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Máté Erdős 1, Olav Galteland 2, Dick Bedeaux 2, Signe Kjelstrup 2 , Othonas A. Moultos 1 and
Thijs J. H. Vlugt 1,*

1 Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and
Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands;
m.erdos-2@tudelft.nl (M.E.); o.moultos@tudelft.nl (O.A.M.)

2 PoreLab, Department of Chemistry, Norwegian University of Science and Technology, 7031 Trondheim,
Norway; olav.galteland@ntnu.no (O.G.); dick.bedeaux@ntnu.no (D.B.); signe.kjelstrup@ntnu.no (S.K.)

* Correspondence: t.j.h.vlugt@tudelft.nl

Received: 12 January 2020; Accepted: 5 February 2020; Published: 9 February 2020
����������
�������

Abstract: The accurate description of the behavior of fluids in nanoporous materials is of great
importance for numerous industrial applications. Recently, a new approach was reported to calculate
the pressure of nanoconfined fluids. In this approach, two different pressures are defined to take
into account the smallness of the system: the so-called differential and the integral pressures. Here,
the effect of several factors contributing to the confinement of fluids in nanopores are investigated
using the definitions of the differential and integral pressures. Monte Carlo (MC) simulations are
performed in a variation of the Gibbs ensemble to study the effect of the pore geometry, fluid-wall
interactions, and differential pressure of the bulk fluid phase. It is shown that the differential and
integral pressure are different for small pores and become equal as the pore size increases. The ratio
of the driving forces for mass transport in the bulk and in the confined fluid is also studied. It is
found that, for small pore sizes (i.e., <5σfluid), the ratio of the two driving forces considerably deviates
from 1.

Keywords: nanothermodynamics, porous systems, molecular simulation, differential pressure,
integral pressure

1. Introduction

The widespread application of nanoporous materials in several fields, such as chromatography,
membrane separation, catalysis, etc., has lead to a growing interest in the accurate description of the
thermodynamic behavior of fluids confined in nanopores [1–6]. The pressure of a nanoconfined fluid
is one of the most important thermodynamic properties which is needed for an accurate description
of the flow rate, diffusion coefficient, and the swelling of the nanoporous material [7–10]. Various
approaches for calculating the pressure of a fluid in a nanopore have been proposed [1,11–13]. The main
difficulty of the pressure calculation arises from the ambiguous definition of the pressure tensor inside
porous materials due to the presence of curved surfaces and confinement effects [7,14,15]. Traditional
thermodynamic laws and concepts, such as Gibbs surface dynamics, Kelvin equation, etc., may not be
applicable at the nano-scale [16]. In the past decade, several methods were reported using different
simulation techniques i.e., classical density functional theory [17,18], equation of state modeling [19],
etc., to model the behavior of fluids in confinement.

Recently, Galteland et al. [11] reported a new approach for the calculation of pressure in
nanoporous materials using Hill’s thermodynamics for small systems [20]. In this approach, two
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different pressures are needed to account for confinement effects in nanoporous materials: the
differential pressure P, and the integral pressure p̂. In an ensemble of small systems, the differential
pressure times the volume change of the small systems is equal to the work exerted on the surroundings
by the volume change. The differential pressure corresponds to the macroscopic pressure and does
not depend on the size of the system. The addition of a small system to an ensemble of small systems
exerts work on the surroundings which is equal to the integral pressure times the volume of the added
small system. The differential and integral pressures are different for small systems and become equal
in the thermodynamic limit. For a system with volume V, the two pressures are related by [11,20]:

P(V) =

(
∂( p̂(V)V)

∂V

)
T,µ

= p̂(V) + V

(
∂( p̂(V))

∂V

)
T,µ

. (1)

