for the river Meuse’s larger tributaries. Based on
a relatively frequent 10-year discharge, the expert’s performance is evaluated using the
Classical Model. The resulting weight is applied to their 1000-year estimates, resulting
in a single aggregated estimate per tributary. These estimates are used as prior distri-
butions for an extreme value distribution of discharges and combined with observed
discharges in a Bayesian framework. This means a model is fitted not just to the obser-
vations, but also to an expert’s perception of what the outcome should be. The results
show how expert judgment performs in limiting uncertainty, answering research ques-
tion 3. Additionally, it shows the potential of fitting models to expert estimates to limit
their uncertainty or incorporate prior information.

1.6.4. Estimating dependence and aggregating scores

Dependence between hydraulic, hydrological, or strength-related variables is another
difficult to quantify element in flood risk assessments. When considering the depen-
dence between an increasing number of variables, the number of observations needed
to cover the full range of combinations increases as well. In the same study that consid-
ered hydrological extremes, the dependence between the Meuse’s tributary extremes is
assessed by the seven hydrologists as well. Chapter 7 describes how the experts perform
for estimating dependence, and based on this, what scoring rule should be used to com-
bine experts’ dependence estimates. The experts are tasked with estimating correlations
between different tributary discharges during a flood event. To aid them in quantifying
a correlation matrix, they use a Non-parametric Bayesian Network (NPBN), a network
of nodes and edges that expresses the dependence between the node variables. To ag-
gregate the estimates into a single dependence estimate, the d-calibration score is used.
This is a performance-based weight calculated from the agreement between observed
and estimated correlations. While scoring and weighting univariate uncertainty (i.e., the
Classical Model) has been extensively researched, scoring dependence is relatively unex-
plored. Therefore, several characteristics of the d-calibration score are explored as well.
The results demonstrate how NPBNs can assist experts in quantifying large correlation
matrices and explores how the different experts’ estimates can be aggregated. Through
this, research question 4 is answered.

1.7. Code and data availability
The data and code underlying this thesis are openly available under the GNU GPL 3.0
license at: https://doi.org/10.4121/a6333b17-bab2-476f-a636-61244b5c6f9e

https://doi.org/10.4121/a6333b17-bab2-476f-a636-61244b5c6f9e
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Theory and methods

2.1. Structured expert judgment
This research applies the Classical Model to elicit information from experts. The Classi-
cal Model, also known as Cooke’s Method, is a structured approach to elicit uncertainty
for unknown quantities. It formalizes expert judgment in such a way that the results can
be treated as scientific data. The method combines expert judgments based on empirical
control questions with the aim to find a single combined estimate for the variables of in-
terest (i.e., a rational consensus). The Classical Model is typically used when alternative
approaches for quantifying uncertain variables are infeasible or unsatisfying (e.g., due
to costs or ethical considerations). The method is extensively described in (Cooke, 1991)
while applications are discussed in, for example, (Cooke & Goossens, 2008). This section
gives an accessible explanation to provide the reader with the necessary background to
help understand the remainder of this thesis.

2.1.1. Quantifying and evaluating uncertainty

In the Classical Model, a group of mostly five to fifteen participants, which are often re-
searchers or practitioners in the field of interest, provides uncertainty estimates for a set
of questions. The participants meet up, preferably in person, for the expert elicitation.
If results from an elicitation are published, the experts’ names are (with consent) listed,
but the results are anonymized such that they cannot be related to the individual partic-
ipants. The participants of the expert studies are consistently called “experts”. However,
the goal of the Classical Model is to assess their ability of estimating uncertainty for the
topic of interest, regardless of their professional reputation.

Expertise is evaluated using a number of so-called seed questions for which the outcome
is known by the person doing the elicitation (the analyst or problem owner). the perfor-
mance of the participants is evaluated based on the estimates for the seed questions.

11
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This is used to assign weights to each expert, which are then applied to the different
estimates for the variables of interest. In other words, seed questions are used to deter-
mine the participant’s expertise in estimating uncertainty for the topic of interest. Seed
questions are ideally sourced from similar studies or cases and are as close as possible
to the variables of interest. Typically, about ten to twenty seed questions are answered.
The other type of questions, which concern the variables of interest, are called target
questions. For these, the outcome is unknown to both researchers and participants.

Because the goal is to elicit uncertainty, experts estimate percentiles rather than a single
point value. Mostly these are the 5th, 50th, and 95th percentiles. Sometimes the 25th
and 75th are added to these original three to elicit more detailed distributions. However,
the analyse can choose a different set as they like. For example, in the research described
in Chapter 5, the 1st and 25th were added to the original three to obtain more detail in
the lower distribution tail.

To illustrate the method, consider the following example question that might come from
a hypothetical study on crop yields under climate change: “How many oranges did an
orange tree on orchard X yield, on average, during season Y ?”. Consider two experts and
their estimates displayed in Fig. 2.1. For the 5th, 50th and 95th percentile, Expert A esti-
mated 150, 350, and 500, Expert B 260, 320, and 390. The 5th, 50th, and 95th percentiles
in combination with the item bounds (more on those below) create four quantile inter-
vals represented by a probability vector with p = (0.05, 0.45, 0.45, 0.05). If these probabil-
ity masses are spread uniformly over the quantile intervals, the probability distributions
in Fig. 2.1 emerge.

Assuming the outcome is 250, expert A’s estimate captures it in between the 5th and 50th
percentile. According to A’s estimate, the probability that the outcome is in between 150
and 350 is 45%, which contributes to the likeliness that Expert A has estimated the cor-
rect distribution. On the other hand, Expert B’s estimate “misses” the realization which
is just below the 5th percentile. According to B’s estimate, the probability that the out-
come is below 260 is only 5%. Given that the realization is 250, expert B’s estimate is
likely worse. However, such conclusions cannot be drawn with confidence from just the
one question. Therefore, the researcher could decide to elicit 19 more seed questions.
From each of these questions, the realization can be categorized in a similar way over
the quantile intervals. This results in a four-element vector s(e), expressing the fraction
of realizations within each of expert e’s quantile intervals.

Figure 2.2 illustrates the possible s-vectors for both experts. The realizations from Fig. 2.1
are circled. The closer the expert’s vector s is to p, the higher the statistical accuracy. Ex-
pert A, with s(A) = (0.0,0.40,0.45,0.15), has a higher statistical accuracy than Expert B
with s(B) = (0.25,0.15,0.40,0.20). The details of this calculation are presented in Sec-
tion 2.1.2. The expert weight in the Classical Model is mainly determined by the statis-
tical accuracy. Expert B did however give a substantially smaller range for the example
question; 90% of the probability mass in between 260 and 390, rather than in between
150 and 500. This is a more informative estimate. While not as influential as statistical
accuracy, this informativeness, expressed with the information score, also contributes to
the expert weight and is explained in Section 2.1.3.
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Figure 2.1: Two experts’ hypothetical estimates with probability density uniformly distributed in between the
estimates and the bounds.
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Figure 2.2: Realizations for 20 items in relation to the quantiles estimated by two experts (top and middle
row), and the distribution required for perfect statistical accuracy (bottom row). The black circles indicates the
realization illustrated in Fig. 2.1.
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The Classical Model is a method to elicit uncertainties. The observed outcomes to the
seed questions are considered to be realizations from a probability distribution (which
is why the outcome is called a “realization”). Even in the case of the example question,
which is very specific and only has one outcome, this outcome is still considered a real-
ization from a distribution. For a similar orchard in a similar season, we would expect a
different outcome.

2.1.2. Statistical accuracy

The ability of the expert to estimate uncertainty is expressed with the statistical accu-
racy (SA). This measure is calculated by comparing each inter-quantile probability pi

to si (e). If an expert’s uncertainty estimates are accurate and the sample is very large,
s(e) approaches p, and the interquantile ratios si /pi are close to 1.0. In that case, the
quantity

2N I (s(e)|p) = 2N
4∑

i=1
si log(si /pi ), (2.1)

in which, I (s(e)|p) is the relative information and N the number of items, is asymp-
totically χ2 distributed with three degrees of freedom1. This means that if an expert is
statistically accurate, we know which distribution 2N I (s(e)|p) will follow (the chi-square
distribution). In other words, by calculating this score for an expert’s estimates we are
calculating the probability that the expert is statistically accurate (i.e., the probability
that the realizations are indeed independently drawn from the expert’s distributions).
This calculated probability, or p-value, is used as measure of SA. In order to obtain a
perfect statistical accuracy in the example from Fig. 2.2, the experts’ estimates should
result in overestimating one seed question (i.e., the observed outcome was below the
5th percentile), underestimating one question, and nine questions in both the [5%, 50%]
and [50%, 95%] interval. This is illustrated by the dots on the lower row, which do not
necessarily need to be evenly spaced in between the quantiles. Given the uncertain na-
ture of the realizations, it is unlikely that the realizations s(e) match p exactly. Even for a
perfectly accurate expert, the possible p-values are uniformly distributed between 0 and
1 (like the p-value from any statistical test). However, less accurate experts tend to get
p-values that are one or more orders of magnitude smaller, such that the p-value is still
useful for distinguishing expert performance.

2.1.3. Information score

A high statistical accuracy does not automatically imply that an expert’s estimate is in-
formative. For example, in Fig. 2.1 Expert A captures the realization within the 5th and
50th percentile interval, while Expert B does not. This likely contributes to Expert A’s SA,
but their wide estimate does not provide much information. A second score is therefore
introduced to reward informativeness.

1Asymptotically means that the relative information is chi-square distributed for an infinite number of ques-
tions. Since this is never the case, the calculated p-value is an approximation. This asymptotic property is
further elaborated in Chapter 4
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This score, called the information score, compares the degree of uncertainty in an ex-
pert’s answer to other experts’ answers. Percentile estimates that are close together (com-
pared to the other participants) are more informative and get a higher information score.
The information score is calculated by using the relative information between expert e’s
estimate for item i and the background probability density for the item: I ( fe,i |gi ). This
is illustrated in Fig. 2.3, which shows, again, the two experts’ estimates for the question
about the number of oranges. The larger the difference between the expert’s probabil-
ity density ( fe,i ) and the background density (gi ), the higher the informativeness of the
estimate. The disagreement between fe,i and gi is illustrated with the hatched areas.
To define the background probability density, a possible interval for the item needs to
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Figure 2.3: Conceptual illustration of the informativeness of the two experts’ estimates for a single item, relative
to the background information that is uniformly distributed between the item bounds.

be defined, between which the background probability is uniformly distributed. This
interval is defined for every item, by combining all experts’ quantile estimates qe,i and
realization xi . This gives the interval:

[Li ,Ui ] =
[

min

(
xi ,

n
min
e=1

(
qe,i

))
,max

(
xi ,

n
max
e=1

(
qe,i

))]
(2.2)

Additionally, an overshoot k (typically 10%) is added to this, to add tails to the distribu-
tions and ensure a finite probability density outside each expert’s 5th and 95th percentile
(5% of the probability needs to be assigned outside both the 5th and 95th quantile). This
changes the interval to

[L∗
i ,U∗

i ] = [Li −k · (Ui −Li ),Ui +k · (Ui −Li )] . (2.3)

With this so-called intrinsic range [L∗
i ,U∗

i ], a vector Q = (L∗
i , q0.05, q0.50, q0.95,U∗

i ) for item
i can be composed, comprising the expert’s quantile estimates and the outer bounds.
The relative information is calculated from this vector:

I
(

fe,i |g (i )
)= log

(
U∗

i −L∗
i

)+ 4∑
j=1

(
p j · log

(
p j

Q j+1 −Q j

))
(2.4)
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Finally, to calculate the expert’s overall information score, the average of I ( fe,i |g (i )) over
all items i , is taken.

2.1.4. Decision makers

The Classical Model combines the different experts’ estimates using rational consensus.
This implies that a single estimate is composed from the different expert estimates using
weights that are based on the experts’ performance. The resulting combination is called
the decision maker (DM).

The combined score of expert e, wα(e), is calculated from the product of the statistical
accuracy and the information score, which after normalization will be the expert weight:

wα(e) = 1α× statistical accuracy(e)× information score(e). (2.5)

The statistical accuracy varies more steeply (e.g., from 10−5 to 0.5 between experts) than
the information score (e.g., 0.5 to 2.5 between experts). This (intentionally) makes the
statistical accuracy dominant in the expert weight. The information score only modu-
lates between experts with a similar SA. Experts with an SA lower thanα can be excluded
from the pool by using a threshold, expressed by the 1α in Eq. (2.5). This threshold is
usually 5%, similar to the threshold mostly used in other statistical tests. This means
that the probability of discarding an expert that is statistically accurate is 5%2. The ex-
perts contribute to the DM’s i th item estimate by their normalized weight:

DMα(i ) =
∑

e
wα(e) fe,i

/∑
e

wα(e). (2.6)

This is called the global weight (GL) DM, composed from weights calculated using the
Classical Model. Alternatively, a few other DMs are available to choose from:

• A variation on the global weight DM is the item weight (IT) DM. This option varies
experts’ weights between items (questions) based on the expert’s information score
for that specific item. The rationale for this is that more informative estimates
come from greater knowledge about specific items and should therefore be granted
a larger weight in that item. Using item weights does not change the statistical ac-
curacy so the effect is usually limited (as the SA dominates the weight).

• A third option is to assign experts the same weight, resulting in the equal weight
(EQ) DM. This more inclusive option does not require eliciting seed variables but
neither does it distinguish experts based on their performance, a key aspect of
the Classical Model. Cooke et al. (2021) compared GL weights to EQ weights in
an out-of-sample cross validation. They showed that using performance-based
weights increased the informativeness of the decision maker estimates by assign-
ing weight to a few experts, without compromising the DM’s statistical accuracy
(i.e., the performance of the DM in “quantifying” uncertainty).

2This is an approximation because the statistical accuracy is calculated through an asymptotic distribution,
rather than an exact distribution
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• Finally, weights can be assigned on different criteria than described above. In soft-
ware, this is called the ‘user’ weight (US) DM.

Because the expert estimates are combined into a DM, the DM “makes” estimates as well
and a statistical accuracy and information score can be calculated for it. This property is
used to optimize and evaluate the DMs.

The Global and Item weight DMs are optimized by choosing a significance level α such
that the resulting experts (with highest SA) have the largest performance-based weight
w(α). This typically leaves one or two experts that contribute to the DM, removing the
majority of the experts that had a low weight, increasing the informativeness of the de-
cision maker.

Furthermore, a robustness analysis can be performed to assess the sensitivity of a study
to the experts and items included in it. This involves removing one or more experts or
items from the project and recalculating the decision makers. The resulting variation
in SA and information score indicates the sensitivity of the project to specific experts
or items. It is however only an in-sample check (we cannot check the sensitivity to ex-
perts or items that are not in the study). Figure 5.5 illustrates the results of a robustness
analysis.

On a final note, Chapter 4 presents several alternatives for different parts of the Classical
Model. For example, the stepped distributions in Fig. 2.1 are replaced by smooth dis-
tributions in order to test if these better represent the experts’ estimates in between the
estimated quantiles. Furthermore, a number of alternatives measures of statistical accu-
racy are considered, which project realizations on a continuous scale rather than within
intervals (see Fig. 2.2).

2.2. Statistical dependence

Statistical dependence in flood risk is found in different forms. Some examples are:
The spatial dependence between the strengths of adjacent dike sections with similar
soil characteristics, the dependence between different parameters during a storm such
as wind and waves, or the occurrence of a second big storm shortly after a first storm
(temporal dependence). Which dependencies are relevant in which situation mainly
depends on the way in which a phenomenon is described. For example, when modeling
hydraulic loads for a flood defense, the correlation between water level and wave height
needs to be considered because the combination of both can exacerbate failure. Alterna-
tively, the meteorological conditions (wind speed, wind direction, barometric pressure)
can be modeled, from which the water level and waves follow more naturally. How-
ever, this simply shifts the dependence that needs to be modeled and does not resolve it.
Different approaches to modeling were described in Section 1.2. Modeling phenomena
through statistical dependence is suitable when relationships between variables (their
joint occurrence) are relevant but difficult to model effectively based on physical prin-
ciples. This section describes different methods for modeling statistical dependence
through flood risk related examples.
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2.2.1. Scatter plots and conditional probabilities

Dependence can intuitively be visualized using a scatter plot, such as shown in Fig. 2.4.
The left panel shows two variables with a weak correlation, the right two variables with
a strong correlation. Dependence between two variables implies that information about
one variable contains information about the other. For example, knowing that one vari-
able is in the right hatched area (i.e., P (X1 > 0.85)) increases the probability that the
other variable is in the upper area, i.e., P (X2 > 0.70|X1 > 0.85) > P (X2 > 0.70). This is the
case for both, but in the right scatter the “predictive power” of knowing P (X1 > 0.85) is
much larger because of the strong correlation.
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Figure 2.4: Scatter plots of weakly (a) and strongly (b) correlated variables X1 and X2. The hatched areas
illustrate failure regions discussed in the text.

Sometimes, we are interested in determining the probability that two or more variables
exceed a specific level, given their dependence. In the context of this thesis, this is mostly
related to dike failure. Consider the scatters in Fig. 2.4 again. If a system failure happens
when an event (x1, x2) is in one or both of the hatched areas, i.e., P (X2 > 0.70∪ X1 >
0.85), the strength of the dependence matters: While P (X1 > 0.85) and P (X2 > 0.70) are
similar in both plots, the stronger dependence in the right plots means the total number
of events in one of the areas is less. In other words, the failure probability is smaller
because failures occur simultaneously instead of separately. This form of dependence
is applied for example to combine failure probabilities of adjacent dike sections and is
further elaborated in Section 2.2.2.

In other cases, we are interested in the shape of the scatter plot (i.e., the dependence
over the full range of two or more variables). This is particularly relevant in probabilistic
analysis where failure is caused by a combination of variables instead of the exceedance
of specific threshold levels. The dependence of interest could be in between wave height
and water level, permeability and grain size, or the rainfall in two different catchments.
This application of dependence modeling is explained in Section 2.2.3.
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2.2.2. Combining failure probabilities

In the Dutch flood risk methodology, a dike section is split into separate segments that
are each represented by an individual transect. A flood risk assessment considers the
failure probability of the complete system for which the transects’ probabilities need to
be combined into the system failure probability. Figure 2.5 shows what such a schema-
tization may look like. The dikes on both sides of the river are split based on general
orientation (relevant for wave attack) and soil characteristics (relevant for geotechnical
failure).

Dike A

Dike B

River

Sand
subsoils

Peat
subsoils

A 1

A2 A3

A
4

A5

A 6

B 1

B2

B
3
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Figure 2.5: River with dike sections, split on direction and subsoil type

Most flood defenses behave like a serial system, meaning it will fail when one or more of
the components fail (in contrast to a parallel system, where all components must fail for
the system to fail). If the failure probabilities of the six individual components in dike A
are considered independent, the total failure probability can be calculated with

P f ,A = 1−
6∏

i=1

(
1−P f ,Ai

)
, (2.7)

in which P f ,A is the system failure probability and P f ,Ai is section Ai ’s failure probabil-
ity. In words, this means that the total failure probability is 1 minus the probability than
none will fail. At the other end of the dependence spectrum is the assumption of full de-
pendence, in which case the maximum failure probability determines the system failure
probability, or

P f ,A = 6
max
i=1

(
P f ,Ai

)
. (2.8)

Independently combining failure probabilities in a serial system, results in the largest
failure probability. It is the most conservative assumption, so, if possible, it is worth
considering the dependence in some form. Describing the exact dependence between
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possible failure of subsequent sections is difficult, given the many uncertain variables
involved. Therefore, dependence in section failure probabilities is typically processed
by making high level assumptions. A few examples are:

1. In the Dutch flood risk instrument, some dike failure mechanisms are assumed
to fail more or less independently while for others the dependence is too strong
to ignore. This depends on the spatial variation of parameters to which the fail-
ure mechanism is sensitive and consequently also on the length of the considered
dike sections. One way to approach this is using the so-called length-effect, which
adopts the minimum of two failure probabilities. The first is the independent com-
bination of section failure probabilities, which is the most conservative approach
for combining dike sections. A second failure probability is based on the section
with the maximum failure probability and the number of times, N , that a repre-
sentative length fits in the total dike trajectory that is considered: N ·max6

i=1(P f ,Ai ).
The final failure probability is the minimum of the two probabilities.

P f ,A = min

(
N · 6

max
i=1

(
P f ,Ai

)
,1−

6∏
i=1

(
1−P f ,Ai

))
(2.9)

In the case of similar failure probabilities for relatively short sections, this ap-
proach will give a less conservative outcome.

2. An alternative approach is to consider part of the variables to be dependent. For
example, river discharges or storm conditions (wind speed and direction) are rela-
tively uniform on a regional scale. Contrarily, strength related parameters such as
subsoil characteristics are much more variable. In Chapter 5, an approach is pre-
sented that considers load to be dependent and strength to be independent. The
failure probability can then be calculated by first calculating the failure probabil-
ity conditional on the peak discharge k, P f ,A|k , for example by using Eq. (2.7) or
Eq. (2.9). The total failure probability for several dike sections together is then
calculated by integrating the conditional exceedance probabilities (i.e., fragility
curves) with the probability density f (k) of the peak discharge k:

P f ,A =
∫

k
f (k)P f ,A|k dk. (2.10)

When the dike sections are relatively sensitive to load, failure will only be possible
once a certain load has been met. After this, the failure probability will quickly in-
crease with the load. In such a situation, the approach ensures that failure will not
take place until this minimum load has been met at, at least, one of the sections.

3. A third refinement is to consider the load reduction caused by an initial failure. If
an upstream breach draws a significant part of the river’s discharge, it will reduce
downstream water levels. While this will not change the probability of at least one
breach, since reduction only happens after the first breach, it will reduce the prob-
abilities of additional failures and therefore the consequences. An approach that
incorporates this is described in (Uemura et al., 2024). They define P ′

f ,A2|k as the
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failure probability of section A2, given peak discharge k, conditional to the up-
stream section A1 not failing. Conditional to upstream failure and peak discharge,
the failure probabilities can than be calculated as follows:

P ′
f ,A1|k = P f ,A1|k

P ′
f ,A2|k = P f ,A2|k ·

(
1−P ′

f ,A1|k
)

P ′
f ,A3|k = P f ,A3|k ·

(
1−

(
P ′

f ,A1|k +P ′
f ,A2|k

))
P ′

f ,An |k = P f ,An |k ·
(

1−
N−1∑

i

(
P ′

f ,Ai |k
))

(2.11)

Because all the failure probabilities P ′
f ,Ai |k are considered mutually exclusive (i.e.,

there is no overlapping area such as the double hatched area in Fig. 2.4), the to-
tal failure probability can be calculated as the sum of all the failure probabilities,
conditional to peak discharge and upstream failure:

P f ,A|k =
N∑
i

P ′
f ,Ai |k . (2.12)

Each of the above three examples present a different approach to account for depen-
dence. The examples make an increasing number of assumptions. This results in more
precise failure probabilities for the specific situations while simultaneously limiting the
situations in which the approach can be applied.

On a final note, considering dependence in failure probabilities only has a substantial
effect when the different failure probabilities are of a similar magnitude. If one of the
sections is in a much poorer condition than the rest (e.g., has a 10 times higher failure
probability), this weakest link will dominate the total failure probability. Consider for
example Fig. 2.6, similar to Fig. 2.4 but now with one failure region 10 times large than
the other. The strength of dependence between the variables now hardly affects the total
number of events covered by at least one of the failure regions.

2.2.3. Quantifying dependence between continuous variables

The last section focused on combining exceedance probabilities with varying degrees of
dependence. However, sometimes the pattern of dependence itself is of interest. The
scatter in Fig. 2.6 could be observed waves and water levels, and we could for example
want to define a model that, when sampled from, reproduces this scatter plot. Different
statistical approaches are available to describe such a relation. In this thesis, the copula
is applied to model the dependence, and the non-parametric Bayesian Network is used
to elicit correlation strengths. Both are explained hereafter.

Copula

A copula is a multivariate cumulative distribution for which the marginals are uniform
in the interval [0,1]. The scatter plots in Fig. 2.6 are generated from Gumbel copulas. Fig-
ure 2.7 shows the probability densities of these copulas on the background of the scatter



2

22 2. Theory and methods

0 0.5 1
X1

0

0.95
1

X
2

(a)

Weak correlation

0 0.5 1
X1

0

0.95
1

X
2

(b)

Strong correlation

Figure 2.6: Scatter plots of weakly (a) and strongly (b) correlated variables X1 and X2, with a smaller effect of
dependence due to the large difference in areas of failure.

plots. Because a copula’s margins are uniform, they can be transformed to another distri-
bution through that distribution’s quantile function. Doing this for every marginal result
in the joint probability distribution. An illustration of this is given in Fig. 2.8. Panel (a)
shows the contour lines of the Gaussian copula’s probability density function. Panel (b)
and (c) show the marginal cumulative distribution functions. In this case, this is a Gum-
bel distribution for yearly maximum sea water level, and an exponential distribution for
yearly maximum wind speed. Using the inverse of this cumulative distribution func-
tion (i.e., the quantile function), the [0,1] interval is transformed to the physical space,
resulting in the joint probability density function in panel (d).

Different types of copulas describe different dependence patterns across the unit square.
Figure 2.8 showed the Gaussian copula, which is a bivariate or multivariate normal distri-
bution, transformed to the [0,1] interval using the normal distribution’s cumulative dis-
tribution function (CDF). This copula can be used to model varying correlation strengths
between different variable pairs, and conveniently facilitates the analytical calculation of
conditional distributions. The Gaussian copula is however limited in its ability to differ-
entiate dependence strength between parts of the distributions. This can be a disad-
vantage for modeling correlation between variables with strong dependence in the tails
of the distributions; note that the correlation strength in Fig. 2.8 a (fairly strong) Pear-
son correlation coefficient of 0.75 was used. However, due to the marginal distributions,
transforming to the physical scale results in a weaker correlation in the extreme domain
than the frequent domain. Archimedean copulas are a class of copulas that can take
many different forms and describe asymmetries in joint distributions. However, their
ability to describe dependence between more than two variables is limited; they cannot
model different dependence strengths for different pairs of margins of the joint distribu-
tion (e.g., model a stronger dependence between A and B than between B and C). The
copulas in Fig. 2.7 are Gumbel copulas. These have a stronger correlation in the upper
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Figure 2.7: Scatter plots of weakly (a) and strongly (b) correlated variables X1 and X2, with their underlying
Gumbel copulas. Light colored areas indicates high probability density, dark colored low.
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Figure 2.8: Conceptual explanation of a copula (a) and its relation to marginal statistics (b and c), and the joint
probability distribution (d).
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Figure 2.9: Contour lines of different copulas’ PDFs on their [0,1] scale (top row) and transformed to physical
scale (bottom row).

tail compared to the lower tail, which becomes more apparent when transforming to a
physical scale. Figure 2.9 shows a Student’s t-copula (with degree of freedom 2), Gum-
bel, Clayton, and Frank copula, with model coefficients chosen such that the resulting
scatter plots have the same Pearson correlation coefficient as the Gaussian copula from
Fig. 2.8. This illustrates how the different models have a different tail dependence. All
except Student’s t-copula are Archimedean copulas.

Correlation coefficients can be calculated from sufficiently large datasets, but with in-
creasing number of variables the dataset size needs to increase as well in order to "cover"
all regions of the unit-hypercube (i.e., the multivariate version of the unit squares shown
in Fig. 2.9). In absence of such data, expert judgment can be used to estimate the cor-
relation matrix. This is not a trivial task, firstly because of the numbers of coefficients
to be estimated and secondly because not all combinations of coefficients in the matrix
results in a valid (i.e., positive semi-definite) correlation matrix. The simplest example
for this last problem is a correlation matrix with three variables X1, X2, and X3, in which
both pairs (X1, X2) and (X2, X3) are fully positively correlated (i.e., a coefficient of 1.0). In
this case the pair (X1, X3) must then be fully dependent as well because they are related
through X2, with which they are both fully dependent. Any other value than 1.0 between
X1 and X3 will result in an invalid correlation matrix. In case the correlations are strong,
but not perfect, such conditions become less strict and less clear, but they still need to be
satisfied to create a valid correlation matrix. Non-parametric Bayesian Networks provide
a solution for this.
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Non-parametric Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph (DAG) that represents the depen-
dence between random variables through nodes and arcs(Darwiche, 2009; Pearl, 2000).
See Fig. 7.2 for some examples of DAGs. In a BN, every node represents a random vari-
able. These are generally discrete which makes the conditional probability functions,
represented by the edges, conditional probability tables. As an example, consider a hy-
pothetical Bayesian network that describes the dependence between X1 testing positive
for COVID and X2 having it. This network is shown in Fig. 2.10. With both random vari-
ables having two states, the BN renders four conditional probabilities to be quantified:

1. having COVID conditional on testing positive, P (X2 = T|X1 = T),

2. having COVID conditional on testing negative, P (X2 = T|X1 = F),

3. not having COVID conditional on testing positive, P (X2 = F|X1 = T), and

4. not having COVID conditional on testing negative, P (X2 = F|X1 = F).

X1 X2

X2

X1 T F
T P (X2 = T|X1 = T) P (X2 = F|X1 = T)
F P (X2 = T|X1 = F) P (X2 = F|X1 = F)

Bayesian network Condition probability table

Figure 2.10: Bayesian network with two nodes (X1 and X2) connected by a single arc with its conditional prob-
ability table.

These probabilities are conditional because having COVID changes the probability of
testing positive and, conversely, testing positive changes the probability that someone
has COVID. The conditional probabilities shown in the table can be calculated using
Bayes’ theorem (hence the name of the network), which is explained for this example in
Section 2.3.1.

In many models, random variables have more than two states or are continuous, re-
quiring quantification of larger conditional probability tables. It can be challenging to
quantify such networks, particularly when the network consists of more than two nodes
and multiple arcs exist between them. The number of conditional probabilities to be
assessed depends on the number of states of each node and the number of arcs incom-
ing to a particular node (Druzdel & Van Der Gaag, 2000; Renooij, 2001). This increases
rapidly with the number of states of the variables in the network (continuous variables
can be discretized into several states). The more states considered in a discretization of
a continuous variable, the better its representation, but also the larger the number of
conditional probabilities to be quantified.

The non-parametric Bayesian network (NPBN) solves this by describing the (conditional)
relation using a Gaussian copula. Each arc in a NPBN represents a (conditional) rank
correlation, rather than a (conditional) probability table. Similarly to the usual BN, the
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structure of the graph defines which child node is dependent on which parent node, and
through that, the conditional (in)dependence between nodes. By specifying the (con-
ditional) rank correlations for all edges, the resulting correlation matrix is valid. While
NPBNs are based on Gaussian copulas, the marginal distributions of the random vari-
ables do not need to be normally distributed. As explained in Section 2.2.3, the multi-
variate normal distribution can be transformed to quantiles in the [0,1] range, and to
any random variables using its percentile function. This absence of a need to param-
eterize the marginals (since any invertible marginal distribution may be used) is what
differentiates it from other types of BN and is why it is called a non-parametric Bayesian
network. For a more formal and detailed explanation of NPBNs, as well as a description
of some applications, refer to (A. Hanea et al., 2015).

2.3. Bayesian statistics

2.3.1. Bayes’ theorem

Bayes’ theorem, introduced by Thomas Bayes, is an equation used for calculating con-
ditional probabilities. It provides the probability of an event or hypothesis given prior
knowledge of the conditions around the event. Bayes’ theorem is stated as

P (H |D) = P (H) ·P (D|H)

P (D)
. (2.13)

H denotes the hypothesis or variable of interest. D are the data or observations. P (H |D)
is the posterior probability, which expresses the probability of the hypothesis given that
we have observed D . This posterior probability depends on

1. the initial, or prior, estimate of the probability of the hypothesis P (H),

2. the probability of the data given the hypothesis P (D|H), also known as the likeli-
hood, and

3. the evidence or marginal probability, which is the sum or integral of all hypotheses
multiplied by their likelihoods

∑n
i P (Hi )P (D|Hi ).

Substituting these terms states Bayes’ theorem as

posterior = prior× likelihood

marginal probability
. (2.14)

To illustrate the use of Bayes’ theorem, we calculate the probability of a person having
COVID (H1, the hypothesis), given that the person tests positive for COVID-19 (D , the
data). Assuming:

• 5% of the population have COVID at the moment of testing. Without knowing
anything else about the person, this would be our prior estimate, so P (H1) = 0.05.
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• The probability of the test turning out positive when having COVID is 95%, or
P (D|H1) = 0.95.

• The fraction of false positives is 2%, meaning that the probability of testing positive
when not having COVID (H0) is 2%, or P (D|H0) = 0.02

The posterior probability can then be calculated as follows:

P (H1|D) = P (H1) ·P (D|H1)

P (D)

= P (H1) ·P (D|H1)

P (H1) ·P (D|H1)+P (H0) ·P (D|H0)
= 0.05 ·0.95

0.05 ·0.95+0.95 ·0.02
= 0.714

(2.15)

According to Bayes’ theorem and the assumptions, the probability of the person having
COVID is 71% even though they tested positive. Perhaps the person finds this evidence
not convincing and decides to do another test. Bayes’ theorem can now be used again
to update the posterior probability. After the last test, the person has updated their prior
belief for P (H1) from 0.05 to 0.714. Doing another test, this posterior becomes the new
prior. If the test result is positive again (and we assume the test results to be indepen-
dent), the updated posterior probability is a convincing 99%. However, if the test is neg-
ative, the probability of having COVID reduces to 11%.

While this numerical example illustrates the usefulness of Bayes’ theorem, the most im-
portant element is that the outcome, in this case the probability of having COVID, does
not just depend on the data but also on the initial assumptions about it. More gener-
ally, a person’s expectations do not just depend on what they observe but also on their
beliefs about it. Consequently, a (Bayesian) probability expresses a degree of believe,
rather than a physical property. This comprehensive view of statistics is what is known
as Bayesian statistics. While its counterpart, frequentist statistics, revolves around draw-
ing conclusions based on just the data, Bayesian statistics reasons from an initial idea or
construct of the situation.

In practice, the two approaches are often intertwined and not clearly distinguishable.
This thesis contains a few elements of Bayesian statistics that are presented in the re-
mainder of this chapter. They are all Bayesian because they rely on Thomas Bayes’ theo-
rem, but the way they apply it, can be quite different.

