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Abstract Cell migration, known as an orchestrated move-
ment of cells, is crucially important forwound healing, tumor
growth, immune response as well as other biomedical pro-
cesses. This paper presents a cell-based model to describe
cell migration in non-isotropic fibrin networks around pan-
creatic tumor islets. This migration is determined by the
mechanical strain energy density as well as cytokines-driven
chemotaxis. Cell displacement is modeled by solving a large
system of ordinary stochastic differential equations where
the stochastic parts result from random walk. The stochastic
differential equations are solved by the use of the classi-
cal Euler–Maruyama method. In this paper, the influence of
anisotropic stromal extracellular matrix in pancreatic tumor
islets on T-lymphocytes migration in different immune sys-
tems is investigated. As a result, tumor peripheral stromal
extracellular matrix impedes the immune response of T-
lymphocytes through changing direction of their migration.

Keywords Cell migration · Cell-based model · Semi-
stochastic model · Stromal extracellular matrix · Pancreatic
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1 Introduction

Cell migration is a directed movement of cells which typi-
cally includes amoeboid and mesenchymal movement. Cell
migration is driven by (combinations of) several mecha-
nisms: chemical cues (chemotaxis or haptotaxis where the
cues are in the fluid phase or extracellular matrix, respec-
tively), mechanical cues (mechanotaxis, being tensotaxis or
durotaxis, respectively, migration according to mechanical
tensions and movement up to a stiffness gradient), electri-
cal cues (electrotaxis), by light activation and by random
walk. Cell migration is an integral part of many different
biomedical processes, such as wound healing, organ devel-
opment, tumor growth and cancer metastasis. Moreover, it
is critical in the framework of the immune system responses
which are indispensable for clearing the body fromhazardous
chemicals, pathogens andmutated cells, such as cancer cells.
Therefore, understanding cell migration is crucially impor-
tant for finding ways to improve therapies.

The immune response is essential for all living organisms.
In antitumor immune responses, tumor-specific T cells, in
particular CD8+ T cells, play an indispensable role. How-
ever, some cancer cells are able to escape the engulfment by
T cells through variousmechanisms.One possibility could be
that the tumors build stromal barriers against immune cells.
Pancreatic ductal adenocarcinoma (PDAC) is known for its
profuse desmoplastic stroma which is composed of activated
fibroblasts, collagen and extracellular matrix (Rhim et al.
2014). The desmoplastic stroma plays an important role in
the tumor progression; however, its function is likely to be
dynamic over time since its cellular and noncellular con-
stituents change over time (Angeli et al. 2009; Özdemir et al.
2014). In the literature, there is some controversy whether
stromal constituents support or inhibit tumor progression.
Rhim et al. (2014) demonstrate that at least some stromal
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constituents can act to physically restrain rather than promote
tumor progression. Whereas, according to Salmon and Don-
nadieu (2012), the stroma may support tumor progression by
preventing the immune system from reaching and destroy-
ing the tumor. They observe that tumor islets (T-islets), which
are surrounded by rich stromal networks, can form a major
obstacle for T cells-mediated antitumor activities. Moreover,
Hanahan and Weinberg (2011) state that some stromal cells
cause immune suppression andhence promote tumor survival
and growth. Therefore, the effects of the tumormicroenviron-
ment, and specifically the stroma, on tumor progression are
still unclear. This could lay the foundation for improvement
of cancer therapy.

Much experimental work has been done on cancer and
cancer cells. However, the tumor microenvironment and its
immune mechanisms have only recently become an impor-
tant focus, and thus, the availability of experimental data and
results are still limited. Therefore, there is an urgent need
to strengthen multidisciplinary tumor research including
input from medicine, biology, engineering and mathematics.
Developing new insights into tumor behavior and response in
connection with its environment as well as immune system
interations requires a strong link between available experi-
mental results and the development of updated hypotheses.
In order to facilitate this link and to be able to forecast
tumor behavior under various experimental circumstances
that lie beyond the currently available experimental results, a
quantification of the hypotheses into mathematical relations
is indispensable. Mathematical models can be developed
on several scales ranging from continuum-based macro-
models to cell-based micro-models. Since cell-based models
often use measurable experiment-based quantities (like cell
migration rates, etc.), they are very attractive though their
implementation over large domains is possibly expensive.
Since in the present study, we are interested in the small spa-
tial length scale of the order of millimeters, the model that
we currently work with is cell-based. Cell-based models can
be divided into several classes:

– Lattice-based models, which include cellular automata,
lattice gas cellular automata and cellular Potts mod-
els, which are described in the review (Van Liedekerke
et al. 2015). In cellular automata, cells may occupy a
single lattice site; herewith, one is able to simulate a
large population of cells (Block et al. 2007; Radszuweit
et al. 2009). In comparison, lattice gas cellular automata
models include velocity channels next to their positions
(Rothman and Zaleski 2004). Furthermore, the cellular
Potts models are characterized by energy functionals that
determine the probability of a change of state at a lattice
point. More information can be found in the works by
Merks et al. (2009), Van Oers et al. (2014) and the pio-
neering work by Glazier and Graner (1993);

– Particle models are formalisms where each cell is treated
as an individual particle with a fixed geometry (circles
or spheres in the two- and three-dimensional cases) and
where the cells are allowed to migrate throughout the
region according to several chemical, mechanical or elec-
trical signals. For an overview, we refer the interested
reader to consult (Vermolen 2015), while for specific
implementations, we refer to Kim et al. (2015) and
Ribeiro et al. (2017) in the modeling of filopodia. In
particular, Ribeiro et al. (2017) report on how the filopo-
dia contribute to cell migration. Furthermore, Drasdo and
Hoehme (2005), Byrne andDrasdo (2009),Vermolen and
Gefen (2012, 2013b) and Vermolen et al. (2015) elabo-
rate on the context of the immune system to fight cancer;

– Cell-shape evolving models are representations where
the geometry of the cell changes during its migration.
This migration may result from various signals. Here,
one should mention the approach by Madzvamuse and
George (2013),which dealswith themigration andmove-
ment of the cells with a viscoelastic inner cell structure,
the model by Borau et al. (2014), which is based on a
voxel approach, as well as the approach by Vermolen and
Gefen (2013a)which is based on a division of the cell sur-
face into meshpoints that are connected to each other and
to the center of the cell. Vermolen et al. (2014) extend the
approach to a multicell andmulti-physics environment to
simulate the immune system.

– Hybrid discrete-continuum models, which are feasible
models for large multicellular systems (Van Liedekerke
et al. 2015). This class, based on treating cells as individ-
ual entities and other signals through continuum-scale
approaches, is explained further in Kim et al. (2007).
Furthermore, the hybrid approach has been used for
simulation ofwould healing (Yang et al. 2013) and angio-
genesis (Milde et al. 2008), etc.