As shown in Equation (1), the two pressures are different only when the integral pressure p̂ depends
on the volume of the system. Galteland et al. [11] performed equilibrium and non-equilibrium
molecular dynamics simulations of Lennard–Jones (LJ) fluids in a face-centered lattice of spherical
grains representing a porous medium. Using Hill’s thermodynamics of small systems [20] and the
additive property of the grand potential, Galteland et al. [11] defines the compressional energy (p̂V) of
the representative elementary volume (REV) in the simulations as follows:

p̂V = p̂fV f + p̂rVr − γ̂frωfr, (2)

where p̂ is the integral pressure of volume V, p̂f and Vf are the integral pressure and volume of the
fluid, p̂r and Vr are the integral pressure and volume of the grain particles, and the γ̂fr and ωfr are the
integral surface tension and surface area between the fluid and grain particles. Based on the obtained
results, it was concluded that the definition of two pressures is needed to calculate the pressure of the
fluid in nanoporous medium.

In this study, the relation between the differential and integral pressure is investigated by
performing Monte Carlo (MC) simulations of LJ fluids. The simulations are carried out in a modified
Gibbs ensemble, using two simulation boxes in equilibrium with each other. One box represents the
bulk fluid, while the other simulation box represents the nanoconfined system, including walls that
interact with the fluid particles, as shown in Figure 1. The effect of confinement on the integral pressure
is investigated by considering different fluid-wall interaction strengths and pore geometries, namely,
a cylinder and a slit pore. To investigate the relation between the differential and integral pressure,

the difference of the two pressures, P− 〈 p̂〉, and the ratio of driving forces for mass transport,
d〈 p̂〉
dP

,
are computed. In Section 2, the devised ensemble and the equations used to calculate the pressure
and energy of the system are presented. In Section 3, a rigorous derivation of the used expression
to compute the ratio of driving forces is shown. In Section 4, the results for the different differential
pressures and pore geometries are shown. In Section 5, our conclusions are summarized.
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Figure 1. Schematic representation of the Monte Carlo (MC) simulation scheme. Simulation Box 1
represents the bulk fluid with differential pressure P. Simulation Box 2 contains the confined fluid with
(average) integral pressure 〈 p̂〉. (a,b) The two investigated systems are shown where the bulk fluid
is in equilibrium with the nanoconfined fluid in a cylinder and in a slit pore, respectively. Due to the
particle exchange, the chemical potential of the two boxes are equal, but in general P 6= 〈 p̂〉.

2. Simulation Details

All MC simulations are carried out using an in-house simulation code. The MC simulations
consist of two simulation domains, Simulation Box 1 and Simulation box 2 (see Figure 1). Throughout
the manuscript the terms Simulation Box 1 and 2 are used to refer to the two domains, however,
simulation domain 2 does not correspond to an actual box. The total number of particles in the
system, NT , is fixed and particles can be exchanged between the simulation boxes. Box 1 is cubic
and has periodic boundary conditions imposed in all directions. Box 1 represents a bulk fluid. The
differential pressure, P, and temperature, T, in Simulation Box 1 are imposed, while the volume, V1,
and the number of particles, N1, can fluctuate. Simulation Box 2 is a cylinder or a slit pore with a
fixed volume V2. The size of the cylinder and the slit pore are defined by the radius, R, and by the
distance between the two parallel planes, 2R, respectively (Figure 1). In Box 2, periodic boundary
conditions are applied only in the axial direction for the cylinder and in the x and y directions for
the slit pore (see Figure 1). Box 2 represents the confined fluid which has an integral pressure p̂. In
Simulation Box 2, the volume, V2, and temperature T are imposed, while the number of particles N2

can fluctuate by exchanging particles with Box 1. The instantaneous integral pressure fluctuates, and
by definition [20] its ensemble average, 〈 p̂〉, will be equal to P only for macroscopic systems (R→ ∞).
The ensemble used is a variation of the NPT-Gibbs ensemble [21]. The main difference between the
ensemble used in this work and the conventional NPT-Gibbs ensemble is that in our simulations the
volume of Box 2 is fixed [21]. Essentially, Box 2 corresponds to the grand canonical ensemble with
the reservoir explicitly modeled in Box 1. This computational setup was also used in other studies,
i.e., A. Z. Panagiotopoulos et al. [21], P. Bai et al. [22], etc.

