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A B S T R A C T   

Ship energy consumption and emission prediction are critical for ship energy efficiency management and 
pollution gas emission control, both of which are major concerns for the shipping industry and hence continue to 
attract global attention and research interest. This article examined the energy efficiency data sources, big data 
analysis for energy efficiency, and analyzed the ship energy consumption and emission prediction models. The 
ship energy consumption and pollution gas emission prediction models are comprehensively summarized based 
on the modeling method and principles. The theoretical analysis and artificial intelligence-based ship energy 
consumption model, as well as the top-down and bottom-up ship emission prediction models, are thoroughly 
examined in terms of influencing factors, model accuracy, data sources, and practical applications. On this basis, 
the challenges of ship energy consumption and emission prediction are discussed, and future research sugges-
tions are proposed, providing a foundation for the development of ship energy consumption and emission pre-
diction technologies. The analysis results show that the principles, parameters of concern, and data quality all 
have a significant impact on the performance of the prediction models. Consequently, the prediction model’s 
accuracy can be improved by combining intelligent algorithms and machine learning. In the future, high pre-
cision, self-adapting, ship fuel consumption and emission prediction models based on artificial intelligence 
technology should be further studied, in order to improve their prediction performance, and thus providing solid 
foundations for the optimization management and control of the ship energy consumption and emissions.   

1. Introduction 

Maritime transport plays an essential role in international trade and 
economic development (UNCTAD/RMT/2020, 2020). However, with 
the increase in global shipping trade volume, emissions from the ship-
ping industry have also become a global concern (Wan et al., 2016). 
According to the International Maritime Organization (IMO), ships ac-
count for approximately 2.89% of global CO2 emissions. If the status quo 
remains, CO2 emissions will continue to rise by 50–250% by 2050 (IMO, 
2014). To reduce carbon emissions in the shipping industry, IMO pro-
posed the initial strategy for reducing GHG emissions from ships and 
committed to reducing total annual GHG emissions by 50% by 2050 

compared to 2008 (IMO, 2018). Meanwhile, IMO also put forward the 
SEEMP (Ship Energy Efficiency Management Plan), EEDI (Energy Effi-
ciency Design Index), EEXI (Energy Efficiency Existing Ship Index), CII 
(Carbon Intensity Indicator), and other energy-saving and 
emission-reduction measures (IMO, 2012, 2020). 

Furthermore, fuel consumption costs account for 60% or more of the 
ship voyage costs (Faber et al., 2012), and thus have a considerable 
impact on shipping companies’ economies. Therefore, the development 
and application of energy efficiency optimization technologies for ships 
will not only meet the increasingly stringent energy efficiency and 
emission regulations, but also the urgent needs of shipping companies to 
improve the economic efficiency and competitiveness of their fleets 
(Szlapczynska and Szlapczynski, 2019; Wen et al., 2017), which is 

* Corresponding author. Marine Engineering College, Dalian Maritime University, Dalian, 116026, China. 
** Corresponding author. 

E-mail addresses: kwang@dlmu.edu.cn (K. Wang), huanglz@dlmu.edu.cn (L. Huang).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2022.112826 
Received 20 June 2022; Received in revised form 19 September 2022; Accepted 5 October 2022   

mailto:kwang@dlmu.edu.cn
mailto:huanglz@dlmu.edu.cn
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2022.112826
https://doi.org/10.1016/j.oceaneng.2022.112826
https://doi.org/10.1016/j.oceaneng.2022.112826
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2022.112826&domain=pdf


Ocean Engineering 266 (2022) 112826

2

critical to the development of low-carbon shipping (Le et al., 2020a). 
The ship energy system involves the whole process of energy gen-

eration, conversion, transmission and consumption. The main engine 
generates power by burning fuel, which is transmitted and converted by 
the shaft and propeller to overcome the navigation resistance of the ship. 

The operation status and efficiency of the ship’s energy system will 
change due to the influence of various factors, such as the ship’s navi-
gation environment and operating conditions, which will further affect 
the ship’s energy consumption and thus the pollution gas emissions. To 
enhance energy efficiency and manage emissions (Bialystocki and 

Abbreviations 

AIS Automatic Identification System 
STEEM Ship Traffic, Energy and Environment Model 
STEAM Ship Traffic Emission Assessment Model 
WRF-Chem Weather Research and Forecasting with chemistry 
SENEM Ship’s ENergy Efficiency Model 
LASSO Least Absolute Shrinkage and Selection Operator 
UAV Unmanned Aerial Vehicles 
DWT Deadweight Tonnage 
IMO International Maritime Organization 
SEEMP Ship Energy Efficiency Management Plan 
EEDI Energy Efficiency Design Index 
EEXI Energy Efficiency Existing Ship Index 
CII Carbon Intensity Indicator 
DBPNN Back Propagation Neural Network with double hidden 

layers 
ITTC International Towing Tank Conference 
JONSWAP Joint North Sea Wave Atmosphere Program 
ISO International Organization for Standardization 
CFD Computational Fluid Dynamics 
DTU Technical University of Denmark 
ANN Artificial Neural Network 
ECA Emission Control Area 
MLR Multiple Linear Regression 
MR Multivariable Regression 
BPNN Back Propagation Neural Network 
LM Levenberg-Marquardt 
DBN Deep Belief Networks 
RBM Restricted Boltzmann Machines 
DNN Deep Neural Network 
FOC Fuel Oil Consumption 
FCR Fuel Consumption Rate 

CNN Convolutional Neural Network 
RMSE Root Mean Square Error 
MAE Mean Absolute Error 
SVR Support Vector Regression 
SVMs Support Vector Machines 
ETRs Extra Trees Regressors 
ET Extra Trees 
RF Random Forest 
CCS China Classification Society 
RNN Recurrent Neural Network 
LSTM Long Short-term Memory 
MLPN Multilayer Perceptron Network 
GP Gaussian Process 
GPR Gaussian Process Regression 
DT Decision Tree 
GA Genetic Algorithm 
RPM Revolutions Per Minute 
GHG Green House Gas 
ADLM Automated Data Logging & Monitoring system 
SDU University of Southern Denmark 
AMS Alarm Monitoring System 
CMS Continuous Monitoring System 
EEOI Energy Efficiency Operational Indicator 
KNN K-Nearest Neighbor 
MC Metocean Condition 
AML Auto Machine Learning 
MSE Mean Squared Error 
RR Ridge Regression 
XGB XGBoost 
ML Machine Learning 
R2 Coefficient of Determination 
A-GBM Advanced approach GBM 
N-GBM Naive approach GBM  

Fig. 1. Topology of the ship energy consumption and emission prediction technology.  
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Konovessis, 2016; Simonsen et al., 2018; Tillig and Ringsberg, 2019), 
effective ship energy consumption and emissions prediction are essen-
tial. Either, ship fuel consumption and emission prediction technology 
provide foundations for energy efficiency optimization and emission 
control (Krata and Szlapczynska, 2018; Moreno-Gutiérrez et al., 2019). 
However, to the best of our knowledge, there is a lack of systematic 
analysis of prediction methods, principles, parameters of concern, data 
sources, model accuracy, and application performance in the existing 
research, making it difficult to provide support for selecting suitable 
prediction methods for various application scenarios. 

To close the gap, the current progress made on ship energy con-
sumption and emissions prediction is reviewed comprehensively in this 
paper. In addition, the characteristics and application of prediction 
models based on different methods (as shown in Fig. 1), have been 
discussed in terms of construction principle, model structure, parame-
ters of concern, and prediction performance, in order to provide a 
guidance for the study and application of the prediction and manage-
ment of ship energy consumption and emissions. The main objectives of 
this work are concluded as follows: 

1) To analyze the characteristics and performance of different predic-
tion models in terms of theoretical principle, model structure, pa-
rameters of concern, model accuracy and adaptability, and also the 
limitations of different types of models, which are the keys to achieve 
the ship energy efficiency optimization. 

2) To illustrate the challenges and prospects on the ship energy con-
sumption and pollution gas emissions in terms of big data analysis, 
model accuracy, model adaptability, and optimization control 
measures.  

3) To provide an essential guidance for future research on optimization 
methods and decision-making system development for ship energy 

consumption and emissions, thereby promoting the green develop-
ment of the shipping industry. 

The remainder of this paper is organized as follows: Section 2 in-
troduces the data acquisition of ship energy efficiency. Section 3 dis-
cusses the big data analysis technology for ship energy efficiency. 
Section 4 presents the progress on models for ship energy consumption 
prediction, including the white box model, black box model, and grey 
box model. Afterwards, Section 5 summarizes the progress on methods 
for ship emission prediction. Finally, the challenges and prospects for 
the predictions of ship energy consumption and emissions are outlined 
in Section 6. 

2. Data acquisition of ship energy efficiency 

The energy efficiency optimization technology of ships can provide 
effective strategy for ship’s energy-efficient operation (Fan et al., 2016), 
and bring economic benefits for shipping companies (Wang et al., 
2015a; Du et al., 2019). Big data source and analysis are the essential 
foundations for the effective prediction of the ship energy consumption 
and emissions. Some energy efficiency monitoring and management 
systems have been developed, as shown in Table 1. These systems can 
obtain related data and achieve the optimization of ship energy 
efficiency. 

The ship energy efficiency management system can realize contin-
uous monitoring and prediction of ship performance (Trivyza et al., 
2022), and the evaluation and optimization management of the ship 
fleet performance (Wang et al., 2018a), which can support fuel man-
agement, energy efficiency evaluation, and navigation optimization 
under different working conditions (Zhang et al., 2019). In addition, 
based on the acquisition and analysis of big data, the optimal decisions 
on navigation can be realized (Lee et al., 2018a), by adopting advanced 

Table 1 
The ship energy efficiency monitoring and management systems.  

