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Preface 
Throughout my academic journey as a student in Mechatronics and Robotics, I have been 

fascinated by Computer Vision and how it can be used to solve complex problems to improve safety 

and well-being. This master's thesis is the culmination of months of research, testing and writing, 

and I am excited to share my findings with the academic community. 

The purpose of this thesis is to develop a subsystem that can detect and classify hazardous 

particles in liquid medication containers such as vaccines. This technology can support small-scale 

produces of medicine such as hospital pharmacies to compete with large-scale producers of 

medicine and temporarily produce medicine that are not available. Trained lab technicians that 

currently perform the tedious task of manual visual inspection will be able to focus on other 

important tasks. The benefits for patients include decreased safety risks and more affordable 

healthcare. The positive effects of these developments have been a great motivation for this thesis. 

I would like to express my sincere gratitude to my thesis supervisor Martijn Wisse for his guidance, 

support, and invaluable feedback throughout this process. I would also like to thank Hans Gaiser 

for contributing his knowledge in the field of computer vision. I would like to thank my colleagues at 

Luo Automation B.V. for their discourse and creating a friendly working environment. Special thanks 

go out to Charlotte for her invaluable support, daily inspiration and help with the structure of my 

thesis. 

I hope that this work will contribute to the ongoing development of automated visual inspection 

technology for small-scale medicine production and provide valuable insights for future researchers 

in the field.  
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Abstract 
Visual inspection of liquid medicine containers for contamination and defects is mandatory and 

crucial to ensure their safety for injection. This document presents research and development of 

three modules of the Visual Particle Inspection Subsystem (VPIS), an automatic inspection 

subsystem with the task of detecting and classifying particle contamination in liquid medicine 

containers. The proposed VPIS comprises three modules for which research and development is 

performed separately: the backgrounds subtraction and segmentation module, the classification 

module, and the tracking module. 

For the background subtraction and segmentation module, a solution is proposed with filtered 

temporal background modelling and locally adaptive threshold segmentation. This solution works 

on the assumption that moving objects such as particles and bubbles are sparse and do not occur 

more than twice in a pixel in twenty frames. Therefore, a representative incomplete background 

cluster can be obtained by removing the two lowest or highest pixel values depending on the mode 

of illumination. Next, the average value of the background cluster is used for background 

subtraction and the standard deviation of the background cluster is used to determine a locally 

adaptive segmentation threshold. The solution has been positively evaluated for detection of low 

contrast objects, insensitivity to disturbances, processing time, and parameter configuration. 

Additionally, an add-on solution is proposed that makes it possible to detect objects in the 

challenging region near the rubber stopper of a syringe. 

For the classification module, out of four candidate classification methods a Convolutional Neural 

Network (CNN) is chosen for the classification of single object detections. The CNN classifier 

achieves an accuracy of 0.93 and is used as a baseline classifier for the rest of this research. Next, 

with three exploratory research questions, research is performed into opportunities and pitfalls for 

this classification problem summarised below. 

- It is found that certain handcrafted features correlate to the classification accuracy 

of a detection. A method is proposed to predict the classification accuracy of 

detections and filter out detections that cannot be classified reliably. Compared 

simple filters that filter out detections based on a single feature such as area or total 

contrast, the proposed method should achieve a higher subsequent classification 

accuracy and reject less detections. 

- With the simplest classification strategy that is often used for inspection, a container 

will be rejected if a single detection is classified as a particle. It is shown through 

simulation that this classification strategy is not effective for this classification 

problem. This is as the large number of bubble detections in a clean container would 

result in a high false container rejection rate. 

- Two multi-detection classification strategies are proposed that use multiple 

detections for classification. Median voting classification uses results from the 

tracking module to classify multiple detections of the same object. Multi-positive 

classification does not use tracking results but requires multiple detections to be 

classified as particles. Simulation results indicate that with both strategies, the 

classification accuracy for containers can be drastically improved. It is theorized that 

the best results can be achieved with median voting classification. 

For the tracking module, the Trajectory Driven Cluster Proposals (TDCP) algorithm is proposed and 

evaluated on a small dataset. The TDCP algorithm performs tracking based only on detection 
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coordinates and works on the assumption that real objects follow a predictable spiralling trajectory. 

Using a motion model, each set of three detections is evaluated to find plausible partial trajectories 

called tracklets. Next, overlapping tracklets are merged into track candidates of varying lengths. 

As this method returns all possible trajectories, in general more trajectories are detected than there 

are objects present. TDCP has been evaluated in terms of processing time, correctly tracked 

objects, additional trajectories, and trajectory length. The current version of TDCP fails in terms of 

processing time and performs questionably in terms of additional trajectories due to the rapid 

growth phenomenon when multiple objects are in close proximity. Some methods are discussed to 

make TDCP suitable for implementation with future work. 

The research and development findings presented in this thesis contribute to the advancement of 

automated visual inspection technology for small-scale medicine production.  
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Glossary 
Term Definition 

Visual Particle Inspection Subsystem (VPIS) A system for detecting moving particles in 

liquid medicine containers. 

Detection An observation of a moving object detected by 

the background subtraction and segmentation 

module 

Moving object A moving particle or bubble 

Image disturbances Phenomena that cause a section of the image 

to differ from a clear background image 

Meniscus Concave surface between air and liquid 

Segmentation mask Binary image that indicates what parts of an 

image are part of a segmented object 

Foreground Anything that is not a part of the static 

background 

False Negative (FN) rate Rate at which particle detections are falsely 

classified as bubbles 

False Positive (FP) rate Rate at which bubble detections are falsely 

classified as particles 

False Container Rejection (FCR) rate Rate at which an uncontaminated container is 

falsely rejected as a contaminated container 

False Container Acceptance (FCA) rate Rate at which a contaminated container is 

falsely accepted as an uncontaminated 

container 

Handcrafted features Feature properties derived using various 

algorithms using the information present in the 

image 

Relief feature selection A family of feature selections that uses nearest 

neighbours to select features with statistical 

interactions with other features 

One-Class Support Vector Machine (OC-SVM) Special SVM for outlier detection based on a 

single class 

Support Vector Machine (SVM) A type of linear model for classification and 

regression problems 

Neural Network (NN) A machine learning method inspired by the 

human brain that can solve complex problems 

Convolutional Neural Network (CNN) A class of artificial neural network most 

commonly applied to analyse visual imagery 

Trajectory Driven Cluster Proposals (TDCP) Proposed solution for the tracking module that 

performs tracking based only on detection 

position using a motion model. 

State-Of-The-Art (SOTA) The best methods that have been identified 

from previous work 
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1 Introduction 
This thesis is a graduation project for the master Robotics at Delft University of Technology, 

performed for Luo Automation B.V. in Delft, The Netherlands.  

First, in section 1.1, the need for particle detection is explained as motivation for this thesis. Next, 

in section 1.2, the objective of this research is introduced. In section 1.3 the document structure is 

presented. Section 1.4 shows an overview of the image acquisition process which precedes the 

first module of the VPIS. 
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1.1 Need for particle inspection 
By industry regulation, all medications that come into contact with human blood or tissue should be 

tested for contamination with particulate matter. Particle contamination of liquid medicine is defined 

by the United States Pharmacopeia (USP) as “contamination of injections and infusions consisting 

of extraneous, mobile, undissolved particulates other than gas bubbles, unintentionally present in 

the solution.” [1]. Particles such as glass chips, rubber particles, fibres, or hair can be accidentally 

introduced to medicine containers during the production process from various origins such as faulty 

machinery, workers, or an unclean production environment [2]. 

Small particulate matter from contamination often cannot be metabolised by the human body and 

can cause serious harm if injected into a patient. Possible consequences include thrombus, 

phlebitis, tumours, anaphylactic reactions, or even death [3] [4]. Presence of particle contamination 

has been one of the top ten reasons for the recall of liquid pharmaceuticals [1]. The probability that 

particle contamination is present in a container under normal conditions is low, less than <0,35% 

by estimation [1].  

Visual inspection is mainly performed at pharmaceutical production facilities but also at research 

laboratories and hospital pharmacies. Batch sizes can range from over a million units at a 

production facility to a dozen units at a hospital pharmacy. Different visual inspection methods are 

used depending on the production scale. 

At large pharmaceutical production facilities, 

visual inspection is mostly performed using 

automated inspection machines such as the 

Seidenader VI-S [5]. Such an automated 

inspection machine can process over 35.000 

medicine containers per hour with a high 

accuracy. On the downside, these machines 

require a large investment with a high 

maintenance cost and can be more than 6 

metres in length. Re-configuration of such a 

machine for a different container type takes some 

time and the required parts can be costly. These 

existing commercially available automatic 

inspection machines are therefore optimal for large-scale production but not suitable for small-scale 

or batch production.  

At small-scale production, inspection is 

performed manually or semi-automated. During 

manual inspection, a worker agitates the liquid by 

swirling it and visually inspects the container for 

particles that move in the solution. Industry 

regulation requires that the containers are 

inspected for ten seconds each under intense 

lighting conditions in two stages: with a bright 

white background to detect dark, opaque 

particles and with a black background with 

diagonal lighting to detect reflective or brightly 

coloured particles, this is later referred to as back 

Figure 2 Manual inspection process with white and 

black backgrounds to detect different types of particles. 

Source: [38] 

Figure 1 Seidenader VI-S automatic inspection system. 

Source: [5] 
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illumination and diagonal illumination. Workers must take regular breaks, as fatigue can cause an 

increased rate of false positive or false negative detections. With semi-automated inspection, the 

human is assisted by a machine to perform inspection. The machine agitates the container and 

shows it to the human operator. The human operator is assisted by a convex lens to magnify the 

container to spot particles quicker. 

Luo Automation B.V., a start-up company based in Delft, The Netherlands, is currently working on 

the first automatic inspection system suitable for small-scale inspection. The development of this 

system is the context of this research. By enabling small scale producers of medicine to perform 

inspection safer and more efficiently, this system contributes to safer and more affordable 

healthcare and enables small-scale producers to compete with large organisations and fill-in 

demand for medicine that are temporarily unavailable. 
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1.2 Research objective 
The main objective of this research is to contribute to the development of the Visual Particle 

Inspection Subsystem (VPIS), which is a proposed subsystem for the container inspection system 

by Luo Automation B.V. Figure 3 shows a functional overview of the inspection machine with the 

VPIS.  

 

Figure 3 Schematic functional overview of the container inspection system with the VPIS with three modules. 

Research and development into the three modules of the VPIS is the topic of this thesis. 

The goal of this research is not to deliver a completely functional VPIS, but to perform research and 

development into the three modules of the VPIS. The main task of the VPIS is to detect and classify 

medicine containers that are contaminated with small particles that move freely inside the 

container. This task has been split in three sub-tasks which are each performed by a module of the 

VPIS. 

1. The Background subtraction and segmentation module performs the sub-task of 

detecting and segmenting any moving objects from a sequence of 20 images. 

2. The Classification module performs the sub-task of classifying the detections from 

the previous module to determine whether any particles are present in the container. 

3. The Tracking module performs the sub-task of tracking moving objects from 

detections by the background subtraction and segmentation module. The results of 

tracking indicate what detections are of the same object which is used by a proposed 

classification strategy called Median voting classification. The tracking module is not 

needed if another proposed classification strategy is used called multi-positive 

classification. 

Research and development into each module is performed separately with separate research 

questions. The proposed solutions are designed to be easily reconfigured for different inspection 

situations with different medicine and container types, and work well with the most challenging small 

particles.  

Previous to this research, a literature study has been performed into existing methods that are used 

to perform particle inspection in liquid medicine. Of the methods that can be found through 

academic research, no methods were found that are expected to perform optimally to detect 

challenging particles in a realistic situation. In this research, for each module a short summary of 

previous work for that module is presented, including the shortcomings of the current State-Of-

The-Art (SOTA). At the end of each module chapter, the proposed solution is compared to these 

SOTA methods. 
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1.3 Document structure 
Firstly, section 1.4 shortly explains the image acquisition process that precedes the task of the 

VPIS.  

The main content of this research are the three modules that make up the VPIS. Research and 

development into each module has been performed separately and is presented separately in 

Chapters 2-4 . 

Each module chapter starts with an introduction that explains the goals and challenges of that 

module. Next, a short summary of previous work is presented including the current State-Of-The-

Art (SOTA) and its shortcomings. Next, the research questions of that module are presented. The 

sections after that present the main body of the research which is different for each module. For 

the background subtraction and segmentation module and the tracking module, observations and 

assumptions are made after which a solution is proposed and verified using the research sub-

questions for that module. For the classification module, a dataset is created after which separate 

research questions are presented and concluded one by one. The first research question of the 

classification module selects a baseline classifier for singular detections. The other three research 

questions explore the possibilities and pitfalls that come with this classification problem. Afterwards, 

the solutions presented for each module are compared to the SOTA presented earlier. Finally, each 

module chapter ends with a conclusion and recommendations for future work. 
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1.4 Image acquisition process 
This section presents an overview of the image acquisition process that collects images for the 

VPIS.  

The automatic inspection process to detect particulate matter starts with a rapid spin-stop 

sequence followed by an image acquisition sequence. Medicine containers are individually 

accelerated to rotate up to 500-3000 rpm depending on the type of container and then quickly 

decelerated. As the container rotates, the liquid inside the container starts to rotate and creates a 

vortex. After the container is held static, the liquid continues to rotate due to inertia and lifts particles 

from the bottom of the container into the solution. During this time, two sequences of twenty images 

are collected at twenty frames per second using a high-resolution monochromatic camera. 

Figure 4 shows the image acquisition process. Two illumination styles are used to detect all types 

of particles. An illuminating white background is used to detect light-blocking particles, such as 

rubber or metallic particles. The second illumination style uses a top and bottom light in front of a 

black background and is used to detect bright and reflective particles such as hair, fibres, and 

lightly coloured plastic. These are later referred to as back illumination and diagonal illumination. 

 

Figure 4 Image acquisition process with back illumination and diagonal illumination. 

After image acquisition, it is the task of the VPIS to detect and classify any moving particles from 

the image sequences.  
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2 Background Subtraction and Segmentation module 
The first module of the Visual Particle Inspection Subsystem (VPIS) is the background subtraction 

and segmentation module. This chapter contains research and findings regarding the background 

subtraction and segmentation module. 

The goal of the background subtraction and segmentation module is to extract detections of moving 

objects from a sequence of images. These extracted detections are used as input for the 

classification and tracking modules. The current state of the art from previous work has 

shortcomings and does not perform optimally as discussed in section 2.1. The proposed solution 

aims to overcome these shortcomings. 

Ideally, the result of background subtraction and segmentation is a complete list of detections of all 

objects in every frame, where each detection contour is accurately segmented. This is challenging 

as some objects are barely visible and can have a very low contrast to the background. It should 

also be avoided that small disturbances in illumination cause a false object detection as this can 

ultimately result in a false particle classification.  

This research proposes a combined solution for background subtraction and segmentation. The 

proposed solution uses filtered temporal background modelling and locally adaptive threshold 

segmentation. First, a filtered background model for each pixel is obtained by removing the two 

lowest or highest pixel values in the sequence of images. Next, the average intensity and standard 

deviation of the background model are used to define a local threshold for each pixel. Any pixel 

intensity outside this threshold is assumed to be of a moving object. 

The proposed solution has been developed and is shown to be effective through validation in 

various aspects. The solution can accurately detect the contours of small moving objects with a 

low contrast while detecting few false detections caused by small disturbances in illumination. The 

processing time less than a second for two sequences, making it fast enough for the VPIS. As the 

segmentation threshold is adaptive, it does not need to be carefully reconfigured for different 

imaging situations, making it ideal for small-scale inspection with multiple medicine container types. 

Chapter structure 

This chapter presents findings regarding the research and development of the background 

subtraction and segmentation module. First, section 2.1 presents a short summary of previous work 

into background subtraction and segmentation for the inspection of medicine. A selection of current 

state of the art methods is presented together with shortcomings and take-aways for the proposed 

solution. Next, in section 2.2, the research questions are presented that will be used to later 

evaluate the proposed solution. After that, section 2.3 presents observations and assumptions that 

are important to understand the problem and are used in the working principles of the proposed 

solution which is presented in section 2.4. Section 2.5 contains results and demonstrates the 

proposed solution. In section 2.6, the proposed solution is validated using the research sub-

questions. In section 2.7, the proposed solution is compared directly to the current state of the art. 

Finally, sections 2.8 and 2.9 present the conclusion and recommendations for this module. An add-

on solution is presented in Appendix A that enables the module to detect moving objects near the 

bottom of a syringe. 
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2.1 Previous work 
An analysis of previous work for the problem of particle detection has been performed during a 

literature study [6] preceding this thesis. This section summarises the most interesting findings from 

the literature study relevant for the background subtraction and segmentation module. Next, 

current State-Of-The-Art (SOTA) methods are identified in more detail with shortcomings and take-

aways. In section 2.7, the solution proposed for the background subtraction and segmentation 

module is compared to the SOTA methods. 

Background subtraction methods 

The background subtraction methods presented in previous work can be separated into four 

groups: image differencing [7] [8] [9] [10] [11] [12] [13] [14], background modelling [15] [16], 

dictionary learning [17], and subtraction after segmentation [18]. Of these methods, background 

modelling with Gaussian Mixture Models [16] is expected to perform the best, followed by a method 

referred to as simple background modelling [15]. The other methods result in more image noise, 

are less reliable or are overly complex. 

Segmentation methods 

The segmentation methods identified in previous work are: simple threshold [15] [17], local 

adaptive threshold [9], local line threshold [19], automatic threshold detection [7] [20], fuzzy C-

means with fuzzy SVM [18], PCNN [8] [10], FCNN [12], Faster-RCNN [21] [22] [23], and Gaussian 

Mixture Model segmentation [16]. Of these methods, background modelling with Gaussian Mixture 

Models [16] is expected to perform the best. The expected second-best method is local adaptive 

threshold segmentation [9]. 

2.1.1 Current SOTA 

This section explains the workings and shortcomings of the identified SOTA methods: background 

modelling with Gaussian Mixture Models [16], simple background modelling [15], and local 

adaptive threshold segmentation [9]. 

Background modelling with Gaussian Mixture Models 

Background modelling with Gaussian Mixture Models (GMM) [16] has been identified as the SOTA 

for both background modelling and segmentation. After the literature study, it was hypothesized 

that GMM background modelling is ideal for the background subtraction and segmentation module 

as would be stable and not require a threshold parameter. However, the method cannot be used 

as described in the paper as it has shortcomings discussed below. 

GMM [24] is a probabilistic clustering method that is regularly used for background subtraction 

outside of this specific use case. When used for background modelling, a GMM is fitted on intensity 

values of a pixel over time. A GMM contains gaussian components with a mean and a standard 

deviation. During the fitting steps, the mean and a standard deviation of gaussian components are 

optimised such all datapoints have a high membership with a Gaussian component. Figure 5 shows 

an example of a GMM with two Gaussian components fitted on a set of background values and two 

foreground values. 
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Figure 5 Example of a GMM with two components fitted on a set of background values and two particle values 

There are two main shortcomings with background modelling with GMM, processing time and a 

low number of datapoints. 

For background modelling with GMM, a separate GMM is fitted for every pixel in the image. As the 

fitting process is iterative this takes a significant amount of time. During initial testing, it was quickly 

found that GMM background modelling is too slow when used with high resolution images. 

The second shortcoming is that GMM background modelling is most suited for situations with many 

datapoints where multiple datapoints are present per Gaussian component. For this problem, only 

20 intensity values are available per pixel of which at maximum two independent values belong to 

the foreground cluster. As it is not possible to define a standard deviation based on one or two 

points, the method becomes dependent on precise parameter settings and random initialisation. 

Simple background modelling 

Simple background modelling [15] works on the assumption that a pixel position will never contain 

a pixel for two consecutive frames. To construct the model, each intensity value that is close enough 

to the previous intensity value is assumed to be a background value. Other intensity values can 

present background or a moving object. The average value of this incomplete background cluster 

is then used to perform image differencing.  