2.3.2. Dutch flood risk as a Bayesian approach

In the “Fundamentals of flood protection”, Kok et al. (2017) explain the view on prob-
ability in the context of Dutch flood risk. They describe the frequentist approach, in
which a probability is a relative frequency (i.e., a number of observations in a number of
years), as problematic due to the lack of knowledge. The flood probability is considered
a physical property of which value we are uncertain because the lengths of observations
are too short, and number of dike failures are too few. Therefore, using the frequentist
approach, it becomes impossible to conclude with certainty whether the probability of
flooding meets a particular standard (Kok et al., 2017).
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Contrarily, in the Bayesian interpretation, Kok et al. describe “the probability of flooding
[to be] a measure of the likelihood that a flood will occur, given the knowledge at our
disposal”. While the terminology differs a bit from Section 2.3.1, this can be interpreted
as the posterior probability, P (H |D), consisting of the hypothesis (a flood will occur) and
the data (knowledge at our disposal). Consequently, the probability of flooding is not a
physical property, but a degree of uncertainty. In terms of Dutch flood risk assessment,
the most important difference between the frequentist and Bayesian approach is the
treatment of uncertainty. A Bayesian approach considers a parameter’s value to be a
degree of believe, which is an uncertainty or probability distribution. The frequentist
approach, on the other hand, considers them fixed but unknown values. A frequentist
confidence interval can be defined, which (loosely said) indicates the range that contains
the true value with (e.g.,) 95% certainty, but it is not a probability distribution.

Figure 2.11 illustrates the two different approaches. Both figures show an exceedance
frequency curve of a specific water level in grey. The flood defense is assumed to fail
when the water level exceeds 4 meters above datum (mAD). Moreover, the flood defense
has a required safety standard of 1/1000 per year. Given this information, does the flood
defense meet the standard?
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Figure 2.11: Illustration of a frequentist and Bayesian approach for assessing whether a dike fails (i.e., water
level exceeds crest level) more often or less often than the safety standard.

The left panel shows the frequentist approach. A probability distribution is fitted to the
observed water levels, which has led to a maximum likelihood estimate (MLE) and a
confidence interval. The 1000-year water level from the MLE is less than 4 meters. The
uncertainty is expressed through the confidence interval, which expresses the probabil-
ity (confidence) that if the experiment (i.e., observing water levels and fitting a distri-
bution) was repeated 100 times, the confidence interval from that experiment contains
the true value of the model parameters 95 times. This is indicated with the blue distri-
bution (assumed to be normal distribution). From this distribution, the probability that
the 1000-year ARI water level Hss from the true model parameter x is lower than the crest
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level zcr , is 81%. Whether the flood defense matches the safety standard then depends
on the chosen confidence level. If a (typical) 95% confidence level is required, the flood
defense would be considered not proven to be safe.

The right panel shows the Bayesian approach. Fitting the water level probability distri-
bution with a Bayesian approach gives a probability distribution of model parameters,
indicated by the grey credible interval. This interpretation of uncertainty gives the flexi-
bility to assign probabilities to different model parameters. This is done in the example
by defining 25 red lines that each represent an equal part (4%) of the probability distri-
bution. By calculating the probability with which the crest level is exceeded, conditional
to that model parameter, and averaging the results, the total failure probability is calcu-
lated: P (H > zcr ) = ∫

x f (x)P (H > zcr |x)d x. The result is 6.56 ·10−4 (in a year), less than
the maximum allowed failure probability according to the safety standard.

The frequentist approach puts the model central. For example, the confidence interval
indicates the range that contains the true model parameter 95 times, if the experiment
is repeating 100 times. The Bayesian approach puts the observations central. There is
no true model parameter, only true observations. The credible interval consequently
indicated the distribution of model parameters given those observations. The latter al-
lows to integrate the uncertainty into the failure probability, where the frequentist ap-
proach can only express a degree of confidence that the true model parameter is cap-
tured. Despite these conceptual differences between the two approaches, confidence
intervals and credible intervals do often span the same range.

An important aspect of Bayesian statistics are the priors. These do not have to be explicit
a-priori distributions but can also be expressed by choosing a modeling approach that is
considered better or more suitable. Such priors will differ per person, which complicates
a flood probability assessment as the result should ideally not depend on an individual’s
specific ideas. Kok et al. mention that “In practice, such differences can be overcome by
exchanging data, second opinions and the establishment of best practice.”

2.3.3. Bayesian sampling techniques

While Bayes’ theorem is easy to apply for examples such as described in Section 2.3.1,
it quickly becomes more complicated when considering more complicated models or
updating probability distributions. When an analytical solution is infeasible (or one
lacks the mathematical skills to work it out), sampling techniques such as Markov Chain
Monte Carlo (MCMC) provide a solution.

MCMC is a class of algorithms used to sample from probability distributions, useful
when an analytical solution is challenging or infeasible to obtain. MCMC is a Monte
Carlo technique, meaning it involves random sampling. It does that using a Markov pro-
cess, which is a stochastic process in which the probability of the future states (i.e., the
next sample realization) only depends on the current state. Moreover, the probabilities
of transitioning to a the next states (model parameter combination) are proportional to
the posterior distribution. This results in a chain of equally probable parameter combi-
nations. After correcting the chains for spin-up and auto-correlation, they contain the
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posterior probability distribution of the model-parameters, as well as dependence be-
tween them.

To illustrate how MCMC works we use the Metropolis-algorithm (Metropolis et al., 1953).
MCMC jumps from one state to the next by comparing Bayes’ theorem for the current
and next combination of model parameters. P (H) would be the prior probability of the
model parameter(s) H , and P (D|H) would be the likelihood of the observations given a
combination of model parameters. P (D) is difficult to calculate as it involves integrat-
ing the likelihood for all possible model parameters, but it is also independent of the
proposed H . Therefore, it can be crossed out as a normalization constant, leaving:

P (H |D) ∝ P (H) ·P (D|H). (2.16)

The Metropolis algorithm compares the posterior probability for two parameter combi-
nations:

P (Hnew|D)

P (Hcurrent|D)
= P (Hnew) ·P (D|Hnew)

P (Hcurrent) ·P (D|Hcurrent)
(2.17)

If this fraction is larger than 1.0 (i.e., the proposed combination Hnew has a higher pos-
terior probability than Hcurrent), it is adopted as the current combination. This means
the algorithm will converge to the most likely parameter combination, similar to a max-
imum likelihood estimate. However, to explore the full distribution, it also needs to be
able to transition to less likely combinations. Therefore, if the fraction is smaller than
1.0, a random number is drawn between 0 and 1. The less likely combination is then
only adopted if the fraction (Eq. (2.17)) is greater than this number. This allows the algo-
rithm to explore the full parameter space, while transitioning to new combinations such
that the resulting chain of visited parameters is proportional to the posterior probability.

While MCMC allows the use of priors (P (Hnew) and P (Hcurrent) in Eq. (2.17)), they are
not necessarily required. If the preference is to not express any information through
the prior, a non-informative prior is chosen. This is a distribution that results in a uni-
form posterior distribution when sampled from. Regardless of the prior, the results of
the MCMC analysis will be a Bayesian result, meaning that the distribution of parame-
ter combinations are interpreted as an uncertainty or degree of belief. Similarly, a prior
probability of a model parameter can be considered in a maximum likelihood estimate
as well. While it does not make the interpretation of the results Bayesian, it does incor-
porate the prior beliefs in the outcome, illustrating the cross-over between Bayesian and
frequentist probability.

Figure 2.12 illustrates the chain that is generated by MCMC from one of the GEV distri-
butions fitted in Chapter 6). The grey line shows 1000 steps from a single chain’s trace.
To avoid auto-correlation, only once every 25 steps a combination is recorded. These are
shown by the dots, projected as circles on the three axes planes. The joint distribution is
found by combining the trace from several chains (e.g., 50) with different starting points
across the distribution, and discarding the first steps as spin-up. This is shown with the
(kernel density smoothed) contours projected on the planes, which are based on roughly
10,000 combinations. The dependence, in this case strongest between the location and
scale parameter, follows from the “empirical” trace.
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Figure 2.12: Example of an MCMC trace from fitting a generalized extreme value distribution to observed an-
nual maxima.

2.3.4. Expert judgment as a Bayesian prior

Structured expert judgment is a suitable technique to provide priors for a Bayesian anal-
ysis. In Bayes’ theorem (Eq. (2.13)), the prior expresses the initial belief about param-
eters before any data are observed. Structured expert judgment elicits experts’ beliefs
about a topic of interest, typically also without the data being observed. In the context
of Bayesian statistics, expert judgments can thus be treated as prior probabilities. In
scenarios where data are limited, (structured) expert judgments can be used to derive
priors in a scientific manner, such that an informative posterior distribution can still be
obtained.

Priors can be used to inform model parameter or model outcomes. The difference be-
tween these two approaches was assessed in Chapter 5 (not in a Bayesian context). Chap-
ter 6 uses a prior on the model outcome to inform extreme discharges. When a prior
probability is considered for a model outcome, the process presented in Section 2.3.3
involves an extra step in which the model outcome is calculated for the proposed pa-
rameter combination H . This is then compared to the prior estimate for that outcome,
yielding a prior probability (i.e., not P (H) but P ( f (H))). This is explained in Section 6.3.3.
The remainder of the sampling process is the same.

The use of expert judgment-derived priors is well represented in research, for example
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by (Renard et al., 2006) or (Viglione et al., 2013). Software such as RMC-Bestfit provide
a graphical user interface and absolve the need for programming, at least for the pur-
pose of fitting extreme value distributions to observations. For more elaborated models,
one can use software modules such as PyMC3 (Abril-Pla et al., 2023), emcee (Foreman-
Mackey et al., 2013) (both Python), or STAN (Carpenter et al., 2015), which has a bespoke
syntax for probabilistic programming.



3
Software for expert elicitation

Two pieces of software were developed in this research to assist researchers and problem
owners in doing expert elicitations. The first, ANDURYL, is an aid for eliciting univariate
uncertainties using structured expert judgment. The second, Matlatzinca, helps with
eliciting statistical dependence using Non-Parametric Bayesian Networks. Both are open
source and freely available software that can be found on GitHub. This chapter gives an
overview of both pieces of software. For more details, please refer to the articles in which
they were published.

The contents of Section 3.1 have been published in: Rongen, G., ’t Hart, C.M.P., Leontaris, G., & Morales-
Nápoles, O. (2020). Update (1.2) to ANDURIL and ANDURYL: Performance improvements and a graphical
user interface. SoftwareX, 12, 100497.
The contents of Section 3.2 have been published in: Rongen, G., & Morales-Nápoles, O. (2024). Matlatzinca: A
PyBANSHEE-based graphical user interface for elicitation of non-parametric Bayesian networks from experts.
SoftwareX, 26, 101693.
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3.1. ANDURYL
Software implementing Cooke’s classical model (Cooke, 1991) for structured expert judg-
ment has been available through a program called Excalibur. It has a graphical use in-
terface and is freely available. However, it is not open source, making it difficult to fur-
ther develop the (relatively old) piece of software. This limits the usefulness for research
applications because new methods cannot be tested through the program and recalcu-
lating historical case-studies is a tedious manual task. To resolve this, Leontaris and
Morales-Nápoles (2018) created a MATLAB program called ANDURIL1. This program
provided the functionality to process elicitation results from the Classical Model but did
not have a user interface. Following this, ’t Hart et al. (2019) created a Python version
of ANDURIL, named ANDURYL (note the Pythonic “Y”). The advantage of Python over
MATLAB is that it is freely available, removing another obstruction for using software for
expert elicitation. However, the lack of a graphical use interface still required users to
have programming skills. This was resolved be creating a graphical user interface (GUI)
for the Python version (Rongen et al., 2020), which was done in the context of the re-
search presented in this thesis. This interface, programmed with the Python module
PyQt5, and can be compiled with PyInstaller (for Windows) resulting in a stand-alone
executable. This makes ANDURYL accessible to non-Python users.

An overview of the ANDURYL GUI is shown in Fig. 3.1, Fig. 3.2, and Fig. 3.3. These figures
show the different elements of the Classical Model:

• In the top left panel, an overview of the experts is shown. The bottom row of the
panel shows a decision maker, a weighted combination of experts.

• The lower left panel shows the items for which estimates are made. Some have a
realization. These are the seed questions that are used to assess the expert’s sta-
tistical accuracy. The other items without realizations (lower in the list) are the
variables of interest.

• In the Classical Model, uncertainties are estimated through a number of quantiles
or percentiles. The upper right panel shows some of the estimates of the first ex-
pert for the different quantiles. The colors indicate how these estimates compare
to, if these are known, the realizations or otherwise the total estimated range for
the question.

1The name ANDURIL refers to “A MATLAB toolbox for ANalysis and Decisions with UnceRtaInty” but you
might recognize it as the name of a legendary sword, just like Excalibur. Leontaris and Morales-Nápoles
(2018) explain the origins of the name in a comical manner that also includes the motivation, which is why it
is quoted here: “In order to avoid confusion of the minority of people, who are not familiar with the universe
of Lord of the Rings by J.R.R. Tolkien, the authors would like to clarify the inspiration for the name of the
developed Matlab toolbox. Andúril was the name of the sword of Aragorn, the son of Arathorn, which was
reforged from the shards of Narsil (the sword that was used by Isildur to cut the One Ring from Sauron’s
hand). Excalibur is also the name of the legendary sword of King Arthur. Similarly to the sword, the source
code of EXCALIBUR software remained accessible only to a few worthy ones. Therefore, the researchers and
practitioners could only admire and use the software without being able to further investigate and explore
developments of the method. To change this, the existing software had to be ‘broken to pieces’ and then
‘reforged’. Naturally, the name of the resulting new open-source Matlab toolbox is ANDURIL. Hopefully, this
will help in bringing peace to troubled researchers and practitioners of Cooke’s classical model.”
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• The lower right panel shows calculated decision makers. Different methods of cal-
culating a decision makers will give different results.

• Distributions (CDF, survival function, PDF, or range) can be plotted per item, for
several experts. This is shown in Fig. 3.2. Alternatively, results can be grouped by
expert, showing the range of the estimates for all items.

• Robustness results can be visualized for a number of excluded experts or items,
as shown in Fig. 3.3. The boxplot shows the statistical accuracies or information
scores that are calculated for excluding any combination of one or more experts.

Additional to the user interface, a number of improvements were made on the back end,
compared to the version from (’t Hart et al., 2019).

• In (Colson & Cooke, 2017a), 33 post-2006 studies using the Classical Method are
presented using CC. These data were used to compare output from ANDURYL to
Excalibur. Due to a new implementation for combining expert CDFs into a deci-
sion maker, differences between ANDURYL and Excalibur were reduced compared
to the last code version (’t Hart et al., 2019). For two of the 33 studies, “Hemophilia”
and “Ice sheets”, there are still differences in calculated statistical accuracy and in-
formation score. It is unknown what causes these differences, as they cannot be
traced through the Excalibur code. For four other studies there are small differ-
ences, seemingly from rounding errors. For the remaining 26 studies, the results
are equal.

• To assess the sensitivity of the study to the experts and questions that are included,
a robustness analysis can be done. With 10 experts there are only 10 options for
excluding a single expert. This number quickly grows when multiple experts (or
items) can be excluded, with 55 options for excluding two experts, and 175 for ex-
cluding three. The improved computational performance makes it less demand-
ing to do robustness analysis for a large number of experts.

• The option was added to vary the overshoot and bounds for each item. The elicited
percentiles can be varied as well between target items. For the seed items, the
elicited percentiles need to be consistent for statistical accuracy calculations.

• Exporting and importing options. The program has options for loading and sav-
ing the project in EXCALIBUR format (for compatibility) or as in a more common
JSON format. Furthermore, tabular results or distributions as shown in Fig. 3.1 and
Fig. 3.2 can be exported to xlsx or csv, or copied to clipboard.

• The ANDURYL code is separated between calculation and user interface function-
alities so that the Python-module can also be used from a script or Jupyter note-
book. For research purposes this is a useful functionality. An example of such a
notebook is shared on notebook to help a user to get started.

Finally, for the research described in Chapter 4, options were added to use different mea-
sures of statistical accuracy, and the Metalog distribution rather than the piecewise uni-
form distribution. These options are available in a separate branch on GitHub.
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Figure 3.1: Overview of the ANDURYL GUI, with on the background the main window and on the foreground
the CDF of each expert and the DM for a specific question.

Figure 3.2: Viewing expert and decision maker estimates for
separate items.

Figure 3.3: Viewing robustness of elicitation
to excluding experts or items.
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3.2. Matlatzinca
Matlatzinca is a graphical user interface (GUI) that was developed to aid the depen-
dence elicitation described in Chapter 7. The mathematical complexity of multivariate
dependence models makes direct elicitation difficult. For example, as explained in Sec-
tion 2.2.3, not every correlation matrix is a valid one. Using a non-parametric Bayesian
Network largely resolves this issue, but it still puts some constraints on the correlations
between different variables. Ideally, experts are not burdened with these mathematical
limitations during an elicitation and can focus on conveying their knowledge into the
dependence model. Matlatzinca2 was designed to do just that.

Matlatzinca is the first version of a stand-alone, open source, Graphical User Interface
(GUI) for PyBANSHEE Koot et al., 2023; Paprotny et al., 2020. PyBANSHEE is a Python
module that can be used to quantify, process, and sample from non-parametric Bayesian
Networks (NPBNs) A. Hanea et al., 2015. Matlatzinca uses functionalities from PyBAN-
SHEE to calculate conditional correlations. Additionally. Two computational methods
that are not present in PyBANSHEE but were added to facilitate expert elicitation, are:

• The option to enter a non-conditional correlation and get the resulting rank cor-
relation (instead of vice versa).

• Determine the limits for this correlation coefficient, to get a valid (−1,1) condi-
tional rank correlation.

Figure 3.4 presents a screenshot of Matlatzinca. The screenshot presents an example of a
Bayesian Network (BN) for hydrological modeling quantified by one of the seven experts
that participated in a recent application for estimating extreme river discharges in the
Meuse river Chapter 7. The GUI consists of three panels:

• The drawing panel Fig. 3.5 left). This is where the Directed Acyclic Graph (DAG)
that represents the dependence structure of the BN is drawn. Notice that arcs pro-
vide information with regard to the ordering of parents in the DAG, according to
the protocol discussed in A. Hanea et al., 2015. That is, which arcs represent con-
ditional rank correlations and the respective conditioning sets.

• The input panel (Fig. 3.5 bottom right). This panel presents the Nodes (represent-
ing random variables) used in the drawing panel. It also shows the Edges that
the user must quantify. Two options are available for quantifying arcs, 1) specify-
ing Spearman’s conditional rank correlations (Conditional rank corr.) or 2)
specifying non-conditional rank correlations (non-conditional rank corr.).
Notice that the interval in which non-conditional rank correlations may vary is
also provided by the software (Range non-cond. rank corr.). This interval

2Matlatzinca may be translated from Nahuatl (the language of the Aztecs) to English as “The people that make
nets". This is the name that the Aztecs gave to the inhabitants of the Valley of Toluca in central Mexico who
were well known fishermen at the time. Our first release of a GUI for PyBANSHEE is meant for people that
wish to quantify (make) Non-parametric Bayesian Networks (Nets) with expert judgments. Hence, we name
our GUI Matlatzinca.
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depends on the structure of the DAG and the value of the correlations input by
users in the ancestors’ arcs. Notice that the first parent of a node corresponds to
a non-conditional rank correlation, which may take values in (−1,1). Conditional
rank correlations may also take values in this interval. However, the interval for
non-conditional rank correlations is restricted by the conditional independence
statements embedded in the DAG and the restrictions of the correlation matrix it-
self. The column Range non-cond. rank corr. is updated as users introduce
values for either conditional or non-conditional rank correlations.

• The correlation matrix panel. The correlation matrix of the model is shown in the
upper right panel of Fig. 3.5. The magnitude and direction of the individual cor-
relation coefficients are represented by circles of different diameters and colors (a
colormap may be chosen by the user).

• A separate window that allows the user to relate conditional probabilities and rank
correlations can be accessed through Plot conditional probabilities. Fig-
ure 3.5) shows this, with the conditional probability P (FX1 (x1,q ) > q |FX2 (x2,q ) > q)
for three user-defined percentiles (q) in the distributions of two random variables
X1 and X2. The relation between rank correlation coefficient and the random vari-
ables under the Gaussian copula assumption is presented by (Morales et al., 2008).
This window is intended to help users relate rank correlations and conditional
probabilities in case they prefer one or the other for quantifying their models.

The different panes are interactively connected. Clicking a node or edge in the left pane
highlights the corresponding rows in the tables on the lower right. A project can be saved
and loaded from the File-menu. Display properties can be adjusted in the View-menu,
and the Export-menu contains options of exporting the nodes, edges, or correlation
matrix to CSV or the clipboard. Finally, the documentation, including a Quick-start de-
scription are accessible via the Help-menu.

Matlatzinca is the first version of a GUI built around PyBANSHEE. Unlike software for
elicitation of univariate uncertainty such as ANDURYL, Matlatzinca does not allow for
evaluating expert performance and combining multivariate uncertainty into decision
makers.
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Figure 3.4: PyBANSHEE GUI for elicitation of Non-Parametric Bayesian Networks from experts: Matlatzinca.
On the left, the drawing panel. On the top-right, the correlation matrix panel. On the bottom-right, the input
panel.

Figure 3.5: Conditional probabilities of interest as a function of rank correlation available in the matrix panel
of Matlatzinca
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Continuous distributions and

measures of statistical accuracy
for structured expert judgment

This study evaluates five scoring rules, or measures of statistical accuracy, for assessing
uncertainty estimates from expert judgment studies and model forecasts. These rules —
the Continuously Ranked Probability Score (CRPS), Kolmogorov-Smirnov (KS), Cramer-
von Mises (CvM), Anderson Darling (AD), and chi-square test — were applied to 6864
expert uncertainty estimates from 49 Classical Model (CM) studies. We compared their
sensitivity to various biases and their ability to serve as performance-based weight for
expert estimates. Additionally, the piecewise uniform and Metalog distribution were
evaluated for their representation of expert estimates because four of the five rules re-
quire interpolating the experts’ estimates. Simulating biased estimates reveals varying
sensitivity of the considered test statistics to biases. Expert weights derived using one
measure of statistical accuracy were evaluated with other measures to assess their per-
formance. The main conclusions are (1) CRPS overlooks important biases, while CM and
AD behave similarly, as do KS and CvM. (2) All measures except CRPS agree that perfor-
mance weighting is superior to equal weighting with respect to statistical accuracy. (3)
Neither distributions can effectively predict the position of a removed quantile estimate.
These insights show the possibilities and limitations of different scoring rules for com-
bining uncertainty estimates from expert or models.

The manuscript related to this chapter has been submitted for publication at the time of writing. Authors:
Rongen, G., Nane, T., Morales-Nápoles, O., & Cooke, R.
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4.1. Introduction

Uncertainties are both widespread and influential in many fields, from climate model-
ing and economic forecasting to engineering design and legal decisions. The ability to
accurately quantify uncertainties is important for informed decision-making, and it will
often increase the value and usefulness to the outcomes. However, limited availability of
data, complexity of the problem, financial or even ethical constraints can limit possibil-
ities to accurately quantify these uncertainties. Expert judgment is a method to quantify
uncertainty for variables whose uncertainty is difficult to quantify through other means.
Comparing it to a statistical or physics-based models, expert judgment provides data in
settings where a model would require assumptions or an extrapolation. It can take in-
formal forms, such as asking an experienced person for their expectations, which might
be fine for non-critical issues but high-stakes situations demand a more structured ap-
proach, one that is replicable, subject to review, and that could be assessed for potential
biases, ensuring reliability and integrity.

The Classical Model (CM) is such an approach, which formalizes the process of expert
judgment elicitation in such a way that the resulting uncertainty estimates can be treated
as scientific data. It combines expert estimates using weights that are based on compar-
ing uncertainty estimates to known outcomes of a number of check (or calibration) ques-
tions. Colonna et al. (2022) recently applied the method to combine COVID-forecasting
models. They interpreted the different models as experts and their forecasts as esti-
mates. The Classical Model was used to evaluate and combine these forecasting models,
by comparing them to the actual course of events. This shows the the value of CM out-
side the typical field of expert judgment. First presented in (Cooke, 1991), the method
has been widely applied and data from these applications have been made available to
researchers, first in (Cooke & Goossens, 2008) and most recently in (Cooke et al., 2021).
The later reference also gives a light exposition of the CM and introduces the expert judg-
ment data used in this study. A special issue of Reliability Engineering and System Safety
hosting the first publication of expert data (Cooke & Goossens, 2008) also contained con-
tributions of many statisticians, risk analysts and practitioners who raised issues regard-
ing CM1. Some of these issues, such as in-sample validation and overconfidence were
amply addressed in the discussion papers of that special issue. Other concerns, most
notably out-of-sample validation, persistence of performance and point value forecast
performance spawned a stream of research. Much of this is summarized in (Cooke et al.,
2021) and in the references therein.

An important aspect of a structured expert judgment exercise is the understanding of
the sensitivity of its results to the number of experts and questions. The effort required
to elicit information from experts means that we are never fully certain of each expert’s
statistical accuracy, underscoring the need for measures of statistical accuracy that uti-
lize the information provided by the experts in the best way. In other words, we need to

1The contributions of Bram Wisse, Tim Bedford, John Quigley, Sandra Hoffmann, Paul Fischbeck, Alan Krup-
nick, Michael McWilliams, O. Morales, D. Kurowicka, A. Roelen, Shi-Woei Lin, Vicki M. Bier, Thomas A. Maz-
zuchi, William G. Linzey, Armin Brunin, Jouni T. Tuomisto, Andrew Wilson, John S. Evans, Marko Tainio, Roger
Cooke, ElSaadany, Xinzheng Huang, Robert Clemen, Anthony O’Hagan and Simon French are gratefully ac-
knowledged.
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determine expert weights accurately based on a limited dataset, such that they reflect an
expert’s relative weight within a panel.

This study aims to explore two main questions: 1) How do different goodness of fit tests,
each with known asymptotic or exact distributions, compare in evaluating expert es-
timates? And, 2) how do two approaches of interpolating a continuous CDF compare
in representing expert estimates? Recent work uses the Continuous Ranked Probability
Score (CRPS). Nane and Cooke (2024) present a CRPS-based score that assigns a scalar
value to each assessment cum realization. Under suitable transformation, these scores
for individual variables can be summed such that the exact distribution of the sum is
available in closed form. This yields a measure of SA which appeals to an interpolated
CDF but not to an asymptotic distribution. In total, we compare five different test statis-
tics,

1. the standard χ2 test in the CM,

2. the CRPS-based statistic,

3. the Kolmogorov-Smirnov (KS) statistic,

4. the Anderson-Darling (AD) statistic, and

5. the Cramer-von Mises (CvM) statistic,

All but χ2 compare quantiles to continuous CDFs and therefore require a distribution
for transforming realizations to quantiles, using the expert estimates. For this we use
two classes of distributions. The first is the piecewise uniform (PWU) distribution corre-
sponding to the minimum information assumption in the Classical Model. The second
is the Metalogistic, or Metalog, distribution (Keelin, 2016). This recently introduced dis-
tribution offers great shape-flexibility, which helps with fitting a probability distribution
to the large variety of expert quantile-estimates. Low parameter probability distributions
often yield poor fits in these cases.

The five measures of statistical accuracy and two classes of distribution are compared in
a variety of analyses, based on two different data sets. All analyses were done using An-
duryl, an open-source Python-module and graphical user interface (Rongen et al., 2020).
Metalog calculations were conducted using (Adamczewski, 2023). We used 49 expert
judgment studies from the past decades, described in (Cooke et al., 2021), comprising
530 experts and 580 calibration variables. Recently published structured expert judg-
ment studies, such as (Rongen et al., 2022a) and (Ren et al., 2024), were not considered
because they have not yet been described and compared in an overview study. Addi-
tional to the published studies, we simulate expert estimates from distributions with a
specific bias for a more clinical comparison. The analyses show

1. the statistical accuracy results from each score,

2. the ability of each measure of statistical accuracy to detect different biases, and

3. how the weights from each measure of statistical accuracy perform when used to
create a DM that is evaluated with another measure.
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Results are presented for the PWU distribution and the Metalog distribution. Finally, we
consider the case-studies with 5 percentile estimates, removing 2 of these 5 percentiles,
and see how well both distributions are able to estimate the position of the missing per-
centile.

4.2. Methods

4.2.1. Measures of statistical accuracy

Several statistical tests judging whether a sample corresponds to a probability distri-
bution are of interest. Three such statistics are applied in this study: the Kolmogorov-
Smirnov (KS), Cramer-von Mises (CvM), and Anderson-Darling (AD). Additionally, we
include the CM chi-square and the recently introduced transformed Continuous Ranked
Probability Score.

Classical model – chi-square

If k quantiles are assessed, with n the number of calibration variables assessed by an
expert and ni the number of realizations falling in the i -th quantile interval, then s =
(s1, . . . , sk+1), where si = ni

n is the sample distribution for the expert. The vector p =
(p1, . . . , pk+1) is the expected relative frequency of interquantile realizations, thus if the
5%, 50%, 95% quantiles are elicited, then p = (0.05, 0.45, 0.45, 0.05). Under the hypothe-
sis that the realizations are independently drawn from p, the quantity 2nI (s|p) is asymp-
totically chi-square (χ2) distributed with k degrees of freedom, where I (s|p) is the Shan-
non relative information of s with respect to p (Cooke, 1991). While the resulting statisti-
cal accuracy is based on the χ2-distribution, the scoring rule used in the Classical Model
is different from the commonly known χ2-test.

CRPS

The Continuously Ranked Probability score (CRPS) is a measure for comparing forecast
or estimates to realizations (T. A. Brown, 1974). Nane and Cooke (2024) present a scale
invariant version of this measure. A closed form for the convolutions of scores (i.e., for
multiple elicited items) is derived, which enables evaluating experts’ statistical accuracy.
For a given expert’s distribution F for a random variable X and realization y , the Contin-
uous Ranked Probability Score (CRPS) is defined by

C RPS(F, y) =
∫ ∞

−∞

[
F (x)−1{x≥y}

]2 dx.

We want to test the hypothesis that F (X ) ∼ U [0,1]. For this, we consider C RPS(FU , v),
where FU is the standard uniform distribution and v = F (y), with y the realization. A
certain transformation of the CRPS score leads to known distribution (of a squared uni-
form random variable). Moreover, the transformed CRPS score becomes scale invariant,
that is, the score does not depend on the scale on which the quantity of interest is mea-
sured. Furthermore, if we assume n independent variables, then the distribution of the
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convoluted transformed CRPS score follows an exact rather than an asymptotic distri-
bution (Nane & Cooke, 2024). The details of computing the transformed CRPS score
can be found in (Nane & Cooke, 2024). Throughout the manuscript, we will refer to this
transformed CRPS instead of the original CRPS score (T. A. Brown, 1974).

Kolmogorov-Smirnov

The Kolmogorov-Smirnov (KS) test compares two samples (two-sided test) or a sample
with a distribution (one-sided test) by using the supremum distance (equation (4.1)) be-
tween (empirical) cumulative distribution functions (Kolmogorov, 1933; Smirnoff, 1939)

Dn = sup
x

|Fn(x)−F (x)| (4.1)

In the context of the Classical Model (CM), a perfectly statistically accurate expert is one
for whom the quantiles of the realizations for the calibration questions are uniformly
distributed. An expert’s statistical accuracy is thus tested by comparing these quantiles
to a uniform distribution using the one-sided KS-test. The arrow in Fig. 4.1 illustrates
the KS test-statistics. In the KS test, the largest difference tends to be found near the
median. Consequently, the test statistic is relatively insensitive to deviations in the tail,
which, when applied to expert judgments, typically correspond with overconfidence.

For hypothesis testing, the KS distance is used to investigate the probability that the sam-
ple comes from the tested distribution. For this, an exact distribution is approximated
using the method proposed by Simard and L’Ecuyer (2011). In classical statistics, a prob-
ability lower than 0.05 (i.e., the significance level) leads to rejecting the hypothesis that
the data is independently sampled from the distribution of interest.

Cramer-von Mises and Anderson-Darling

The Cramer-von Mises (CvM) statistic is the area between the empirical CDF and tar-
get CDF (Cramér, 1928; Von Mises, 1928), illustrated by the hatched area in Fig. 4.1. In
contrast to the KS-test, CvM considers the full distribution rather than the distance at a
single point. The test-statistics is however still relatively insensitive to deviations in the
tail.

The Anderson Darling (AD) statistic, based on CvM, compensates this by adding more
weight to the tails of the distribution (Anderson & Darling, 1952). The equation for both
statistics is:

n
∫ ∞

−∞
(Fn(x)−F (x))2 w(x)dF (x), (4.2)

where n is the sample size, F (x) the hypothesized distribution (uniform, in this study),
and Fn(x) is the empirical cumulative distribution function (the expert’s percentile points
under the assumed probability distribution). The weight w(x) differs for CvM and AD.
In CvM, all realizations x have weight 1.0. For AD, more weight is assigned to both tails
of the distribution:

w(x) = [F (x)(1−F (x))]−1. (4.3)
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Figure 4.1: Illustration of KS, CvM, and AD test statistics for a sample from a uniform distribution. The sample
is plotted by their ranks (the connected dots). The arrow indicates the Kolmogorov-Smirnov (KS) statistic,
the hatched area Cramer-von Mises (CvM), and the filled area (a weighted version of the hatched area) the
Anderson-Darling (AD) statistic.

By assigning a large weight to the deviation of quantile points in the tail, AD compensates
CvM’s insensitivity to overconfidence. This is shown by the filled area in Fig. 4.1, which,
compared to the hatched area, has a larger distance to the diagonal at the edges. For
CvM, distributions from (CSöRgő & Faraway, 1996) are used to convert the test statistic to
a p-value. An approximation of the distribution for the AD test statistic, for a uniform dis-
tribution, is given by (Marsaglia & Marsaglia, 2004) and (Grace & Wood, 2012). Marsaglia
and Marsaglia (2004) cover the full range a ∈ (0,∞) (with a being the AD-statistic), while
the approximation of Grace and Wood (2012) is specified only for a ∈ [3,∞). The latter is
more accurate for high values of a, which is why we apply Marsaglia and Marsaglia (2004)
for a ∈ (0,3), Grace and Wood (2012) for a ∈ (4,∞), and linearly interpolate between the
two for a ∈ [3,4] to ensure a smooth transition.