System Functions Type of ships Reference 

Ship Energy 
efficiency 
Monitoring System 
of Marorka 

Power optimization, 
speed optimization, 
loading optimization, 
route optimization, 
fleet optimization 

Bulk carriers, 
container 
ships, oil 
tankers 

(https://www.marorka.com/products/#marorka-onboard) 

Ship Performance 
Monitoring System 
of Kyma 

Power optimization, 
loading optimization, 
fleet optimization 

Bulk carriers, 
container 
ships 

(https://kyma.no/ship-performance/) 

Ship Energy 
efficiency 
Monitoring System 
of SeaTechnik 

Real-time monitoring 
and optimization of 
ship performance 

Bulk carriers, 
container 
ships 

(https://www.trelleborg. 
com/en/marine-and-infrastructure/products-solutions-and-services/marine/ship-performance-technology) 

NAPA Energy 
Efficiency 
Management 
Module 

Speed optimization, 
loading optimization, 
route optimization, 
fleet optimization 

Bulk carriers, 
ore carriers 

(https://www.napa.fi/software-and-services/ship-operations/napa-fleet-intelligence/) 

ECO-Assistant 
Software System 

Loading optimization Bulk carriers, 
container 
ships 

(https://www.dnv.com/cn/services/page-1422) 

Rolls-Royce Energy 
Management 
System 

Power monitoring and 
optimization 

Bulk carriers, 
container 
ships 

(https://www.rolls-royce. 
com/media/press-releases/2017/31-05-2017-rr-launches-next-generation-energy-management-system.aspx) 

Integrated 
Monitoring System 
of Ship Energy 
Efficiency of ABB 

Speed optimization Container 
ships, Ro-Ro 
ships 

(https://new.abb.com/marine/systems-and-solutions/digital/control-and-monitoring) 

Ship Navigation 
Optimization 
System of Jeppesen 
Marine 

Power optimization, 
speed optimization, 
route optimization 

Container 
ships 

(https://ww2.jeppesen.com/marine) 

Ship energy 
efficiency System 
of CCS 

speed optimization, 
loading optimization, 
fleet optimization 

Bulk carriers, 
container 
ships 

He et al. (2021) 

SHIPMANAGER-88 Loading optimization Container 
ships 

(http://www.techmarine.net/main.htm)  
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optimization algorithms (Lazarowska, 2014) and decision-making sys-
tems (Vettor and Soares, 2016). However, the degree of network 
connection, and integration of on-board equipment, shore-based 
equipment, and ship-to-shore communication equipment needs to be 
improved (Wang et al., 2015b). The synchronous sharing of ship-shore 
data information of energy efficiency will be the key to the optimiza-
tion control and improvement of ship energy efficiency. 

3. Big data analysis for ship energy efficiency 

Ship energy consumption and emission are not only related to the 
ship parameters, but also related to navigational environment (Fan 
et al., 2021), sailing state (Lu et al., 2015), ship loading (Tran, 2020), 
hull fouling (Adland et al., 2018), applied antifouling coating (Farkas 
et al., 2021; Seok and Park, 2020), etc. Therefore, the related data are 
diverse and huge (Lensu and Goerlandt, 2019; Wang et al., 2016a), and 
the data types are complex and diverse (Zhu et al., 2021). With the 
development of big data analysis technology (Kambatla et al., 2014), the 
ship’s energy consumption characteristics can be explored (Munim 
et al., 2020; Yan et al., 2021), and the influencing factors of ship’s en-
ergy efficiency and their coupling relationship can be investigated (Chen 
et al., 2010). On these bases, the ship’s energy efficiency level can be 
analyzed and evaluated (Gonzalez et al., 2018), thus providing foun-
dations for the model establishment of ship energy efficiency (Lepore 
et al., 2019; Man et al., 2020).  

(1) Analysis of ship energy efficiency characteristics based on big 
data 

The related data on ship energy consumption can be obtained by the 
real-time monitoring tool of energy efficiency (Chi et al., 2018; Tsuji-
moto and Orihara, 2019) and fuel consumption monitoring system 
(Capezza et al., 2019). On this basis, the big data analysis technology can 
be adopted to evaluate the energy efficiency level of the 
energy-consumed equipment and to reveal the causes of low energy 
efficiency, thus realizing the intelligent analysis and optimization de-
cisions which are difficult to achieve only depending on the operators’ 
experience (Jeon et al., 2021; Lee et al., 2018b). Therefore, a big data 
collection and processing scheme is vital for ship energy consumption 
analysis (Perera and Mo, 2016). The data mining and analysis of ship 
sailing speed, fuel consumption, and navigational environment can be 
carried out based on the big data analysis platform. Furthermore, the 
related intelligent optimization decisions of ship energy efficiency can 
be achieved by adopting the big data technology (Wang, 2018). It can 
provide an effective method for the optimization management of ship 
energy efficiency.  

(2) Influencing factors analysis of ship energy efficiency based on big 
data 

Ship energy consumption is influenced comprehensively by multiple 
parameters, including the sailing state, navigational conditions, etc. 
Among others, the navigational environmental factors (wind, wave, and 
current) directly influence the navigation resistance and thus affect the 
ship’s fuel consumption (Anan et al., 2017). Therefore, the analysis of 
the navigational environment characteristics is of great significance to 
the ship energy consumption prediction. Based on the big data analysis 
of navigational environment, the temporal and spatial distribution 
characteristics for different sailing time and routes can be excavated, 
contributing to the relationship analysis between ship energy con-
sumption and navigational environment (Yan et al., 2018). The intelli-
gent analysis and prediction of navigational environment based on big 
data can be realized by adopting the machine learning algorithms, such 
as k-means and neural networks (Wang et al., 2017). In addition, the 
correlation among the influencing factors of ship energy consumption 
can be achieved by adopting the association analysis method (Gao, 

2019). The influence law of those parameters on ship’s energy con-
sumption can be obtained, which is a solid foundation for establishing 
the ship energy consumption model that considers multiple influencing 
factors.  

(3) Evaluation benchmark of ship energy efficiency based on big data 

During the ship navigation, there exist obvious differences in the 
navigational status and energy efficiency level under different naviga-
tional conditions (Themelis et al., 2018). In order to evaluate a ship’s 
energy efficiency, it is necessary to carry out an identification of ship 
navigational status. On this basis, the ship energy efficiency can be 
evaluated according to different navigational states. Thus, the evalua-
tion benchmark of ship energy efficiency under different navigation 
conditions can be established, making it convenient for the comparative 
analysis of ship energy efficiency. The Neural Network-based method 
can be used to evaluate the ship energy efficiency level under the current 
navigational condition, and finally realize the comparative analysis of 
different ship energy efficiency levels (Liu et al., 2018a). On this basis, 
the decision-making of ship energy consumption under different navi-
gational environments can be realized, to improve the ship’s energy 
efficiency effectively (Tsitsilonis and Theotokatos, 2018). 

4. Models for ship energy consumption prediction 

According to the established ways and principles, the ship energy 
consumption models mainly include the white box model (WBM), black 
box model (BBM), and grey box model (GBM). The three kinds of models 
have different characteristics in the interpretability, prediction accu-
racy, demand for historical data, and extrapolation ability, as shown in 
Table 2. 

4.1. White box model of ship energy consumption prediction 

The WBM of fuel consumption prediction is based on the known 
physical laws and relations, including the ship resistance obtained by 
regression method (Adland et al., 2020), ship model towing test or 
Computational Fluid Dynamics (CFD) analysis (Islam and Soares, 2019), 
the energy transferring relationship (Nakamura and Naito, 1977), and 
the engine fuel consumption characteristics, etc. However, at present, 
there is still a lack of accurate formulas to dynamically describe the 
relationship between energy consumption and the complex influencing 
factors. The relevant studies, which take the total voyage cost as opti-
mization criteria, establish the fuel consumption prediction model based 
on the constant relationship between fuel consumption and sailing speed 
(Qi and Song, 2012; Sheng et al., 2019). However, the relationship be-
tween fuel consumption and sailing speed are different due to the in-
fluence of environmental factors and loading conditions (Berthelsen and 
Nielsen, 2021). Therefore, the dynamical relationship between fuel 
consumption and sailing speed can improve the accuracy and perfor-
mance of the prediction models for varying operational conditions. 

Environmental factors have a huge influence on the navigational 
resistance of ships (Chen et al., 2013), thus affecting the ship’s energy 
consumption (Sun et al., 2013; Tillig et al., 2017). The navigation 
resistance analysis is the key to establish the energy consumption model, 

Table 2 
Comparative analysis of ship energy consumption prediction models.  

Category Interpretability Prediction 
accuracy 

Demand for 
historical data 

Extrapolation 
ability 

WBM Good Average No need Good 
BBM Poor Good Need much 

historical data 
Poor 

GBM Good Good Need a bit 
historical data 

Good  

K. Wang et al.                                                                                                                                                                                                                                   
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which mainly includes calm water resistance and additional resistance 
(Fan et al., 2018). The studies of calm water resistance mainly consist of 
the methods based on the theoretical formula and the CFD analysis 
(Holtrop and Menmen, 1982). In addition, wind, waves, and currents 
would also result in additional resistance (Li et al., 2018; Medina et al., 
2020). There are two main methods to quantify the influence of wind, 
waves, and currents on ship’s navigation resistance. One approach es-
timates the speed loss under the given engine power (Li et al., 2020; 
Karagiannidis and Themelis, 2021). For example, Yang et al. (2020) 
established a fuel consumption prediction model by considering the 
influence of currents on the ship speed loss. In addition, Jasna and 
Faltinsen (2012) estimated the ship speed loss and associated CO2 
emissions in a seaway. The other method calculates the added resistance 
at a specific speed (Wang et al., 2020a, 2021a). The influence of wind 
added resistance and wave added resistance are considered for the fuel 
consumption prediction model (Wang et al., 2021b). On this basis, the 
energy consumption under different sailing conditions can be predicted 
based on the energy transfer relationship between the ship hull, pro-
peller, and main engine. 

