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Preface

In recent years, soft robotics has emerged as a transformative field due to its unique capabilities, such
as adaptability and safety in interacting with delicate objects and dynamic environments. Unlike tra-
ditional rigid robots, soft robots are made from flexible materials, allowing them to perform tasks in
complex and unstructured settings. However, one of the primary challenges in soft robotics is accurate
pose estimation. The inherent deformability and non-linear behaviors of soft robots make traditional
pose estimation methods unreliable, particularly in scenarios requiring high precision.

To tackle this issue, multi-sensor fusion has gained attention as a robust solution. By combining data
from diverse sensor modalities, such as inertial measurement units (IMUs), cameras, and strain sen-
sors, it becomes possible to mitigate the limitations of individual sensors and improve the accuracy and
reliability of pose estimation. In this project, we employ a co-training method, a semi-supervised ma-
chine learning approach, to enhance the fusion process. This method leverages the complementary
strengths of multiple sensor types, iteratively refining pose estimation through collaborative training,
even with limited labeled data.

The goal of this graduation project is to develop a multi-sensor fusion framework using the co-training
method to achieve precise and robust pose estimation for soft robots. The project focuses on integrat-
ing data from IMUs, stereo cameras, and strain sensors, designing an effective fusion algorithm, and
validating the system through simulations and experiments. By addressing the challenges associated
with soft robot pose estimation, this work aims to contribute to the advancement of soft robotics and its
applications in fields such as healthcare, manufacturing, and exploration.

Xinhai Zhou
Delft, January 2025
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1
Introduction

Posture recognition and control in soft robots present significant challenges due to their inherent proper-
ties, such as infinite degrees of freedom and nonlinear material responses, which complicate dynamic
modeling and real-time control, making it difficult to accurately predict and control their posture and
movements. While the infinite DOF provides exceptional flexibility, it also greatly increases the com-
plexity of the control systems, requiring advanced modeling techniques like finite element methods or
Cosserat rod theory to approximate their behavior, often involving trade-offs between computational
cost and accuracy. Additionally, the nonlinear material responses of soft robots make their reactions
to various stimuli unpredictable, necessitating the development of innovative and adaptive control sys-
tems. The challenges are further exacerbated by the underactuated and redundantly actuated nature
of soft robots, which demand sophisticated control strategies capable of handling large elastic defor-
mations and unknown material parameters. To address these issues, researchers commonly employ
discretization techniques to reduce the infinite-dimensional configuration space into a finite set of func-
tional shapes, aiding in the prediction of the robots’ final states and dynamic behavior. Neural networks
and data-driven approaches are also widely utilized to enhance posture recognition and control.

In this study, we have developed a novel soft robotic structure utilizing smart materials as actuators,
aiming to harness their unique adaptability and responsiveness. The primary focus of this report is
on the recognition component of the soft robot, which plays a critical role in accurately identifying and
analyzing its posture and dynamic behavior. At the same time, it will provide a basis for the subsequent
design of control methods for soft robots.

The designed soft robotic structure, as depicted in the illustration, features a cylindrical configuration.
The top and bottom planes of the structure are supported by two precisely fabricated PMMA plates,
cut using laser technology, which provide the necessary structural stability. These support plates are
interconnected by a central cylindrical core made of shapememory polymer (SMP), chosen for its ability
to adapt and respond to external stimuli. Surrounding the SMP cylinder are three shape memory alloy
(SMA) springs, strategically positioned to actuate the structure.

SMP materials exhibit a high degree of temperature sensitivity, primarily reflected in the significant vari-
ation in their Young’s modulus. At room temperature, SMP materials possess a high Young’s modulus,
ensuring structural rigidity. However, when the material is heated and reaches a critical threshold tem-
perature, its Young’s modulus decreases dramatically, resulting in increased flexibility. Similarly, SMA
materials also display notable temperature-sensitive properties. They are typically designed with a pre-
defined memory shape, which allows them to recover to this shape upon heating after being deformed
at room temperature. The specific control methods for this structure will be discussed in detail in the
following sections.

To achieve precise control of the structure, accurate posture recognition is essential. In this study, a
combination of IMU sensors and stereo vision is utilized for posture recognition of the structure. Addi-
tionally, due to the lack of true data in practical applications, a co-training machine learning approach
is employed to train the recognition algorithm.

1
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1.1. Research question
Soft robots, with their inherent infinite degrees of freedom and nonlinear material behaviors, present sig-
nificant challenges for posture recognition. These challenges are further compounded by the absence
of true data in practical applications, which limits the development of accurate and reliable recogni-
tion systems. Addressing these complexities requires innovative approaches that can effectively utilize
available sensor data and advanced computational methods.

Thus, the main research question is: how to develop a novel method combining multi-sensor data and
machine learning techniques to achieve accurate and reliable posture recognition for soft robots?

The key questions this study seeks to address are:

- How can an efficient posture recognition framework be designed to accommodate the nonlinear and
complex properties of soft robots?

- How can posture recognition accuracy be improved in the absence of true data in practical applica-
tions?

- How can multi-sensor data (IMU and stereo vision) be effectively integrated to enhance recognition
performance?

- How can machine learning and co-training methods be utilized to address data scarcity and improve
recognition precision?

1.2. Research Objectives
1. Build an appropriate machine learning model for posture detection of the soft robot, tailored to its
unique characteristics and operational requirements. 2. Use simulation methods to create an initial
dataset for training the posture detection model, addressing the challenge of limited real-world data. 3.
Implement the developed approach to detect the posture of the soft robot and evaluate its effectiveness
in practical scenarios.

1.3. Report Structure
As shown in figure 1.1, the research work of soft robot hand is mainly divided into the following parts,
the left part is the structure design, the middle part is the design of attitude tracking algorithm while the
right side is the design of control algorithm, the main research of this report is for the middle part, so
it will be centered on the study of literature on soft material, tracking algorithm, sensor characteristics,
and so on, and then the design of the corresponding algorithms.

Figure 1.1: Research Roadmap

The structure of this report is as follows: Literature review part is focusing on existing methods and
identifying research gaps to establish the foundation for this study. The hardware design and sensor
installation section outline the overall structure of the soft robot and the integration of sensors. Data
acquisition and processing discusses methods for collecting, synchronizing, and preparing data for
analysis. The fusion methodology and algorithm implementation section introduces the approach for
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combining multiple data sources and details the implementation of the proposed algorithm. Experi-
mental validation describes the setup, testing scenarios, and result analysis to evaluate system perfor-
mance. Finally, the conclusion summarizes the findings and contributions of the study while suggesting
directions for future research.



2
Literature review

Smart materials have become a research focus in recent years. These advanced materials can re-
spond to changes in their environment—such as temperature, pressure, humidity, electric fields, or
magnetic fields—by altering their own properties accordingly. They find applications in various indus-
tries, including medicine, textiles, and transportation.

The primary characteristic of smart materials is their ability to change their physical properties in re-
sponse to external stimuli. This feature makes them suitable for complex working environments. For
instance, when exposed to changes in temperature, pressure, humidity, light, electric fields, or mag-
netic fields, smart materials can modify their properties, such as volume, density, and viscosity. This
adaptability allows them to function as actuators, capable of operating in intricate and specialized envi-
ronments. Examples include using them as actuators for underwater grippers or in the manufacturing of
soft robotic actuators. Additionally, they can serve as sensors in specific situations, detecting variations
in environmental factors.

The ability of these materials to respond to environmental changes opens up new possibilities for ma-
terial development. It enables seamless interaction between manufactured objects and their surround-
ings. However, smart materials also possess complex characteristics with a high degree of freedom,
making them challenging to control. Therefore, before using such materials, detailed modeling is typi-
cally required to determine the physical properties of the systems built with them. Based on this mod-
eling, it is essential to develop appropriate control and sensing systems, along with designing effective
control algorithms, to better manage and utilize these materials.

2.1. Smart Materials
2.1.1. Piezoelectric Materials
Piezoelectric materials are known for their ability to convert mechanical energy into electrical energy
and vice versa, and are of interest due to their diverse applications in various fields. These materials
are integral to the development of electronic devices such as piezoelectric filters, microdisplacements,
actuators and sensors, which are vital in information and communication technologies, biomedicine
and military defence [1]. The versatility of piezoelectric materials extends to energy harvesting, where
they can convert mechanical energy from human activities and environmental vibrations into usable
electrical energy, thus solving the energy crisis and reducing environmental pollution [2, 3].

Piezoelectric polymers, especially poly (vinylidene fluoride) based ferroelectric polymers, are emerging
as promising alternatives to conventional chalcogenide ferroelectrics due to their flexibility, biocompat-
ibility, and lower cost, making them suitable for applications in soft and flexible sensors, actuators,
robotics, and energy harvesters [4].