Thismanuscriptwill focus on the simulation of cellmigration
in T cells-mediated antitumor response with an application
to pancreatic tumors. The work by Salmon and Donnadieu
(2012) has shown that in many cases pancreatic carcinoma
consist of T-islets which are surrounded by stromal regions
where collagen is oriented parallel to the circumference of
the T-islet. Since the T cells migrate faster in the direction of
the orientation of the collagen fibers, the T cells merely circle
around the T-islets and thereby hardly enter them. Hence, the
T cells are unable to function in neutralizing the cancer cells.
To be able to identify ways to change these circumstances,
we have developed mathematical models that reproduce the
experimental phenomenon as much as possible and allow to
simply and rapidly develop and test hypotheses on the pro-
cess mechanisms and predict experimental outcomes. Using
the simulations, we propose and evaluate a possible therapy,
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based on injecting or stimulating isolated endothelial cells
that are not connected to the blood vessel network and let-
ting them invade the tumor islet through the collagen network
around them. The idea is to exploit the endothelial cells abil-
ity to degrade the network such that the T cells are able to
invade the T-islet and be able to interact with and neutralize
the cancer cells. This idea has not been implemented as a
therapy to fight cancer; however, our aim is to simulate this
process to show its potential applicability.

In this manuscript, we aim at a microscale phenomeno-
logical description that the T cells migrate in the vicinity
of the T-islet. We will extend the formalism by Vermolen
and Gefen (2012) to non-isotropic fibrin networks where
the formalism by Cumming et al. (2010) will be used and
extended such that we can model geometrically evolving
cells in non-isotropic environments. Next to the T cells, we
will take into account the migration, proliferation, apopto-
sis of all other cells as well as mutation of benign epithelial
cells.

The paper is organized as follows: first, the mathemati-
cal formalism is introduced, and then the numerical method
is presented. This is followed by the numerical simulations
where themodel and its resultswill also be discussed. Finally,
we draw some conclusions on the simulation results and give
some directions for future research.

2 Mathematical model

Themodel addresses several biological processes, whichwill
allow simulation of immune response to a tumor in different
microenvironments. Specifically, we include the migration,
division, apoptosis, mutation of cells, the chemical signaling
as well as the immune reaction in a non-isotropic environ-
ment. In addition, the contractile forces exerted by cells are
accounted for by a simplified mechanical balance. To this
extent, a domain of computationΩ ⊂ R

2 is introducedwhere
ΩT ⊂ Ω denotes the T-islet. The islet ΩT is surrounded by a
stromal layer, which contains a high-density fibrin network
with orientation parallel to the circumference ofΩT; this sub-
domain is denoted by ΩF ⊂ Ω and it does not overlap with
ΩT.

To encode a mathematical model, the following proce-
dures and assumptions are used in the development of the
present formalism: (1) to keep the computations short in CPU
time,we consider a two-dimensional domain of computation;
(2) all cells are hemispherical and the projection onto the two-
dimensional substrate is a circle; (3) each cell has twodiscrete
states: viable or dead; (4) each viable epithelial cell exerts a
traction force and is able to migrate or proliferate; (5) cells
that collide repel each other by the contact forces that they
exert in the normal direction. In the following subsections,
we provide the formalisms for each cell condition.

2.1 The migration of the epithelial cells

Traction forces are crucial for adhesion andmigration of cells
and affect the intercellular communication and as well as
for, among others, shape maintenance and mechanical sig-
nal generation, see the experimental studies in Wang and
Lin (2007) and Reinhart-King et al. (2008). For the sake of
completeness of the model description in this manuscript,
we present the cell migration model that was developed in
Vermolen and Gefen (2012). The model formulation for cell
migration was based on the experimental observations by
Reinhart-King et al. (2008). Firstly, we consider the dis-
tant communication of cells through traction force. Later, we
will deal with the repulsive force that is induced by physical
contact. Tensile forces are applied by cells to their microen-
vironment using the actomyosin machinery. Cells generate
tensile forces internally as myosin motors induce lateral, rel-
ative motion of two actin filaments. An actin filament may
connect to the microenvironment through transmembrane
integrins. The external part of the integrin may then connect
to the substrate or extracellular matrix, thus transmitting the
intracellular force (Massalha and Weihs 2017). Slight defor-
mation of the substrate caused by a stress gives a strain energy
U , which reads as:

U = 1

2
Vσε = 1

2
V Eε2 = 1

2

V

E
σ 2, (1)

where V denotes the deformation volume, σ denotes stress,
ε denotes strain of the substrate at the center of cell and E is
the Young’s modulus from Hooke’s law, given by

E = σ

ε
. (2)

We use M0
i to represent the strain energy density, that is the

energy per unit of volume, which follows from the exertion
force Fi at the position of cell i. Then the strain energy density
is dictated by

M0
i = 1

2
σε = 1

2
Es(ri )ε2 = 1

2

σ 2

Es(ri )
,

for i ∈ {1, . . . , n},
(3)

where Es(ri ) represents the local elastic modulus of the
corresponding substrate. Furthermore, we neglect compress-
ibility of the extracellular matrix. This is motivated by the
experimentally observed Poisson ratio of 0.48 (Massalha and
Weihs 2017; Kristal-Muscal et al. 2015). The above relation
is able to handle the non-uniformity of the substrate stiffness.
Further, ri denotes the position of cell i. If we use L and d
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for the thickness and vertical displacement of the deformed
substrate, then ε is given by

ε = d

L
, (4)

and hence the strain energy density can be calculated by

M0
i = 1

2
Es(ri )

(
d

L

)2

, for i ∈ {1, . . . , n}. (5)

Hooke’s Law is used for a low strain by

ε = 1

Es(ri )
Fi

πR2 , for i ∈ {1, . . . , n}. (6)

From the above equation and Hooke’s Law, we get

M0
i = 1

2π2

F2
i

Es(ri )R4 , for i ∈ {1, . . . , n}, (7)

where R represents the cell radius. The finding by Merkel
et al. (2007) shows that the strain energy density decays expo-
nentially approximately with the decay factor given by

λi = Es(ri)
Ec

, for i ∈ {1, . . . , n}. (8)

Here, λi is used to represent the signal attenuation ratio of
elasticity modulus of substrate Es(ri ) and elasticity modulus
of cell Ec. We calculate the strain energy density Mi (r) due
to the cell position r with center position ri by

Mi (r) = M0
i exp

{
−λi

‖ r − ri ‖
R

}
,

for i ∈ {1, . . . , n}. (9)

As outlined in Vermolen and Gefen (2012), the energy
density is a scalar number; hence, it can be summed to obtain
a total strain energy density M(r) due to all cells at position
r as follows,

M(r) =
n∑
j=1

Mj (r) =
n∑
j=1

M0
j exp

{
−λ j

‖ r − r j ‖
R

}
,

for j ∈ {1, . . . , n}.
(10)

Thence for cell i at time t, its own sensedmechanical stimulus
M(ri ) is represented by

M(ri ) =
n∑
j=1

Mj (ri ) =
n∑
j=1

M0
j exp

{
−λ j

‖ ri − r j ‖
R

}

= M0
i +

n∑
j=1 j �=i

M0
j exp

{
−λ j

‖ ri − r j ‖
R

}
,

for i, j ∈ {1, . . . , n}. (11)

where ri and r j denote the position of cell i and cell j ,
respectively. According to Vermolen and Gefen (2012), the
displacement direction of a cell is a linear combination of
all the unit vectors between this cell i and others caused by
their mechanical signals. For cell i and cell j, the unit vector
is ei j = ri−r j

