
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

MSc Thesis

Estimation of Atrial Fibre Directions Based
on Epicardial Electrograms

Johannes Willem de Vries

https://cas.tudelft.nl/




Estimation of Atrial Fibre Directions Based on
Epicardial Electrograms

Thesis

submitted in partial fulfilment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Johannes Willem de Vries
born in Dordrecht, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2022 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science for acceptance a thesis enti-
tled “Estimation of Atrial Fibre Directions Based on Epicardial Electrograms”
by Johannes Willem de Vries in partial fulfilment of the requirements for the degree
of Master of Science.

Dated: 27 June 2022

Chairman:
dr.ir. R.C. Hendriks

Committee Members:
dr. D.M.J. Tax

dr.ir. R. Heusdens

Miao Sun MSc





Abstract
Being able to estimate atrial tissue conductivity parameters from epicardial electrograms is an important
tool in diagnosing and treating heart rhythm disorders such as atrial fibrillation. One of these parameters
is the atrial fibre direction, which is often assumed to be known in conductivity estimation methods.
In this thesis, a novel method to estimate the fibre direction from epicardial electrograms is presented.
This method is based on local conduction slowness vectors of a propagating activation wave, which
can be calculated from a corresponding activation map of the atrial tissue. These conduction slowness
vectors follow an elliptical pattern that strongly depends on the underlying conductivity parameters.
The fibre direction and conductivity anisotropy ratio can therefore be estimated by fitting an ellipse to
the conduction slowness vectors. Applying the presented method on simulated data shows that it can
accurately estimate the fibre direction, and that the performance of the method depends mostly on the
range of wavefront directions present in the measurement area. The main advantage of the presented
method over existing methods is that it still functions in the presence of conduction blocks, as long as
the surrounding tissue is approximately homogeneous.
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Nomenclature

Abbreviations

AF Atrial fibrillation.
CFA Confirmatory factor analysis.
CMM Compact matrix model.
ECG Electrocardiogram.
EGM (Epicardial) electrogram.
FDM Finite difference method.
SCFA Simultaneous confimatory factor analysis.

Symbols

C Membrane capacitance per unit area.
I Transmembrane current density.
Iion Total ionic current density.
Ist Stimulus current density.
M Total number of electrodes.
m Electrode index.
N Total number of nodes (cells).
n Node (cell) index.
r Cell to sensor distance.
s Conduction slowness.
sℓ Conduction slowness in longitudinal direction.
T Total number of time instances.
t Time index.
V Transmembrane potential.
x First spatial dimension index.
y Second spatial dimension index.
z Cell to sensor height.
αs Conduction slowness anisotropy ratio.
ασ Conductivity anisotropy ratio.
β Cellular surface to volume ratio.
∆t Sample time.
∆x Distance between nodes in x-direction.
∆y Distance between nodes in y-direction.
δ Dirac delta function.
ζ Fibre direction, longitudinal conductivity angle.
ξ Longitudinal conduction slowness angle.
Σ Conductivity tensor.
σe Extracellular conductivity constant.
σℓ Conductivity in longitudinal direction.
τ Local activation time.
Φ Measured potential.

xi





1
Introduction

Contractions of the heart are induced by action potentials propagating through the cardiac tissue.
These action potentials consist of a rapid depolarisation of the transmembrane potential of a muscle
cell (myocyte), causing the muscle to contract and the neighbouring cells to depolarise as well. The
electrical propagation through the cardiac cells that follows is determined by the tissue conductivity.
Due to the complex composition of cardiac tissue, the conductivity is generally inhomogeneous and
orthotropic, with the main direction of propagation aligned with the fibre direction.

Impaired electrical conductivity in pathological tissue plays an important role in medicine as it gives
rise to heart rhythm disorders such as atrial fibrillation (AF) [1]. The impaired conductivity hinders a
smooth contraction of the atria, which has several long-term health risks such as an increased risk of
heart failure and stroke. One of the ultimate steps of AF management is catheter ablation, a surgical
procedure that can be performed to remove pathological spots in the tissue. An epicardial electrogram
(EGM) is used to localise the these pathological spots, known as conduction blocks. Being able to
estimate the local atrial tissue conductivity from EGM recordings is therefore an important tool in
diagnosing and treating AF.

The inverse problem of estimating local tissue conductivity parameters from EGM measurements,
however, is an ill-posed and highly challenging task due to high dimensionality, nonlinearity and stochas-
ticity. Furthermore, most estimation approaches focus on finding only a single set of homogeneous pa-
rameters for the whole tissue, which does not facilitate localisation of areas with impaired conductivity.
Recently, some methods have been developed that estimate conductivity parameters locally for groups
of cells within the measurement area. Although these methods perform relatively well, they depend on
a number of parameters that are assumed to be known. One of these parameters is the fibre direction,
which influences the effective conductivity due to the orthotropic nature of the tissue. In this thesis, the
effects of the fibre direction on the atrial physiology and on conductivity estimation are investigated,
and methods to estimate the fibre direction for tissue with conduction blocks are explored.

The remainder of this thesis is organised as follows. Chapter 2 provides the relevant background in-
formation on the physiology of the heart as well as on the mathematical models that are commonly used
to describe this physiology. This chapter also highlights two recent conductivity estimation methods.
In Chapter 3, the effects of the fibre direction on the atrial physiology and on conductivity estimation
are investigated. Using this knowledge, estimation of the fibre direction based on EGM measurements
is explored in Chapter 4. Finally, Chapter 5 concludes the thesis and presents an overview of open
questions and recommendations.
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2
Background Knowledge

Cardiac tissue parameter estimation methods start with a mathematical model of the physiology of
the heart. This chapter provides the necessary background information on this physiology. Different
mathematical models on cell and tissue scale are highlighted as well. Finally, a selection of parameter
estimation techniques are discussed. A more detailed overview of the cardiac physiology can be found
in [2].