This method is an interesting as is much simpler compared to GMM background modelling. Instead 

of detecting multiple clusters for background and foreground, it approximates only the background 

cluster to determine the average background value. A downside of this method is that it requires a 

good approximation of background intensity variance to determine when two intensity values are 

close enough to belong to the background cluster. This method will therefore become less accurate 

or can fail in regions where the background intensity varies more as shown in Figure 7 on page 23. 

Local adaptive threshold 

Local adaptive threshold segmentation [9] aims to improve on segmentation with a regular 

threshold by making the threshold adaptive. The proposed locally adaptive threshold is computed 

with a global threshold parameter combined with the mean intensity of the 3x3 neighbourhood 

around a pixel in the foreground image. The adaptive threshold is increased in regions with a higher 

foreground intensity, this is the case in regions with more illumination disturbances but also between 

the edges of a particle. The resulting effect is comparable to a form of edge detection and would 

work reasonably well on particles with a clearly visible contour. However, the method will work less 
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well when detecting objects with a soft gradual contour. An additional downside is that the method 

requires two threshold parameters: the global threshold parameter and a parameter that 

determines the contribution of the local neighbourhood. 

2.1.2 Take-aways 

Although none of the SOTA are ideal, some useful take-aways have been made that have 

influenced the proposed solution for the background subtraction and segmentation module. 

Background modelling with Gaussian Mixture Models [16] uses the background model for both 

background subtraction and segmentation. This is possible as any moving objects are not part of 

the background component. Whether an intensity value is a part of the background component or 

becomes a new component is dependent on the average and standard deviation of the background 

cluster. A practical solution that achieves the same result would not require any gaussian 

components other than the background component therefore the method can be simplified. 

Simple background modelling [15] uses an incomplete background cluster to approximate the 

average background intensity. If the incomplete background cluster would be complete enough, it 

could also be used to determine the standard deviation and achieve a result similar to background 

modelling with Gaussian Mixture Models as discussed above.  

Simple background modelling [15] performs background modelling not by fitting a function but by 

comparing intensity values over time with the assumption that a particle does not appear twice in 

a row. The solution proposed for the background subtraction and segmentation module uses a 

similar assumption to obtain a more reliable incomplete background cluster. 

Local adaptive threshold segmentation [9] uses a locally adaptive threshold to improve 

segmentation in regions with more variation in illumination. Instead of the local neighbourhood, the 

solution proposed for the background subtraction and segmentation module uses a temporal locally 

adaptive threshold based on the values of that pixel over time. 
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2.2 Research questions 
This section introduces the research question and sub-questions for the background subtraction 

and segmentation module. The research question for this module regards the effectiveness and 

suitability of the solution that is proposed in section 2.4.  

A: “Is the proposed solution effective and suitable to be implemented in a system for particle 

detection?” 
 

In order to answer research question A more effectively, it has been divided into the following sub-

questions. Each of these sub-questions evaluates specific aspects regarding the effectiveness and 

suitability for implementation. Each sub-question is evaluated separately in subsections 2.6.1 - 

2.6.4. 

A.1: Low contrast detections 

“Can the solution detect objects with a low contrast to the background?” 
 

A.2: Insensitivity to disturbances 

“Is the solution insensitive to image noise, static disturbances and soft illumination 

disturbances, such that approximately less than 1% of detections are caused by these 

image disturbances?” 
 

A.3: Processing time 

“Can background subtraction and segmentation be performed on two sequences of 20 

images within one second, as not to slow down the VPIS?” 
 

A.4: Parameter reconfiguration 

“Can the method easily adapt to different container types or types of illumination?” 
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2.3 Observations and assumptions 
This section summarises observations and following assumptions from analysing the input data for 

the background subtraction and segmentation module. First, an overview of the input data is 

presented with image specifications and some example images. Next, notable observations are 

shortly discussed. These observational findings serve as background information for this module 

and are used in the working principle for the proposed solution in section 2.4. 

2.3.1 Image data 

The input data for the background subtraction and segmentation module is a sequence of high-

resolution greyscale images. The length of the sequence is 20 frames acquired at 20 frames per 

second. Images are cropped according to the size of the container resulting in the image sizes 

shown in Table 1. Figure 6 shows some example images of a syringe and a vial with back 

illumination and diagonal illumination.  

Table 1 Image size per container type before and after cropping the centre region. 

Container type Size Total area 

Syringe 5ml 1600 x 500 800.000 

Vial 10ml 1000 x 700 700.000 

Syringe 5ml, centre region 1150 x 400 460.000 

Vial 10ml, centre region 750 x 600 450.000 
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Figure 6 Example images of a 5ml syringe and 10ml vial with back illumination and diagonal illumination. The images 

are not on scale. 

2.3.2 Notable observations 

This section discusses the most notable observations and assumptions from analysing the input 

data for the background subtraction and segmentation module.  

Image disturbances 

In the ideal situation for background subtraction and segmentation, images consist of a perfectly 

static background image of a clean container with the addition of clearly distinguishable moving 

objects in the foreground. However, as can be seen in Figure 6, other disturbances are present in 

the image.  

Image disturbances are phenomena that cause a section of the image to differ from a clear 

background image. Table 2 shows a list of image disturbances that have been identified. Of these 

image disturbances, ideally only moving objects are detected. 
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Table 2 Different types of image disturbances that have been identified. Of these image disturbances, only moving 

objects should be detected by the background subtraction and segmentation module. 

Image disturbances: Description: 

Moving objects Bubbles 

Particles: fibres, rubber, glass etc. 

Static disturbances on the outside Scratches, fingerprints, dirt, etc. 

Semi-static bubbles Bubbles stuck on the rubber stopper in a syringe, 

deforming between frames as affected by the liquid 

The liquid meniscus The meniscus with floating bubbles and reflections on the 

surface 

Hard illumination disturbances Reflections from the light source on the container walls 

and the meniscus 

Soft illumination disturbances 

 

Gradual changes to the light level of the background 

caused by light diffusion and the moving meniscus 

Image noise Image noise caused by the imaging sensor, this noise is 

normally distributed and is stronger with diagonal 

illumination as the analog gain is increased 

 

Background intensity variance 

In some regions of the image, the background intensity varies more between frames than in other 

regions. This is mainly caused by light reflecting on the moving meniscus at the top of the container 

and diffusing in the liquid, on the container walls, on scratches and on static debris.  

The variation in background intensity can be observed by calculating the standard deviation of 

intensity over time. Figure 7 shows the standard deviation for a 10ml vial with diagonal illumination 

and back illumination, amplified for visibility. In the back illumination image, large regions can be 

seen that have an increased or decreased intensity variance. This is caused by reflection of the 

back light on the meniscus and the container walls. Thin vertical lines can also be seen, these are 

caused by vertical scratches on the container. In the back illumination image can be seen that dirt 

and static debris on the outside of the container can cause small regions with a larger intensity 

variation. Regions with a higher intensity variance pose a problem for global threshold segmentation 

methods used in previous work [15] [16] [7] [20], as these regions would lead to false object 

detections. If the segmentation threshold is increased to avoid these false detections, low contrast 

objects will not be detected. 
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Figure 7 Standard deviation of intensity between frames, amplified for visibility. Regions that appear brighter in the 

image have a larger variance in pixel intensity. Left: Standard deviation of a 10ml vial with back illumination. Right: 

Standard deviation of the same 10ml vial with diagonal illumination. The figure shows vertical scratches and large 

vertical regions with increased background variance for back illumination, and static debris with increased 

background variance for diagonal illumination.  

Object sparsity 

As particles and bubbles are sparse, most pixels in an image belong to the background. In almost 

all cases, moving objects occupy between 0% and 0.5% of an image with an estimated average 

around 0.2%. Therefore, it is rare for a single pixel to contain a moving object multiple times over 

the full sequence of 20 frames.  

Table 3 shows the probability for a single pixel to contain a moving object multiple times if moving 

objects are randomly distributed and cover 0.5% of the image. 

Table 3 Probability that a moving object is present in a pixel for n frames out of 20.  

Moving object present in n frames out of 20 Probability 

0 90.4610% 

1 9.0916% 

2 0.4340% 

3 0.0131% 

4 0.0003% 

 

The chance that a moving object is present in more than two frames is 0.0134%. From this 

observation the following assumption is made: 

Assumption 1: The chance that pixel contains a moving object for more than two 

frames is negligible. 

Appearance of a foreground pixel 

Image disturbances including moving objects appear darker or lighter than the background 

depending on the mode of illumination. In back illumination, disturbances appear darker than the 

background, whereas in diagonal illumination, disturbances appear brighter than the background. 
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There are rare exceptions to this rule, however this is not important as those particles can be 

detected better with the other illumination mode. 

From this observation, the following assumption can be made: 

Assumption 2: Compared to the background, a moving object appears darker for back 

illumination, and brighter for diagonal illumination. 
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2.4 Proposed solution 
This section presents the proposed solution for the background subtraction and segmentation 

module. The proposed solution first obtains a background model with a method named Filtered 

temporal background modelling (step 1 – 5). Next, background subtraction is performed using the 

average background intensity (step 6). Finally, object segmentation is performed with a method 

named Locally adaptive threshold segmentation and the background standard deviation (step 7 – 

9).  

Figure 8 shows an overview of the proposed solution. In following subsections, the workings of the 

methods for background modelling, background subtraction and segmentation are explained. 

 

Figure 8 Overview of the proposed solution for the background subtraction and segmentation module.  

2.4.1 Filtered temporal background modelling 

The proposed background modelling method is called Filtered temporal background modelling. 

This is shown in steps 1 – 5 in Figure 8. 
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Working principle 

As found in assumption 1 on page 23, the chance that pixel contains a moving object for more than 

two frames is negligible. As found in assumption 2, pixel values from a moving object have a higher 

or lower intensity value depending on the illumination mode. These assumptions are combined in 

the working principle of filtered temporal background modelling. 

Working principle:  

Removing the two lowest pixel values with back illumination, or the two highest 

intensity values with diagonal illumination, results in an incomplete but representative 

background cluster from which a background model can be computed for that pixel. 

Background model 

The background model consists of the average background intensity 𝐵𝐺𝑎𝑣𝑔 and the background 

standard deviation 𝐵𝐺𝑠𝑡𝑑 which are used for background subtraction and segmentation 

respectively. These are calculated using Equation 1 and Equation 2. 

𝐵𝐺𝑎𝑣𝑔(𝑥, 𝑦) =
∑ 𝐼𝑖(𝑥, 𝑦)𝑛

𝑖=1

𝑛
(1) 

𝐵𝐺𝑠𝑡𝑑(𝑥, 𝑦) =  √
∑ (𝐼𝑖(𝑥, 𝑦) − 𝐵𝐺𝑎𝑣𝑔(𝑥, 𝑦))𝑛

𝑖=1

𝑛 − 1
(2) 

 

The background cluster is incomplete as the two discarded pixel values likely also contain 

background values. However, this is not an issue as the remaining 18 pixel values can effectively 

enough represent the background in terms of mean intensity and intensity standard deviation. 

Method benefit 

A benefit of this method for background modelling is that the background intensity 𝐵𝐺𝑎𝑣𝑔 which is 

used for background subtraction is obtained using 18 out of 20 pixel values, resulting in a temporal 

smoothened background image with minimal image noise. Another benefit is that this method also 

returns the background standard deviation 𝐵𝐺𝑠𝑡𝑑 which is used to perform segmentation. 

2.4.2 Background subtraction 

Background subtraction is performed by differencing each image to the average background 

intensity 𝐵𝐺𝑎𝑣𝑔. This is shown in step 6 in Figure 8. The process of background subtraction depends 

on the mode of illumination as this determines if moving objects appear darker or lighter than the 

background. The foreground image 𝐹𝐺 containing all image disturbances including moving objects 

is calculated using Equation 3. 

𝐹𝐺(𝑥, 𝑦) = {
𝐵𝐺𝑎𝑣𝑔(𝑥, 𝑦) − 𝑖𝑚(𝑥, 𝑦), 𝐵𝑎𝑐𝑘 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑖𝑚(𝑥, 𝑦) − 𝐵𝐺𝑎𝑣𝑔(𝑥, 𝑦), 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
(3) 

2.4.3 Locally adaptive threshold segmentation 

The proposed segmentation method is called Locally adaptive threshold segmentation. This is 

shown in steps 7 – 9 in Figure 8. 

As observed in Figure 7, in some regions, the background intensity varies more than in other 

regions. This is problematic for global threshold segmentation methods as these regions can show 
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up as false detections of moving objects. If the segmentation threshold is increased to avoid these 

false detections, segmentation becomes less sensitive and low contrast objects will not be 

detected. 

Working principle 

The working principle of locally adaptive threshold segmentation is that the background standard 

deviation is useful to determine a locally adaptive segmentation threshold. Such a locally adaptive 

segmentation threshold is low in regions where the background intensity is near constant and 

higher in regions where the background intensity fluctuates more. 

First, the locally adaptive segmentation threshold 𝑇𝑎𝑑𝑎𝑝𝑡 is defined for every pixel position by 

multiplying 𝐵𝐺𝑠𝑡𝑑 and a single sensitivity parameter value 𝑇𝑝𝑎𝑟𝑎𝑚 using Equation 4. Next, the binary 

segmentation mask 𝑀 and the segmented foreground 𝐹𝐺𝑠𝑒𝑔 are calculated using Equation 5 and 

Equation 6. 

𝑇𝑎𝑑𝑎𝑝𝑡(𝑥, 𝑦) = 𝑇𝑝𝑎𝑟𝑎𝑚 ∗ 𝐵𝐺𝑠𝑡𝑑(𝑥, 𝑦) (4) 

𝑀(𝑥, 𝑦) = {
1, 𝐹𝐺(𝑥, 𝑦) > 𝑇𝑎𝑑𝑎𝑝𝑡(𝑥, 𝑦)

0, 𝐹𝐺(𝑥, 𝑦) ≤ 𝑇𝑎𝑑𝑎𝑝𝑡(𝑥, 𝑦)
(5) 

𝐹𝐺𝑠𝑒𝑔(𝑥, 𝑦) = 𝐹𝐺(𝑥, 𝑦) ∗ 𝑀(𝑥, 𝑦) (6) 

 

Method benefits 

The main benefit of this method of segmentation is that it is locally sensitive or insensitive based on 

the temporal background model for each pixel. This should result in less false detections and more 

accurate low contrast detections compared to any global threshold segmentation method. Another 

benefit is that this method is configured using only a single parameter 𝑇𝑝𝑎𝑟𝑎𝑚 that configures 

segmentation sensitivity. This makes it easy to reconfigure the solution if needed for other container 

types or liquids. 
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2.5 Results 
This section presents a demonstration of the proposed solution for the background subtraction and 

segmentation module and presents the detection results on a set of cropped images. 

Demonstration 

Figure 9 demonstrates the proposed solution. The points in the graphs show the intensity value of 

a pixel position over time. Green points form the incomplete background cluster. The two extreme 

values excluded from the background cluster are shown in red. The graphs show how the locally 

adaptive segmentation threshold 𝑇𝑎𝑑𝑎𝑝𝑡 is adjusted based on the variance of the background 

intensity. 

 

Figure 9 Demonstration of proposed solution. The graphs on the left show the image intensity over time in positions 

1 – 4 in the images on the right. Red points are excluded from the incomplete background cluster shown with the 

green points. Points that are outside the red dotted line are detected as moving objects. Graphs 1 – 2 show how 

the locally adaptive segmentation threshold 𝑇𝑎𝑑𝑎𝑝𝑡 adapts to the variance of background pixels. Graphs 3 – 4 show 

when a pixel value is detected as a moving object in both illumination modes. 
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Detection results 

Table 4 shows some detection results from cropped images with a moving object. Each row shows 

results for a different challenging situation explained below the table. Some more results for low 

contrast detections are shown in subsection 2.6.1. 

Table 4 Results from background subtraction and segmentation 

 Frame Previous 

frame 

Background 

𝑩𝑮𝒂𝒗𝒈 

Standard 

deviation 

𝑩𝑮𝒔𝒕𝒅 

Foreground 

𝑭𝑮 

Mask 

𝑴 

Extracted 

detection 

1 

         

2 

         

3 

        

4 

       

 

Row 1 shows a moving particle passing in front of a large static fibre on the outside of the container. 

The segmentation of the moving object is accurate and is not affected by the fibre. 

Row 2 shows two particles of different sizes. The smallest particle has an area of only four pixels 

and a low contrast to the background. In the sequence of 20 frames, the small particle is observed 

in 11 frames. 

Row 3 shows a low contrast particle in back illumination. Even though the object is barely visible in 

the frame, the method detects the object with a high level of detail. 

Row 4 shows a particle passing past a reflective static disturbance on the wall of the container. 

Over the sequence of frames, the amount of light reflecting of the lower edge of the static 

disturbance varies. This does not cause a false detection as the standard deviation in this region is 

increased. 
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2.6 Validation 
This module will be validated by analysing the results and answering the sub-questions A.1-A.4 as 

presented in section 2.2. Each sub-question is validated in its own subsection.  

2.6.1 A.1: Low contrast detections 

This section aims to answer sub-question A.1. 

A.1: “Can the solution detect objects with a low contrast to the background?” 
 

It is found that the background subtraction and segmentation module can detect objects that are 

smaller and have a lower contrast than what can be reliably classified as explained in section 3.6. 

Therefore, the method performs satisfactory on this aspect. 

Detection of small low contrast objects is of importance for the limits of the VPIS in terms of the 

smallest or lowest contrast particles that can be classified. Ideally, the background subtraction and 

segmentation module should be able to detect objects that are too small or have too little contrast 

such that these do not contain enough information to be classified. In section 3.6 of the classification 

module, it is approximated that with the current method of classification, any particle detections 

with an area larger than 30 pixels and a total contrast higher than 700 are useful for classification 

and should therefore be detected. 

Table 5 shows results on cropped image sections containing a small low contrast particle. Results 

include the calculated background, segmentation mask, extracted detection, area and total 

contrast of the detection. From the table can be observed that very small and low-contrast particles 

are accurately extracted from the images. As the extracted objects are smaller than 30 pixels and 

have a total contrast lower than 700, the solution exceeds the boundaries of what can be classified 

by classification module. 

Table 5 Results from background subtraction and segmentation that show challenging low contrast objects 

Frame Background Mask Detection Area Total 

contrast 

Mean 

contrast 

    

22 177 8.0 

     

23 

9 

389 

176 

 

16.9 

19.6 

    

14 152 10.9 

    

14 186 13.3 
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2.6.2 A.2: Insensitivity to disturbances 

This section aims to answer sub-question A.2:  

A.2: “Is the solution insensitive to image noise, static disturbances, or soft illumination 

disturbances, such that approximately less than 1% of detections are caused by these 

image disturbances?” 
 

On average, a container image sequence results in approximately 100 detections. Therefore, for 

A.2 to be true, approximately a single detection in an image sequence can be caused by image 

noise, static disturbances, or soft illumination disturbances. It is found that the proposed solution 

performs satisfactory in this aspect if detections smaller than 10 pixels are ignored. 

Detections caused by image noise, static disturbances, or soft illumination disturbances can be 

analysed by observing an image sequence without any particles or bubbles. When no moving 

objects are present in the image, any detections that are still made are caused by these image 

disturbances. 

An image sequence without any bubbles can be obtained by performing a long pre-spin sequence 

(see subsection 3.4.2). An image sequence without any particles can be obtained by using a clean 

container sample. Within the scope of this thesis, a completely clean container sample cannot be 

used as all container samples have been filled manually by the author without a cleanroom 

environment. Therefore, the image sequences used to evaluate sub-question A.2 contain some tiny 

particles that are detected with diagonal illumination as detections with an area between 3 - 10 

pixels. 