Shapiro-Wilk is another test-statistic that is often used for testing normality (Shapiro &
Wilk, 1965). The problem with this statistic for our application is that it tests whether
a sample is normally distributed with any mean and variance. It does not test whether
a sample is standard normal distributed (i.e., N (0,1)), so neither can it be used to test
whether a sample is uniformly distributed between 0 and 1. Therefore, it was not used
in this study.

4.2.2. Metalog distribution

The Metalogistic, or Metalog, distribution is a continuous univariate probability distri-
bution with high shape flexibility introduced by Keelin (2016). It accommodates bounded,
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semi-bounded, and unbounded distributions. This makes it an appealing choice for fit-
ting empirical data (e.g., as a continuous replacement for a histogram) but also for mod-
eling expert estimates. The Metalog is a generalized form of the logistic distribution,
achieved by substituting the mean and standard deviation in the logistic distribution’s
quantile function using series expansion. In this study, the three and five term functions
M3(y) and M5(y) are used:

M3(y) = a1 +a2 ln
y

1− y
+a3(y −0.5) ln

y

1− y

M5(y) = M3(y)+a4(y −0.5)+a5(y −0.5)2

Here, y denotes the cumulative probability and ai the constants.

Because the distribution is defined using its quantile function, a unique n-sized vector a
can be fitted to any set of n percentiles. This is a useful property for resembling experts’
quantile estimates without changing their estimates. However, the quantile function
Mn(y) needs to be strictly increasing for all y ∈ (0,1). This is not necessarily the case
for all sets of n percentiles, resulting in invalid or infeasible distributions with negative
probability density.

Figure 4.2 shows eight examples of Metalog distributions (smooth grey curves) and piece-
wise uniform (PWU) distributions (stepped black curves) fitted to either three-percentile
estimates (a, b, c) or five-percentile estimates (d, e, f, g, h). For three-percentile esti-
mates, an infeasible a-vector can be solved by imposing a lower or upper bound. This
introduces a fourth parameter, making the solution overdetermined. We address this by
selecting the bound such that it minimizes the maximum probability density, resulting
in the least informative distribution.

For five-percentile estimates, many expert estimates (combinations of five quantiles)
lead to infeasible distributions. To be able to process the results for case studies with
five quantiles as well, the infeasible estimates are split in two by the median, resulting in
two three-quantile estimates (e.g., 0.05, 0.25, 0.50, and 0.50, 0.75, 0.95). This gives a step
in density at the median, as shown by the solid line in Fig. 4.2h. Optionally, this can be
resolved by imposing a bound on the distribution with the lowest density at the median
such as shown by the dashed line. However, this is primarily an aesthetic solution, which
is why we chose not to do this. Note that the Metalog distribution can fit the quantile es-
timates with a feasible (non-negative) distribution, but this would require adding more
terms to the a-vector than there are quantiles. Further details on the fitting procedure
can be found in Section 4.B.

All tests except χ2 use quantile points of realizations for evaluating statistical accuracy,
rather than the quantile intervals in which the realizations fall. A fitted Metalog distribu-
tion provides these quantile points based on the expert estimates. This study examines
whether the realization quantiles from the Metalog are a better representation of expert
estimates than the realization quantiles generated by a PWU distribution. With respect
to the CM, the Metalog also changes the calculation of informativeness since the default
approach is based on the piecewise uniform assumption. For further explanation on
how this calculation is performed for the Metalog, please refer to Section 4.B.
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Figure 4.2: Eight examples of Metalog distributions and piecewise uniform distributions fitted to three-
percentile (a, b, c) and five-percentile (d, e, f, g, h) expert estimates. The estimates are indicated with the
vertical dashed lines.

4.2.3. Comparing measures of statistical accuracy

The five test statistics, as detailed in Section 4.2.1 evaluate statistical accuracy in dif-
ferent ways, leading to different test scores. The sensitivity to biases is explored using
the method presented in Section 4.2.3. Section 4.2.3 explains how the statistical accu-
racy from the different tests are compared given their difference in values. Finally, the
method for comparing the quantile estimates from PWU and Metalog is outlined in Sec-
tion 4.2.3.

Scores’ sensitivity to detect biases

To assess the ability of the measures of statistical accuracy to detect biases in experts’
individual assessments, we introduce criteria for location bias and underconfidence or
overconfidence. Location bias is defined as the absolute difference between the fraction
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of realizations below the median estimate and 0.5, or∣∣∣∣
∑n

i=1(xi < Fe,i (0.5))

n
−0.5

∣∣∣∣ , (4.4)

with n being the number of items, xi the realization for item i and Fe,i (0.5) expert e’s
median estimate for item i .

Overconfidence and underconfidence are quantified by the number of realizations be-
low and above the lowest and highest estimated quantile, divided by their expected frac-
tion. Let LQ and UQ be the lower and upper quantile (typically 0.05 and 0.95, 0.10 and
0.90 in two of the 49 cases). The ratio of tail realizations is calculated with∑n

i=1(xi < Fe,i (LQ))+∑n
i=1(xi > Fe,i (UQ))

n(LQ + (1−UQ))
. (4.5)

A value greater than 1.0 indicates overconfidence, a value less than 1.0 indicates under-
confidence.

Comparing measures of statistical accuracy via decision makers

As discussed in Section 4.2.1, the Classical Model (CM) relies on the χ2 statistical accu-
racy in combination with the information score to assign weights to each expert. These
weights are then used to aggregate experts’ distributions into a decision maker (DM) us-
ing the global weights algorithm with optimization (GLopt) or without (GL). Whenever
comparing global weights in the analyses, the values of the weights are the normalized
product of statistical accuracy and informativeness. Within this, the measures of statisti-
cal accuracy introduced in Section 4.2.1 serve as alternatives for the statistical accuracy
term. Consequently, different measures assign different weights to the experts. When
applying optimization, this can lead to DMs composed of the estimates of different sets
of experts. In addition to the global weights, we consider the equal weight DM (EQ)
which assigns the same weight to every expert. Item weights were not considered.

We are interested in comparing the effects of applying different measures of SA within
the CM on the decision maker’s SA. For this, we cannot simply compare the SA of the DM
calculated using each measure, because some measures give on average higher scores
than others. For example, KS and CvM are less sensitive to overconfidence, a prevailing
bias in CM studies, and therefore give higher SA scores. This does not mean the ex-
perts are actually statistically more accurate. To compare the measures, we consider the
weights from each measure, evaluated with each of the measures of SA. Both with and
without optimization, and for both the PWU and Metalog distribution. As an example,
we list the steps in comparing the KS and CRPS weights according to the χ2 measure of
SA:

1. First, experts’ weights, as the normalized product of statistical accuracy and infor-
mativeness, are calculated based on KS and CRPS measures of SA.

2. Decision makers distributions are obtained for each set of those weights, which
we will refer to as DMKS and DMCRPS.
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3. The χ2 measure of statistical accuracy is then also calculated for the DMKS and
DMCRPS.

4. This is repeated for all 49 studies. Ranking these SAs gives a set of 98 ranked SA
scores.

5. Using the Mann-Whitney rank sum test (Mann & Whitney, 1947), we test whether
the DMKS and DMCRPS ranks are statistically equivalent, or whether one is lower
(or higher) than the other according to the χ2 measure of statistical accuracy.

We do this for all combinations of SA measures, such that each pair of DMs is compared
with respect to each of the five measures of SA.

Determining the Metalog’s and PWU’s ability to predict missing quantiles

The choice of the Metalog distribution to represent the probability density between per-
centile estimates is rooted in the hypothesis that it better aligns with the distribution
perceived by experts. This is due to its smooth curve without abrupt changes in prob-
ability density at estimated percentiles. To test this hypothesis, we remove the second
and fourth percentile from the case-studies involving five elicited percentiles. The re-
moved percentiles are then estimated using both the PWU and Metalog distributions.
By comparing the difference between the estimated percentile point and the removed
value (e.g., F−1(0.25)−x0.25 for the 25th percentile) we can determine which distribution
more accurately predicts the location of the removed percentiles.

4.3. Results
We used expert data from 49 studies that are explained in (Cooke et al., 2021). The data
comprise 6864 individual expert assessments. The different measures of statistical ac-
curacy (SA) were calculated for the global weights decision maker (DM) with and with-
out optimization, and the equal weights DM. These results allowed us to compare SA
across different measures of SA (Section 4.3.1), assess the sensitivity to different biases
(Section 4.3.2), and evaluate the ability of the Metalog and PWU distributions to predict
missing quantiles (Section 4.3.4).

4.3.1. Individual experts’ measures of statistical accuracy

The PWU and Metalog distribution’s quantile estimates of the realization, for the 6864 in-
dividual experts, are shown in Fig. 4.3. Overconfidence is signaled by the high number of
realizations in the tails. The quantile positions for realizations that fall outside the [0.05,
0.95] interval differ most between Metalog and piecewise uniform (PWU). The standard
(PWU) approach requires an assumption on the probability density in the [0.0,0.05] and
[0.95,1.0] range as the 0.0 and 1.0 quantiles are not elicited. These lower and upper
bounds are usually placed at the minimum and maximum of all experts’ estimates and
the realization, extended by (typically) a 10% overshoot of this total range. Since only
one expert gives the lowest or highest estimate, the estimates of the other experts end up
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being extended by (much) more than 10%. This leads to the position of a realization in
the (often very wide) tails being relatively close to the elicited outer quantiles (e.g., 0.05
and 0.95). The Metalog distribution does not require an assumption on the tails, except
for estimates with very skewed estimates. Therefore, the realizations are placed based on
the fitted distribution and experts are judged on their own overconfidence. This tends to
result in quantiles closer to 0.0 and 1.0.
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Figure 4.3: Quantiles of realizations for 6864 individual expert quantile assessments with respect to the fitted
piecewise uniform (white) and Metalog (grey) distributions. The difference between a) with 100 bins and b)
with 20 bins shows the effect of assuming PWU or Metalog on the tail quantiles.

Figure 4.4 shows the statistical accuracy (SA) for the five considered measures, for each
of the 530 experts. Histograms of the SA for each individual measure are displayed on
the diagonal. The first bin covers the first 5%, i.e., the significance level commonly used
in simple hypothesis testing. For an expert with SA less than 5%, the hypothesis that
the expert is statistically accurate would be rejected at the 5% level. The dashed lines in
the scatter plots also indicate this 5% significance level. The scatter plots in the lower
left triangle are obtained under the PWU assumption, those in the upper right triangle
under the Metalog assumption. Many scatters are overlapping in the < 0.05 corner, Fig.
4.A.3 in Section 4.A shows more clearly how the measures compare in that range.

The scores χ2, CRPS, KS, CvM and AD, assign a significance level above > 5% to 27%,
32%, 58%, 62%, and 46% of the experts when assuming PWU, and 27%, 18%, 49%, 48%,
and 17% for Metalog. For all but χ2, assuming a Metalog distribution leads to lower SAs
relative to a PWU distribution. This is because using PWU results in the realizations be-
ing at quantiles closer to the 5th and 95th (as illustrated in Fig. 4.3). χ2 relies on quantile
intervals, such that the choice of the inter-quantile distribution does not affect statistical
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Figure 4.4: Statistical accuracy for the 530 experts based on their quantile assessments in 49 case studies, us-
ing the Metalog distribution (upper right panels) and piecewise uniform (lower left panels). The dashed line
represents the 5% significance level. The two numbers in the lower right of each panel are the rank correlation
between all experts (above), and the rank correlation between all experts with a greater than 0.05 SA in both
test (below). Diagonal plots present the histogram of each measure’s statistical accuracy for all 530 experts
(i.e., the marginal distribution of each SA measure). In each histogram, the percentage of experts with a > 5%
significance level is reported.
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accuracy.

The rank correlations between the different measures of SA are high. When consider-
ing only experts with SA greater than 0.05 for both measures, the correlation is generally
low for all combinations except between KS, CvM, and AD. Under the PWU assumption,
CvM and KS are relatively similar to each other and to AD. When assuming the Meta-
log distribution, AD gives significantly lower scores than to KS and CvM. This is due to
the extra weight assigned to realizations in the tail (see Fig. 4.1). A high SA for AD does
however still ensure high SA with KS and CvM.

Figure 4.A.3 shows the same results plotted on a logarithmic scale, demonstrating again
that KS, CvM, and AD are relatively similar measures of statistical accuracy. CRPS and χ2

also show some resemblance due to their high sensitivity to overconfidence. Moreover,
KS and CvM are less likely to yield very low (< 10−5) scores, while χ2 tends to give the
lowest scores. In terms of expert weights, the linear representation is more relevant, as it
will generally matter less for the DM whether one of the contributing experts gets a 10−3

or 10−10 score.

4.3.2. Analysis of sensitivity to biases

We analyzed the sensitivity of measures of statistical accuracy to under- and overconfi-
dence and location bias (i.e., overestimating or underestimating). The method for cal-
culating the biases was explained in Section 4.2.3. First, we examined the results for
individual expert assessments, as depicted in Fig. 4.5. CRPS is known to be location bias
insensitive. However, the CRPS location-bias scatter plot does not show a very different
pattern from the other measures, indicating that experts who score high with CRPS are
not strongly location-biased. χ2, CRPS, and AD (under Metalog assumption) are most
sensitive to overconfidence, while KS, CvM, and AD (under PWU assumption) are least
sensitive to overconfidence. All scores are sensitive to underconfidence, however CRPS
actually rewards it, which is further discussed in Section 4.4.1.

Another approach to assess the sensitivity of measures of statistical accuracy to biases is
by sampling from known distributions. We simulated four experts with different biases,

1. the perfectly statistically accurate (no bias),

2. overconfident,

3. underconfident,

4. location-biased (overestimating) expert.

The results of the simulation are shown in Fig. 4.6. The four columns correspond to
the four experts, with the top row showing the beta-distribution from which realization
quantiles are sampled. For each expert, 5 to 50 values are sampled from the distribution.
Repeating this process 10.000 times gives the distribution of p-values, indicated with the
colored bands.

For the perfectly calibrated expert, all test statistics produce a uniform distribution for
the p-value, which aligns with the asymptotic or exact distribution. χ2 requires more
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Figure 4.5: Sensitivity of the measures of statistical accuracy to biases. The top row shows sensitivity to under-
and overestimating experts (location-bias), calculated using Eq. 4.4. The bottom row shows under- and over-
confidence, calculated using Eq. 4.5. The crosses indicate statistical accuracy calculated for the Metalog, the
circles for the piecewise uniform distribution.

realizations to reach this uniform result because the χ2 distribution is an asymptotic
rather than an exact distribution of the χ2 test-statistic. For this reason, a p-value equal
to 1 is only possible with 20 or more calibration variables, when eliciting the 5th, 50th
and 95th percentile.

CRPS shows the highest sensitivity to overconfidence, followed by χ2 and AD, and fi-
nally KS and CvM. For underconfidence, a similar sensitivity pattern emerges, except
that CRPS rewards rather than penalizes underconfidence. An expert with location bias
gets the lowest p-values from AD, KS, and CvM, followed by χ2. CRPS does not pick up
location bias, as explained by Nane and Cooke (2024), if the expert is not under- or over-
confident.

Overall, KS and CvM respond similarly to biases and AD andχ2 do as well. For small sam-
ple sizes, the continuous measures of statistical accuracy are less capricious, because of
the use of exact distributions. Note that using 10 variables was deemed sufficient to
select a statistically accurate expert over an overconfident expert. Note that in Fig. 4.6
the mean χ2 score for 10 experts using the asymptotic distribution is not 0.50 but 0.40
(Cooke, 2014). The continuous measures’ use of an exact distribution comes at the ex-
pense of assuming a distribution to assign a realization to a quantile. The uncertainty in-
troduced by this assumption is not considered in this analysis beyond eyeballing Fig. 4.4

4.3.3. Comparison of decision maker statistical accuracy

The previous sections presented the individual statistical accuracy measures and sensi-
tivity to biases. This section compares the weights derived using the different measures
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Figure 4.6: Distribution of the DM’s statistical accuracy for the different measures of statistical accuracy, re-
sulting from drawing 10.000 samples of 5 up to 50 realization quantiles with different biases and evaluating
their statistical accuracy. The four (non-)biases are: perfectly calibrated, overconfident, underconfident, and
location-biased (overestimating).
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and the resulting statistical accuracy, following the procedure set out in Section 4.2.3.
Section 4.A presents illustrations of the intermediate steps that are followed in deriving
the results presented in this section.

The measures of statistical accuracy are compared by calculating decision maker weights
using each measure of SA (recall that the weights are the normalized product of SA and
informativeness), and evaluating the DM’s statistical accuracy with, again, each of the
measures of SA. This yields 49 values per combination of weight SA and score SA, whose
means are shown in Table 4.1. Note that for χ2 the mean value of 0.40 accords with the
value shown in Fig. 4.6 for 10 to 20 calibration variables. For most combinations, the
values on the diagonal are highest. For these, the same measure of SA is used for weights
and score. This difference is larger for the GLopt DM than for the GL DM. Note that
all SA measures except CRPS have a "low opinion of equal weighting" with χ2 having the
lowest. CRPS DM’s statistical accuracy is actually slightly higher for equal weighting than
for CRPS weighting.

SA (w.) χ2 CRPS KS CvM AD EQ

D
is

t.

D
M SA (sc.)

P
W

U

G
L

χ2 0.40 0.36 0.43 0.46 0.42 0.32
CRPS 0.63 0.67 0.67 0.67 0.67 0.69
KS 0.52 0.41 0.57 0.55 0.54 0.39
CvM 0.51 0.40 0.56 0.57 0.55 0.38
AD 0.51 0.39 0.56 0.57 0.55 0.39

G
Lo

p
t

χ2 0.55 0.38 0.39 0.38 0.43 0.32
CRPS 0.50 0.62 0.35 0.36 0.42 0.69
KS 0.49 0.42 0.71 0.67 0.66 0.39
CvM 0.49 0.43 0.69 0.72 0.68 0.38
AD 0.49 0.44 0.63 0.66 0.65 0.39

M
et

al
o

g

G
L

χ2 0.39 0.33 0.46 0.44 0.37 0.32
CRPS 0.48 0.46 0.54 0.56 0.40 0.59
KS 0.51 0.43 0.58 0.58 0.46 0.40
CvM 0.50 0.43 0.59 0.60 0.45 0.39
AD 0.45 0.36 0.53 0.54 0.36 0.40

G
Lo

p
t

χ2 0.52 0.32 0.42 0.43 0.40 0.32
CRPS 0.34 0.46 0.27 0.31 0.33 0.59
KS 0.44 0.44 0.70 0.70 0.49 0.40
CvM 0.46 0.44 0.67 0.71 0.50 0.39
AD 0.34 0.36 0.39 0.47 0.41 0.40

Table 4.1: Average DM statistical accuracy for the 49 case studies, calculated with weights from the measures
of SA on the columns “SA (w.)” and Equal weights "EQ", and scored using the measures of SA on the rows
"SA (sc.)". The results for the GL and GLopt decision maker, as well as the PWU and Metalog distribution are
shown.

Table 4.2 displays the p-values of the Mann-Whitney test that compares whether the
ranks of SA (for which the means are shown in Table 4.1) are significantly different from
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each other. The top five rows compare the ranks under the piecewise uniform assump-
tion and the global weights DM. The only significant number is the 0.025 between CRPS
(row) and CvM (column). This suggests that the SA calculated with DM weights from
CvM evaluated with χ2 is significantly higher than the SA calculated with DM weights
from CRPS evaluated with χ2. Or, P (S ADMC v M |χ2 > r ) is greater than P (S ADMC RPS |χ2 > r )
for all r in (0,1).

D
is

t.

D
M SA χ2 CRPS KS CvM AD

P
W

U

G
L

χ2 0.818 0.217 0.121 0.341
CRPS 0.184 0.055 0.025 0.101
KS 0.785 0.945 0.345 0.649
CvM 0.881 0.976 0.657 0.809
AD 0.661 0.900 0.353 0.193

G
Lo

p
t

χ2 1.000 0.998 0.999 0.987
CRPS 0.001 0.460 0.582 0.182
KS 0.002 0.542 0.602 0.230
CvM 0.001 0.421 0.400 0.157
AD 0.013 0.820 0.772 0.844

M
et

al
o

g

G
L

χ2 0.880 0.093 0.198 0.731
CRPS 0.121 0.009 0.027 0.275
KS 0.908 0.991 0.660 0.962
CvM 0.804 0.974 0.343 0.919
AD 0.272 0.727 0.039 0.082

G
Lo

p
t

χ2 0.999 0.959 0.963 0.981
CRPS 0.001 0.040 0.027 0.117
KS 0.042 0.961 0.409 0.662
CvM 0.038 0.974 0.594 0.702
AD 0.020 0.884 0.340 0.301

Table 4.2: p-values for the Mann-Whitney rank-sum test. A p-value less than 0.05 (bold) suggests that the
ranks of the SAs calculated with the measure of SA in the row is less than the ranks of the SAs calculated with
the measure of SA in the column. The SA-values are ranked according to the 49 χ2 DM’s SAs. Both the ranks
using PWU and Metalog distribution, as well as using GL and GLopt decision maker, are compared.

Table 4.2 and Table 4.A.1 show that for the global weights DM without optimization the
differences are mostly insignificant. The exception are the weights from C RPS, which
often score significantly lower, especially when evaluated according to the KS, CvM, or
AD test.

For the global weights DM with optimization, the χ2 SA calculated with weights from
every measure other than χ2 itself, are significantly lower (see the first column in Ta-
ble 4.2, rows corresponding to GLopt). Similarly, the CRPS SA calculated with global
optimized weights from the other measures is considered significantly lower as well (see
Table 4.A.1). And again, KS, CvM, and AD behave similarly as a group; the SAs calcu-
lated with weights from χ2 and CRPS are significantly lower than the SAs calculated with
weights from the measures themselves, but the SA from weights in between KS, CvM,
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and AD are not significantly lower (or higher). For the Metalog distribution, AD’s sensi-
tivity to overconfidence makes it behave more similar to χ2 and CRPS, and less similar
to KS and CvM.

Based on the comparison in this section, and the analyses from Section 4.3.2, the mea-
sures of statistical accuracy can be divided into three categories with similar response to
specific characteristics of expert assessments:

1. KS, CvM, and AD value quantiles close to their ranked position.

2. χ2 values a proportional number of quantiles in bins.

3. CRPS values the median estimate close to the realization’s quantile.

Figure 4.4 shows that while the correlation between each of these three categories is high,
the correlation for the experts that score S A > 0.05 in both test is mostly low. Using the
global weight algorithm gives enough spread in weight for the differences between KS,
CvM, AD on one side, and χ2 on the other, to be (mostly) insignificant. This is because
all four measures give a high statistical accuracy to a close to uniform distribution of
quantiles between 0 and 1. However, CRPS responds to a much different characteristic,
which makes the difference between it and the other measures significant also under
global weights.

When applying optimization, the weight is further concentrated onto a few experts. Re-
ferring again to Fig. 4.4, if the weights are assigned to one (or a few) of the experts with
a high SA for χ2, it may not result in a high SA for one of the other measures. This is
expressed by the significantly lower p-values in Tables 4.A.1 and 4.2, when applying op-
timized weights from another measure to the measure under evaluation itself.

This leaves the question why χ2 behaves differently from KS, CvM and AD (i.e., why the
correlation for S A > 0.05 in Fig. 4.4 is low). Although all reward a uniform interquan-
tile distribution, this may result from evaluating quantiles on a continuous scale against
evaluating them in bins. When realizations are close to the elicited quantile, a small dif-
ference in weight might cause a shift to another interval, which can make a large differ-
ence in χ2 SA score. Additionally, the distribution of quantiles within a quantile interval
does not matter for χ2, while KS, CvM and AD reward them being spread out. GL com-
bines all experts so that the CDF has jump points at the quantile values for each expert.
For 10 experts there are 30 jump points, the CDF looks rather continuous and the effect
of interpolating a continuous CDF is attenuated. GLopt, on the other hand, typically
weights only one or two experts and hence has much fewer jump points. This might
amplify distortions introduced by interpolating a continuous CDF.

Finally, the behavior of AD heavily depends on assuming the PWU or Metalog distribu-
tion. AD penalizes quantiles close to 0.0 or 1.0 much more than quantiles close to 0.05
and 0.95 (refer to the weight in equation (4.3)). This means that assuming the Metalog
distribution will make AD (much) more sensitive to overconfidence, and therefore be-
have more similar to χ2 and CRPS than to KS and CvM. While this section explores some
of the aspects that cause the differences in behavior, the last word on this has not been
said.
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4.3.4. Assessing accuracy of interpolated quantiles

The choice of five versus three elicited quantiles is made by the analyst for the whole
study, not per variable. Opting for three percentiles lowers the elicitation burden, whereas
five percentiles more accurately represent the experts’ distributions.

An important reason for choosing a Metalog distribution for fitting experts’ percentile
estimates and estimating realization quantiles, is the hypothesis that it more accurately
describes the distribution envisioned by experts. Unlike the PWU distribution, the Meta-
log distribution lacks discontinuities in probability density at estimated percentiles and,
in its the three-percentile version, resembles a bell-shaped curve that is commonly ob-
served in samples. To test this hypothesis, we consider the cases with five elicited per-
centiles, remove the second and fourth quantile, and estimate their position using both
distributions (see Section 4.2.3).

The results are illustrated in Fig. 4.7, which displays the difference between distribution-
estimated percentiles and expert-estimated percentiles, for F (Xq=0.25)−0.25, with F be-
ing the CDF of Metalog or PWU and Xq=0.25 the expert estimate for the 25th percentile.
The dashed line represents a perfect prediction by the distribution. For the 25th per-
centile, values to the left indicate that the distribution assigned a lower percentile to the
experts’ estimate. Conversely, values to the right indicate that the distribution assigns
a higher percentile than the experts. Panels (a) and (b) show high bin values at 0.025.
These values correspond to cases where an expert assigns a value to the 25th percentile
precisely between the 5th and 50th percentiles. This situation accounts for approxi-
mately 20% of expert estimates. Filtering these estimates results in the black histogram
lines. On average, PWU performs better than Metalog. Nevertheless, both distributions
show significant deviations when estimating the missing percentiles. It seems that the
distributions both lack predictive power for the missing percentiles.

Based on the analysis presented in this section, the Metalog does not offer a better rep-
resentation of experts’ estimates compared to PWU. The smooth and more informative
distribution is too precise (i.e., it concentrates probability density more than experts ap-
pear to do). Consequently, the best approach to obtain a more accurate representation
of experts’ probability density functions (PDFs) seems to be eliciting more percentiles.

4.4. Discussion and conclusions
This study set out to test five different measures of statistical accuracy for scoring ex-
perts in an expert judgment study. The results are applicable to evaluating and com-
bining uncertainty estimates in a broader context as well, for example in forecasting.
The newly evaluated test statistics — the Continuous Ranked Probability Score (CRPS),
Kolmogorov-Smirnov (KS), Cramer-von Mises (CvM), and Anderson-Darling (AD) — were
assessed as an alternative to the relative information based chi-square test (χ2) used
in the Classical Model. Where χ2 interprets and scores the estimates through discrete
quantile intervals, the four alternatives map realizations on a continuous CDF-scale and
accordingly calculate the statistical accuracy based on a continuous distribution. This
makes the assumed distribution that connects the expert estimated percentiles relevant.
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Figure 4.7: Difference between the expert actual estimated 25th and 75th percentile, and the positions accord-
ing to the PWU and Metalog distribution fitted to the five-percentile cases with the 25th and 75th percentile
removed.

In this context, the Metalog distribution was explored as an alternative to the piecewise
uniform (PWU) assumption that is typically employed to model the estimated proba-
bility density in the Classical Model. The test statistics were assessed through 49 expert
judgment studies carried out throughout the last decades, and by sampling estimates
from distributions with a specific bias. The study’s findings are discussed in two parts:
the performance of various test statistics (Section 4.4.1) and the performance of the Met-
alog distribution (Section 4.4.2).

4.4.1. Performance of different test statistics

Comparative analyses of the five measures of statistical accuracy reveal varying sensitiv-
ity to different biases. χ2 is sensitive to overconfidence, underconfidence and location
bias. KS and CvM are sensitive to location bias and underconfidence but less sensitive
to overconfidence. AD performs relatively similar to KS and CvM when assuming a PWU
distribution. The assumed overconfidence related to the Metalog distribution however
makes the AD weights much stricter on overconfidence. Because of this, AD behaves
more similar to χ2 under Metalog.

The new scale-invariant CRPS is sensitive to overconfidence but is insensitive to loca-
tion bias and rewards underconfidence. A relationship between CRPS and underconfi-
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dence is illustrated in Fig. 4.8, which plots statistical accuracy (a) and combined score
(b) to the average quantile distance to median (an alternative to the fraction above me-
dian displayed in Fig. 4.5).This distance is calculated as

∑N
i=1 |Fi , j (xi )−0.5|/N , in which
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Figure 4.8: Mean absolute difference between realization’s quantile and median for CRPS. Plotted against sta-
tistical accuracy (a), and plotted against combined score (b).

Fi , j is expert j ’s estimate for item i with realization xi . An unbiased, uniform, quantile
distribution would have an expected distance of 0.25. The figure shows that there is a
strong relationship between CRPS and distance to median. Considering the combined
score, which includes the informativeness, weakens the relationship. However, the lower
informativeness of underconfident experts does not offset the high statistical accuracy,
such that underconfident experts still achieve high combined scores. This means that a
perfectly accurate expert could achieve a higher statistical accuracy, and likely a higher
weight as well, when deliberately making underconfident estimates. It therefore does
not encourage experts to state their true, unbiased, beliefs.

Measures of statistical accuracy were compared by calculating decision maker weights
with one measure and evaluating them against DMs from the other measures. The re-
sults show that for global weights without optimization the differences between SA scores
based on weights from different measures are mostly insignificant. The exception is
CRPS, which weights lead to significantly lower SA when evaluated with other measures.
Applying optimized global weights further concentrates weights on experts with a high
SA in the specific test-statistic, for which reason they perform worse when applied to
most other measures of statistical accuracy.

Under the PWU assumption, SAs calculated with DM-weights from AD are considered
not statistically significantly different when evaluated by KS and CvM (see Table 4.A.1).
However, when calculated under the Metalog distribution, the SA from AD weights rank
significantly lower when evaluated using KS and CvM. The inverse is not the case, weights
from KS and CvM do not rank significantly different when evaluated by AD under either
PWU or Metalog. This indicates that penalizing more on overconfidence (as AD is under
Metalog) leads to significantly lower SA, while penalizing less on overconfidence (i.e.,
using KS or CvM weights under Metalog) does not significantly reduce SA.



4

62 4. Continuous distributions and measures of statistical accuracy

4.4.2. Performance of the Metalog distribution

The Metalog distribution (Keelin, 2016) was explored as an alternative to the piecewise
uniform (PWU) distribution that is typically used in CM. CRPS, KS, CvM, and AD require
the realizations’ quantile positions rather than intervals and the Metalog offers a flexible
distribution for placing those. The most significant differences between the Metalog and
PWU are the quantile positions for realizations that fall outside the [0.05,0.95] interval, as
shown in Fig. 4.3. Using the Metalog means assuming a higher degree of overconfidence,
yielding worse results for measures of statistical accuracy that penalize this. However,
this issue is not intrinsic to the Metalog distribution itself, but resides in the (overshoot)
range that is assumed for the PWU distribution.

The appealing feature of the Metalog is its smooth, bell-shaped curve, which may be
more intuitive to experts (a ‘soft’ argument, but nonetheless relevant in the field of ex-
pert judgment). Typically, a continuous variable should not exhibit a spike in probability
density at estimated percentiles. Assuming a bell-shaped curve increases probability
density closer to the median while reducing it toward the tails (see Fig. 4.2 a). Paradox-
ically, when removing the second and fourth percentile from the five-percentile cases
and estimating their removed position, the Metalog distribution mostly overestimates
the probability density within the [0.25,0.75] quantile interval. This implies that, in these
case studies, experts more often estimated a platykurtic (negative kurtosis, thin-tailed)
than a leptokurtic (positive kurtosis, fat-tailed) distribution. The PWU distribution also
underperformed in this experiment, highlighting that the best approach for an analyst
to obtain an accurate representation of the full distribution is to assess more percentiles.

Fitting a Metalog distribution to all expert estimates in the 49 case-studies proved chal-
lenging. While the Metalog distribution offers high shape flexibility, it could not accom-
modate highly skewed three-percentile estimates without imposing bounds. Addition-
ally, many five-percentile estimates could not be fitted without dividing the distribution
into two three-percentile Metalog distribution parts (such as shown in Fig. 4.2 g).

4.4.3. Final remarks

All the five measures of statistical accuracy have different effects on the resulting com-
bined estimate (DM), such as the number of experts that are included with significant
weight, the sensitivity to different biases, and the assumptions required for calculating
the weights. When assuming a piecewise uniform distribution, KS, CvM, and AD behave
similar, but different to χ2, which again behaves different to CRPS. When assuming the
Metalog, the higher degree of assumed overconfidence makes AD behave more similar to
χ2 and CRPS, and less to KS and CvM. All measures except CRPS agree that performance
weighting is superior to equal weighting with respect to statistical accuracy.

Neither the PWU nor Metalog distribution did a good job of predicting missing quantile
assessments. This, together with the issues in consistently fitting the Metalog distribu-
tion to expert estimates and the minimal assumptions in the PWU distribution, favors
the PWU distribution as the standard approach in the CM.

Nonetheless, having various options of distributions, as well as different measures of sta-
tistical accuracy, provides analysts with flexibility to tailor the approach to their specific
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study. These options are available through the open-source Anduryl software, aiding
use and further development. For example, a smooth (Metalog) distribution might be
preferable over a stepped PDF in a scenario involving gradient-based sampling or opti-
mization. Or perhaps a researcher might decide that a measure of statistical accuracy
that is less strict on overconfidence, likely assigning more weights to low scoring experts,
is preferred for a specific study. Such decisions are up to the analyst to make and this
study aims to provide the knowledge and insights for making it a well-informed deci-
sion.

Appendix 4.A: Background on comparison between
measures of statistical accuracy

The procedure for cross-comparing the test statistics was explained in Section 4.2.3, and
the results were presented in Section 4.3.3. This appendix section gives additional expla-
nation and illustrations on the intermediate steps.