2.1. Physiology of the Heart
The heart is a muscular organ that is responsible for circulating blood through the body. The human
heart consists of four chambers: the two upper atria where blood enters the heart and the two lower
ventricles where blood is pumped out. All chambers are surrounded by cardiac tissue that provides
mechanical contraction when stimulated electrically. The fibrous skeleton of the heart provides structure
and serves as electrical boundary between chambers.

Cardiac tissue is a composite tissue and consists mainly of myocytes and fibroblasts. An extracellular
matrix provides support to these cells and extracellular liquid fills the space in between. Fibroblasts are
the most prominent cell type by number. Their main function is to maintain the extracellular matrix,
but their effect on large scale electrical properties is not yet well understood [3]. Myocytes are the most
prominent cell type by volume. Myocytes are muscle cells, capable of providing tension. The geometry
of these cells can be approximated by a cylinder with a length of 50 to 150µm and a diameter of 10
to 20µm, but the true shapes and dimensions are highly variable throughout the tissue. Myocytes are
typically joined at their ends such that the local fibre orientation can be defined along the longitudinal
axes of the myocytes. Sheets consisting of 4 to 6 layers of myocytes are separated by cleavage planes
and connective tissue, forming a laminar structure.

The interior of a myocyte is contained by a lipid membrane with an approximate capacitance of 1 to
10µF/cm2. This membrane is responsible for governing the concentrations of different ions inside the
cell. At rest, the principal intracellular ion is potassium (K+) and the principal extracellular ions are
sodium (Na+) and chloride (Cl−). The resulting electrical potential difference across the membrane,
known as the transmembrane potential, is typically around −81.2mV at rest. The flow of these ions
through the membrane is controlled by ion channels that gate the diffusion flow of specific ions, and ion
pumps that move ions against the concentration gradient. These channels and pumps can be dependent
on the intra- and extracellular concentrations of certain ions and on the transmembrane potential. Most
ion channels are found at the ends of myocytes, such that electrical conductivity is higher along the
longitudinal direction opposed to the transverse direction. Due to the laminar structure of the tissue,
conductivity is lowest in the direction normal to the sheets. This makes conductivity an orthotropic
tissue parameter with an experimentally found conductivity ratio approximately 4 : 2 : 1 in longitudinal
direction, transverse direction along the sheets and in direction normal to the sheets respectively [4].

Myocyte contraction is triggered by electrical depolarisation. Specialised myocytes in the sinoatrial
node can generate an electrical impulse: the action potential. This action potential consists of a rapid
depolarisation followed by a slower repolarisation. Figure 2.1 shows a typical action potential shape.
The rapid depolarisation causes calcium (Ca2+) to be released into the myocyte, which in turn causes
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4 Chapter 2. Background Knowledge

Figure 2.1: Typical simulated action potential at a cell,
for a single heartbeat.

Figure 2.2: Example of a simulated unipolar EGM
from an electrode, for a single heartbeat.

contraction. Due to intercellular coupling, depolarisation also induces depolarisation in neighbouring
myocytes. Because of the delay in this coupling, each myocyte activates at a different time, known as the
local activation time. A propagating depolatisation wave follows through the tissue. The orthotropic
nature of the tissue conductivity means that the conduction velocity of the wave is also orthotropic and
the wavefrons are therefore usually elliptical in shape. Figure 3.1 shows some examples of activation
maps.

Different methods exist to measure the transmembrane potential of cardiac tissue. The most common
method is electrocardiography, which uses electrodes that measure skin potential. The conventional
setup consists of ten electrodes placed on the arms, legs and chest. This results in twelve measured
potential differences known as leads, together forming the electrocardiogram (ECG). ECGs are relatively
easy to make and do not require invasive surgery. Another approach is to place a high resolution
electrode array on the surface of cardiac tissue during open heart surgery, and measure the potential at
multiple locations simultaneously. The resulting measurements are known as an epicardiac electrogram
(EGM). Although EGMs are more difficult to record, the benefit is that they can provide information
on locally varying tissue parameters such as the conductivity. Figure 2.2 shows an example of an EGM
from a single electrode.

2.2. Mathematical Models
Mathematical models of cardiac electrophysiology provide a simplified description of the complicated
action potential propagation system. Most models are composed of a single cell model that details
the ionic currents through the cell membrane, and a domain model that expands the single cell model
to tissue scale. An EGM model provides the relationship between the transmembrane potential and
measured potential.

Ionic Current Model
Different models of ionic current exist, most derived from experimental observations following the
approaches pioneered by Hodgkin and Huxley [5]. Different models consider different types of cardiac
cells and different mammalian species. An overview of cardiac cell models can be found in [6], [7].

For human atrial cells, a prominent model is the Courtemanche model published in 1998 [8]. This
model decomposes the total ionic current through the membrane Iion into twelve currents, each concern-
ing a specific ion channel or pump. The gating properties of these channels and pumps are determined
by in total 21 variables that follow temporal differential equations. These 21 variables include the trans-
membrane potential V , intracellular concentrations of Na+and K+, the Ca2+concentration in three
different intracellular regions, and 15 gating variables that represent the probability of finding an ion
channel open.



2.2. Mathematical Models 5

Domain Models
An ionic current model can be extended to tissue level by approximating the tissue as continuous
and homogeneous. In the bidomain model, two overlapping domains separated by a membrane are
considered: one for the intracellular and one for the extracellular space. Each domain is characterised
by a location dependent conductivity tensor Σi,e, and potential Vi,e such that the transmembrane
potential can be defined as

V = Vi − Ve. (2.1)

Combining Ohm’s law and conservation of current, the total outward transmembrane current density
I can be expressed as{

I = β−1∇TΣi∇Vi

I = −β−1∇TΣe∇Ve
(2.2)

where β is a parameter representing the cellular surface to volume ratio. The transmembrane current
density is composed of a capacitive current density from the cell membrane with capacitance per unit
area C, and an ionic current density Iion that follows from an individual cell model [5]. An external
stimulus current density Ist can also be included, resulting in

I = C
∂V

∂t
+ Iion − Ist. (2.3)

Combining (2.1), (2.2) and (2.3) leads to the two partial differential equations that constitute the
bidomain model:{