Below, it is discussed how many detections are caused by image noise, static disturbances or soft 

illumination disturbances for diagonal illumination and back illumination.  
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Diagonal illumination 

  

Figure 10 Annotated combined segmentation mask of an image sequence with diagonal illumination of a mostly 

clean container after a pre-spin sequence to remove bubbles. The figure shows 46 small detections of which most 

can be contributed to small particles present in the container sample. 

Figure 10 shows the combined segmentation mask of a sequence with diagonal illumination. In 

total, 46 detections are made between 3-10 pixels. It is likely that most of these detections are 

caused by tiny particles that are present in the container. This is supported by the observation that 

most detections are on a clearly recognisable trajectory or are clustered in a horizontal region 

indicating multiple fast trajectories.  

Excluding detections that can be explained with the presence of small particles, very few detections 

are present that are possibly caused by image noise, static disturbances, or soft illumination 

disturbances. None of these detections are larger than 10 pixels. 
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Back illumination 

 

Figure 11 Left: Combined segmentation mask of an image sequence with back illumination of a mostly clean 

container after a pre-spin sequence to remove bubbles. Top-right: Average background 𝐵𝐺𝑎𝑣𝑔 of the image 

sequence. Bottom-right: Background standard deviation 𝐵𝐺𝑠𝑡𝑑 of the image sequence, amplified for visibility. The 

figure shows a number of small object detections of which most are caused by a scratch, a static image disturbance. 

Figure 11 shows the combined segmentation mask of a sequence with back illumination, together 

with the average background 𝐵𝐺𝑎𝑣𝑔 and the background standard deviation 𝐵𝐺𝑠𝑡𝑑 amplified for 

visibility. In the figure it can be seen that less detections are made compared to Figure 10 with 

diagonal illumination, this is because dust particles present in the container are less visible with 

back illumination. The singular detection of 4 pixels left of this line is caused by either a tiny particle 

or image noise. The vertical line of detections is caused by illumination variation on one of the 

vertical scratches on the container. 

In most cases, a vertical scratch should not result in false detections as in those regions the 

background standard deviation is increased. These anomalies can occur if a static disturbance 

reflects significantly more light for one or two frames or if a single frame is translated as a result of 

vibrations acting on the machine. From testing with 52 image sequences, such an anomaly has 

been observed in five sequences. In total, three detections larger than 10 pixels have been 

observed. 
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A.2: Conclusion 

For A.2 to be true, approximately a single detection in an image sequence can be caused by image 

noise, static disturbances, or soft illumination disturbances.  

From the results presented in this section it can be stated that a small number of detections are 

caused by variations on soft lighting or image noise. If detections smaller than 10 pixels are 

excluded, it can be stated with confidence that on average less than one detection per image 

sequence is caused by image noise, static disturbances, or soft illumination disturbances.  

In section 3.6 of the classification module, it is found that detections smaller than approximately 30 

pixels cannot be classified reliably. Therefore, it is not problematic if detections smaller than 10 

pixels are ignored. 

2.6.3 A.3: Processing time 

This section aims to answer sub-question A.3: 

A.3: “Can background subtraction and segmentation be performed on two sequences of 20 

images within one second, as not to slow down the VPIS?” 
 

The average processing time of a sequence of 20 frames is 0.42 ± 0.07 seconds. Therefore, the 

average processing time of two image sequences is below one second. 

This test was performed on a laptop1 with python with the images are already loaded into memory. 

Processing time was measured a total of 200 times with image sequences of 10ml vials with a 

resolution of 750x600 pixels. The current version of the background subtraction and segmentation 

module has been partially optimised to lower processing time. Section 2.9 shortly lists the 

optimisations that are currently implemented and discusses recommendations for how the 

processing time could be further decreased.  

2.6.4 A.4: Parameter reconfiguration 

This section aims to answer sub-question A.4:  

A.4: “Can the method easily adapt to different container types or types of illumination?” 
 

It is found that the proposed solution is easy to adapt to different container types and modes of 

illumination. This is as the only configuration parameter does not need to be reconfigured for all 

imaging situations observed so far. 

The proposed solution contains only a single parameter 𝑇𝑝𝑎𝑟𝑎𝑚 which controls segmentation 

sensitivity. As the proposed segmentation method is locally adaptive, changes in the imaging 

situation are automatically reflected in the local segmentation threshold without changing 𝑇𝑝𝑎𝑟𝑎𝑚. 

The proposed solution has been used effectively in the following imaging situations without 

changing 𝑇𝑝𝑎𝑟𝑎𝑚. For all tests performed in this research, 𝑇𝑝𝑎𝑟𝑎𝑚 has been set to 4. 

• Vial 10ml, back illumination 

• Vial 10ml, diagonal illumination 

• Syringe 5ml, back illumination 

• Syringe 5ml, diagonal illumination 

 
1 Laptop specs: Intel i7-8750H CPU and NVIDIA Quadro P1000 GPU 
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2.7 Comparison to SOTA 
This section compares the proposed solution to the current SOTA for this module, as described in 

section 2.1. Although the solution cannot be directly compared to the SOTA by comparing results, 

it is expected that the proposed solution outperforms the current SOTA. 

Background modelling with Gaussian Mixture Models 

When compared to the SOTA method background modelling with Gaussian Mixture Models (GMM) 

[16], it is expected that the proposed solution outperforms the SOTA in terms of processing time. 

With the SOTA method, a GMM is fitted for every pixel in the image which is an iterative process 

with a long processing time. For this reason, most applications of GMM background modelling use 

low-resolution images or are used for application where processing time does not matter. In 

comparison, for the proposed method, the operations that take the most time are excluding the two 

highest or lowest values from the background cluster and determining the background standard 

deviation which take a fraction of the time in comparison. In initial tests it was confirmed that GMM 

background modelling is not suitable for this problem due to the processing time.  

Simple background modelling 

Compared to the SOTA method simple background modelling [15], the proposed method performs 

better in terms of detection of low contrast objects, insensitivity to disturbances, and ease of 

parameter configuration. The SOTA method performs background modelling in a similar fashion 

and obtains an incomplete background by comparing intensity values over time. However, instead 

of assuming that an object does not appear in a pixel twice in the image sequence, the SOTA 

assumes that an object does not appear twice in a row. As a result of this, the SOTA requires a 

threshold parameter to determine if two detections are similar enough which is not adaptive and 

will therefore fail in regions with a high background variance. In low variance regions, the method 

will be less successful at detecting low contrast objects. As the method requires more parameters 

also to perform subsequent segmentation, the method is harder to reconfigure compared to the 

proposed solution. 

Local adaptive threshold segmentation 

The SOTA method local adaptive threshold segmentation [9], proposes a locally adaptive threshold 

based on a global threshold and the local neighbourhood around the pixel. In comparison, the 

proposed method determines the locally adaptive threshold based on the values of that pixel over 

time and does not combine this with a global threshold parameter. The resulting threshold performs 

better with variance in illumination and to detect objects with a low contrast gradient contour. 

Additionally, the proposed solution can be reconfigured more easily as it has only a single parameter 

that is insensitive to most changes.  
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2.8 Conclusion 
In this chapter, findings have been presented regarding the research and development of the 

background subtraction and segmentation module. The proposed solution is shown to be effective 

through the validation of detection of low contrast objects, insensitivity to image disturbances, 

processing time, and parameter reconfiguration. The proposed solution has been successfully 

implemented and has been used during data collection for both the classification and tracking 

modules. The proposed solution including a version of the add-on solution for detecting objects 

near the rubber stopper presented in Appendix A has already been adopted by Luo Automation 

B.V.  

The proposed solution can detect small objects with a low contrast while detecting few false 

detections caused by image noise, static disturbances, or soft illumination disturbances. The 

current implementation of the module can process two sequences of 20 frames in less than 1 

second on average, making it fast enough to be used with the VPIS without slowing down the 

inspection process of a container. The proposed solution has only a single parameter that controls 

sensitivity of the locally adaptive threshold segmentation. As the threshold is locally adaptive, has 

been used with both 10ml vials and 5ml syringes in both back and diagonal lighting without requiring 

reconfiguration of the sensitivity parameter. 
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2.9 Recommendations 
The solution presented in this chapter for the background subtraction and segmentation module is 

effective according to the current requirements for the VPIS specified roughly in research sub-

questions A.1 – A.4. It might however be beneficial to further improve the proposed solution to 

perform better in the aspects of processing time, insensitivity to disturbances, and detection of 

objects in challenging regions. This section discusses reasons to further improve the proposed 

solution and suggests strategies to achieve this. 

2.9.1 Processing time 

By reducing the processing time of the background subtraction and segmentation module, more 

time will be made available to perform the other module tasks of the VPIS. Reducing the processing 

time of this module also makes it possible to detect moving objects in images with a higher 

resolution. With the optimisations shortly discussed below, it is estimated that the processing time 

can be reduced by 50% 

Current optimisations 

The current version of the proposed solution is implemented in python and has been partially 

optimised to lower processing time. All large operations are performed using full images instead of 

singular pixels as proposed in section 2.4. The operations of calculating the average background, 

background standard deviation, unfiltered foreground, and performing segmentation are performed 

on the GPU which significantly lowers processing time for some steps.  

General optimisation 

As the current version of the proposed solution is implemented in python, it is expected that with 

general optimisation strategies the processing time can be reduced up to 50%. General 

optimisation strategies include implementation of the code in a compiled language such as C++, 

performing more tasks on GPU, implementation of multiprocessing for CPU tasks, and efficient 

memory management.  

Unnecessary steps 

The current implementation of the module performs steps that are useful during development but 

are not necessary during regular operation. Each detection is extracted as a class instance and 

saved for later usage. In addition to the extracted foreground and pixel position which are used by 

the classification and tracking modules, each class instance includes a segmentation mask, image 

metadata and a total of 40 handcrafted features listed in Appendix B. Removing the unnecessary 

information from the class instances, and keeping the class instances working memory, the 

processing time should be significantly improved. 

2.9.2 Insensitivity to disturbances 

In section 2.6.2 can be seen that in some cases, false object detections are made from 

disturbances such as scratches on the outside of the container. Although the current results are 

acceptable as most false detections are too small, it is recommended to further reduce the number 

of false detections. 

Static image disturbances 

Static image disturbances can result in false detections if a pixel is affected by the static disturbance 

for two frames or less. This can happen due to vibrations on the machine that result in translation 
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of the disturbance or if a disturbance is only visible in the first few frames when the water surface is 

deformed more strongly. 

Possible solution 

A possible partial solution for this problem can be to use a local maximum filter on the background 

standard deviation 𝐵𝐺_𝑠𝑡𝑑. As a result of this, regions with a high background variance will result 

in an increased locally adaptive threshold in neighbouring pixels. This should prevent most false 

detections caused by vibrations. Future work is needed to test this theory. 

2.9.3 Detection in challenging regions 

One of the shortcomings of the proposed solution for the background subtraction and segmentation 

module is that the method can only detect objects in the centre region of a container. This is as the 

regions near the top and bottom of a container offer challenges make it difficult to perform detection.  

Add-on solutions 

Appendix A presents an add-on solution that enables the solution for the background subtraction 

and segmentation module to detect objects near the rubber stopper in the bottom region of a 

container.  

It is recommended for future work to further improve this add-on solution and investigate methods 

to detect objects in other challenging regions. If the solution is able to detect objects in more 

challenging regions such the bottom region of a vial or in the top region of a vial or syringe near the 

liquid surface, this can help improve patient safety and therefore be of significant value.  
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3 Classification module 
The second module of the VPIS is the classification module. This chapter contains research and 

findings regarding the classification module. 

The goal of the classification module is to classify detections of moving objects that have been 

extracted from a sequence of images by the background subtraction and segmentation module. If 

a particle is classified, the container should be rejected. 

Ideally, every detection is correctly classified as a particle or a bubble, such that all contaminated 

containers are rejected, and clean containers accepted. However, this is challenging some objects 

can be very small such that the detections have an area of only a few pixels with a low contrast. 

Additionally, many detections of bubbles can be detected from the sequence of images. If a single 

detection classified as a particle would result in the container being rejected, this could result many 

false container rejections. 

The goal of this research into the classification module is not to develop a classifier that is good 

enough to comply with regulations and be implemented in the VPIS. But rather to select and 

develop a decent baseline classifier and explore the possibilities and pitfalls that come with this 

problem situation. Besides selecting a classification method out of four candidates and training a 

classifier, exploratory research is performed into three other topics:  

- Correlations between handcrafted features and classification accuracy that can be 

used to filter out detections that cannot be classified reliably. 

- The effectives of the classifier to classify a container with multiple detections. 

- The theoretical effectiveness of two proposed multi-detection classification 

strategies. 

During this early stage in the development of the classification module, the classification module 

will be trained and evaluated exclusively with detections from image sequences of 10ml vials with 

diagonal illumination. However, the proposed solution also should work with back illumination or 

different container types. 

This research proposes a baseline classification method with a CNN classifier that achieves a 

classification accuracy of 93% on single detections with an area of at least 30 pixels. Besides that, 

a filtering method is proposed that predicts the classification accuracy for a detection to filter out 

detections that are too hard to classify. The proposed filtering method uses observed complex 

correlations between multiple handcrafted features and the classification accuracy and 

outperforms a set of simple threshold filters in terms of resulting classification accuracy while 

classifying more detections. 

It is shown through simulation that the naïve classification strategy where a single detection 

classified as a particle results in the container being rejected is not valid. Therefore, two multi-

detection classification strategies are proposed: median voting classification with tracking and 

multi-positive classification. Both multi-detection classification strategies achieve significant 

improvements in terms clean containers that are falsely rejected and contaminated containers that 

are falsely accepted. Median voting classification uses the results of the tracking module to classify 

multiple detections of a moving object and achieves the highest accuracy. Multi-positive 

classification requires multiple detections to be classified positive before the container is classified 

positive. 
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3.1 Chapter structure 
This chapter presents findings regarding the research and development for the classification 

module. First, section 3.2 presents a short summary of previous work into classification for the 

inspection of medicine. A selection of current State-Of-The-Art (SOTA) methods is presented 

together with shortcomings and take-aways. Next, in section 3.3, the research questions are 

presented for the baseline classifier and subsequent exploratory research. After that, section 3.4 

presents how the dataset was created for the classification module. Section 3.5 presents the 

selection of a baseline classifier and its classification accuracy on the dataset. In section 3.6, 

correlations between handcrafted features and the classification accuracy are analysed to define a 

filtering method for detections that cannot be classified reliably. Section 3.7 demonstrates through 

simulation that the default classification strategy is not viable. Therefore, in section 3.8 two multi-

detection strategies are proposed and simulated. In section 3.9, the proposed solution is compared 

to existing methods. Finally, sections 3.10 and 3.11 present the conclusion and recommendations 

for this module. 
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3.2 Previous work 
An analysis of previous work for the problem of particle classification has been performed during a 

literature study [6] preceding this thesis. This section summarises the most interesting findings from 

the literature study relevant for the classification module. Next, current State-Of-The-Art (SOTA) 

methods are identified in more detail. In section 3.9, the solution proposed for the classification 

module is compared to the SOTA methods. 

Classification methods 

The classification methods referred to in the literature study [6] can be separated into six groups: 

trajectory classification [18] [7] [20] [12] [8] [10] [22] [15] [23] [21], shape classification [13], 

wavelet classification [25] [26], handcrafted feature classification [9] [16] [26], 3D-ConvNet 

classification [27], and Multi-view classification [28]. Multi-view classification has not yet been used 

in literature for the problem of particle classification but is included as it can be useful for this 

purpose. Of these methods, it is expected after the literature study that Multi-view classification 

[28] should perform the best, followed by handcrafted feature methods [9] [16] [26]. 

3.2.1 Current SOTA 

This section explains the workings and shortcomings of the identified SOTA methods: Multi-view 

classification [28] and handcrafted feature methods [9] [16] [26]. It also explains the workings and 

shortcomings of trajectory classification as this classification method is applied in the most papers. 

Trajectory classification 

Different forms of trajectory classification are applied in ten papers [18] [7] [20] [12] [8] [10] [22] 

[15] [23] [21]. These methods work based on the premise that the trajectory contains useful 

information about the object class. It is assumed that bubbles will rise to the surface, whereas 

particles should sink.  

Although classification based on trajectory has been widely adopted in previous work, experimental 

observations using our own setup show that the turbulent vortex created after spinning the liquid 

causes both lightweight particles and bubbles to deviate randomly in vertical direction. Even after 

the liquid has slowed down, some lightweight particles such as polystyrene foam can rise at a similar 

rate as bubbles. Classification by object trajectory alone is therefore considered unreliable and 

inaccurate and should therefore not be used. 

Handcrafted feature classification 

Handcrafted feature classification methods [9] [16] [26] perform classification based on numeric 

features that have been extracted from object detections. Good handcrafted features are 

descriptive of a detection and include features such as: area, length-width ratio, mean contrast and 

circularity of the contour. Three papers in previous work propose a classification method based on 

handcrafted features. Two of these methods are considered as SOTA methods for particle 

classification and are described below. 

Handcrafted feature classification using OS-ELM [26] extracts a total of 17 handcrafted features. 

Next, classification is performed using a method called OS-ELM. OS-ELM is a rather controversial 

algorithm [29] that behaves similar to a regular feedforward neural network (NN) but is trained in 

one iteration using the matrix inverse. In the paper, the classification results are significantly 

improved by performing tracking and including the direction of the trajectory as a handcrafted 

feature. The reported accuracy to distinguish between particles and bubbles is 99.83%. The paper 

does not state the size of objects present in the sample set. 
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As explained earlier for trajectory classification, early experiments using our own setup show that 

both bubbles and particles can deviate randomly in vertical direction. It is therefore questionable 

whether these results can be achieved in reality. The main benefit of the OS-ELM classification 

algorithm is the short duration of the training compared to a regular NN. As training should be 

performed beforehand, this is not of any importance. 

Handcrafted feature classification using a genetically optimised neural network [16] performs 

classification based on a total of 6 handcrafted features. In the paper, 15 handcrafted features are 

extracted after which ReliefF feature selection is used to select 6 best features. Next, classification 

is performed using a neural network optimised with a Mind Evolutionary Algorithm. The reported 

False Positive and False Negative rates are 1.25% and 1.10% respectively. The paper does not 

state the size of objects present in the sample set. The paper uses 250ml plastic containers with a 

lower transparency compared to glass, therefore it can be assumed the particles are of a larger 

size. 

A shortcoming in both papers is that these do not mention the size of particles in terms of pixels of 

physical dimensions, nor are close-up images of particles shown from which this can be derived. 

Therefore, it is hard to evaluate the effectiveness to classify small challenging particles. Another 

shortcoming is that the papers do not mention the effect of multiple bubbles that are detected in 

multiple frames. As explained in this research in section 3.7, the presence of multiple detections of 

bubbles can be of great consequence for the classification outcome. The exotic classification 

algorithms used in both papers are not often referred to in other literature as valuable improvements 

over a regular neural network. 

Multi-view classification 

Multi-view classification has not yet been used in literature for the problem of particle classification 

but is included as it can be useful for this purpose.  

Multi-view classification with a convolutional neural network (CNN) is proposed by Seeland and 

Mäder [28] as a powerful extension to general CNN classification methods. The method combines 

multiple observations of the same object by fusing the latent representations in the CNN or by 

combining classification scores after individual classification. The paper shows that existing 

methods can be extended with the fusion strategy to outperform regular classification on existing 

data sets.  

3.2.2 Take-aways 

Although none of the SOTA in previous work are ideal, some useful take-aways can be made. The 

main take aways are the use of handcrafted features with feature selection and combining multiple 

detections to perform classification.  

Different sets of handcrafted features are used for classification in previous work [9] [16] [26], a 

selection of the handcrafted features used by those methods Is adopted inn this research. The list 

of handcrafted features used in this research can be found in Appendix B. Relief [30] feature 

selection will be used to perform feature selection, similarly to one of the SOTA [16] which uses the 

multi-class variant called ReliefF [30]. 