When applying the different measures of statistical accuracy to the 49 studies, some
measures give higher statistical accuracy (on average) than others. Comparing the ob-
tained statistical accuracies is therefore biased. To overcome this, empirical distribu-
tions were derived for each measure (recall step 4 in the list in Section 4.2.3). These
empirical distributions are shown in Fig. 4.A.1. Each panel contains five curves, of which
each is constructed by calculating the decision maker in the 49 studies and ranking the
resulting SA. For example, the CRPS distribution (squares) was constructed by calcu-
lating the CRPS statistical accuracy for all experts and combining that with the infor-
mativeness to derive weights. These weights were combined into a decision maker, for
which the CRPS SA was calculated. This gives one of the 49 markers in the empirical
distribution. Repeating this for all cases using the global weight DM with and without
optimization, and the piecewise uniform and Metalog distribution, results in the five
distributions in each of the four panels of Fig. 4.A.1.

The empirical distributions of each method’s DM-scores are primarily used for compar-
ing statistical accuracy. However, they also show that:

1. Measures of statistical accuracy that are less sensitive to overconfidence (i.e., KS,
CvM) tend to return higher SA scores for DM, especially under the Metalog as-
sumption. This is because overconfidence is a prevailing bias in expert judgment
studies.

2. Optimization results in higher DM SA. Note that this is not necessarily the primary
goal of optimization, which typically results in increased informativeness while
not decreasing the SA.

3. Assuming the Metalog distribution gives lower scores than assuming PWU for AD
and CvM, due to the measures’ sensitivity to overconfidence. χ2 is sensitive to
overconfidence as well, but unaffected by the choice of distribution because it uti-
lizes quantile intervals. At the same time, it profits from the higher informative-
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Figure 4.A.1: Empirical distributions of the decision makers’ statistical accuracies in the 49 case-studies. a
and b for piecewise uniform distribution, c and d for the Metalog; a and c for the global weights DM without
optimization, and b and d with optimization.

ness of the Metalog distribution (the same reason KS and CvM score higher with
Metalog as well.)

Using the empirical distributions, aχ2 SA calculated with DM weights from, for example,
the CRPS, can be compared to theχ2 SA calculated with DM weights fromχ2 itself. Doing
this for all 49 cases results in a set of ranks per measure of SA. Figure 4.A.2 displays these
ranks for SA calculated with weights from each measure of SA and evaluated using each
measure of SA. For example:

• Figure 4.A.2 (a) shows the χ2 SA calculated with global DMχ2 weights and com-

pared to the empirical distribution of DMχ2 SA. This is in fact comparing the χ2

ranks to the χ2 ranks itself, resulting in a uniform distribution.
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Figure 4.A.2: Comparison of all measures of statistical accuracy. DMs composed using each measure’s weight
(each box plot) are compared to the empirical distribution of every measure (each column). The comparison
is done with and without optimization, and for the PWU and Metalog distribution. Each box indicates the
25th to 75th percentile range, with the horizontal line being the median. The fliers indicate the 5th and 95th
percentile, and the cross is positioned at the mean.
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Table 4.A.1: p-values for the Mann-Whitney rank-sum test evaluated using the measures of SA: CRPS, KS, CvM,
and AD. A p-value less than 0.05 (bold) suggests that the ranks of the SAs calculated with the measure of SA in
the row is less than the ranks of the SAs calculated with the measure of SA in the column. The SA-values are
ranked according to the empirical distributions of DM SA displayed in Fig. 4.A.1. Both the ranks using PWU
and Metalog distribution, as well as using GL and GLopt decision maker, are compared. SA (w.) indicates the
measure of SA used to calculate the weights, SA (sc.) is the measure used to score the weights
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• Figure 4.A.2 (a) shows the χ2 SA calculated with global DMCRPS weights and com-
pared to the empirical distribution of DMχ2 SA. The ranks for DMCRPS are on aver-
age slightly lower.

• Figure 4.A.2 (f) shows the χ2 SA calculated with global DMCRPS optimized weights
and compared to the empirical distribution of optimized DMχ2 SA. Now the CRPS
weights give substantially lower statistical accuracy.

Whether substantially lower is also significantly lower is tested using the Mann Whitney
test. The resulting p-values of those tests, for the DM weights evaluated using χ2, were
presented in Table 4.2. The first five rows in the table correspond to Fig. 4.A.2 a. It shows
the probability (p-value) that each of the samples is lower than the other sample. For
example, the statistically significant p-value of 0.025 for DMCRPS < DMCvM is represented
by the CvM (red) box plot showing higher values than the CRPS box plot (second from the
left of each plot). Figure 4.A.2 f, k, and p correspond to the remaining rows in Table 4.2.

The p-values of the rank comparison evaluated for the other measures of statistical ac-
curacy are shown in Table 4.A.1. These correspond to the remaining panels in Fig. 4.A.2.

Finally, Fig. 4.A.3 shows the same figure as Fig. 4.4 but now on a logarithmic scale. This
shows the behavior of the measures to experts that score a very low statistical accuracy.
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Figure 4.A.3: Statistical accuracies for the 530 experts based on their quantile assessments in 49 case studies,
using the Metalog distribution (upper right panel) and piecewise uniform (lower left panels). Similar to Fig. 4.4
but on a logarithmic scale. The axes are limited to 10−12, not showing SA values below this limit. The two
numbers in the lower left of each panel are the rank correlation between all experts, and the rank correlation
between all experts with a greater than 0.05 SA in both test. Diagonal plots present the histogram of each
measure’s statistical accuracy for all 530 experts (i.e., the marginal of each scatter plot). In each histogram, the
percentage of experts with a > 5% significance level is reported.
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Appendix 4.B: Metalog distribution

4.B.1. Information score for the Metalog distribution

In the Classical Model, the information score compares the probability density distribu-
tion fe,i for item i elicited from expert e, to a background density gi . This background
density is uniform across the intrinsic range [L∗,U∗]. This range is defined for each item
by collecting all experts’ estimates and the realization. The minimum and maximum of
this set form the lower bound L and upper bound U . An overshoot k (typically 0.1) is
than added to obtain [L∗,U∗] = [L −k(U −L)/100,U +k(U −L)/100]. Typically, the 5th,
50th, and 95th percentiles are elicited. This creates a probability vector with 4 quantile
intervals, p = (0.05,0.45,0.45,0.05). When assuming the piecewise uniform distribution,
the expert density f (e, i ) is composed of a uniform distribution between each subse-
quent pair of values in the vector X : (L∗, x0.05, x0.50, x0.95,U∗). The information score is
calculated by comparing the interquantile range to the bin size pi :

IPW U (e, i ) = log(U∗−L∗)+
4∑

i=1

[
pi · log

(
pi

xi+1 −xi

)]
(4.6)

If an expert would estimate values for the three percentiles that result in a uniform distri-
bution on [L∗,U∗] the information score would be zero. Any deviation from this results
in an information score above zero.

When assuming the Metalog distribution, the interquantile probability is not uniformly
distributed. The information score is therefore calculated by integrating the expert den-
sity f (e, i ) over the range [L∗,U∗]:

IML(e, i ) = log(U∗−L∗)+
∫ U∗

x=L∗

[
p(x) · log

(
p(x)

d x

)]
d x (4.7)

In which p(x) is the uniform background probability density in the range [L∗,U∗]. How-
ever, the unbounded version of the Metalog ranges from −∞ to ∞ and is thus not lim-
ited to [L∗,U∗]. Using the infinity range would lead to a probability density of zero for
the background probability and an infinite informativeness for the expert. Therefore,
only the range [L∗,U∗] is considered for calculating the informativeness. Because of the
need for limits on the background probability density, a choice for the overshoot is still
required when using the Metalog to interpolate expert percentile estimates.

4.B.2. Method for fitting a distribution to varying percentiles

Not all three-percentile or five-percentile expert estimates result in feasible Metalog dis-
tributions (i.e., f (x) > 0 for all x, with f (x) being the PDF of x). For symmetric three-
percentiles cases, the constraints for a feasible Metalog are given by a2 > 0 and |a3|/a2 <
1.66711. For an unbounded Metalog distribution with a 5th percentile value of 10, and
a 95th percentile value of 90, the median should be in between 20 and 80. If this is not
the case, a feasible distribution can be achieved be imposing a lower or upper bound
such that the constraints are met. This leads to highly skewed distributions, with one
bound and one very thick tail. For the 3-percentile case, the steps in fitting a Metalog
distribution are:
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1. Check whether the linear least squares fitted a-vector is feasible.

2. If not, determine whether the expert estimate is left or right skewed. Find the
lower and upper limit of the of the lower bound (left skewed) or upper bound (left
skewed) that meets the constraints (i.e., a2 > 0 and |a3|/a2 < 1.66711).

3. Iterate towards the bound that results in the distribution with the lowest maximum
probability density (i.e., the least informative distribution).

For the five-percentile case it is more difficult to obtain a feasible fit. This is partly due
to many expert estimates being more or less uniform in between the 5th and 95th per-
centile, such as shown in Fig. 4.2 e. For non-symmetric cases this often leads to not
finding a feasible solution using a 5-term a-vector. Figure 4.2 h. is an example of this. In
some cases, a solution is to impose a bound on one side just like for the skewed three-
percentile cases. However, this does not work in all cases. Another solution is to use
two three-percentile Metalog distribution, one representing the 5th, 25h and 50th per-
centiles, and one representing the 50th, 75th and 95th percentiles. This leads to a discon-
tinuity in probability density at the median, which can be removed by imposing bounds
on one (or both) of the 3-percentile Metalog parts (e.g., adding an upper bound to the
left part in Fig. 4.2 g). We chose not to do this as it is only an aesthetic solution, which af-
fects the tail probabilities and tends to create spikes in the probability density functions.
The steps for fitting a five-percentile Metalog are therefore:

1. Check whether the linear least squares fitted a-vector is feasible.

2. If not, find two feasible three-percentile Metalog distributions (following the steps
above).

3. Optionally, remove the discontinuity in probability density at the median, by itera-
tively shifting the lower or upper bound of the right or left distribution (whichever
has the lowest probability density at the median) until the gap is removed.



5
Reliability analysis of the Dutch

flood defense system

The Wettelijk Beoordelingsinstrumentarium (WBI) is the legal set of instruments for flood
risk analysis in the Netherlands. Often, engineers have the impression that some failure
probabilities of flood defenses resulting from these instruments are overestimated. In
an effort to better estimate the failure probabilities of dikes along the Dutch river Rhine,
this study sets out to assess them with experts and compare them to model results. We
used the Classical Model (a.k.a., Cooke’s method) for combining experts’ estimates in a
structured way and follow two approaches to estimate a system failure probability. In
the first approach, experts estimate discharges that lead to at least one dike failure. This
gives plausible results; failure probabilities between 1/30 and 1/17.000 in a year. The
second approach is based on adjusting existing model-based assessment results, by es-
timating the model-bias and incorporating additional dependencies. This mostly leads
to large, implausible, failure probabilities: Experts tend to give more conservative an-
swers as they are asked for detailed estimates without clear reference values. This re-
sults in large uncertainty and consequently (too) high failure probabilities. Our research
shows that when applied in a clear frame of reference, structured expert judgments can
be successfully used for estimating the reliability of Dutch flood defenses.

The contents of this chapter have been published in: Rongen, G., Morales-Nápoles, O., & Kok, M. (2022). Expert
judgment-based reliability analysis of the dutch flood defense system. Reliability Engineering & System Safety,
224, 108535.
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5.1. Introduction

A large part of the Netherlands would regularly flood were it not protected by dikes. To
prevent this, the Dutch have been building and maintaining dikes for centuries. Nev-
ertheless, rivers and sea have flooded parts of the Netherlands dozens of times over
the past centuries. Nowadays, dikes must have a failure probability less than 1/100 to
1/30,000 in a year to be considered safe according to legal standards (Ministry of Infras-
tructure and Environment, 2016). These small probabilities correspond to breach events
during extreme river discharges or storm events that have never been measured in re-
cent history, such that failure probability calculations cannot be verified used empirical
data. Thus, modeling is needed to estimate probabilities of such extreme flood events
and possible dike failures.

The use of probabilistic methods for design and assessment of flood defenses is com-
mon practice in the Netherlands (see (Vrijling, 2001) for a historical account and (Torres-
Alves & Morales-Nápoles, 2020) for a recent example of the use of the traditional Dutch
standard). The Wettelijk Beoordelingsinstrumentarium (WBI) is the current official set
of models and tools for flood risk assessment (Slomp et al., 2016). ILT – Informatiehuis
Water (2024) show that the methods generally give plausible reliability assessments for
a short stretch of dike. However, the combined failure probabilities are overestimated
when these assessments are combined for all dikes in the Netherlands. If such probabil-
ities were correct, the Netherlands would have a dike breach every few years, which we
know from experience is not the case. This indicates that parts of the WBI method are
likely inaccurate. If this is ignored and the results are treated as correct, major (and prob-
ably economically unfeasible) dike improvements throughout the Netherlands would be
enforced, because the Dutch safety standards is based on an optimal economic safety
target (Dupuits et al., 2017; Jonkman et al., 2011; Kind, 2014). Hence, overestimating
failure probabilities leads to ineffective spending of public money.

This study sets out to derive more plausible dike failure probabilities with the aid of ex-
perts in the field of flood risk management. We follow two approaches to estimate the
system failure probability, both based on estimating fragility functions or fragility curves
(Sayers & Meadowcroft, 2005; Van der Meer et al., 2009). These are widely used in flood
risk assessments (Kok et al., 2017; Nofal et al., 2020). The first approach directly col-
lects the experts’ estimates of dike failures on the system-level (i.e., the probability that
at least one dike fails) to derive more plausible estimate of the system failure probability
than currently follows from the WBI. The second, more detailed, approach collects de-
tailed estimates of failure mechanisms on a dike level and combines these with model-
based results, considering load dependence. From this, we determine how credible the
experts’ estimates are. Additionally, it might indicate the cause of the implausible results
following from the WBI-method. The two approaches discussed in this research (direct
and more detailed) relate to research on risk estimates from fault trees as discussed for
example in (Fischhoff et al., 1978; Fox & Clemen, 2005).

To account for dependence in hydraulic loads, relevant studies often rely on Monte Carlo-
based reliability methods (e.g., Curran et al., 2020; Dupuits et al., 2019; R. B. Jongejan
et al., 2020; Klerk et al., 2014). In this study, we assume both full dependence in load
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Figure 5.1: Overview of the part of the river Rhine considered in this study. The colored lines indicate the dike
sections’ norm, while the black dots represent the smaller VNK sections.

(i.e., a correlation coefficient of 1.0) and independence in dike strength (i.e., a correla-
tion coefficient of 0.0). This gives a conceivable dependence structure befitting the water
system and available data. To ensure scrutability, empirical control, neutrality, and fair-
ness, when gathering expert estimates, we applied structured expert judgment with the
Classical Model, also known as Cooke’s method (Cooke & Goossens, 2008; Hokstada et
al., 1998). A similar study to estimate reliability of French flood defenses was conducted
by (Hathout et al., 2019). This study’s focus is however the system scale rather than the
reliability of individual dikes.

The area under investigation is the part of the Dutch river Rhine without tidal or lake
level influence. This concerns the river branches Waal, Nederrijn, Lek, Pannerdensch
Kanaal and IJssel, as shown in Fig. 5.1. The system consists of 28 dike trajectories, for
which the color indicates the required safety level or norm. This is the maximum al-
lowable probability of failure of the trajectory in a year. The 525 black dots indicate the
dike sections as used in The Flood Risk in the Netherlands project (VNK2) (R. Jongejan &
Maaskant, 2015; Projectbureau VNK2, 2010).
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5.2. Method for safety assessments with expert estimates
This section explains the methods applied in this research, being the dike failure mech-
anisms (Section 5.2.1), the WBI method for dike safety assessment (Section 5.2.2), how
expert judgment is incorporated in it (Section 5.2.3), and finally, the practicalities of the
expert elicitation (Section 5.2.4).

In line with this thesis, this research applied the Classical Model for structured expert
judgment, a method for eliciting and combining expert judgments based on empirical
control, with the aim to reach rational consensus (see Section 2.1 for an elaborate de-
scription). The experts’ assessments were processed with ANDURYL v1.2, which was
presented in Chapter 3.

5.2.1. Failure mechanisms

Dike failure due to the failure mechanisms overtopping and overflow, piping, and macro-
instability are considered. These are the most important mechanisms for the river Rhine,
based on the failure probabilities calculated in VNK2. ’t Hart et al., 2016 gives a descrip-
tion of these failure mechanisms. The WBI method provides a model for calculating fail-
ure probability for each of these mechanisms. The piping failure probability is calculated
with the adjusted model of Sellmeijer (Knoeff et al., 2009), and the macro-instability fail-
ure probability with D-Stability (Van der Meij, 2019). (Geerse, 2011) gives a description
of the method for overtopping and overflow failure, while the critical overtopping dis-
charges are derived from (van Hoven, 2019). Figure 5.2 shows a typical dike section for
which the three failure mechanisms are considered. This is a simplification; slightly dif-
ferent characteristics were considered for each mechanism.

Clay

SandRiver

Water level gradient can cause internal erosion (piping)

Water level gradient can
cause slope instability through
reduced pore pressure

Overtopping water can erode the crest or
inner slope, ultimately leading to dike erosion

Figure 5.2: Conceptual cross section of a typical dike section and the considered failure mechanisms

5.2.2. Current WBI-model for a dike section’s failure probability

A dike in the Netherlands has a safety norm, that is, a maximum allowable failure proba-
bility in a one-year period. A dike section consists of several stretches that together must
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meet this standard. A stretch of dike with comparable properties is a dike segment, which
can fail through to various failure mechanisms. Ultimately, the combined failure prob-
ability of all dike segments and all failure mechanisms, calculated with the WBI, must
meet the safety level for the section.

The failure probability of a dike section is a function of the failure probabilities of the
separate segments:

Psc (Z < 0) = min

(
N ·max

i

(
Psg ,i (Z < 0)

)
;1−

n∏
i

(
1−Psg ,i

))
(5.1)

In which Psc (Z < 0) is the section failure probability, Z is the limit state function (less
than zero implies failure) and Psg ,i (Z < 0) is the failure probability of segment i . For con-
ciseness, we write P (Z < 0) as P f . Section 2.2.2 explained how Eq. (5.1) combines seg-
ment failure probabilities independently, unless a lower failure probability is achieved by
considering the number of times N a representative distance fits into the section length.

The failure probability of a segment i is calculated from the independent combination
of the different failure mechanisms:

P f ,sg = 1−
3∏

j=1

(
1−P f ,sg , j

)
= 1− (1−P f ,sg ,pi p ) · (1−P f ,sg ,ms ) · (1−P f ,sg ,oo) (5.2)

In which j denotes the failure mechanisms, piping (pip), macro-instability (ms), and
overtopping and overflow (oo). The failure probability is calculated per event, which for
the rivers is a single flood wave. The standard WBI procedure is to consider six months
per year during which every month can have one flood wave (Geerse, 2011). This means
the maximum exceedance frequency of the limit state is six times per year. Determining
the failure probability for a single segment (i.e., one of the parts in Eq. (5.2)) is challeng-
ing. Especially for the geotechnical mechanisms piping and macro-instability, for which
the missing knowledge of the subsoil and saturation causes large uncertainty.

The high water levels in the study area are caused by the same high discharge at Lobith
(Chbab, 2017). This simplifies the dependence; given the peak discharge at Lobith, the
peak water levels in the complete the river system are known with limited uncertainty.
We simplify this by assuming that the local water levels are directly related to the dis-
charge at Lobith.

A comprehensible way of expressing the relation between load and (conditional) failure
probability is with a fragility curve, which expresses the failure probability given the load
(Van der Meer et al., 2009). A load can be, for example, water level, wind speed, discharge,
or any combination of these (in which case we would have a fragility (hyper)plane (Nofal
et al., 2020). In case of a peak discharge k, the failure probability can be expressed as:

P (Z < 0) =
∫ k=∞

k=0
f (k)P (Z < 0|k)dk (5.3)

In which f (k) is the probability density of the peak discharge in a year. By integrat-
ing the conditional exceedance probabilities (i.e., fragility curves) with the probability
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Figure 5.3: Examples of fragility curves (solid and dashed lines) that represent different failure probabilities
and degrees of uncertainty.

density of the water level, the total failure probability in a year is calculated. Examples
of fragility curves are given in Fig. 5.3. The mildly sloped lines are fragility curves with
large uncertainty about the discharge that leads to failure, where the steep curves repre-
sent less uncertain fragility curves. Because the exceedance probability of more extreme
events often decreases roughly exponentially, the lower (left) tail of the fragility curve is
most determinative for the total failure probability. The fragility curve is used through-
out this study because it can be related to experts’ uncertainty estimates. The answer to
the question: "At what discharge does dike X fail by mechanism Y with a 50% proba-
bility?", is similar to, "at what k is PX (ZY < 0|k) = 0.5?". This represents a point on the
curve in Fig. 5.3. Additionally, by expressing a failure probability in the form of Eq. (5.3),
the dependence of water levels to the discharge at Lobith can be considered as well, by
combining the failure probabilities conditional to k. This is illustrated in Fig. 5.4, where
the combination of all blue dots at 12,000 m3/s (conditional failure probabilities) are
independently combined to the red dot, which is the combined failure probability con-
ditional to the peak discharge k. The red line itself is also a fragility curve. Using the
dependence between water levels along the river (through the peak discharge at Lobith)
is not standard procedure in the WBI-method. It was added it in this study because it ar-
guably gives a more accurate description of dike failure (see Section 2.2.2 for a discussion
on this subject).

5.2.3. Dike assessment with experts

The two approaches followed for estimating failure probabilities with experts are both
based on quantifying the term P (Z < 0|k) in Eq. (5.3):

1. In the first approach, experts are asked to estimate the system conditional failure
probability, Ps y s (Z < 0|k), i.e., at what discharges they believe a dike would fail.
Integrating these estimates with the discharges as shown in Eq. (5.3) gives the total
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Figure 5.4: Illustration of how failure probabilities are combined, conditional to the load. The red solid curve
considers strength independent, the dashed red curve considers strength dependent. The total failure proba-
bility results from integrating the conditional failure probabilities with the discharge statistics (indicated with
the black curve).

failure probability. The peak discharges at Lobith were adopted from the WBI; they
are not an elicited quantity in this study.

2. In the second approach, experts are questioned about several aspects of the safety
assessment on a dike scale. These are the bias in the model-based failure proba-
bility calculations per failure mechanisms and the uncertainty in the relation be-
tween load and failure probability. These estimates are used to modify existing
model outcomes and combine this to the term Ps y s (Z < 0|k), from which the total
failure probability is calculated.

The first option is relatively easy for the experts to relate to experience but gives little
information about failure probabilities on the dike level. This information is more read-
ily available from the second option, but it is hard for the experts to relate this to a total
failure probability of the system. Therefore, we use the first approach to derive a more
credible probability estimate, and the second approach to assess the values of these es-
timates and determine what causes potential differences.

For the second approach an estimate of the failure probability for each dike segment
(represented by one of the black dots in Fig. 5.1) is needed. Recall that the study area
contains 525 of such segments. Eliciting a failure probability from each expert for each
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of these segments would be unrealistic within this study. Therefore, the individual failure
probabilities were derived from two reference sources:

• For the current dike safety, these are the failure probabilities from VNK2 (Project-
bureau VNK2, 2010). This project was finished in 2015 and considered the near
future system layout (including the river engineering works ‘Room for the River’),
making it a useful source for the assessment of dike safety at present.

• The dike safety levels required by law (norms or standards). When a dike is de-
signed by the WBI-method to meet this standard, we know that the failure proba-
bility of a trajectory should be lower than the safety standard (when assessed with
the same tools with which it was designed.)

The total failure probability can then be calculated by updating them based on expert
judgments and combining them into the system failure probability. This is expressed in
the following equation:

Ps y s (Z < 0) =
∫ ∞

k=0
f (k)

(
1−

Nsg∏
i=1

3∏
j=1

{Pi j (Z < 0|k −∆ki j )}
)
dk (5.4)

in which j denoted one of the three failure mechanisms. A potential load-reducing effect
of the first breach on the next breaches (a relevant topic for dike reliability (Dupuits et al.,
2019)) is not taken into account, because the system is considered to have failed after the
first breach. The experts’ uncertainty in the discharge at which the dike fails determines
how much P (Z < 0|k) varies for different values of the peak discharge k. The estimated
bias in the failure mechanism shows whether failure takes place at consistently higher or
lower discharges. It is determined by comparing the failure probability from the experts
estimate with the model results. The quantity ∆ki j is calibrated such that the difference
in failure probability is matched after integrating. Referring back to Fig. 5.3, the uncer-
tainty expressed by the rate of change in Pi j for variations in K , indicates whether the
fragility curve behaves more like the steep (small uncertainty) curve or gradually rising
(large uncertainty) curve in Fig. 5.3. The bias (∆ki j ) indicates whether it is one of the
solid curves or dashed curves in the same figure.

In this study, dike properties are assumed to be constant during an event. Therefore, only
the highest water level in the event is considered when calculating the failure probability
for piping and stability. For overtopping wind-generated waves play a key role, which
vary on shorter time scales than water levels. Consequently, they are considered on a
smaller time scale of 12 hours, as explained in (Geerse, 2011). The failure probability
given a peak discharge k is then calculated with:

P (Zov < 0|k) = P30d(Hov > hov |k) = 1−
N∏

t=1

[
1−P12h,t {Hov > hov |q(t |k)}

]
(5.5)

Where P30d(Hov > hov |k) is the exceedance probability of the critical overtopping dis-
charge hov in the 30-day duration related to peak discharge k. P12h,t (Hov > hov |q(t |k))
is the exceedance probability of this quantity in a 12-hour window t which depends on
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the average river discharge during these 12 hours q(t |k). The 12-hour average river dis-
charge q(t |k) is a function of a standardized hydrograph shape and peak discharge k.
The conditional failure probability in Eq. (5.5) can be substituted in Eq. (5.4) as one of
the failure mechanisms j . Compensating for a bias is not necessary, as the expert’s as-
sessment for the critical overtopping distribution Hov can be estimated directly. For a
detailed explanation we refer to (Geerse, 2011). Note that wind conditions are assumed
spatially uniform in this study.

5.2.4. Questionnaire, experts, and practical set-up

The conducted questionnaire contains 22 questions, which are listed in Section 5.A. The
questionnaire was accompanied with a detailed problem description per question. The
first 10 items are seed questions, used to determine the experts’ statistical accuracy.
Items 11 and 12 are used to determine P12h(hov > Hov ) from Eq. (5.5). After which item
13 to 16 address the bias for the piping and macro-instability models (∆ki j in Eq. (5.4)).
Then, items 17 to 20 concern the uncertainty in the load at which failure occurs (the rate
of increase in P (Z < 0|k) for changing k). Finally, items 21 and 22 were used to assess the
failure probability on system level.

13 experts participated in the elicitation. Table 5.A.1 in lists their names, professional
interests, and expertise. Most experts are flood risk advisor, affiliated to national and
regional governments’ water authorities, universities, research institutes, consultancy
firms and independent consultants. Their expertise ranges from geotechnical engineer-
ing (related to piping and stability failure) to revetments (overtopping) and hydraulic
loads (river discharges). The questionnaire was refined based on two dry runs with two
different experts that have a similar background as the 13 that took part in the elicita-
tion. The expert session was held with video conferencing due to COVID-19 pandemic
restrictions. Two half-day sessions were organized with two occasions for each session.
The first session contained a presentation of the study topic and the Classical Model, fol-
lowed by answering the questionnaire individually. Experts were able to ask questions
during the elicitation, which were then discussed plenary. The second session was used
to present and discuss the results. To get their best assessment on the target items, ex-
perts had the opportunity to change their assessments in case they misinterpreted the
question. Expert D used this possibility to change two seed items. Because the expert
had seen the answers (realizations) at this point, the results were changed to ‘not an-
swered,’ even though the questions were clearly wrongly interpreted. This led to slightly
higher statistical accuracies for the other experts as well, as the minimum number of an-
swered seed questions by all is used in calculating the statistical accuracy (see Eq. (2.1),
N is 2 less). Expert F chose to withdraw from the expert session before filling out the tar-
get questions. This expert’s results were removed, leaving twelve experts’ assessments.
An overview of the experts’ and DMs’ estimates for all items, is shown in Fig. 5.A.1 and
Fig. 5.A.2.
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5.3. Expert estimates and resulting failure probabilities
Section 5.3.1 presents the Classical Model results. Section 5.3.2 shows the experts’ es-
timates for the system level failure, while Section 5.3.3 present the dike level estimates.
The failure probabilities resulting from both are comparing in Section 5.3.4.

5.3.1. Results for the Classical Model

Statistical Accu-
racy

Information score Weight

All Seed

Exp A 0.000304 0.923 0.696 0.000212
Exp B 0.057 1.000 0.980 0.0559
Exp C 0.00248 1.390 1.040 0.00258
Exp D 0.664 0.503 0.564 0.374
Exp E 0.64 0.664 0.777 0.497
Exp G 0.117 0.954 1.090 0.127
Exp H 0.0368 1.400 1.160 0.0428
Exp J 0.121 1.490 1.400 0.169
Exp K 0.0196 1.270 1.840 0.0362
Exp L 0.117 1.710 1.720 0.201
Exp M 1.02×10−5 1.680 1.610 1.65×10−5

Exp N 1.35×10−6 1.760 2.030 2.73×10−6

Global 0.64 0.365 0.399 0.255
Item 0.64 0.464 0.479 0.306
Equal 0.571 0.313 0.302 0.172

Table 5.1: Calibration and information scores from the Classical Model. The bottom three rows show the deci-
sion makers.

The elicitation results for the Classical Model are shown in Table 5.1, showing the statis-
tical accuracy and the information score. Looking at the statistical accuracies, expert E
and D have a high score (≥ 0.5), experts J, G, L and B a significant score (≥ 0.05) and the
rest a score below the significance level. The information scores show less variation, as
is usual with the Classical Model. Note that the information scores for all items (column
2) and the seed questions (column 3) are similar, indicating that experts have answered
similarly for both categories of questions. Note that experts with a high statistical accu-
racy tend to have a lower information score, and vice versa. The weight is the product of
information and statistical accuracy, and therefore favors experts with a high statistical
accuracy.

We calculated three decision makers: global, item and equal weights. The statistical ac-
curacies for the three decision makers are all high. The information scores for the deci-
sion makers are lower than those of individual experts. This is because the DM estimates
are a weighted mixture of all experts. This often makes it a much wider distribution than
the individual estimates, which results in a relatively low weight for the DM. When opti-
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mizing the significance level, only expert D with the highest statistical accuracy remains.
This is both the case for the global and item weights. As this does not provide additional
information, DMs with optimization were not presented.
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Figure 5.5: Sensitivity of calibration (top) and information score (bottom) for excluding experts (left) and items
(right).

The robustness of the results for excluding experts and items are calculated for the Global
DM. The variation in information and statistical accuracies when removing up to four
items (experts) is shown in Fig. 5.5, which shows that the results are relatively insensitive
to specific experts and items. The DM is most sensitive to item 7 (concerning discharge
through a pipe), and expert D. Removing either leads to the largest reduction in DM
weights. However, when excluding four items or experts at the same time, the statistical
accuracy of the DM remains greater than 0.18 in any case.

5.3.2. System failure probability

The experts estimated the discharge for which at least one dike in the system fails. This
question is part of the first approach in which system failure probability is estimated di-
rectly. Reference values for discharges, such as the 1995 extreme river discharge (around
12,000 m3/s) and the design discharge of Room for the River (around 16,000 m3/s) were
discussed during the expert elicitation. Figure 5.6 shows the experts’ and DMs’ esti-
mates. They are expressed as probability densities in between the assessed percentiles
(i.e., 1, 5, 25, 50, 95). The thicker the squares, the higher the probability density in
that range. The black diamond indicates the 50th percentile. The DM estimates con-
sist of more than four blocks (corresponding to the quantiles intervals) because they are
a weighted combination of more than one expert.

For the present (at the time of elicitation) state of the dikes, most experts estimate at



5

82 5. Reliability analysis of the Dutch flood defense system

least one dike to fail at a discharge in between 12,000 and 16,000 m3/s, while for the
dikes matching the norm, this is in between 14,000 and 18,000 m3/s.
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Figure 5.6: PDFs of the discharge that causes at least a single dike failure in the system, under current dike
conditions (a) and norm safety conditions (b). The experts’ estimates are shown on top, the DMs’ in the bottom
three rows.

5.3.3. Failure mechanism factors

The experts estimated the bias in the models for the relevant failure mechanisms as well
(i.e., the ∆ki j in Eq. (5.4)). Together with the estimates of the general uncertainty (see
Section 5.3.3) these are used for the more detailed second approach. Experts assessed
hydraulic loads that lead to the WBI failure definition as well as a breach, which is con-
sidered a more progressed state of failure that occurs after the WBI (initial) failure state
is reached. The first expresses the bias in the model (which calculates the WBI failure
state), while the latter expresses the bias in the probability of flooding (resulting from a
breach). The experts were asked to assume that: i) that the high water level lasts for 5
days, and ii) no emergency measures (e.g., sandbags) are used to prevent failure.

Piping

We chose a single, representative, schematization from the VNK2-dataset to estimate the
bias in the ‘adjusted Sellmeijer’ model Knoeff et al., 2009. The cross section contained a
single cohesive cover layer on top of a permeable layer (similar to Fig. 5.2). The failure
probability was calculated from the experts’ estimates of the water level at which they
expect a breach to occur with a 1, 5, 25, 50, and 95% probability (implicitly constructing
a fragility curve). The failure probability is calculated by combining this with the water
level statistics. The results of this are shown in Fig. 5.7 a. The model result is a contin-
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uous distribution of the water level at which the dike is expected to fail. However, for
comparison to the experts’ estimates, it is drawn for the same percentiles.

Figure 5.7 b shows the factor between the failure probability from the adjusted Sellmei-
jer model, 9.31× 10−4, and the failure probability from the expert. Note that the two
experts with highest statistical accuracies, expert D and E, estimate a 10 to 100 times
higher failure probability. This is due to the uncertainty in their estimates, which leads
to a substantial conditional failure probability for water levels that frequently occur. The
Global and Item DM are similar to D’s and E’s estimates, as these experts together have
the majority of the DM-weights. Other experts, like M, only contribute to any discernible
extent through the equal weights DM.