β−1∇TΣi∇(V + Ve) = C ∂V
∂t + Iion − Ist

∇T(Σi +Σe)∇Ve = −∇TΣi∇V.
(2.4)

Although the bidomain description of cardiac tissue is relatively accurate and reliable, finding nu-
merical solutions can be challenging. A simplification to the bidomain model can be made by assuming
that the intracellular and extracellular spaces have the same anisotropy such that the conductivity ten-
sors are proportional. The cardiac tissue can then be considered as a single domain with conductivity
tensor Σ that equals the two domain conductivities in series. Substituting this series conductivity into
(2.4) then gives the transmembrane current density as

I = β−1∇TΣ∇V (2.5)

which, combined with (2.3), yields

β−1∇TΣ∇V = C
∂V

∂t
+ Iion − Ist. (2.6)

This single partial differential equation describes the monodomain model.
Because of the reduced number of partial differential equations, numerical solutions are easier to

find for the monodomain model compared to the bidomain method. Furthermore, it has been shown
that the monodomain model is still a good approximation of the bidomain model, even for unequal
anisotropy ratios [9]–[11]. This only holds, however, as long as there is no injection of extracellular
current involved, as is for example the case in defibrillation modelling.

These continuous domain models are often discretised for computational purposes. The tissue can
be approximated by a regular lattice of Nx ×Ny = N nodes that can either represent cells or groups of
cells. The distance between nodes is denoted as ∆x and ∆y in the respective directions. Assuming a
regular lattice allows for the finite difference method (FDM) to be used in place of continuous partial
derivatives. Time can similarly be discretised with a period of ∆t between samples.

Conductivity Tensor
The conductivity tensor is an important tissue parameter that relates currents through the tissue to the
potential. Due to the orthotropic nature of the tissue, the eigenvectors of the conductivity tensor are
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Figure 2.3: Ellipse representation of a conductivity tensor for a single node, with ασ = 1
2

and ζ = 1
6
π rad.

orthonormal and the tensor is therefore always symmetric. When considering two dimensional tissue,
the conductivity tensor is a 2× 2 matrix and can generally be expressed as

Σ =

(
σxx σxy

σxy σyy

)
. (2.7)

A more intuitive interpretation follows from applying an eigendecomposition

Σ =

(
cos ζ − sin ζ
sin ζ cos ζ

)(
σℓ 0
0 ασσℓ

)(
cos ζ sin ζ
− sin ζ cos ζ

)
. (2.8)

Here, σℓ is the conductivity in longitudinal direction, ασ is the anisotropy ratio such that ασσℓ represents
the conductivity in transverse direction, and ζ is the angle of longitudinal conductivity relative to the
x-axis. Due to the spatial organisation of ion channels, ζ also corresponds to the local orientation of
the tissue and those two parameters will be considered identical.

Using these three parameters, the conductivity tensor can be represented as an ellipse. The semi-
major and semi-minor axes are set equal to the longitudinal and transverse conductivities, and the ellipse
is rotated with the fibre direction angle. The radius of the ellipse in a certain direction is then equal
to the effective conductivity in that direction. Figure 2.3 shows an example of an ellipse representation
for a single node.

EGM Measurements
The unipolar EGM measurement setup consists of a regular lattice of Mx ×My = M electrodes. This
lattice is placed on the cardiac tissue, with an assumed constant cell to sensor height z. The distance
between electrode m and node n is found as

rm,n =
√

(xm − xn)2 + (ym − yn)2 + z2 (2.9)

when the electrode thickness is assumed negligible (see also [12]). Each electrode indirectly measures
the transmembrane potential of the area around the electrode. The resulting measured potential Φm

for electrode m can be expressed as a function of the transmembrane current densities [13], and after
discretisation results in

Φm =
∆x∆y

4πσe

N∑
n=1

In
rm,n

(2.10)

where σe is the extracellular conductivity constant and In denotes the transmembrane current density
for the nth node, found from a discretisation of (2.5) at (xn, yn).

Local Activation Time
When a depolarisation wave passes through the tissue, each cell is activated at a different time. The
local activation time is therefore not a parameter inherent to the tissue but a property of a specific
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depolarisation wave, and can thus only be defined relatively within the time frame of a specific heartbeat.
The local activation time τ of a cell is found from the transmembrane potential either as the instant
a certain threshold is reached or as the instant the time derivative is maximal. In practice, however,
transmembrane potentials are only known indirectly through the measured EGM potentials, and the
local activation times have to be estimated. A number of different estimation methods exists [14], but
one of the most common method is to use the instant the time derivative of the measured potential is
minimal. This estimate leads to an Mx ×My discrete, approximate activation map.

2.3. Tissue Conductivity Estimation Methods
Although estimating cardiac tissue parameters from epicardial electrograms is a complex and ill-posed
inverse problem, several methods of solving this problem have been developed. This section describes
two such methods and highlights the necessary underlying assumptions and simplifications. The first
method is based around a compact matrix model (CMM) for electrograms and was created by Abdi et
al. in 2019 [15]. The second method makes use of simultaneous confirmatory factor analysis (SCFA)
[16] and was developed by Sun et al. in 2021 [17], [18].

Compact Matrix Model
The estimation method by Abdi et al. [15] aims to estimate the longitudinal conductivities and starts
with the two-dimensional discretised monodomain model. The transmembrane potentials for all N
nodes and T time instances are expressed as the N ×T matrix V , the measured potentials similarly for
all M electrodes as the M × T matrix Φ, and the reciprocal distances 1/rm,n from (2.9) as the M ×N
matrix R. With these matrix representations, the EGM model of (2.10) can be reformulated as

Φ =
∆x∆y

4πβσe
RDσV . (2.11)

The double spatial derivative operator Dσ is used to express the transmembrane current density in
(2.10) in terms of the transmembrane potential using (2.5). This operator also contains the conductivity
parameters.