The different navigational environments will also influence the 
navigational states of the ship and the operational states of the power 
system (Tillig et al., 2018, 2020), thus affecting the propulsion charac-
teristics of the propeller and the dynamic fuel consumption character-
istics of the main engine (Wang et al., 2015c). Therefore, when 
establishing the energy consumption model according to the 
ship-engine-propeller coupling relationship, the influence of naviga-
tional environment factors on the ship navigation resistance and the 
characteristics of the ship propulsion system should be comprehensively 
considered (Trodden et al., 2015; Wang et al., 2016b). The analysis of 
ship energy consumption based on the energy transferring relationship 
is shown in Fig. 2 (Pedersen and Larsen, 2009). It is vital to improve the 
accuracy of the ship energy consumption model by obtaining the dy-
namic relationship between the navigational environment and the 
ship-engine-propeller operating state (Wang et al., 2018b), and thus 
effectively describing the dynamic characteristics of the ship propulsion 
system under different conditions (Tzortzis and Sakalis, 2021; Wang 
et al., 2020b). 

Table 3 analyzes the characteristics of various WBMs for predicting 
ship energy consumption. From the table, we can know that WBMs can 
be used to forecast fuel consumption for most types of ships. However, 
the required model parameters should be obtained from the operational 
information, although some information is difficult to obtain. This may 
cause some discrepancies between the predicted and actual fuel con-
sumption under different navigational environments. Moreover, the 
WBMs only consider a part of the influencing factors, ignoring the 
possibility of mutual influence among various factors, making the WBMs 
vulnerable in practical application, weakening the performance of ship 
energy consumption prediction and optimization. 

4.2. Black box model of ship energy consumption prediction 

The BBM can process multi-dimensional data and extract hidden 
information from complex data sets, thus providing a reliable basis for 
the study on the optimization model of ship’s fuel consumption (Tarelko 
and Rudzki, 2020; Sun et al., 2019). In recent years, the development of 
big data technology and machine learning algorithm has made the 
establishment of the BBM for the energy consumption prediction more 
accurate and effective (Schoen et al., 2019; Planakis et al., 2022). The 
main methods for predicting ship energy consumption are the Neural 
Network-based methods (Le et al., 2020b; Tran, 2021), and the intelli-
gent algorithms (Peng et al., 2020a), as shown in Fig. 3. 

4.2.1. Prediction of ship energy consumption based on neural network 
Neural Network has good nonlinear mapping ability, adaptive 

learning ability, and parallel information processing ability (Illahi et al., 
2019; Tran, 2019), and thus it has been widely used in prediction 
(Wysocki et al., 2019; Yuan et al., 2019). Neural Network is the most 
typical BBM which has good performance in ship energy consumption 
prediction (Kim et al., 2021; Zheng et al., 2019; Gkerekos and Lazakis, 
2020), and it mainly includes BPNN, MLPN, LSTM, DNN, and CNN.  

1) BPNN 

BPNN is one of the most widely used neural network models for 
prediction. It is a network model trained by error backpropagation 
(Chen et al., 2018). The BPNN-based modeling method for the energy 
efficiency analysis and prediction showed higher prediction accuracy, 
compared with the traditional prediction method using the empirical 
formula (Yan et al., 2015). Hu et al. (2019) established a prediction 
model of ship fuel consumption considering the influence of environ-
mental factors by adopting BPNN and GPR methods, which can predict 
real-time fuel consumption under different speeds, trim and environ-
mental conditions. In addition, Yuan et al. (2020a) proposed a predic-
tion model of ship fuel consumption considering the multi-source 
information of ship navigational status and environmental factors based 
on DBPNN, which has better performance than SVR, LSTM in predicting 
fuel consumption of inland ships. Moreover, Moreira et al. (2021) ach-
ieved the prediction of the ship speed and fuel consumption by estab-
lishing a neural network system. The established model can determine 
the relationship between the sailing speed and the respective propulsion 
configuration for certain sea conditions.  

2) MLPN 

MLPN consists of three or more layers and has a similar structure to a 
single-phase perceptron. Still, there is at least one intermediate layer 
between the input layer and output layer, called the hidden layer, to 
learn nonlinear data information. The MLPN method can also be used for 

Fig. 2. Analysis of ship energy consumption based on energy transferring relationship (Pedersen and Larsen, 2009).  
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establishing the fuel consumption prediction model, and has better 
prediction accuracy for the ship fuel consumption, compared with the 
prediction results of Multiple Regression Analysis (Beşikçi et al., 2016). 
Ye and Xu (2016) established a BBM for fuel consumption prediction of 
the passenger roller ships based on single-hidden-layer MLPN methods, 
and then compared the prediction accuracy for five different input 

features. In addition, Jeon et al. (2018) proposed a prediction model of 
the main engine fuel consumption based on MLPN through big data 
analysis, including data acquisition clustering compression and expan-
sion. In order to improve the accuracy of the prediction model, different 
numbers of hidden layers and neurons, and different types of activation 
functions were tested, and their effects on the accuracy and efficiency of 

Table 3 
Analysis of different WBMs for ship energy consumption prediction.  

Target Ship Methods Parameters of concern Prediction/Energy saving 
effect 

Data sources Applications Reference 

Oil tanker Townsin and Kwon Wind, wave, engine speed, etc. The power calculation error 
is 3%–4% 

Log data Speed 
optimization 

Li et al. (2018) 

Bulk cargo 
ship 

Holtrop and 
Mennen 

Sailing speed, engine speed, 
power, wind and wave, current 
speed, water depth 

Not mentioned Data acquisition system Energy efficiency 
analysis 

Fan et al. 
(2018) 

Container 
ship 

Kwon, Aertssen and 
ITTC 

Sailing speed, direction and 
grade of wind and waves 

The maximum error is less 
than 4% 

Not mentioned Speed 
optimization 

Li et al. (2020) 

Inland river 
cruise ship 

Regression analysis 
method 

Engine power and speed, sailing 
speed, wind speed, water depth, 
etc. 

The R2 is 0.9793 Ship energy efficiency 
monitoring system 

Speed 
optimization 

Fan et al. 
(2021) 

Tanker DTU and SDU Sailing speed, wind and wave 
direction, wind and wave grade, 
current speed, etc. 

The overall average relative 
error is 1.36% 

Logbook Speed 
optimization 

Yang et al. 
(2020) 

Tanker Semi-empirical 
method 

Water speed, wind and wave 
direction, wind and wave grade 

The average relative error of 
operational energy efficiency 
is about 5.12% 

National Oceanic and 
Atmospheric 

Route 
optimization 

Lu et al. 
(2015) 

Administration (NOAA) 
Inland river 

fleet 
Holtrop and 
Mennen, Kwon, 
Townsin, Hu 

Wind speed and direction, water 
depth, current speed, wave 
height, sailing speed, etc. 

Reduce fleet energy 
consumption by 6.8% 

Energy efficiency data 
acquisition system 

Fleet 
optimization 

Wang et al. 
(2020a) 

Chemical 
tanker 

ISO, semi-empirical 
model 

Sailing speed, wave, wind, 
current, water depth, etc. 

Reduce fuel consumption by 
about 5.6% 

The onboard voyage 
planning system 

Voyage 
optimization 

Wang et al. 
(2021a) 

Super-large 
ore carrier 

Holtrop-Mennnen 
and Kwon 

Sailing speed, engine speed, 
shaft power, wind speed and 
direction, wave height 

Reduce fuel consumption by 
about 6.8% 

Energy efficiency system, 
European Medium-Term 
Weather Center 

Speed and route 
optimization 

Wang et al. 
(2021b) 

Container and 
oil tanker 

4 DOF model and 
Monte Carlo 
simulations 

Sailing speed, wind speed and 
direction, wave height, draft 
and trim, power 

The power prediction error is 
within 4% 

Random weather statistics Speed 
optimization 

Tillig et al. 
(2020) 

Cruise ship Holtrop and 
Mennen, Kwon, 
Townsin, Hu 

Sailing speed, shaft speed, FCR, 
wind speed, water depth, etc. 

Reduce the fuel consumption 
by 19.04% with speed 
reduction 

On-board sensors Main engine 
speed 
optimization 

Wang et al. 
(2016b) 

Cruise ship Holtrop and 
Mennen, Kwon, 
Townsin; Hu 

Wind speed and direction, water 
depth and speed, sailing speed, 
engine speed and torque 

Improve fuel consumption by 
about 2% 

On-board sensors Speed 
optimization 

Wang et al. 
(2018b) 

Container 
ship 

Holtrop, Mennen, 
ITTC 

Draft, trim, power, sailing 
speed, sailing route, wind speed 
and direction 

Reduce fuel consumption by 
about 2% 

On-board sensors Speed 
optimization 

Tzortzis and 
Sakalis (2021) 

Super-large 
ore carrier 

Holtrop-Mennnen, 
improved Kwon 

Shaft power, sailing speed, wind 
speed and direction, wave 
height and direction 

Reduce fuel consumption by 
about 4% 

Energy efficiency system, 
European Medium-Term 
Weather Center 

Speed and route 
optimization 

Wang et al. 
(2020b)  

Fig. 3. The BBMs for ship energy consumption prediction.  
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the prediction model were studied. The results showed that the MLPN 
model could predict the fuel consumption of the ship’s main engine 
more accurately and effectively, compared with the polynomial 
regression and SVM.  

3) LSTM 

LSTM is a temporal recursive neural network (Li and Cao, 2018; 
Yuan et al., 2018). Compared with other neural networks, LSTM can 
solve complex multi-input variable problems more effectively (Zhang 
et al., 2018). Wang and Chen (2020) constructed a real-time prediction 
model of main engine fuel consumption by adopting an RNN-LSTM al-
gorithm based on the actual operation data of the main engine and ship 
navigation status. The model can predict the real-time fuel consumption 
of main engine under normal sailing conditions. Zhu et al. (2020) 
established a prediction model of fuel consumption by using LSTM, 
which not only utilizes the existing characteristic variables (wind, speed, 
drat, trim, etc.), but also uses the previous fuel consumption state and 
FCR data to predict the current fuel consumption. Experimental analysis 
showed that the prediction accuracy can be improved by 11.8%, 
compared with the traditional artificial neural network. In addition, 
Yuan et al. (2020b) established a model for the real-time prediction of 
the FCR based on the LSTM, which took into account the real-time 
navigational status and environmental factors. Experiments showed 

that the performance of this model is better than that of the regression 
model and traditional RNN.  