Macro-instability

The bias for the D-stability model (for macro-instability assessments) is determined in
an equivalent way to the piping bias. The evaluated cross section consists of a sand dike
body with a silty clay layer on the outer slope and crest (as in Fig. 5.2). The results are
shown in Fig. 5.7 c. The model for this failure mechanism shows a smaller range of water
levels within which failure will take place, compared to the expert assessments. In other
words, the experts are more uncertain about the water level that leads to failure than the
model. Contrarily to piping, most experts estimate the macro-instability model to be
conservative.

Again, experts D and E estimate a more conservative outcome than the model, and again
this results in assigning a significant failure probability to frequently occurring water lev-
els. The estimates for the water levels that cause macro-instability failure show less vari-
ation than those for piping. The plenary discussion showed that it was easier to narrow
the relevant water level range for macro-instability than it was for piping. This is because
experts find it easier to indicate water levels that will have for both small and large failure
probabilities. However, the ability to do so depends largely on the domain knowledge of
the expert.

Overtopping

In addition to the water level at the dike, waves can cause failure due to overflow and
overtopping. Therefore, instead of the water levels, the distribution of the critical over-
topping discharge is elicited P (Hov > hov ), which was then used to determine the dike
failure probability directly. Estimates were made for an open grass cover on top of a 0.5
m clay layer with a sand dike body. Figure 5.7 e shows the experts’ estimates for the crit-
ical overtopping discharge that causes a breach when exposed for 6 hours. The model
result is derived from the log-normal distribution for Hs less than 1.0 meter and an open
grass cover. The bar heights in this panel do not represent probability density. The right
graph gives the difference in failure probability compared to the model results for all 525
dike sections. According to eight of the experts, the failure probabilities from the WBI
are too unconservative, for four experts they are conservative. The difference between
the failure probabilities is small, most factors are between 1/5 and 2. Overtopping or
overflow discharge increases rapidly with rising water levels, meaning that water levels
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Figure 5.7: PDFs of the load at which the considered schematization is expected to fail due to piping (a), macro-
instability (c) or overtopping (e), according to the model (top row in each panel), the experts (middle rows) and
the DMs (bottom three rows). The ratio between expert or DM and model outcome is shown on the right (b, d,
and f).



5.3. Expert estimates and resulting failure probabilities

5

85

corresponding to low and high overtopping discharges are closer together than they are
for piping or macro-instability, and consequently the exceedance frequencies as well.

General uncertainty in water level at failure

To calculate the total system failure probability in the second approach, we need an
overall estimate of the distribution of failure probabilities conditional on the discharge
(i.e., the P (Z < 0|k)-part in Eq. (5.4)). The results of the experts’ assessments for this are
shown in Fig. 5.8.
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Figure 5.8: Uncertainty in the water level at which a dike fails for piping (a) and macro-instability (b), according
to the experts (top rows) or DMs (bottom three).

During high water, a difference of 1000 m3/s in the discharge (at Lobith) typically leads
to a 25 cm difference in local water level. Extrapolating this, a range of 4 meters would
give a 16,000 m3/s discharge difference. This very wide range does however spans from
discharges with a very small (1%) to a large failure (95%) probability.

The differences between the experts’ estimates are, again, large. Experts L, M and N
give a very small, almost deterministic, range of water levels that cause failure. On the
contrary, experts D, E and K are very uncertain about the water levels at which a dike will
fail due to piping or stability.

5.3.4. Comparing the failure probabilities from the two approaches

Recall that we estimated system failure probability in two ways: by integrating the es-
timates on system level (Section 5.3.2) with the discharge statistics, and by combining
the estimates on dike level (bias, and uncertainty, Section 5.3.3) with model-based re-
sults through Eq. (5.4). Figure 5.9 shows the resulting system failure probabilities for
the current dike safety level (a), and for the situation in which all dikes match the safety
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standard (b). Each of the figures contains two bars per expert or DM. The first repre-
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Figure 5.9: Estimated and calculated system failure probabilities, for current dike safety (a) and dikes matching
safety standard (b).

sents the failure probability from the first approach (i.e., the system failure estimates),
the second bar the failure probability for the second approach (i.e., updating model re-
sults with estimates). The figures also contain a horizontal hatched area that indicates
the range of the reference failure probability. For the current dike safety situation, this
is the range between the independent and dependent combination of the VNK2 section
failure probabilities: 1/15 to 1/100 in a year. The reference value for the norm safety is
the range between the independent and dependent combination of the individual dike
safety levels: 1/70 to 1/1000 in a year. Note that we combined the the values displayed
in Fig. 5.1 assuming full dependence for the upper bound, and the ‘signal’ values (about
a factor 3 lower than Fig. 5.1) assuming independence to obtain the lower bound. This
is the dike safety level that signals a dike should be reinforced soon (Ministry of Infras-
tructure and Environment, 2016), so a dike will be reinforced to at least this level (as its
reliability constantly decreases due to deterioration (Chen & Mehrabani, 2019)).

All experts estimate (approach 1) a slightly smaller to much smaller failure probability,
while the calculated answer (approach 2) is significantly higher, ranging from 1/10,000 in
a year to larger that once in a year. For the situation in which the dikes have a safety level
up to the norm, the estimates are in the range of 1/100 to 1/10,000 in a year, while the
calculated answers are in the range 1/10 to 1/17,000 in a year. Looking at the estimated
failure probabilities, we see that, for the current dike safety, experts assess the system
failure probability to be roughly 1/100 in a year (ranging from 1/30 to 1/30,000). For the
norm safety situations, experts estimate the failure probability to be 1/1000 year (ranging
from 1/100 to 1/200,000).

The differences between the two approaches for an expert or DM can be quite large, up
to a factor 100 in failure probability. In most cases, the calculated failure probability (ap-
proach 2) is larger than the estimated probability (approach 1), especially for the current
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dike safety situation. The main cause of this difference is the uncertainty in the experts’
estimates for the failure-critical water level for piping and macro-instability. Uncertain
estimates assign a relatively large probability to failure during frequently occurring wa-
ter levels. The exceedance probability for higher water levels decreases rapidly (more
or less exponentially). This means higher conditional failure probabilities for low water
levels contribute much more to the total failure probability. Experts that estimate a wide
range of water levels for the different quantiles more likely get an implausible system
failure probability. Note that the experts did not receive feedback on the implication
of their answers during the expert session, as the goal was to observe which approach
yields more credible answers.

5.4. Applicability for estimating dike failure probabilities

5.4.1. Application of the Classical Model

As explained in Section 5.2.4, the elicitation was organized in two half-day sessions. The
first was used for filling out the questionnaire, the second to discuss the results. The
questionnaire was not discussed with the participants in advance. From the discussion
afterwards, we noticed that the questions’ underlying assumptions can have a major ef-
fect on the estimated uncertainties. Despite the questionnaire being as clear as possible
on the assumptions and context, experts still create their own image of the assessed dike
failure. This was most evident in the question of the failure probability of the macro-
instability schematization. A specific image of the failure process would be more deter-
minative of the estimates than, for example, their thoughts on uncertainties in the model
parameters.

Discussing the questions together beforehand is common for expert studies using the
Classical Model but was not done in this study because of time and COVID constraints.
Such a discussion can help to steer the experts into a similar way of reasoning, likely con-
verging their estimates. This might lead to a dominant or convincing expert’s, potentially
wrong, viewpoint getting the upper hand in the DM through the answers of other (now
influenced) experts. Still, such a discussion seems to be preferred for questions that are
not a straightforward parameter estimation, or when the answer is difficult to relate to
experience.

There is little empirical data for failure of Dutch dikes in their current state. Experts
therefore need to think through a number of steps that lead to failure (in essence, a
model) and quantify subsequent steps by indirectly assigning probabilities to them. The
more steps, the greater the uncertainty in the final answer. In such situations a plenary
discussion could have aided some experts. When a problem can be interpreted in sev-
eral ways, experts can remind each other of conditions or ways of reasoning to reach
a plausible answer. The questions about the piping and macro-instability schematiza-
tions, being examples of this. However, when referential values are available, as with the
question about the failure probability of the river system, the estimates of the experts are
closer together. It is common knowledge among flood risk experts that the Lobith dis-
charge at high water in 1995 was approximately 12,000 m3/s, and Room for the River was
designed at a discharge of 16,000 m3/s. These are values that may be used as reference
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Figure 5.10: Relation between failure probability ratio and statistical accuracy (a) and information score (b).

values for estimates, which, according to the post-elicitation discussion, was done by at
least some of the experts.

5.4.2. Experts score and consistency

To find out how experts perform for estimating small probabilities, we followed two ap-
proaches to derive a system failure probability. Given enough time and resources, an
expert would ideally arrive at the same answer following both approaches. However,
in Fig. 5.9 we observed large differences. Figure 5.10 plots these differences against the
statistical accuracy and information score from the Classical Model.

Both figures contain, per expert, two markers with a connecting line. A triangle repre-
sents the current dike safety situation, while the cross represents the situation in which
the dikes meet the safety standard. Expert N estimates a similar probability with the
two methods, while, for example, experts K and C, have a larger deviation. We do not
observe a clear relationship between statistical accuracy and consistent answers. Ra-
tios close to 1.0 imply consistent answering because both approaches lead to the same
failure probability. While consistency is not equal to correctness, a positive relationship
between consistency and statistical accuracy supports the hypothesis that statistical ac-
curacy expresses the experts’ performance in giving credible estimates, independent of
the method used for assessing failure probabilities. The comparison between estimated
and calculated failure probabilities does not indicate a pruning bias (Fischhoff et al.,
1978). The fact that i) we did not ask experts to estimate failure probabilities directly,
and ii) asked experts to estimate system-level probabilities last (i.e., after being made
aware of all the failure mechanisms), might contribute to this.

In the Classical Model, the statistical accuracy affects the DM solution more than the
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corresponding information score. It generally favors the more uncertain experts: in 27
of the 33 studies considered in (Leontaris & Morales-Nápoles, 2018) the rank correlation
between the information score and statistical accuracy is less than 0.0. The median rank
correlation over all 33 studies is -0.4, indicating an inverse relationship between cali-
bration and information score. Although the Classical Model is not infallible, the use of
weight-based DMs has shown to outperform equal weighting (Clemen, 2008; Colson &
Cooke, 2017b; Eggstaff et al., 2014). However, in this study a large uncertainty (meaning
low information, and likely high calibration) dramatically increases the estimated failure
probabilities. Consequently, we observe that the ‘best’ experts score as well as the DMs,
estimate high failure probabilities (perhaps too high).

5.4.3. Model versus experts

This study presents expert judgment as an alternative to an approach relying on physics-
based models. Reality is however less binary. A model-based approach for the Dutch
flood defense system mostly means an engineer (or a group of engineers) uses a model
for a safety assessment. The engineers however make several choices while doing so.
First, what model to choose, and subsequently, which parameter values to use. These
choices can be passive, for example when based on a standard procedure, but it is still a
choice to adopt these. Similarly, experts can use models to substantiate their estimates.
When viewed from this perspective, the difference between a model-based approach
and expert judgment is mainly the focus: (Structured) expert judgment clearly puts this
on the experts, who determine what model and parameter values to use. Standard pro-
cedures and defaults will more likely be questioned in this approach.

5.5. Conclusion
In this study we applied the Classical Model for structured expert judgments to esti-
mate system failure probability for the Dutch river Rhine. To do so, we followed two
approaches: One in which experts directly estimate the discharge at which at least one
dike fails, and a second approach in which estimates of bias and uncertainty are used
to adjust failure probabilities from models. The first approach results in failure prob-
abilities from 1/30 to 1/17,000 in a year. For most experts, these probabilities contrast
dramatically to the 1/15 to 1/100 in a year failure probability range resulting from the
VNK2 failure probabilities. Even under the assumption that no emergency measures are
used (e.g., placing sandbags), most experts assess a failure probability smaller than 1/100
in a year for the current dike state. For the situation in which the dikes are reinforced to
match the required safety level, experts estimate a failure probability varying between
1/100 and 1/200,000 in a year. These estimates are more in line with the expected fail-
ure probability resulting from combining the safety standards independently (1/70 in a
year) and fully dependent (1/1000 in a year). Thus, our expert pool expresses that in the
current state, dikes are safer than the models say, while they estimate a level of safety
that aligns the standards after the dikes have been reinforced.

Considering the more detailed results, half the experts estimated a failure probability
for the piping schematization that is larger than the model suggests. This is surprising
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because the experts’ shared impression is that the adjusted Sellmeijer model results in
failure probabilities that are too high. It would be premature to assume this impression
is wrong only based on the single assessed schematization. It is however a surprising
result. For macro-instability, most experts think the model is slightly conservative, but
the differences are smaller than for piping. More schematizations for piping as well as
macro-instability should be assessed to reach a general conclusion on a potential model
bias.

The second approach, in which the failure probability was calculated by adjusting model
results, gives total system failure frequencies ranging from larger than once in a year to
1/7500 in a year. The upper limits of these recurrence rates are unlikely high and are
caused by the large uncertainty ranges given by some experts: Wide estimates for the
failure-critical water level range assign too high failure probabilities to frequent events.
Especially for the piping and macro-instability assessments, the lack of reference val-
ues leads to wide uncertainty estimates. On the other hand, the direct failure discharge
estimates result in narrower uncertainty estimates as this conceptualization is easier to
relate to reality. The questionnaire was not discussed with the experts before the elicita-
tion. Especially for questions that leave room for interpretation, the absence of discus-
sion and expert interaction allowed quite different, unmodulated, interpretations to be
articulated.

Providing wide uncertainty estimates may result in a high statistical accuracy, and large
expert weight in the Decision Maker. A positive relation between the consistency of each
expert’s estimates and the weight in the Classical Model would support the choice of
using a global or item weights DM. However, there seems to be no significant relation.

To conclude, we found that experts estimated plausible probabilities of dike failure on a
system level, while they struggled to answer the questions concerning dike sections ac-
curately. Compared to a model-based approach, structured expert judgment has the ad-
vantage that uncertainties are made explicit, whereas in a model-based approach these
may be hidden, latent or ill-defined.

To obtain reliable and defensible estimates of event and exceedance probabilities using
expert judgment for hazards such as dike failure, it is desirable to establish a clear and,
if possible, agreed framework of technical definitions, empirical observations, modeling
assumptions, and established knowledge. Our study of expert judgment-based failure
probability estimation for a system of river dikes in the Netherlands, explored some key
aspects of this challenge, and how, quantitatively, they influenced our findings. Impor-
tantly, these point at certain aspects that merit further investigation by expert elicitation.

Appendix 5.A: Supplementary information
This appendix contains the supplementary information for the study:

• An overview of the questionnaire including realizations (between parenthesis) is
shown in the list below. For questions 1 to 12 the 5th, 50th, and 95th percentiles
were elicited. For questions 13 to 22 the 1st and 25th percentiles were elicited as
well to increase accuracy in the lower tail.



5.A. Supplementary information

5

91

• Table 5.A.1 lists the twelve participating experts with their affiliation and special-
ism. One expert wished to remain anonymous, bringing the total number of ex-
perts to the 13 mentioned in Section 5.2.4. The experts are ordered alphabetically
by first name, which holds no relation to the letters used throughout the chapter.

• The experts’ estimates are displayed in Fig. 5.A.1 and Fig. 5.A.2.

Overview of seed (item 1 to 10) and target questions (item 11 to 22):

1. Looking at the damage from the overtopping experiment in the photo: how long
(in hours) did it take between the first visible damage and the damage in the photo?
(0.75 h)

2. What is the highest discharge (m3/s) that will occur at Lobith (where the Rhine
flows into the Netherlands) in December 2020? Note that the questionnaire was
deducted before this month (3000 m3/s)

3. What is the wind speed (m/s) that is exceeded on average once a year at Deelen?
(15.0 m/s)

4. What is the average difference on the Maas (between Venlo and Den Bosch) be-
tween the water level at a discharge at Borgharen of 3000 and 4000 m3/s? (1.1 m)

5. Considering the provided information about the flood that followed the heavy
rainfall during Typhoon Hagibis, how many of these 29 overflown dikes have failed?
(10)

6. How many of the 142 dikes that failed in total during the floods after Typhoon
Hagibis, where due to the failure mechanism piping? (2)

7. Considering the characteristics of the described piping experiment, what is the
flow through the well when the critical gradient is reached? (2.3e-05 m3/s)

8. What is the mean (µ) permeability (k) of the subsoil under the dikes of section
48-1? (0.00048 m/s)

9. What is the mean coefficient of variation (V = σ/µ) of the permeability (k) of the
subsoil under the dikes of section 48-1? (0.679)

10. Given that a Rhine discharge of 6000 m3/s is exceeded. What is the probability that
the Meuse discharge of 1500 m3/s is exceeded within a period of 10 days before or
after the moment the Rhine discharge has been exceeded? (0.58)

11. At what overtopping discharge (l/s/m) do you expect these specific wave condi-
tions to erode the 50 cm clay layer? In other words, what do you expect the over-
topping discharge to be?

12. At what overtopping discharge (l/s/m) do you expect a breach in the dike (dike
opening) to occur, again after 6 hours of wave attack?

13. For the given schematization, at what river water level (m+NAP) do you expect
piping (an unstable pipe) to occur?

14. For the given schematization, at what river water level (m+NAP) do you expect a
breach to occur as a result of a sand-carrying pipe?
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15. For the given schematization, at what river water level (m+NAP) do you expect a
deformation die to instability of the inner slope, with an entry point in the crest?

16. For the given schematization, at what river water level (m+NAP) do you expect a
breach to occur as a result of an instability?

17. For river dikes in general, at what river water level (relative to 0 m+NAP) do you
expect piping to start?

18. For river dikes in general, at what river water level (relative to 0 m+NAP) do you
expect a breach due to piping?

19. For river dikes in general, at what river water level (relative to 0 m+NAP) do you
expect macro-instability to cause a shearing of the inner slope with an entry point
in the crest?

20. For river dikes in general, at what water level (relative to 0 m+NAP) do you expect
a breach due to macro-instability?

21. At which peak discharge (m3/s) do you expect at least one dike in the river system
to fail for the current dike safety situation?

22. At which peak discharge (m3/s) do you expect at least one dike to fail in the river
system when all dikes meet the required safety level?
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Name Affiliation Specialism

Carlijn Bus Waterschap Brabantse
Delta

Specialized in flood risk assessment of dikes.

Don de Bake HKV Senior advisor flood risk. Specialized in flood
risk management, dike safety assessment, and
dike restoration projects. Policy advisor to the
Ministry of Infrastructure and Water Manage-
ment.

Henk van Hemert Rijkswaterstaat over 25 years professional experience in dike
projects with a geotechnical focus

Jan Blinde Deltares Flood risk, dike design, dike assessment

Jan Tigchelaar HKV Specialized in geotechnics and probability ap-
plied to dike failure and flood risk. Advisor in
different national and international projects.

Jan-Kees Bossen-
broek

Waterschap Hollandse
Delta

Flood risk advisor, specialized in applying the
flood risk approach and flood defense knowl-
edge in the South-Holland Delta.

Leo van Nieuwen-
huijzen

Waterschap Rijn en
IJssel

Flood risk advisor, contact point for calamity
care in case of imminent flood waves.

Marinus Aalberts Witteveen+Bos Senior engineer in flood risk and dike design.
Member of Expertise Network for Flood Pro-
tection (ENW)

Philippe Schoonen Waterschap Drents
Overijsselse Delta

Technical manager Flood Protection, Coordi-
nator innovation program

R.B. Jongejan Jongejan Risk Manage-
ment Consulting BV

Specialized in flood risk analysis and proba-
bilistic design; independent engineering con-
sultant

Stefan van den
Berg

Rijkswaterstaat Flood risk advisor in the execution phase of
projects, with a focus on connecting theory
and practice.

Wim Kanning Deltares and Delft Uni-
versity of Technology

Expert in levee safety, geotechnical reliability,
and risk.

Table 5.A.1: List of experts with their affiliation and professional interests.
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Figure 5.A.1: Expert and DM estimates for seed questions. The realization is indicated with the dashed vertical
line.
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Figure 5.A.2: Expert and DM estimates for target questions.
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Estimating extreme discharges on

the Meuse’s tributaries

Accurate estimation of extreme discharges in rivers, such as the Meuse, is crucial for
effective flood risk assessment. However, hydrological models that estimate such dis-
charges often lack transparency regarding the uncertainty of their predictions. This was
demonstrated by the devastating flood that occurred in July 2021 which was not cap-
tured by the existing model for estimating design discharges. This article proposes an
approach to obtain uncertainty estimates for extremes with structured expert judgment,
using the Classical Model. A simple statistical model was developed for the river basin,
consisting of correlated GEV distributions for discharges from upstream tributaries. The
model was fitted to seven experts’ estimates and historical measurements using Bayesian
inference. Results fitted to only the measurements were solely informative for more fre-
quent events, while fitting to only the expert estimates reduced uncertainty solely for
extremes. Combining both historical observations and estimates of extremes provided
the most plausible results. The Classical Model reduced the uncertainty by appointing
most weight to the two most accurate experts, based on their estimates of less extreme
discharges. The study demonstrates that with the presented Bayesian approach that
combines historical data and expert-informed priors, a group of hydrological experts
can provide plausible estimates for discharges, and potentially also other (hydrological)
extremes, with a relatively manageable effort.

The contents of this chapter have been published in: Rongen, G., Morales-Nápoles, O., & Kok, M. (2024). Using
the Classical Model for structured expert judgment to estimate extremes: a case study of discharges in the
Meuse River. Hydrology and Earth System Sciences, 28(13), 2831–2848.
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6.1. Introduction

Estimating the magnitude of extreme flood events comes with considerable uncertainty.
This became clear once more on the 18th of July 2021: A flood wave on the Meuse River,
following a few days of rain in the Eiffel and Ardennes, caused the highest peak discharge
ever measured at Borgharen. Unprecedented rainfall volumes fell in a short period of
time (Dewals et al., 2021). These caused flash floods with large loss of life and exten-
sive damage in Germany, Belgium, and to a lesser extent also in the Netherlands (Mohr
et al., 2022; TFFF, 2021). The discharge at the Dutch border exceeded the flood events
of 1926, 1993, and 1995. Contrary to those events, this flood occurred during summer,
a season that is (or was) often considered less relevant for extreme discharges on the
Meuse. A statistical analysis of annual maxima from a fact-finding study done recently
after the flood, estimates the return period to be 120 years based on annual maxima,
and 600 years when only summer half years (April to September) are considered (TFFF,
2021). These return periods were derived including the July 2021 event itself. Prior to
the event, it would have been assigned higher return periods. The season and rainfall in-
tensity made the event unprecedented with regard to historical extremes. Given enough
time, new extremes are inevitable, but with the Dutch flood safety standards being as
high as once per 100,000 years (Ministry of Infrastructure and Environment, 2016) one
would have hoped this type of event to be less surprising. The event underscores the
importance of understanding the variability and uncertainty that comes with estimating
extreme floods.

Extreme value analysis often involves estimating the magnitude of events that are greater
than the largest from historical (representative) records. This requires establishing a
model that described the probability of experiencing such events within a specific pe-
riod, and subsequently extrapolating this to specific exceedance probabilities. For the
Meuse, the traditional approach is fitting a probability distribution to periodic maxima
and extrapolate from it (van de Langemheen & Berger, 2001). However, a statistical fit to
observations is sensitive to the most extreme events in the time series available. Addi-
tionally, the hydrological and hydraulic response to rainfall during extreme events might
be different for more frequently occurring events, and therefore be incorrectly described
by statistical extrapolation.

GRADE (Generator of Rainfall And Discharge Extremes) is a model-based answer to these
shortcomings. It is used to determine design conditions for the rivers Meuse and Rhine
in the Netherlands. GRADE is a variant on a conventional regional flood frequency anal-
ysis. Instead of using only historical observations, it resamples these into long synthetic
time series of rainfall that express the observed spatial and temporal variation. It then
uses a hydrological model to calculate tributary flows and a hydraulic model to simu-
late river discharges (Hegnauer et al., 2014; Leander et al., 2005). Despite the fact that
GRADE can create spatially coherent results and can simulate changes in the catchment
or climate, it is still based on resampling available measurements or knowledge. Hence,
it cannot simulate all types of events that are not present in the historical sample. This
is illustrated by the fact that the July 2021 discharge was not exceeded once in the 50,000
years of summer discharges generated by GRADE.
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GRADE is an example where underestimation of uncertainty is observed, but certainly
not the only model. For example, Bouaziz et al. (2020) and de Boer-Euser et al. (2017)
compared different hydrological modeling concepts for the Ourthe catchment (consid-
ered in this study as well) and showed the large differences that different models can give
when comparing more characteristics than only stream flow. Regardless of the concep-
tual choices, all models have severe limitations when trying to extrapolate to an event
that has not occurred yet. We should be wary to disqualify a model in hindsight af-
ter a new extreme has occurred. Alternatively, data-based approaches try to solve the
shortcomings of a short record by extending the historical records with sources that can
inform on past discharges. For example, paleoflood hydrology uses geomorphological
marks in the landscape to estimate historical water levels (Benito & Thorndycraft, 2005).
Another approach is to utilize qualitative historical written or depicted evidence to es-
timate past floods (Brázdil et al., 2012). The reliability of historical records can be im-
proved as well, for example by combining this with climatological information derived
from more consistent sea level pressure data De Niel et al. (2017).

In this context, structured expert judgment (SEJ) is another data-based approach. Expert
Judgment (EJ) is a broad term for gathering data from judgments based on expertise in
a knowledge area or discipline. It is indispensable in every scientific application as a
way of assessing the truth or value of new information. Structured expert judgment for-
malizes EJ by eliciting expert judgments in such a way that judgments can be treated
as scientific data. One structured method for this is the Classical Model, also known as
Cooke’s method (Cooke & Goossens, 2008). The Classical Model assigns a weight to each
expert within a group (usually 5 to 10 experts) based on their performance in estimating
the uncertainty in a number of seed questions. These weights are then applied to the
experts’ uncertainty estimates for the variables of interest, with the underlying assump-
tion that the performance for the seed questions is representative for the performance
in the questions of interest. Cooke and Goossens (2008) show an overview of the differ-
ent fields in which the Classical Model for structured expert judgment is applied. In to-
tal, data from 45 expert panels (involving in total 521 experts, 3688 variables, and 67,001
elicitations) are discussed, in applications ranging from nuclear, chemical and gas indus-
try, water related, aerospace sector, occupational sector, health, banking, and volcanoes.
Marti et al. (2021) used the same database of expert judgments and observed that using
performance-based weighting gives more accurate DMs than assigning weights at ran-
dom. Regarding geophysical applications, expert elicitation has recently been applied in
different studies aimed at informing the uncertainty in climate model predictions (e.g.,
Bamber et al., 2019; Oppenheimer et al., 2016; Sebok et al., 2021). More closely related to
this article, Kindermann et al. (2020) reproduced historical water levels using structured
expert judgment (SEJ), and Rongen et al. (2022a) applied SEJ to estimate the probabilities
of dike failure for the Dutch part of the Rhine River.

While examples of using specifically the Classical Model in hydrology are not abundantly
available, there are many examples of expert judgment as prior information to decrease
uncertainty and sensitivity. Four examples in which a Bayesian approach, similar to this
study, was applied to limit the uncertainty in extreme discharge estimates are given by
(Coles & Tawn, 1996; Parent & Bernier, 2003; Renard et al., 2006; Viglione et al., 2013).
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The mathematical approach varies between the different studies, but the rationale for
using EJ is the same: adding uncertain prior information to the likelihood of available
measurements to help achieve more plausible posterior estimates of extremes. In this
study, the approach with which these prior estimates are elicited is formalized by apply-
ing the Classical Model.

Structured expert judgment is applied to estimate the magnitude of discharge events
for the Meuse River up to an annual exceedance probability of, on average, once per
1,000 years. We aim to get uncertainty estimates for these discharges. Their credibil-
ity is assessed by comparing them to GRADE, the aforementioned model-based method
for deriving the Meuse River’s design flood frequency statistics. A statistical model is
quantified both with observed annual maxima and seven experts’ estimates for the 10-
year and 1000-year discharge on the main Meuse tributaries. The 10-year discharges
(unknown to experts at the moment of the elicitation) are used to derive a performance-
based expert weight that is used to combine the 1000-year discharges. Participants use
their own approach to produce uncertainty estimates. To investigate how the method
that combines a) data and expert judgments compares to b) the data-only or c) the ex-
pert estimates-only approach, we quantify the model based on all three options. The
differences show the added value of each component. This indicates the method’s per-
formance both when measurements are available and when they are not, for example in
data scarce areas.

6.2. Study area and data used

Figure 6.1 shows an overview of the catchment of the Meuse River. The catchments that
correspond to the main tributaries are outlined in orange. The three locations for which
we are interested in extreme discharge estimates, Borgharen, Roermond, and Gennep,
are indicated with the purple circles. We call these ‘downstream locations’ throughout
this study. The river continues further downstream until it flows into the North Sea near
Rotterdam. This part of the river becomes increasingly intertwined with the Rhine River
and more affected by the downstream sea water level. Consequently, the water levels can
be ascribed decreasingly to the discharge from the upstream catchment. For this reason,
we do not assess discharges further downstream than Gennep in this study.

The tributary names are alongside the tributaries. The orange circles indicate the loca-
tions along the tributaries where the discharges are measured, the names of the corre-
sponding town is shown within parenthesis. Elevation is shown with the grey scale. El-
evation data were obtained from EU-DEM (Copernicus Land Monitoring Service, 2017)
and used to derive catchment delineation and tributary steepness. These data were pro-
vided to the experts together with other hydrological characteristics, like:

• Catchment overview: A map with elevation, catchments, tributaries, and gauging
locations

• Land use: A map with land use from Copernicus Land Monitoring Service (2018)
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Figure 6.1: Map of the Meuse catchment considered in this study, with main river, tributaries, streams, and
catchment boundaries.
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• River profiles and time of concentration: A figure with longitudinal river profiles
and a figure with time between the tributary peaks and the peak at Borgharen for
discharges at Borgharen greater than 750 m3/s.

• Tabular catchment characteristics, such as: Area per catchment, as well as the
catchment’s fraction of the total area upstream of the downstream locations. Soil
composition from Food and Agriculture Organization of the United Nations (2003),
specifying the fractions of sand, silt, and clay in the topsoil and subsoil. Land use
fractions (paved, agriculture, forest & grassland, marshes, water bodies).

• Statistics of precipitation: Daily precipitation per month and catchment. Sum of
annual precipitation per catchment. Intensity duration frequency curves for the
average recurrence intervals (per year): 1, 2, 5, 10, 25, 50, and the maximum. All
calculated from gridded E-OBS reanalysis data provided by Copernicus Land Mon-
itoring Service (2020).

• Hyetographs and hydrographs: Temporal rainfall patterns and hydrographs for all
catchments/tributaries during the 10 largest discharges measured at Borgharen.
The sources of discharge data are described below.

This information, included in the supplementary information accompanying (Rongen
et al., 2024), was provided to the experts to support them in making their estimates.
The discharge data needed to fit the model to the observations were obtained from Ser-
vice public de Wallonie (2022) for the Belgian gauges, Rijkswaterstaat (2022) and Wa-
terschap Limburg (2021) for the Dutch gauges, and Land NRW (2022) for the German
gauge. These discharge data are mostly derived from measured water levels and rating
curves. During floods, water level measurements can be incomplete and rating curves
inaccurate. Consequently, discharge data during extremes can be unreliable. Measured
discharge data were not provided to the experts, except in normalized form as hydro-
graph shapes.

6.3. Method for estimating extreme discharges with experts

6.3.1. Probabilistic model

To obtain estimates for downstream discharge extremes, experts needed to quantify in-
dividual components in a model that gives the downstream discharge as the sum of the
tributary discharges, times a factor correcting for covered area and hydrodynamics:

Qd = f∆t ·
∑
u

Qu , (6.1)

where Qd is the peak discharge of a downstream location during an event, and Qu the
peak discharge of the u’th (upstream) tributary during that event. Location d can be
any location along the river where the discharge is assumed to be dependent mainly
on rainfall in the upstream catchment. The random variable Qu is modeled with the
generalized extreme value (GEV) distribution (Jenkinson, 1955). We chose this family
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of distributions firstly because it is widely used to estimate the probabilities of extreme
events. Secondly, it provides flexibility to fit different rainfall-runoff responses by vary-
ing between Fréchet (heavy tailed), Gumbel (exponential tail) and Weibull distributions
(light tailed). We fitted the GEV distributions to observations, expert estimates, or both,
using Bayesian inference (described in Section 6.3.3). The 1,000-year discharge is meant
to inform the tail of the tributary discharge probability distributions. This tail is repre-
sented by the GEV tail shape parameter that is most difficult to estimate from data. We
chose to elicit discharges, rather than a more abstract parameter like the tail shape itself,
such that experts make estimates on quantities that may be observed and at "a scale on
which the expert has familiarity" (Coles & Tawn, 1996, p. 467).

The factor or ratio f∆t in Eq. (6.1) compensates for differences between the sum of up-
stream discharges and the downstream discharge. These result from, for example, hy-
draulic properties such as the time difference between discharge peaks and peak atten-
uation as the flood wave travels through the river (which would individually lead to a
factor < 1.0), or rainfall in the Meuse catchment area that is not covered by one of the
tributaries (which would individually lead to a factor > 1). When combined, the factor
can be lower or higher than 1. The estimated factors are displayed in the last panels of
Fig. 6.B.1.

The tributary peak discharges Qu are correlated because a rainfall event is likely to affect
an area larger than a single tributary catchment and nearby catchments have similar
hydrological characteristics. This dependence is modeled with a multivariate Gaussian
copula that is realized through Bayesian Networks estimated by the experts (A. Hanea
et al., 2015). The details of this concern the practical and theoretical aspects of eliciting
dependence with experts, which is presented in Chapter 7. The resulting correlation
matrices that describe the tributary dependence are displayed in Fig. 7.3.

In summary, using the method of SEJ described in Section 6.3.2, the experts estimate

1. the tributary peak discharges Qu that are exceeded on average once per 10 years
and once per 1,000 years (for brevity called the 10-year and 1,000-year discharge
hereafter),

2. the factor f∆t , and

3. the correlation between tributary peak discharges.

With these, the model in Eq. (6.1) is quantified. The model was deliberately kept sim-
ple to ensure that the effect of the experts’ estimates on the result remains traceable for
them. Section 6.3.4 explains how downstream discharges were generated from these
model components (i.e., the different terms in Eq. (6.1)), including uncertainty bounds.
The model is also described in more detail in (Rongen et al., 2022b) as well, where it was
used in a data-driven context.