When estimating the conductivity parameters from (2.11), computation of the transmembrane po-
tential matrix is required. This process can be simplified by assuming that all action potentials have the
same temporal shape but a different activation time [19], [20]. This means that the action potential of
the nth node, Vn(t), can be replaced by a stereotypical action potential V0(t− τn) with the correspond-
ing local activation time τn. The matrix V τ resulting from this substitution can then replace the true
V in (2.11). The stereotypical action potential is obtained from the Courtemanche ionic current model,
and the local activation times are estimated from the EGMs. For nodes not directly under electrodes,
interpolation is used.

Finally, the linear dependency between the measured potential and longitudinal conductivity is
highlighted by reformulating the measured potential as a vector where all the columns of Φ are stacked
to form a single vector of length MT . Vector σℓ contains the longitudinal conductivities for all N nodes.
Using properties of the Khatri–Rao and Kronecker products, (2.11) can then be reformulated as

vec(Φ) = M τ (ζ) σℓ. (2.12)
The mixing matrix M τ consists of all the known constants of (2.11), and depends nonlinearly on the
fibre direction. The resulting equation, with a clear linear dependence between measured potentials
and conductivity parameters, is known as the compact matrix model (CMM) for atrial electrograms.

To estimate the longitudinal conductivity values, the least squares difference between the measure-
ments and model output is minimised. Both the anisotropy and fibre direction for each node are
assumed to be known. An L1-norm regularisation term promotes a sparse solution with respect to an
average conductivity value that is determined by prior knowledge. A nuclear norm (sum of singular
values) regularisation term promotes spatial smoothness of the conductivity. The optimisation problem
is solved using the Split Bregman method [21], which solves the problem iteratively by separating it
into smaller problems and updating the estimates one at a time.

Simultaneous Confirmatory Factor Analysis
The estimation method by Sun et al. [17], [18] is based partly on the CMM method and similarly uses
the discretised two-dimensional monodomain model. A stereotypical action potential is again assumed,
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such that the action potential of node n can be approximated as a temporal convolution (denoted by
∗) of the stereotypical action potential V0(t) with a Dirac delta function:

Vn(t) ≈ V0(t− τn) = δ(t− τn) ∗ V0(t). (2.13)

Concatenating the Dirac delta functions for all N activation times into a vector, the M measured
potentials at time t can be written as

Φ(t) =
∆x∆y

4πβσe
RDσδ(t) ∗ V0(t) +U(t) = h(t) ∗ V0(t) +U(t). (2.14)

It is assumed that the electrodes measure some noise U(t) but no interference from neighbouring tissue.
The mth element of h(t) can be seen as an impulse response from the nodes to the mth electrode. Using
a short-time Fourier transform on (2.14) results in

Φ̃(k, l) = h̃(k, l)Ṽ0(k, l) + Ũ(k, l) (2.15)

for frequency bin k and time frame l. Time frames are chosen such that each contains one heartbeat. The
longitudinal conductivity and anisotropy ratio parameters are assumed to be constant across different
frequencies and time frames (heartbeats).

These parameters can now be estimated using confirmatory factor analysis (CFA). CFA is a struc-
tural equation modelling technique that estimates parameters by reproducing an input covariance matrix
[16]. For each frequency and time frame, two estimates of the power spectral density matrix of the mea-
sured potential can be formed. The first is based on the model of (2.15) using the unknown tissue
parameters, the second is a maximum likelihood estimate using the measured data. The simultaneous
CFA (SCFA) approach aims to minimise the Frobenius norms of the difference between these two power
spectral density matrices, summed over frequency and time frames. Constraints on the optimisation pa-
rameters are included for robustness, ensuring that the target parameters fall into reasonable bounds set
by prior knowledge. The optimisation problem is solved numerically using an interior-point algorithm.

Assuming appropriate conditions for both estimation methods, the SCFA method outperforms the
CMM method [17], [18]. However, the two methods are based on different assumptions. The CMM
method assumes that the fibre directions and anisotropy ratios are known before estimation. This
reduces the applicability of the method to measurements where the tissue geometry is taken into account.
The SCFA method estimates anisotropy ratios per node along with the main conductivities, but the
fibre direction angle is assumed to be zero for all nodes. This not only requires the fibre direction to be
smooth, but also forces measurements to be taken more strictly as the electrode array must be aligned
with the tissue.



3
Effect of the Fibre Direction on

Atrial Physiology
The fibre direction of atrial tissue determines the orientation of anisotropic conductivity and thus plays
an important role in the physiology of the heart. The conductivity estimation methods highlighted in
Chapter 2 either assume the fibre direction to be known, or require the electrode array to be aligned
with the fibre direction. In this chapter, the effects of the fibre direction on atrial physiology and on
the performance of conductivity estimation methods will be explored.

The two-dimensional conductivity tensor is composed of three parameters, either represented in the
matrix form of (2.7) or in the eigendecomposition form of (2.8). The fibre direction appears in the
latter expression and parametrises the eigenvectors. Due to the symmetrical nature of the conductivity
tensor, the eigenvector matrix is a rotation matrix with the fibre direction as rotation angle. As
would be expected intuitively, this means that a nonzero fibre direction simply rotates the conductivity
properties with respect to the electrode array. The effect of this rotation depends on the anisotropy: a
lower anisotropy ratio means that the fibre direction can influence the effective conductivity in a certain
direction more heavily.

In the monodomain model of (2.6), the conductivity tensor appears in the spatial gradient term.
When a cell is depolarised, the potential gradient that arises causes a transmembrane current to flow
through neighbouring cells. This current raises the transmembrane potential of those cells until the
activation threshold is reached. The fibre direction in the conductivity tensor therefore has a direct effect
on the depolarisation wavefront orientation and thus on the activation times of the cells. A simulation
example is presented in Figure 3.1, which shows simulated activation maps based on homogeneous,
anisotropic tissue but with four different fibre directions. The activation times change considerably
depending on the fibre direction, and elliptical wavefronts in the corresponding fibre directions can
roughly be made out. The fibre direction therefore clearly impacts the local activation times.