‖ri−r j‖ , and the total displacement of cell i during a
time step �t is parallel to

zi =
n∑

j=1 j �=i

M j (ri (t))ei j , for i, j ∈ {1, . . . , n}, (12)

where ri (t) is the cell i position at time t, and zi is a vector
to guide the direction of cell movement and hence the corre-
sponding total unit vector is ẑi = zi‖zi‖ . Taking themechanical
stimulus into consideration, total displacement over a time is
calculated by

dri (t) = αi M(ri (t))ẑidt, for i ∈ {1, . . . , n}, (13)

where αi is a parameter with dimension
[
m3

Ns

]
and the shear

force is directed along the substrate, which acts perpendic-
ularly to the exertion force. For viable cells, Gefen (2010)
achieves an expression for αi

αi = βi R3

μFi
, for i ∈ {1, . . . , n}, (14)

where βi quantifies the mobility of the portion of the cell
surface that is in physical contact with the substrate of a
viable cell and μ is the cell substrate friction coefficient,
which equals 0.2 according to Gefen (2010). Viable cells
move according to the mechanical stimulus that they sense;
however, they are also observed to move (partly) according
to random walk and hence magnitude of movement should
be revised to

dri (t) = αi M(ri (t))ẑidt + √
2DdW(t),

for i ∈ {1, . . . , n}, (15)

where dW(t) is a vector Wiener process and D is cell diffu-
sivity.

Epithelial cells move under the influence of strain energy
as well as random walk in the circle islet. The detection
threshold ε is introduced as a minimum strain energy sig-
nal for remote cells to detect each other. Therefore, the total
signal strength a cell senses should satisfy

Mi (r) = M0
i exp

{
−λi

‖ r − ri ‖
R

}
≥ ε,

for i ∈ {1, . . . , n}. (16)
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Reinhart-King et al. (2008) found that the largest distance
for a cell to detect is around d̂ = 30 µm with different elas-
ticity moduli of substrate (approximately 5 kPa) and cell
(approximately 0.5 kPa). This distance may depend on the
phenotype of the cell (Sen et al. 2009). Hence, the threshold
ε is defined by

ε = M0
i exp

{
−λi

d̂

R

}
≈ 1.99 × 10−54,

for i ∈ {1, . . . , n}. (17)

Here ε = 0 kg ·µm/min2 is used taking the rounding
error of the computer into account. Once the cells come into
physical contact with each other, the force reacting against
invagination pushes the cells away from one another. This is
treated in the next subsection.

2.2 The repulsion of the contacting cells

Cells will not occupy the same space under normal cir-
cumstances. However, cells can have direct mechanical and
physical contact with their neighbors, which is associated
with shape changes in general. In thismodel, cells are allowed
to migrate toward each other and to prevent them from occu-
pying too much common space, a repulsive force is added to
our model with cells that remain circular at all times.

Gefen (2010) introduces a repulsive invagination force
into the cell contact force, which is also incorporated in the
computational framework. The elastically impinging cells
will generate a repulsive force to repel each other, which is
determined by the invagination distance and contact radius.
This invagination forcewill translate to the concept of energy
through the computation of the amount of work. This has
been worked out in Vermolen and Gefen (2012). Then,
the strain energy density as a result of intercellular contact
between cell i and cell j is given by

Mi j = 4

15
√
2

Ec

π

(
h

R

) 5
2

, for i, j ∈ {1, . . . , n}, (18)

where Mi j and h, respectively, denote the strain energy
density produced by the elastic interaction and indentation
distance between the two neighboring cells. We calculate h
by

h = max(2R− ‖ ri j ‖, 0), for i, j ∈ {1, . . . , n}, (19)

where the ri j represents the distance between cell i and cell
j , and total strain energy density M̂i between cell i and cell
j by

M̂i = M(ri ) − Mi j , for i, j ∈ {1, . . . , n}. (20)

We phenomenologically assume that the repulsive motion is
proportional to the strain energy density that the cell expe-
riences. Note that this phenomenological treatment does not
incorporate Newton‘s Law. Note that the migration of the
cells contains two components. The first component follows
from long-distance communication. The second component,
which only sets in if h > 0, results from repulsive motion
due to physical contact between the cells. Having two cells,
this will imply that an equilibrium is reached if M̂i = 0. This
results into an equilibrium distance between the positions of
the cells. This also means that the cells mechanically touch
over a certain area, and herewith one can phenomenologi-
cally consider this as a measure of cell–cell adhesion. In the
case of multiple cells that are in mechanical contact, the Mi j

term has to be summed over all the cells that are in mechan-
ical contact with cell i. Imagine that cell i is in mechanical
contact with cells {i1, . . . , ik} ⊆ {1, . . . , n}, then the above
equation is written as,

M̂i (r) = M(ri ) − Mmc
i (ri ), for i ∈ {1, . . . , n}, (21)

where Mmc
i (ri ) = ∑

j∈{i1,...,ik } M
i j , which is the mechani-

cal contact term of the strain energy density. Note that the
repulsive forces can be balanced with attracting forces, and
hence, the cells can partly overlap and be in physical con-
tact. Therewith, the model allows treatment of collective cell
migration.

2.3 The division, apoptosis and mutation of the cells

Each cell has a life cycle that affects its ability to migrate and
is characterized by the following stages: (1) G1, increase
of RNA and ribosome during this phase the cell does not
move actively; (2) S, synthesis of DNA. Furthermore, the
cell is mobile during this phase; (3) G2, synthesis of RNA
and protein. During this phase, the cell volume increases
and the cell is mobile; (4) M, cell mitosis and during this
phase the cell does not move actively. We will incorporate
this cell proliferation process in our simulation in the future.
We model cell division, apoptosis as well as mutation fully
using stochastic principles. Using the same principles given
in Vermolen et al. (2015) and Vermolen (2015), we assume
that the probability of cell division, apoptosis or mutation
obeys a simple memoryless exponential distribution and that
it is only affected by the total strain energy density a cell
endures, which is given by ftn (λ, t)�t during the interval
(tn, tn + �t). Here, λ (λ > 0) is the probability per unit of
time (here per minute) of cell division, apoptosis or mutation
after tn , and ftn (λ, t) is defined as,

ftn (λ, t) = λ exp(−λ(t − tn)), (22)
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and hence,

P(t ∈ (tn, tn + �t)) =
∫ tn+�t

tn
ftn (λ, t)dt

= 1 − exp(−λ�t). (23)

Note that if λ�t 
 1, then

P(t ∈ (tn, tn + �t)) = λ�t + O(λ�t)2, (24)

where O is Landau order-symbol to describe the limiting
behavior of a function.

To realize it in the code, we let the system randomly gener-
ate a number ξ ∼ u[0, 1] taken from an uniform distribution.
The cell, respectively, divides, dies or mutates if and only if

0 � ξ � 1 − exp(−λ�t), (25)

where, as mentioned earlier, λ stands for the probability rate
parameter for cell division, apoptosis or mutation.