At this early stage in the development of the classification module and the tracking module, it was 

chosen not to perform further research into a classification method with latent representation fusion 

as this cannot be tested or simulated effectively without a functional tracking module. However, the 

paper shows that for some classification problems, similar or superior results can be obtained using 
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score fusion with addition or multiplication. As outlier detections are a significant problem for this 

classification problem, it was found in early experiments that median voting classification performs 

superior to addition and multiplication fusion methods proposed in the paper. 



44 

 

3.3 Research questions 
This section introduces the research questions for the classification module. The research 

questions of this module are parts of a main research question for validation as with the background 

subtraction and segmentation module. The first research question B.1 results in a baseline 

classification method for classifying singular detections. Following research questions B.2 – B.4 are 

exploratory and explore opportunities and pitfalls for this classification problem. Each research 

question is evaluated separately in sections 3.5 – 3.8 with separate conclusions. 

B.1: Classification model selection 

“Which of the candidate classification methods achieves the highest classification 

accuracy for single detections on the dataset described in section 3.4?” 
 

B.2: Classifiable detections 

“What correlations exist between handcrafted features and the classification accuracy of 

a detection that can be used to filter detections that cannot be reliably classified?” 
 

B.3: Full container classification 

“What is the theoretical effectiveness of the classifier to classify a container with multiple 

detections, if a single positive detection results in the container being rejected?” 
 

B.4: Multi-detection classification strategies 

“What is the theoretical effectiveness of a classification strategy that uses multiple 

detections to classify a container sample?” 
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3.4 Dataset creation 
This section describes how a dataset was created for the classification module. Most classification 

methods that are trained through the process of machine learning require a dataset with multiple 

instances of the objects/detections that are to be classified. With supervised learning, the different 

classes are labelled separately in the training data such that the classifier learns to recognise the 

difference most effectively. With this classification problem, the two main classes that need to be 

classified are bubbles and particles. In some previous work classification is also performed between 

different particle types or a class with false detections caused by illumination disturbances. 

The goal of dataset creation is to obtain a dataset with labelled detections of particles and bubbles. 

The dataset should be large enough to train the classifiers described in section 3.5 and contain 

multiple detections of different particle types in different sizes. First, physical samples of containers 

with particle contaminations are created. Next, detection data is collected using the background 

subtraction and segmentation module and labelled such that detections of bubbles and particles 

are separated. In this research the classification module is only evaluated with 10ml vials with 

diagonal illumination, therefore the dataset is collected from that capture situation exclusively. 

The resulting dataset contains a total of 142223 detections collected from 570 image sequences. 

A histogram with the distribution of detection area in the dataset is shown in Figure 12.  

  
Figure 12 Histogram of detection area in the dataset in linear and logarithmic scale. The figure shows that most detections in 

the dataset are small. 

3.4.1 Sample creation 

Before a dataset can be collected, a sample set is required. In this research, a sample is defined 

as a physical medicine container. A contaminated sample is a medicine container that contains one 

or more particles. At the time of starting this research, no suitable sample set for 10ml glass vials 

was present at Luo Automation B.V. 

Companies that perform manual visual inspection use an evaluation sample set during the training 

and periodic testing of their workers [31]. A good evaluation sample set contains good samples, 

samples with static defects, and contaminated samples and is representative of a real inspection 

situation. Contaminated samples contain particles of various sizes and types, generally with not 

more than one particle per sample as more particles make it easier to detect the contamination [2]. 

Every sample in a good evaluation sample set has been characterised with detail and registered. 
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Production of an evaluation sample set takes time and effort. Alternatively, an evaluation sample 

set can be purchased from a specialised vendor. 

As time and resources available for this research are limited and development of the classification 

module is in an early stage, it has been decided to create a limited sample set of 10ml vials with the 

following properties: 

- The sample set contains 20 sample containers, including 19 contaminated samples 

and 1 clean sample. The clean sample contains some tiny contaminations that are 

not visible to the naked eye but are detectable with the background subtraction and 

segmentation module. As detections of these objects have a maximum area of 3-10 

pixels, smaller than the area threshold of 30 pixels approximated in section 3.6, this 

is not a problem. Efforts to create a clean sample without such contaminations have 

failed as no cleanroom was available.  

- The sample set contains 1-10 particles per contaminated sample container. There 

can be more than one particle present as the samples are not used for validation. 

The number of particles is limited such that it is feasible to manually observe and 

annotate particle trajectories for the tracking module. 

- The sample set contains mostly challenging particles with an area between 5-200 

pixels. This is as larger particles can already be classified with high accuracy using 

an existing classification method. By limiting the range of particle size, more variation 

can exist in other aspects such as particle shape and material with the same number 

of samples. The distribution of detection sizes is shown in Figure 12. 

- The sample set includes fibres, glass fragments, dust flakes and fragments of various 

types of plastic. 

As the limited sample set contains mostly small challenging particles, the resulting classification 

accuracy is expected to be lower compared to when using a sample set with a wider range of 

particle sizes. 

3.4.2 Dataset collection and labelling 

A method has been found to collect detections of either bubbles or particles separately. This way, 

detections can be labelled directly such that detections do not need to be labelled manually 

afterwards. This subsection describes the method and process of collecting labelled data of 

bubbles and particles. 

Bubble capture sequence 

To obtain detections of exclusively bubbles, a clean sample container is used that contain only tiny 

particle contaminations smaller than 10 pixels. Any detections from this container larger than 10 

pixels should be of bubbles exclusively. To collect these detections, the following steps are 

performed: 

1. The clean container is lightly shaken to introduce bubbles and loaded into the 

machine. 

2. The normal spin-stop capture sequence described in section 1.4 is repeated 3-5 

times until most bubbles are gone. 

3. Steps 1 and 2 are repeated until the desired number of image capture sequences is 

reached. 
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4. Detections are extracted from the image sequence using the background 

subtraction and segmentation module. Detections near the top of the container are 

excluded.  

Particle capture sequence 

To obtain detections of exclusively particles, contaminated container samples are used with a long 

pre-spin sequence to remove bubbles. During the long pre-spin sequence, bubbles that are stuck 

on the container walls are released and float to the top. Detections that are made from image 

sequences captured after the long pre-spin sequence are of bubbles exclusively. 

1. A contaminated container sample is loaded into the machine. 

2. The long pre-spin sequence is performed: 

- 500ms spin at 800 rpm 

- Waiting period of 120 seconds 

- 500ms spin at 500 rpm 

- Waiting period of 120 seconds 

3. The normal spin-stop capture sequence described in section 1.4 is repeated until 

the desired number of image capture sequences is reached. 

4. Detections are extracted from the image sequence using the background 

subtraction and segmentation module. Detections near the top of the container are 

excluded.  

The effectiveness of the pre-spin sequence to remove bubbles has been confirmed with the use of 

the clean container sample. After the long pre-spin sequence, no moving objects larger than 10 

pixels area can be observed in subsequent image sequences, meaning that all bubbles have been 

removed successfully. 
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3.5 B.1 Classification model selection 
This section aims to answer research question B.1. 

B.1: “Which of the candidate classification methods achieves the highest classification 

accuracy for single detections on the dataset described in section 3.4.2?” 
 

In this section, a classification method will be chosen out of a list of four candidate classification 

methods to classify singular detections. The four candidate classification methods are trained and 

evaluated. Important outcomes are the chosen classification method and the classification 

accuracy on the test dataset. The trained classifier of the chosen classification method will serve 

only as a baseline classifier and will not be extensively optimised. Table 6 shows an overview of the 

four candidate classification methods. Of these classification methods, CNN classification achieves 

the highest classification accuracy of 0.93 or 93%. 

Table 6 Overview of candidate classification methods with the type of features and training dataset 

Name Features Training dataset 

CNN Segmented foreground resized to 32x32 Bubbles and particles with area >= 

30 NN Handcrafted features selected with 

Relief [30] SVM 

OC-SVM Only bubbles with area >= 30 

 

These candidate methods are presented in the next three subsections. Followed by the results in 

terms of classification accuracy and a conclusion in which answers research question B.1. 

3.5.1 OC-SVM 

OC-SVM stands for One-Class Support Vector Machine [32]. This method is a special variant of 

the better known SVM that can detect novelty between samples in a dataset. An OC-SVM is trained 

using detections from only a single class. After that it can classify whether a detection belongs to 

the trained class or a different class.  

The great benefit that makes OC-SVM and other one-class classifiers interesting is that, if effective 

as a classifier, it can be trained using detections of only bubbles. As explained in subsection 3.4.2, 

detections of exclusively bubbles can be obtained easily using only a single clean container. This 

contrasts with detections of exclusively particles for which a diverse set of samples has to be 

created. This would make it possible to quickly and inexpensively expand the portfolio of medicine 

containers and that can be inspected. 

A downside of OC-SVM and other one-class classifiers is that these methods usually obtain a lower 

classification accuracy than classification methods that use training data of all relevant classes. For 

some classification problems and feature spaces, OC-SVM can perform terrible compared to a 

regular SVM trained on all classes. This is as for some regions in a feature space, difference 

between two classes might be small such that the exact placing of the decision boundary is 

important to differentiate between the classes. Whereas in other regions, the decision boundary 

can be relaxed to include more diverging samples. This information is known to a regular SVM but 

is unknown to an OC-SVM. 
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3.5.1.1 OC-SVM in this research 

The OC-SVM tested in this research uses handcrafted features selected with Relief [30] feature 

selection as explained later for the NN and SVM classification methods. 

During initial testing, it has been observed that OC-SVM is not effective as a classifier for this 

classification problem. As the appearance of bubble detections is diverse, and there is a large 

overlap between detections of bubbles and particles, the method was not able to define a good 

decision boundary and only achieved a classification accuracy below 70%. Other one-class 

methods have also been tested briefly but none exceeded 70% classification accuracy.  

As the performance decrease between OC-SVM and the other classification methods discussed in 

this chapter is too large, OC-SVM will not be evaluated further as a candidate classification method. 

3.5.2 NN & SVM 

This section evaluates the well-known Neural Network (NN) and Support Vector Machine (SVM) 

classification methods. These classification methods are evaluated together as both methods use 

handcrafted features as input data and the methods should achieve similar results. 

Figure 13 shows an example schematic if a NN classifier, also known as Multi-Layer Perceptron 

(MLP). A NN model for classification is a network with one or more layers that takes numeric input 

features and outputs a classification label. The functionality of a NN is defined by the network 

structure and a large number of weight parameters that are configured during training. 

 

Figure 13 Example of a simple NN classifier with handcrafted features and one or more hidden layers. The output 

of the NN classifier is a classification score between 0 and 1.  

An SVM classifier does not use layers of neurons but uses a subset of the dataset as support 

vectors. Between the support vectors of both classes, a decision boundary is defined that 

maximises the distance between detections of different classes. 

Although the methods function completely different internally, both methods should perform 

similarly on a reasonably sized dataset. SVM has the advantage that is quicker to train and requires 

less data to be trained. In most cases, a NN should achieve a slightly higher classification accuracy 

given enough training data [33]. 

3.5.2.1 Input data 

The NN and SVM in this research both use handcrafted features as input. Handcrafted features are 

numeric features that have been extracted from object detections. These features are descriptive 

of a detection and include features such as: area, total contrast, mean contrast, circularity of the 

contour, horizontal x position in the container and image moments of the contour. In total, 40 

handcrafted features are extracted. A list of all handcrafted features used in this research are given 

in Appendix B.  
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Not all features however are useful to differentiate between detections of bubbles and particles as 

not all features can differentiate between detections. To make a selection of useful features, the 

Relief [30] feature selector is used. The Relief feature selector selects a set of input features for a 

desired number of features. The graph in Figure 14 is created by evaluating any number of features 

with the NN and SVM classification methods. The dip in the graph at 9 handcrafted features is 

caused by a false minimum within the Relief optimisation step. From this it is chosen to use a 

selection of 11 handcrafted features presented in Table 7. 

  

Figure 14 Classification accuracy of NN and SVC classifiers with different numbers of features (NoF) selected with 

Relief. The figure shows that a better classification accuracy is achieved with the NN classifier. Based on this figure 

it is chosen to continue with a selection of 11 handcrafted features as using more features does not result in a higher 

classification accuracy. 

Table 7 Selection of 11 handcrafted features determined with Relief feature selection with corresponding importance 

metric. 

 
Feature Importance Description 

1 Nu03 0.604 Central normalized moment 03 

2 Mean 

contrast 

0.502 Average contrast to the background 

3 Nu12 0.406 Central normalized moment 12 

4 Nu11 0.395 Central normalized moment 11 

5 Solidity 0.366 Solidity of the contour 

6 X position 0.350 Horizontal position in the container 

7 Nu21 0.339 Central normalized moment 21 

8 Nu02 0.281 Central normalized moment 02 

9 Width 0.252 Width of the contour 

10 Nu30 0.244 Central normalized moment 30 

11 Ellipse 

mayor axis 

0.238 Mayor axis of an ellipse fitted on the contour 
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3.5.3 CNN 

Convolutional Neural Network (CNN) [34] refers to a Neural Network preceded with one or more 

convolutional layers. Figure 15 shows an example schematic of a CNN classifier with one 

convolutional layer. 

 

Figure 15 Example of a simple CNN classifier with a 32x32 input and a single convolution and pooling layer. The 

layers after the pooling layer are similar to the NN classifier in Figure 13. The output of the CNN classifier is a 

classification score between 0 and 1. 

CNN is a popular classification method specialised for the classification of images. The 

convolutional layers of a CNN act as a feature extractor and recognise local patterns in images. 

The final layer(s) of a CNN are the same as a regular NN and predict the desired outcome, in this 

case the detection class. 

The benefit of a CNN over a regular NN is that a CNN does not require handcrafted features as the 

features are extracted by the convolutional layers. In most cases, if given enough training data, a 

CNN model will outperform a NN that uses handcrafted features. A downside of CNN is that it 

generally requires more training data to be trained than a NN with handcrafted features. A NN can 

outperform a CNN if the handcrafted features are of a high quality and training data is limited. 

3.5.3.1 Input data 

A CNN uses images as input data. As detections are different sizes, these must be resized to a 

constant size before they can be used as input for the CNN. After some testing it was decided to 

resize the images to 32x32 using linear interpolation. Figure 16 shows two detections before 

resizing and two detections after resizing. To artificially increase the size of the dataset, all 

detections are mirrored around the vertical and horizontal axis, resulting in four times the number 

of detections. 90-degree rotations are not used to further increase the number of detections as this 

could make the data less representative of unaltered detections. 

 

Figure 16 Examples of extracted object detections before and after resizing to 32x32 for CNN input. 

3.5.4 Results B.1 

To select a classification method the candidate classification methods have been trained and 

evaluated using the test dataset with detections larger than 30 pixels area and k-fold cross 
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validation k=5. Table 8 shows the average classification accuracy obtained by the different 

classification methods. 

Table 8 Classification accuracy per candidate classification method on the filtered dataset with a minimum detection 

area of 30 pixels 

Classification method Classification accuracy 

OC-SVM <0.70 

NN 0.855 

SVM 0.839 

CNN 0.930 

 

As the difference in classification accuracy is significant, it can be assumed that CNN 

classification method outperforms the other candidate classification methods, even if 

these would be further optimised. 

3.5.5 Conclusion B.1 

The research question to be answered in this section is: 

B.1: “Which of the candidate classification methods achieves the highest classification 

accuracy for single detections on the dataset described in section 3.4?” 
 

The candidate classification method that achieves the highest classification accuracy is the CNN 

classification method. The trained CNN classifier achieves a classification accuracy of 0.930 or 

93% on detections with an area of at least 30 pixels. With further optimisation, it is likely that the 

classification accuracy of the classifier could still be increased. As the goal of this research question 

is only define a baseline classifier, it will not be optimised any further. 

Results of the trained classifier are used throughout the rest of this research and will be used as a 

baseline in future work. 
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3.6 B.2 Classifiable detections 
This section aims to answer research question B.2. 

B.2: “What correlations exist between handcrafted features and the classification accuracy of 

a detection that can be used to filter detections that cannot be reliably classified?” 
 

The background subtraction and segmentation module is able to detect objects with an area of 5 

pixels or more. However, it can be assumed that detections of this small size do not contain enough 

information to be classified reliably. A logical step is to filter out any detections that are too small, 

but how small is too small? And what about detections with a very low contrast to the background? 

Can very small detections also not classified reliably if they have a high contrast? What other factors 

play a role? 

The goal of this section is to find out what handcrafted features correlate to classification accuracy 

and can predict whether a detection can be classified reliably. It is also discussed what filter 

methods could be used to filter out detections most effectively and how the predicted classification 

accuracy can be used as a weight for multi-detection classification strategies. 

An ideal filter would reject most detections that are too hard to reliably classify while retaining the 

most detections that can be classified. 

3.6.1 Method 

Correlations between handcrafted features and classification accuracy are observed from graphs 

in which handcrafted features are plotted against classification accuracy. The process to obtain 

such a plot is as follows: 

1. Five CNN classifiers are trained using 80% of the dataset, such that the test datasets 

together form the complete dataset. Data augmentation with flipping resulting in four 

times the number of detections is performed before training after splitting the 

train/test data. 

2. The resulting classification score between 0 and 1 of each detection is stored in a 

database together with the class and handcrafted features.  

3. The database is sorted on a selected handcrafted feature. 

4. For every 500 detections, the average classification accuracy is plotted in a graph.  

The final two steps are repeated for every handcrafted feature. Handcrafted features with an 

interesting or significant correlation are described in the next subsection. 

The handcrafted feature with the strongest correlation is area. To test the effect of a simple 

threshold filter that filters out detections smaller than a certain area and to observe more complex 

corelations with detection area and other handcrafted features, all steps described are repeated 

with different area threshold filters in place. Used area thresholds are: 6, 10, 20, and 30 pixels. 

3.6.2 Observed correlations 

Correlations of all handcrafted features listed in Appendix B have been tested. A selection of 

handcrafted features with a strong or interesting correlation to the classification accuracy are 

discussed below. 

Area correlation 

Figure 17 shows in a graph the correlation between the area of a detection and the classification 
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accuracy. In the graph, a strong correlation can be seen between area and classification accuracy. 

Detections that are smaller achieve a lower classification accuracy. Above an area of 50 pixels, 

classification accuracy is not significantly improved. Table 9 shows the average accuracy and 

retained percentage for the different area thresholds. In the graph and table can be seen that a 

simple threshold filter for detection area would be a reasonably effective approach, as the accuracy 

is increased with a higher area threshold. The area threshold should not be set too high as this 

would result in more particles not being classified. An area threshold above 30 was not tested. 

 
Figure 17 Correlation graph between area and classification 

accuracy and distribution graph of area in the filtered dataset. 

The figure shows that detections with a small area achieve a 

lower classification accuracy on average. Filtering small 

detections also results in a slightly higher overall classification 

accuracy due to efficient training. 

Table 9 Percentage of detections which is retained and the 

average classification accuracy with different area thresholds 

Min. Area Retained % Avg. acc.    

6 100% 0.809    

10 60% 0.853    

20 23% 0.909    

30 11% 0.930    
 

 

Total and mean contrast 

Figure 18 shows the correlation between total contrast and mean contrast with the classification 

accuracy. 

  
Figure 18 Correlation graphs of handcrafted features with classification accuracy, and distribution graphs of the handcrafted 

features in the filtered dataset. Left: Total contrast. Right: Mean contrast. The figure shows strong correlations between these 

features and classification accuracy and indicates complex corelations between multiple features. 

 

The correlation between total contrast and accuracy is comparable with that of area and 
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classification accuracy. Detections with a low total contrast achieve a lower classification accuracy 

on average. Interesting is that below a total contrast of 1400, a higher classification accuracy is 

achieved with a lower area threshold. This indicates that there are smaller detections with a high 

mean contrast that achieve a higher classification accuracy than larger detections with the same 

total contrast but a lower mean contrast. This is supported by the graph showing correlation 

between mean contrast and classification accuracy. In this graph can be seen that with a low area 

threshold, detections with a high mean contrast can achieve a high average classification accuracy. 