Once a cell is depolarised, however, the dynamical behaviour of the cell is predominantly controlled
by the ionic currents through the tissue. These ionic currents are independent of the potential gradient
or the conductivity tensor. The fibre direction therefore only influences the activation times and not the
temporal shape of the transmembrane potential. Figure 3.2a shows the transmembrane currents at node
nx = 45, ny = 1 corresponding to the four simulations in Figure 3.1. These currents are approximately
delayed versions of each other and have similar amplitude and shape. This is highlighted more clearly
in Figure 3.2b, where the currents are shifted with their corresponding local activation time such that
they overlap. This demonstrates that the fibre direction indeed barely affects the temporal shape of
the transmembrane current (and, in extension, of the transmembrane potential) after activation.

The effect of the fibre direction on conductivity estimation methods is hard to quantify, both theo-
retically and experimentally. Due to the high nonconvexity of the estimation problems with respect to
the fibre direction, estimation performances for different fibre directions are difficult to compare.

Considering a wrong fibre direction, and consequentially wrong activation times, causes model mis-
match errors in the compact matrix model used in both the CMM and SCFA estimation methods. An

9
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(a) ζ = 0 rad (b) ζ = 1
4π rad

(c) ζ = 1
2π rad (d) ζ = 3

4π rad

Figure 3.1: Simulated activation maps for homogeneous tissue with ασ = 1
2

and different ζ.

(a) (b)

Figure 3.2: Simulated transmembrane current densities of a certain node for homogeneous tissue with ασ = 0.5 and
different ζ, against time (a) within the time frame, (b) relative to the activation time of the node for each simulation.
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error in the fibre direction Eζ translates to an error in the longitudinal conductivity of

Eσℓ
= σℓ(1− ασ) sin2 Eζ . (3.1)

The conductivity error is higher for lower anisotropies because of the larger difference between longitu-
dinal and transversal conductivity values. The largest conductivity error is found when the considered
fibre direction is perpendicular to the true fibre direction, in which case the longitudinal and transversal
directions are effectively interchanged. The model mismatch error from considering a wrong fibre direc-
tion can be expected to decrease the estimation performance, and knowing the fibre direction values as
accurately as possible can therefore be beneficial.





4
Fibre Direction Estimation

Because the fibre direction has a nontrivial influence on the potentials measured from an EGM, it can
be useful to estimate the fibre direction based on EGM measurements. There are two ways to approach
this problem. Firstly, the fibre direction can be estimated jointly with the conductivity by including it
as an optimisation parameter. However, adding more unknowns to the optimisation problem without
utilising additional information decreases the estimation accuracy. This might especially be true for
the fibre direction, as it is a highly nonconvex parameter in the monodomain model in (2.6). Joint
estimation of conductivity and fibre direction using existing methods might therefore not be the best
approach.

Alternatively, the fibre direction can be estimated independently. This estimate can then either be
used as a constant in a conductivity estimation method, or as an initial guess for a joint estimation.
As demonstrated in Chapter 3, the fibre direction mostly influences the local activation times of cells.
The independent estimation problem can therefore be reduced to using only activation maps of cells.
One such method was developed by Roney et al. [22] and is based on elliptical wavefront fitting. This
method requires the tissue to be homogeneous, such that the wavefronts are elliptical in shape. In the
presence of conduction blocks, however, wavefronts break up. In these cases, elliptical wavefront fitting
is no longer an accurate method. In this chapter, a novel fibre direction estimation method is presented
that is more accurate for tissue with conduction blocks.

4.1. Conduction Slowness
An activation map of an area of cardiac tissue shows the propagation of a depolarisation wave. The
velocity of the wavefront is known as the conduction velocity, and its reciprocal quantity is conduc-
tion slowness. Conduction slowness is an interesting wave property with a strong dependence on the
conductivity parameters. Similarly to tissue conductivity, conduction slowness is orthotropic [23] and
can be represented as an ellipse in the conduction slowness space. The orientation of this ellipse is the
longitudinal conduction slowness direction ξ. This direction aligns with the transversal conductivity
direction such that

ξ ⊥ ζ. (4.1)

The semiminor to semimajor axis ratio is the conduction slowness anisotropy ratio αs, which is related
to the conductivity anisotropy ratio as [24]

α2
s = ασ. (4.2)

The radius of the ellipse in the direction of a wavefront equals the effective conduction slowness of
that wavefront. Figure 4.1 shows an example of the ellipse representation of the conduction slowness
corresponding to the conductivity ellipse example in Figure 2.3.

The local conduction slowness of a node is a vector that can be found from the gradient of the
corresponding activation map:

s(x, y) =

(
sx(x, y)
sy(x, y)

)
= ∇τ(x, y). (4.3)
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Figure 4.1: Ellipse representation of conduction slowness with αs = 1√
2

and ξ = 2
3
π rad.

Because activation maps are discrete, this gradient can be numerically approximated using the FDM.
The local conduction slownesses can be represented as points in the conduction slowness space, and
for a homogeneous area of tissue, these points roughly align with the aforementioned ellipse. The fibre
direction and conductivity anisotropy ratio can therefore be estimated from an activation map by fitting
a modelled ellipse to the conduction slowness points. This fitting problem is expressed mathematically
as the least squares optimisation problem

min
sℓ,αs,ξ

N∑
n=1

(
∥sn∥ − αssℓ

(
α2
s cos2

(
arctan sy,n

sx,n
− ξ

)
+ sin2

(
arctan sy,n

sx,n
− ξ

))− 1
2

)2

, (4.4)

where the sum of squared distances between the points for each node n and the modelled ellipse is
minimised. The parameter sℓ is the longitudinal conduction slowness, which determines the scale of the
fitted ellipse. Fibre direction and conductivity anisotropy ratio estimates can now be found from the
optimisation parameter estimates using (4.1) and (4.2).

Two simulation examples are shown in Figure 4.2, corresponding to the first two activation maps
in Figure 3.1. The local conduction slowness vectors are plotted as points, with relative area sizes
corresponding to the amount of overlapping vectors. The magnitude of the vectors closely follow an
elliptical shape, and the range of vector directions equals the range of wavefront directions present in
the considered tissue area. A larger range of wavefront directions usually leads to a more accurate
ellipse fit and therefore to more accurate estimates. The fitted ellipses, found from applying (4.4), are
plotted as well. The resulting estimates are ζ̂ = 0.06π rad for Figure 4.2a and ζ̂ = 0.25π rad for Figure
4.2b, with α̂σ = 0.44 for both.