In thismodel, cell proliferation, apoptosis as well asmuta-
tion happen under the premise of satisfying two kinds of
conditions:

– Firstly, we simulate cell proliferation, apoptosis as well
as mutation using the probability rates λd, λa and λm,
respectively, which depend on the total strain energy
density that the cell senses as a result of physical con-
tact with its neighbors. We hypothesize that when a cell
in a monolayer is in mechanical contact with six cells
in 2D then it reaches a steady state. By Eq. (21), we
calculate the value of M̂i (r) = M(ri )−Mmc

i (ri ) that cor-
responding with a cell being surrounded and just being
in physical contact with six other cells such that the cell
boundaries of each pair of cells coincide at one point has
a value of approximately 0.0125kg ·µm/min2. We find
that the equilibrium value of the strain energy density for
one cell in contact with one other cell is approximately
0.03kg ·µm/min2 (see, Fig. 2). Herewith, we assume
that one epithelial cell has sufficient space to divide if
‖ M̂i (r) ‖< 0.03kg ·µm/min2 and in the same way, a
cancer cell can divide if ‖ M̂i (r) ‖< 0.04kg ·µm/min2.
Furthermore, a cell is able to mutate or die with a bigger
‖ M̂i (r) ‖ if it is squeezed by other surrounding cells.
Followed by a preliminary study of parameters, we set,

λd =

⎧⎪⎨
⎪⎩
10 min−1, if ‖ M̂i (r) ‖< 0.03 kg ·µm

min2

0 min−1, if ‖ M̂i (r) ‖� 0.03 kg ·µm
min2

for epithelial cells

λd =

⎧⎪⎨
⎪⎩
10 min−1, if ‖ M̂i (r) ‖< 0.04 kg ·µm

min2

0 min−1, if ‖ M̂i (r) ‖� 0.04 kg ·µm
min2

for cancer cells

λa =

⎧⎪⎨
⎪⎩
10 min−1, if ‖ M̂i (r) ‖� 0.1 kg ·µm

min2

0 min−1, if ‖ M̂i (r) ‖< 0.1 kg ·µm
min2

for epithelial cells

λm =

⎧⎪⎨
⎪⎩
10 min−1, i f ‖ M̂i (r) ‖� 0.05 kg ·µm

min2

0 min−1, i f ‖ M̂i (r) ‖< 0.05 kg ·µm
min2

for epithelial cells

(26)

Here, the corresponding probability is around 0.6321 by
Eq. (23) within a time interval of �t = 0.1min if the
probability rate is 10 min−1.

– Secondly, we assume that there is a period of time, in
which a new cell grows. The length of this period is
referred to as the growth time. After growth, the cell is
able to

– divide, if its growth time τd exceeds 5min, that is
τd ≥ 5min;

– mutate, if its growth time τm exceeds 10min, τm ≥
10min;

– apoptosis, if its growth time τa exceeds 10min, τa ≥
10min.

Cells are allowed to slightly overlap other cells obtaining a
repelling force and then repel each other and move away.
Moreover, the repelling force increases significantly as the
overlap distance goes up. In other words, cell contact inhi-
bition impedes the cell division probability rate. This is also
demonstrated by Nelson and Chen (2002) and Chen et al.
(1997) who show that inhibition of cell division follows the
reduction in cell area by mechanical constraint. To make the
problem tractable, we only consider the change in mitotic
probability rate rather than the change of cell area. The λd
equals 10 min−1 after a time interval τd = 5min and drops
from10 to0min−1 if themechanical force is sufficiently large
which is ‖ M̂i (r) ‖� 0.03kg ·µm/min2. Malumbres and
Barbacid (2001) report that the tumor cells have proliferative
advantage due to increased mitogenic signaling and/or the
lower threshold required for cell-cycle commitment. There-
fore, the threshold of strain energy density for λd of cancer
cells is slightly changed to 0.04 kg ·µm/min2 based on the
findings by Malumbres and Barbacid (2001). One cell can
divide into two cells, and the daughter cell moves away from
the mother cell gradually because of the invagination force,
to reach an equilibrium state for their separation distance.
Moreover, normal cells exhibit aging, with a limited max-
imum times of division, such as a human somatic cell can
divide approximately 50–100 times in culture (Harley et al.
1994). In contrast, most cancer cells do not possess a max-
imum number of division times, which leads to ‘immortal’
cells with ‘infinite’ division chains.

Many epithelial cells are subject to cell substrate contact-
dependent proliferation and a loss of cell substrate contact is
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able to trigger a kind of selective programmed cell apoptosis,
called anoikis (Stupack and Cheresh 2002; Li et al. 2003;
Warchol 2002;Klekotka et al. 2001). In the 2Dsimulation,we
impose that the epithelial cell starts to diewith the probability
rate of λa = 10 min−1 when it senses the value of contact
force ‖ M̂i (r) ‖� 0.1kg ·µm/min2 after a growth period
of τa = 10min. In this case, one epithelial cell has been
surrounded by more than one layer of six cells in a large cell
density over a considerable interval of time. For cancer cells,
Delarue et al. (2014) find that a compressive stress could
decrease the division of carcinoma cells rather than increase
apoptosis. Therefore, cancer cells are assumed to die as a
result of engulfment by T cells instead ofmechanical stimuli.

We also consider the condition where at times an error
occurs in copying of the genes during cell division and a
mutation is formed. In that case, a gene has been dam-
aged, lost or copied twice. The changes in genes could be
a result of one or more reasons from physical, chemical or
biological factors that were mentioned in the introduction.
According to Farge (2003), many developmental genes of
embryo cells are regulated by mechanical force. Kumar and
Weaver (2009) report that the balance of mechanical forces,
which originate from neighboring cells or the ECM, can reg-
ulate a surprisingly wide range of cellular properties that
are all critical to tumorigenesis, including structure, motil-
ity, proliferation and differentiation. For the principles of
how cell senses mechanical signals and convert them into
changes in cellular biochemistry, one can refer to Huang
and Ingber (2005) which unites cellular mechanotransduc-
tionwith oncogenic signaling. Regarding to the breast cancer
research in the work by Paszek and Weaver (2004), ten-
sional force plays a potentially important role in mammary
gland development and tumorigenesis. On a molecular level,
compression stress is able to alter the behavior of normal
cells by influencing the impact of some chemokines. Fur-
thermore, compression stress is able to alter the behavior of
transformed mammary epithelial cells by changing gene and
protein expression. Hence, the mechanical signal implicitly
influences the mutation rate of epithelial cells to cancer cells.
Since the mechanical signals are dealt with using the strain
energy density, we hypothesize that the cell mutation with
the probability rate of λm = 10 min−1 is only affected by a
large strain energy density; hencewith, the cells are allowed
to mutate to cancer cells if ‖ M̂i (r) ‖� 0.05kg ·µm/min2

after the time interval τm = 10min.