The fast response, high precision and adaptability of piezoelectric materials make them ideal for micro-
electromechanical systems (MEMS), nanoelectromechanical systems (NEMS) and 3D printing, with
significant advances in lead-based and lead-free piezoelectric materials for applications in catalysis,

4
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biomedical engineering and additive manufacturing [5].

In the field of smart materials, piezoelectric actuators are embedded in adaptive structures, such as
aeroplane wings, to improve overall efficiency, and are also used in industrial applications such as
diesel fuel injectors, optical lenses and vibration damping [6]. The selection of suitable piezoelectric
materials depends on factors such as type, Curie temperature and environmental stability, with a focus
on their ferroelectric behaviour and characterisation through various measurement techniques [7].

In addition, the coupled physics of piezoelectric materials, including piezoelectric photonics and piezo-
electric electronics, is being explored for optical and optoelectronic micro- and nanodevices, highlight-
ing their potential for future research and practical applications [8]. Continuing demands in the electrical,
energy and biomedical fields have prompted researchers to explore new combinations of materials and
devices, while engineers have endeavoured to enhance existing technologies, highlighting the broader
impact and importance of piezoelectric materials in precision and acoustic engineering [9].

Overall, advances in piezoelectric materials, from traditional ceramics to innovative polymers and com-
posites, have demonstrated their critical role in modern technology and their potential to address future
challenges in energy, healthcare and industrial applications.

2.1.2. Shape Memory Alloys(SMA)
Shape Memory Alloys (SMAs) are a unique class of metallic materials that can return to a pre-defined
shape or size when subjected to appropriate thermal or mechanical stimuli, a phenomenon known as
the shape memory effect.

These alloys typically consist of mixtures of martensites and austenite, which can transform into one
another through thermal or mechanical actions, resulting in their distinctive properties [10, 11]. Themost
well-known SMAs include nickel-titanium (Ni-Ti) alloys, often referred to as Nitinol, and copper-based
alloys such as Cu-Zn-Al and Cu-Al-Ni, which exhibit significant strain recovery and force generation
upon phase transformation [12].

SMAs can undergo reversible phase transitions due to changes in temperature, pressure, or stress,
exhibiting pseudoelasticity and, under certain conditions, linear superelasticity, allowing for large, re-
coverable strains [13, 14, 15]. The composition of these alloys can vary, with some including elements
like aluminum, zirconium, cobalt, chromium, and iron to enhance their properties [16]. For instance,
a specific SMA composition might include 2 to 15% aluminum, 0.01 to 3% beryllium, and the balance
being copper, with possible additions of zinc to allow for cold work [17].

The mechanisms behind the shape memory effect and superelasticity in Ni-Ti alloys are based on ther-
mally or stress-inducedmartensitic phase transformations, which are crucial for their thermomechanical
properties, corrosion resistance, and biocompatibility, making them suitable for medical devices [18].
SMAs are utilized in a wide range of applications, including tubes and valves in piping systems for power
plants, ships, and the petroleum industry; explosive bolts in aerospace and construction; packaging de-
vices for electronic materials; and dental materials, prosthetics, and other biomedical devices [13, 14,
15]. They are also found in sensors in automobiles, consumer products, and generally in smart mate-
rials and adaptive structures, thanks to their ability to produce significant force and recover substantial
amounts of strain [12, 15]. The remarkable behaviors of SMAs are attributed to their atomic-level and
microstructural mechanisms, which enable novel manufacturing techniques, deployable mechanisms,
and adaptive structures, particularly in the aerospace field [19].

Despite their impressive capabilities, SMAs can present challenges due to some less known and un-
usual phenomena in their thermo-mechanical response, which can create pitfalls for casual users [19].
Overall, the unique properties and diverse applications of SMAs make them a critical material in various
advanced technological fields.

2.1.3. Shape Memory Polymers(SMP)
ShapeMemory Polymers (SMPs) are a class of smart materials that can return from a deformed state to
their original shape upon exposure to an external stimulus such as temperature change, light, or mois-
ture. These polymers are typically composed of a combination of hard and soft segments, which con-
tribute to their unique properties. For instance, SMPs can be synthesized using a variety of monomers
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and crosslinkers, such as linear chain acrylates andmulti-functional acrylate cross-linkers, which exhibit
shape memory effects at specific transition temperatures [20].

The shape memory effect in polymers is primarily due to their ability to undergo a phase transition,
which can be tailored by adjusting the polymer composition and structure. For example, a shape mem-
ory polymer can be formed by esterification and polycondensation of aromatic diacids, linear aliphatic
diacids, and linear aliphatic diols, resulting in a polymer with a glass transition temperature (Tg) of 30°C
to 100°C and a melting point (Tm) of 170°C to 250°C [21]. Additionally, SMPs can be designed to have
high shape recovery rates and recovery forces, making them suitable for various applications, including
medical devices and actuators [22].

The versatility of SMPs is further enhanced by their ability to hold multiple shapes in memory, which can
be achieved by incorporating hard and soft segments with different transition temperatures. Moreover,
SMPs can be synthesized using different chemical compositions, such as cyclooctene and multicyclic
dienes, to achieve specific mechanical properties and functionalities [23]. The development of SMPs
has also led to the creation of materials with unique properties, such as water- and solvent-driven shape
memory effects, which are particularly useful for in vivo applications [24].

Furthermore, SMPs can be engineered to have antibacterial properties and biocompatibility, making
them ideal for medical and engineering applications [25]. The history and commercialization of SMPs
have seen significant advancements, with various models proposed to describe their behavior and
potential for tailored properties [26]. SMPs can also be used in innovative applications such as contact
lens molds, where their ability to return to a predetermined shape is highly beneficial [27].

The ongoing research and development in the field of SMPs continue to expand their potential applica-
tions, including in 3D printing, where they offer numerous design possibilities and functional architec-
tures [24]. Overall, SMPs represent a rapidly evolving field with a wide range of applications, driven by
their unique ability to respond to external stimuli and return to their original shape [28].

2.1.4. Hydrogels
Hydrogels are advanced materials characterized by their ability to respond to various external stimuli,
making them highly suitable for biomedical and nanotechnological applications. These hydrogels are
formed by crosslinking polymeric networks that can imbibe water and remain insoluble, thanks to their
hydrophilic functional groups such as -OH, -CONH2, -SO3H, -CONH, and -COOR, which enable them
to act as super absorbents and controlled release systems for drugs [29].

The versatility of smart hydrogels is further enhanced by their tunable electrical and mechanical proper-
ties, biocompatibility, and multi-stimulus sensitivity, making them ideal for wearable health monitoring
devices that track physiological data continuously [30]. Recent advancements have led to the develop-
ment of semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate,
which exhibit improved swelling capacity, storage modulus, and resistance to degradation, along with
the ability to stimulate or inhibit cellular activities depending on the application, such as wound healing
or anticancer therapies [31].

These hydrogels can respond to a variety of stimuli, including pH, temperature, light, enzyme activity,
redox agents, and electric or magnetic fields, offering significant potential for drug delivery, tumor ther-
apy, tissue engineering, and biodevices [32]. The structural and phase transitions triggered by these
stimuli allow for precise control over the release of therapeutic agents, making them highly effective in
clinical settings [29].

The ongoing research and development in this field are focused on overcoming the challenges of trans-
lating these materials from academic research to clinical applications, with a promising future for their
use in various therapeutic and diagnostic applications [33]. Overall, smart material hydrogels represent
a rapidly evolving field with immense potential to revolutionize healthcare and nanotechnology.

2.1.5. Electrochromic Materials
Electrochromic materials, which exhibit reversible changes in their optical properties (such as color,
transparency, and reflectivity) under an applied electric field, have garnered significant attention due to
their wide range of applications in smart windows, wearable electronics, displays, adaptive camouflage,
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and more [34] [35] [36]. These materials can be broadly categorized into organic and inorganic types,
each with distinct advantages and challenges.

Organic electrochromic materials, for instance, offer benefits like easy molecular modification, rich
color variations, and fast switching speeds, making them suitable for applications requiring rapid re-
sponse times and diverse color options [36]. However, the development of stable cathodic coloring
organic materials remains challenging due to the inherent instability of electron-accepting compounds,
although recent advancements in phthalimide derivatives have shown promise in enhancing stability
and performance [37].