4) DBN 

DBN is a typical deep learning method, which is superimposed by 
RBM units. Generally, the approach of layer by layer training is adopted 
to obtain the excellent model initialization parameters (Karagiannidis 
et al., 2019; Wang et al., 2020c). By using the DBN method, the random 
influencing factors of ship fuel consumption, such as meteorological sea 
state, can be analyzed, and the correlation between the meteorological 
state and the ship fuel consumption can be studied, which is very 
important for the prediction of ship’s fuel consumption under different 
sea conditions. For example, Shen et al. (2017) established a prediction 
model of ship fuel consumption considering different marine weather 
conditions based on the DBN algorithm to dynamically predict ship fuel 
consumption under various marine meteorological conditions. 
Compared with BPNN and SVR, the prediction model based on the DBN 
algorithm is more reliable and effective in terms of accuracy and 
efficiency.  

5) CNN 

CNN is a kind of deep-feedforward Neural Network. It has strong 

Table 4 
Analysis of different Neural Network-based models for ship’s energy consumption prediction.  

Target ship Method Parameters of concern Prediction accuracy Data sources Model outputs Reference 

Bulk carrier ANN Main engine load, operating 
parameters, weather conditions 
(wind, wave), etc. 

The determination 
coefficient is 0.9055 for 
100% MCR 

Noon report data Fuel consumption Tran (2021) 

Bulk carrier ANN Wind speed and direction, wave 
height, current speed, engine 
speed 

Not mentioned Voyage data EEOI, FCR, etc. Sun et al. (2019) 

Container ship ANN Main engine speed, sailing speed, 
wind speed and direction, draft, 
course, etc. 

The fit goodness is 
0.9709–0.9936 

AMS Fuel consumption per unit 
distance 

Kim et al. (2021) 

Container ship BPNN Draft, trim, sailing speed, wind 
speed and direction, wave height 
and direction 

The R2 is 0.9817 Noon report data Fuel consumption per 100 
nautical miles 

Hu et al. (2019) 

Cargo ship DBPNN Ship static information, ship 
status data, and environment 
data 

The R2 is 0.9843 Ship monitoring system Fuel consumption Yuan et al. (2020a) 

Container ship ANN Effective wave height, main 
engine speed, relative wave angle 

– Route planning software Sailing speed, fuel 
consumption 

Moreira et al. 
(2021) 

Tanker MLPN Sailing speed, engine speed, 
draft, trim, wind and sea state 

The R2 is 0.834 Noon Report data Ship fuel consumption per 
hour 

Beşikçi et al. 
(2016) 

Ro-Ro ship MLPN Draft, trim, wave, wind, rudder 
angle 

The relative error is 2% Acquisition data from 
sensors 

Average FCR Ye and Xu (2016) 

Sea-River- 
through 
ships 

LSTM Sailing speed, draft, main engine 
speed, shaft power 

The RMSE is 2.714.5. Acquisition data from 
sensors 

Fuel consumption of the 
main engine 

Wang and Chen 
(2020) 

Ro-Ro 
passenger 
ship 

LSTM Wind, sailing speed over the 
water, pitch, and trim 

The MSE can be 
improved by 11.8%. 

Technical University of 
Denmark 

Fuel consumption Zhu et al. (2020) 

Inland 
waterway 
cargo ship 

LSTM Latitude and longitude, engine 
speed, water depth and speed, 
wind speed and direction, etc. 

Fuel consumption can be 
reduced by 33.54% 

Acquisition data from multi- 
source sensors 

Fuel consumption Yuan et al. (2020b) 

Container ship ANN Current speed, draft, sailing 
direction, rudder angle, wave 
height, wind, etc. 

Fuel consumption 
prediction accuracy is 
98.7% 

LAROS Remote Monitoring 
System 

Fuel consumption of the 
main engine 

Karagiannidis et al. 
(2019) 

Tanker DNN Draft, engine speed and power, 
sailing speed, wave height and 
direction, etc. 

The R2 of the fuel 
consumption prediction 
is 89.4% 

ADLM system, weather 
provider CMEMS 

Fuel consumption on the 
route 

Gkerekos and 
Lazakis (2020) 

Multiple ships DBN Draft, wind direction, course, 
load, wave height, etc. 

The MRE of the model is 
0.3539 

Ship navigation monitoring 
system 

Fuel consumption Shen et al. (2017) 

VLCC ANN Sailing speed, power, wind speed 
and direction, wave height and 
direction, etc. 

Fuel consumption 
prediction accuracy is 
99.6% 

Automatic continuous 
monitoring system (ACMS), 
AIS, and weather forecast 

Ship braking power, brake 
specific fuel consumption 
value (B.S.F.C) 

Farag and Ölçer 
(2020) 

Container ship Deep- 
ANN 

Average sailing speed, sailing 
time, wind speed and direction 

The prediction accuracy 
is about 95% 

A worldwide leading 
shipping company, CMEMS 

Fuel consumption Bui-Duy and 
Vu-Thi-Minh 
(2021)  
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feature extraction ability and is specially used for processing network 
structure data (Le et al., 2019). It constructs several filters which can 
extract the features of the input data and uses these filters to extract the 
representative features hidden in the input data layer by layer. At the 
same time, sparse connection and parameter weight sharing mechanism 
are combined to reduce the dimension of data sampling in time and 
space, and thus reducing the number of training parameters, and can 
effectively avoid overfitting (Kim and Cho, 2019). In order to make the 
fuel consumption model based on data learning more accurate, Zhao 
(2021) adopted the CNN to analyze the data of a large shipping database 
on the ship performance and navigation information, to make up for the 
deficiency of initial data analysis, and improve the integrity and quality 
of the database.  

6) Summary 

The comparative analysis of energy consumption prediction models 
based on Neural Networks is shown in Table 4. It can be noted that: 

(a) The research on neural network-based fuel consumption predic-
tion models covers a wide range of ship types, with different 
application performances for different types of ships. 

(b) The prediction performance of different Neural Network struc-
tures varies, with BP performing well in multidimensional data 
fitting and processing. The time series characteristics of the fuel 
consumption data can be well captured by the LSTM-based pre-
diction model, which improves dynamic prediction performance. 
As a result, it is critical to select a model that is appropriate for 
case-specific application.  

(c) The quantity and quality of data sources have a direct effect on 
the prediction models’ performance. The low acquisition fre-
quency and accuracy of log data could not meet the Neural 
Network-based prediction model’s requirements.  

(d) Combining the Neural Network model with advanced algorithms 
(e.g., GA and LM) can further improve the prediction perfor-
mance (Bui-Duy and Vu-Thi-Minh, 2021; Alonso et al., 2007). 
Therefore, enhancing the Neural Network structure and 
exploring suitable combination algorithms is one of the important 
developing research directions for the Neural Network-based fuel 
consumption prediction models. 

4.2.2. Ship energy consumption prediction based on intelligent algorithms 
The application of an intelligent algorithm is also an effective 

method to predict the ship energy consumption. It mainly includes SVR, 
DT, RF, LASSO, KNN, and GP algorithms.  

1) SVR algorithm 

SVR is a regression algorithm derived from SVM (Zhu et al., 2019), 
suitable for smaller training sets (Liu et al., 2016). It has solid theoretical 
basis and appropriate generalization, and accuracy in dealing with 
nonlinear problems (Alsarraf et al., 2019). In addition, the kernel 
function in SVR is used to calculate the inner product, to avoid the 
complexity caused by multiple design variables when introducing di-
mensions (Feng et al., 2018). Kim et al. (2020) adopted SVR to predict 
the propulsion power. The results showed that the SVR-based method 
was reliable for predicting ship propulsion power. Ghanbari et al. (2015) 
adopted the SVR to study the engine performance and emission pa-
rameters. They proposed that the parameters, such as kernel function 
parameters and penalty factor settings, have a specific impact on the 
prediction performance of the SVM. In addition, Pagoropoulos et al. 
(2017) proposed to use the SVM to evaluate ship energy efficiency, and 
verified the effectiveness of the SVM-based method.  

2) DT algorithm 

DT is a tree-structured machine learning algorithm, which is simple, 
efficient, and explanatory solid (Shaikhina et al., 2019; Daga et al., 
2017). It doesn’t need to impose complex parameter structures when 
dealing with large and complex datasets, and better prediction results 
can be quickly obtained (Song and Ying, 2015; Ahmad et al., 2017). The 
prediction of ship energy consumption based on DT selects the best 
features and eigenvalues through the principle of least square error. By 
inputting the eigenvalues of the test sample, the prediction results can be 
obtained through the DT-based fuel consumption model. Soner et al. 
(2018) analyzed the ship performance under operating conditions by 
developing a DT-based model. The results showed that the model has 
better predictive performance in ship performance monitoring, and has 
a higher accuracy rate than the ANN.  

3) RF algorithm 

RF is an integrated algorithm based on DT, which combines multiple 
decision trees and can effectively avoid the overfitting problem of DT 
(Massoud et al., 2019). The study on the RF algorithm-based fuel con-
sumption prediction showed that the RF-based model performed better 
than other machine learning algorithms for a specific case study 
(Gkerekos et al., 2019). Mou et al. (2017) established a fuel consumption 
prediction model by adopting the RF algorithm based on the operation 
data for a cruise ship along the Yangtze River. The prediction error of the 
model was within 6.8%, and the modeling process was more straight-
forward than that of the BPNN and SVR models. In addition, Yan et al. 
(2020) developed a fuel consumption prediction model based on RF by 
using the noon report data of a dry bulk carrier. They realized the fuel 
consumption prediction under different speeds, cargo loading, and 
navigational environment conditions. The results showed that the pre-
diction performance of the model is better than that of ANN, SVR, and 
LASSO-based models.  