2.4 The migration of T cells in the non-isotropy collagen
network

In this study, the formalism by Cumming et al. (2010) is used
to describe the structure of the collagen and fibrin. To this
extent, an orientation tensor Ψ (t, x) is introduced, where t
and x, respectively, denote time and position in space. In the

two-dimensional setting, the entries of the symmetric tensor
Ψ are arranged by its spectral decomposition:

Ψ (t, x) =
(

Ψxx Ψxy

Ψxy Ψyy

)
. (27)

Stromal extracellular matrix (ECM) prevents T cells and
drug delivery entering the tumor islets, which causes their
migration around the islets oriented parallel to the stromal
ECM. On the other hand, the movement of T cells is also
affected by the concentration of chemokines (Salmon and
Donnadieu 2012). Therefore, we suppose that T cells are
able to enter the islets eventually with high concentration of
a chemokine secreted by cancer cells. The orientation ten-
sor is composed as the sum of its orthogonal and tangential
products, which are coming from the chemokine and stromal
components part, respectively. Thus, the orientation tensorΨ
can be represented by

Ψ = λ1w1w1
T + λ2w2w2

T , (28)

where the eigenvalues λ1 and λ2 represent the corresponding
weights and the eigenvectors w1 and w2 are orthogonal and
tangential components.

The research data from Bougherara et al. (2015) reveals
that the density and orientation of collagen fibers control the
distribution and migration of T cells as well as their ability to
infiltrate tumor islets. Furthermore, their experiments illus-
trate that CD8 T cells migrate faster in a loose-collagen area
and reduce its velocity once encountering an obstacle with
densely distributed collagen fibers. At present, we assume
that the tumor peripheral collagen fibrin has an uniform den-
sity and introduce a constant k that represents a measure for
the amount that anisotropy contributed to migration which is
also a fixed attenuation faction for orthogonal velocity of a
cell, which reads as

∂v

∂s
= −kv, (29)

where s is the penetration depth with respect to outer periph-
eral region and v is given by

v = v0e−ks, (30)

herev0 denotes the instantaneous velocity atwhich cells enter
the outer boundary. This approach is in line with the formal-
ism by Cumming et al. (2010). Therefore, the orientation
tensor Ψ is improved slightly to,

Ψ = v0e−ksλ1w1w1
T + v0λ2w2w2

T . (31)

The k value is investigated in relation to the different
density gradient of collagen and fiber in the computational
framework. As the density gradient gets higher, the faster the
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radial velocity decays. The real ‘peritumoral zone’ contains
a complicated mixture of neoplastic cells and tumor stroma
which distribute in irregular strands or septa (Ruiter et al.
2002). In this case, the density of fibers is not uniform where
the Wiener process should be taken into the account.

2.5 Chemokine model

Chemokines are a class of cytokines that guide cells through
chemotactic movement. They are involved in many physio-
logical and pathological processes through combining with
their corresponding receptors in cells, such as cell growth,
differentiation, tumor progression, immune activities, etc.

Tumors have been observed to produce a variety of
chemokines and the tumor-derived chemokines make an
attractive target for tumor-reactive T cells to fight against
them (Van Damme et al. 1992; Kershaw et al. 2002).
Colombo and Trinchieri (2002) report that chemokine
interleulin-12 (IL-12) acts on T cells and NK cells in antitu-
mor immunity and immunotherapy. Furthermore, Kershaw
et al. (2002) verify their hypothesis that T cells with receptor
CXCR2 move toward a source of tumor-derived chemokine,
Gro-α. Therefore, it is assumed that only one kind of
chemokine, which is a cytokine secreted by cancer cells, is
able to attract theT-lymphocytes tomove toward cancer cells.
As the number of cancer cells increases, T cells migrate in
the direction of the gradient of the chemokine. The reaction-
diffusion equation (32) is used to describe the rate of change
in the concentration of the chemokine as follows,

∂c

∂t
− Dc∇c =

∑
j∈K(t)

γ j (t)δ(r − r j (t)), j ∈ K(t), (32)

where c and Dc represent the concentration and diffusion
coefficient of chemokine. The δ(r) is Dirac delta function for
each cancer cell j at time t and γ j (t) is the corresponding
chemokine secretion rate by the cancer cells. Furthermore,
K(t)denotes the set of active cancer cells at time t . By solving
the steady-state counterpart of the partial differential equa-
tion, we get,

c(r) = −
∑
j∈K(t)

γ j (t)

2πDc
log ‖ r − r j (t) ‖,

if ‖ r − r j (t) ‖≤ 1, j ∈ K(t). (33)

This expression is used to model chemotaxis of the T cells
toward the cancer cells. Note that we only use the gradient
of the above expression and that the relation is only phe-
nomenological. Using a full time-dependent solution of Eq.
(32) requires the storage of positions at all times. This makes
the scheme expensive.

2.6 The migration of T-lymphocytes

We describe the migration of epithelial and cancer cells
based on the traction force as well as on random walk. T-
lymphocyte cells migrate according to the gradient of the
concentration of chemokines (Salmon and Donnadieu 2012)
and collagen orientation (Bougherara et al. 2015) instead of
according to traction force. Here, the displacement of T cells
is expressed by

dr j (t) = Ψ
[
β∇c(t, r j (t))dt + √

2DdW(t)
]

−
∑

l∈{ j1,..., jk }
M jldt, j ∈ T(t), (34)

where the set { j1, . . . , jk} defines the set of cells that are in
mechanical contact with cell j . Once again, dW(t) is a vec-
tor Wiener process and β and D, respectively, represent the
chemotactic constant and diffusivity of the T-lymphocytes.
The set of T-lymphocytes is represented by T(t).

Similarly, T-lymphocytes are not allowed to overlap too
much under cell repulsive force described by the second part
in Eq. (34), which describes the contribution to T cellsmigra-
tion as a result of invagination.

For an overview of the cross talk among epithelial cells,
cancer cells and immune cells in the microenvironment of
a pancreatic tumor islet, a pictorial diagram is presented in
Fig. 1 which also includes the mathematical variables and
the direction of the mathematical relations.

3 Numerical method

3.1 Epithelial and cancer cells

If cells just come into mechanical contact, then the higher-
order derivatives of strain energy density with respect to
the intercellular distance are subject to a discontinuity.
Therefore, we use the Euler–Maruyama method for time
integration, which is a generalization of the ordinary forward
Eulermethod for initial value problems to stochastic differen-
tial equations. Higher-order methods for the time integration
do not seem to improve the accuracy because of the depen-
dence between Mi j and h. We evaluate the nonlinear parts at
the previous time step. In this way, we circumvent the need
of solving a nonlinear problem at each time step. Of course,
this will induce some numerical stability criteria so that the
time step cannot be chosen arbitrarily large to avoid numeri-
cal instability. The differential equation of the displacement
is generally given by

dri (t) = αi M̂i (r)ẑidt + √
2DdW(t), i ∈ W(t), (35)
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Fig. 1 Schematic representation of the cross talk among the epithelial
cells, cancer cells and immune cells in the microenvironment of a pan-
creatic tumor islet. The solid arrows represent the influence of a cell

phenotype, where the corresponding mathematical variables have been
indicated. Dotted arrows indicate the positive or negative regulations

where αi denotes the rate parameter mentioned in the model
section, D denotes the cell diffusion coefficient and the ran-
dom variable dW(t) denotes a vector Wiener process whose
entries are identically distributed normal random variables
with variance dt and expected value zero. Further,W(t) rep-
resents the set of epithelial cells and cancer cells. Therefore,
the actual position of cell i at time t can be obtained from,

rti = rt−1
i + �tαi M̂i (rt ) + √

2D�W. (36)

Here, �W represents a two-dimensional vector with inde-
pendent stochastic variables from a normal distribution with
zero mean and variance �t .