Inorganic electrochromic materials, such as transition-metal oxides, are favored for their low power
requirements, high coloration efficiency, and durability. Nickel oxide (NiO), for example, is a p-type
semiconductor known for its high color contrast ratio and chemical stability, making it a popular choice
for flexible and soft electrochromic devices [38]. Recent innovations have also explored the use of
the Burstein–Moss effect in degenerate semiconductors to achieve multicolor tunability, which could
simplify device structures while offering selective modulation of visible and near-infrared light [39]. Addi-
tionally, the integration of optical resonators has been shown to enhance the color contrast and enable
multicolor tuning by converting small refractive index changes into high-contrast color variations, thus
expanding the potential applications of electrochromic materials in multichromatic displays and adap-
tive camouflage [35].

The development of new anodic coloring materials, such as IrO2-doped NiO films, has further improved
the performance of complementary energy storage electrochromic devices (ESECDs), achieving rapid
switching times and high cycling durability [40]. Moreover, the extension of electrochromic technology
into the infrared region has opened new avenues for applications in infrared stealth, thermal control
of spacecraft, and smart windows, with research focusing on optimizing materials like metal oxides,
plasma nanocrystals, and carbon nanomaterials to enhance performance [41].

The advent of 2Dmaterials, including covalent organic frameworks and MXenes, has also shown poten-
tial in addressing the limitations of conventional electrochromic materials by offering improved optical
contrast, response time, and flexibility [42]. Educational methods have even been developed to demon-
strate electrochromism using household materials, highlighting the accessibility and educational value
of this technology [43].

2.2. Structure Modelling of Smart Materials
Modeling of smart materials is essential for several key reasons. Firstly, it enables a deeper under-
standing of their unique properties and behaviors, which is crucial for predicting and controlling these
materials effectively. Engineers can design more efficient systems by comprehending the underlying
mechanisms and behaviors of smart materials through precise models [44]. Secondly, modeling allows
for performance optimization of smart material systems before the creation of physical prototypes. By
simulating the behavior of these materials and their interactions with the environment, designers can
determine the best configurations, sizes, and control strategies to meet desired performance goals.

Moreover, modeling helps save time and costs. Physical prototypes of smart material systems can be
expensive and time-consuming to produce. By using models, engineers can quickly evaluate different
design options and iterate virtually, reducing the need for multiple physical prototypes and associated
costs, thereby accelerating the development process. This approach can significantly shorten the de-
velopment cycle and lower expenses.

Additionally, modeling reduces risks associated with the complex and often nonlinear responses of
smart materials. Engineers can analyze and predict material behavior under various conditions and
stimuli, identifying potential risks like failure points or undesirable behaviors and mitigating them during
the design phase to enhance overall system reliability.

Furthermore, modeling facilitates the exploration of design trade-offs. Engineers can simulate and
analyze different design choices and their impacts on performance metrics such as energy consump-
tion, response time, or durability, allowing for informed decision-making and optimal balance between
conflicting design goals.
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Finally, models provide scalability and versatility. Smart materials are used in a wide range of appli-
cations and environments. Reliable models capturing the fundamental behaviors of smart materials
can be applied to various systems and scenarios, serving as a foundation for designing diverse smart
material-based systems and saving time and effort for each new application.

In conclusion, modeling enables engineers to understand, optimize, and control the behavior of smart
materials, leading to the development of more efficient and reliable systems while reducing develop-
ment time and costs. Smart material modeling is a multidisciplinary process that integrates knowledge
of material properties, physics, numerical methods, and simulation technologies. The specific model-
ing methods vary depending on the type of smart material and its intended application, often employing
advanced software tools and specialized modeling techniques.

2.3. Sensors for soft robotics
Sensoring soft robotics would enable them to detect changes in their environment and respond accord-
ingly. Smart materials are designed to react to stimuli such as temperature, pressure, moisture, or
chemical changes, and the role of sensoring is to provide the necessary data for these materials to
function effectively.

We will begin by discussing commonly used sensors that can measure stress, strain, temperature, and
posture in soft robotics. These sensors play a critical role in providing the necessary data for monitoring
and controlling soft robots, enabling them to operate effectively in dynamic and complex environments.
By examining their characteristics and compatibility with soft robotic systems, we can better understand
their potential applications and limitations in practical scenarios.

2.3.1. Stress Sensors
Piezoelectric Stress Sensor
When a piezoelectric material is subjected to mechanical stress, it produces an electric charge pro-
portional to the amount of stress [45]. This charge can be measured and analyzed to determine the
magnitude and nature of the applied stress. Piezoelectric sensors offer several advantages: they
exhibit high sensitivity, detecting very small changes in stress; they have a fast response, providing im-
mediate feedback to changes in stress, making them suitable for dynamic measurements; they do not
require external power as they generate their own electrical signal in response to mechanical stress;
and they are robust, functioning in harsh environments, including high temperatures and pressures.
These characteristics make piezoelectric sensors highly suitable for applications in smart materials.
Smart materials often need to monitor and respond to changes in their environment, and the high sen-
sitivity and fast response of piezoelectric sensors enable precise and real-time monitoring of stress and
strain.

Kathleen Coleman et al. dedicated to advancing the application of piezoelectric sensors in the realm of
the Internet of Things (IoT) and wearable electronics, focusing on flexible electronic stress monitoring
[46]. To achieve this, they opted to use 120 μm thick Polyvinylidene Fluoride (PVDF) films. PVDF was
chosen due to its high piezoelectric coefficient (g33) of 0.287 Vm/N and its compatibility with flexible
electronic applications.

In their experimentation, the researchers integrated these piezoelectric sensors into a system using a
Texas Instruments MSP430 Micro-Controller Unit (MCU) to capture and react to variations in stress lev-
els. They designed an impedance-matching circuit to optimize the sensor’s signal for digital processing,
utilizing SPICE software to model a Thevenin equivalent circuit that included the piezoelectric source
and pull-up resistors with varying impedances. The final system was programmed such that an LED
would light up when the stress exceeded a threshold, corresponding to a critical radius of curvature of
10 mm, a point at which the flexible PCB was deemed to fail.

The outcome of their research highlighted a novel application for piezoelectric sensors within flexible
hybrid electronics (FHE), demonstrating the crucial role of proper impedance matching and sophisti-
cated circuit design to effectively integrate piezoelectric films with external circuits and hardware. The
successful activation of the LED alert system upon reaching the predefined stress threshold show-
cased a viable method for real-time stress monitoring in flexible electronics, providing a practical tool
for enhancing the reliability and performance of IoT and wearable devices.
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This research underscored the effectiveness of piezoelectric sensors for monitoring mechanical stress
in flexible electronics, a key factor for the durability and functionality of IoT and wearable technologies.
It also stressed the importance of careful circuit design, particularly impedance matching, to ensure
precise signal digitization and optimal sensor performance.

However, there are areas identified for potential improvement. Exploring alternative materials or differ-
ent thicknesses of the piezoelectric films might yield better performance or facilitate easier integration
with flexible electronics. Further development of more sophisticated algorithms for the MCU could
enable more detailed stress analysis and even predict potential failures before they occur. Addition-
ally, evaluating the durability and performance of the piezoelectric sensors under varied environmental
conditions would be beneficial to confirm their reliability in practical applications.

Piezoresistive Stress Sensor
When a piezoresistive material is subjected to mechanical stress, its electrical resistance changes
proportionally to the amount of stress [47]. This change in resistance can be precisely measured using
a Wheatstone bridge circuit or other resistance-measuring techniques, allowing for the determination
of the applied stress. Piezoresistive sensors offer several advantages: they exhibit high sensitivity,
detecting very small changes in stress; they have a fast response, providing immediate feedback to
changes in stress, making them suitable for dynamic measurements; they have a simple and compact
construction; and they can be easily integrated with electronic circuits for signal processing and data
acquisition. These characteristics make piezoresistive sensors highly suitable for applications in smart
materials. Smart materials often need to monitor and respond to changes in their environment, and the
high sensitivity and fast response of piezoresistive sensors enable precise and real-time monitoring of
stress and strain. Additionally, their simple construction and ease of integration with electronic systems
ensure compatibility with various smart material applications, including flexible electronics, wearable
devices, and structural health monitoring systems.

Minliang Li and his team aiming to innovate in the field of sensor technology by developing a new type
of piezoresistive sensor with distinctive characteristics. Their methodology involved a novel approach:
doping reduced graphene oxide (rGO) powder into a graphene oxide (GO) film. This unique combi-
nation was engineered to create a flexible piezoresistive sensor that not only responds to changes in
pressure by altering its resistance but also possesses rectification properties, enabling it to control the
direction of electrical current flow.