In the MC simulations, three types of trial moves are used: translation, volume change, and
particle exchange. The translation and particle exchange trial moves are used in both simulation boxes,
while volume change trial moves are only performed in Simulation Box 1. The acceptance rules of
the trial moves can be found elsewhere [23]. The particle exchange trial move, ensures that Box 1 and
Box 2 are in chemical equilibrium, i.e., the chemical potentials of the two boxes are equal (µ1 = µ2).
The chemical potentials of the boxes are defined as the sum of the ideal and excess chemical potentials
of the fluid in the respective box (µ1 = µid

1 + µex
1 , µ2 = µid

2 + µex
2 ). The ideal gas chemical potentials

(µid
1 , µid

2 ) are calculated based on the density and temperature of the fluid. The excess chemical potential
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(µex
1 , µex

2 ) can be calculated using different methods, i.e., Widom’s test particle insertion method [23],
Contionous Fractional Component Monte Carlo method [24,25], Bennet acceptance ratio method [26],
etc. Although the Bennet acceptance ratio method is computationally more efficient than the Widom’s
test particle insertion method, the Widom’s test particle method is sufficient for the systems considered
in this study. Separate simulations are carried out using different cylinder radii R, while imposing
P = 0.2 (in reduced units) in Box 1. In Figure 2, the chemical potential of Box 1 and Box 2 (Figure 2a),
as well as the density of Box 1 and Box 2 (Figure 2b), are shown as a function of the cylinder radius at
P = 0.2. As can be seen from Figure 2a, the chemical potentials of Box 1 and Box 2 are equal within the
uncertainties of the simulations.

Figure 2. The chemical potential (a) and density (b) of the bulk, Box 1, and confined fluids, Box 2, as a
function of the cylinder radius, R, at P = 0.2 (in Simulation Box 1). The blue and red colors represent
Box 1 and Box 2, respectively. The temperature is fixed at T = 2. All values are presented in reduced
units. The error bars are smaller than the symbol sizes.

In all simulations, the total potential energy, U, is calculated using the 12-6 LJ interaction potential:

U = Ufluid−fluid + Ufluid−wall, (3)

where Ufluid−fluid is the potential energy due to interaction between the fluid particles, and Ufluid−wall
represents the potential energy contribution from the interactions between the fluid particles and the
wall of Box 2. Ufluid−fluid in both simulation boxes is calculated according to:

Ufluid−fluid =

∑i<j

[
4εfluid

((
σfluid

rij

)12
−
(

σfluid
rij

)6)
−Ushift

]
rij < 2.5σfluid

0, otherwise
, (4)

where rij is the distance of particle i and j, Ushift makes the interaction potentially continuous at the
cut-off distance (2.5σfluid), and εfluid, σfluid are the LJ parameters. In the past, several studies were
reported using different types of interaction potentials to model the fluid-solid interactions in confined
spaces [22,27,28]. Since the aim of this study is to show the difference between the differential and
integral pressures and not to simulate some specific adsorption system, only two types of interaction
potentials are considered for the interaction of fluid particles with the wall in Simulation Box 2. In the
first case, the wall has only repulsive interactions with the fluid particles. The potential energy
contribution of this type is calculated based on the Weeks–Chandler–Andersen potential [29]:

Ufluid−wall =

∑N2
i=0

[
4εfw

((
σfw
rwi

)12
−
(

σfw
rwi

)6)
+ 1
]

rwi < 21/6σfw

0, otherwise
, (5)
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where N2 is the number of particles in Box 2, rwi is the closest distance of particle i from the walls,
and εfw and σfw are the LJ parameters for the interaction between the wall and the fluid particles. In
the second case, the attractive interactions between the wall and fluid particles are taken into account
using the traditional form of the 12-6 LJ interaction potential:

Ufluid−wall =

∑N2
i=0

[
4εfw

((
σfw
rwi

)12
−
(

σfw
rwi

)6)
−Ushift−fw

]
rwi < 2.5σfw

0, otherwise
, (6)

where Ushift−fw makes the interaction potential continuous at the cut-off distance, and εfw and σfw are
the LJ parameters.