Since the cells may collide into one another, they should
not overlap each other totally. Therefore, we require their
displacement to be less than one-fourth of their diameter.
This criterion is quantified by

‖ rti − rt−1
i ‖= max ‖ vi ‖ �t ≤ R

2
, (37)

where R is the radius of epithelial or cancer cells and vi is the
equilibrium velocity of cell i. From equation (37), the time
step is determined by

�t = min

(
0.1,

R

2max ‖ vi ‖
)

, (38)

here we use a default value 0.1min for time step. Whereas
if the migration speed of the cells is large, then the time step
is adjusted to �t = R

2max‖vi‖ . This limitation of the time
step guarantees that the cells do not move too much over a
time interval and do not entirely coincide with each other.
Furthermore, numerical experiments indicate that numerical
stability is also guaranteed if the above criterion in Eq. (38)
is satisfied. This issue deserves some further numerical con-
sideration in mathematical rigor.

3.2 T-lymphocytes

We use the same Euler–Maruyamamethod for T cells migra-
tion. The displacement of T cells is chemotaxis, and we also
incorporate the random walk to form stochastic differential
equations. With the explained parameters in the former sec-
tion, we calculate the actual positon of T cells j at time t
by

rtj = rt−1
j + Ψ

[
∇c(t, xt−1

j )�t + √
2D�W

]
−∑

l∈{l1,...,lk }
M jl�t j ∈ T(t), (39)

here the M jl represents repulsive force between a T cells j
and a cancer cell l.
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With cell contact inhibition, T cells will be bounced
once they collide with each other. Therefore, we sup-
pose that the fourth of their diameter is the maximum
overlapping distance. We use the same criterion in Eq.
(38).

Furthermore, the same method is used to deal with the
collision of T cells and epithelial as well as cancer cells.
Since T cells are smaller than the other cells, we suppose
that the maximum overlapping distance of them depends on
the radius of the T cells.

4 The numerical simulations

4.1 Parameter values

To mimic tumor initiation and the T cells-mediated immune
response in pancreatic tumor islets as well as possible, we
chose the parameter values based on available sources in lit-
erature as much as possible. For those cases where literature
values are not readily available, wemake educational guesses

based on the expected behavior. Table 1 lists all parameters
values.

4.2 Results

For the two-dimensional simulation, the projection of each
cell is defined as a circle on the substrate and a large cir-
cular domain with a radius of 35 µm is used to simulate a
tumor islet. Regarding cancerous mutation, in the simula-
tions, we highlight the mutation by a change of color from
blue to red in the figures. In order to predict the impact of the
non-isotropic fibrin network in different immune responses
mediated by T-lymphocytes, we simulate tumor islets under
different conditions for immunity with stromal ECM orien-
tation and without stromal ECM orientation.

First of all, we investigate the changes in strain energy
density as well as mechanical contact force in different sit-
uations with respect to the overlap distance in Fig. 2. The
result in Fig. 2a shows that the equilibrium overlap distance
coming from strain energy density and mechanical repulsive
force for two cells increases as the F value arises and the best

Table 1 Parameter values

Parameter Meaning Value Unit Source

R Radius of epithelial and cancer cell 2.5 µm Dudaie et al. 2015

Rt Radius of T cells 2 µm Dudaie et al. 2015

F Cell traction force (10–25)·102 kg ·µm/min2 Reinhart-King et al. (2003) and Ganz et al. (2006)

Es Substrate elasticity 5·10−5 kg/(µm ·min2) Dudaie et al. (2015)

Ec Cell elasticity 0.5·10−5 kg/(µm ·min2) Dudaie et al. (2015)

β Cell mobility coefficient 1 min−1 Vermolen and Gefen (2012)

μ Friction coefficient 0.2 - Dudaie et al. (2015)

D Cell diffusivity 0.005 µm/min Estimated in this study

Dc Coefficient of chemokine diffusivity 0.001 µm/min Estimated in this study

γ Secretion rate of the chemokine 10 min−1 Estimated in this study
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Fig. 2 Red and blue lines representmechanical contact force and strain
energy density, respectively. a Compares the strain energy density with
different cell traction force F values. b Compares the mechanical con-

tact force and strain energy density of one cell when it is surrounded by
other one, three and six cells, respectively, for F = 10kg ·µm/min2
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reasonable choice for F is 10kg ·µm/min2 considering the
cell radius. Moreover, in Fig. 2b, the curves of mechanical
contact force vary a lot when one cell is surrounded by other
one, three and six cells and themaximumequilibriumoverlap
distance is approximately 2.35µmwhen one cell is contacted
by another one. This amount of overlap is deemed acceptable.

4.2.1 Tumor islets without stromal ECM orientation

Firstly, we consider the simulation of tumor islets without
any anisotropic collagen orientation, which means k = 0 in
Eq. (31); hence, the migration of T cells is determined by the
concentration gradient of chemokine.

With a large mechanical stimulus, an epithelial cell
mutates to a tumor cell in Fig. 3b and it starts to divide sub-
sequently. Since the tumor cells release a chemokine, T cells
move to the islet from different directions according to the
chemokine signal. Cancer cells may be engulfed by T cells
when they are in contact for some time, concurrently the T
cells also have a certain probability of death. In this model, T
cells and epithelial cells are not allowed to physically overlap
as a result of mechanical interaction. Here, we simulate two
kinds of results with different immune responses as follows:
(1) Figure 3 shows the tumor islet with a strong immune
response in which T-lymphocytes win eventually; (2) Fig-
ure 4 describes the tumor islet with a weak immune response
so that the tumor colony occupies the entire region in the
course of time. Note that for the differences between strong
and weak immune systems, we describe the strong and weak
immune systems as follows

– Ns = 2Nw, here Ns and Nw denote the number of T cells
in the strong immune system and weak immune system,
respectively.

– A T cells has a probability rate λd = 10 to die if the
distance between the T cells and cancerous cell satisfies
‖ rt − rc ‖≤ 2.5 µm over a time interval τ = 10min
in weak immune system. Whereas death of T cells with
the same probability rate λd = 10 sets in if ‖ rt − rc ‖≤
3.5 µm over a time interval τ = 5min in the strong
immune system.

Figure 5 compares the evolution of the percentage of the
cancer cells in total cells as a function of time in two sit-
uations. The number percent of cancer cells accounts for a
large advantage in aweak immune system comparedwith the
strong immune system. In order to find a confidence interval
with 95% confidence level, a sample for 10 runs has been
chosen and results are shown in Fig. 5. Figure 5a describes
the average results and Fig. 5b shows the average results with
corresponding confidence intervals. The weak immune sys-
tem fails to control the cancer cells although a small reduction
appears around τ = 250min.

4.2.2 Tumor islets with stromal ECM orientation

Subsequently, we incorporate the anisotropic collagen ori-
entation into this model and the 15-µm-thick annular gray
region visualizes the extracellular matrix with rich fibers
of collagen and myofibroblasts. The function contribution
of desmoplastic stroma is unknown and controversial; how-
ever, it is reported to have a suppressive role for the immune
response (Rhim et al. 2014; Salmon and Donnadieu 2012).
Herein, we model this phenomenon in order to provide some
ideas for further research.