When conduction blocks are present in the tissue, the elliptical wavefronts break up and wakes
form behind the blocks. This effect can be observed in the simulated activation map in Figure 4.3.
The corresponding conduction slowness space is shown in Figure 4.4. Although most local conduction
slowness vectors still roughly follow the underlying ellipse, a notable number of outliers is present as
well. Looking at a magnitude map of the local conduction slowness, shown in Figure 4.5, two main
causes of these outliers can be seen. The first cause is the lower conductivity of the conduction blocks.
Low conductivities cause high magnitudes of the local conduction slowness. All the high magnitude
outliers are therefore concentrated at and closely around the conduction blocks. The second cause of
the outliers is the thin trail of low magnitudes that can be observed at the centre of the wakes behind
conduction blocks. This is where two wavefronts, coming from around each side of the block, collide.
These collisions are characterised by a near-zero conduction slowness and thus cause low magnitude
outliers.

The conduction block areas and the thin trails at the centre of their wakes produce unusable local
conduction slowness vectors. However, most of the area in the wakes still behaves identical to the rest
of the tissue, but with altered wavefront directions. As long as conduction blocks are not too large or
prevalent, the number of unusable local conduction slowness vectors remains small. Outlier detection
methods can be used to filter out magnitude outliers in the estimation process and the estimation
performance will not be reduced too drastically.
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(a) ζ = 0 rad (b) ζ = 1
4π rad

Figure 4.2: Local conduction slowness points and fitted ellipse (dashed line) corresponding to two of the activation
maps in Figure 3.1.

Figure 4.3: Simulated activation map for tissue with
two conduction blocks (white outlines), with ασ = 1

2
and

ζ = 1
4
π rad.

Figure 4.4: Local conduction slowness points and fitted
ellipse (dashed line) corresponding to the activation map

in Figure 4.3. Some outliers, with magnitudes up to
17 s/m, are not visible here.

Figure 4.5: Magnitude map of the conduction slowness corresponding to Figure 4.3.
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(a) (b)

Figure 4.6: Absolute estimation errors for the (a) fibre direction and (b) conductivity anisotropy ratio, both in cases
without conduction blocks and with two conduction blocks similar to the setup of Figure 4.3. The tissue has ασ = 1

2
and a varying true fibre direction, indicated relative to the wave origin direction.

The final fibre direction estimation algorithm based on activation maps can now be described by
the following steps:

1. find activation time estimates τ from measured potentials Φ;
2. calculate local conduction slowness vectors s using (4.3);
3. remove conduction slowness outliers, corresponding to conduction blocks, based on magnitude;
4. estimate conduction slowness parameters ξ and αs using (4.4);
5. convert conduction slowness parameters to the fibre direction ζ and conductivity anisotropy ratio

ασ using (4.1) and (4.2).

4.2. Estimation Results
To test the estimation method, activation maps were simulated for tissue with a range of fibre direc-
tions, both without and with two conduction blocks (similar to the activation maps of Figures 3.1 and
4.3 respectively). The estimation algorithm was applied to these activation maps, and the resulting
estimation performance is shown in Figure 4.6. For both the fibre direction and conductivity anisotropy
ratio, the estimation performance is expressed as the absolute error, given by the absolute difference
between the estimated and true parameter.

The fibre direction estimation performs well, especially in the case without blocks. Due to the sym-
metry of the ellipse, the absolute error is always between 0 rad and 1

2π rad. Guessing a fibre direction at
random would therefore lead to an expected absolute error of 1

4π rad, which this method stays far below.
The estimation performance is (roughly) independent of the absolute fibre direction and wave origin di-
rection. A mismatch between these two directions, however, does influence the estimation performance
significantly. This is because larger deviations lead to smaller ranges of wavefront directions present
in the tissue area. The two examples of Figure 4.2 show this: Figure 4.2a corresponds to a mismatch
of 1

4π rad and has a significantly smaller wavefront direction range than Figure 4.2b, corresponding to
no mismatch. A smaller wavefront range makes the ellipse fitting process less accurate, which in turn
decreases the estimation accuracy. This can be observed in Figure 4.6, where the absolute errors are
plotted against the true fibre direction relative to the wave origin direction. In practice, only small
deviations between fibre direction and wave origin direction would be expected, which favours smaller
estimation errors for this method.

The conductivity anisotropy ratio estimation is not very accurate. The estimation error does not
reach zero under any circumstance, but the estimated values are still within a decent range (compared to
the maximum error of 0.5 in this simulation). The absolute estimation error does not seem to correlate
much with the true fibre direction or with whether or not some conduction blocks are present.
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(a) (b)

Figure 4.7: Absolute estimation errors for the fibre direction for tissue (a) without conduction blocks and (b) with
two conduction blocks similar to the setup of Figure 4.3. The tissue has ασ = 1

2
and a varying true fibre direction,

indicated relative to the wave origin direction. Estimation errors are shown both for when ασ is estimated and for when
ασ is known.

Known Anisotropy Ratio
In contrast to the fibre direction, the conductivity anisotropy ratio is a tissue parameter that is indepen-
dent of the frame of reference of the measurement setup. Instead of estimating this parameter, it can
also be assumed to be known beforehand, for example by using a value found in literature [25]. This
value, converted to the conduction slowness anisotropy ratio with (4.2), can then be used as a known
constant in (4.4) instead of treating it as optimisation parameter. This would remove an unknown in
the optimisation step.

Figure 4.7 shows absolute estimation errors for the fibre direction, both for when the anisotropy
ratio is estimated and for when the true anisotropy ratio is used as constant. On the average, using
the true anisotropy ratio does not seem to improve the estimation performance. This can possibly be
because the anisotropy ratio does not add much uncertainty in the optimisation of (4.4). Removing the
unknown would therefore not lead to better estimates. Another possibility is that the used model of
(4.2) is not accurate or not fully valid under conditions used in the simulation. This might also explain
why the conductivity anisotropy ratio estimation error does not reach zero under any circumstance.