The expression for calculating the integral pressure in Box 2 is as follows[30]:

p̂ =
N2

V2
kBT + p̂fluid−fluid + p̂fluid−wall, (7)

where p̂fluid−fluid represents the contribution of the fluid-fluid interaction to the integral pressure, kB is
the Boltzmann constant, and p̂fluid−wall represents the contribution of the fluid-wall interaction to the
integral pressure. The p̂fluid−fluid, and p̂fluid−wall terms represent the virial contributions of the integral
pressure. The terms are calculated based on the virial theorem [7], i.e., using the derivative of the
potential energy function with respect to r. The pressure term p̂fluid−fluid is calculated as follows [7]:

p̂fluid−fluid =
48

3V2
εfluid ∑

i<j

((σfluid
rij

)12
− 0.5

(σfluid
rij

)6)
. (8)

The third term in Equation (7) represents the pressure contribution related to the interactions of the LJ
particles with the wall of Box 2. The term p̂fluid−wall for the repulsive wall potential is derived based
on Equation (5) [7]. The following expression is obtained:

p̂fluid−wall =

∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12
− 0.5

(
σfw
rwi

)6)
rwi < 21/6σfw

0, otherwise
. (9)

The following expression is used to calculate the p̂fluid−wall when the wall has also attractive
interactions with the fluid [7]:

p̂fluid−wall =

∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12
− 0.5

(
σfw
rwi

)6)
rwi < 2.5σfw

0, otherwise
. (10)

By comparing Equation (8),(9),(10), it can observed that the multiplication factor 48 in Equation (8) is
replaced by the factor 24 in Equation (9),(10). This difference means that only 50 % of the fluid-wall
interactions are taken into account at the calculation of the p̂fluid−wall term [7]. In the MC simulations,
Equation (7),(8),(9),(10) yield instantaneous values from which ensemble averages are computed, i.e.,
〈 p̂〉.

In all simulations, the LJ parameters of the fluid particles are εfluid = 1, σfluid = 1, and the cut-off
radius is rcut = 2.5σfluid for the fluid-fluid interactions. Regardless of the type of interaction potential
used to calculate the interaction of the fluid particles and the wall in Simulation Box 2, the LJ parameter,
σfw = 1 is used. In the case of the purely repulsive wall potential, the LJ parameter εfw = 1 is used.
In case of the attractive wall potential, five different values for the εfw LJ parameters are considered:
εfw = 0.3, 0.5, 0.7, 1.0, 1.5. In this study, all of the reported parameters are in dimensionless units. The LJ
interactions are truncated and shifted (i.e., no tail corrections are applied). To avoid phase transitions,
the temperature is fixed at T = 2 [31,32].
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3. Theory

To investigate the difference between the differential and integral pressures, the ratio
d〈 p̂〉
dP

is

calculated. The term
d〈 p̂〉
dP

is the ratio of the pressure gradient for mass transport in the bulk phase,

dP
dL

, and in the confined space
d〈 p̂〉
dL

(see Figure 3). Essentially, the ratio of driving forces,
d〈 p̂〉
dP

, equals
the ratio of transport coefficients when either P or p̂ is used as driving force for mass transport in

the corresponding transport equation.
d〈 p̂〉
dP

is referred to as the ratio of driving forces throughout
this work. One possible approach to compute the ratio of driving forces is to perform simulations at
different imposed differential pressures and calculate the difference in the differential and integral
pressures. To avoid the necessity of performing several simulations, in this study the ratio of driving
forces is calculated based on the fluctuation theory. Using this approach, the ratio of driving forces can
be obtained by performing a single simulation.

Figure 3. Schematic representation of a bulk fluid in equilibrium with a nanoconfined fluid in a pore.

The concept of the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, can be introduced based on the

definition of ratio of driving forces in the two systems,
d〈 p̂〉
dL

and
dP
dL

.

To obtain an expression for
d〈 p̂〉
dP

, the partition function of the system is needed [23]:

Q = C
NT

∑
N1=0

VNT−N1
2

N1! (NT − N1)!