With the same parameters, the epithelial cells are allowed
to mutate to cancer cells (Fig. 6b), which can arouse the
immune T cells chemotaxis (Fig. 6d). After T cells enter
into the stroma, they sense the local orientation as well as
chemokine signal and move to the place where normally
gathered many cancer cells, see Fig. 6e. The reason why
T cells move along the collagen is because the anisotropic
fibers are positioned parallel to the tumor islet boundary.Nor-
mally, tissue has isotropic fibers which has a ‘basket weave’
pattern with a fairly random orientation, whereas this stro-
mal layer is described with more aligned collagen fibers.
By experiment observation, Bougherara et al. (2015) report
that T cells follow precisely the pre-defined collagen scaffold
and move between two fibers. Furthermore, compared with
the dense region, the loose-collagen areas have more CD8 T
cells. Therefore, the T cells migration is guided by collagen
orientation and affected by collagen density, however, here
we suppose T cells suffer some impediment in parallel col-
lagen fibers with uniform density and get through the barrier
eventually with the increase of the number of cancer cells.

In this part, we also simulate two kinds of results. T cells
eliminate cancer cells and reach a dynamic equilibrium with
a strong immune reaction in Fig. 6 while cancer cells prolif-
erate out of control in a weak immune system in Fig. 7.

Similarly, the percentage of cancer cells quantity in both
situations is compared over time in Fig. 8 by using average
data coming from a sample of 10 runs with 95% confidence
level. This amounts to running ten simulations where the
parameters are taken randomly using the normal distribution.
The 95% interval of confidence is subsequently computed

via
(
x − 1.96 ∗ σ√

n
, x + 1.96 ∗ σ√

n

)
. After a while, the

fraction number of cancer cells is apparently bigger in a
weak immune system. Furthermore, we compare the time
responses with corresponding 95% confidence intervals in
both strong immune system with collagen and without col-
lagen (see Fig. 9b). The figure shows that the anisotropic
collagen contributes a lot with k > 0 for migration of T cells
in blue line, which describes the strong immune response.
Therefore, T cells need more time t2 to get the cancer cells
in the tumor islet with collagen, and the corresponding num-
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Fig. 3 Snapshots of the tumor islet without anisotropic collagen orien-
tation (k = 0) under a strong immune reaction. The blue, red and green
circles denote the epithelial, cancer and T-lymphocytes, respectively.

a t = 0min, b t = 10min, c t = 60min, d t = 120min, e t = 150min, f t
= 180min, g t = 200min, h t = 300min and i t = 400min

ber of cancer cells reaches a higher level. Therefore, stromal
collagen impedes the immune response of T cells.

Differences in collagen fiber density lead to different ori-
entation effects. In order to further investigate the effect of

tumor surrounding collagen on the T cells movement in vary-
ing degrees, we give ten different values to k from 0 to 0.9. As
we expected, the inhibitory effect of collagen increases with
the increase of k value. This inhibitory is presented mainly
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Fig. 4 Snapshots of the tumor islet without anisotropic collagen orien-
tation (k = 0) under a weak immune reaction. The blue, red and green
circles denote the epithelial, cancer and T-lymphocytes, respectively.

a t = 0min, b t = 10min, c t = 60min, d t = 120min, e t = 150min, f t
= 180min, g t = 200min, h t = 300min and i t = 400min

by the parallel aligned fiber barrier on the attenuation of the
cell radial velocity and orientation on the tangential direc-
tion. Correspondingly, the immune response time of T cells
and maximum percentage of number of cancer cells are two

important criteria for judging the inhibitory effect, which are
compared in Fig. 10. The mean of the data for different k val-
ues is represented by red asterisks coming from a sample of
10 runs. Both the immune time andmaximumnumbermono-
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Fig. 5 Comparison for change of the percentage of cancer cells in total
cells in two situations. The red and blue lines represent the evolution of
the percentage of cancer cells in a weak immune system and a strong
immune system, respectively (a). Furthermore, the corresponding con-

fidence intervals are shown in b. The brown and light blue lines denote
the confidence intervals of a weak immune system as well as a strong
immune system in the tumor islets without anisotropic collagen orien-
tation (k = 0), respectively

tonically increase significantly at the beginning and then they
gradually stabilize. Figure 11 shows the evolution of the num-
ber of cancer cells with respect to time for k = 0, 0.3, 0.6,
respectively.

In conclusion, specific T cells-mediated immunity plays
an essential role in tumor islets progression. Pathologists
have found that almost each individual has cancer cells after a
large number of autopsy and pathological examination.How-
ever, most individuals only have a very few cancer cells in
vivo without any symptoms, which are not able to form can-
cer. Few cancer cells only can be seen under a microscope by
a biopsy so that it is difficult to be diagnosed. Therefore, the
immune-related theoretical principles and tumor microenvi-
ronment need to be further simulated and researched.

5 Discussion

Cancer cells differ from normal cells with some charac-
teristics, such as unlimited growth, conversion as well as
metastasis. Most individuals have a good balance of proto-
oncogene and anti-oncogene. However, this balance can be
disturbed by some carcinogens. Usually, abnormal cells will
be eliminated by the immune system before they become
cancerous. Therefore, the immune response is very impor-
tant to fight cancer. However, tumors have many strategies
to suppress or escape the tumor-specific immunity.

In this paper, we phenomenologically model the tumor
islets in pancreatic cancer, which uses the stroma to impede
the immunity to some extent. As far as we know, this is the
first mathematical modeling study devoted to the simulation
of pancreatic cancer that takes into account orientation of
the surrounding collagen. In order to predict this influence,
we have three characteristics for the comparative simulation

study: (1) T-lymphocytes migrate to the cancer cells with-
out stromal ECM orientation in a strong as well as a weak
immune response. It means T cells sense the chemokine sig-
nal only and move according to the concentration gradient;
(2) stromal ECM orientation combined with chemokine fac-
tor guide the movement of T cells in two kinds of situations;
(3) a parameter study of k value. Currently, we have three
results listed as follows:

– The model quantifies the delay of invasion of T cells into
the cancer-effected area as a result of anisotropic collagen
orientation, and hence, it quantifies the increase in time
to battle the cancer cells;

– The model predicts unlimited proliferation of carcinoma
cells if the immune system is weak, and a state of equi-
librium where cancer cells are eliminated if the immune
system is sufficiently strong;

– As we expected, the obstructing effect of stromal ECM
increases with the increase of k value which is used to
denote a measure for the amount that anisotropy con-
tributed to T cellsmigration.Hence, the number of cancer
cells is allowed to grow to larger values if the stromal
ECM around the tumor islet gets more woven parallel to
the circumference of the islet.

Although this model presents the first description of can-
cer development in the pancreatic under the influence of
orientation of the surrounding collagen, and although the
modeling looks sensible and meaningful in a qualitative con-
text, many details of cancer cells are ignored in order to get a
simple, well-tractable model for this preliminary study. The
following items regarding improvement of the model can be
discussed:
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Fig. 6 Snapshots of the tumor islet with anisotropic collagen orienta-
tion (k = 0.3) under a strong immune reaction. The blue, red and green
circles denote the epithelial, cancer and T-lymphocytes, respectively.

a t = 0min, b t = 10min, c t = 60min, d t = 120min, e t = 150min, f
t= 180min, g t = 200min, h t = 300min, i t = 400min.