This finding indicates that a simple threshold filter for detection area is not ideal as it reject 

detections that can be predicted to achieve a high classification accuracy. A more complex filter 

that uses correlations between multiple handcrafted features should achieve a higher average 

classification accuracy while retaining more detections. 

Horizontal position correlation 

Figure 19 shows the correlation between the horizontal x position and classification accuracy. 

 

Figure 19 Correlation graph between x position and classification accuracy and distribution graph of x position in 

the filtered dataset. The figure shows a strong reduction in classification accuracy near the outside of the horizontal 

range. 

In the figure can be seen that detections near the outside of the horizontal range achieve a 

significantly lower classification accuracy. The most probable explanation for this is that detections 

near the edge of the container are deformed by the container walls, making these detections less 

recognisable. Another possibility is that close to the outside, detections occur that are caused by 

another object reflecting on the container walls. Another interesting observation is that detections 

exactly in the centre of the container achieve a lower classification accuracy. The reason for this is 

unknown. In future work this can be further investigated and possibly prevented. 

Features with a weaker correlation 

Every handcrafted feature listed in Appendix B has been analysed for correlation with classification 

accuracy. Most of the handcrafted features show a correlation that is weaker and more complex. 

Figure 20 shows the correlation of ellipse angle, ellipse eccentricity, solidity, circularity, and aspect 

ratio with the classification accuracy. 
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Figure 20 Correlation graphs of handcrafted features with classification accuracy with the distribution of the handcrafted features 

in the filtered dataset. In order respectively: Ellipse angle, Ellipse eccentricity, Solidity, Circularity, Aspect ratio. The figure shows 

weaker complex correlations between these handcrafted features and classification accuracy. 

The correlation between these handcrafted features is weaker and more complex than other 

features discussed previously. As a result of this, these features are not that useful to define a 

simple threshold filter. For example, a simple filter that rejects any detections with an ellipse 

eccentricity above 0.9 would not result in a large increase in average classification accuracy but 

would result in a large number of classifiable detections not being classified. However, with a more 

complex filter, these handcrafted features could help to more accurately predict weather a 

detection can be classified. For example, if a detection is a bit too small and does not have a high 
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total contrast but these weaker features indicate a high classification accuracy, the detection 

should not be rejected. 

3.6.3 Filter methods 

This subsection discusses some methods to filter out detections that are too hard to classify based 

on the observed correlations.  

Simple threshold filter 

The simplest solution to filter detections that are too hard to classify, is the introduction of one or 

more simple threshold filters. Such a filter rejects a detection if a certain handcrafted feature is 

above or below a given threshold. This threshold can be chosen arbitrarily by selecting a point in 

the correlation trend or selecting a minimum classification accuracy. A possible set of simple 

threshold filters for this situation is shown in Table 10. 

Table 10 A possible set of simple threshold filters determined from the observed correlations. 

Handcrafted feature Accepted range 

Area 30<= 

Total contrast 700<= 

Mean contrast 20<= 

X position 80<= 

X position <=580 

 

Although this filter method is simple and achieves the goal of increasing the classification accuracy, 

it does this by rejecting a significant of the detections including many classifiable detections. Better 

results can be obtained with a more complex filter as explained below. 

Complex threshold filter 

The findings regarding the correlations of total and mean contrast with classification accuracy imply 

that there are complex correlations with multiple handcrafted features that can more effectively 

predict whether a detection can be reliably classified.  

A regression model such as an SVR or a NN for regression could be used to predict the 

classification accuracy of a detection based on a selection of handcrafted features. Such a model 

can be trained using classification results of the classifier as have been used during this research. 

The complex filter can be configured by simply choosing a threshold for the predicted classification 

accuracy. To improve prediction, learning could be performed in an iterative process as removing 

detections from the training data can result in a more accurate classifier. 

A complex threshold filter using the selection of handcrafted features shown in Table 10, should 

result in a higher classification accuracy with less detections being rejected compared to a selection 

of multiple simple threshold filters. Additionally, multiple handcrafted features with a weaker 

correlation can also be included to further increase the classification accuracy. 

Classification weight factor 

The final usage of the correlations between handcrafted features and classification accuracy that 

will be discussed is to determine a weight factor during classification.  

In section 3.8, two multi-detection classification strategies are discussed that perform classification 

based on multiple detections. By using multiple detections, it is prevented that a single bubble 
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detection falsely classified as a particle results in a container rejection. The classification accuracy 

predicted by a threshold filter can be used in various ways to improve classification with a multi-

detection classification strategy. Ways to do this have not been researched in this research but 

some possibilities are described below. 

When multi-positive classification is used as described in subsection 3.8.2, the number of 

detections above a certain classification score is used. This can be adapted by using the sum of 

classification accuracies of detections above a classification score. This way, if the classifications 

are expected to be less reliable, more positive detections are needed. If median voting as described 

in subsection 3.8.1 is used, the predicted classification accuracies can be used as weights to 

perform weighted median voting. As this has not further been researched, it is unknown how 

effective these methods would be.  

3.6.4 Conclusion B.2 

The research question to be answered in this section is: 

B.2: “What correlations exist between handcrafted features and the classification accuracy of 

a detection that can be used to filter detections that cannot be reliably classified?” 
 

It has been found that multiple handcrafted features have a significant correlation with classification 

accuracy. These can be used to define simple filters that reject detections that cannot be classified 

reliably. A complex filter would be more effective as it can use complex correlations between 

multiple handcrafted features and also include handcrafted features with weaker correlations. This 

can be done by predicting the classification accuracy based on these features using a model. 
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3.7 B.3 Full container classification 
This section aims to answer research question B.3. 

B.3: “What is the theoretical effectiveness of the classifier to classify a container with multiple 

detections, if a single positive detection results in the container being rejected?” 
 

In this problem situation, multiple objects are present and detected in multiple frames. Up to this 

point in the research for the classification module, only classification of singular detections has been 

considered. The goal of this research question is to analyse the effectiveness of the classifier 

selected in section 3.5 to classify a container sample where multiple detections are made from the 

capture sequences. The default classification strategy for defect inspection is to reject a container 

if a single detection is classified as a particle. 

In addition to the well-known metrics of False Positive (FP) rate and False Negative (FN) rate, this 

chapter introduces the False Container Rejection (FCR) rate and False Container Acceptance 

(FCA) rate. It is shown that the default classification strategy is not viable as this results in high FCR 

and FCA rates. 

Note on simulation method 

For the graphs in this section and section 3.8, classification scores are sampled from all detections 

in the dataset with an area of at least 30 pixels. To simulate the classification of a certain number 

of detections, that quantity of classification scores is randomly sampled from the classification score 

distribution shown in Figure 21. This is not completely representative of reality, as randomly 

sampled scores contain detections of different objects. An easy to classify object such as a large 

fibre might result in mostly classifications with a high classification score close to 1, whereas a tiny 

dust particle can result in only difficult to classify detections with a classification score closer to 0.5. 

3.7.1 False Positive rate and False Negative rate 

The False Positive (FP) rate and False Negative (FN) rate are well known performance metrics for 

classification. For a chosen classification score threshold, the FP and FN rate specify how many 

bubbles will be falsely classified positive as particles or how many particles are falsely classified 

negative as bubbles. Depending on the application, the classification threshold can be chosen 

differently than the optimum where FP and FN are both the lowest. 

When a detection is classified, the result of the classifier is a number between 0 and 1 called the 

classification score. In this research, a classification score close to 0 indicates that the detection is 

likely of a bubble, and a classification score close to 1 indicates that the detection is likely of a 

particle. The left side of Figure 21 shows the classification score distribution for bubbles and 

particles. The FP and FN rate are calculated by integrating the classification score distribution and 

is shown in the right side of Figure 21. The figure indicates that an optimal classification threshold 

of 0.5 would result in 7.13% of the detections of both bubbles and particles will be falsely classified. 
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Figure 21 Left: Classification score distribution for bubbles and particles in logarithmic scale. Right: False Positive and False 

Negative rate obtained by integrating the classification score distribution. 

3.7.2 False Container Rejection rate and False Container Acceptance rate 

In this problem situation, multiple objects are present and detected in multiple frames. With the 

default classification strategy for inspection, if a single detection is classified positively as a particle, 

the entire container should be rejected. To analyse the effectiveness of classification of a complete 

container image sequence, the false container rejection (FCR) rate and false container acceptance 

(FCA) rate are introduced as more representative indicators of classification effectiveness. The FCR 

rate is the rate at which a clean container is falsely rejected as a contaminated container. The FCA 

rate is the rate at which a contaminated container is falsely accepted as a clean container. 

The FCR rate and FCA rate can be calculated using Equation 7 and Equation 8. Where 𝑡𝑟 is the 

classification threshold, 𝑁0 is the number of bubble detections in a clean container and 𝑁1 is the 

number of particle detections in a contaminated container. 

𝐹𝐶𝑅(𝑡𝑟) = 1 − (1 − 𝐹𝑃(𝑡𝑟))
𝑁0 (7) 

𝐹𝐶𝐴(𝑡𝑟) = 𝐹𝑁(𝑡𝑟)𝑁1  (8) 

Figure 22 shows the FCR rate and FCA rate if a clean container would contain 100 detections (N0 

= 100), and a particle in a contaminated container would be detected 10 times (N1 = 10). The 

optimal classification threshold would be 0.998 which is extremely high. The resulting FCR and FCA 

rates are 23.2%. This situation is unacceptable as the FCR and FCA rates are too high, and the 

high classification threshold makes classification unpredictable in practice. 



61 

 

 

Figure 22 False Container Reject (FCR) rate and False Container Acceptance (FCA) rate with 100 detections of 

bubbles (𝑁0 = 100) and 10 detections of particles (𝑁1 = 10). The figure shows a resulting optimal classification 

threshold of 0.998 with an FCR rate and FCA rate of 23.2%. 

3.7.3 Conclusion B.3 

The research question to be answered in this section is: 

B.3: “What is the theoretical effectiveness of the classifier to classify a container with multiple 

detections, if a single positive detection results in the container being rejected?” 
 

It has been found that the simple classification strategy is not effective for this classification problem. 

This is as a clean container can contain multiple moving bubbles resulting in a large number of 

detections in the full capture sequence. Each of the bubble detections has the chance to be falsely 

classified as a particle. 

The effectiveness of this strategy has been demonstrated using through simulation. The False 

Container Rejection (FCR) rate and False Container Acceptance (FCA) rate are introduced as 

useful indicators of effectiveness. Through simulation it is shown that the resulting classification 

threshold is 0.998, achieving an optimal FCR rate and FCA rate of 23.2%. This means that the 

single detection classification strategy is not feasible, even if the used classifier would be further 

optimised. 
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3.8 B.4 Multi-detection classification strategies 
This section aims to answer research question B.4. 

B.4: “What is the theoretical effectiveness of a classification strategy that uses multiple 

detections to classify a container sample?” 
 

This section proposes two classification strategies to classify a container using multiple detections. 

The strategies that are proposed are: median voting classification with tracking and multi-positive 

classification. 

Median voting classification uses the results from the tracking module to classify a set of detections 

that belong to the same object. This method can achieve a very low FCR/FCA rate if objects can 

be correctly tracked for multiple frames and the number of false trajectories is not too high. 

Multi-positive classification does not use the results of tracking but simply requires multiple 

detections to be classified positive before the container is classified as contaminated. This method 

can also achieve a low FCR/FCA rate but requires objects to be visible for more frames compared 

to median voting with accurate tracking results. 

In this research, a quantity of detections is simulated by randomly sampling from the score 

distribution shown in Figure 21. Therefore, notes in the paragraph “Note on simulation method” on 

page 59 also applies here. It is possible that the effect of additional trajectories on the false 

container rejection rate is not as intense as described in this section, as many additional trajectories 

contain mostly the same detections as others, while the tests in this section sample random 

detections for each trajectory. Future research is needed to confirm that the simulation is accurate. 

3.8.1 Median voting classification 

If an object can be tracked over multiple frames, classification can be performed by combining 

classifications of the different detections of that object. A relatively simple method to perform 

classification with multiple detections is median voting. Other voting schemes and more complex 

multi-detection classifiers also exist and might be more effective. However, in this research only 

median voting is discussed. 

Median voting works by taking the median value of the classification scores of all detections of an 

object. As a result of this, an object is classified positive only if at least half of the detections achieve 

a high classification score. This makes median voting effective in dealing with data that contains 

outliers. As found in section 3.7, outliers of bubble detections that are falsely classified as particles 

are a critical problem for the classification of containers. For that reason, median voting 

classification is proposed in this research. 

The left graph in Figure 23 shows the median classification score distribution with different lengths 

of trajectory. The right graph in Figure 23 shows the False Negative (FN) rate and False Positive 

(FP) rate of median voting classification with different lengths of trajectory. In the figure can be seen 

that the FP rate and FN rate are significantly lower with median voting when classifying a single 

detection/trajectory. Longer trajectories are less likely to contain a majority of outliers and achieve 

a lower FP rate and FN rate. Even when a trajectory contains only 3 detections (L = 3), the balanced 

optimal FP and FN rate is almost 5 times lower than for a single detection (L = 1). 
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Figure 23 Result graphs of median voting with different trajectory length L on logarithmic scale. Left: Classification score 

distribution. Right: False Positive (FP) and False Negative (FN) rate. The figure shows significantly lower FP and FN rates with 

median voting compared to single detection classification (L=1). With longer trajectory lengths, FP and FN rates are further 

reduced.  

 

3.8.1.1 FCR/FCA with median voting classification 

The TDCP tracking algorithm described in chapter 4 for the tracking module returns a list of track 

candidates, these are possible trajectories of moving objects. As track candidates can overlap with 

other track candidates, the number of track candidates is likely higher than the number of moving 

objects present in a container. It is possible that more track candidates are detected than the 

number of objects in a sequence. Each track candidate should be classified separately and can 

result in the container being rejected. 

The False Container Rejection (FCR) rate and False Container Acceptance (FCA) rate with median 

voting can be calculated with Equation 7 and Equation 8 on page 60, where 𝑁0 and 𝑁1 stand for 

bubble and particle trajectories instead of singular detections.  

If no particles are present, each of the detected trajectories can cause a false reject and 𝑁0 is equal 

to the number of detected trajectories. In situations where a particle is present, only most correct 

trajectory of that object is relevant for the classification outcome. Therefore, 𝑁1 is equal to the 

number of particle objects in a container which is assumed to be one. Trajectories that are less 

correct contain more detections of different objects (bubbles) are not likely to affect the 

classification outcome if a more correct particle trajectory is present.  

Figure 24 shows the FCR rate and FCA rate when all tracks are of the same length L and 𝑁0 = 10, 

𝑁1 = 1. In the figure can be seen that the optimal classification threshold is shifted to the right 

compared to the right graph in Figure 23 where a single trajectory is classified. The optimal 

classification threshold is affected by the tracked length of a trajectory 𝐿 and the number of 

trajectories that is detected of bubbles 𝑁0.  
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Figure 24 False Container Reject (FCR) rate and False Container Acceptance (FCA) rate in logarithmic scale with 

10 detected trajectories of bubbles (𝑁0 = 10) and one detected trajectory of a particle (𝑁1 = 1). The figure shows 

that the optimal classification threshold and the resulting optimal FCR and FCA rates are increased. 

An adaptive classification threshold can be determined for different lengths of trajectory, given an 

average number of detected trajectories of bubbles 𝑁0. Figure 25 shows the adaptive classification 

threshold for different values of 𝑁0. Figure 26 shows the resulting ideal FCR and FCA rates if all 

trajectories would be of the same length. The figure shows for example that if all objects are reliably 

tracked for 11 frames, an FCR and FCA rate of 0.1% could be achieved, even if 500 trajectories of 

bubbles are detected in clean containers (𝑁0 = 500). 

 

Figure 25 Adaptive classification threshold for different values of 𝑁0 and tracked length L. The figure shows the 

correlation between the optimal adaptive classification threshold, the number of detected bubble trajectories, and 

the length of trajectories. 
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Figure 26 Optimal FCR/FCA rate for different values of 𝑁0 and tracked length L in linear and logarithmic scale. The figure shows 

what FCR/FCA rate can be achieved given the number of bubble trajectories and the trajectory length. If the trajectory length is 

long, more bubble trajectories can be detected for acceptable results. 

 

3.8.1.2 Acceptable number of detected bubble trajectories 𝑁0 

It has been established that the number of detected trajectories influences the FCR rate. To aid in 

the development and validate the tracking module, it is helpful to establish how many possibly false 

trajectories of bubbles can be detected while achieving an acceptable FCR rate and FCA rate.  

The acceptable quantity of bubble trajectories, 𝑁0 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 can be determined with Equation 9 

based on the FP rate and FN rate, given acceptable parameters 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 and 𝐹𝐶𝐴𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒.  

 

𝑁0 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 =
log(1 − 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)

log(1 − 𝐹𝑃(𝑡𝑟))
, 𝑤ℎ𝑒𝑟𝑒: 𝐹𝑁(𝑡𝑟) = 𝐹𝐶𝐴𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒  (9) 

 

Table 11 shows values of 𝑁0 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 for various values of 𝐹𝐶𝐴𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 and 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒. From 

the table can be seen that for example, if an FCR rate of 0.03 and FCA rate of 0.01 are accepted 

and every trajectory is 8 detections long, 13243 trajectories of bubbles can be detected. 

Table 11 Different acceptable values of 𝑁0 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 for different 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, 𝐹𝐶𝐴𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, and tracked Length 

FCA 

accept. 

0.01 0.03 

FCR 

accept. 

0.01 0.03 0.06 0.01 0.03 0.06 

Length ↴ 𝑁0 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 ↴ 

1 0.03 0.09 0.19 0.07 0.20 0.41 

3 0.54 1.62 3.30 1.49 4.53 9.20 

4 6.08 18.4 37.5 19.9 60.4 123 

5 10.1 30.5 62.0 35.9 109 221 

6 158 478 971 609 1846 3750 

7 222 674 1369 1104 3347 6799 

8 4370 13243 26902 14358 43513 88393 
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9 7179 21757 44197 20101 60918 123751 

10-20 inf inf inf inf inf inf 

3.8.2 Multi-positive classification 

Multi-positive classification is a classification strategy that does not require tracking to be 

implemented. With multi-positive classification, a container is classified as positive if multiple 

detections have been classified positive. Through simulation, the FCR rate and FCA rate can be 

determined for every quantity of positive detections 𝑄. The optimal classification score threshold 𝑡𝑟 

is different per positive quantity 𝑄. This is as with a larger positive quantity 𝑄 the chance that all 

positive detections are falsely classified outliers is lower.  

Figure 27 shows the FCR and FCA rate for some positive quantity thresholds 𝑄 if a particle is visible 

for 𝑁1 = 10 frames and 𝑁0 = 100 detections of bubbles are detected. The figure shows for example 

that if at least 𝑄 = 6 detections score at least 𝑡𝑟 = 0.85, the resulting FCR and FCA rates are 

2.75%.  

 

Figure 27 False Container Rejection (FCR) rate and False Container Acceptance (FCA) rate with multi-positive 

classification for some values of 𝑄 with 100 detections of bubbles (𝑁0 = 100) and 10 detections of particles (𝑁1 = 

10). The figure shows that with 𝑄 = 2 and 𝑄 = 6, a significantly lower FCR rate and FCA rate can be achieved. 

The average number of frames a particle detection is visible 𝑁1 and the average number of bubble 

detections 𝑁0 have a strong effect on the resulting FCR and FCA rates. If a particle is visible in more 

frames, the chance is higher that more detections achieve a high classification score. Figure 28 

shows this effect. The graphs show the trends of FCR values, points show the intersections between 

FCR and FCA at the optimal classification threshold 𝑡𝑟 for different values of 𝑄.  
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Figure 28 Optimal False Container Reject (FCR) rate and False Container Acceptance (FCA) rate in logarithmic scale for various 

values of 𝑁0 and 𝑁1. The figure shows the effect of the number of bubble detections 𝑁0 and particle detections 𝑁1 on the 

classification threshold for all values of 𝑄 and subsequent FCR and FCA rates.  