4) LASSO algorithm 

LASSO is a biased estimation method for processing data with 
complex collinearity, which can reduce the regression coefficients of 
independent variables, and is less dependent on the size of the regression 
coefficients of the dependent variables due to the allocation of an 
adjustment parameter (Tran et al., 2012). The LASSO regression model 
is usually used to generate a solution and improve the interpretability of 
the solution. Zhou et al. (2021) established a LASSO regression model to 
realize the prediction of ship fuel consumption which considers wind, 
wave, current, and other meteorological data. The proposed 
multi-objective optimization method based on the LASSO model can 
achieve the optimization decision of ship navigation path. In addition, 
Wang et al. (2018c) established a LASSO-based fuel consumption pre-
diction model considering sea and weather conditions using the actual 
ship operation data and weather data. The comparison analysis results 
showed that the LASSO-based method is superior to traditional methods, 
and has better interpretability, generalization ability, and numerical 
stability.  

5) KNN algorithm 

KNN is a supervised learning algorithm. It aims to label or predict the 
class of unlabeled data points or samples automatically. KNN has being 
easy to understand, easy to implement, and no need to estimate pa-
rameters. It is commonly used to deal with classification problems and to 
solve regression problems (Duca et al., 2017; Rezaei et al., 2020). Chaal 
(2018) established a KNN-based BBM of ship energy consumption based 
on the operation data of a VLCC ship. The results showed that the pre-
diction accuracy of the KNN-based model could reach more than 80%. In 
addition, Gkerekos et al. (2019) adopted the KNN-based method to 
predict ship fuel consumption. The prediction accuracy of the 
KNN-based model can reach about 95% by using the data collected from 
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the automatic data collection system.  

6) GP algorithm 

GP has a strong learning ability and strong generalization ability in 
dealing with complex regression problems. It is widely used in the 
research of ship energy systems and the evaluation of ship energy per-
formance. The analysis results on the prediction performance of ship fuel 
consumption under different working conditions showed that the GP- 
based model has good prediction performance with an RMSE of 
0.4218 (Yuan and Wei, 2018). In addition, Yuan and Nian (2018) 
established a GP metamodel to predict the fuel consumption of ships in 
different scenarios by comprehensively considering navigation status 
and weather conditions. The influence of various factors on ship fuel 
consumption is analyzed using the GP model. The results showed that 
the input factors of the model have a significant effect on the ship fuel 
consumption, and the GP metamodel has good accuracy and effective-
ness for fuel consumption prediction. This method can be further used to 
evaluate the impact of different factors on ship’s energy consumption.  

7) Other algorithms 

In addition to the above-mentioned intelligent algorithms, some 
other intelligent algorithms, including the Ridge regression (Melkumova 
and Shatskikh, 2017; Moreno-Salinas et al., 2019), boosting algorithm 
(Jin et al., 2019), Response Surface Methodology (RSM) (Işıklı et al., 
2020), the sparse regression method (SRM) (Wang et al., 2021c), and 
AML (Ahlgren and Thern, 2018), etc., also can be used to achieve the 
prediction of ship fuel consumption. Uyank et al. (2020) adopted mul-
tiple machine learning algorithms for the prediction of fuel 

consumption, and achieved a better energy consumption optimization 
result. In addition, Nwaoha et al. (2017) proposed a structured frame-
work to solve the uncertainty problem of ship FCR by combining the 
fuzzy rule base and utility theory methods. The results showed that the 
combined algorithm could effectively predict the FCR of ships. In 
addition, Ahlgren et al. (2019) developed a machine learning model to 
predict the fuel consumption of the main engine, by combing the genetic 
algorithm to select and optimize the super parameters of the model. This 
model can achieve better prediction performance. Moreover, Hu et al. 
(2021) integrated ET, RF, XGB, and MLR methods to establish a mixed 
fuel consumption prediction model. The advantages of each algorithm 
can be fully reflected by combining multiple algorithms. Thus, the 
robustness of the model can be improved, and the generalization ability 
of the model can be enhanced.  

8) Summary 

Different intelligent optimization algorithms have different adapt-
ability and performance when used with various data sources and 
characteristics. The analysis of intelligent algorithm-based ship fuel 
consumption prediction models is shown in Table 5. It can be noted that:  

(a) Model parameters. The model’s prediction performance can be 
improved by considering the influence of multiple factors.  

(b) Prediction accuracy. The prediction model’s performance differs 
depending on the algorithms and data sets used. More extensive 
input characteristics can thus improve the model’s prediction 
accuracy.  

(c) Data sources. A large amount of high-quality data and adequate 
data preprocessing are required to improve the performance of 

Table 5 
Analysis of different intelligent algorithm-based models for ship energy consumption prediction.  

Target ship Methods Parameters of concern Prediction accuracy Data sources Model applications Reference 

Bulk cargo 
ship 

SVR Sailing speed, draft, engine speed, 
wave height, wind vector, etc. 

The R2 of the model is 
89.78% 

Shipboard measurements 
and NOAA database 

Prediction of ship 
propulsion power 

Kim et al. 
(2020) 

Ferry 
steamer 

Bagging, RF, and 
bootstrap 

Rudder angle, trim, sailing speed, 
course, wind speed and direction, etc. 

The RMSE is 45.2, 
43.5, and 41.3, 
respectively 

Automatic data 
acquisition system 

Fuel consumption 
prediction 

Soner et al. 
(2018) 

Reefer 
vessel, 

DT, RF, KNN, 
SVM, ANN, etc. 

Sailing speed, engine speed, current 
speed, wind speed and direction, sea 
condition, draft, etc. 

The R2 range from 
0.7269 to 0.9729 

ADLM system Prediction of fuel 
consumption 

Gkerekos et al. 
(2019) 

Bulk carrier 
Cruise Ship RF Water depth and speed, engine speed, 

sailing speed, etc. 
The relative error is 
0.05%–6.86% 

Information acquisition 
system 

Prediction of ship fuel 
consumption 

Mou et al. 
(2017) 

Dry bulk 
carrier 

RF Regression Sailing speed, wave height and 
direction, wind direction, etc. 

The MAPE of the 
model is 7.91% 

Noon Report Ship speed optimization Yan et al. 
(2020) 

Container 
ship 

LASSO Sailing speed, draft, course, current 
speed, wind, wave, etc. 

The MAPE is 
9.2482%, and RMSE is 
1.6458 

AIS, CMEMS Ship route optimization Zhou et al. 
(2021) 

Container 
ship 

LASSO Sailing speed, course, wave height, 
wind scale, etc. 

The MAE is 4.9 Fleet management 
system 

Prediction of ship fuel 
consumption 

Wang et al. 
(2018c) 

VLCC KNN, DT, 
AdaBoost 

Sailing speed, course, engine speed, 
loading, weather, etc. 

The R2 range from 
0.74 to 0.96 

Data acquisition sensors Trim and route 
optimization 

Chaal (2018) 

Chemical 
ship 

GP Sailing speed, course, wind speed and 
direction, wave height and direction 

The RMSE of the 
model is 0.3963 

AIS system, Noon Report, 
weather report 

Speed optimization, trim 
optimization, route 
optimization 

Yuan and Wei 
(2018) 

Tanker GP Sailing speed, draft, trim, wind speed 
and direction, wave height and 
direction 

The RMSE of the 
model is 0.4418 

AIS data, shipboard 
measurements, Noon 
Report 

Speed optimization, trim 
optimization 

Yuan and Nian 
(2018) 

Container 
ship 

LASSO, SVR, 
KNN, DT, RF, 
etc. 

The external environment, engine 
parameters, etc. 

The R2 range from 
0.965 to 0.999 

Noon Report, engine 
room logbook, and 
sensors 

Prediction of fuel 
consumption 

Uyank et al. 
(2020) 

Cruise Ship AML Exhaust gas temperature, engine 
speed, supercharger speed, etc. 

The standard 
deviation is about 
0.0056 

Valmarine logging 
servers, logbook 

Prediction of fuel 
consumption 

Ahlgren and 
Thern (2018) 

Cruise Ship AML Engine speed, turbine speed, exhaust 
gas temperature, etc. 

The R2 is 0.9936 Ship recording system Prediction of fuel 
consumption 

Ahlgren et al. 
(2019) 

Bulk cargo 
ship 

RSM Weather conditions, engine speed, 
sailing speed, load, etc. 

The R2 is 89.28% Noon Report Prediction of fuel 
consumption 

Işıklı et al. 
(2020) 

Container 
ship 

ET, RF, XGB, and 
MLR 

Fuel consumption, speed, trim, draft, 
course, wind, wave 

The R2 is 0.9938 Fuel consumption data 
logging 

Ship speed optimization Hu et al. 
(2021)  
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the energy consumption prediction model. Evidently, more and 
more researchers are using multi-source data to improve data 
acquisition accuracy and prediction performance.  

(d) Model applications. Since different intelligent algorithms are 
adapted to specific data sources and data characteristics, no sin-
gle algorithm can be applied to all data sets. It is therefore 
paramount to select a suitable intelligent algorithm for given data 
characteristics and application cases. Consequently, the combi-
nation of machine learning with multi-algorithm integrated 
models will emerge as the leading research content in the future, 
since it can synthesize the advantages of each algorithm thus 
further improving the performance of energy consumption pre-
diction models (Öztürk and Başar, 2021), as well as facilitating 
the achievement of dynamic prediction based on real-time 
influencing factors (Zaccone et al., 2018). 

4.3. Grey box model of ship energy consumption prediction 

There are two main ways to establish the GBMs for energy con-
sumption prediction. One method is to identify the unknown parameters 
in the theoretical model through statistical regression, called parameter 
identification GBM in this paper. The other way is to combine the WBM 
and the BBM in series or parallel, called the combined GBM (Ljung, 
2001; Coraddu et al., 2017). 