– Developing 3DmodelThe computational framework that
we currently present is in a two-dimensional framework.
This large simplification has been carried out to save
CPU time. The main objective of this paper is to set
up a formalism for the inhibition of the immune sys-

tem as a consequence of the orientation of the stromal
layer. However, a 3D model is more physiological to
simulate the real biomedical phenomenon. Although our
work is only in 2D, the main conclusions remain the
same. That is, the orientation of the stromal layer poses
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Fig. 7 Snapshots of the tumor islet with anisotropic collagen orienta-
tion (k = 0.3) under a weak immune reaction. The blue, red and green
circles denote the epithelial, cancer and T-lymphocytes, respectively.

a t = 0min, b t = 10min, c t = 60 min, d t = 120min, e t = 150 min, f t
= 180 min, g t = 200min, h t = 300min and i t = 400min

a delay to T cells to entering the tumor islet. Therewith,
the organism will have some difficulty in fighting can-
cer. Furthermore, the conclusions regarding the impact

of the strength of the immune system on fighting cancer
will be the same regardless of the dimensionality of the
model. From a qualitative point, no significant changes
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Fig. 8 a Comparison for change of the percentage of cancer cells in
total cells in two situations. The red and blue lines represent the cancer
cell percentage change in a weak immune system and a strong immune
system, respectively. Furthermore, the corresponding confidence inter-

vals are shown inb. The brown and light blue lines denote the confidence
intervals of a weak immune system as well as a strong immune system
in the tumor islets with anisotropic collagen orientation (k = 0.3),
respectively
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Fig. 9 aComparison for time to fight the cancer cells. The blue and red
lines represent the strong immune system without anisotropic collagen
orientation (with the response time t1) and with anisotropic collagen
orientation (with the response time t2), respectively. Furthermore, the

corresponding confidence intervals are shown in b. The light blue and
brown lines denote the confidence intervals of strong immune systems
in the tumor islets without anisotropic collagen orientation (k = 0) as
well as with anisotropic collagen orientation (k = 0.3), respectively

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

k value

Pe
rc

en
ta

ge
m

ax

(a)

0 0.2 0.4 0.6 0.8 1
80

100

120

140

160

180

200

220

240

k value

Ti
m

e 
(m

in
)

(b)
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Fig. 11 Evolution of percentage of number of cancer cells and immune
time of T cells with respect to k = 0, 0.3, 0.6, respectively

are expected regarding dimensionality. However, if it
comes to quantitative claims, then the dimensionalitywill
have considerable impact. Therefore, in the future, we
plan to develop a 3D model in a parallel computing envi-
ronment.

– Improving the probability for cell division and death In
some studies, it has been found that the length of telomere
DNA of cells gradually shortens as the number of divi-
sions of a cell increases. Lindsey et al. (1991) report that
the telomere length of skin cells becomes shorter caus-
ing cell aging and lower division rates. This phenomenon
is also observed for epithelial cells, T-lymphocytes and
hematopoietic stem cells later. Allsopp et al. (1992)
observe that different individuals’ fibroblasts have differ-
ent abilities to proliferate and that the maximum number
of divisions increases with increasing telomere length.
Therefore, a dynamicprobability for cell divisionor death
could be incorporated into the modeling to simulate ini-
tiation of cancer through an enhanced mutation rate of
individual cells. In the current model, cells divide or die
depending on the strain energy density as well as fixed
probability rates after some time periods; however, in
future work we plan to incorporate this feature of the
dynamic probability rates, which will be an innovation
with respect to the existing literature. A way to do this
could be the following: let N be the number of cell divi-
sions, then we may set,

λN − λN−1 = CλN (1 − λN/λ∞), (40)

where C is a positive constant and λN is the probability
rate of cell division after N divisions per unit. Further-
more, λ∞ stands for the probability rate for cell division
after an ‘infinite’ number of cell divisions. IfC > 0, then
the number of cell divisions increases, the probability
rates of mutation, proliferation and death will gradually

converge to λ∞, else convergence toward zero will be
obtained.

– Incorporating more chemical factors In this study, the
strain energy density as well as one chemokine are
assumed to be the only factors for cell proliferation, apop-
tosis, mutation, etc. In reality, hormones, endostatin and
other substances collectively influence the cell activity.
Hence, one could incorporate oxygen content, nutrients,
more chemokines, etc. This, however, would make the
model less tractable.

– Coupling with angiogenesis Since the process of tumor
growth is really complicated, it is not yet fully understood
how the tumor grows. Modeling is still in its early stage
without unified theoretical basis. Angiogenesis plays a
crucial role in tumor growth and its spreading over dif-
ferent parts of the body; therefore, how to build a proper
model describing the angiogenesis mechanism is going
to be a complicated challenge. Innermost cancer cells
of any colony are most likely to die first, since the con-
centrations of oxygen and nutrients are much lower than
the concentrations on the rim of the tumor and further-
more, the mechanical contact force, they are exposed to,
are much longer. We will take the concentrations of oxy-
gen and nutrients into account for apoptosis. Cancer cells
releasing angiogenic factor activate vascular epithelial
cells and promote proliferation and migration of epithe-
lial cells.Wewill simulate this part combined with tumor
cell dynamics and associated immune responses in future
work. The reader is referred to Bookholt et al. (2016),
where the current cell-based model was extended and
applied to angiogenesis.

– Collagen degradation With the growth of tumors, inter-
nal hypoxic cancer cells will die and dead cells could
initiate the mechanisms of angiogenesis by secretion of
cytokines. One of the first steps in neovascularization is
degradation of membrane collagens by endothelial cells,
which move along the chemotactic stimulus. Endothe-
lial cells are able to degrade interstitial type I collagen
by releasing MMPs (Kalebic et al. 1983). Therefore, we
plan to incorporate this into the model to explore the effi-
cacy of degradation of collagen in immune response as
well as angiogenesis.

– A parameter variation study Besides all these questions,
all models need input parameters, which are hard to find
and which vary from individual to individual. Therefore,
it is also important to carry out a probabilistic parameter
variation study and try to get values from in vivo and
in vitro measurements. Afterward, we could quantify the
probability of tumor initiation, growth and seeding to
other organs in terms of biophysical parameters, genetics
and lifestyle in realistic settings and geometries.
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The techniques that we used here reside on contin-
uum models solved by the use of analytic expressions in
terms of Green’s functions or approximations, as well as
stochastic principles for cell proliferation, mutation, death
and migration. Combination with finite-element strategies
could improve the description regarding mechanics as well
as more complicated reaction-transport equations for the
chemokines. For cancer therapy, traditional methods are
chemotherapy and radiotherapy, which aim at cancer cells.
However, they inevitably cause varying degrees of dam-
age and toxicity for the human body. Nowadays, cancer
immunotherapy has some new developments that enlists
the immune system to attack targeting tumors directly
(Couzin-Frankel 2013). Thus, our original model and further
mathematical simulation is very meaningful and important
for cancer immunotherapy. Furthermore, it lays a foundation
for cancer development and inhibition for smart health care.
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