The fruits of their labor were impressive. The newly developed sensor demonstrated remarkable per-
formance metrics, including a high peak sensitivity of 9.65 kPa−1, a swift response time of just 72
milliseconds, and a quick recovery time of 26 milliseconds. Notably, the sensor maintained its stability
even after undergoing 5500 cycles of pressure testing, underscoring its durability.

The study identified areas ripe for further enhancement: While the sensor’s performance is already
impressive, advancing its sensitivity beyond the current peak could broaden its applicability, particu-
larly for detecting subtler pressure variations. Enhancing the sensor’s response and recovery times
could augment its utility in scenarios that demand rapid detection and action. Future research might
explore alternative materials or novel combinations thereof to further improve the sensor’s rectification
properties and overall performance.

In detail, the researchers undertook the following steps in their study: They prepared the innovative
material by doping rGO powder into a GO film, thus creating a composite material with unique piezore-
sistive and rectification properties. They then fabricated the sensor by incorporating this composite
into a flexible substrate, enabling it to maintain functionality even when bent or flexed. Comprehen-
sive performance testing was conducted, which included evaluating the sensor’s pressure sensitivity,
response and recovery times, and long-term durability under repeated use. Additionally, the sensor’s
capability to rectify low-frequency AC signals was specifically tested, highlighting its unique ability to
control current flow direction—a feature not typically seen in standard piezoresistive sensors.

2.3.2. Temperature Sensors
Infrared Temperature Sensor
Infrared (IR) temperature sensors operate based on the principle of detecting infrared radiation emitted
by objects. All objects emit infrared radiation as a function of their temperature, according to Planck’s
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law of black-body radiation. The sensor measures the intensity of this radiation and converts it into an
electrical signal, which is then processed to determine the temperature of the object. This non-contact
method allows for temperature measurement from a distance, making it ideal for applications where
direct contact is impractical or impossible [48].

The characteristics of infrared temperature sensors make them highly suitable for smart material ap-
plications. Smart materials often require precise temperature monitoring to maintain their functional
properties. The non-contact nature of IR sensors ensures that the measurement process does not
interfere with the material’s properties or performance.

Ruowei Li et al. focused on enhancing the accuracy of non-contact body temperature measurements,
essential during the COVID-19 pandemic, using the ZTP-135SR thermopile infrared temperature sen-
sor known for its non-contact measurement capabilities [49]. Researchers aimed to refine these mea-
surements to reduce the risk of infection transmission. To improve the accuracy of the temperature
data from the sensor, they extracted the raw temperature readings and applied post-amplification and
filtering techniques to strengthen the signals and eliminate noise. Additionally, they incorporated en-
vironmental compensation through polynomial fitting, which adjusted the temperature readings based
on the environmental conditions to yield more accurate results.

The successful enhancement of the infrared temperature measurement system provided quick, non-
invasive, and accurate body temperature assessments. Such advancements are crucial for monitoring
health and controlling the spread of infectious diseases like COVID-19. The study highlighted the impor-
tance of sophisticated processing techniques such as post-amplification, filtering, and polynomial fitting
for environmental compensation in ensuring the reliability of temperature measurements in healthcare
settings.

While the system showed significant improvements, there are opportunities for further enhancements.
Future research could explore integrating advanced algorithms or machine learning techniques to ele-
vate the accuracy and reliability of the temperature measurement system further. Additionally, exam-
ining the long-term stability and durability of the sensor system under varied environmental conditions
would help ensure consistent performance over time. Questions about the specific data involved in
polynomial fitting, the practical implementation of post-amplification, and the environmental conditions
tested for compensation would provide deeper insights into the system’s robustness and application
potential in different geographical areas.

Thermal Imaging Sensor
Thermal imaging sensors, also known as infrared cameras, operate by detecting the infrared radiation
emitted by objects and converting it into an electronic signal to create a visual representation of tem-
perature distribution. These sensors use an array of infrared detectors to capture the emitted radiation,
which is then processed to form an image where different temperatures are displayed in varying colors.
This allows for the visualization of temperature variations across a surface, providing detailed thermal
profiles without the need for direct contact [50].

Similar to IR, the main advantages of the Thermal Imaging Sensor are that it is non-contact and ac-
curate, and it can also generate a thermal map, which makes it is quite good for observing the heat
distribution of the device.

Shengcheng Li,Tao Lu and their team focused on enhancing the detection of insulation defects in
transformer bushings through the application of thermal imaging technology [51]. To achieve this, they
utilized an infrared thermal imaging detection device equipped with a 640×512 uncooled infrared focal
plane array and an ADV7390 video coding chip. This setup enabled the conversion of infrared light
into electrical signals that could be analyzed to assess the condition of the insulation.

The researchers embarked on designing a thermal imaging detection system that was not only minia-
turized and power-efficient but also boasted high resolution. They meticulously optimized the device for
low power consumption, incorporating a reference source, digital potentiometer, and operational ampli-
fier to maintain the output analog bias within a specified voltage range. Furthermore, they refined the
signal processing method by implementing a scheme that divided the voltage and formed a differential
signal with a reference voltage (VREF), which was then processed by the ADC chip.
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Their efforts culminated in the creation of a device that successfully met the expected standards, with
signal voltages maintaining around 2V, lower than the fluctuation range of the signal. This setup proved
effective in detecting insulation defects in transformer bushings, with the capability to capture the in-
frared feature distribution of these defects and continuously track the infrared spectrum on the exterior
of the bushing. By doing so, the device could pinpoint abnormal temperature positions indicative of
potential issues.

From this research, it was evident that infrared thermal imaging technology could serve as a pow-
erful tool for detecting insulation defects in transformer bushings. The integration of a miniaturized,
low-power, high-resolution thermal imaging detection device facilitated accurate and reliable defect de-
tection. The advancements in signal processing and hardware optimization were crucial in enhancing
the device’s effectiveness at identifying critical temperature discrepancies that signal insulation defects.

However, there are opportunities for further advancements in this technology. Enhancing the resolu-
tion and sensitivity of the thermal imaging detection device could allow for the detection of even smaller
defects, which would be beneficial for early diagnosis and maintenance planning. Incorporating more
sophisticated algorithms could improve feature point matching and defect analysis, increasing the ac-
curacy of the detection process. Additionally, further reductions in power consumption and device size
could make the technology more practical for field applications, enabling more widespread and routine
use in the maintenance and monitoring of transformer bushings. These improvements could signifi-
cantly enhance the operational reliability and efficiency of power distribution systems, particularly in
monitoring and preventing failures that could lead to service interruptions.

2.3.3. Motion Capture
Motion capture (mocap) technology involves recording and processing the movements of people or
objects to generate corresponding virtual animations, and it has become integral in various fields such
as video games, film production, sports analysis, and healthcare [52]. The technology can be imple-
mented using different systems, includingmarker-based, vision-based, and volumetric capture systems.
Marker-based systems, while accurate, are often inconvenient due to the need to attach markers to the
body.

Ziyi Xin undertook a comprehensive review of motion capture technology, aiming to enrich understand-
ing of its origins, methodologies, and broad applications across various fields [53]. Utilizing a detailed
review method, they examined existing literature and studies on motion capture technology to provide
an in-depth overview of its development, current state, and future prospects. This encompassed a
historical exploration of the technology’s origins, a look at how it has been realized over time, and an
analysis of the mainstream methodologies used to capture motion. The researchers also delved into
the various applications of motion capture technology in fields such as entertainment, sports analysis,
human biomechanics, automotive, and virtual reality, showcasing its wide-ranging impact and potential.

The result of her investigation is a detailed paper that not only educates readers about the critical
aspects and potential of motion capture technology but also highlights its significant market growth, with
the 3D Motion Capture Market projected to reach $270.9 million by 2026. The paper offers insights into
future research directions and underscores the increasing demand and investment in motion capture
technology across various industries.

From this study, readers can understand the historical development and technological evolution of mo-
tion capture, which provides a solid foundation for appreciating the technical advancements in this field.
The paper details how motion capture technology is applied in creating virtual characters in movies,
enhancing athletic performance, and understanding human movement in biomechanics, among other
uses, illustrating its versatility. The projected market growth further indicates the rising importance and
potential of motion capture technology in numerous industries.

However, there are areas for potential improvement and further research. Enhancing the accuracy
and efficiency of motion capture methods could lead to more precise and reliable data for various
applications, and exploring new applications in emerging fields could open up new possibilities and
expand the technology’s use and impact. Additionally, making the device more compact and reducing
its power consumption could benefit practical applications in the field.
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Qingfeng Shi and Yunkun Cui focused on enhancing motion capture systems for motor skills through
the use of computer vision technology [54]. They implemented a method that combined inertial con-
duction with wireless network transmission, aiming to capture and control motion more effectively. By
strategically placing sensors on 17 crucial joints of the human body, including the shoulders, elbows,
and knees, they were able to collect comprehensive movement data. This data was then transmitted
in real-time to 3D modeling software for accurate action control.