For the parameter identification GBM, Meng et al. (2016) adopted 
the regression analysis method to establish a GBM of ship FCR, which 
considered the influencing factors of sailing speeds, sea conditions, and 
weather conditions. In addition, Yang et al. (2019) established a ship 
fuel consumption model considering sailing speed, displacement, and 
marine environment, and estimated the unknowns in the model by the 
Least Square method and GA. The established model has high effec-
tiveness for the prediction of fuel consumption. Moreover, Lu et al. 
(2013) proposed a prediction method of ship fuel consumption based on 
Kwon’s additional resistance analysis. They established a ship operating 
performance model which considered ship loading, sailing speed, 
waves, etc. On this basis, the noon report data is used to improve the 
model’s accuracy. The improved ship performance prediction model is 
more accurate and can be used to analyze ship fuel consumption under 
different sea conditions. 

For the combined GBM, Leifsson et al. (2008) put forward two 
different combination methods through a serial and parallel connection 
between the WBM based on mechanism analysis and the BBM based on a 
feed-forward Neural Network. The fuel consumption through the GBM 
can be reduced by about 65% compared with the WBM. Yuan et al. 
(2020c) established a fuel consumption optimization model by 
combining the WBM with the BP model in series and parallel 

respectively based on the data of ship sailing speed and fuel consump-
tion. In addition, Coraddu et al. (2015) proposed two different forms of 
GBM for the fuel consumption of a chemical tanker by combining WBM 
and BBM. The proposed GBM-based trim optimization method can 
reduce ship fuel consumption effectively. Zwart (2020) established a 
GBM for dynamic fuel consumption prediction by combing the regres-
sion model with ANN based on the noon report data. Moreover, Oden-
daal (2021) proposed a serial configuration ANN-GBM. On this basis, the 
designed energy consumption of a new yacht can be predicted accu-
rately by using the actual voyage data. 

The analysis of GBMs for ship energy consumption prediction is 
shown in Table 6. It can be noted that: 

(a) The performance of GBM depends on the quality of the under-
lying data. To cover a broader range of associated features and 
obtain more accurate prediction results, a wider variety of high- 
quality data should be obtained from onboard sensors and 
meteorological centers.  

(b) The main research targets for the existing models are oil tankers 
and container ships. The GBM can be extended to other types of 
ships by considering the characteristics of specific ships. The 
GBM can thus be used as the foundation for ship energy efficiency 
management plan, and applied to online real-time operation 
optimizations, such as sailing speed and route optimization, and 
trim optimization. 

4.4. Analysis of different types of models for ship energy consumption 
prediction 

The different types of models for ship energy consumption prediction 
have different characteristics. An analysis on the advantages and main 
limitations of each model types are important and beneficial for the 
practical applications. 

4.4.1. The white box model 
The WBM of fuel consumption prediction is based on the known 

physical laws and relations, and has good interpretability. However, the 
construction of the model needs a series of parameters and knowledge, 
including ship basic parameters, resistance characteristics, main engine 
operation characteristics curve, propeller operation characteristics 
curve and so on. However, these parameters are not constant and change 
with the navigation environment and operational conditions (e.g. ship 
fouling, weather conditions). The superposition of these parameters 
would increase the prediction error and thus the performance is strongly 
affected by these parameters and assumptions, which limits the appli-
cation of the model. 

Table 6 
Analysis of GBMs for ship energy consumption prediction.  

Target ship Modeling method Parameters of concern Prediction/Energy 
saving effect 

Data sources Model Applications Reference 

Oil tanker Serial combination Main engine speed, sailing speed to 
the ground, draft 

The MAPE is 0.8%– 
10% 

Data logging system Shaft Power and fuel 
consumption prediction, trim 
optimization 

Coraddu et al. 
(2017) 

Container 
ship 

Parameter 
identification 

Sailing speed, displacement, sea 
conditions, and weather conditions 

The RMSE is about 
6% 

Shipping log data Fleet deployment planning 
management 

Meng et al. 
(2016) 

Oil tanker Parameter 
identification 

Sailing speed, displacement, 
weather conditions 

The accuracy is 
92.5% 

Noon Report Fuel consumption optimization 
and greenhouse gas emissions 

Yang et al. 
(2019) 

Oil tanker Parameter 
identification 

Sailing speed and direction, draft, 
FCR 

The prediction error 
is 5–7% 

NOAA and noon 
report 

Ship performance prediction and 
route optimization 

Lu et al. 
(2013) 

Container 
ship 

Serial-parallel 
combination 

Engine speed, draft, wind speed and 
direction 

The RMSE can be 
reduced by 65% 

Ship energy 
management system 

Speed and fuel consumption 
optimization 

Leifsson et al. 
(2008) 

Cargo ship Serial combination Sailing speed, draft, engine power 
and speed 

The R2 is 0.945 Fuel consumption 
report 

Speed and fuel consumption 
optimization 

Yuan et al. 
(2020c) 

Oil tanker Serial combination Engine speed, sailing speed, draft The MAPE is 1.5%– 
8.5% 

Data logging system Shaft Power and fuel 
consumption prediction 

Coraddu et al. 
(2015) 

Chemical 
tanker 

Serial combination Sailing speed to the water, draft, 
trim, wind, and waves 

The accuracy is 
6.58% 

Voyage report data Trim optimization Zwart (2020)  
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In addition, the structure and parameters are given and fixed for the 
WBMs. Therefore, it is difficult to improve performance by updating the 
model structure and the built-in parameters based on the real-time dy-
namic information and thus it is weak to adapt to the dynamic opera-
tional conditions. Moreover, it is hard to consider all the influencing 
factors effectively, such as the environmental or operational factors that 
affect propulsion power or fuel consumption. Therefore, the accuracy 
and prediction performance in practical application would be 
influenced. 

4.4.2. The black box model 
The model’s prediction performance can be improved by considering 

the influence of multiple factors. However, the endogenous problem of 
multiple parameters is rarely considered for the intelligent algorithm- 
based prediction model. In addition, the prediction model’s perfor-
mance depends on the algorithms and data sets used. More extensive 
input characteristics can thus improve the model’s prediction accuracy. 
However, the model structure would be relatively complex, and the 
specific details and noise in a large amount of data would limit the 
model’s generalizability. 

The Neural Network-based prediction model has good prediction 
accuracy, however, it is usually complex and difficult to explain. An 
improper hidden layer and neuron number would result in a longer 
training time and poor performance. In addition, the acquisition fre-
quency and low accuracy of log data could not meet the Neural Network- 
based prediction model’s requirements. The construction of the model 
requires the accumulation of a large number of high-quality operation 
data for a long time. With the increase of specific details and noise, the 
generalization ability will be weakened and the problem of over-fitting 
will occur. 

Most Neural Network-based models are static prediction models 
based on the known historical data. However, the data is time-variant 
during practical navigation, resulting in some deviations between 
theoretical results and practical information. Therefore, future research 
on the Neural Network-based fuel consumption prediction models 
should shift from static to real-time dynamic prediction (Farag and 
Ölçer, 2020). 

4.4.3. The grey box model 
The commonly used GBM modeling method combines BBM and 

WBM in series or parallel connection. Compared to the WBM, the GBM 
has higher prediction accuracy. Similarly, the GBM has a significant 
advantage of extrapolation compared to BBM, which eliminates the 
problem of inaccurate prediction without considering influencing fac-
tors or parameters beyond the model’s range. However, when the GBM 
mainly relies on physical laws, detailed initial information about the 
physical characteristics of the ship’s operation is required. When the 
GBM mainly relies on historical data, a broader set of data is required to 
describe as many operating conditions as possible. Therefore, the per-
formance of the model not only depends on the quantity and quality of 
data, but also influenced by the model structure, assumptions and the 
physical laws. 

All in all, different types of models have different adaptability and 
performance. Therefore, it is critical to select a model that is appropriate 
for case-specific application. The analysis of the adaptability of different 
types of models to achieve effective prediction of ship fuel consumption 
across different ship types is a critical content worth further investiga-
tion in the future. 

5. Methods for ship pollution gas emission prediction 

Under the background of low-carbon shipping, it is essential to 
control the emissions to achieve the green development of the shipping 
industry (Lan et al., 2020). Ship emission prediction is a necessary basis 
for realizing effective emissions control (Shen et al., 2020). However, 
the generation mechanism of ship exhaust gas is complicated, and the 

influencing factors are various (Seithe et al., 2020). The fuel type, 
navigation state, and marine environment would influence the pollution 
gas emissions (Planakis et al., 2021; Zhen et al., 2020). The ship pollu-
tion gas emission predictions are of great significance to realizing the 
pollutant gas emission control in the shipping industry (Ma et al., 2020). 
There are mainly two kinds of methods, namely the top-down and the 
bottom-up methods, to achieve the pollution gas emission prediction 
from ships (Gu and Xu, 2013; Tan et al., 2014; Wang et al., 2008). 

5.1. Ship pollution gas emission prediction based on the top-down 
methods 

The top-down method is based on the fuel consumption of the main 
engine, generator, boiler, and other equipment to calculate the pollution 
gas emissions. Specifically, the fuel consumption can be obtained 
through statistics of the information from the engine log and oil record 
books. Then the pollution gas emissions can be obtained based on the 
fuel consumption multiplied by the corresponding emission factors (Liu 
et al., 2018b). This method doesn’t need specific parameters of ships and 
meteorological environment data. If the total fuel consumption of all 
kinds of ships is obtained, then the total emissions in a specific area can 
be calculated. In addition, the accuracy of the estimated results can be 
verified by comparing with the amount of fuel consumption (Zhou et al., 
2012). Endresen et al. (2007) analyzed the fuel consumption of inter-
national ships based on the data of the global statistical report on marine 
fuel consumption. They selected emission factors according to the fuel 
type and engine type, and calculated the pollution gas emissions of 
ocean-going ships over 100 gross tons worldwide by adopting the 
top-down method. Hulskotte and Denier van der Gon (2010) analyzed 
the pollution gas emissions of the berthed ships by using the information 
on the fuel consumption and emission factors. In addition, Corbett et al. 
(1999) estimated the global emissions of NOx and SO2 from ships by 
using the top-down method. Moreover, Wang and Corbett (2007) 
studied the benefits of the policy of reducing pollution from offshore 
ships on the west coast of the United States with the top-down method. 
The research showed that if the sulfur content of fuel oil is less than 
1.5%, the SOx emissions of all ships in California will be reduced by 
about 21,000 tons. 