Based on this simulation and a number of parameters, a list can be made with values of 𝑄 and 

corresponding classification thresholds. Next, a container should be classified positive if any 𝑄 

detections score above the threshold 𝑡𝑟. 

Given that: 

- On average, 𝑁0 = 100 and 𝑁1 = 10 

- 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 = 0.03 

- 𝐹𝐶𝐴𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 = 0.03 

A resulting 𝑄 list would be as presented in Table 12. 

Table 12 Optimal classification threshold, FCR rate and FCA rate for various values of 𝑄 

Q Threshold FCR FCA 

10 0.64 0.03 0.653 

9 0.69 0.03 0.318 

8 0.74 0.03 0.137 

7 0.80 0.03 0.060 

6 0.85 0.03 0.026 

5 0.90 0.03 0.015 

4 0.95 0.03 0.013 

3 0.98 0.03 0.015 

2 0.996 0.03 0.049 

1 - - - 

 

For some values of 𝑄 in Table 12, the FCA rate is higher than the acceptable limit of 0.03. However, 

this might not be a problem as the FCA rate is acceptable for 𝑄 =  3,4,5,6. It is unclear what the 

resulting FCR and FCA rate are when all values of 𝑄 are used for classification and FCR is not 

above 𝐹𝐶𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 for singular 𝑄. Further research has not been performed into results of multi-

positive classification with multiple values of 𝑄. 



68 

 

3.8.3 Conclusion B.4 

Research has been performed into two multi-detection classification strategies: median voting 

classification with tracking and multi-positive classification.  

Median voting classification uses the results of object tracking to classify a set of detections that 

belong to the same object. As median voting is effective at dealing with outliers of bubbles that are 

detected as particles, the strategy can achieve a very low FCR and FCA rate even from short partial 

trajectories. 

Multi-positive classification does not use results of tracking but requires multiple detections to be 

classified positive before the container is classified positive. Simulation shows that this method can 

also achieve a low FCR and FCA rate but requires particles to be visible on more frames than with 

median voting. 
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3.9 Comparison to SOTA 
This section compares the proposed solution to the current SOTA for this module, as described in 

section 2.1. Although the solution cannot be directly compared to the SOTA by comparing results, 

it is expected that the proposed solution outperforms the current SOTA. 

Handcrafted feature classification 

Two handcrafted feature classification methods have been previously identified as SOTA [16] [26]. 

Both SOTA methods report a higher classification accuracy for singular detections compared to 

the CNN classifier selected and presented in section 3.5. However, as the papers do not clarify the 

size of particles present in the sample set, it is not possible to determine whether this is a result of 

the particles being larger and therefore easier to classify. None of the papers describe the negative 

effect of the large number of bubble detections on the FCR rate and FCA rate of a container 

described in section 3.7. Instead, the papers seem to directly relate the classification accuracy of 

a single detection to the classification accuracy of a container which is not realistic. The SOTA 

methods do not implement a multi-detection classification strategy. 

When compared using challenging particles and a realistic number of bubble detections, it is 

expected that the proposed solution outperforms the current SOTA when using median voting 

classification or multi-positive classification. 
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3.10 Conclusion 
As the development of the classification module is in an early stage, the goal of this research is not 

to develop a working classification module that is able to classify containers accurate enough to be 

implemented in the VPIS, but to select and develop a baseline classifier for singular detections and 

perform additional exploratory research into the opportunities and pitfalls of this classification 

problem. 

A labelled dataset has been collected from a sample set created for this research. Labelled data of 

bubbles is collected from a clean container after light agitation to introduce bubbles. Labelled data 

of particles is collected from a newly created sample set of contaminated containers with a long 

pre-spin sequence to remove any bubbles from the solution. 

In the first part of this research, a baseline classifier has been selected and trained. Out of four 

candidate classification methods that have been evaluated, the CNN classifier achieves the highest 

classification accuracy of 0.930 on detections with an area of at least 30 pixels. This classifier is 

used as a baseline throughout the rest of this research. The following research is of exploratory 

nature. 

Next, it has been observed that there are several handcrafted features with a strong or weak 

correlation with the classification accuracy of a detection. Additionally, more complex correlations 

have been observed between multiple handcrafted features, e.g., a particle with a smaller area can 

achieve a high average classification accuracy if it has a high mean contrast and solidity. Simple 

threshold filters can be defined with some of the handcrafted features. However, this does not 

benefit from complex correlations and a part of the detections that will be rejected can achieve a 

high average classification accuracy. Therefore, this research also proposes a complex filter with a 

model that attempts to predict the classification accuracy of a detection based on its handcrafted 

features. This predicted classification accuracy could also be used in improved multi-detection 

classification strategies as a form of weight factor. 

Next, research has been performed into the effectiveness of a single detection classification 

strategy. With this naïve classification strategy that is often used for classification, if a single 

detection is classified positive as a particle the entire container is rejected. 

In addition to the False Positive (FP) rate and the False Negative (FN) rate, the False Container 

Rejection (FCR) rate and False Container Acceptance (FCA) rate are introduced. As many 

detections of bubbles can be detected from a clean container, the chance that at least one of these 

detections achieves a high classification score is high. Through simulation it has been found that 

the resulting classification threshold is 0.998, achieving an optimal FCR and FCA rate of 23.2%. 

This means that the single detection classification strategy is not feasible, even if the used classifier 

would be further optimised. 

Finally, research is performed into two multi-detection classification strategies: median voting 

classification with tracking multi-positive quantity threshold classification.  

Median voting classification uses the results of object tracking to classify a set of detections that 

belong to the same object. As median voting is effective at dealing with outliers of bubbles that are 

detected as particles, the strategy can achieve a very low FCR and FCA rate even from short partial 

trajectories. Multi-positive classification does not use results of tracking but requires multiple 

detections to be classified positive before the container is classified positive. Simulation shows that 

this method can also achieve a low FCR and FCA rate but requires particles to be visible on more 

frames than with median voting. 
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3.11 Recommendations 
It is recommended to adopt the classifier developed in this research as a baseline to improve on in 

future research. Although small performance improvements can be made by further optimising the 

baseline classifier, it is recommended to first focus on other routes of improving the classification 

module as described below. 

It is recommended to further research and implement a complex filter as discussed in section 3.6 

to remove detections that are too difficult to classify. The classification accuracy can be predicted 

using a model such as a neural network for regression, and used to filter out detections if the 

predicted accuracy is below a certain threshold.  

It is also recommended to implement a multi-detection classification strategy as proposed in section 

3.8. If the tracking module can be implemented effectively, it is recommended to implement median 

voting classification as this can achieve the lowest FRC and FCA rate even if a particle is visible 

only for a few frames. Otherwise, it is recommended to implement the multi-positive classification 

strategy. Once a multi-detection classification strategy has been implemented and tested, this 

method can be adapted to use the predicted classification accuracy as a form of weight factor as 

shortly described in subsection 3.6.3.  
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4 Tracking module 
The third and final module of the Visual Particle Inspection Subsystem (VPIS) is the tracking module. 

This chapter contains research and findings regarding this module and presents the proposed 

TDCP algorithm. 

The goal of the tracking module is to track objects and determine what object detections are 

observations of the same object. This information can then be used by a multi-detection 

classification strategy such as median voting classification proposed in subsection 3.8.1. By 

classifying a container based on objects with a number of detections, the False Container Rejection 

(FCR) rate and False Container Acceptance (FCA) rate can be significantly increased. 

Ideally, the result of tracking is a list of tracked objects where a single trajectory is found per object 

spanning the full trackable length during which the object is visible. If an object is not correctly 

tracked, the object cannot be classified accurately which would result in an increased FCA rate 

and risk to patient safety. If too many trajectories are detected, the FCR rate would be increased 

as explained in subsection 3.8.1 which is acceptable to an extent. 

Object tracking is challenging as objects are small and traverse quickly through the container. As 

objects move a long distance between frames, it is not feasible to track objects based on 

overlapping sections or proximity of detections alone. As objects are small and the appearance of 

an object varies as it is viewed from different perspectives, it is difficult to perform tracking by 

recognising object appearance.  

This research proposes the Trajectory Driven Cluster Proposals (TDCP) algorithm as a solution for 

the tracking module. This method performs object tracking based only on the positions of 

detections. It has been observed that trajectories of objects follow a spiralling pattern around the 

centre of the container. Based on this information, a motion model has been defined that can 

describe trajectories of real objects within a range of feasible parameters. The proposed TDCP 

algorithm uses this motion model to evaluate whether a set of three detection positions can be a 

part of the same object trajectory. Next, these short tracklets are merged into larger track 

candidates that describe possible trajectories. 

The TDCP algorithm was first theorised in earlier work [6] where it was proposed in combination 

with a Siamese neural network that validates or invalidates proposed trajectories based on the 

similarity between detections of that trajectory. In this research, TDCP is proposed without similarity 

evaluation, the reasons for this are shortly discussed in subsection 4.2.1. 

The proposed TDCP tracking algorithm shows potential in the quality of the tracking results as most 

objects are correctly tracked and correct trajectories are long. However, the current version of 

TDCP is not suitable to be implemented due to a phenomenon referred to as the rapid growth 

phenomenon explained in subsection 4.7.3. If an image sequence contains multiple objects in close 

proximity, the TDCP algorithm can detect a large number of possible tracklets and track candidates 

resulting in an unacceptably long processing time and an increased FCR rate. 

A few optimisation strategies are shortly discussed. If the shortcomings of TDCP can be 

successfully solved with future work, TDCP could be implemented into the VPIS with great success. 
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4.1 Chapter structure 
This chapter presents findings regarding the research and development for the tracking module. 

First, section 4.2 presents a short summary of previous work into particle tracking for the inspection 

of medicine. Next, in section 4.3, the research questions are presented that will later be used to 

evaluate the proposed TDCP algorithm. After that, section 4.4 presents observations and 

assumptions regarding the trajectory of a real object. Based on these findings, in section 4.5, a 

motion model is presented that can describe realistic trajectories within a feasible range of 

parameter values. In section 4.6, the proposed TDCP algorithm is presented. Section 4.7 presents 

the results of TDCP and identifies the rapid growth phenomenon. Next, in section 4.8 the proposed 

solution is validated by answering the main research question through four sub-questions. In 

section 4.9, possible optimisation strategies are discussed that could make TDCP suitable to be 

implemented. Section 4.10 presents a short comparison between the proposed solution and the 

previously identified state-of-the-art methods. Finally, sections 4.11 and 4.12 present the 

conclusion and recommendations for this module. 
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4.2 Previous work 
An analysis of previous work for the problem of particle tracking has been performed during a 

literature study [6] preceding this thesis. This section summarises the most interesting findings from 

the literature study relevant for the classification module. Next, current State-Of-The-Art (SOTA) 

methods are identified in more detail. In section 4.10, the TDCP algorithm proposed for the tracking 

module is compared to the SOTA methods. 

Tracking methods 

The tracking methods referred to in the literature study [6] can be separated into ten groups: 

proximity tracking [18] [7], proximity clustering [21] [23], corner feature tracking [20], handcrafted 

feature matching [8] [10] [15], handcrafted feature bottom-up clustering [15], classification 

tracking [26], ALW-CSM [12], CSR-DCF [22], Siamese similarity tracking [35], and Trajectory 

Driven Cluster Proposals (TDCP). Siamese similarity tracking and TDCP have not been used in 

previous work for the problem of particle tracking. Siamese similarity tracking is included as in the 

previous years, tracking methods that use a Siamese similarity metric have been applied for general 

tracking problems with much success. TDCP was first proposed during the literature study as a 

novel solution for tracking.  

4.2.1 Current SOTA 

This section explains the workings and shortcomings of the SOTA methods that have been 

identified in previous work. During the literature study it was theorised that of the presented 

methods, the combination of TDCP with a Siamese similarity metric would perform the best. 

Although this method is not used in previous work, it is included as SOTA method as it can serve 

as a useful comparison for the proposed solution which does not include a similarity metric. The 

best SOTA method that is actually used in previous work is handcrafted feature bottom-up 

clustering [15].  

TDCP with Siamese similarity metric 

During the literature study, the TDCP algorithm proposed in section 4.6 was first theorised. The 

workings of TDCP were not yet fully defined but it was hypothesized that a position-based tracking 

algorithm can be used to detect what detections could possibly be detections of the same object.  

Next, a Siamese neural network would be used to validate the proposed trajectories. A Siamese 

neural network is a special type of neural network that can determine the similarity between two 

instances of objects. Such a network can be trained to recognise objects from different 

perspectives [36]. 

By validating the proposed trajectories, the number of additional false trajectories can be lowered 

which should lower the False Container Rejection (FCR) rate as explained in subsection 3.8.1. 

However, if a correct particle trajectory is falsely invalidated, this particle would not be classified 

which has a significant negative result on the False Container Acceptance (FCA) rate. 

A shortcoming of this method is that, although a Siamese neural network can be trained to 

recognise objects from different perspectives, it is expected that it is difficult for the network to 

differentiate detections from different bubbles. This is as bubbles can only be different in terms of 

object size which can be very similar. As a result of this, many of the additional trajectories with only 

bubbles would not be invalidated, not lowering the FCR significantly. The method would be able to 

differentiate between detections of particles and bubbles and therefore invalidate false trajectories 

containing detections with both object types. However, this is not useful to lower the FCR as the 
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container should be rejected if a particle is present. Another shortcoming of this method is that a 

Siamese neural network requires a significant amount of training data where detections are labelled 

per object. This requires manual labelling of a large number of object trajectories.  

For these reasons, it was decided not to develop a similarity metric to validate the results of TDCP, 

but to develop TDCP such that its results can be used for classification directly.  

Handcrafted feature bottom-up clustering 

The method handcrafted feature bottom-up clustering [15] is the best method used in previous 

work for particle tracking. The method extracts 10 different handcrafted features similar to the 

handcrafted feature classification method presented in subsection 3.5.2 as a candidate for the 

classification module. The handcrafted features used by the paper are mean brightness, area, 7 

invariant Hu moments [37], and the Euclidean distance between detections. Based on these 

features and a series of equations, the method compares sets of two detections to determine a 

similarity metric similarly to a Siamese similarity metric.  

To perform bottom-up clustering, each detection is first assigned to its own cluster. Next, iteratively 

the two clusters with the highest similarity between its members are merged into a larger cluster. 

This process continues until the distance between clusters is above a specified threshold, after 

which clustering stops. Incomplete clusters that do not contain a detection in every frame are 

discarded. 

This method has a number of shortcomings not addressed in the paper. The first shortcoming of 

this method is that bottom-up clustering is not ideal for tracking. This is as the method does not 

account for in what frame a detection occurs. Therefore, many of the detected clusters will have 

multiple detections which are observed from the same frame which is not possible in reality. If this 

would be accounted for by only merging clusters that do not have any overlapping frames, more 

clusters would be incomplete or negatively affected by local minima. The biggest shortcoming is 

that the method discards every incomplete cluster as image noise. In reality it can happen often 

that an object is not visible in every frame or moves out of view. Finally, it is expected that the 

similarity metric determined by this method is not very effective to differentiate between detections 

of different bubbles.  
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4.3 Research questions 
This section introduces the research question and sub-questions for the tracking module. The main 

research question for this module regards the effectiveness and suitability of the TDCP algorithm 

proposed in this research as a solution for the tracking module.  

C: TDCP algorithm effectiveness and suitability 

“Is the proposed TDCP algorithm effective and suitable to be implemented in a tracking 

module for the VPIS?” 
 

In order to answer research question C more effectively, it has been divided into the following sub-

questions. Sub-question C.1 is required for the algorithm to be suitable for implementation in the 

VPIS. Sub-questions C.2 – C.4 regard the quality of the tracking results and therefore the 

effectiveness of the multi-detection classification method that would use the tracking results. For 

validation, it is assumed that the tracking results will be used for median voting classification. Each 

sub-question is further detailed and evaluated separately in subsections 4.8.1 – 4.8.4. 

C.1: Processing time 

“Can tracking be performed on two sequences with 100 and 200 detections within one 

second, as not to slow down the VPIS?” 
 

C.2: Correctly tracked objects 

“What portion of the moving objects is correctly tracked at least once for a significant 

length of the visible object trajectory?” 
 

C.3: Additional trajectories 

“How many additional trajectories are detected besides the most correct trajectories of 

objects?” 
 

C.4: Trajectory length 

“What portion of the full trackable length is tracked for the most correct trajectories of 

objects?” 
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4.4 Trajectory observations and assumptions 
This section presents observations and following assumptions from real object trajectories. The 

goal has been to observe characteristics of real object trajectories and determine if these trajectory 

characteristics can be recognised to distinguish between real object trajectories and false 

trajectories. First, observations are made from a small dataset with annotated trajectories. Next, 

assumptions are made about how real trajectories can be differentiated from false trajectories. The 

findings from this section are used to define a motion model in section 4.5. 

4.4.1 Trajectory observations 

A small trajectory dataset has been annotated using a newly developed annotation tool. The 

annotation tool shows images with the segmentation masks of all objects from the background 

subtraction and segmentation module. The user can navigate through the sequence using the 

keyboard buttons and mouse and select what detections belong to the same objects. 

The annotated tracking dataset consists of three image sequences, containing a total of 13 moving 

objects with a total of 211 detections over 19 frames. The graphs in Figure 29 show the annotated 

trajectories of 8 different moving objects. 

 

 

 
Figure 29 Left: XY plot of observed trajectories. Top-right: Horizontal object position over time. Bottom-right: Vertical object 

position over time. The figure shows that most objects move in a spiralling pattern around the vertical axis of the container. 

From the figures can be seen that objects do not move in random directions but mostly follow a 

smooth spiralling path around the vertical axis of the container. A false trajectory with detections of 

different objects is more likely to contain discontinuities, resulting in a non-spiralling or non-smooth 

trajectory. Most objects are not visible in every frame. This is as some objects in the dataset are 

very small and objects are less visible near the sides of the container. Objects can also go out of 

view near the top and bottom regions of the container. 
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Observations from the horizontal and vertical motion in tracking data are summarised in the 

following lists. 

Horizontal movement: 

- Most observed objects spin around the vertical axis of the container. As a result of 

this, the horizontal position over time is approximately sinusoidal. 

- The radius of rotation at which objects spin around the vertical axis is different per 

object. This radius of rotation can slowly change over time. 

- The frequency of rotation is similar between objects with minor differences. Similar 

to the radius of rotation, the frequency of rotation can slowly change over time.  

Vertical movement: 

- At the start of the image sequence objects can be anywhere in the vertical range of 

the container. 

- Objects move up or down with limited vertical velocity and acceleration. 

- The direction of movement for particles and bubbles can be either up or down as the 

object is affected by the turbulent flow. Based on the observations in Figure 29 alone, 

it can be argued that some objects follow an upwards trajectory which could indicate 

that these objects are bubbles. However, in numerous occasions it has been 

observed that bubbles move down during the image sequence, only to drift to the 

surface after the liquid has slowed down. 

4.4.2 Trajectory assumptions 

The following assumptions are made based on the observations on object trajectories. 

Assumption 1: Most if not all trajectories of real objects behave as described in 

subsection 4.4.1. 

Assumption 2: Most false trajectories with detections of multiple objects do not 

behave as described in subsection 4.4.1. 

Assumption 3: A motion model that can exclusively describe a trajectory that 

behaves as described in subsection 4.4.1 can be used to differentiate between 

trajectories of real objects and false trajectories. 

Assumption 3 is made based on assumptions 1 and 2 and is used as a working principle for the 

TDCP algorithm. Based on these assumptions, it was decided to develop the motion model and 

later the TDCP algorithm.  

Later during development, it was found that assumption 1 is partially false as a portion of the 

trajectories show unexpected trajectory behaviour. This is explained in the following subsection. 

4.4.3 Unexpected trajectory behaviour 

This subsection describes an observation made in a later stage of the development of the tracking 

module. This describes a phenomenon that is problematic for the effectiveness of the tracking 

module.  