The outcomes of their research demonstrated a significant improvement in the motion capture system,
addressing previous limitations such as limited communication distance, low data accuracy, and narrow
application range. The system showcased enhanced performance in several key areas: it provided
improved accuracy due to the use of strapdown inertial navigation technology, enabled real-time control
of actions via wireless transmission, and offered advanced visualization through 3D modeling software,
making it easier for users to analyze and understand captured movements.

Despite these advancements, the study suggested potential areas for further development. Expanding
the application range of the motion capture system to include fields like medical rehabilitation or virtual
reality could enhance its versatility and impact. Optimizing sensor placement and quantity could further
improve the accuracy and reliability of data collection. Additionally, enhancing the integration of the
motion capture system with various 3D modeling software could make the system more user-friendly
and adaptable to different uses.

2.4. Posture estimation algorithm
In the first part, we discussed the properties of various smart materials and introduced some model-
ing and analysis methods for these materials. Many smart materials are used in the manufacture of
active actuators or robots that need to move precisely according to human intentions. Therefore, after
analyzing and modeling these materials, we need to design appropriate control methods.

2.4.1. Proportional-Integral-Derivative Control (PID Control)
Proportional-Integral-Derivative (PID) control is a widely used control loop feedback mechanism in
industrial and engineering applications due to its simplicity and reliable performance [55]. The PID
controller adjusts the control input to a system based on three terms: the proportional term (P), which
depends on the current error; the integral term (I), which accounts for the accumulation of past errors;
and the derivative term (D), which predicts future errors based on the current rate of change. This
combination allows the PID controller to correct errors quickly and efficiently, ensuring system stability
and performance.

The output u(t) of the PID controller can be represented as [56]:

u(t) = Kp ∗ e(t) +Ki ∗ e(t)dt+Kd ∗ de(t)/dt (2.1)

The output u(t) of the PID controller consists of the following three parts:

Proportional (P) part:
P = Kp ∗ e(t) (2.2)

Where Kp is the proportional coefficient, and e(t) is the error at the current moment (target value -
actual value).

Integral (I) part:
I = Ki ∗ e(t)dt (2.3)

Where Ki is the integral coefficient, and
∫
e(t)dt is the integral of the error from the initial moment to

the current moment.

Derivative (D) part:
D = Kd ∗ de(t)/dt (2.4)

Where Kd is the derivative coefficient, and de(t)/dt is the derivative of the error at the current moment.



2.4. Posture estimation algorithm 13

This is the basic working principle of the PID controller. By adjusting the three parametersKp,Ki, and
Kd, you can achieve precise control of the system output.

The proportional part can quickly correct the error, the integral part can eliminate the steady-state error,
and the derivative part can improve the system’s response speed and stability. With the coordinated
cooperation of the three, you can achieve good control of the system.

In order to meet more usage scenarios and requirements, the PID controller also has some evolved
and upgraded versions, mainly including the following:

Adaptive PID controller : Can automatically adjust the values of Kp, Ki and Kd according to the
system status to adapt to changes in system parameters. By online identification of the system model,
dynamically adjusting the PID parameters to improve control performance.

Fuzzy PID controlle: Combining fuzzy logic reasoning, using expert experience to perform fuzzy ad-
justment of PID parameters. Can better handle non-linear, highly uncertain complex systems.

Neural network PID controller : Using neural networks for self-learning and self-optimization of PID
parameters. Can adapt to more complex non-linear systems and improve control accuracy.

Predictive PID controller : Combining system model to predict future states and make control deci-
sions in advance. Can improve the system’s response speed and anti-interference ability.

Hybrid PID controller : Combining PID control with other advanced control algorithms (such as LQR,
H∞, etc.). Can fully utilize the advantages of various control algorithms to improve control performance.
These evolved versions of the PID controller are designed for different application scenarios and system
characteristics, and can better meet actual needs. They have been widely used in industrial automation,
aerospace, new energy and other fields.

For example, Horst Meier et al. explored the use of shape memory alloys (SMAs) as actuators in var-
ious systems [57], focusing on the development of a smart control system to enhance their efficiency,
dynamics, and reliability. The researchers used resistance feedback control systems to manage the en-
ergy input at specific key points, which are directly before the transformation into the high-temperature
phase and shortly before the retransformation into the low-temperature phase (martensite start temper-
ature. They conducted experiments and developed a mechatronic demonstrator system to validate the
effectiveness of the resistance-controlled systems in improving the performance of SMA actuators.

They used a PID controller to optimize the control system for SMA actuators by detecting the electrical
resistance of the actuator, which helps in maintaining precise control over the heating process. The PID
controller adjusts the current supplied to the SMA actuator based on real-time feedback from the elec-
trical resistance, ensuring that the actuator reaches the desired temperature for transformation without
overheating.By using the PID controller, the system can quickly respond to changes in the actuator’s
state, minimizing delays and improving the overall efficiency and reliability of the transformation cycles.

The PID control algorithm is highly effective in regulating variables such as temperature, light intensity,
and magnetic field strength. Its notable benefits include simplicity and low computational requirements.
However, the process of tuning the parameters can be intricate and labor-intensive.

This hybrid approach allows the system to leverage the simplicity of PID control while benefiting from
the adaptive learning capabilities of deep learning, especially in complex, nonlinear systems.

2.4.2. Model Predictive Control (MPC) with Deep Learning for Position Predic-
tion

Model Predictive Control (MPC) is a sophisticated control strategy that uses a dynamic model of the
system to predict and optimize future behavior over a finite horizon [58]. MPC can handle constraints
on inputs and outputs, making it ideal for applications requiring precise position control.

The objective function typically includes terms for tracking error and control effort. A common form is
[59]:

J =

Np−1∑
k=0

[
(yt+k − yreft+k)

TQ(yt+k − yreft+k) + ∆uT
t+kR∆ut+k

]
(2.5)
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where:

• yt+k is the predicted output at time t+ k.
• yreft+k is the reference or desired output at time t+ k.
• ∆ut+k is the change in control input.
• Q and R are weighting matrices for tracking error and control effort, respectively.
• Np is the prediction horizon.

The predicted outputs are calculated using the system model. For a linear time-invariant system, the
model can be represented as:

xt+k+1 = Axt+k +But+k (2.6)

yt+k = Cxt+k +Dut+k (2.7)

where x is the state vector, u is the control input, and A, B, C, and D are matrices that describe the
system dynamics.

The control actions must satisfy constraints, which can include:

• Input constraints: umin ≤ ut+k ≤ umax

• State constraints: xmin ≤ xt+k ≤ xmax

• Output constraints: ymin ≤ yt+k ≤ ymax

The overall MPC problem can be written as a constrained optimization problem:

min
ut,ut+1,...,ut+Nc−1

J

subject to xt+k+1 = Axt+k +But+k, k = 0, 1, . . . , Np − 1

yt+k = Cxt+k +Dut+k, k = 0, 1, . . . , Np − 1

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc − 1

xmin ≤ xt+k ≤ xmax, k = 0, 1, . . . , Np − 1

ymin ≤ yt+k ≤ ymax, k = 0, 1, . . . , Np − 1

where Nc is the control horizon.

Somasundar Kannan et al. used an adaptive predictive controller to manage the behavior of SMA
linear actuators [60], which are devices that change shape in response to temperature changes and
are used in various applications like robotics and medical devices. They successfully implemented
MPC by employing a truncated linear combination of Laguerre filters to simplify the representation of
dynamic systems, with real-time online updates. They thoroughly studied and proved the stability of
the controller, showing that the tracking error is asymptotically stable under certain conditions related
to modeling error, and that it converges to zero for step references despite potential inaccuracies in
the identified model. Experimental results with two types of actuators validated the robustness of the
control method, demonstrating its capability to handle input constraints without performance loss.

MPC offers several advantages, including strong predictive capabilities, the ability to handle multi-
variable systems, optimization performance, and explicit handling of input and output constraints, mak-
ing it highly effective in practical applications. Additionally, MPC exhibits good robustness in dealing
with system uncertainties and external disturbances. However, MPC also has some limitations, such as
high computational complexity, strong dependence on the accuracy of the system model, implementa-
tion complexity, high real-time requirements, and complex parameter tuning. Despite these challenges,
the advantages of MPC make it a valuable choice for many complex control problems [61, 62].
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(3) Deep Learning-based Position Prediction
While PID and MPC provide robust control frameworks, deep learning can be employed independently
for position prediction, especially in scenarios with significant nonlinearities or where system models
are unavailable. A recurrent neural network (RNN) or its variants, such as Long Short-Term Memory
(LSTM) networks, can be used to predict future positions based on historical data [63].