5.2. Ship pollution gas emission prediction based on the bottom-up 
methods 

The bottom-up method is the emission calculation method based on 
the ship activity level. The fuel consumption of the ship is usually 
calculated based on the installed power, sailing time, FCR, and emission 
factors (Merien-Paul et al., 2018). Based on the data of sailing speed, 
route, and sailing time, the corresponding emission factors can be ob-
tained according to the installed power. Then the total amount of 
pollution gas emissions from the ship can be calculated. Juan et al. 
(2018) proposed a bottom-up method for calculating greenhouse gas 
emissions based on the ship operational data, by adopting four existing 
methods for energy consumption and emissions calculation. It can 
eliminate the uncertainty of average fuel consumption and improve the 
reliability and accuracy of calculation results. Chang et al. (2014) 
analyzed the emissions of sulfur dioxide, nitrogen oxides, and particu-
late matter from ships in Incheon Port during berthing, loading, 
unloading, and departure. The results showed that Incheon Port emits 
990 tons of sulfur dioxide, 1551 tons of nitrogen oxides, and 142 tons of 
PM every year, and most of the pollution gas emissions occur during the 
cruise navigation. In addition, Song (2014) adopted the bottom-up 
method to analyze the emissions of ship exhaust pollutants in 
Shanghai Yangshan Port. Chang et al. (2013) made a comparative 
analysis of the bottom-up and top-down methods for the greenhouse gas 
emissions prediction, and found that there were some differences be-
tween these two ways. Xing et al. (2016) analyzed the emissions of 
pollution gases from ships by top-down method and bottom-up method, 
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respectively, by considering different loads of ships. The results showed 
that the top-down emission measurement method is simple and easy to 
achieve, while the bottom-up emission measurement result is relatively 
more accurate. Moreover, Huang et al. (2017) proposed a bottom-up 
method considering the marine environment, which combined the 
data set of AIS with the marine environment information, analyzed the 
influence of wind, waves, and currents on the ship sailing speed, and 
calculated the greenhouse gas emissions from ships in Ningbo-Zhoushan 
Port. Peng et al. (2020b) adopted a stratified random sampling method 
to take sample ships to reduce the uncertainty caused by missing static 
data, and analyzed the total emissions of 34,788 vessels sailing on the 
Yangtze River. The proposed method could reduce the uncertainty in 
calculating regional emissions by about 30%. When the sampling ratio 
was greater than 10%, the relative error was less than 3.5%, improving 
the accuracy of ship emissions calculation. 

In addition, Wang et al. (2007) analyzed the ship emissions between 
North American ports based on the ship traffic, energy and environment 
model (STEEM), as shown in Fig. 4. The established model took into 
account the information of the sailing route, draft, and historical oper-
ation data of ships, and showed good accuracy in calculating regional 
emissions. Jalkanen et al. (2009) put forward the Ship Traffic Emission 
Assessment Model (STEAM), which used the information provided by 
the AIS to improve the spatial resolution of the model, and considered 
the influence of waves on ship emissions. The prediction error of fuel 
consumption in the model is less than 6%, which can realize the analysis 
of the total emissions of nitrogen oxides, carbon dioxide, and sulfur 
dioxide from Baltic ships. Based on the STEAM, Zhang et al. (2017) 
analyzed the exhaust emissions of Nanjing Longtan Container Terminal 
by combining AIS data with the ship profile database. Johansson et al. 
(2013) adopted the STEAM to evaluate the impact of Nordic emission 
control areas on ship emissions. In addition, Sofiev et al. (2018) esti-
mated the ship pollutant emissions using the STEAM model, and studied 
the influence of low-sulfur fuel on human health and climate. Weng et al. 
(2019) calculated the exhaust emissions from ships in the Yangtze River 
Estuary by using the STEAM model. They analyzed the influence of ship 
types, and operating conditions on the ship emissions. The results 
showed that most of the ship emissions occurred under the conditions of 
slow driving and normal cruise, mainly distributed in the port area, the 
intersection area, and the north channel of the Yangtze River Estuary. 

Based on the STEAM, Jalkanen et al. (2011) proposed a STEAM2 
model that considered the influence of sailing route, speed, engine load, 
fuel sulfur content, and environmental conditions. They added the 
particulate matter and carbon monoxide emission calculation, which 
can further improve the model performance. Then, Marelle et al. (2016) 
adopted WRF-Chem combined with the STEAM2 model to analyze the 
pollution emissions of ships in northern Norway. The results showed the 
STEAM2 model has good accuracy in fleet emission calculation. It can 
effectively reduce the analysis error for individual ship’s emission by 
combining WRF-Chem with the STEAM2 model. In addition, Mor-
eno-Gutiérrez and Durán-Grados (2020) put forward the SENEM, which 
considered and quantified variables such as marine meteorological 
conditions, hull and propeller status, and the effectiveness of the method 
has been verified with four Ro-Ro ships. 

5.3. Analysis of different prediction methods for ship pollution gas 
emission 

Table 7 summarizes and analyzes the ship pollution gas emission 
prediction methods from the aspect of the target area, methods, influ-
encing parameters, and data sources. It can be noted that:  

(a) The bottom-up method outperforms the top-down method in 
terms of prediction accuracy because it employs more precise 
parameters, such as fuel emission factors under various operating 
conditions. As a result, the bottom-up method has more appli-
cations for ship emission prediction than the top-down method, 
which explains why it was preferentially adopted for regional 
ship emission prediction in the past (Xing, 2017).  

(b) The top-down method ignores the emission difference under 
practical operating conditions of ship equipment, resulting in 
prediction deviations. The bottom-up method, on the other hand, 
considers the influence of the marine environment, hull and 
propeller state, and propulsion system performance, which im-
proves prediction accuracy. Besides, the emission factor, which is 
related to the main engine’s fuel consumption under different 
operating conditions, is a variable parameter. However, this 
parameter is treated as a fixed value in most of the existing 
studies, which affects the model’s prediction performance. 
Therefore, the study of prediction models considering the varying 
sailing conditions is of great significance, towards the improve-
ment of ship emission prediction performance (Moreno-Gutiérrez 
et al., 2015).  

(c) The top-down method relies on fuel sales data, fuel consumption 
statistics, the noon report, or customized data collection systems 
to forecast regional or global ship emissions. The bottom-up 
method, on the other hand, is mainly based on automatic data 
collection system. The use marine engine logs and ship ques-
tionnaires for data collection has also been reported in some 
studies. Nonetheless, the low quality of the collected data still 
affects the model’s prediction accuracy. The application of state- 
of-the-art data acquisition systems is therefore critical for 
improving prediction performance.  

(d) Currently, there is no systematic theory or method for calculating 
and analyzing ship emissions. The monitoring of energy con-
sumption and pollution gas emissions still remains the basis for 
ship pollution gas emission control. Therefore, the development 
of systematic monitoring and intelligent analysis systems for 
pollution gas emissions is a necessary future trajectory for ship 
emission control (Antonio et al., 2017). 

6. Conclusions and discussions 

Effective prediction of ship energy consumption and emissions is 
essential to realize the optimal management and control of ship energy 
consumption and emissions, in order to achieve energy saving and Fig. 4. The process of the STEEM (Wang et al., 2007).  
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emission reduction in the shipping industry. Although some researches 
on the prediction of ship energy consumption and pollution gas emis-
sions have been conducted, some challenges remain. 

1) There is still lack of systematic ship energy consumption and emis-
sions monitoring methods that can simultaneously handle varying 
data types, with modules for data preprocessing and analysis 
method, etc. Either, the deep mining of multi-source heterogeneous 
data has not been fully realized. Dynamic analysis and prediction of 
ship energy consumption and emissions using real-time data also 
needs further improvement. Consequently, a thorough investigation 
of the multi-dimensional in-depth mining method of multi-source 
heterogeneous big data characteristics is required. To establish 
high-precision energy consumption and emission prediction models, 
big data-based machine learning algorithms should be used, which 
will continuously improve prediction accuracy and practical appli-
cation performance.  

2) Ship fuel consumption and emission prediction models are the basis 
for optimal ship energy consumption and emissions management 
strategies. However, the applicability and performance analysis of 
those models for various ships and conditions remains inadequate. 
Selecting a suitable modeling method is the key to achieving an ac-
curate prediction for various ship characteristics and operation 
modes. To promote the development of ship energy consumption 
management and emission control, it is necessary to develop high 

precision and applicable prediction models for different types of 
ships and working conditions. Furthermore, ship-shore integrated 
intelligent ship energy consumption and emission monitoring sys-
tems should be developed to improve the application performance of 
the prediction methods.  

3) Since ship energy consumption and pollution gas emissions are 
influenced by multiple time-varying factors (e.g., wind, wave, and 
trim), further research on dynamic ship energy consumption and 
emission analysis methods considering the coupling effects of those 
factors is required. In addition, research on the self-learning of model 
parameters based on artificial intelligence should be strengthened, to 
improve the model’s adaptability to complex and time-varying 
navigational conditions. Similarly, high-precision energy consump-
tion models based on self-learning parameters should be developed 
using advanced artificial intelligence to achieve effective dynamic 
prediction of ship energy consumption and emissions under the 
coupling effect of multiple influencing factors.  

4) Further research should be done on the optimization and control 
strategies of ship energy consumption and pollution gas emissions to 
meet the emissions reduction requirements proposed by IMO. Such 
strategies should also consider market mechanism-based measures, 
navigation optimization, power system optimization control, etc., to 
promote sustainable development of the shipping industry. 