6.3.2. Assessing uncertainties with expert judgment

The experts’ estimates are elicited using the Classical Model. Refer to Section 2.1 for an
elaborate description on this method of structured expert judgment.
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The Classical Model combines quantiles estimates from different experts into a single
probability density function per elicited item. These estimates are called the decision
maker (DM). We used the Metalog distribution to model the probability density connect-
ing the expert estimates (Keelin, 2016). This distribution was presented in Chapter 4 and
is capable of exactly fitting any three-percentile estimate. Notice that for this research,
the Metalog distribution represents the uncertainty distribution of each expert over a
particular discharge with a given return period. While it is related to the underlying dis-
tribution of discharge it does not make any assumption about this underlying distribu-
tion other than the ones expressed by experts through their percentile estimates. For
symmetric estimates, the Metalog is bell-shaped. For asymmetric estimates, it becomes
left- or right-skewed. Typically, the Classical Model assumes a uniform distribution in
between the percentiles (minimum information). This leads to a stepped PDF where the
Metalog gives a smooth PDF. An example of using the Metalog distribution in an expert
elicitation study is described by Dion et al. (2020). All calculations related to the Classical
Model were performed using the open-source software ANDURYL (Leontaris & Morales-
Nápoles, 2018; Rongen et al., 2020; ’t Hart et al., 2019).

In this study, the seed questions involve the 10-year discharges for the tributaries of the
river Meuse. An example of a seed question is: "What is the discharge that is exceeded
on average once per 10 years, for the Vesdre at Chaudfontaine?" The target questions
concern the 1000-year discharges, as well as the ratio between the upstream sum and
downstream discharge. Discharges with a 10-year recurrence interval are exceptional
but can in general be reliably approximated from measured data. Seven experts partici-
pated in the in-person elicitation that took place on the 4th of July 2022. The study and
model were discussed before the assessments to make sure that the concepts and ques-
tions were clear. After this, an exercise for the Weser catchment was done in which the
experts answered four questions that were subsequently discussed. In this way, the ex-
perts could compare their answers to the realizations and view the resulting scores using
the Classical Model.

Apart from the training exercise, the experts answered 26 questions: 10 seed questions
regarding the 10-year discharge (one for each tributary), 10 target questions, regarding
the 1,000-year discharge, and 6 target questions for the ratios between upstream sum
and downstream discharge (10-year and 1,000-year, for three locations). In a second
part of the elicitation, the dependence between tributaries was estimated. The method
and result for this are explained in Chapter 7. A list of the seven participants’ names,
their affiliations, and their field of expertise is shown in Table 6.1. While the participants
are invited based on their expertise, experts are scored post hoc in terms of their ability
to estimate uncertainty in the context of the study. We note that the alphabetical order of
the experts in the table does not correspond to their labels in the results. An overview of
the data provided to the participants is given in Section 6.2, while the data itself, as well
as the questionnaire, are presented in the supplementary information accompanying
(Rongen et al., 2024).
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Table 6.1: List of experts with their affiliation and professional interests.

Name Affiliation Field of expertise

Alexander Bakker Rijkswaterstaat & TU
Delft

Risk analysis for storm surge barriers, extreme
value analyses, climate change and climate
scenarios.

Eric Sprokkereef Rijkswaterstaat Coordinator crisis advisory group Rivers. Op-
erational forecaster for Rhine and Meuse

Ferdinand Diermanse Deltares Expert advisor and researcher flood risk.

Helena Pavelková Waterschap Limburg Hydrologist

Jerom Aerts Delft University of
Technology

Hydrologist, focused on hydrological model-
ing on a global scale. PhD candidate.

Nicole Jungermann HKV consultants Advisor water and climate

Siebolt Folkertsma Rijkswaterstaat Advisor in the Team Expertise for the River
Meuse

6.3.3. Determining model coefficients with Bayesian inference

The model for downstream discharges (Eq. (6.1)) consists of generalized extreme value
(GEV) distributions per tributary. The GEV-distribution has three parameters, the lo-
cation (µ), scale (σ), and shape parameter (ξ). Consider z = (x −µ)/σ. The probability
density function (PDF) of the GEV is then,

f (x) =
{ 1

σ exp(−exp(−z))exp(−z), if ξ= 0
1
σ exp(−(1−ξz)1/ξ)(1−ξz)1/ξ−1, if z ≤ 1/ξ and ξ> 0

(6.2)

For each tributary, a (joint) distribution of the model parameters was determined using
Bayesian inference, based on expert estimates and observed tributary discharge peaks
during annual maxima at Borgharen. Bayesian methods explicitly incorporate uncer-
tainty, a key aspect of this study, and provide a natural way to integrate expert judgment
with observed data.

Bayes theorem gives the posterior distribution p(θ|q) of the (hypothesized) combination
of GEV-parameters, θ, given the observed peaks q, as a function of the likelihood p(q|θ)
and the prior distribution π(θ):

p(θ|q) = p(q|θ)π(θ)

p(q)
. (6.3)

The likelihood can be calculated using Eq. (6.2) from the product of the probability den-
sity of all (independent) annual maxima: p(q|θ) = ∏

i
(

f (qi |θ)
)
. The calculation of the

prior is discussed below. That leaves p(q), which is not straightforward to calculate.
However, the posterior distribution can still be estimated using the Bayesian sampling
technique Markov-Chain Monte Carlo (MCMC). MCMC algorithms compare different
propositions of the numerator in Eq. (6.3), leaving the denominator as a normalization
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Figure 6.2: Conceptual visualization of elements in the likelihood-function of a tributary GEV-distribution.

factor that crosses out. In this study, we used the affine invariant MCMC ensemble sam-
pler as described by Goodman and Weare (2010), available through the Python module
‘emcee’ (Foreman-Mackey et al., 2013). This sampler generates a trace of distribution
parameters that forms the empirical joint probability distribution of, in our case, the
three GEV parameters for each tributary. These are subsequently used to calculate the
downstream discharges (see Section 6.3.4). For more background on Bayesian inference
and MCMC, refer to Section 2.3.3.

The prior consists of two parts, the expert estimates for the 10-year and 1,000-year dis-
charge, and a prior for the GEV tail shape parameter ξ. Since the experts do not know
the values of the discharges they are estimating, their estimates can be considered prior
information. The prior probability π(θ) of the expert’s estimates is calculated in a similar
way as described by Viglione et al. (2013): Given a GEV-distribution f (Q|θ), the discharge
q for a specific annual exceedance probability p is calculated from the quantile function
or inverse CDF (F−1),

qp j = F−1(1−p j |θ), (6.4)

with p j being the j ’th elicited exceedance probability. This discharge is compared to the
expert’s or DM’s estimate for this 10- or 1,000-year discharge, g (qp j ). Figure 6.2 illus-
trates this procedure. The top curve f (Q|θ) represents a proposed GEV-distribution for
the random variable Q (tributary peak discharge) with parameter vector θ. This GEV
gives discharges corresponding to the 0.9 and 0.999th quantile (i.e., the 10-year and
1,000-year discharge). These discharges can then be compared to the expert estimates,
illustrated by the two bottom graphs. Additionally, the figure shows the likelihood of
observations with the vertical arrows (p(q|θ) in Eq. (6.3)).

Apart from the expert estimates, we prefer a weakly informative prior for θ (i.e., uninfor-
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mative, but within bounds that ensure a stable simulation), such that only the data and
expert estimates inform the final result. However, an informative prior was added to the
shape parameter ξ because with only expert estimates and no data, two discharge esti-
mates are not sufficient for fitting the three parameters of the GEV-distribution. Addi-
tionally, the variance in the shape-parameter decreases with increasing number of years
(or other block maxima) in a time series (Papalexiou & Koutsoyiannis, 2013). The 30 to 70
annual maxima per tributary in this study are not sufficient to reach convergence. Sim-
ilar observations have been presented before for extreme precipitation in (Koutsoyian-
nis, 2004a, 2004b) Therefore, we employ the geophysical prior as presented by Martins
and Stedinger (2000); a beta distribution with hyper parameters α = 6 and β = 9 for
x ∈ [−0.5,0.5], for which the PDF is:

h(x) = Γ(α+β)

Γ(α)Γ(β)
xα−1(1−x)β−1, (6.5)

with x = ξ+0.5, and Γ being the gamma-function. This PDF is slightly skewed towards
negative values of the shape parameter, preferring the heavy tailed Fréchet distribution
over the light tailed reversed Weibull. In their analysis of a very large number of rainfall
records worldwide, Papalexiou and Koutsoyiannis (2013) came to a similar distribution
for the GEV-shape parameter. For µ and σ, we assigned equal probability to all values
greater than 0. This corresponds to a weakly informative prior forµ (positive discharges),
and an uninformative prior for σ (only positive values are mathematically feasible).

With both expert estimates g and the constrained tail shape, the prior distribution be-
comes

π(θ) =
∏

j

(
g j

(
F−1
θ (1−p j )

)) ·h(ξ+0.5) (6.6)

for −0.5 < ξ< 0.5, σ> 0, and µ> 0. π(θ) = 0 for any other combination. This gives all the
components to calculate the posterior distribution in Eq. (6.3) using MCMC.

The posterior distribution comprises the prior tail-shape distribution, the prior expert
estimates of the 10-year and 1,000-year discharges, and the likelihood of the observa-
tions. As described in Section 6.1 we compare the performance of using data, EJ, and the
combination of both. If only data are used, the expert estimates drop out. If only expert
judgments are used, the likelihood drops out and both expert estimates are used. If both
data and expert judgment are used, only the 1,000-year expert estimate is used.

With the just described procedure, the (posterior) distributions for the tributary dis-
charges (Qu in Eq. (6.1)) are quantified. This leaves the ratio between the upstream sum
and downstream discharge ( f∆t ) and the correlations between the tributary discharges
to be estimated. For the ratios, we distinguished between observations and expert esti-
mates as well. A log-normal distribution was fitted to the observations. This corresponds
to a practical choice for a distribution of positive values with sufficient shape flexibility.
The ratio itself does not represent streamflow, so there is no need to assume a heavy
tailed distribution as would be expected for streamflow (Dimitriadis et al., 2021). The
experts estimated a distribution for the factor as well, which was used directly for the
experts-only fit. For the combined model fit, the observation-fitted log-normal distri-
bution was used up to the 10-year range, and the expert estimate (fitted with a Metalog
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distribution) for the 1,000-year factor. Values of f∆t for return periods T greater than 10
were interpolated (up to 1000-years) or extrapolated,

f∆t |T = f∆t |10y +
log(T )− log(10)

log(1,000)− log(10)
· ( f∆t |1,000y − f∆t |10y ), (6.7)

with f∆t |10y being sampled from the log-normal and f∆t |1000y from the expert estimated
Metalog distribution. During the expert session, one participant requested to make dif-
ferent estimates for the factor at the 10-year event and 1,000-year event, a distinction
that initially was not planned. Following this request, we changed the questionnaire
such that a factor could be specified at both return periods. One expert used the option
to make two different estimates for the factors.

Regarding the correlation matrix that describes the dependence between tributary ex-
tremes, the observed correlations were used for the data-only option and the expert-
estimated correlations for the expert-only option. For the combined option, we took
the average of the observed correlation matrix and the expert-estimated correlation ma-
trix. Other possibilities for combining correlation matrices are available (see for example
Al-Awadhi & Garthwaite, 1998, for a Bayesian approach), however in-depth research of
these options is beyond the scope of this study.

6.3.4. Calculating the downstream discharges

The three components from Eq. (6.1) needed to calculate the downstream discharges
are:

• Tributary (marginal) discharges, represented by GEV-distributions derived through
Bayesian inference.

• Dependence between tributaries, represented by a multivariate normal copula
(for more background on this, see Chapter 7).

• The ratio between the upstream sum and downstream discharges ( f∆t ).

In line with the objective of this article, an uncertainty estimate is derived for the down-
stream discharges. This section describes the method in a conceptual way. Section 6.A
contains a formal step-by-step description.

To calculate a single exceedance frequency curve for a downstream location, 10,000 events
(annual discharge maxima) are drawn from the 9 tributaries’ GEV-distributions. Note
that 10 tributaries are displayed in Fig. 6.1. The Semois catchment is however part of
the French Meuse catchment and therefore only used to assess expert performance. The
9 tributary peak discharges are summed per event and multiplied with 10,000 factors
(one per event) for the ratio between upstream sum and downstream discharge. The
10,000 resulting downstream discharges are assigned an annual exceedance probabil-
ity through empirical plot positions, resulting in an exceedance frequency curve. This
process is repeated 10,000 times with different GEV-realizations from the MCMC-trace,
resulting in 10,000 curves (each based on 10,000 discharges) from which the uncertainty
bandwidth is determined. This is illustrated in Fig. 6.3. The grey lines depict 50 of
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Figure 6.3: Individual exceedance frequency curves for each GEV-realization or downstream discharge, and
the different percentiles derived from these.

the 10,000 curves (these can be both tributary GEV-curves, or downstream discharge
curves). The horizontal histogram gives the distribution of the 1000-year discharges.
The dots indicate the 2.5th, 50th, and 97.5th percentiles in this histogram. Calculating
these percentiles for all annual exceedance probabilities results in the black percentile
curves, creating the uncertainty interval.

The dependence between tributaries is incorporated in two ways. First, the 10.000 events
underlying each downstream discharge curve are correlated. This is achieved by drawing
the [9 × 10,000] sample from the (multivariate normal) correlation model, transforming
these samples to uniform space (with the normal CDF), and then to each tributary’s GEV-
distribution space (with the GEV’s quantile function). This is the usual approach when
working with a multivariate normal copula. The second way of incorporating the tribu-
tary dependence is by choosing GEV-combinations from the MCMC-results while con-
sidering the dependence between tributaries (i.e., picking high or low curves from the
uncertainty bandwidth for multiple tributaries). As illustrated in Fig. 6.3, a tributary’s
GEV-distribution can lead to relatively low or high discharges. This uncertainty is largely
caused by a lack of realizations in the tail (i.e., not having thousands of years of indepen-
dent and identically distributed discharges). If one tributary would fit a GEV distribution
resulting in a curve on the upper end of the bandwidth, it is likely because it experienced
a high discharge event that affected its neighboring tributary as well. Consequently, the
neighboring tributary is more likely to also have a ‘high-discharge’ GEV-combination. To
account for this, we first sort the GEV-combinations based on their 1,000-year discharge
(i.e., the curves’ intersections with the dashed line), and draw a 9-sized sample from the
dependence model. Transforming this to uniform space gives a value between 0 and
1 that is used as rank to select a (correlated) GEV-combination for each tributary. Do-
ing this increases the likeliness that different tributaries will have relatively high or low
sampled discharges.
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6.4. Experts’ performance and resulting discharge statistics

This result section first presents the experts’ scores for the Classical Model (Section 6.4.1)
and the experts’ rationale for answering the questions (Section 6.4.2). After this, the ex-
treme value results for the tributaries (Section 6.4.3) and downstream locations (Sec-
tion 6.4.4) are presented.

6.4.1. Results for the Classical Model

The experts estimated three-percentiles (5th, 50th and 95th) for the 10- and 1,000-year
discharge for all larger tributaries in the Meuse catchment. An overview of the answers
is displayed in Fig. 6.B.1. Based on these estimates, the scores for the Classical Model are
calculated as described in Section 6.3.2. The resulting statistical accuracy, information
score, and combined score (which, after normalizing, become weights) are shown in
Table 6.2.

Table 6.2: Scores for the Classical Model, for the experts (top 7 rows) and decision makers (bottom 3 rows).

Statistical
accuracy

Information score Comb.
score

All Seed

Exp A 0.000799 1.605 1.533 0.00123
Exp B 0.000456 1.576 1.633 0.000745
Exp C 2.3 ·10-8 1.900 1.868 4.4 ·10 -8

Exp D 0.683 0.711 0.626 0.427
Exp E 0.192 1.395 1.263 0.242
Exp F 0.000456 1.419 1.300 0.000593
Exp G 0.00629 1.302 1.232 0.00775

GL (opt) 0.683 0.659 0.670 0.458
GL 0.683 0.648 0.661 0.452
EQ 0.493 0.537 0.551 0.271

The statistical accuracy varies between 2.3 ·10−8 for expert C to 0.683 for expert D. Two
experts have a score above a significance level of 0.05. The information scores show,
as usual, less variation. The expert with the highest statistical accuracy (expert D) also
has the lowest information score. Expert E, who has a high statistical accuracy as well,
estimated more concentrated percentiles, resulting in a higher information score.

Figure 6.4 zooms in on the statistical accuracy, by showing the position of each real-
ization (outcome) within the experts’ three-percentile estimate for each of the 10-year
discharges. A high statistical accuracy means realizations to these seed variables are
distributed accordingly to (or as close to) the mass in each inter-quantile bin: one real-
ization below the 5th percentile, 4 in between the 5th and the median, four between the
median and the 95th and one above the 95th. Expert D’s estimates closely resemble this
distribution ( 1

10 , 5
10 , 4

10 , 0
10 for each inter-quantile respectively), hence the high statistical
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Figure 6.4: Seed question realizations compared to each expert’s estimates. The position of each realization is
displayed as percentile point in the expert’s distribution estimate.

accuracy score. A concentration of dots on both ends indicates overconfidence (too close
together estimates, resulting in realizations outside of the 90% bounds). We observe that
most experts tend to underestimate the measured discharges, since most realizations are
higher than their estimated 95th percentile. Note that the highest score is not received
for the (median) estimates closest to the realization but to evenly distributed quantiles,
as the goal is estimating uncertainty rather than estimating the observation (see Sec-
tion 6.3.2).

The variation between the three decision makers (DMs) in Table 6.2 is limited. Opti-
mizing the DM (i.e., excluding experts based on statistical accuracy to improve the DM-
score) has a limited effect. In this case, only expert D and E would have a non-zero
weight, resulting in more or less the same results compared to including all experts, even
when some of them contribute with ‘marginal’ weights. The equal weights DM in this
case results in an outcome that is comparable to that of the performance-based DM, i.e.,
a high statistical accuracy with a slightly lower information score compared to the other
two DMs.

We present the model results as discussed earlier through three cases a) only data, b) only
expert estimates, and c) the two combined as described in Section 6.3.3. We used the
global weights DM for the data and experts option (c). This means the experts’ estimates
for the 10-year discharges were used to assess the value of the 1,000-year answer. For the
experts-only option, we used the equal weights DM, because using the global weights
emphasizes estimates matching the measured data in the 10-year range. This would
indirectly lead to including the measured data in the fit. By using equal weights, we
ignore the relevant seed questions and the corresponding differential weights.
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6.4.2. Rationale for estimating tributary discharges

We requested the experts to briefly describe the procedure they followed for making their
estimates. Overall, three approaches were distinguished. The first was using a simple
conceptual hydrological model, in which the discharge follows from catchment char-
acteristics like (a subset of) area, rainfall, evaporation and transpiration, rainfall-runoff
response, land-use, subsoil, slope, or the presence of reservoirs. Most of this information
was provided to the experts, and if not, they made estimates for it themselves. A second
approach was to compare the catchments to other catchments known by the expert, and
possibly adjusting the outcomes based on specific differences. A third approach was us-
ing rules of thumb, such as the expected discharge per square kilometer of catchment or
a ‘known’ factor between an upstream tributary discharge and a downstream discharge
(of which the statistics are better known). For estimating the 1,000-year discharge, the
experts had to do some kind of extrapolation. Some experts scaled with a fixed factor,
while others tried to extrapolate the rainfall, for which empirical statistics where pro-
vided. The hydrological data (described in Section 6.2) was provided to the experts in
spreadsheets as well, making it easier for them to do computations. However, the single
day that was available for the full elicitation limited the possibilities for making detailed
model simulations.

Figure 6.5 shows how the different approaches led to different answers per tributary. It
compares the 50th percentile of the discharge estimates per tributary of each expert, by
dividing them through the catchment area.The 10-year and 1,000-year discharges from
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Figure 6.5: Discharge per area for each tributary and experts, based on the estimate for the 50th percentile. (a)
for the 10-year, and (b) for the 1,000-year discharge. The lines are displayed to help distinguish overlapping
markers.
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fitting the observations (i.e., the data only approach) are indicated with the stars. Note
that the discharge per area varies between tributaries. This is the result of catchment
properties, such as land use (e.g., a forest can retain more water than an urban area) or
topographical properties (e.g., catchment steepness, size, or shape). Figure 6.5 shows
that most experts estimated higher discharges for the steeper tributaries (Ambleve, Ves-
dre, Lesse). The experts estimated the median 1,000-year discharges to be 1.7 to 3.8 times
as high as the median 10-year discharge, with an average of on average 2.3 for all experts
and tributaries. The statistically most accurate expert, Expert D, estimated factors in
between 1.6 and 7.0. Contrarily, expert E, with the second highest score, estimated a ra-
tio of 2.0 for all tributaries. For estimating the factor between the tributaries’ sum and
the downstream discharge ( f∆t in Eq. (6.1)), experts mainly took into consideration that
not 100% of the area is covered by the tributary catchments for which the discharge-
estimates were made, and that the tributary hydrograph peaks have different lag times.
Additional aspects noted by the experts were the effects of flood peak attenuation and
spatial dependence between tributaries and rainfall.

6.4.3. Extreme discharges for tributaries

We calculated the extreme discharge statistics for each of the tributaries based on the
procedures described in Section 6.3.3. Figure 6.6 shows the results for Chooz and Chaud-
fontaine (left and middle column). Chooz is a larger not too steep tributary, while Chaud-
fontaine is a smaller steep tributary (see Fig. 6.1). The right column shows the discharges
for Borgharen, the location of interest, estimated through Eq. (6.1), which is further dis-
cussed in Section 6.4.4. The results for the other tributaries for all experts and DMs are
shown in the supplementary information accompanying (Rongen et al., 2024).

The top row (a, d, g) in Fig. 6.6 shows the uncertainty interval of these distributions when
fitted only to the discharge measurements. The outer colored area is the 95% interval,
the opaquer inner area the 50% interval, and the thick line the median value. The second
row (b, e, h) shows the fitted distributions when only expert estimates are used. The
bottom row (c, f, i) shows the combination of expert estimates and data. The data-only
option closely matches the data in the range of return periods that can be estimated
with reasonable accuracy from data, but the uncertainty interval grows for larger return
periods. Contrarily, the experts-only option shows much more variation in the frequency
range corresponding to return periods of observed events, while the return periods that
exceed the record lengths are more constrained. The combined option is accurate in the
observed range, while the constraining influence of the DM estimates is visible in the
extrapolated range as well.

6.4.4. Extreme discharges for Borgharen

Combining all the marginal (tributary) statistics with the factor for downstream dis-
charges and the correlation models estimated by the experts, we get the discharge statis-
tics for Borgharen. The results for this are shown in Fig. 6.6 (g, h, i). As with the statistics
of the tributaries, we observe high accuracy for the data-only estimates in the ‘in sam-
ple’ range, constrained uncertainty bounds for EJ-only in the range with higher return
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Figure 6.6: Extreme discharge statistics for Chooz (a, b, c), Chaudfontaine (d, e, f ) and Borgharen (g, h, i). (a,
d, g) represent data only, (b, e, h) expert judgment only, and (c, f, i) the data and expert judgment combined.

periods, and both when combined. The combined results match the historical observa-
tions well. Note that this is not self-evident as the distributions were not fitted directly
to the observed discharges at Borgharen but rather obtained through the dependence
model for individual catchments and Eq. (6.1). Contrarily, the data-only results devi-
ate from the observations in the 10- to 100-year range. Sampling from the fitted model
components (GEVs, dependence model, and factors) does not accurately reproduce the
downstream discharges in this range because they were individually fitted and not as
a whole. We do not consider this a problem, as the study is oriented towards showing
the effects of expert quantification in combination with more traditional hydrological
modeling. The EJ-only estimates give a much wider uncertainty estimate. The experts’
combined median matches the observations surprisingly well, but the large uncertainty
within the observed range cautions against drawing general conclusions on this.

Zooming in on the discharge statistics for the downstream location Borgharen, we con-
sider the 10, 100, and 1,000-year discharge. Figure 6.7 shows the (conditional) proba-
bility distributions (smoothed with a kernel density estimate) for these discharges at the
location of interest.
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Figure 6.7: Kernel density estimates for the 10-year (a), 100-year (b), and 1,000-year (c) discharge for
Borgharen. The dots indicate the 5th, 50th and 95th percentile.

Comparing the three modeling options discussed thus far, we see that the data-only op-
tion is very uncertain, with a 95% uncertainty interval of 4,000 to around 9,000 m3/s
for the 1,000-year discharge. A Meuse-discharge of 4,000 m3/s will likely flood large
stretches along the Meuse in the Dutch province Limburg, while a discharge of 5,000
m3/s also floods large areas further downstream (Rongen, 2016). For discharges higher
than 6,000 m3/s the applied model (Eq. (6.1)) should be reconsidered, as the hydrody-
namic properties of the system change due to upstream flooding.

The combined results are remarkably close to the currently used GRADE-statistics for
dike assessment; the uncertainty is slightly larger, but the median is very similar. The EJ-
only results are less precise, but the median values are similar to the combined results
and GRADE-statistics. The large uncertainty is mainly the results of equally weighting all
experts instead of assigning most weight to experts D and E (as done for the global weight
DM). For the combined data and EJ approach, the results for the tributary discharges
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roughly cover the intersection of the EJ-only and data-only results (see Fig. 6.6 a-f). Fig-
ure 6.7 does not show this pattern, with the EJ-only results positioned in between the
data-only and combined results. This is mainly due to equal weight DM used for the EJ-
only results, which gives a higher factor between upstream and downstream discharges
( f∆t in Eq. (6.1)), and therefore higher resulting downstream discharges. Overall, the
combined effect of data and EJ is more difficult to identify in the downstream discharges
(Fig. 6.6 g-i) than it is in the tributary discharge GEVs (Fig. 6.6 a-f). This is due to the
additional model components (i.e., the factor between upstream and downstream, and
the correlation model) affecting the results. Additional plots similar to Fig. 6.6 that illus-
trate this are presented in the supplementary information accompanying (Rongen et al.,
2024). There, the results for the other two downstream locations, Roermond and Gen-
nep, are presented as well. These results behave similar to those for Borgharen and are
therefore not presented here.

6.5. Discussion
This study proposed a method to estimate credible discharge extremes for the Meuse
River (1,000-year discharges in the case of this research). Observed discharges were
combined with expert estimates through the GEV-distribution, using Bayesian inference.
The GEV-distribution has typically less predictive power in the extrapolated range. In-
cluding expert estimates, weighted by their ability to estimate the 10-year discharges,
improved the precision in this range of extremes.

Several model choices were made to obtain these results. Their implications warrant
further discussion and substantiation. This section addresses the choice for the elicited
variables, the predictive power of 10-year discharge estimates for 1000-year discharges,
the overall credibility of the results, and finally, some comments on model choices and
uncertainty.

6.5.1. Method and model choices

We chose to elicit tributary discharges, rather than the downstream discharges (our ulti-
mate variable of interest) themselves. We believe that experts’ estimates for tributary dis-
charges correspond better to catchment hydrology (rainfall-runoff response). Addition-
ally, this choice enables us to validate the final result with the downstream discharges.
With the chosen set-up we thus test the experts’ capabilities for estimating system dis-
charge extremes from tributary components, while still considering the catchment hy-
drology, rather than just informing us with their estimates for the end results. However,
this does not guarantee that the downstream discharges calculated from the experts’ an-
swers match the discharges they would have given if elicited directly.

We fitted the GEV-distribution based on the elicited 10-year and 1000-year discharges.
In particular the GEV’s uncertain tail shape parameter is informed through this, as the
location and scale parameter can be estimated from data with relative certainty. Alterna-
tively, we could have estimated the tail shape parameter directly or estimated a related
parameter such as the ratio or difference between discharges. The latter was done by
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Renard et al. (2006) who elicited the 10-year discharge and the differences between the
10- and 100-year and 100- and 1,000-year discharges. This approach reduces the depen-
dence between expert estimates for different quantiles, and therefore between the priors
(when more than one quantile is used) (Coles & Tawn, 1996). Additionally, it shifts the
experts’ focus to assessing how surprising or extreme rare events can be. Because we
were ultimately interested in the 1000-year discharges, we chose eliciting this discharge
directly. This will give a more accurate representation of this specific value than compos-
ing it of two random variables with a dependence that is unknown to us. We appreciate
however that if experts would have estimates ratios or differences, and been evaluated by
this, different weights would have resulted than the ones presented in this research (re-
fer to the markedly different ratios between the 10-year and 1,000-year discharge for the
two best experts D and E in Fig. 6.5). A study focusing on how surprising large events can
be, and whether one method renders consistently larger estimates than the other, would
make an interesting comparison. Finally, we note that Renard et al. (2006) combine dif-
ferent extreme value distributions with non-stationary parameters in a single Bayesian
analysis, which makes their method a good example of incorporate climate change ef-
fects (often considered a driver of for new extremes) in the method as well. This was
however out of the scope of our research, which shows that extreme discharge statistics
can be improved when combining them with structured expert judgment procedures.

Regarding the goodness-of-fit of the chosen GEV distribution, we note that some of the
experts estimated 1,000-year discharges much higher of lower than would be expected
from observations. This might indicate that the GEV-distribution is not the right model
to observations and expert estimates. However, a significantly lower estimate indicates
that the estimated discharge is wrong, as it is unlikely that the 1,000-year discharge is
lower than the highest on record. A significantly higher estimate, on the other hand,
might be valid, due to a belief in a change in catchment response under extreme rain-
fall (e.g., due to a failing dam). This would violate the GEV-distribution’s ‘identically
distributed’ assumption. However, the GEV has sufficient shape flexibility to facilitate
substantially higher 1,000-year discharges, so we do not consider this a realistic short-
coming. Accordingly, rather than viewing the GEV as a limiting factor for fitting the data,
we use it as a validation for the Classical Model scores, as described in Section 6.5.2.

Finally, we note the model’s omission of seasonality. The July 2021 event was mainly ex-
traordinary because of its magnitude in combination with the fact that it happened dur-
ing summer. Including seasonality would have been a valuable addition to the model
but it would also have (at least) doubled the number of estimates provided by each ex-
pert, which was not feasible for this study. The exclusion of seasonality from our research
does not alter our main conclusion, which is the possibility of enhancing estimation of
extreme discharges through structured expert judgments.

6.5.2. Validity of the results

The experts participating in this study were asked to estimate 10-year and 1000-year dis-
charges. While both discharges are unknown to the expert, the underlying processes
leading to the different return period estimates can be different. An implicit assumption
is that the experts’ ability to estimate the seed variables (a 10-year discharge) reflects
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their ability to estimate the target variables (a 1000-year discharge). This assumption
is in fact one of the most crucial assumptions in the Classical Model. The objective of
this research is not to investigate this assumption. For an example of a recent discussion
on the effect of seed variables on the performance of the Classical Model the reader is
referred to (Eggstaff et al., 2014). The representativeness of the seed variables for cal-
ibration variables has extensively been discussed in, for example, (Cooke, 1991). Seed
questions have to be as close as possible to the variables of interest, and mostly concern
similar questions from different cases or studies. Precise 1000-year discharge estimates
are however unknown for any river system, making this option infeasible for this study.
In comparison, with a conventional model-based approach, the ability of a model to
predict extremes is also estimated from (and tailored to) the ability to estimate histor-
ical observations (through calibration). Advantages of relying in the extrapolation of a
group of experts are that they can explicitly consider uncertainty and are assessed on
their ability to do so through the Classical Model. In Section 6.5.1 we described how in-
consistencies between the observations and expert estimates can lead to a sub-optimal
GEV-fit. The fact that this is most prevalent in the low-scoring experts and least for ex-
perts D and E supports the credibility of the results. Moreover, this means that the ‘bad’
fits have little weight in the final global weight DM results, and secondly that the GEV is
considered a suitable statistical distribution to fit observations and expert estimates.

The GRADE results from (Hegnauer & Van den Boogaard, 2016) were used to validate
the 1,000-year downstream discharge results. These GRADE-statistics at Borgharen (cur-
rently used for dike assessment) give a lower and less uncertain range for the 1,000-year
discharge than the estimates obtained through our methodology. The estimates ob-
tained in this study present larger uncertainty bands and indicate higher extreme dis-
charges. This might be a consequence of the fact that we did not show the measured
tributary discharges to the experts, such that we could clearly distinguish the effect of
observations and ‘prior’ expert judgments. Moreover, GRADE (at the time) did not in-
clude the July 2021 event. If the GRADE statistics had been derived with the inclusion
of the July 2021 event, it would likely assign more probability to higher discharges. The
experts’ estimates on the contrary were elicited after the July 2021 event which likely did
affect their estimates. Therefore, the comparison between GRADE and the expert es-
timates should not be used to assess correctness, but as an indication of whether the
results are in the right range. Finally, note that the full GRADE-method is not published
in a peer-reviewed journal (the weather generator is, (Leander et al., 2005)). However,
because the results are widely used in the Dutch practice of flood risk assessment (and
known to the experts as well) we considered them the best source for comparing the
results in the present study.

To evaluate the value of the applied approach that uses data combined with expert es-
timates, we compared the results that were fitted to only data or only expert judgment
to the results of the combination. For the last option we used an equal weight decision
maker, a conservative choice as the experts’ statistical accuracy could potentially still be
determined based on a different river where data for seed questions are available. While
the marginal distributions of the EJ-only case present wide bandwidths (see Fig. 6.6 b
and e), the final results for Borgharen still gave a statistically accurate result but with a
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few caveats, namely that the uncertainty is very large and that the 10-year and 1,000-year
estimates in itself are insufficient to inform the GEV without adding prior information
(otherwise we have 2 estimates for 3 parameters). Consequently, when only using ex-
pert estimates, eliciting the random variable (discharges) directly through a number of
quantiles of interest, might be a suitable alternative.

6.5.3. Final remarks on model choices

Finally, we note that using expert judgment to estimate discharges through a model
(like we did) still gives the analyst a large influence in the results. We try to keep the
model transparent and provide the experts with unbiased information, but by defining
the model on beforehand and providing specific information we steer the participants
towards a specific way of reasoning. Every step in the method, such as the choice for a
GEV-distribution, the dependence model, or the choice for the Classical Model, affects
the end result. By presenting the method and providing background information explic-
itly, we hope to have made this transparent and show the usefulness of the method for
similar applications.