The workflow for deep learning-based position prediction involves several critical steps, starting with
the collection of time-series data from the system. This data typically includes recorded positions and
corresponding control inputs over time, which serve as the foundation for training a deep learningmodel.
The goal is to develop a model that can accurately predict future positions based on patterns identified
in the historical data.

In the training phase, recurrent neural networks (RNNs) or long short-term memory (LSTM) networks
are commonly employed due to their ability to process sequential data and capture temporal depen-
dencies. These models are designed to map input sequences—such as current and past positions,
control inputs, and any auxiliary system parameters—to future predicted positions. To ensure robust
performance, the training process involves optimizing the model’s parameters by minimizing the pre-
diction error over a diverse set of training scenarios, including those that capture complex dynamics
and disturbances.

Once the deep learning model is trained and validated, it can be deployed for real-time position predic-
tion. During operation, the model takes current and past observations as input, such as recent position
measurements and applied control signals, and outputs the predicted positions for a defined prediction
horizon. This capability enables the system to anticipate future states, which can be invaluable for
decision-making and control in dynamic environments.

Deep learning models excel in scenarios where traditional controllers, such as PID or MPC [64], may
encounter challenges due to the system’s nonlinearity, high levels of uncertainty, or unmodeled dy-
namics. However, rather than replacing conventional control methods, deep learning can complement
them. For instance, PID or MPC can be used as the primary control mechanism to maintain system
stability and responsiveness, while the deep learning model provides enhanced prediction capabilities.
This hybrid approach allows the strengths of both methods to be leveraged—PID or MPC ensures ro-
bust and reliable control, while the deep learning model adapts to complex and uncertain dynamics,
improving overall performance.

By integrating deep learning with traditional control strategies, the system gains the ability to not only
respond to immediate errors but also anticipate future states, enabling proactive adjustments. This
synergy is particularly beneficial in applications such as autonomous navigation, robotic control, and
precision manufacturing, where accurate position prediction and control are critical for achieving high
performance and reliability.

2.5. Conclusion
This review provides a comprehensive exploration of smart materials, their properties, and applications,
with a particular focus on piezoelectric materials, shape memory alloys, shape memory polymers, hy-
drogels, and electrochromic materials. These materials exhibit unique responses to external stimuli,
making them invaluable in various industries such as healthcare, energy, robotics, and electronics. The
review also highlights the essential role of modeling and control strategies, such as PID and MPC, in
optimizing the performance and functionality of systems integrating smart materials.

The discussion on sensors, including stress, temperature, and motion capture technologies, under-
scores their critical importance in enabling smart materials to interact with their environment effectively.
The integration of advanced sensors enhances the functionality of smart materials, particularly in dy-
namic and complex applications like soft robotics.

The control methods examined, including traditional PID controllers, advanced MPC techniques, and
deep learning-based approaches, demonstrate the versatility and adaptability required for managing
the complex behaviors of smart materials. The hybridization of these control strategies offers promising
avenues for improving system performance and reliability in non-linear and uncertain environments.
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Future work should focus on refining these models and control strategies to better handle the inherent
complexities of smart materials. Additionally, advancements in sensor technologies, coupled with the
development of innovative algorithms, can further expand the potential applications of these materials.



3
Physical structure and Data

acquisition

3.1. Overview
The schematic diagram of the structure, as illustrated below:

Figure 3.1: Schematic diagram of soft structure

The structure consists of several components, as illustrated. It features two circular transparent plates
made of PMMA, which are precisely laser-cut. Between these plates, several slots are designed to
accommodate SMP cylindrical rods. These rods are inserted into the slots, with both ends of the
cylinders connected to corresponding structures, secured with high-temperature adhesive to ensure a
fixed joint.

Additionally, three evenly distributed holes are drilled into the PMMA plates to install SMA springs. The
springs are attached to the plates using zip ties for secure fixation. Inside the SMP cylinder, a layer of
heating pad is applied, designed to heat the SMP and bring it to a high-temperature state. Each SMA
spring is connected to a power source on both ends, allowing electric current to heat the SMA, enabling
it to return to its memorized shape.

17
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3.2. Circuitry part
The schematic diagram of circuitry part, as illustrated below:

Figure 3.2: Schematic diagram of circuitry part

For the circuitry, we utilized an Arduino board to control the power supplied to the SMP heating pad and
the current passing through the SMA springs. Additionally, a Raspberry Pi serves as the host controller.
It is equipped with a thermal imaging camera to monitor the target’s temperature in real time. The
Raspberry Pi communicates with the Arduino by sending signals to adjust the heating levels, ensuring
that both the SMP and SMA components reach their designated temperatures.

During operation, the heating pad on the SMP is first activated, raising the SMP to a predetermined
temperature. This heating process significantly reduces the Young’s modulus of the SMP, making it
highly deformable and facilitating the overall structural deformation. Next, current is applied to the
SMA, causing it to return to its memory shape and contract to a specific position. Once the desired
position is reached, the power to the SMA is cut off, and the SMP is cooled down. Cooling restores the
SMP’s high Young’s modulus, solidifying the current position and shape. This sequence constitutes
the complete deformation process of the device.

3.3. Sensors
The imu that is illustrated below works for this structure stands out as a robust choice for applications
requiring accurate inertial measurement [65]. It is designed to provide six degrees of freedom mea-
surements, incorporating both a 3-axis accelerometer and a 3-axis gyroscope, ensuring precise motion
detection. The sensor features high sampling rates and low noise levels, making it well-suited for real-
time applications, such as robotics and motion tracking. Additionally, its compact design, lightweight
structure allow seamless integration into robotic systems. A notable advantage is its efficient data
output, which supports reliable motion analysis without requiring extensive post-processing.

Figure 3.3: IMU Sensors
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Some of its technical parameters are listed in the following table:

Accelerometer Gyroscope

Sampling frequency Max 200Hz Max 200Hz

Noise 0.5mg 0.01°

Non-linear 0.06%fs 0.06%fs

Degree of freedom 3 3

Range [-8g, 8g] [-2000°/s, 2000°/s]

ADC resolution 4096LSB/g 16.38LSB/(°/s)

Table 3.1: Specifications of IMU

The Intel® RealSense™ Depth Camera D435 is a popular choice for visual recognition tasks as shown
below due to its advanced depth-sensing capabilities and versatile features [66]. It employs stereo-
scopic depth technology with global shutter sensors, providing high-quality depth perception even in
dynamic environments. The D435 offers a wide field of view (87° × 58°), enabling it to capture a
broad scene, which is particularly beneficial for applications like robotics and augmented reality where
comprehensive environmental understanding is crucial. INTEL REALSENSE Additionally, the camera
supports high frame rates, delivering depth output resolutions up to 1280 × 720 at 90 frames per sec-
ond, ensuring smooth and accurate motion tracking. Its compact form factor (90 mm × 25 mm × 25 mm)
and USB-C connectivity facilitate easy integration into various systems. It was chosen as an alternative
detection method for the attitude of this structure.

Figure 3.4: Intel Realsense D435

Some of its important technical parameters are listed below:

Intel Realsense D435

Depth output resolution 1280 × 720

Depth Accuracy Around 2%

Depth frame rate 90FPS

RGB frame resolution 1920 × 1080

RGB frame rate 30FPS

Table 3.2: Specifications of Intel Realsense D435
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3.4. IMU Data Generation
The training method employed in this study is the co-training learning approach. During the initial phase
of training, this method requires a set of simple data to generate the initial model. To address this need,
a MATLAB-based program for trajectory simulation and data generation has been developed.

The IMU module in MATLAB is a powerful tool designed to realistically simulate the behavior of iner-
tial measurement units (IMUs), including accelerometers, gyroscopes, and magnetometers [67]. This
module is renowned for its ability to accurately replicate the characteristics of real-world sensors, such
as response range, sampling rate, and dynamic properties. By using this module, users can generate
data that closely mirrors the output of physical hardware, enabling algorithm development and valida-
tion without the need for actual sensor devices.

One of the most notable features of the IMU module is its precise noise simulation capability. It
can model common noise characteristics observed in real sensors, including random bias drift, high-
frequency white noise, and cumulative errors due to random walk. These noise models align closely
with the behaviors seen in real-world IMUs, ensuring that the simulated data is highly realistic. Addition-
ally, the module allows for the modeling of manufacturing imperfections and calibration inaccuracies,
such as scale factor errors and cross-axis sensitivity, further enhancing the authenticity of the data.