Although most objects act according to the expected trajectory behaviour described above, some 

objects some objects behave unexpectedly. In Figure 29 can be seen that object 6 in green 
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suddenly slows down during frames 17 – 20. In the dataset that was used for tracking captured in 

an early stage of the research, this unexpected trajectory behaviour is rare, occurring in roughly 

5% of the trajectories for a part of the trajectory. However, with newer datasets, this unexpected 

trajectory behaviour occurs in roughly 20% of the trajectories for a significant part of the trajectory. 

This problem was only realised after most of the tracking module had been developed.  

Through limited testing, it has been observed that small changes in the spin-stop sequence and 

image capture sequence have an effect on the resulting trajectory behaviour. It is not known what 

exact configuration was used during the collection of the first dataset or how the unexpected 

trajectory behaviour can be minimised. After this observation was made, development of the 

tracking module was put on hold. Future work is required to learn how to minimise this 

phenomenon.  
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4.5 Motion model 
This section presents the motion for the tracking module. First, it is discussed what the ideal 

characteristics are for a motion to be effective with the TDCP algorithm. Next, motion model is 

presented. The proposed motion model consists of two equations that describe the horizontal and 

vertical position of an object over time. The motion model also defines a feasible parameter range. 

If a trajectory can be described by the motion model within the feasible parameter range, the 

trajectory is possibly of a real moving object. 

4.5.1 Ideal motion model characteristics 

This subsection discusses what characteristics are desired for a motion model to be suitable and 

effective to be used with TDCP. Every possible trajectory can bed described using a complex 

polynomial trajectory. However, such a set of polynomial equations does not make a good motion 

model as it can describe any trajectory, including unrealistic false trajectories. The ideal motion 

model can describe any real trajectory while omitting false trajectories. 

The following list contains some desired characteristics for the motion model. The ideal motion 

model: 

1. Can describe a realistic object trajectory with a minimum number of parameters, 

such that a possible trajectory can be fitted based on a minimum number of points. 

This way, smaller trajectories can be validated of objects that are visible for only a 

few frames. This will also reduce computation time as less possible point 

combinations need to be evaluated. 

2. Contains independent parameters of which at least some are limited to a feasible 

range, such that trajectories that can only be described with parameters outside of 

this feasible range can be omitted as false trajectories. 

3. Is a function of time, such that the model can predict the position of an object over 

time and can be fitted on trajectories with gaps. 

4. Contains parameters that are easily understandable and can be configured based 

on observations of real trajectories. 

4.5.2 Proposed motion model 

This subsection presents the proposed motion. The proposed motion model consists of two 

equations describing the horizontal and vertical position of an object over time, together with the 

feasible ranges for the motion model parameters. 

Horizontal motion 

As described in section 4.4, most observed objects do not move in random directions but follow a 

smooth spiralling path around the vertical axis of the container. In the horizontal axis, this motion 

can be described locally with a sine wave. The horizontal position of an object is described with 

Equation 10. Where 𝑥(𝑡) is the horizontal position of an object at time 𝑡, 𝑡 = 0 at the first detection 

in the set, 𝜃0 is the phase of rotation at 𝑡 = 0, 𝑓 is the frequency of rotation, and 𝑟 is the radius of 

rotation. Figure 30 visualises the principle of the horizontal motion equation. 

𝑥(𝑡) = sin(𝜃0 + 𝑓 ∗ 2𝜋 ∗ 𝑡) ∗ 𝑟 (10) 
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Figure 30 Visualisation of the horizontal motion equation. The figure shows how 𝑟, 𝜃0, 𝑓 are used to determine 

horizontal x position. 

As the equation for horizontal motion is harmonic, there is an infinite amount of parameter 

combinations that can describe a trajectory through any set of points by making multiple full 

rotations between detections. By limiting the frequency of rotation 𝑓 to realistic observed values, 

and the radius of rotation 𝑟 to the radius of the container, only a single valid solution should be 

feasible.  

Vertical motion: 

The vertical motion observed from real trajectories is random with a limited velocity and 

acceleration. In the vertical axis, this motion can be described locally with a second degree 

polynomial equation.  

The vertical position of an object is described with Equation 11. Where 𝑦(𝑡) is the vertical position 

of an object at time 𝑡, 𝑡 = 0 at the first detection in the set, 𝑦0 is the vertical position at 𝑡 = 0, and 

𝑦̇ and 𝑦̈ describe the vertical velocity and acceleration respectively. By limiting the vertical velocity 

and acceleration, false trajectories with an unrealistic vertical motion can be omitted. 

𝑦(𝑡) = 𝑦0 + 𝑦̇ ∗ 𝑡 + 𝑦̈ ∗ 𝑡2 (11) 

 

Feasible ranges 

The feasible ranges for the motion model parameters have been observed from annotated 

trajectory data or from fitting and have been confirmed with testing. The feasible parameter ranges 

are: 

Parameter Description Range Source 

𝜽𝟎 Phase at 𝑡 = 0 (0,2𝜋) Full rotation 

𝒇 Frequency of rotation 
(

1

15
,

1

10
) 

Observed from data and 

tuned with fitting. See 

paragraph below 

𝒓 Radius of rotation 
(0,

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑤𝑖𝑑𝑡ℎ

2
) 

Container width 

𝒚𝟎 Vertical position at 𝑡 = 0 (0, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ℎ𝑖𝑔ℎ𝑡) Container height 
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𝒚̇ Vertical velocity in 

pixels/frame 

(−50,50) Observed from data 

𝒚̈ Vertical acceleration in 

pixels/frame2 

(−6,6) Observed from data 

 

As the image is deformed by the shape of the container, the horizontal position at which an object 

is observed, can deviate slightly from where the object was at that moment. As a result of this, 

objects are observed to be moving slightly faster when moving through a region at the back of the 

container. To accommodate for this, the feasible parameter range for the frequency of rotation 𝑓 is 

slightly wider than can be expected when closely inspecting Figure 29. It is not easily possible to 

compensate for this by transforming the horizontal position of each detection as the deformation is 

affected by the depth of the moving object which is unknown. This issue could possibly be negated 

without widening the parameter range for 𝑓 by utilising a more complex motion model. However, 

this has not been researched any further as this motion model is effective. 

Motion model characteristics 

The proposed motion model has three independent parameters per axis of motion. Therefore, the 

motion model can be fitted with only three points of detection coordinates such that short sections 

of trajectories can be modelled, and processing time is minimised. Two out of three parameters for 

each equation are limited to a feasible range, making it possible differentiate false trajectories. As 

the equations are functions of time, it is possible to fit trajectories with missing detections and to 

predict object position in missing, previous, or later frames. The feasible parameter range can be 

determined easily from observations of real trajectories, this makes the model easy to understand 

and reconfigure for different medicine containers.  
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4.6 Proposed TDCP algorithm 
This section gives an overview of the TDCP algorithm process.  

Before TDCP is performed, a complete list of object detections 

with positions is provided by the background subtraction and 

segmentation module. 

First, from the list of object detections, it is determined with the 

motion model what sets of three detections can be a part of a 

real object trajectory. Such a set is called a Tracklet. Every 

possible combination of three detections from subsequent 

frames or with one or two single frame gaps is checked, such 

that the method can track tracklets with missing frames. The 

number of calculations for this step has been minimised which 

is important as many possible combinations have to be 

checked. 

Secondly, for each tracklet with a gap, the object position in 

the missing frame is predicted using Equation 10 and Equation 

11). If the predicted position matches closely to an object 

detection, this detection is added into the tracklet. This results 

in tracklets that contain 3-5 detections. After filling gapped 

tracklets, some tracklets become mostly redundant as they 

describe detections that are also present in another larger 

tracklet. Removing these tracklets results in a few less 

trajectory candidates but can significantly decrease the 

processing time in subsequent steps.  

Next, Track candidates are formed by combining tracklets with two or more overlapping detections. 

Track candidates are grown progressively by adding more tracklets in a way that minimises the 

computational cost. This process returns every possible track candidate based on the detected 

tracklets. Optionally, the motion model parameters of the tracklets can be compared to ensure that 

overlapping tracklets describe a similar trajectory.  

Optionally, singular tracklets that are not present in any track candidates can be added as track 

candidates, such that short trajectories of 3-5 detections are also included in the result.  

 

Figure 31 Steps overview of the proposed 

TDCP algorithm. 
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4.7 Results 
This section presents the results of the TDCP algorithm. The results are shown from two sequences 

from the small, annotated tracking dataset. These two image sequences contain six objects each 

and are referred to as sequence 1 and sequence 2. 

The results are presented in two parts. First, a table is presented with numerical results including 

processing time. Next, the detected track candidates are visualised, and the detected track 

candidates are presented in a table showing the quality of the tracking results. Finally, an observed 

phenomenon referred to as the rapid growth phenomenon is explained. 

4.7.1 Numerical results 

Table 13 presents numerical results from TDCP for sequence 1, sequence 2 and both sequences 

combined. The table shows data from tracklet formation and subsequent track candidate formation, 

with and without the recommended filtering step that removes overlapping tracklets. The 

processing time is given for each step. 

Table 13 Numeric results for sequence 1, 2 and both sequences combined. 

 

From the figure can be seen that the number of tracklets, track candidates and the processing time 

varies strongly between sequence 1, sequence 2 and both sequences combined. This is caused 

by the rapid growth phenomenon explained in subsection 4.7.3. 

4.7.2 Tracking quality results 

Figure 32 – Figure 35 visualise the tracking results for sequences 1 and 2. Figure 32 and Figure 34 

visualise the trajectories of the detected track candidates. Figure 33 and Figure 35 present the 

detected track candidates in the form of a table from which the quality of the tracking results can 

be seen.  

Viewing guide for track candidate tables 

Figure 33 and Figure 35 show the detected track candidates in the form of a table. This method of 

visualisation most effectively shows the performance of TDCP to track moving objects. 

Seq. 1 Seq. 2 Seq. 1+2

Number of detections 110 111 221

Number of objects 6 6 12

Tracklet formation:

Tracklets unfiltered (incl. overlapping) 191 350 857

Tracklets filtered (excl. overlapping) 59 126 417

Processing time 320 ms 585 ms 1611 ms

Track candidate formation from filtered tracklets

Nr. of tracklets 59 126 417

Track candidates unfiltered 10 85 396

Track candidates 8 49 332

Processing time 18 ms 92 ms 1034 ms

Total processing time 338 ms 677 ms 2645 ms

Track candidate formation from unfiltered tracklets

Nr. of tracklets 191 350 857

Track candidates unfiltered 50 142 886

Track candidates 9 52 346

Processing time 85 ms 823 ms 7503 ms

Total processing time 405 ms 1262 ms 9114 ms



85 

 

The left section of the table shows the ground-truth presence of annotated moving objects. It shows 

for each annotated object in what frames the object is visible and has been annotated. 

The centre section shows the resulting trajectory candidates as determined by TDCP. When TDCP 

returns the list of trajectory candidates, it is not known what trajectory candidates are correct or to 

what real object each of the detections correspond. For the purpose of evaluation, each detection 

in the trajectory candidates has been linked to the ground truth object that it belongs to. This is 

shown with the corresponding number and colour. 
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Figure 32 Trajectory visualisation of sequence 1, Left: Ground truth detections with colours from Figure 32. Right: 

Detected trajectory candidates including single tracklets, the track colour is determined by the colour of the 

dominant ground truth object in each track candidate. 

 

Figure 33 Tracking results for sequence 1 presented as a table.  

Left: Object annotations per frame, each column represents an annotated object and shows in what frames (rows) 

the object was visible. E.g., object 6 was visible in frames 6-9. 

Centre: Detected track candidates; each column represents a detected track candidate and shows what detections 

are present in each candidate, the number for each detection corresponds to the ground truth label for that 

detection and has been assigned afterwards for evaluation.  

Right: Single tracklets that are not present in a track candidate consisting of multiple tracklets, these can be included 

as track candidates but are generally less accurate. 
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Figure 34 Trajectory visualisation of sequence 2. See caption below Figure 32. 

 

Figure 35 Tracking results for sequence 2 as a table. See caption below Figure 33. 
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4.7.3 Rapid growth phenomenon 

This section describes an observed phenomenon referred to as the rapid growth phenomenon. 

This phenomenon is problematic for the current version of TDCP as it can result in a long processing 

time and a large quantity of additional detections. 

Sequence 1 and 2 both contain six objects resulting in a similar number of detections. However, in 

Table 13 can be seen that for sequence 2 compared to sequence 1, about two times more tracklets 

are detected after filtering, resulting in seven times more track candidates and twice as much 

processing time. With both detections of sequences combined in a single sequence, the resulting 

processing time is four times more than for sequence 2. 

This difference between sequence 1 and 2 is explained by the fact that in sequence 2 more objects 

are close to other objects during the same frames. If more objects are close together, more feasible 

but false tracklets can exist between detections of other objects, resulting in an increase in possible 

track candidates and processing time. An example of this can be seen in Figure 35, where 19 track 

different candidates are detected that contain detections of objects 2 and 3 combined. In Figure 

34 can be seen that these objects are positioned close together. 

As demonstrated with both sequences combined, the presence of more objects in a sequence 

results in a further rapid growth of detected tracklets, track candidates and subsequent processing 

time to the point where it is no longer practical. 

The rapid growth of processing time cannot be characterised as exponential or quadratic as it 

depends on the proximity of objects during the image capture sequence. In the worst-case 

scenario, if two objects are close together during the entire sequence, this can cause up to 544 

tracklets to be detected including overlapping tracklets. This can in turn lead to a theoretical 

maximum of 1,048,576 track candidates which would take an unacceptable amount of processing 

time. 

In this thesis, no solution is developed that deals with the rapid growth phenomenon. In section 4.9, 

some methods are shortly discussed that could possibly solve this issue. It is recommended to 

perform future research into dealing with the rapid growth phenomenon. 
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4.8 Validation 
The main research question which will be answered through validation is: 

C: “Is the proposed TDCP algorithm effective and suitable to be implemented in a tracking 

module for the VPIS?” 
 

The TDCP algorithm will be validated by analysing the results and answering the sub-questions C.1 

– C.4 as presented in section 4.3. Each sub-question is validated in its own subsection. Afterwards, 

the main research question C for the tracking module will be answered. 

Sub-questions C.2 – C.4 regard the quality of the tracking results and therefore the effectiveness 

of the multi-detection classification method that would use the tracking results. For validation, it is 

assumed that the tracking results will be used for median voting classification. 

4.8.1 C.1 Processing time 

This section aims to answer sub-question C.1. 

C.1: “Can tracking be performed on two sequences with 100 and 200 detections within one 

second, as not to slow down the VPIS?” 
 

In order for the tracking module to be implemented in the VPIS without slowing down the total 

processing time of a container, processing of two sequences with 100 and 200 detections should 

take no longer than 1 second. This dictates whether the method is suitable for implementation. 

From the numerical results in Table 13 can be seen that, with the current version of TDCP, the 

processing time varies strongly between the sequences depending on the number of tracklets and 

subsequent number of track candidates. This variance is caused by the rapid growth phenomenon 

explained in subsection 4.7.3. When processing two sequences of 100 and 200 detections, it is 

likely that the resulting processing time is higher than 1 second.  

In its current form, TDCP algorithm does not satisfy the processing time requirement and is 

therefore not suitable to be implemented in the VPIS. However, with optimisation methods as shortly 

discussed in section 4.9 it might be possible to decrease the processing time and pass this 

requirement. 

4.8.2 C.2 Correctly tracked objects 

This section aims to answer sub-question C.2:  

C.2: “What portion of the moving objects is correctly tracked at least once for a significant 

length of the visible object trajectory?” 
 

What portion of the moving objects is correctly tracked at least once is arguably the most important 

aspect of tracking quality. If a particle object is present in a sequence but the detections of the 

object are not tracked or only tracked in a false trajectory, the particle will not be classified, and the 

container will be falsely accepted. Therefore, the portion of moving objects that is not correctly 

tracked strongly relates to the False Container Acceptance (FCA) rate for median voting 

classification presented in subsection 3.8.1. It is important that each object is correctly tracked, 

even if the object is only visible for a few frames. 
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As it is assumed that the results of tracking will be used with median voting classification, a 

trajectory can contain some detections of other objects without strongly affecting the classification 

result. Therefore, a trajectory is considered correct if at least 75% of the detections are from the 

same object. 

Figure 36 shows a subset of the tracking results from Figure 33 and Figure 35 with only the most 

correct trajectories. In the figures can be seen that every moving object present in the sequences 

is tracked correctly for a significant length at least once. 

 

 

Figure 36 Subset of the tracking results shown in Figure 33 and Figure 35 with only the most correct trajectories.  

Although the results are satisfactory, some imperfections can be observed. The seventh track 

candidate of sequence 2 (highlighted with an orange arrow) is a false trajectory candidate as it 

contains more than 25% detections from different objects. If object 5 would only be visible during 

frames 10-13, the object would not have been tracked correctly and therefore not be correctly 

classified with median voting classification. However, as object 5 is also visible and correctly 

tracked during frames 16-19 (highlighted with orange arrow), it can still be correctly classified. 

The portion of correctly tracked objects in the tracking results is considered impressive and 

satisfactory to effectively use with median voting classification. 
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4.8.3 C.3 Additional trajectories 

This section aims to answer sub-question C.3:  

C.3: “How many additional trajectories are detected besides the most correct trajectories of 

objects?” 
 

The presence of a false trajectory does not negatively affect the False Container Acceptance (FCA) 

rate as long as there is at least a single trajectory that correctly tracks each object for a significant 

length. However, additional false trajectories of bubbles increase the total number of bubble 

trajectories and are therefore problematic. Each additional trajectory containing bubbles has a 

small chance to contain a majority of outlier detections with positive classifications and can 

therefore cause a false rejection, increasing the False Container Rejection (FCR) rate. For additional 

trajectories of bubbles, it does not matter whether the trajectories are false or correspond to a real 

bubble trajectory. The effect of additional trajectories on the FCR rate can be seen in Figure 26 on 

page 65. For this reason, the portion of additional false trajectories should be limited. 

Table 14 shows an extract of the numerical results from Table 13 with additional track candidates. 

A large difference can be seen in the number of additional track candidates between the different 

sequences. For sequence 1, only a few additional track candidates are detected. For both 

sequences combined, more than 26 additional track candidates are detected for each tracked 

object. Although some additional trajectories are correct trajectories of which the real trajectories 

have been split into sections, most additional trajectories are caused by the rapid growth 

phenomenon explained in subsection 4.7.3. 

Table 14 Numerical results with additional track candidates 

 

As shown in Table 11 on page 65, the results of median voting classification can be satisfactory, 

even with 332 track candidates as with both sequences combined. However, in a sequence with 

more objects in close proximity even more track candidates would be detected, possibly the results 

unacceptable. With a more accurate classifier the acceptable limit of additional trajectories will be 

higher. 

It is possible that the effect of additional trajectories on the false container rejection rate is not as 

intense as described in subsection 3.8.1, as many additional trajectories contain mostly the same 

detections as others, while during simulation detections are randomly sampled separately for each 

trajectory. Future research is needed to confirm that the simulation in subsection 3.8.1 is accurate.  

4.8.4 C.4 Trajectory length 

This section aims to answer sub-question C.4:  

C.4: “What portion of the full trackable length is tracked for the most correct trajectories of 

objects?” 
 

Multiple figures in subsection 3.8.1 show the effect of trajectory length on the classification results 

with median voting classification. From this can be observed that FCR and FCA rate is significantly 



92 

 

lower with longer trajectories. Therefore, ideally, every object should be tracked over its full 

trackable range. However, it should be noted that even with shorter object trajectories the FCR and 

FCA rates can be significantly improved compared to classifying single detections. This is as outliers 

have significantly less effect on the median voting classification result. 

Figure 36 shows only the most correct and valuable track candidates from the tracking results. It 

can be observed that most of the correct track candidates are of close to the full trackable length. 