Activation Map Resolution
For the previous simulations, the activation times for all N nodes were used. In practice, however,
activation times are estimated from the measured potentials. This leads to a lower spatial resolution,
depending on the number of electrodes M . Figure 4.8 shows simulated absolute estimation errors for
the fibre direction, for a decreasing spatial resolution. For tissue without blocks, the average error only
slightly increases for lower resolutions. This is because the number of conduction slowness vectors has
a smaller impact on the estimation performance than the range of vector directions, which is roughly
preserved for lower resolutions. For tissue with conduction blocks, however, the decreased spatial
resolution does have a considerable impact on the estimation performance. A decreased resolution blurs
the activation times around the blocks, which means that relatively more conduction slowness vectors
are affected by the blocks. Higher spatial resolution measurements therefore result in more accurate
estimates, in particular when conduction blocks are present. The average conductivity anisotropy
estimation performance is barely affected by the resolution of the activation map, except in the extreme
case of a M = 5× 5 activation map for tissue with conduction blocks.

Aside from the spatial discretisation, time is also discretised. This means that the conduction
slowness vectors can only take on values on a regular lattice in the conduction slowness space, which is
visible in Figures 4.2 and 4.4. Increasing the temporal resolution also increases the conduction slowness
resolution, such that the conduction slowness vectors more closely follow the underlying ellipse. However,
as long as the temporal resolution is high enough to properly estimate the activation times, increasing
the resolution does not have a significant impact on the estimation performance. The discretisation
errors are roughly averaged out in the fitting process.
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(a) (b)

Figure 4.8: Absolute estimation errors for the fibre direction for tissue (a) without conduction blocks and (b) with
two conduction blocks similar to the setup of Figure 4.3. The tissue has ασ = 1

2
and a varying true fibre direction,

indicated relative to the wave origin direction. A decreasing number of activation times M is used.

(a) (b)

Figure 4.9: Simulated activation maps for a planar activation wave through tissue (a) without and (b) with a
conduction block (white outlines), with ασ = 1

2
and ζ = 1

6
π rad.

Planar Wavefronts
If an approximately planar activation wave propagates through homogeneous tissue, the range of wave-
front directions present in the tissue is small. This leads to poor estimates. Sometimes, the presence of
a conduction block can help to limit this problem. Although a conduction block introduces unusable
conduction slowness outliers, it can also break up a planar wavefront causing a wider range of wave-
front directions. Because the area around and behind the conduction block still follows the underlying
conduction slowness ellipse, this increased wavefront direction range can be beneficial to the estimation.
The presence of conduction blocks can therefore improve the estimation performance under certain
circumstances with planar wavefronts.

An example simulation of a planar wavefront is shown in Figure 4.9, both for homogeneous tissue
and for tissue with a conduction block. The corresponding conduction slowness points and fitted ellipse
are shown in Figure 4.10. For the tissue without a conduction block, the range of wavefront directions
is indeed small. The resulting estimates ζ̂ = 0.00 rad and α̂σ = 0.64 are poor due to this limited
range. When a conduction block is present, however, the planar wavefront breaks up and the wavefront
direction range is increased significantly. Even though some outliers are added, the resulting estimates
ζ̂ = 0.15π rad and α̂σ = 0.51 are highly accurate. This simulation example shows that the fibre direction
estimation can indeed improve with the presence of conduction blocks for certain situations.
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(a) (b)

Figure 4.10: Local conduction slowness points and fitted ellipse (dashed line) corresponding to the two activation
maps of Figure 4.9 respectively. Some outliers, with magnitudes up to 29 s/m, are not visible in (b).

Inhomogeneous Estimation
Up until now, the tissue parameters were considered to be homogeneous, except for some possible
conduction blocks. It is reasonable to assume that the conductivity anisotropy ratio and fibre direction
usually do not vary much for a small area of tissue, such that only a single set of parameters needs to be
estimated. It might, however, still be useful to be able to estimate those parameters inhomogeneously
for different subareas within the measured area. This can be done trivially by applying the estimation
algorithm separately for each subarea. The drawback to this approach is that the effective area used for
each local estimation is decreased, leading to smaller ranges of wavefront directions available. Increasing
the spatial resolution of the estimation therefore leads to less accurate estimates. More intricate methods
of inhomogeneous estimation might be able to improve this trade-off.

4.3. Summarised Observations
Based on the numerous simulations performed for Section 4.2, some observations can be made about
the performance of the estimation algorithm. The largest factor influencing the estimation accuracy
is the range of wavefront directions present in the tissue area that is considered. A larger range leads
to a more accurate ellipse fitting and in turn to a higher estimation accuracy. The range of available
wavefront directions is mainly determined by the size of the considered tissue area and its closeness to
the wave origin. The alignment between the fibre direction and wave origin direction also influences
the wavefront direction range in this way, due to the anisotropic nature of the tissue. In case of
approximately planar wavefronts, the presence of conduction blocks can also increase the wavefront
direction range because of the wavefront breakup around the block. The spatial resolution of the used
activation map does not influence the estimation accuracy much, except for when conduction blocks are
present. For too low spatial resolutions, the activation times around blocks become blurred, decreasing
the proportion of useful activation times and hindering outlier detection. The temporal resolution of
the used activation map does not influence the estimation accuracy much as long as the resolution is
high enough to properly estimate the activation times. The conductivity parameters can be estimated
inhomogeneously by dividing the measurement area into smaller subareas, with a trade-off between
spatial resolution of the estimates and their accuracy.





5
Conclusion

The fibre direction is a tissue parameter that determines the direction of longitudinal conduction of the
tissue and appears in the spatial differential term of the monodomain equation. Through simulated
experimental observations, based on the monodomain and Courtemanche models, it was concluded
that the fibre direction almost exclusively influences the shape of the depolarisation wavefronts. This
means that (only) the activation times of the cells are dependent on the fibre direction. Considering
a wrong fibre direction can therefore lead to significant model mismatch errors when estimating the
tissue conductivity using an estimation method like the CMM of SCFA methods. It can thus be useful
to estimate the fibre direction.