∫ ∞

0
dV1 VN1

1 e−βPV1

∫
drNT e−βU , (11)

where C is a constant, β = 1
kBT , N1 is the number of particles in Box 1, NT is total number of particles

in the simulation, V1 is the volume of Box 1, V2 is the volume of Box 2, and U is the potential energy.
The ensemble average of a thermodynamic property X can be obtained using:

〈X〉 =
∑NT

N1=0
V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βUX

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (12)
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Therefore, to obtain the expression for
d〈 p̂〉
dP

, the following relation is used:

d〈 p̂〉
dP

=
d

dP

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU p̂

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (13)

By switching the order of the integration and differentiation, the following expression is obtained:

d〈 p̂〉
dP

=(
∑NT

N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βU p̂

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βU
)

−

(
∑NT

N1=0

∫ ∞
0 dV1

∫
dr V

(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βU

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βU p̂
)

= 〈−βV1 p̂〉 − (〈−βV1〉〈 p̂〉) = β(〈V1〉〈 p̂〉 − 〈V1 p̂〉) = 〈V1〉〈 p̂〉 − 〈V1 p̂〉
kbT

.

(14)

The final expression in Equation (14) is essentially the cross correlation between V1 and p̂. In this
study, this expression is used to calculate the ratio of driving forces.

4. Results and Discussion

In this work, the difference between the differential and integral pressure, P− 〈 p̂〉, and the ratio

of driving forces
d〈 p̂〉
dP

, are investigated. Two different pore geometries, a cylinder and a slit pore, are
studied with varying fluid-wall interaction potentials. The effect of confinement is investigated for gas
(ρ ≈ 0.1) and liquid (ρ = 0.58, 0.8) phases, corresponding to P = 0.2, 2.0, 6.0, respectively.

4.1. Difference between the Differential and Integral Pressure

In Figure 4, the difference between the differential, P, and the ensemble average of the integral
pressure, 〈 p̂〉, is shown as a function of the inverse radius, R−1, of Box 2 for the cylindrical and slit pore
cases for the two types of wall potentials. As can be seen in Figure 4, as R−1 decreases, the difference
between the differential and integral pressure decreases in all cases. The data are fitted to AR−1+B,
where A and B are constants. The coefficient of determination of the fitted lines is above 0.99 showing
that the relation between the R−1 and P− 〈 p̂〉 is indeed linear. For large radii (R > 30σ), where the
fluid in Box 2 behaves like in the bulk, P− 〈 p̂〉 approaches 0, which is also indicated by the fitted
lines. In Figure 4a,c,e, the difference between the two pressures are shown for the cylindrical pore.
In Figure 4b,d,f, the difference in the pressures are shown for the slit pore. By comparing the magnitude
of P− 〈 p̂〉 for the cylindrical and slit pore cases, it can be seen that the pressure difference is larger
in the cylindrical pore than in the slit pore. The larger value of P− 〈 p̂〉 for the cylindrical pores can
be attributed to the stronger confinement effects compared to the slit pore. The stronger confinement
effects are also indicated by the steeper slopes (constant A in the fitted lines) of the cylindrical pore
compared to the slit pore. It can also be observed that by increasing the interaction strength between
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the wall of Box 2 and the fluid, εwf, the difference between the differential and integral pressure at the
same pore size decreases. By comparing the calculated values of P−〈p̂〉 for P = 0.2 and P = 6.0, it can be
seen that the effect of the interaction strength between the wall in Box 2 and the fluid, εwf, is considerably
larger at the lower differential pressure. For example, in the case of the slit pore, the ratio of slopes of the
fitted line for εwf = 1.0 and εwf = 1.5 at P = 0.2 is 0.88, as shown in Figure 4b, and at P = 6.0 is 0.96, as
shown in Figure 4f. This can be caused by the different number of particles inside the pore at the two
differential pressures. In the case of P = 0.2, by increasing the interaction strength, more particles can
enter the pore which results in larger integral pressures, while at P = 6.0, the pore is practically saturated
for all εwf; therefore, the interaction strength has a lower effect on the integral pressure.