However not all objects are tracked in a single long track candidate. Object 3 in sequence 1 is an 

example of an object that is tracked in multiple shorter sections. This is as object 3 was not visible 

for some frames and the TDCP tracking algorithm can only track objects with singular missing 

detections. Object 2 in sequence 1 is also not tracked for its full trackable length. In Figure 32 can 

be seen that object 2 does not behave as expected as described in section 4.4. In the final two 

frames, when the object is close to the top of the container, the object does not spiral towards the 

centre but continues in a straight line. 

Overall, the observed resulting trajectory length is considered satisfactory. 

4.8.5 C. TDCP algorithm effectiveness and suitability 

This section aims to answer the main research question for the tracking module:  

C: “Is the proposed TDCP algorithm effective and suitable to be implemented in a tracking 

module for the VPIS?” 
 

Of the sub-questions C.1 – C.4 that together answer this main research question, C.1 is answered 

unsatisfactory, C.1 and C.4 are answered with great satisfaction, and C.3 is answered with 

uncertain limited satisfaction. Based on these answers, it can be concluded that although the TDCP 

algorithm shows potential, it cannot be implemented in the VPIS in its current form. The TDCP 

algorithm fails the processing time criteria to be implemented in the VPIS without slowing down the 

inspection process. Additionally, number of additional track candidates is not ideal and detrimental 

to the resulting FCR rate from subsequent classification. Both issues are caused by a phenomenon 

referred to as the rapid growth phenomenon described in subsection 4.7.3 of the results. The 

proposed TDCP tracking algorithm shows potential in the quality of the tracking results as most 

objects are correctly tracked and correct trajectories are long.  

 



93 

 

4.9 Optimisation strategies 
This section shortly discusses some possible optimisation strategies which could result in a version 

of the TDCP algorithm that is effective and suitable to be implemented into the VPIS. The first 

optimisations strategy is to simply optimise the processing time of TDCP by optimising calculations. 

The second and third optimalisation strategies sacrifice some thoroughness and classification 

accuracy to improve the processing time significantly. 

4.9.1 Processing optimisation 

The current version of TDCP has been partially optimised to reduce the number of possible 

combinations that need to be evaluated, which has already significantly reduced the processing 

time. It is expected that significant performance gains can be made by further optimisation of the 

code.  

With the current version of TDCP, based on the position of an initial detection, it is calculated 

roughly in what range of positions a second detection can be that could fit in a plausible trajectory. 

Next, with each plausible second detection, it is calculated in what range a third detection can be. 

If there is a hit, these three detections form a tracklet. The process of tracklet formation could be 

significantly sped up by using a precomputed look-up tables for the motion model. By precomputing 

where a second and third detection can be on the horizontal range based on the first detection 

position, tracklet formation could be performed in a single fast operation. 

The current version of TDCP has been fully implemented in python, implementing parts of the code 

in a compiled language such as C++ would significantly improve the speed of some repetitive steps 

during tracklet formation and track candidate formation. 

Currently, the class instance structure of TDCP is not optimised for speed but convenience of 

development. Each track candidate instance includes a list of all contained tracklet instances. Each 

tracklet instance includes a list of all contained detection instances. Each detection instance 

contains all information from that detection, including the foreground image, segmentation mask 

and a total of handcrafted features. From the detection instances, only the unique identifier, position 

and frame number are required. By removing irrelevant information and making use of pointers, it 

is expected that the processing time can be lowered significantly. 

It is hard to predict the resulting processing time of TDCP if the three processing optimisations 

described above are implemented. It is approximated that the resulting processing time will be 2-

10 times lower than the current version of TDCP. 

4.9.2 Rule relaxation 

The rapid growth phenomenon is unavoidable if every possible track candidate should be classified 

separately. An approach that relaxes this rule could possibly prevent the rapid growth 

phenomenon. 

Such a method could work as follows; if a situation is recognised where two objects are close 

together, detections of both objects could be treated as one detection. For these detections the 

detection with the highest classification score would be used for tracking. As a result, the number 

of tracklets, track candidates and processing time would be lower. But as the highest scoring 

detections are used, the resulting False Container Reject (FCR) rate would also be increased. 
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It is likely that there are other methods possible that include a form of rule relaxation. Further 

research is required into this topic. 

4.9.3 Hybrid classification 

Another method to increase the average processing time of TDCP such that it can be implemented 

in the VPIS is with a form of hybrid classification. 

One method of hybrid classification would be to first perform classification on the individual 

detections and afterwards only perform tracking on a subset of detections that can possibly result 

in a positive classification. For example, trajectory of seven detections can only be positive if at least 

four out of seven detections achieve a classification score above a certain threshold. If four 

detections classify as such within a span of 12 frames to include missing detections, targeted TDCP 

tracking can be used to see if these detections can be a part of the same seven detection trajectory.  

Another method of hybrid classification could include another multi-detection classification strategy 

such as multi-positive classification. If it is found through multi-positive classification that a number 

of positive detections indicate the presence of a particle, TDCP tracking could be used to validate 

that these detections can indeed be of the same object.  
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4.10 Comparison to SOTA 
This section compares the proposed solution to the current state-of-the-art (SOTA) for this module, 

as described in subsection 4.2.1. It is found that the proposed solution is superior to the current 

SOTA. 

The proposed method is fundamentally different compared to the SOTA method handcrafted 

feature bottom-up clustering [15]. Handcrafted feature bottom-up clustering recognises detections 

of moving objects based on object appearance with a number of handcrafted features. Although 

handcrafted features can be used for classification, it is expected that this method would not be 

effective to differentiate detections of different bubbles of a similar size. In contrast, the proposed 

TDCP algorithm performs tracking based only on the positions of detected objects without using 

object appearance. This is better as it is reliable for any type of particle. Another downside of the 

method is that bottom-up clustering can detect clusters with multiple detections per frame and can 

detect trajectories which are not continuous. This is not the case with TDCP. 

If TDCP would be implemented with a Siamese similarity metric [35] as previously theorised [6], it 

is expected that this would result in a longer processing time, a higher FCA rate and an only slightly 

lower FCR rate. Additionally, this would require a large, annotated tracking dataset with labelled 

trajectories. It is expected that the downsides of implementing a Siamese similarity metric outweigh 

the benefit of a slightly lower FCR rate.  
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4.11 Conclusion 
In this chapter, findings have been presented regarding the research and development of the 

proposed TDCP algorithm for the tracking module.  

It has been observed that trajectories of real objects behave predictably and follow a spiralling 

pattern around the centre of the container. Based on this information, a motion model has been 

defined that describes the horizontal and vertical the motion of a moving object with a set of 

parameters limited to a feasible range. By checking if a trajectory through a subset of three 

detections can be described using this motion model, it is determined if the trajectory can possibly 

be of a real object or not. The proposed TDCP algorithm uses the motion model to detect short 

tracklets of three detections and merges these into larger track candidates that describe possible 

trajectories. 

The proposed TDCP tracking algorithm shows potential in the quality of the tracking results as most 

objects are correctly tracked and correct trajectories are long. However, the current version of 

TDCP is not suitable to be implemented due to a phenomenon referred to as the rapid growth 

phenomenon explained in subsection 4.7.3. If an image sequence contains multiple objects in close 

proximity, the TDCP algorithm can detect a large number of possible tracklets and track candidates 

which results in an unacceptably long processing time. The larger number of track candidates 

detected in this situation has a negative effect on the effectiveness of median voting classification, 

which can be unacceptable if even more trajectories are detected in different image sequences. 

A few optimisation strategies are shortly discussed. If the shortcomings of TDCP can be 

successfully solved with future work, TDCP could be implemented into the VPIS with great success.  
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4.12 Recommendations 
The current version of the TDCP algorithm shows great potential but is not yet ready to be 

implemented in the VPIS. If the shortcomings of TDCP can be successfully solved with future work, 

TDCP could be implemented into the VPIS with great success. Therefore, it is recommended to 

continue with future research for TDCP in the following topics: 

Unexpected object trajectory behaviour 

Subsection 4.4.3 describes that unexpected trajectory behaviour has been observed in newer 

datasets. This new trajectory behaviour is problematic as it does not comply with the motion model 

developed in section 4.5 and therefore objects that show this behaviour cannot be tracked 

correctly. As explained in subsection 4.4.3, it is known that small changes to the spin-stop 

sequence and image capture sequence have an effect on the resulting trajectory behaviour. Future 

research is required to learn how the results of the first dataset can be reproduced or how the 

unexpected trajectory behaviour can be minimised. 

Optimisation 

The current version of TDCP cannot be implemented as processing time is too long as a result of 

the rapid growth phenomenon. In section 4.9, a number of optimisation strategies are shortly 

discussed that can reduce the processing time and make TDCP suitable to be implemented. It is 

recommended to implement one or more of these optimisation strategies. 

Effect of additional trajectories 

As explained in subsection 3.8.1, additional track candidates can increase the False Container 

Reject (FCR) rate as each detected track candidate with bubbles has the chance to be falsely 

classified as a particle. However, it is possible that the effect of additional trajectories on the false 

container rejection rate is not as intense as described in subsection 3.8.1, as many additional 

trajectories contain mostly the same detections as others, while during simulation detections are 

randomly sampled separately for each trajectory. Future research is needed to confirm that the 

simulation in subsection 3.8.1 is accurate.  
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5 Conclusion 
Research and development has been performed into solutions for the three modules of the Visual 

Particle Inspection Subsystem (VPIS): background subtraction and segmentation module, 

classification module, and the tracking module. Research into each of the modules has been 

performed separately with separate research questions and conclusions. This section summarises 

the conclusion for each module. 

Background subtraction and segmentation module 

For the background subtraction and segmentation module, a solution has been proposed that 

performs filtered temporal background modelling and locally adaptive threshold segmentation. The 

proposed solution is shown to be effective through validation in four performance aspects: detection 

of low contrast objects, insensitivity to image disturbances, processing time, and parameter 

reconfiguration. Validation results show that the solution can accurately detect small objects with 

low contrast while detecting a minimal number of false detections. Processing time is below one 

second for two image sequences such that the solution can be implemented in the VPIS and can 

be further reduced through optimisation. The proposed solution has only a single parameter for 

segmentation sensitivity which does not need to be reconfigured for all tested imaging situations.  

In addition to the base solution for the background subtraction and segmentation module, an add-

on solution is proposed in Appendix A that makes it possible to detect particles near the rubber 

stopper of a syringe. The proposed solution including a version of the add-on solution has been 

adopted into usage by Luo Automation B.V.  

Classification module 

For the classification module the goal was not to develop a working classifier that is good enough 

to be implemented into the VPIS, but to develop a baseline classifier and perform exploratory 

research into the possibilities and pitfalls that come with this problem situation. Out of four 

candidate classification methods that have been tested, the best classification accuracy is achieved 

with a CNN. The baseline classifier achieves a classification accuracy of 0.930 and is used 

throughout the rest of this research. The following findings are made from exploratory research: 

It is shown that handcrafted features can be used to predict the classification accuracy of a 

detection, this predicted classification accuracy can then be used to filter out small detections that 

are too hard to classify. 

It is shown through simulation that if a single particle classification results in a container 

rejection, the resulting chance that a container is falsely rejected is extremely high. This is as a 

capture sequence of a container often results in many detections of bubbles and each bubble 

detection has a chance to be falsely classified as a particle. 

Two multi-detection classification strategies are proposed that perform classification based on 

multiple detections. Median voting classification uses the results of the tracking module to classify 

objects using all detections of that object. Multi-positive classification does not use tracking but 

requires multiple detections to be classified positive. Of these classification strategies, median 

voting classification achieves the best results but both methods can significantly improve the 

classification performance. 

Tracking module 

The TDCP tracing algorithm is proposed as a solution for the tracking module. The TDCP algorithm 
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is able to track small objects that move quickly through a medicine container based only on the 

positions of object detections. 

It has been observed that trajectories of real objects behave predictably and follow a spiralling 

pattern around the centre of the container. Based on this information, a motion model has been 

defined that describes the horizontal and vertical the motion of a moving object with a set of 

parameters limited to a feasible range. By checking if a trajectory through a subset of three 

detections can be described using this motion model, it is determined if the trajectory can possibly 

be of a real object or not. The proposed TDCP algorithm uses the motion model to detect short 

tracklets of three detections and merges these into larger track candidates that describe possible 

trajectories. 

The proposed TDCP tracking algorithm shows potential in the quality of the tracking results as most 

objects are correctly tracked and correct trajectories are long. However, the current version of 

TDCP is not suitable to be implemented due to a phenomenon referred to as the rapid growth 

phenomenon explained in subsection 4.7.3. If an image sequence contains multiple objects in close 

proximity, the TDCP algorithm can detect a large number of possible tracklets and track candidates 

which results in an unacceptably long processing time. The larger number of track candidates 

detected in this situation has a negative effect on the effectiveness of median voting classification, 

which can be unacceptable if even more trajectories are detected in different image sequences. 
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Appendix A: Detection near rubber stopper 
One of the shortcomings of the proposed solution for the background subtraction and segmentation 

module is that the method can only detect objects in the centre region of a container. This appendix 

shortly explains why other regions are challenging and presents an add-on solution to the 

background subtraction and segmentation module that makes it possible to detect moving objects 

near the bottom region of a syringe with deforming static bubbles. 

Challenging regions 

It is difficult to perform inspection in the entire region of a container image. This is as the top and 

bottom regions of a container offer challenging situations depending on the type of container. In the 

top region of a container, the moving liquid surface, large floating bubbles, and reflections on the 

liquid surface make it difficult to detect moving objects. Near the bottom of a container, other 

challenging situations occur such as reflections or bubbles that are stuck to a stopper. Figure 37 

shows challenging regions for 30ml vials, 10ml vials and 5ml syringes. 

 

Figure 37 Challenging regions with 30ml vials, 10ml vials, and 5ml syringes. Each container type presents different 

challenges. 

Existing solutions 

Most solutions that are commercially available for large scale automatic visual inspection detect 

moving objects only in the centre region of a container. For some systems, optional upgrades are 

available in the form of additional sensors or specialised image capture sequences that enable 

detection of objects in challenging regions. 

Minimal requirement 

It is possible for automatic inspection systems to pass certification requirements while only 

detecting objects in the centre region of a container as most moving objects pass through this 

region. By performing inspection in more of the challenging regions, more particles can be detected 

and safety of injections can be improved. 
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Add-on solution 
The goal is to develop an add-on solution to be able to detect moving objects in the bottom region 

of a 5ml syringe without detecting deforming bubbles. It was chosen to develop an add-on solution 

for this specific region as it is relatively common for moving objects to occur in this region. 

Additionally, the add-on solution developed for 5ml syringes can be adapted for different syringe 

sizes and types. 

5ml Syringe bottom region challenge 

Figure 38 shows the bottom region of a syringe where bubbles are present on the rubber stopper. 

Bubbles that are stuck to the stopper do not release during a regular spin-stop sequence but 

deform between frames as a result of the moving liquid. The right side of Figure 38 shows the 

absolute difference between subsequent frames, the visible region is caused by a deforming static 

bubble and would likely be falsely detected as a moving object by the solution proposed in section 

2.4. The goal of the add-on solution in this challenging region is to determine whether a detection 

in this region is caused by a deforming static bubble or a real moving object. 

 

Figure 38 Left and Centre: Cropped section of a syringe with a bubble on the rubber stopper on two subsequent 

frames. Right: Absolute difference between the two frames. 

Observations 

The following observations are made to differentiate between deforming static bubbles and moving 

objects. 

- Areas in which a static bubble is deforming can be recognised by a significant 

increase of the background standard deviation 𝐵𝐺𝑠𝑡𝑑, as long as the deformation 

occurs for more than two frames. 

- Between frames, the edges of a deforming static bubble move a limited distance in 

pixels. 

- Between frames, the intensity of a deforming static bubble changes with an intensity. 

Static bubble region 

First, regions are selected where the background standard deviation 𝐵𝐺𝑠𝑡𝑑 .is above a certain 

threshold. Next, these regions are dilated to account for movement that occurs in less than three 

frames, this is shown in Figure 39. Outside the resulting static bubble region, moving objects can 

be detected as normal. Inside the resulting static bubble region, a new detection method is used 

based on a local minimum and local maximum threshold. 
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Figure 39 Left: The bottom region of a syringe with a rubber stopper and deforming static bubbles. Right: 

Background standard deviation 𝐵𝐺𝑠𝑡𝑑 with static bubble regions outlined in red. 

Local minimum and local maximum bubble intensity 

It has been observed that edges of static deforming bubbles move only a limited distance in pixels 

between frames and the intensity of a bubble changes between frames with a limited intensity 

difference. These observations will be used to detect moving objects in static bubble regions.  

Based on the previous image in the image sequence, a local minimum threshold image and local 

maximum threshold image are computed as shown in Figure 40. The local minimum threshold 

image is darkened by 10 points and the local maximum is brightened by 10 points to account for 

the limited change in pixel values. Within the static bubble region shown in Figure 39, if a pixel 

intensity value is between the of the local minimum and local maximum of the previous frame, it is 

assumed that this pixel contains a static bubble. If the pixel intensity value is outside the local 

minimum and local maximum of the previous frame, this is detected as a moving object.  

 

Figure 40 Left: Local minimum threshold image. Right: Local maximum threshold image. Intensity values within this 

range are assumed to be of deforming bubbles. 

Results 

Figure 41 shows a result of the add-on solution. In the figure can be seen that two moving objects 

are detected. The moving object near the top of the image is located outside of the static bubble 

regions and is therefore detected using the regular solution proposed in section 2.4. The other 
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moving object is located in a static bubble region and is detected by the add-on solution as the 

object intensity is below the local minimum. 

 

Figure 41 Left: image containing two dark moving objects. Right: The same image where static bubble regions are 

outlined in red and detected moving objects are outlined in green. The bottom object is detected using the local 

minimum and local maximum threshold. 

Shortcomings 

Although the add-on solution is currently functional, it is not very reliable in its current form and can 

be further improved.  

A shortcoming with the current add-on solution is that filtered temporal background modelling 

proposed in subsection 2.4.1 does not work correctly in front of the rubber stopper. With filtered 

temporal background modelling, it is assumed that moving objects are always brighter than the 

background with diagonal lighting. In front of the illuminated stopper, moving objects can be either 

brighter or darker than the background. As a result of this, dark moving objects are included in the 

background cluster, resulting in an increased background standard deviation and inaccurate static 

bubble regions. Although some tests have been performed where both low and high values are 

excluded from the background cluster, further optimisation of the add-on solution is outside of the 

scope of this research.  

Conclusion  

An add-on solution has been developed for the solution proposed in section 2.4. With the add-on 

solution it is possible to detect moving objects in the bottom region of a syringe near the rubber 

stopper without detecting deforming bubbles. As the current add-on solution has shortcomings, it 

is recommended to improve invest future work into improving the method. The add-on solution 

shows enough potential that Luo Automation B.V. has adopted a version of it with the background 

subtraction and segmentation module.  
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Appendix B: Handcrafted features 
The list below contains an overview of all handcrafted features that have been used in this thesis 

during testing. The handcrafted features 18 – 40 are contour image moments. 

1. X position 

2. Y position 

3. Width 

4. Height 

5. Aspect ratio L/W 

6. Aspect ratio smallest/largest 

7. Area 

8. Solidity 

9. Ellipse mayor axis 

10. Ellipse minor axis 

11. Ellipse angle 

12. Ellipse eccentricity 

13. Ellipse verticality 

14. Total contrast 

15. Mean contrast 

16. Perimeter 

17. Circularity 

18. M10 

19. M01 

20. M20 

21. M11 

22. M02 

23. M30 

24. M21 

25. M12 

26. M03 

27. Mu20 

28. Mu11 

29. Mu02 

30. Mu30 

31. Mu21 

32. Mu12 

33. Mu03 

34. Nu20 

35. Nu11 

36. Nu02 

37. Nu30 

38. Nu21 

39. Nu12 

40. Nu03 