The fibre direction can simply be included as an additional optimisation parameter in conductivity
estimation methods, such that it is estimated jointly with the conductivity. This will, however, de-
crease the estimation accuracy because an additional, nonconvex unknown is added to the problem. A
better strategy is therefore to estimate the fibre direction independently. Based on the aformentioned
observations, this estimation can be performed using an activation map of the measured tissue area.
A novel method was presented that estimates the fibre direction of atrial tissue based on conduction
slowness. Starting from an activation map, local conduction slownesses can be calculated. Due to some
interesting properties of the conduction slowness and its relation to conductivity, the fibre direction
and conductivity anisotropy ratio of an area of tissue can be estimated from these local conduction
slownesses. Numerous simulations were performed to test the estimation method under different cir-
cumstances. These simulations show that the method performs well (in relation to guessing at random)
and is quite robust against the presence of conduction blocks. Reduced spatial resolution activation
maps also barely affect the estimation accuracy, up to a reasonable limit.

A similar fibre direction estimation method has been developed by Roney et al. in 2019 [22]. This
method estimates a fibre direction and anisotropy ratio by applying elliptical wavefront fitting to an
activation map. The estimation accuracy of this method is adequate, as long as the area of tissue
is homogeneous. When conduction blocks are present, the wavefronts break up around the blocks
such that they are no longer elliptical. In these cases, the wavefront fitting method no longer works.
Consequently, this method does not work well in combination with conductivity estimation algorithms
like the CMM and SCFA algorithms, because their aim is to detect conduction blocks. The main goal
of the estimation method presented in this thesis was to provide accurate estimates even in cases of
tissue with conduction blocks. The performed simulations show that this goal has been achieved. The
estimation method presented in this thesis is therefore a considerable improvement upon existing fibre
direction estimation algorithms based on epicardial electrograms.

Although initial results of the fibre direction estimation method are promising, there are still a
number of open questions concerning the algorithm itself and its applicability in certain scenarios.
These open questions are provided below, together with some recommendations for possible future
improvements of the method.

• Improved outlier removal. In this work, the removal of conduction slowness outliers corre-
sponding to conduction blocks is based simply on the distribution of local conduction slowness
magnitudes. Even though this approach was functional enough to present the estimation method

21
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on a conceptual level, better outlier removal approaches might improve the estimation accuracy.
This is especially true for tissue with a high proportion of conduction blocks.

• Inhomogeneous estimation. The estimation method presented was only applied on tissue
with a homogeneous fibre direction and conductivity anisotropy ratio. Extending the method to
estimate multiple sets of parameters, for different subareas within the measurement area, might
be useful for inhomogeneous tissue. Although simply applying the method on smaller subareas
gives a trade-off between spatial resolution and accuracy, more intricate approaches could improve
the estimation on both fronts.

• Extension to 3D. In the tissue model used for the presented estimation method, the tissue was
approximated as 2D. In practice, however, cardiac tissue consists of laminar sheets of myocytes.
The fibre direction of these sheets rotates gradually throughout the tissue thickness [26]. Taking
into account the third dimension and its special structure might improve the estimation accuracy.

• Validation on physical data. In this work, the presented estimation method was only tested
on simulated EGMs. Despite the fact that the models used for the simulations have been shown
to be accurate, the estimation method still has to be validated by applying it on physical data.
This is complicated though, because physical data on epicardial measurements is limited and the
corresponding true fibre directions are generally unknown.
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Abstract

Contractions of the atria are triggered by action potentials that are generated in the sinoatrial node and propagate through
the atrial tissue. The propagation is dependent on the electrical conductivity of the tissue, which is generally orthotropic with
a longitudinal orientation along the atrial fibre direction. Areas of impaired conductivity give rise to irregular wavefronts,
which can lead to heart rhythm disorders such as atrial fibrillation. Being able to estimate the conductivity parameters from
an epicardial electrogram (EGM) is therefore an important tool in diagnosing and treating these disorders. Several estimation
methods have recently been developed, such as the compact matrix model by Abdi et al. and simultaneous confirmatory factor
analysis by Sun et al. However, both methods assume the fibre direction relative to the sensor array to be known before
estimation.

The fibre direction parametrises the effective conductivity in a direction and thus directly influences the shape of the activation
wavefronts. Once a cell is activated, however, a stereotypical action potential can be assumed independent of the conductivity.
Under this assumption, the fibre direction only influences the activation times of the cells. The fibre direction can therefore be
estimated from an activation map, found as the moments of steepest descent for each electrode of an EGM. Current methods
are based on fitting ellipses to the wavefronts in activation maps, which has a severely decreased performance for irregular
wavefronts due to conduction blocks.

This work present a novel method to estimate the fibre direction and conductivity anisotropy from activation maps, in order
to improve these estimates in the presence of conduction blocks. The method is based on the reciprocal conduction velocity
(or conduction slowness), a vector field that can be calculated from an activation map using the finite difference method.
Representing these vectors as coordinates, the resulting points roughly follow an ellipse whose orientiation is perpendicular to
the fibre direction. The ratio of the semimajor and semiminor axes of this ellipse is equal to the square root of the conductivity
anisotropy ratio. These two parameters can therefore be estimated from the ellipse that results as the least squares fit of the
conduction slowness vectors.

Activation maps were simulated for anisotropic tissue with varying fibre directions, both with and without conduction blocks.
The absolute estimation errors for these simulations are shown in the left and right figures below for the fibre direction and
conductivity anisotropy ratio respectively. These errors are plotted against the true fibre direction relative to the direction of the
activation wave propagation. These results show that the method can accurately estimate the fibre direction for homogeneous
tissue. In case of multiple conduction blocks, the performance is a bit worse but still relatively accurate (to within 0.1π rad
most of the time). The anisotropy ratio is estimated accurately for both cases.
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