Figure 4. The difference between the differential, P, and the ensemble average of integral pressure, 〈 p̂〉,
is shown as a function of the inverse radius R−1 of Box 2 at P = 0.2, 2.0, and 6.0 for cylindrical and
slit pores with fluid-wall interactions. (a,c,e) The pressure difference is shown for cylindrical pores
at differential pressure P = 0.2, 2.0, and 6.0, respectively. (b,d,f) The pressure difference is shown for
slit pores at differential pressure P = 0.2, 2.0, and 6.0, respectively. The simulation results are shown
with symbols, while the lines are fits to the data points. The equation used for the fitting is AR−1 + B,
where A and B are constants. The colors denote the different level of attraction between the wall of Box
2 and the fluid, repulsive wall potential (black), εwf = 0.3 (blue), 0.5 (red), 0.7 (gray), 1.0 (orange), and
1.5 (cyan). The results for the cylindrical pore are shown with closed circles and for the slit pores with
open rectangles. The temperature of both boxes is set to T = 2. The average densities of Box 1 are ρ ≈
0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0, respectively.
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Based on the work of Galteland et al. [11], the slope of the fitted line can also be related to

the effective surface tension between the fluid particles and the wall in Box 2, i.e., P− 〈 p̂〉 ∼ γ̂fr
effective

R .
The linear relation between P− 〈 p̂〉 and R−1 shows that the effective surface tension does not depend
on the curvature of the wall. In Figure 4, it can be observed that the effective surface tension decreases
as the fluid-wall interactions become more attractive. In Figure 4a–f, it can be seen that the ratio of the
effective surface tensions (slopes of the fitted lines) for the same εwf with the slit and cylindrical pore
is nearly constant. For example, at εwf = 0.5 and P = 2.0, the ratio of the slope of the fitted lines for
the slit and cylindrical pore is ∼ 0.54, as shown in Figure 4c,d, and at εwf = 0.3 and P = 0.2, the ratio
of the two slopes is also ∼ 0.54, as shown in Figure 4a,b. The ratio of the effective surface tensions
between the slit and cylindrical pores are in the range of ∼0.52–0.56 and considered constant since it is
within the uncertainties of simulations. The constant ratio of effective surface tension between the slit
and cylindrical pore also indicates the larger confinement effects in the cylindrical pore.

4.2. Ratio of Driving Forces

In Figure 5, the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, is shown as a function of the

inverse radius of Box 2, R−1, at three different pressures, P = 0.2, 2.0, 6.0, for both the slit and cylindrical

pores. From Figure 5, it can be observed that
d〈 p̂〉
dP

is considerably smaller than 1 for small pore sizes.
This means that a change in the differential pressure, P, of Box 1 results in a smaller change in the
integral pressure, 〈 p̂〉, of Box 2. This difference underlines the effect of the confinement on the pressure
of the fluid in nanopores and shows the difference in driving forces in the bulk and confined fluid.

As R increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. As can be

seen in Figure 5,
d〈 p̂〉
dP

is larger for the slit pore than for the cylindrical pore at the same conditions. This
means that in case of the slit pore a change in the differential pressure, P, results in a larger difference
in the integral pressure, 〈 p̂〉, than for the cylindrical pore. The larger change in the integral pressure
indicates that the confinement effects are weaker in the slit pore. In Figure 5a,b, it can be observed that
by increasing the interaction strength between the wall of the pore and the fluid particles, the ratio
of the driving forces decreases. At higher differential pressures the decrease in the ratio of driving
forces due to the increasing fluid-wall interaction strength becomes less pronounced, as shown in
Figure 5c–f. The smaller influence of the interaction strength, εfw, on the ratio of driving forces may
be caused by the increasing contribution of the fluid-fluid interactions to the integral pressure due to
the larger number of fluid particles in the pore at higher differential pressure. In Figure 5a–f, the ratio
of driving force is shown for the slit and cylindrical pores at the same differential pressure. It can be
seen that the ratio of the slopes of the fitted lines for the same value of εwf with the slit and cylindrical
pore is constant within the uncertainties of the simulations. The ratio of the slopes is in the range of
∼0.52–0.58, which indicates that the confinement effects in the cylindrical pore are almost twice as
strong as in the slit pore.
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Figure 5. The ratio of driving forces, d〈 p̂〉
dP , is shown as a function of the inverse radius, R−1, of