6.6. Conclusions
This study sets out to establish a method for estimation of statistical extremes through
structured expert judgment and Bayesian inference, in a case-study for extreme river dis-
charges on the Meuse River. Experts’ estimates of tributary discharges that are exceeded
in a once per 10 year and once per 1,000-year event are combined with high river dis-
charges measured over the past 30-70 years. We combine the discharges from different
tributaries with a multivariate correlation model describing their dependence and com-
pare the results for three approaches, a) data only, b) expert judgment only, and c) the
combination. The expert elicitation is formalized with the Classical Model for structured
expert judgment.

The results of applying our method show credible extreme river discharges resulting
from the combined expert-and-data approach. A comparison to GRADE, the prevail-
ing method for estimating discharge extremes on the Meuse, gives similar ranges for
the 10-, 100-, 1,000-year discharges as GRADE. Moreover, the two experts with the high-
est scores from the Classical Model had discharge estimates that correspond well with
those discharges that might be expected from the observations. This indicates that us-
ing the Classical Model to assess expert performance is a suitable way of using expert
judgment to limit the uncertainty in the “out of sample” range of extremes. The experts-
only approach performs satisfactory as well, albeit with a considerably larger uncertainty
than the EJ-data option. The method may also be applied to river systems where mea-
surement data are scarce or absent, but adding information on less extreme events is
desirable to increase the precision of the estimates.

On a broader level, this study has demonstrated the potential of combining structured
expert judgment and Bayesian analysis in informing priors and reducing uncertainty in
statistical models. When estimates on uncertain extremes are needed, which cannot sat-
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isfactorily be derived (exclusively) from a (limited) data-record, the presented approach
provides a means (not the only mean) of supplementing this information. Structured
expert judgment provides an approach of deriving defensible priors, while the Bayesian
framework offers flexibility for incorporating these into probabilistic results by adjust-
ing the likelihood of input or output parameters. In our application to the Meuse River,
we successfully elicited credible extreme discharges. However, case studies for different
rivers should verify these findings. Our research does not discourage the use of more
traditional approaches such as rainfall-runoff or other hydrodynamic or statistical mod-
els. Considering the credible results and the relatively manageable effort required, the
approach (when well implemented) can present an attractive alternative to models that
approach uncertainty in extremes in a less transparent way.

Appendix 6.A: Downstream discharge calculation
Section 6.3.4 explained the method applied and choices made for calculating down-
stream discharges. This appendix explains this in more detail, including the mathemat-
ical equations.

Three model components are elicited from the experts and data:

• Marginal tributary discharges, in the form of a MCMC GEV-parameter trace. Each
combination θ consists of a location (µ), scale (σ), and tail-shape parameter (ξ).

• A ratio between the sum of upstream peak discharges and the downstream peak
discharge, represented by This is a single probability distribution.

• The interdependence between tributary discharges, in the form of a multivariate
normal distribution.

The exceedance frequency curves for the downstream discharges are calculated based
on 9 tributaries (NT ), a trace of 10,000 MCMC parameter combinations (NM ), and 10,000
discharge events (NQ ) per curve.

The NM parameter combinations for each tributary are sorted based on the (1,000-year)
discharge with an exceedance probability of 0.001: F−1

GEV (1−0.001|θ), in which F−1
GEV is

the inverse cumulative density function, or percentile point function, of the tributary
GEV. Sorting the discharges like this enables us to select parameter combinations that
lead to low or high discharges in multiple tributaries, and in this way express the tribu-
tary correlations. The sorting order might be different for the 10-year discharge than it is
for the 1000-year discharge. The latter is however chosen as it is most interesting for this
study.

For calculating a single curve, NT realizations are drawn from the dependence model.
These normally distributed realizations (x) are transformed to the [1, NM ] interval, and
are then used as index j to select a GEV-parameter combination for each of the NT trib-
utaries:

j = Round(Fnor m(x) · (NM −1)+1)). (6.8)
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This is the first of two ways in which the interdependence between tributary discharges
is expressed. The second is the next step, drawing a (NT × NQ ) sample Y from the de-
pendence model. These events (on a standard normal scale) are transformed to the dis-
charge realizations Q for each tributary’s GEV parameter combination:

Q = F−1
GEV ,j(Fnor m(Y)) (6.9)

An NQ sized sample for the ratio between upstream sum and downstream discharges (f)
is drawn as well. The (NT ×NQ ) discharges Q are summed per event (for all tributaries),
and multiplied with the factor f,

q = f ·
∑

(Q). (6.10)

Note that this notation corresponds to Eq. (6.1). The NQ discharges q are subsequently
sorted and assigned a plot positions:

p = k−a

NQ +b
, (6.11)

with a and b being the plot positions, 0.3 and 0.4, respectively (from Bernard & Bos-
Levenbach, 1955). k indicates the order of the events in the set (1 being the largest, NQ

the smallest), The plot positions (p) are the ‘empirical’ exceedance probabilities of the
model. With 10,000 discharges and our exceedance probability of interest of 1/1,000, the
results are insensitive to the choice of plot positions.

This procedure results in one exceedance frequency curve for the downstream discharge.
The procedure is repeated 10,000 times to generate an uncertainty interval for the dis-
charge estimate. Note that the full Monte Carlo simulation comprises 10,000×10,000 =
100,000,000 ‘events’ for the 9 tributaries.

Appendix 6.B: Expert estimates
The expert estimates for all items are shown in Fig. 6.B.1. Each panel shows the seven
experts’ and two decision maker’s estimates, through their 5th, 50th, and 95th percentile.



6

122 6. Estimating extreme discharges on the Meuse’s tributaries

0 500 1000 1500
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Chooz 10-yr

0 200 400
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Membre 10-yr

0 200 400 600 800
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Salzinnes 10-yr

0 200 400
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Gendron 10-yr

0 1000 2000 3000
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Chooz 1000-yr

0 500 1000
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Membre 1000-yr

0 500 1000 1500
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Salzinnes 1000-yr

0 500 1000 1500
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Gendron 1000-yr

0 200 400
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Martinrive 10-yr

0 200 400 600
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Tabreux 10-yr

0 100 200 300 400
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Chaudfontaine 10-yr

0 25 50 75 100
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Meerssen 10-yr

0 500 1000 1500
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Martinrive 1000-yr

0 500 1000 1500
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Tabreux 1000-yr

0 500 1000
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Chaudfontaine 1000-yr

0 200 400 600
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Meerssen 1000-yr

0 100 200 300 400
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Stah 10-yr

0 100 200 300
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Goch 10-yr

0.0 0.5 1.0 1.5
Factor [-]

EQ
GL

G
F
E
D
C
B
A

factor Borgharen

0.0 0.5 1.0 1.5
Factor [-]

EQ
GL

G
F
E
D
C
B
A

factor Roermond

0 200 400 600 800
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Stah 1000-yr

0 200 400 600 800
Discharge [m3/s]

EQ
GL

G
F
E
D
C
B
A

Goch 1000-yr

0.0 0.5 1.0 1.5
Factor [-]

EQ
GL

G
F
E
D
C
B
A

factor Gennep

Elicited quantiles
0.05 0.5 0.95

Factor estimates
10-yr estimate
1000-yr estimate
(if different from 10-yr)

Figure 6.B.1: Expert and DM estimates for all items.



7
Dependence elicitation using

non-parametric Bayesian
Networks

In absence of sufficient data, structured expert judgment is a suitable method to esti-
mate uncertain quantities. While such methods are well-established for individual vari-
ables, eliciting their dependence in a structured manner is a less explored field of re-
search. We tested the performance of experts in constructing and quantifying a non-
parametric Bayesian network, describing the correlation between river tributary dis-
charges. Specialized software was provided to assist the experts with this task. Expert
performance was investigated using the dependence calibration score (a correlation ma-
trix distance metric) and the likelihood of the joint distribution. Desirable properties of
the dependence calibration score are investigated theoretically. Individual expert judg-
ments are combined based on performance into a group opinion or decision maker (as
usually called in the expert judgment literature). All experts were able to create and
quantify a correlation matrix between 10 variables that resembled the observed cor-
relations well. The decision makers performed similarly to the best expert. Based on
the metrics investigated, it mattered little which expert opinions and with what weight,
were combined in a decision maker. This is partly because all experts performed well
in this study. While this good performance is encouraging, it does eliminate the need of
scoring experts and developing scoring rules for dependence elicitation. The results are
nonetheless promising: The research shows that experts are able to quickly create and
quantify dependence structures, especially when aided by specialized graphical soft-
ware.

The manuscript related to this chapter is under review at the time of writing. Authors: Rongen, G., Morales-
Nápoles, O., Worm, D., & Kok, M.
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7.1. Introduction

Scientific models can involve substantial uncertainty, especially when used to predict
unprecedented situations. In absence of data or resources to quantify these uncertain-
ties, for example, because of the unfeasibility of large experiments or data collection
campaigns, structured expert judgment is a good alternative for quantifying parameters
of interest. When sources of uncertainty are related, these dependencies should be as-
sessed in a structured way as well.

Estimating uncertainty, especially multivariate uncertainty, has been a challenge in sci-
ence and engineering. Methods for estimating univariate uncertainties with expert judg-
ment are well established and include the Delphi method (B. B. Brown, 1968) and the
Classical Model, also known as Cooke’s method (Cooke, 1991). Most studies on the uti-
lization of expert judgments in science and engineering concentrate on obtaining uni-
variate probability distributions. However, determining multivariate uncertainty (i.e.,
the joint probability distribution) is a more challenging task that requires not only the
evaluation of one-dimensional marginal distributions but also the assessment of the re-
lationships between these distributions. Hence, it poses a larger challenge on experts.
To simplify the representation of a joint distribution, various dependence models can
be used, each having different characteristics and underlying assumptions. For exam-
ple, the Bayesian Belief Net (BBN) or Bayesian Network (BN) is a graphical model that
depicts the relationship between random variables (the graph’s nodes) and their depen-
dence (the graph’s arcs) (Darwiche, 2009; Pearl, 2000). Another approach is to assume
the dependence follows a multivariate distribution, such as a multivariate normal, t, or
Dirichlet distribution. If there are only two dependent random variables, a copula can
be used (Nelsen, 2007), which offers greater flexibility in specifying, for example, tail de-
pendence, than the three above-mentioned multivariate distributions.

There are also several methods for eliciting dependence from experts. The choice of
method may depend on the type of dependence model being used, and the specifics of
the study. Daneshkhah and Oakley (2010) outline several methods for quantifying mul-
tivariate distributions and copulas. Morales et al. (2008) explores eliciting conditional
rank correlations from experts, while examples of elicitation of non-parametric Bayesian
networks (i.e., a specific form of a BN) by experts may be found in (Delgado-Hernández
et al., 2014; Morales-Nápoles, Delgado-Hernández, et al., 2014), and (A. M. Hanea et al.,
2022). An example of a Delphi based method for eliciting BNs is given by (Nyberg et al.,
2022). In Bayesian probability, expert elicitation can also be used to create informed
(multivariate) priors when insufficient data are available to specify the posterior without
using (expert) informed priors (Al-Awadhi & Garthwaite, 1998; Garthwaite & Al-Awadhi,
2001; Moala & O’Hagan, 2010). For a comprehensive overview of dependence model and
their elicitation, see Werner et al. (2017).

While a considerable body of research is available on dependence elicitation, the con-
clusions on the suitability of different methods for eliciting and scoring results are not
straightforward. Additionally, dependence elicitation in structured form (i.e., creating
defendable decision makers from experts estimates), requires a procedure for measur-
ing performance, which is a largely unexplored field of research.
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We conducted an expert elicitation to determine if expert judgment can be used to ac-
curately elicit multivariate dependence in extreme river discharges for the Meuse River.
Seven experts estimated a correlation matrix by specifying a non-parametric Bayesian
network (NPBN). They first estimated the tributary discharges (marginals) and then their
correlations. Both were then used to calculate extreme river discharges. The experts
used software that was provided to help them draw their NPBN and calculate correla-
tions. They were given examples to understand the relationship between data properties
and correlation coefficients. The correlation matrices were scored using the dependence
calibration score or d-calibration score (Morales Nápoles & Worm, 2013). These were
then used as weights to create decision makers (DMs). We analyzed the performance of
these DMs compared to the performance of individual experts and did several sensitiv-
ity analyses to test the potential effect of individual expert on the result. Additionally, a
significance level for the d-calibration score is calculated to indicate whether an expert’s
estimate is significantly better than an uninformed guess. Finally, we show theoretical
properties of the dependence-calibration (or d-calibrations) score as a desirable met-
ric of expert performance when eliciting dependence. The methods of estimating the
marginals, as well as the discharge statistics resulting from the elicited marginals and
dependencies, are described in Chapter 6.

7.2. Methods
In this study, experts estimate dependence between discharge peaks of tributaries within
a catchment by quantifying a Non-Parametric Bayesian Network (NPBN) network us-
ing supporting software. The method description includes the expert elicitation pro-
cess (Section 7.2.1), the discharge data used (Section 7.2.2), and the method for scor-
ing the experts’ estimates (Section 7.2.3). Background information on (Non-Parametric)
Bayesian Networks and copulas is found in Section 2.2.3. For this study, the most rele-
vant feature about NPBNs to remember is that it may be characterized by a rank correla-
tion matrix, which is used to quantify the dependence in a multivariate normal copula.

7.2.1. Expert elicitation of correlated tributary discharges

The dependence elicitation presented in this study was conducted as part of a larger ex-
pert elicitation focused on extreme discharges of the river Meuse, which runs through
parts of France, Luxembourg, Belgium, and the Netherlands. Seven experts participated
in the elicitation that took place on 4 July 2022. During this session, the experts esti-
mated the discharge that is exceeded on average once per 10 and 1,000 years. These
estimates were then combined with data to form extreme value distributions (Rongen
et al., 2024). For calculating extreme discharges along the Dutch part of the Meuse, also
the statistical dependencies between tributary discharges were elicited. The results of
this, the estimates of statistical dependence, are presented in this article.

Participants were tasked with estimating a correlation matrix representing the depen-
dence between 10 tributaries. A non-parametric Bayesian network (NPBN) was deemed
an appropriate tool for this task, for three reasons: Firstly, experts can intuitively con-
sider a ‘causal’ structure when specifying correlations. Secondly, a NPBN reduces the
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number of coefficients to be specified, as only the (conditional) rank correlations for the
arcs of the NPBN are needed instead of between each pair of nodes (see Section 2.2.3).
Bivariate correlations not directly specified on the arcs of the NPBN are calculated from
the specified ones and the conditional independence statements embedded in the graph
of the BN. Finally, all specified conditional rank correlations in the NPBN will result in
a valid (i.e., positive semi-definite) correlation matrix, while the specification of num-
bers in [−1,1] for every element of a squared matrix would not necessarily result in a
valid correlation matrix. The simplest example for this is a correlation matrix with three
variables X1, X2, and X3, in which both pairs (X1, X2) and (X2, X3) are fully positively cor-
related. In this case the pair (X1, X3) must then be fully dependent as well, as they are
related through X2, with which they are both fully dependent. Any other value than 1.0
between X1 and X3 will thus result in an invalid correlation matrix. In case the correla-
tions are strong, but not perfect, such conditions become less clear, but they still need to
be satisfied to create a valid correlation matrix.

To assist the experts in creating the NPBN, we developed a GUI-based program called
Matlatzinca. This program, based on (Koot et al., 2023; Paprotny et al., 2020), enables
experts to easily draw a NPBN by adding nodes and edges, and specifying correlations
between them. The program also imposes limits on the correlations that can be assessed
by experts, such as the example above of the random vector (X1, X2, X3), helping them
in creating valid correlation matrices. Matlatzinca also provides a visualization tool to
show the impact of a certain rank correlation coefficient on conditional probabilities,
similar to (Morales et al., 2008, Fig. 3 and 4), which are intended to clarify the effect of a
specific correlation coefficient.

In structured expert judgment, seed questions are used to determine the experts’ per-
formance. Performance-based weights are derived from these seed variables which are
then used to obtain the answers for the (unknown) target variables. In this study, experts
estimate a correlation matrix that is also calculated from the observations. This enables
us to test the experts’ performance. We do not separately define tail-dependence for
the correlations (i.e., different dependence for the extremes) since the used dependence
model does not facilitate the possibility to model these in detail.

7.2.2. Discharge data and peak selection

We obtained the discharge data needed for testing the experts’ performance from Ser-
vice public de Wallonie (2022) for the Belgian gauges, from Waterschap Limburg (2021)
and Rijkswaterstaat (2022) for the Dutch gauges, and from Land NRW (2022) for the Ger-
man gauge. These discharge data are mostly derived from measured water levels and
rating curves. During floods, water level measurements can be incomplete and rating
curves inaccurate. For our application, this matters less as we elicited rank correlations;
measurement errors and errors in the rating curves are less likely to change the ranks
(the order of magnitude) than the absolute values.

Figure 7.1 shows the availability of data for the elicited tributaries and Borgharen. Events
were selected based on the discharge at Borgharen. Peak over Threshold (PoT) was ap-
plied to select every event with a discharge larger than 750 m3/s within a centered time
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window of 15 days (7 days before the peak, the day of the peak, and 7 days after).
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Figure 7.1: Availability of measured discharge data for different tributaries and the main river branch at
Borgharen

The time ranges for which data are available varies between different stations. Creating a
valid correlation matrix requires complete records, which is why we decided to exclude
the time series for the river Sambre when comparing the estimated dependencies and
observed dependencies. This resulted in 106 events instead of 46. Omitting the river
Vesdre would further increase the number of events to 111 but we consider it to be a
more significant tributary and the 5 extra events not worth excluding it. After excluding
the Sambre, 9 of the 10 elicited tributaries remain in the correlation matrices.

The 106 events are used to evaluate the performance of experts and DMs in estimat-
ing dependence. This is small number of events, considering the 36 unique correlation
coefficients that are present in a 9-variable correlation matrix. In several analyses, we
account for the uncertainty that results from the specific set of observations by using a
non-parametric bootstrap. This involves drawing a random sample with replacement
from the observed discharge peaks and calculate the results for that set of events. Some
events may appear multiple times in the resampled set, while others may not appear at
all.

7.2.3. Scoring the experts’ performance

We apply performance-based weighting to combine the different experts’ estimates into
a decision maker. For the (univariate) tributary discharges, we combined the estimates
using the Classical Model (Cooke & Goossens, 2008). The underlying idea is that a (perfor-
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mance-based) weighting of expert estimates gives a better estimate than a single expert
or an equally weighted combination. We continue on this assumption but need a differ-
ent score to assess an expert’s performance, because the Classical Model is not suited for
scoring dependence. We use the d-calibration score instead (Morales Nápoles & Worm,
2013; Morales-Nápoles, Hanea, & Worm, 2014). This score uses the Hellinger distance
dH to compare two multivariate probability distributions. For the case of NPBNs the
Hellinger distance is a function of two correlation matrices:

dH (R1,R2) =
√√√√1− |R1|

1
4 |R2|

1
4

| 1
2 R1 + 1

2 R2|
1
2

(7.1)

R1 and R2 are the two correlation matrices being compared. Notice that if R1 = R2, dH =
0 , while the maximum value dH may take is 1. The d-calibration score for expert e,
dC al (e), is defined as:

dC al (e) = 1−dH (Rq ,Re ). (7.2)

This score consequently varies on a scale from 0 to 1 and can be used as weights (af-
ter normalization) to calculate decision makers (DMs) similar to the Classical Model
(Cooke, 1991). In Eq. (7.2), Rq denotes the observed correlation matrix to be used for
calibration purposes and Re the expert estimated correlation matrix. The d-calibration
score has the following properties: a) an expert will receive the maximum score when
and only when she/he captures exactly the observed dependence structure; b) an expert
may get a low calibration score if, for example, a high correlation between a pair of vari-
ables was expressed by the expert while this was not expressed by the true dependence
structure Rq (or vice-versa); and c) a necessary condition for an expert to be highly cali-
brated is to sufficiently approximate the dependence structure of interest entry-wise. A
formal treatment of the d-calibration score and proofs of the properties discussed are
presented in Section 7.A. Other scores may be used as well. However, their properties
have not been investigated by the authors to a similar extent as the d-calibration score
(Section 7.A) and are therefore not considered in this research.

We did however consider the likelihood to check if the d-calibration performs as ex-
pected. Likelihood is a measure to compare a probabilistic model with observations.
The probability density function of the used MVN-distribution is:

f (q) = 1√
(2π)k |Σ|

exp

(
−1

2
(q−µ)TΣ−1(q−µ)

)
. (7.3)

The discharge observations q is a vector with a realization for each of the k tributaries.
Σ is the covariance matrix. By transforming the observations to standard normal space
(i.e., x = Φ−1

(
rank(q)

)
) the covariance matrix Σ becomes the correlation matrix R, and

the mean µ drops out. The log-likelihood then becomes:

ℓ(R|x) = log

(
1√

(2π)k |R|

)
− 1

2
xT R−1x. (7.4)

The log-likelihood is not a probability and does not range from 0 to 1. With a 9-variable
MVN-distribution, the likelihoods are in general very small and will vary greatly (more
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or less exponentially) between experts. This means that a single expert will almost al-
ways have close to 100% of the weight making it too strict to use as performance-based
weight. We did however use it to further investigate the performance and consistency
of the d-calibration score. Note that the log-likelihood compares the observations to the
(chosen) MVN-distribution that corresponds to the estimated correlation matrix, while
the d-calibration score compares the observed rank correlation and estimated matrix
directly.

7.3. Results

7.3.1. Bayesian networks and correlation matrices

The Bayesian networks quantified by individual experts are shown in Fig. 7.2. We under-
scored that the primary goal of the expert judgment exercise was accurately obtaining
the correlation coefficients of interest. The general approach for quantifying the corre-
lations was that experts chose to connect neighboring tributaries and assigned (condi-
tional) rank correlations to the arcs such that the resulting non-conditional correlation
matches their estimate. Expert C and expert G adopted an approach in which differ-
ent catchments are linked through hierarchical nodes presenting precipitation. Expert C
additionally connected the tributaries upstream to downstream, while expert G created
three fully connected groups connected through parent precipitation nodes.

The Bayesian networks in Fig. 7.2, together with the experts’ assessments of (conditional)
rank correlations, give the correlation matrices shown in Fig. 7.3. The observed corre-
lation matrix, which is the one against which experts’ performance will be evaluated,
is shown in the top left matrix. Expert A estimated generally high correlations (higher
than observed), experts C, F, and G present lower correlation coefficients than A, while
the lowest correlation coefficients are estimated by experts E, D, and B. The hierarchical
approach used by expert C and G did not result in distinctly different matrices. The hier-
archical grouping of variables is more visible in Expert C’s matrix compared to Expert G,
although it is also present in Expert A’s matrix who did not adopt a hierarchical approach.

7.3.2. Experts’ and decision makers’ performance

Scores

Table 7.1 shows the d-calibration scores (higher is better) and log-likelihoods (less neg-
ative is better) calculated from the expert correlation matrices. For comparison, the sta-
tistical accuracy scores according to the Classical Model from (Rongen et al., 2024) are
shown in the last column. Note that these are calculated from the expert’s univariate es-
timates. Morales-Nápoles, Hanea, and Worm (2014) found that statistical accuracy (the
Classical Model) and d-calibration score are generally, but not always, well correlated,
meaning that the experts that estimate univariate random variables accurately also per-
form generally good for estimating multivariate uncertainties.

To put the experts’ performance into context, two additional d-calibration scores are
presented: The first are the scores for the observed correlation matrix. Estimating this
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Figure 7.2: Bayesian networks as drawn by the experts. The thickness of the arrows show the strength of the
non-conditional correlation. The grey areas on the background represent a map of the catchments between
which the dependence is elicited, with the blue line showing the main branches of the Meuse River.
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Figure 7.3: Correlation matrices corresponding to the NPBNs drawn and quantified by the experts.

would give the best possible d-calibration score and log-likelihood. The second result is
a 5% significance level. A score above this level indicates that it is unlikely (<5% prob-
ability) that the expert’s matrix is uninformed, i.e., part of the population of randomly
drawn NPBNs. As there is no well established method for deriving such a criterion in
the context of dependence elicitation, we derived one ourselves. This was done by ran-
domly sampling NPBNs with uniform, non-negative, (conditional) rank correlations on
the edges, and calculated the resulting d-calibration scores. The 95th percentile of these
scores, which is 0.15, is the significance level. This value depends on the number of vari-
ables and the assumptions for sampling the matrices. The method and results for this
approach are explained in Section 7.B.2.

Based on both the d-calibration score and the log-likelihood shown in Table 7.1, Expert
E’s correlation matrix is best, closely followed by experts F and D. Expert A has the lowest
score, but it is still higher than the 5% significance level. Experts B, C, and G have a score
roughly in between the scores of A and E.

The global weights (GL) DM is a weighted average of the experts’ correlation matrices,
in which the normalized d-calibration scores are the weights. The equal weights (EQ)
DM is the average of the matrices, without differentiating weights between experts. Both
DMs have a high d-calibration score compared to most experts, but slightly lower than
the best expert (GL has a closer to zero log-likelihood, which implies better performance
than the best expert). EQ has a slightly higher d-calibration score than GL, but GL has
a better log-likelihood. The global weight DM with optimization (GL opt.) is calculated
by selecting experts based on a minimum required d-calibration score and calculating
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Table 7.1: d-calibration scores and likelihood for experts’ and DMs’ correlation matrices

dependence
calibration score

Log-likelihood Statistical accuracy
(Classical Model)

Expert A 0.165 -2442.6 7.99 ·10-4

Expert B 0.308 -1016.5 4.56 ·10-4

Expert C 0.284 -1396.5 2.3 ·10-8

Expert D 0.371 -961.7 0.683
Expert E 0.444 -933.7 0.192
Expert F 0.411 -993.4 4.56 ·10-8

Expert G 0.268 -1184.6 6.29 ·10-3

EQ DM 0.439 -937.1
GL DM 0.437 -932.5
GL opt. DM (dC al > 0.411) 0.468 -923.3

Observed 1.000 -812.2
95% significance level (α) 0.150

the weighted average of the included experts’ matrices. Using a minimum d-calibration
score of 0.411 results in the optimum (i.e., highest d-calibration score) by giving a non-
zero weight to experts E and F. The result is a slightly higher score than the GL and EQ
DMs and better than any of the experts.

Finding the ‘best’ decision maker

While it is encouraging to see that all DMs score similarly to the best expert, the result-
ing scores are not distinctively better. The equal and global weights are practically equal
for the case under investigation (this is not always the case, see for example: Morales-
Nápoles, Hanea, & Worm, 2014). This is partly due to the experts’ d-calibration scores
being close together, especially in comparison the scores from the Classical Model. Be-
cause the DMs are hardly distinctive, it is interesting to see what the ideal weight dis-
tribution (i.e., the ‘best’ DM) would look like. To further examine this, we optimized
the weights by maximizing both the d-calibration score and log-likelihood. The ap-
proach is different from the GL opt. DM, where the weights are restricted to the d-
calibration scores in combination with a cut-off level. Instead, we optimized while al-
lowing all experts’ weights to vary freely. To ensure stability of the optimum, we used
different starting points. Figure 7.4 shows the results for this. The left bars show the
optimized weights when optimizing the log-likelihood, the right bars when optimiz-
ing the d-calibration score. The maximum log-likelihood is -910.5 and the maximum
d-calibration score 0.506, both higher than the DM result calculated directly. The obser-
vations were bootstrapped to check the sensitivity of the optimum to the specific set of
observed events. The thin lines, a kernel density estimate of the resulting weights from
bootstrapping, illustrate the uncertainty in the factor under re-sampling.

Surprisingly, the results of the weights optimization are different from the d-calibration
scores in Table 7.1. Experts B, F, and G are given almost zero weight, despite having well-
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Figure 7.4: DM weights optimized based on the log-likelihood and d-calibration score, including uncertainties
from bootstrapping.

approximated correlation matrices (e.g., F had the second-best d-calibration score). At
the same time, expert A, with the lowest score, is assigned a very large weight. This is due
this experts’ high estimated correlations (see Fig. 7.3), which compensate for the weaker
than observed correlation estimates from the other experts. This effect is stronger for
the d-calibration score than when using log-likelihood. The opposite happens for expert
B, who estimated the lowest correlations. Experts F and G do not seem to add a unique
contribution to the weighted sum, which leads to their low weights. Whether this incon-
sistency between optimal weights on one side and d-calibration scores and likelihoods
on the other side is a systematic feature of the weighing scheme or a feature of this par-
ticular exercise on dependence elicitation, remains an open question.

Robustness of the decision makers

The optimized results from last section suggest that a few specific experts should be in-
cluded when constructing the DM. To assess the sensitivity of the DM to specific experts,
the d-calibration scores were calculated for different combinations of experts. This is
similar to checking the expert robustness in the Classical Model. The results for using
equal weights are visualized in Fig. 7.5, with (a) showing the DM score for each combi-
nation including a specific expert and (b) by showing the score per combination of 1 to
7 experts. The results for the global weight DM are very similar and therefore presented
in Section 7.B.1, including the robustness of the GL DM with optimization.

The results show that the performance of the DMs is relatively insensitive to the indi-
vidual experts in this specific set. The differences in average scores for each expert are
less than 0.05 (as Fig. 7.5 shows). Surprisingly, it matters little which experts are com-
bined, the number of experts is more important for a good score (as Fig. 7.5 b shows).
The average of the covariance matrices of multiple experts tends to result in a better per-
formance than the individual matrices, both in terms of the d-calibration score and the
(log-)likelihood. This pattern is also observed when comparing the average of a sample
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Figure 7.5: Robustness of the equal weight decision maker. Left (a), the score for all combinations including
the expert. Right (b), the score for each combination of 1 to 7 experts.

of random correlation matrices to another random correlation matrix. Section 7.B shows
the details of this.

While a combination with 2 experts gives the highest score (this is the GLopt DM in Ta-
ble 7.1), including more experts is a more robust option as every combination of 4 ex-
perts gives a d-calibration score varying between 0.35 and 0.50. Using the average of a
few experts’ matrices represents the observed correlations better than most of the in-
dividual matrices. This is however closely tied to the experts’ good individual scores.
When a low-scoring expert is in the pool, the results do become more sensitive to indi-
vidual experts. Section 7.B.3 shows this, by adding a hypothetical low-scoring expert to
the pool. Doing this does make the results sensitive to individual experts, reinstating the
importance of scoring, especially because the expert weights are relatively close together
(a ’bad’ expert is still likely to have a substantial weight). After filtering experts based on
the significance level the pattern, that the mean matrix performs on average better than
the individual matrices, reappears.

7.4. Discussion and final remarks

In this study, we elicited the dependence of a river’s tributaries’ peak discharges from ex-
perts, by making them construct and quantify a non-parametric Bayesian network. The
experts were scored by the d-calibration score and likelihood of their matrix. Sensitivity
analyses were done on their results, to see what combination of experts’ and what scores
give the best result. Dependence elicitation is much in its infancy still. By sharing our
findings and insights on the elicitation process (Section 7.4.1) and the more theoretical
aspect of scoring (Section 7.4.2), we hope to contribute to the progression of the field of
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Figure 7.6: Example of information provided to the experts to aid them in estimating rank correlations.

dependence elicitation.

7.4.1. Practice of expert dependence elicitation

Non-parametric Bayesian networks are not uncommon in hydrological modeling (e.g.
Paprotny & Morales-Nápoles, 2017; Ragno et al., 2022) but unknown to most hydrolo-
gists. The concept of a NPBN is for a non-statistician difficult to master within the short
period of time that is usually available in the preparation of an expert elicitation. This
did however not limit most experts in creating a NPBN that represented the observed
correlations well with relative ease. The experts were done within half an hour, while we
were initially doubting whether a 10-node network would be too much of a strain for the
experts. The quick results for a) building and b) quantifying the NPBN contrasts with
for example (Barons et al., 2022; A. M. Hanea et al., 2022), who explicitly split the two
phases in the elicitation process. In our study, the experts needed to estimate correla-
tions between a single physical quantity (river tributary discharges), reducing the bur-
den of building the network. Additionally, the graphical interface (see Fig. 3.4) in which
experts can directly see the effect of their structure and estimates rank correlations, likely
makes the elicitation process easier for the experts.

Experts estimated rank correlations directly but were given graphical aid to inform these
coefficients, for which an example is given in Fig. 7.6 a. However, during the elicitation,
the experts suggested using scatter plots for relating correlation coefficients. This infor-
mation was provided to them by generating samples from bivariate normal distributions
with specific correlation coefficients. These were transformed to ranks, to make it easier
for experts to relate it to a fraction of the discharge peaks (e.g., the correlation between
the highest 10% discharges for tributary A and B). Figure 7.6 b. shows an example. For the
participants, this representation was more intuitive than the accurate but abstract rela-
tion between conditional probability and rank correlation coefficient (i.e., estimating a
correlation coefficient based on Fig. 7.6 b was perceived easier than based on Fig. 7.6 a).
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7.4.2. Dependence scoring

The d-calibration score was used to score the experts performance and provide weights
for the decision makers. A scoring rule should help with selecting the most accurate
experts and ideally also assign weights such that the (weighted) combination of experts
performs better than the best expert. Comparing the more established log-likelihood to
the d-calibration score shows that the d-calibration score does indeed select the most
accurate estimates. However, it did not result in a DM that performs significantly better
than the individual experts, as this requires a set of weights that gives a greater weight
to the worst performing expert (as shown in Section 7.3.2). This is inconsistent with
the d-calibration scores as well as the (log-)likelihoods and is therefore unlikely to be
an indicating of what a better scoring rule would be. Note that we were able to find
the optimal weight because the ideal answer (i.e., the observed correlation matrix) was
known. However, a score should also be trusted upon when the elicited dependencies
are unknown.

Regarding the sensitivity of the d-calibration scores, we observed the following:

• All experts scored better for estimating dependencies than the derived significance
level of (a d-calibration score of 0.15), while only 2 of the 7 experts scored above the
significance level for the Classical Model (for estimating univariate uncertainties).

• The DM results are relatively insensitive to weights (derived from the d-calibration
score) assigned to the experts; equal weights (EQ) scores similar to global weights
(GL), and it does not matter much for the score which experts are combined into
a DM. On top of that, increasing the number of experts in the decision maker in-
creases the resulting DM-score for most combinations of experts.