This tool is particularly valuable for algorithm developers as it provides a controlled simulation environ-
ment for testing complex algorithms, such as attitude estimation and position tracking. For example,
when developing filters like the Kalman Filter, the noisy data generated by the IMU module helps devel-
opers identify potential issues and optimize algorithm performance early in the development process.
This is especially beneficial when hardware devices are expensive or not readily available.

Moreover, the MATLAB IMU module offers significant flexibility, allowing users to customize various
sensor parameters, such as range, sensitivity, and noise levels, to suit specific application scenarios.
This adaptability makes the module suitable for simulating both high-precision sensors and low-cost
devices.

The following section illustrates the specific application methods of this fuction.

Creating an imuSensor Object
1 IMU = imuSensor('accel-gyro', 'SampleRate', 100);

This command creates an IMU model with an accelerometer and gyroscope, with a sampling rate of
100 Hz.

Configuring Sensor Parameters
Each sensor can be customized using parameter objects:

Accelerometer:
1 accelParams = accelparams('MeasurementRange', 16, 'Resolution', 0.002395);
2 IMU.Accelerometer = accelParams;

Gyroscope:
1 gyroParams = gyroparams('MeasurementRange', 69.8132);
2 IMU.Gyroscope = gyroParams;

Generating IMU Data
To simulate IMU data, provide the ground-truth acceleration and angular velocity:

1 numSamples = 1000;
2 acceleration = zeros(numSamples, 3); % Stationary acceleration
3 angularVelocity = zeros(numSamples, 3); % Stationary angular velocity
4

5 [accelReadings, gyroReadings] = IMU(acceleration, angularVelocity);

Code to generate a static IMU sensor reading is provided here.This code generates sensor readings
for a stationary IMU.
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Summary of imuSensor Properties

Property Description Default Value
IMUType Specifies sensor types included 'accel-gyro'
SampleRate Sampling rate in Hz 100
ReferenceFrame Reference frame ('NED' or 'ENU') 'NED'
Accelerometer Accelerometer parameters (accelparams object) Ideal settings
Gyroscope Gyroscope parameters (gyroparams object) Ideal settings
Magnetometer Magnetometer parameters (magparams object) Ideal settings

Table 3.3: Summary of imuSensor Properties

Once the IMU was selected, we utilized the technical specifications provided by the manufacturer to
simulate realistic IMU data, including noise and zero-drift characteristics. This simulation is crucial for
approximating real-world conditions, ensuring that the generated data accurately reflects the challenges
encountered in practical applications.

In practical applications, tracking the position of the head of this structure is of primary interest. The
movement and activity of the head determine the operational range of the soft robot, enabling the
actuators mounted on the head to perform tasks on the target. Therefore, the position of the soft
robot’s head is the focal point of this study. To enhance the accuracy of tracking, we decided to place
the IMU at the robot’s endpoint. In simulations, we assumed that the head moves at random speeds
and in random directions. Within a predefined area, the head is allowed to move freely for a set period,
ensuring the collection of sufficient data under various directions and speeds for analysis and modeling.

Simultaneously, it is evident that generating data with the imusensor requires the provision of real-time
acceleration and gyroscope values. These values will be determined by the custom-designed function
”GetWayPoints3”, where the numeral ”3” indicates that the function is intended to generate 3D data.

As shown in the coding below, the ”GetWayPoints3” code in MATLAB assumes that the initial position
of the trajectory at t=0 is the origin. At each subsequent time step, a random velocity is generated,
allowing the trajectory to move freely in arbitrary directions. To ensure smooth transitions, we impose
a constraint that prevents the trajectory from making sharp-angle turns. This restriction is implemented
to avoid excessively abrupt changes in velocity and displacement, which could compromise the realism
of the simulated data. Additionally, the ”waypointTrajectory” function in MATLAB is utilized [68]. This
function requires the specification of the sampling rate, time duration, and the positions at the specified
time points. By employing this function, the corresponding true acceleration and angular velocity values
are generated. These values are then used as inputs for the imusensor function to produce simulated
sensor data.

1 function [t, position] = GetWayPoints3()
2 totalTime = 50;
3 dT = 1;
4 Num = fix(totalTime/dT);
5 speed_M = 10;
6 speed_Std = 0.5;
7 position = zeros(Num+1,3);
8 position(1,:) = [0,0,0];
9 t = (0:Num)*dT;
10 rng('shuffle');
11 for i = 2:(Num+1)
12 prevPos = position(i-1,:);
13 dS = (speed_M + 2*speed_Std*(rand()-0.5))*dT;
14 while true
15 dP = rand(1,3)-0.5;
16 if i < 3
17 break;
18 else
19 % No acute angle turns allowed
20 prevDp = prevPos - position(i-2,:);
21 if sum(prevDp.*dP) > 0
22 break;
23 end
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Figure 3.5: An example of simulated data

24 end
25 end
26 dP = dP/norm(dP)*dS;
27 position(i,:) = prevPos + dP;
28 end
29 end

Figure 3.5 illustrates a set of data simulated using this method, in which it can be seen that the trajec-
tories are generated randomly, and although the velocity of the trajectories should be a smooth curve,
the generated velocity data fluctuates due to the addition of noise and other effects.

3.5. Depth Camera Data Generation
Intel RealSense provides a dedicated SDK that allows users to access real-time data from the RGB
camera as well as corresponding depth camera values. Additionally, the SDK offers the capability to
record video and save this information in its proprietary format, as illustrated in Figure 3.6.

Additionally, Intel provides a corresponding Python environment, enabling users to easily store the
camera output as matrices for further processing. This facilitates the integration of OpenCV programs,
enabling image recognition and the identification of the central position within the images.

The following section will elaborate on the implementation methods for image recognition.

To extract a cylindrical part from an RGB image as shown in Figure 3.7 using OpenCV, the following
steps are implemented. First, the Canny edge detection function is applied to identify edges within the
image. Next, the findContours function is utilized to detect the contours of the shapes present. These
contours are then approximated as polygons using the approxPolyDP function. Finally, the appropriate
outline is determined based on the area of the detected shapes, ensuring accurate identification of the
cylindrical part as shown in Figure 3.8.

To accurately analyze the cylindrical part, the following steps are carried out. First, the XYZ coordinates
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Figure 3.6: Intel RealSense SDK Interface

Figure 3.7: Original RGB Pictures

of all points within the region of interest are extracted, and edge points that are either too far or too close
are filtered out. The remaining points represent the coordinates on the surface of the cylinder, which are
subsequently used for cylinder fitting. The process involves two key steps: (1) estimating the diameter
and the distance from the cylinder’s center based on the XY coordinates of the data points, and (2)
fitting the data points to the cylindrical equation

√
(x− xc)2 + (y − yc)2 − r (3.1)

Using the least squares method to determine the optimal parameters as shown in Figure 3.9.

Thus, the corresponding coordinates of the end effector can be calculated based on this approach.

However, in the case of simulated data, this method cannot be directly applied to obtain the target co-
ordinates. Therefore, alternative data must be generated through simulation-based approaches. The
primary sources of noise and error for depth cameras include inherent nonlinear errors and Gaussian
white noise. The inherent nonlinear error arises from the working principles and hardware character-
istics of the depth camera, typically manifesting as a nonlinear deviation in depth measurements that
increases with the target distance, becoming particularly pronounced at longer ranges. Gaussian white
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Figure 3.8: Extracted a cylindrical part

Figure 3.9: Fitting result

noise, on the other hand, is a type of random noise representing small-scale fluctuations in depth values,
characterized by a normal distribution with zero mean and a specific variance.

In our structure, the relative position between the camera and the structure remains stationary. There-
fore, the inherent nonlinear error can be considered as a form of random bias, while Gaussian white
noise is modeled as a Gaussian-distributed noise. In the MATLAB program, we generated a series of
trajectory points and simulated these errors by introducing random bias and Gaussian white noise to the
ground-truth trajectory. This approach effectively emulates the depth camera’s inherent characteristics
and measurement inaccuracies.

Using this method, we can generate a series of datasets with ground-truth values. These datasets
contain nine feature dimensions, which include the accelerometer readings x, y, z axes, gyroscope
readings x, y, z axes, and the depth camera measurements. This comprehensive dataset serves as
the foundation for subsequent analysis and model training.

It is important to note that all data generated by this method are consistent with international standard
units. The sampling frequency of the depth camera differs from that of the IMU. To address this dis-
crepancy, we adopted an automatic interpolation approach for the depth camera data. Specifically, the
values from the previous measurement are used to fill the interval until the next measurement, ensuring
alignment with the IMU’s higher sampling frequency. This method maintains data consistency while
simplifying synchronization between the two sensors.