Box 2 at P = 0.2, 2.0, and 6.0 for the cylindrical and slit pore cases with repulsive and attractive
wall potentials. (a,c,e) d〈 p̂〉

dP is shown for cylindrical pores at differential pressure P = 0.2, 2.0, and

6.0, respectively. (b,d,f) d〈 p̂〉
dP is shown for slit pores at differential pressures P = 0.2, 2.0, and 6.0,

respectively. The simulation results are shown with symbols, while the lines are fits to the data points.
The equation used for the fitting is AR−1 + B, where A and B are constants. The results for the
cylindrical pore are shown with closed circles and for the slit pores with open rectangles. The colors
denote the different wall potential used in Box 2, repulsive wall potential (black), εwf = 0.3 (blue),
εwf = 0.5 (red), εwf = 0.7 (gray), εwf = 1.0 (orange), and εwf = 1.5 (cyan). The temperature of both
boxes is set to T = 2. The average densities of Box 1 are ρ ≈ 0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0,
respectively.
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5. Conclusions

In this study, the new approach reported by Galteland et al. [11] is used to investigate the effects
of confinement on a fluid in a nanopore by performing MC simulations. The simulations are carried
out in a variation of the Gibbs ensemble with two simulation boxes in chemical equilibrium. One
of the simulation boxes represents the bulk fluid with differential pressure P, and the other a slit or
cylindrical pore with repulsive or attractive wall interaction potential. In case of the attractive wall
potentials, several scenarios are considered for the strength of the interaction between the wall and the
fluid particles. The effect of confinement is investigated for three differential pressures, P = 0.2, 2.0,
6.0, corresponding to gas (ρ ≈ 0.1) and liquid phases (ρ = 0.58, 0.8). It is concluded that the difference
between the differential and integral pressure P− 〈 p̂〉, for all studied cases, approaches 0 when R→
∞. It is shown that the increase in the interaction strength between the wall and the fluid particles has
smaller effect on the difference in the pressures, P− 〈 p̂〉, as the differential pressure increases. Based
on the work of Galteland et al. [11], the difference of the differential and integral pressure is related
to the effective surface tension between the fluid particles and wall of the pore. It is shown that the
effective surface tension does not depend on the curvature of the wall. It is found that by considering
a bulk fluid in equilibrium with a cylindrical or slit nanopore, the ratio of driving forces for mass

transport in the bulk phase is larger than in the nanopore (
d〈 p̂〉
dP

<< 1) for small pore sizes. As R

increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. This clearly
shows that the approximation that p̂ ≈ P does not hold on the nanoscale.
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1. Gubbins, K.E.; Long, Y.; Śliwinska Bartkowiak, M. Thermodynamics of confined nano-phases. J. Chem.
Thermodyn. 2014, 74, 169–183. doi:10.1016/j.jct.2014.01.024.

2. Furukawa, H.; Cordova, K.; O’Keeffe, M.; Yaghi, O. The chemistry and applications of metal-organic
frameworks. Science 2013, 341.

3. Gu, Z.Y.; Yang, C.X.; Chang, N.; Yan, X.P. Metal-organic frameworks for analytical chemistry: From sample
collection to chromatographic separation. Accounts Chem. Res. 2012, 45, 734–745.

4. Yilmaz, B.; Müller, U. Catalytic applications of zeolites in chemical industry. Top. Catal. 2009, 52, 888–895.
5. Glaser, R.; Weitkamp, J. The application of zeolites in catalysis. Springer Ser. Chem. Phys. 2004, 75, 159–212.
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