• This changes when a hypothetical low-scoring expert is added to the pool. This
makes the GL DM perform better than the EQ DM, and the results become more
sensitive to the specific experts included in the DM.

These findings underscore the importance of scoring the experts and using a signifi-
cance level or optimization to filter out ’bad’ results. This is especially the case for the
d-calibration score because the score is less rigorous, such that ‘bad’ results will still get
a significant weight (in contrary to the Classical Model). What a generally suitable cut-
off level or significance level is, is yet to be determined. The random matrix sampling
might give a good indication as the expert-insensitive results indicate that the signifi-
cance level, a d-calibration score of 0.15, higher than the hypothetical low-scoring ex-
pert, rightly included all experts.

It is encouraging to see that all 7 experts were able to provide good estimates for depen-
dence, while only 2 experts had univariate estimates that scored above the significance
level. We are aware that this is a comparison between two different scoring rules, and an
observation from only a single study. Future research should therefore focus on cross-
checking these results with past dependence elicitation studies, and if needed, on per-
forming extra studies to generate more empirical data. This would help the research on
dependence scoring rules and methods for combining dependence estimates.
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7.4.3. Conclusions

This study set out to a) estimate multivariate dependencies with expert judgment and b)
analyze the behavior of the d-calibration score that is used for joining different experts’
results into a single decision maker. Experts estimated the dependence between peak
discharges of tributaries within a river catchment, using a non-parametric Bayesian net-
work and graphical software for support. The experts were well able to reproduce the
observed dependencies in data, with all experts performing significantly better than a
5% significance level calculated from generated random networks.

The decision maker, a (weighted) combination of experts, scored similar to the best ex-
pert. It succeeded in picking out the best experts but did, in this case study, not generate
a significantly ‘better’ expert. We observed that the more experts are included in the
weighing pool, the higher the DM-score becomes on average. It does not significantly
exceed the best expert’s score, but the score is consistently higher than the average of the
included scores and relatively insensitive to the specific included experts. This observa-
tion is closely tied together with the fact that all experts scored above the significance
level for the d-calibration score. Adding a (hypothetical) low-scoring expert to the pool
does make the results sensitive to individual results, thereby underscoring the relevance
of expert weighting. The good expert estimates are an encouraging result for the field of
dependence elicitation and contrast to the scores for their univariate estimates, in which
only two experts exceeded the significance level.

This research shows promising results for eliciting dependence structures using graphi-
cal software and combining the experts’ estimates. We advice comparing the results to a
larger set of studies, including dependence structures with a) more physical quantities in
a more complex structure and b), that include more divergent or negative correlations.
While the d-calibration score has useful properties and performs satisfactorily, a com-
parison to other dependence scoring rules is needed to see if this can be improved. This
does however not compromise the outcome of this study, which is that experts were able
to quickly create and quantify dependence structures for river tributary discharges, that
well represent observed dependencies.

Appendix 7.A: Proofs for d-calibration score properties1

In Moustafa et al., 2010 several measures of distance between Gaussian densities are dis-
cussed. We consider the Hellinger distance dH (N1, N2) =

√
1−η(N1, N2) where N1(µ1,Σ1)

and N2(µ2,Σ2) are two Gaussian densities with covariance matrices Σ1,Σ2, and vector
means µ1,µ2, and η is as in Eq. (7.5). Notice that the notation used in this appendix is
slightly different from that used in the main body of the paper to make this section more
self contained.

η(N1, N2) = |Σ1|
1
4 |Σ2|

1
4

| 1
2Σ1 + 1

2Σ2|
1
2

×exp{−1

8
(µ1 −µ2)T 1

2
Σ1 +

1

2
Σ2(µ1 −µ2)} (7.5)

1This appendix was authored by Worm, D. & Morales-Nápoles, O.
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The dependence structure of a multivariate random vector as modeled by a copula is not
disturbed by monotone transformations of the marginal distributions. In other words,
by transforming the marginal distributions to standard normal because of the normal
copula assumption in NPBNs, we may work out all calculations on a joint normal dis-
tribution with standard normal margins. The advantage of modeling dependence with
copulas is that no assumptions need to be placed on the marginal distributions and all
calculations can be performed using their transformed form. After such transformation,
we can rewrite Eq. (7.5) for the transformed variables. Then the exponent term vanishes
and Σ1, Σ2 correspond to correlation matrices. Subsequently, we will write dH (Σ1,Σ2) to
denote the Hellinger distance between two normal copulas with correlation matrices Σ1

and Σ2 as follows:

dH (Σ1,Σ2) =
√√√√1− |Σ1|

1
4 |Σ2|

1
4

| 1
2Σ1 + 1

2Σ2|
1
2

(7.6)

As discussed in Moustafa et al., 2010, the Hellinger distance satisfies the axioms of a
metric: it is non-negative, it equals zero if and only if Σ1 = Σ2, it is symmetric and it
satisfies the triangle inequality. Observe that its maximum value is 1, which is attained
if |Σ1| = 0 (there is some linear combination between pairs of variables) and |Σ2| > 0 or
vice versa. Another property that makes dH interesting for our purposes is that if the
dH metric between two matrices is small enough, the pairwise differences between the
entries of these matrices must be small as well. This property follows from Theorem
1 below. || · ||∞ denotes the supremum norm, that is, ||B ||∞ = maxi , j (bi , j ). Note that
the pairwise differences between the entries of two matrices A and B are bounded from
above by ∥A−B∥∞.

Theorem 1. Let Σ be in Cn with |Σ| > 0, where Cn denotes the space of n-dimensional
correlation matrices. For all ϵ > 0 there exist a δ > 0, such that for each Σ1 in Cn with
dH (Σ,Σ1) < δ the relation ||Σ−Σ1||∞ < ϵ holds.

Proof. Let a > 0. We define X = (Cn,a ,∥ · ∥∞), the metric space of n-dimensional correla-
tion matrices whose determinant is larger than or equal to a (a > 0), endowed with the
supremum norm. Then X is compact, since it is a closed subset of the compact set Cn .
Let Y be the metric space (Cn,a ,dH ). Since it is a metric space, it is Hausdorff.

Finally, let f : X → Y be the identity map sending matrix A to A. Then it is a bijection
from X to Y . It is also continuous: If (Ak )k converges to A in supremum norm, then
it converges entry-wise to A. Since the determinant is a polynomial of the entries of
a matrix, and hence continuous, we see that |Ak | must converge to |A|. From this, it
follows that dH (Ak , A) → 0 as well.

A basic theorem from topology (i.e. Armstrong, 1983, Theorem 3.7), implies that f is a
homeomorphism. Therefore, the identity map from Y = (Cn,a ,dH ) to X = (Cn,a ,∥ · ∥∞) is
continuous.

Let Σ in Cn be such that |Σ| > 0. Then in particular b := |Σ|1/2

|Σ|1/4 > 0.
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From the Minkowski determinant theorem (see Marvin and Henryk, 1992) it follows that
for all positive semi-definite matrices A and B , |A +B |1/2 ≥ |A|1/2 +|B |1/2. Applying this

equality on the Hellinger distance, we can compute that dH (Σ,Σ1) ≥
√

1−|Σ1|1/4b.

From this it follows that if dH (Σ,Σ1) < γ for some Σ1 ∈Cn , then |Σ1| ≥
[

1−γ2

b

]4
=: c.

Let us choose γ = 1/2, then c > 0 and thus Σ1 ∈ Cn,c for all dH (Σ,Σ1) < γ. Let a =
min(c, |Σ|). Then a > 0. For all ϵ > 0 there is a 0 < δ < 1/2 such that for all Σ1 ∈ Cn with
dH (Σ1,Σ) < δ, ∥Σ1−Σ∥ < ϵ, since the identity map from Y = (Cn,a ,dH ) to X = (Cn,a ,∥·∥∞)
is continuous.

Theorem 1 implies that if the Hellinger distance from an arbitrary correlation matrix Σ1

to the given correlation matrix Σ is close to zero, then the correlation matrices must be
entry-wise close to each other as well. This is an essential important property in our
context.

Based on the Hellinger distance we propose the dependence-calibration or d-calibration
score to be defined as follows:

Definition 1. Let ΣT be the true (target) and known correlation matrix of an n-dimensio-
nal distribution used for calibration purposes. Let Σe be the correlation matrix elicited
from expert e. Then the d-calibration of expert e is:

dC al (e) = 1−dH (ΣT ,Σe ).

Analogous to Cooke’s classical model, the d-calibration score would in general be com-
puted using a set of seed questions regarding known parameters (correlations) from the
dependence structure ΣT . The values of these parameters would only be known by the
analyst, and not by the experts at the moment of the elicitation. The questions used
to elicit the correlations used for calibration purposes should be as close as possible to
the context of the unknown dependence estimates of interest. In this appendix ΣT is
the generic notation for the target correlation matrix realized by the appropriate NPBN
(calibration) model. For example, the observed correlation matrix shown in Fig. 7.3.

The following properties of the d-calibration score hold:

Theorem 2. Let the d-calibration score be defined as in Definition 1. Assume that the
target correlation matrix ΣT satisfies |ΣT | > 0. Then the following properties hold:

a) dC al (e) = 1 if and only if Σe =ΣT .

b) Let (em)m be a sequence of experts. Then dC al (em) → 0 as m →∞ if and only |Σem |→ 0
as m →∞.

c) Let (em)m be a sequence of experts. Then if dC al (em) → 1 as m →∞, then (Σem )i , j →
(ΣT )i , j as m →∞.
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Proof. Property a) follows from the fact that dH is a metric (2010). From the Minkowski
determinant theorem (see Marvin and Henryk, 1992) it follows that

|ΣT |
1
4 |Σem | 1

4

| 1
2ΣT + 1

2Σem | 1
2

≤ |ΣT |
1
4 |Σem | 1

4

| 1
2ΣT |

1
2 +| 1

2Σem | 1
2

→ 0

as |Σem | → 0. For the converse direction, note that dH (em) ≥ |ΣT |
1
4 |Σem | 1

4 , since the de-
terminant of a correlation matrix is less than or equal to 1. Therefore, if dH (em) → 0,
|Σem |→ 0 as well. This proves property b).
Property c) follows directly from Theorem 1.

Remark 1. Each property from Theorem 2 can be understood as a characterization of a
desirable propriety of an elicited correlation matrix. Property a) means that an expert
will receive the maximum d-calibration score when and only when they capture exactly
the true/target dependence structure; property b) indicates that an expert may get a low
calibration score if, for example, a high correlation between a pair of variables was ex-
pressed by the expert while this was not expressed by the true dependence structure ΣT (or
vice-versa); and property c) implies that a necessary condition for an expert to be highly
calibrated is to sufficiently approximate the dependence structure of interest entry-wise.

We want to use the d-calibration score to decide whether an expert has approximated
sufficiently well the true/target correlation matrix. We do this by constructing the em-
pirical distribution of dC al (T ) using a sample of given size from the normal copula with
correlation matrix ΣT . Then we observe whether the value of dC al (e) falls below a par-
ticular percentile (significance level) of the empirical distribution of dC al (T ). Thus, we
test the following hypothesis:

H0: dC al (e) comes from the distribution of dC al (T ).

Rejecting H0 would give grounds to believe that the difference between the target (cal-
ibration) correlation matrix and the expert’s assessments may not be exclusively due to
sampling fluctuation.

Appendix 7.B: Behavior of the d-calibration score
In Section 7.3.2, the robustness of the decision makers was tested by evaluating the d-
calibration score for different combinations of decision makers. The results show that,
on average, the mean of the covariance matrices performs better than the individual
matrices from which the mean is calculated. This appendix shows more details of that
analysis (Section 7.B.1), and investigates if these findings hold for randomly sampled
correlation matrices as well (Section 7.B.2). This random matrix sampling is used to de-
fine a significance level for the d-calibration score. Finally, Section 7.B.3 shows the effect
of adding a low-scoring expert to the pool.
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7.B.1. Robustness of mean matrices for global DM

Where Fig. 7.5 shows the robustness for equal weights decision maker to the individual
experts (a) and number of experts (b), Fig. 7.B.1 shows this for the global weights deci-
sion maker. The weights are calculated by normalizing the experts d-calibration scores.
The difference between the EQ and GL robustness results is negligible. To show the ro-
bustness of the global optimized decision maker as well, the expert combination with
the highest individual weights is circled in Fig. 7.B.1 b. Note that the actual global op-
timized DM is the circled dot for two experts, as the method for determining the global
optimized DM is calculating all the circled dots, and selecting the one with the highest
score. Interestingly, the circled dot for two experts is not the highest scoring two-expert
combination, neither is this the case for the three, four, five, and six-expert combina-
tions. This is consistent with our findings in Section 7.3.2, which showed that the ‘best’
combination is not necessarily a combination of experts with the highest d-calibration
scores.
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Figure 7.B.1: Robustness of the global weight decision maker. Left (a), the score for all combinations including
the expert. Right (b), the score for each combination of 1 to 7 experts.

The d-calibration score (i.e., global DM weight before normalization) of the highest scor-
ing expert is about three times as high as the lowest scoring expert’s score. This variation
between scores is smaller than what is usually observed in the Classical Model for uni-
variate uncertainty (see for example Cooke & Goossens, 2008). If differences between
experts’ d-calibration scores would be larger, we would observe variations in the GL DM
score like the results for 1 or 2 experts in Fig. 7.B.1 b, as this is the number of experts that
usually share the majority of the weight in the Classical Model.

A different representation of the effect of averaging the matrices is shown in Fig. 7.B.2.
Every marker in this scatter plot represents a combination of experts (the color indicat-
ing the number of experts in the combination). The x-position shows the mean of the
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individual experts d-calibration scores (in that combination), and the y-position the d-
calibration score of the experts’ mean matrix. In other words, the further the marker is
located to the upper-left corner, the greater the improvement in score from averaging
the individual matrices. The diagonal line gives the average increase of the mean ma-
trix’s score to the mean score of the individual matrices, for each number of experts in
the combination. The average increase in score is listed in the figure’s legend as well.
Notice that there is a consistent gain by combining experts estimates. However, after
combinations with 3 experts, the average gain is minimal for the case under investiga-
tion.
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Figure 7.B.2: d-calibration scores of the mean matrix, compared to the average scores of the individual con-
tributing matrices.

7.B.2. d-calibration scores for random matrices

Last section’s analysis showed that combining the correlation matrices that were elicited
from the experts consistently results in a better d-calibration score. To test this increase
in scores in a more general setting, random correlation matrices were sampled, averaged
(using equal weights), and compared to another random matrix.

Random correlation matrices were sampled by generating a saturated graph of 9 nodes
(similar to the number of nodes in this study) and 36 edges. Each edge was then as-
signed a random conditional rank correlation sampled from a uniform [−1,1] distribu-
tion U (−1,1). This approach is known as the Vine-method (Joe, 2006). We chose this
specific method because a), it is consistent with what an expert would do when ran-
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domly quantifying a BN (under the assumption that the graph is saturated and the coef-
ficients are drawn from U (−1,1)) and b), it is easy to create matrices with constraints on
the distribution of the conditional rank correlations. The sampling procedure is:

1. Generate 100,000 correlation matrices using the Vine-method.

2. Pick a ‘true’ matrix and a matrix guessed by each of the N experts from the set.

3. Calculate the mean matrix of 1, 2, 3, 7 and all (experts’) matrices, and compare
each to the ‘true’ matrix by calculating the d-calibration score.

Figure 7.B.3 shows the results for this, for 1, 2, 3, 7, and an ‘infinite’ number of experts.
To simulate the average matrix of infinite experts, the average of the 100,000 sampled
matrices was used. Note that this closely matches a correlation matrix representing in-
dependence (i.e., all zeros except for ones on the diagonal) for the Vine-method under
the mentioned preconditions.
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Figure 7.B.3: d-calibration scores of the average of experts’ random matrices with conditional rank-correlations
sampled from (a) U (−1,1), or (b) U (0,1), compared to a random ‘true’ matrix.

The consistent improvement in d-calibration score when averaging random matrices is
similar to the pattern observed in Section 7.B.1, although when considering the averages
(represented by the vertical dashed lines) the absolute differences are two to three times
smaller for the random matrices.

The results from a random sampling exercise like this can be used to determine a signifi-
cance level for the experts estimates. For example, the 95th percentile of the (converged)
infinite expert solution. This means an expert needs to score higher than 95% of the
uninformed (i.e., independence) guesses for random matrices. In the case presented in
Fig. 7.B.3 (a), this is a d-calibration score of just under 0.09. However, this result varies
for a) different number of random variables, b) methodological differences such as the
sampling method used for drawing random matrices and c) the assumptions for the dis-
tribution from which the rank correlations are drawn. For example, in this case study,
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it is only a small step from guessing completely uninformed to decide the rank correla-
tions should be drawn from U (0,1) instead of U (−1,1) (no expert estimated a negative
rank correlation coefficient during the elicitation). This would result in a significance
level of 0.15, as shown in Fig. 7.B.3 (b). Note that this result is used as the 5% significance
level for judging expert performance in Section 7.3.2. If an expert scores higher than this,
the chance is less than 5% that the expert was making (almost) uninformed guesses.

7.B.3. Effect of adding a low-scoring expert

This study shows a relative insensitivity of the results to which individual experts are in-
cluded in the DM. Section 7.3.2 showed that the DMs do not perform significantly better
than the best experts, and Section 7.3.2 showed that the mean matrix of a pool scores, on
average, better than the mean of the individual scores in the pool. This is partly due to
all results being generally good, better than the significance level derived in last section.
This section illustrates this by showing the effect of adding a low-scoring expert to the
pool.

For this, we added a correlation matrix representing independence to the pool (i.e., all
zeros, except for ones on the diagonal) and calculated the scores, displayed in Table 7.B.1.
This gives a d-calibration score of 0.107, which is lower than the 5% significance level
(0.150), and lower than the lowest scoring expert (A, 0.165). Including this estimate low-
ers the EQ DM score from 0.439 to 0.353, and the GL DM score from 0.437 to 0.403. The
GL opt. is unaffected, as it still only uses the two highest scoring experts. In the original
analysis, the EQ and GL DM had similar scores. Here we observe that the EQ is more af-
fected than the GL, as the low score has a larger weight in the EQ DM. Note the relatively
high log-likelihood for the ‘low-scoring’ expert. Compared to d-calibration score, an es-
timate with high correlations gives significantly worse log-likelihood than an estimate of
independence (compare the scores of expert A and C to the ‘low-scoring’ expert).

Table 7.B.1: d-calibration scores and likelihood for experts’ and DMs’ correlation matrices, when a low-scoring
expert is added to the pool.

dependence calibration
score

Log-likelihood

Low-scoring expert 0.107 -1348.0
Other experts (A - G) [0.165, 0.444] [-2442.6, -933.7]

EQ DM 0.353 -971.0
GL DM 0.403 -945.4
GL opt. DM (dC al > 0.411) 0.468 -923.3

95% significance level (α) 0.150

In the robustness analysis where are all combination of experts are calculated, the effect
of the low-scoring expert becomes clearer. Figure 7.B.4 shows score for each combina-
tion of 1 to 8 (i.e., 7 + the hypothetical low-scoring expert) experts. For the EQ DM (panel
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a), there are two clusters distinguishable, the bottom one including the low-scoring ex-
pert and the top one excluding it. For the GL DM (panel b) the influence of the low-
scoring expert on the total score is smaller, because its weight is smaller.
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Figure 7.B.4: Score for each combination of 1 to 8 experts when a low-scoring expert is included. Equal weight
DM above (a) and global weights DM below (b)

The same clustering can be observed in Fig. 7.B.5 where, similar to Fig. 7.B.2, the d-
calibration scores of the mean matrices are compared to the means of the individual
scores. Where in the previous analysis with the actual experts the scores were consis-
tently better, there are now two clusters as well. On the upper right, the group without
the low-scoring expert is still scoring consistently better. On the lower right, with the
low-scoring expert, this effect is no longer present.

This analysis shows that a significance level, as well as global weight DM are important
tools for reducing the potential impact of less accurate experts on the results. In this
analysis we included a single expert. The effects will be greater when two or more experts
score low. Note that the low-scoring expert had a d-calibration score of 0.107, while ex-
pert A, with a generally positive contribution to the DM pool, only had a slightly higher
score of 0.165. This might give the false impression that the significance level (0.150)
is a great cut-off level, while it is the high correlation estimates of expert A versus the
independence estimates of the low-scoring expert that causes the difference in effect.
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Figure 7.B.5: d-calibration scores of the mean matrix, compared to the average scores of the individual con-
tributing matrices, when a low-scoring expert is included.



8
Conclusions and

recommendations

8.1. Conclusions
The main goal of this research is assessing the value of structured expert judgment for
Dutch flood risk assessment; by exploring in what way expert judgment can contribute
to credible failure probabilities for engineered flood defense systems, in the context of
rare non-experienced events and their probabilistic dependence. This research objective
was addressed through four research questions:

1. What measure should be used to score experts, to obtain the best results in struc-
tured expert judgment studies following the Classical Model?

2. Which variables’ uncertainties are most accurately estimated by experts?

3. How can expert judgment reduce uncertainty in the tails of probability distribu-
tions?

4. How do experts perform in estimating probabilistic dependence?

Each of these questions used a different approach to answer part of the objective. In
the following paragraphs, the results from the individual chapters are presented in the
context of these questions.

Through the case-studies, this study has demonstrated that structured expert judgment
can indeed be used to obtain credible probabilities and quantify the dependence that
plays an important role in flood risk assessments. However, the accuracy of these out-
comes strongly depends on the types of uncertainties that are estimated, and the meth-
ods used to elicit or process them. The contributions in theoretical research and soft-
ware development should help researchers and practitioners to apply structured expert
judgment successfully in flood risk and related fields.

147
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Physics-based models will always have a central role in a field that, eventually, is de-
scribed by physical laws. However, as long as uncertainties around them remain unre-
solved, practitioners will require other methods to achieve credible outcomes. We hope
to have inspired the reader of this thesis by the options that structured expert judgment
can provide to aid in this goal.

What measure should be used to score experts, to obtain the best results in structured
expert judgment studies following the Classical Model?

The standard approach in the Classical Model (also known as Cooke’s Method) for struc-
tured expert judgment is to assess an expert’s statistical accuracy by comparing expected
and observed ratios of realizations within each quantile interval (see Section 2.1 for more
background). These ratios are evaluated using the chi-square distribution, yielding a p-
value that expresses the probability of an expert being statistically accurate. This value
is combined with a second score to distinguish more informative from less informative
experts but the expert weight is predominantly determined by the statistical accuracy.

The Classical Model focuses on estimating uncertainties. Instead of considering the dis-
tance between a point estimate and an outcome, it views the answer to a seed question
as a realization from a probability distribution. Experts that correctly assesses this dis-
tribution and all other elicited distributions would find the realizations of all questions
spread evenly throughout these distributions (in a very large sample). The convention-
ally chi-square distribution based test does not distinguish where an answer is within
the quantile interval (e.g., where it is in between the 5th and 50th percentile). Other
statistical tests, such as Kolmogorov-Smirnov (KS), Cramer-von Mises (CvM), Anderson-
Darling (AD), and the Continuously Ranked Probability Score (CRPS) do make such a
distinction, which is why these tests were considered as an alternative measure of statis-
tical accuracy.

Chapter 4 showed that all five measures of statistical accuracy have different effects on
the resulting decision maker (DM), such as the number of experts that are included with
significant weight and the sensitivity to different biases. Weights calculated using one
test were evaluated using the other tests to find out whether one of the tests calculates
better weights than others. Apart from the fact that CRPS weights performed signifi-
cantly worse, the comparison did not indicate a clear winner.

The five measures or scoring rules respond differently to overconfidence, the most pre-
dominant bias in structured expert judgment studies. An overconfident expert’s outer
percentile estimates (mostly the 5th and 95th) are too narrowly defined such that they
do not enclose the realization (as you would expect with 90% probability for an accurate
expert). CM, AD, and CRPS are more sensitive to overconfidence, while the statistical
accuracies from KS and CvM are less affected. This means that choosing one of the first
three concentrates the weight on mostly one or two experts, where KS or CvM will spread
the weight over a more experts. While there are good reasons to choose a measure that is
stricter on overconfidence (e.g., AD is considered an improvement of CvM for addressing
the lack of sensitivity to tail realizations), an analyst may still choose a less sensitive mea-
sure of statistical accuracy, for example, to include more experts in the decision maker
pool.
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In addition to the different scoring rules, the probability distribution assumed around
the estimated percentiles affects the scores as well. With the chi-square based test, this
distribution is only used to calculate the informativeness. When using one of the alterna-
tive measures of statistical accuracy, it is also used to determine the position of the real-
ization’s quantile. The smooth Metalogistic distribution, a bell-shaped curve with more
concentrated probability mass, was considered as an alternative to the stepped piece-
wise uniform distribution. The Metalog generally has lighter tails, meaning over- and
underestimates are assigned a higher percentiles. This makes overconfidence-sensitive
test like AD and CRPS behave more strictly when using the Metalog. While not specifi-
cally related to the scoring experts, the smooth Metalog seems more representative of a
distribution that an expert would envisage. Removing percentiles and estimating their
position showed that neither the piecewise uniform nor the Metalog performed well in
estimating the location of the missing percentiles. The Metalog might look better, it
does not give a substantially better (or worse) representation of expert estimates than
the piecewise uniform distribution. Therefore, to increase the detail of expert estimates,
more percentiles should be elicited.

Which variables’ uncertainties are most accurately estimated by experts?

Expert judgment can be used to elicit estimates directly for the variable of interest, but
it can also provide estimates of input parameters for a modeling approach. Both ap-
proaches were tested in a case study of Dutch river dikes to assess which of the two gives
more credible dike failure probability estimates. The first approach involved eliciting the
probability of (at least a single) dike failure in a year, i.e., the system-level failure prob-
ability. The second approach was more elaborate and involved scaling existing model
results based on estimates of bias and uncertainty, which provides a calculated system-
level failure probability as well.

The estimates for system level failure probability (the first approach) could quite easily
be related to historic events. For example, 1995 was a major flood event on the Rhine
River with a peak discharge of approximately 12,000 m3/s. This information, which can
be considered common knowledge amongst the experts, can serve as a referential value
in the estimates. The second approach elicited failure for detailed dike cross sections.
The experts were asked to estimate the water level at which a dike fails due to piping,
slope instability, or overtopping. Historical reference values were not readily available,
meaning the accuracy of the estimates was more dependent on the experts’ technical
knowledge. Consequently, a lack of knowledge about specific mechanisms caused some
experts to give very wide estimates, assigning significant failure probability to frequently
exceeded water levels, resulting in very high system failure probability. Overall, experts
estimated credible probabilities of dike failure on a system level, while they struggled to
accurately answer the questions concerning detailed dike sections.

With respect on the suitability of the Classical Model, the technical knowledge needed on
several different subjects contributed to expert judgments resulting in infeasible result
(e.g., potential stability failure at water levels below the dike’s inner toe, or dike failure
frequencies in the order of once per year). A format that is based on discussion, such as
the DOT-guidelines (RWS-WVL, 2020) prescribe, might be more suitable for the specifics
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of this case study. Structured expert judgment using the Classical Model can still play a
role here, as it makes uncertainties explicit, but would be more suitable for estimating
final, high-level, probabilities than replacing detailed model estimates.

How can expert judgment reduce uncertainty in the tails of probability distributions?

One of the difficulties with using expert judgment to estimate very small probabilities, is
that these typically relate to events that have not been experienced by the expert. This
is an issue for both data- and model-based approaches because the lack of extreme ob-
servations obstructs model fitting or calibration. In these cases, experts can use their
knowledge from (when considering hydrological applications) different rivers, catch-
ments, or events to inform their estimates. A natural approach of doing this is using
Bayesian statistics. Without knowledge of the observed data, expert judgments can be
considered prior information that can be updated with observations to obtain a poste-
rior estimate.

This approach was applied in a case study for the river Meuse, in which the extreme value
distributions for ten large tributaries were estimated. When fitting a distribution to data,
the largest uncertainty is typically observed in the extrapolated range corresponding to
the extreme events. To limit this, expert estimates were made for the (on average) one in
10- and one in 1000-year discharge, with the first used to evaluate expert performance,
and the second being the variable of interest.

Using expert judgment as priors in this way, worked successfully in limiting the uncer-
tainty in extremes. Moreover, applying structured expert judgment provides confidence
in the used priors. Bayesian sampling techniques such as Markov Chain Monte Carlo
provide great flexibility in including expert information, as long as the prior can be re-
lated to a model input (e.g., a distribution parameter) or a model output (e.g., the 1000-
year discharge). As discussed in the second research question, the latter would likely give
more reliable expert estimates.

Combining prior estimates of extremes with observations in the frequent range proved
to be a good approach for limiting uncertainty in both the frequent and extreme range.
Using only observations gave precise results (i.e., narrow uncertainty) exclusively in the
frequent range, while using only expert estimates gave precise results exclusively in the
extreme range.

How do experts perform in estimating probabilistic dependence?

Conditions that cause a risk of flooding often contain dependent elements. For example,
a storm surge is dangerous due to its combination of high water levels, strong winds, and
pounding waves. Similarly, high rainfall intensities might coincide with high sea levels
due to an atmospheric depression. The complexity of the underlying phenomena makes
the causal relationships between these factors difficult to simulate. Alternatively, such
dependencies can be modeled using statistical models. This provides a natural way of
treating the uncertainty in the causal relationships. However, whether it is successful
relies on the accuracy of the dependence quantification.
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Several statistical models exist to express dependence. Each has different properties re-
garding the possible number of dependent variables or the dependence pattern that is
described. In the case study on the Meuse tributary discharges, the Gaussian copula was
used to model the correlation between tributaries, which was quantified by the experts.
This requires a correlation matrix in which each coefficient expresses the dependence
between a tributary pair. Quantifying this is a complex task given the number of coeffi-
cients and the fact that not all combinations are valid. However, it can be simplified by
using a Non-Parametric Bayesian Network (NPBN), a network of nodes representing the
one dimensional marginal distributions and edges representing the correlation between
them.

The dependence between the Meuse’s tributaries was elicited by assigning each expert
the task to draw and quantify a NPBN. Similar to the Classical Model, performance-
based weights were used to combine different experts’ results into a single expert es-
timate (i.e., the decision maker). The d-calibration score was used for this, which is a
measure of statistical accuracy for dependence estimates. The experts performed well in
estimating correlation coefficients, as everyone scored better than the 95% significance
level of the d-calibration score. This threshold value was calculated from randomly gen-
erated networks, indicating the level above which the probability that an expert is ’ran-
domly’ assigning correlations, is less than 5%.

Compared to the weights for univariate estimates from the Classical Model, the d-calibra-
tion score’s weights are much more evenly distributed. The weight-ratio between the
highest and lowest scoring expert was only three, where a ratio of thirty million was ob-
served with the univariate uncertainties. Moreover, we observed a limited sensitivity
to which specific experts were including into the decision maker (both for equal and
performance-based weights) and including more experts in the combination generally
improved the result. This finding did however not hold after adding a low-scoring hypo-
thetical expert to the pool.

How these results compare to other applications of dependence elicitation is a sub-
ject for further research. However, the NPBN presented itself convincingly as a suitable
model to simplify the complex task of estimating statistical dependence.

8.2. Limitations and recommendations

The conclusions in this thesis are based on two case-studies related to the field of flood
risk and additional research on the Classical Model and dependence elicitation. Each
study comes with it caveats, as discussed in the individual discussion sections. It would
be presumptuous to conclude that we now know how expert judgment works for flood
risk, perhaps mostly because the quality of the results primarily depends on the prepa-
ration and execution of individual studies and not the field of study. Nonetheless, the
case-studies extend a large body of research on structured expert judgment, which was
used in this research and will be used in future research alike.

Detailed recommendations related to the individual research chapters were described
there. Apart from those, a few suggestions for potentially impactful further research are:
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1. One way to enhance the accuracy of Dutch flood defense safety assessments, is
ensuring that the combination of all individual dike failure probabilities matches
what is observed on a system-level: observed failures or the lack thereof. A cal-
culated once per 10- or 100-year failure probability for an individual dike section
seems high but could be accurate. However, if there are multiple of such dike sec-
tions, the total failure probability would quickly add up to a higher probability that
related to events that should recently have been observed. A statistical model that
describes the dependence between said sections (for example, like the model used
in Chapter 5), can be used to decrease that potential 10- to 100-year probability to
more credible levels, by using observations or the lack thereof on a system scale.
Components of this model can be based on statistics, expert judgment, or physics,
but should be aimed primarily at connecting the system probabilities to section
probabilities. Through this, it could provide a framework to test the accuracy of
the failure-mechanism models that are used in safety assessments.

2. As demonstrated in the case study for the river Meuse, expert judgment can effec-
tively be used to reduce the uncertainty in the extrapolated range, where the pre-
dictive value of a model decreases. This concept makes the link between a model
(which can either a statistical or physics-based model) and the expert’s or mod-
eler’s judgment explicit, and should be explored further with models that are more
comprehensive than the GEV-distribution applied in Chapter 6.

3. The non-parametric Bayesian Network is a relatively simple model to describe de-
pendence between flood risk factors. The possibility of conditioning the Bayesian
Network can be useful during floods or in preparatory emergency management. It
provides a simple tool to assess the likelihood of "what-if?" scenarios. For example,
what discharge can we expect on this tributary A, given the observed discharge on
tributary B? Or, what are the chances of a high discharges in all these catchments?

4. The TU Delft structured expert judgment database contains many expert judg-
ment studies and is of great use for developing the methodology of structured ex-
pert judgment (Cooke & Goossens, 2008; Cooke et al., 2021). A similar collection
of dependence elicitation studies should be created and maintained, to aid devel-
opment of methods to evaluate and combine expert’s dependence estimates.

And finally, the last recommendation is to do (structured) expert judgment studies. In
the first place because it is a valuable tool that can be used in addition to other ap-
proaches or when other approaches are not feasible. Secondly, in a field of work that
has a central role for probability and uncertainty, practitioners should be skilled in as-
sessing these. The combination of producing probability estimates without a predefined
approach can be a true challenge as it forces the participant to combine models (simple
or complex) with domain knowledge and common sense. Being evaluated based on the
estimates gives valuable feedback on potential biases and provides the opportunity to
discuss views and believes with other experts. The case studies showed that while par-
ticipants found it challenging to produce estimates, they also found it a refreshing and
enjoyable experience.
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