For all that, the studies on the energy efficiency optimization and 

Table 7 
Comparison analysis of different prediction methods for ship pollution gas emission.  

Target area/ship Methods Parameters of concern Data source Reference 

Global ships Top-down, 
bottom-up 

Ship installed power, ship position, etc. International Comprehensive Ocean-Atmosphere 
Data Set. Automated Mutual-Assistance Vessel 
Rescue System 

Wang et al. (2008) 

Ships of 100 gross tons 
and above 

Top-down Fuel type, fuel consumption, and fuel sulfur 
content, etc. 

Coal and oil statistics of the United Nations and oil 
statistics of the International Energy Agency, etc. 

Endresen et al. (2007) 

89 ships in Rotterdam 
Port 

Top-down Ship type, fuel consumption, fuel type, and 
engine type 

Questionnaire survey on 89 ships Hulskotte and Denier van 
der Gon (2010) 

Global ships Top-down Ship parameters, fuel consumption, and fuel 
sulfur content, etc. 

Marine exhaust emission test data. International 
navigational fuel usage information 

Corbett et al. (1999) 

Ships in West Coast 
waters of the United 
States 

Top-down Fuel consumption, ship traffic intensity International fuel sales data, the fuel consumption 
of world freight fleet 

Wang and Corbett (2007) 

A Ro-Ro ship with 4030 
DWT 

Bottom-up Speed, marine environment, hull and propeller 
fouling, trim, etc. 

Ship noon report Juan et al. (2018) 

Inchon Port Bottom-up Ship parameters, fuel type and consumption, 
sailing speed, etc. 

Incheon Port Authority, European Environment 
Agency 

Chang et al. (2014) 

Shanghai Yangshan Port Bottom-up Ship parameters, sailing speed, ship voyage, etc. AIS Song (2014) 
Inchon Port Top-down, 

bottom-up 
Navigation state, fuel consumption, voyage, etc. Incheon Port Authority Database Chang et al. (2013) 

"Yu Kun" ship Top-down, 
bottom-up 

Fuel consumption, fuel type, ship parameters, 
sailing state, etc. 

Logbook, oil record book Xing et al. (2016) 

Ningbo-Zhoushan Port Bottom-up Ship type, meteorological environment, and 
navigation state 

AIS Huang et al. (2017) 

The Yangtze River Bottom-up Ship type, the density of ships, power of the main 
engine 

AIS Peng et al. (2020b) 

North America Bottom-up Ship type, Ship parameters, sailing route, draft, 
etc. 

International comprehensive marine and 
atmospheric data set, etc. 

Wang et al. (2007) 

The Baltic Bottom-up Ship parameters, actual sailing speed, etc. AIS Jalkanen et al. (2009) 
Nanjing Longtan 

Container Terminal 
Bottom-up Ship type, ship parameters, sailing speed, route, 

etc. 
AIS, ship profile database, and field survey data. Zhang et al. (2017) 

Nordic emission control 
area 

Bottom-up Ship type, ship parameters, sailing speed, route, 
etc. 

AIS, IHS Fairplay Johansson et al. (2013) 

Global ships Bottom-up Ship equipment parameters, sailing speed, route, 
etc. 

AIS Sofiev et al. (2018) 

Yangtze River Estuary Bottom-up Ship parameters, navigation state, voyage time 
and position, etc. 

AIS, CCS Database, Lloyd’s Classification Society 
Database 

Weng et al. (2019) 

Sea around Danish 
Strait 

Bottom-up Ship parameters, navigation state, engine load, 
fuel sulfur content, etc. 

AIS, IHS Fairplay, internal ship database Jalkanen et al. (2011) 

Northern Norway Bottom-up Ship parameters, navigation state, engine load, 
fuel sulfur content, etc. 

Arctic climate change, AIS, etc. Marelle et al. (2016) 

Ro-Ro ships Bottom-up Ship parameters, meteorological conditions, 
water displacement, main engine power, fuel 
consumption, etc. 

On-board sensor collection Moreno-Gutiérrez and 
Durán-Grados (2020)  
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emission control measures illustrated that the goal of the carbon neutral 
transportation and fulfillment of the IMO’s GHG emissions reduction 
requirements may not be realized in the long term (The goal is to reduce 
carbon intensity by at least 40% by 2030, compared with 2008 levels, 
and aim for a 70% reduction by 2050), without low-carbon energy 
transition in the shipping industry. At the present stage, about 95% of 
ships use diesel as the main power energy. To achieve the carbon neutral 
transportation and fulfil the IMO’s GHG emissions reduction re-
quirements, it is necessary to get rid of the dependence on diesel power 
in the future. The application technology of low-carbon and zero-carbon 
energy sources, such as LNG, batteries, hydrogen fuel cells, methanol, 
ammonia and shore power, should be investigated. In addition, the 
green and intelligent technologies, such as intelligent power optimiza-
tion, energy efficiency management, carbon capture and storage, should 
be studied, and meanwhile, the management mechanisms such as car-
bon tax and carbon trading should be developed in the future work. 
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Simonsen, M., Walnum, H.J., Gössling, S., 2018. Model for estimation of fuel 
consumption of cruise ships. Energies 11 (5), 1059. 

Sofiev, M., Winebrake, J.J., Johansson, L., et al., 2018. Cleaner fuels for ships provide 
public health benefits with climate tradeoffs. Nat. Commun. 9 (1), 406. 

Soner, O., Akyuz, E., Celik, M., 2018. Use of tree based methods in ship performance 
monitoring under operating conditions. Ocean Eng. 166, 302–310. 

Song, S., 2014. Ship emissions inventory, social cost and eco-efficiency in Shanghai 
Yangshan port. Atmos. Environ. 82, 288–297. 

Song, Y.Y., Ying, L.U., 2015. Decision tree methods: applications for classification and 
prediction. Shanghai Arch. Psychiatr. 27 (2), 130. 

Sun, X., Yan, X., Wu, B., et al., 2013. Analysis of the operational energy efficiency for 
inland river ships. Transport. Res. Transport Environ. 22, 34–39. 

Sun, C., Wang, H., Liu, C., et al., 2019. Dynamic prediction and optimization of energy 
efficiency operational Index (EEOI) for an operating ship in varying environments. 
J. Mar. Sci. Eng. 7 (11), 402. 

Szlapczynska, J., Szlapczynski, R., 2019. Preference-based evolutionary multi-objective 
optimization in ship weather routing. Appl. Soft Comput. J. 84, 105742. 

Tan, J., Song, Y., Ge, Y., et al., 2014. Emission inventory of ocean-going vessels in Dalian 
Coastal area. Res. Environ. Sci. 27 (12), 1426–1431 (In Chinese).  

Tarelko, W., Rudzki, K., 2020. Applying artificial neural networks for modelling ship 
speed and fuel consumption. Neural Comput. Appl. 1–17. 

Themelis, N., Spandonidis, C., Giordamlis, C., 2018. A Comparative Study on Ship 
Performance Assessment Based on Noon Report and Continuous Monitoring System 
Datasets. //2018 Annual Meeting of Marine Technology, organized by the Hellenic 
Institute of Marine Technology.  

Tillig, F., Ringsberg, J.W., 2019. A 4 DOF simulation model developed for fuel 
consumption prediction of ships at sea. Ships Offshore Struct. 14 (Suppl. 1), 
112–120. 

Tillig, F., Ringsberg, J.W., Mao, W.G., Ramne, B., 2017. Analysis of the Reduction of 
Uncertainties in the Prediction of Ships’ Fuel Consumption–From Early Design to 
Operation conditions//International Conference on Ships & Offshore Structures. 

Tillig, F., Ringsberg, J.W., Mao, W., et al., 2018. Analysis of uncertainties in the 
prediction of ships’ fuel consumption–from early design to operation conditions. 
Ships Offshore Struct. 13, 13–24. 

Tillig, F., Ringsberg, J.W., Psaraftis, H.N., et al., 2020. Reduced environmental impact of 
marine transport through speed reduction and wind assisted propulsion. Transport. 
Res. Transport Environ. 83, 102380. 

Tran, T.A., 2019. Design the prediction model of low-sulfur-content fuel oil consumption 
for M/V NORD VENUS 80,000 DWT sailing on emission control areas by artificial 
neural networks. Proc. IME M J. Eng. Marit. Environ. 233 (1), 345–362. 

Tran, T.A., 2020. Effect of ship loading on marine diesel engine fuel consumption for 
bulk carriers based on the fuzzy clustering method. Ocean Eng. 207, 107383. 

Tran, T.A., 2021. Comparative analysis on the fuel consumption prediction model for 
bulk carriers from ship launching to current states based on sea trial data and 
machine learning technique. J. Ocean Eng. Sci. 6 (4), 317–339. 

Tran, M.N., Nott, D.J., Leng, C., 2012. The predictive Lasso. Stat. Comput. 22 (5), 
1069–1084. 

Trivyza, N.L., Rentizelas, A., Theotokatos, G., et al., 2022. Decision support methods for 
sustainable ship energy systems: a state-of-the-art review. Energy 239, 122288. 

Trodden, D.G., Murphy, A.J., Pazouki, K., Sargeant, J., 2015. Fuel usage data analysis for 
efficient shipping operations. Ocean Eng. 110, 75–84. 

Tsitsilonis, K.M., Theotokatos, G., 2018. A novel systematic methodology for ship 
propulsion engines energy management. J. Clean. Prod. 204, 212–236. 

Tsujimoto, M., Orihara, H., 2019. Performance prediction of full-scale ship and analysis 
by means of on-board monitoring (Part 1 ship performance prediction in actual 
seas). J. Mar. Sci. Technol. 24 (1), 16–33. 

Tzortzis, G., Sakalis, G., 2021. A dynamic ship speed optimization method with time 
horizon segmentation. Ocean Eng. 226, 108840. 

UNCTAD/RMT/2020, 2020. Review of Maritime Transport. United Nations publication. 
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