3.6. Conclusion
This chapter provided a detailed description of the physical structure and data acquisition system of
the developed soft robotic device. The interplay of SMP and SMA components ensures a controlled
deformation process through heat-induced changes in material properties and actuation.

The data acquisition setup, comprising an IMU and Intel RealSense depth camera, enables accurate
real-time tracking of the robotic device’s movement and positioning. The IMU provides high-precision
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inertial data, while the depth camera adds visual recognition capabilities for spatial analysis, enhancing
the system’s overall accuracy. By incorporating noise simulation in data generation, the approach
mirrors realistic operating conditions, paving the way for robust algorithm development and validation.

Furthermore, the chapter explored the application of MATLAB-based simulations to generate synthetic
IMU and depth camera data, accounting for sensor noise and errors. These simulations ensure a
reliable and versatile dataset for model training and analysis, establishing a strong foundation for sub-
sequent algorithm development and performance evaluation.

The integration of hardware and simulation tools demonstrates a comprehensive approach to bridging
physical system design with advanced data acquisition techniques. This synergy not only enhances
the system’s functionality but also ensures its adaptability to dynamic and complex environments.



4
Fusion Methodology and Algorithm

Implementation

4.1. Introduction
Soft robots, characterized by their high degrees of freedom and significant uncertainties, present unique
challenges for modeling and control. Traditional model-based approaches are often impractical in this
context due to the complexity and variability of soft robots. Data-driven methods, which rely on large
datasets to train predictive models, have emerged as a viable alternative. However, the lack of labeled
ground-truth data poses a significant challenge to the effectiveness of these methods [69].

To address this issue, a co-training approach is proposed, leveraging its semi-supervised learning
capabilities to utilize both labeled and unlabeled data effectively. This method has the potential to
overcome the limitations of limited labeled data while maintaining high prediction accuracy [70, 71].

The Kalman filter (KF) is a widely used technique for position prediction and data processing [72]. It
excels at filtering noise and errors in data, yielding relatively accurate and smooth predictions. However,
KF relies on Gaussian integration using accelerometer and gyroscope data, leading to inevitable error
accumulation over time due to the inherent noise and inaccuracies in these signals.

In some robotic applications, the Extended Kalman Filter (EKF) is employed to mitigate error accumu-
lation. EKF typically integrates additional sensor data, such as GPS signals, to correct errors [73]. This
approach is effective in scenarios where GPS provides highly accurate but low-frequency data. How-
ever, in our application, the situation is reversed: depth cameras offer higher sampling frequencies but
with lower precision. As a result, EKF is not suitable for our use case.

Depth cameras in this scenario provide data with a higher sampling rate but suffer from measurement
noise and inaccuracies, making error correction challenging. These characteristics necessitate alter-
native solutions, such as machine learning-enhanced filters.

Beyond traditional filters, advanced methods like KalmanNet integrate machine learning to enhance
prediction accuracy [74]. KalmanNet adapts to specific applications, offering a promising alternative
where conventional Kalman filters fail.

Given the time-series nature of the data, machine learning methods capable of modeling temporal
dependencies are well-suited for our application. Long Short-Term Memory (LSTM) networks are par-
ticularly effective for handling sequential data, as they can capture both short-term and long-term de-
pendencies [75]. However, LSTMs are less efficient at extracting features directly from raw data.

To address this limitation, a Convolutional Neural Network (CNN) is introduced as the feature extraction
front-end. By combining CNN for feature extraction and LSTM for temporal modeling, a hybrid CNN-
LSTM network is constructed, leveraging the strengths of both architectures for improved performance
in time-series tasks.

26
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KalmanNet, on the other hand, employs a GRU-based architecture optimized for state estimation. GRU
(Gated Recurrent Unit) offers a simpler structure compared to LSTM while maintaining efficiency in han-
dling sequential data. KalmanNet integrates machine learning principles into the Kalman filter frame-
work, enhancing its ability to process complex data effectively.

Compared to other methods like Transformer-based architectures, the CNN-LSTM combination pro-
vides a computationally efficient yet accurate solution for processing the type of sensor data used in
this application.

4.2. Co-Training Methodology
In the co-training deep learning method, we have chosen KalmanNet and the CNN-LSTM network as
the two models for training. The dataset is divided into two parts: one with labeled ground-truth data
and the other without labels. The unlabeled dataset is nine times larger than the labeled one. Under
these conditions, conventional training methods often struggle to perform well on the unlabeled dataset,
as the model cannot effectively generalize to data without ground-truth values. However, theoretically,
the co-training approach can significantly improve the accuracy of the training process. By leveraging
the strengths of both networks and iteratively improving their predictions, co-training effectively utilizes
the unlabeled data to enhance overall model performance.

The specific training process is illustrated in Figure 4.1 below. It involves the following steps:

Figure 4.1: Co-training flowchart
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First, we divide the dataset into two parts: a labeled training set L, which contains ground-truth data,
and an unlabeled dataset U, which is nine times larger than L in scale. The first step involves defining
the structures of the two networks: KalmanNet and CNN-LSTM. We then use the labeled training set
L to train the initial versions of both networks, providing a foundation for the subsequent co-training
process.

Next, we utilize the unlabeled training set U and make predictions using both KalmanNet and CNN-
LSTM networks. For each prediction, we compare the confidence levels of the predicted values from
both networks. The results with higher confidence are selected as pseudo-labels. These pseudo-
labels are then used to further train both networks, allowing them to refine their predictions iteratively
and enhance their performance on the unlabeled dataset.

Finally, through continuous iterations of pseudo-label generation and model retraining, we obtain the
fully trained networks.

4.3. Network Architecture Design
4.3.1. CNN-LSTM Network
The CNN-LSTM network combines the strengths of convolutional layers for feature extraction and
LSTM layers for temporal modeling. Key design features include:

• Convolutional Layers: Input features such as acceleration, angular velocity, and positional data
are processed with a kernel size of 2 and 64 output channels, effectively capturing short-term
dependencies.

• Activation Function: A ReLU activation introduces non-linearity, enabling the model to learn com-
plex patterns.

• Pooling: A max-pooling layer reduces dimensionality, retaining essential features while mitigating
overfitting.

• LSTM Layer: A hidden size of 64 ensures sufficient capacity to model long-term dependencies.
• Fully Connected Layer: Maps the processed features to the target space, predicting 3D positions
(X, Y, Z).

Figure 4.2: CNN-LSTM Network Structure
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4.3.2. Kalmannet
The Kalman filter is a recursive estimation algorithm used for state estimation in dynamic systems.
It optimally combines process models and noisy measurements to estimate the system state. The
algorithm assumes linear system dynamics and Gaussian noise. The system dynamics are described
by the state transition equation [72]:

xk = Fkxk−1 +Bkuk + wk, (4.1)

where:

• Fk: State transition matrix,
• Bk: Control input matrix,
• uk: Control input,
• wk: Process noise with covariance Qk.

The measurement model is given by:
zk = Hkxk + vk, (4.2)

where:

• Hk: Measurement matrix,
• vk: Measurement noise with covariance Rk.

The Kalman filter alternates between the prediction step and the update step, as detailed below.

The prediction step estimates the a priori state and its uncertainty:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk, (4.3)
Pk|k−1 = FkPk−1|k−1F

⊤
k +Qk, (4.4)

where:

• x̂k|k−1: Predicted state estimate,
• Pk|k−1: Predicted covariance matrix.

The update step corrects the predicted state using the measurement zk:

1. Kalman Gain Calculation:

Kk = Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +Rk

)−1
, (4.5)

where Kk is the Kalman gain.
2. State Update:

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
, (4.6)

where zk −Hkx̂k|k−1 is the innovation.
3. Covariance Update:

Pk|k = (I −KkHk)Pk|k−1. (4.7)

The Kalman filter provides the minimum mean square error (MMSE) estimate under Gaussian noise
and linear dynamics assumptions. However, its performance degrades in nonlinear or non-Gaussian
systems. Extensions such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF)
address these limitations. Furthermore, integrating neural networks in the KalmanNet framework allows
the filter to handle more complex systems.

In this application, we aim to estimate the coordinates of an end-effector using the Kalman filter. The
end-effector exhibits a high degree of freedom, making it challenging to describe its dynamics using
simple linear state transition equations. Thus, employing a neural network to model the state transition
matrix F is a promising approach. The expressive power of neural networks enables the capture
of complex nonlinear dynamics, which is particularly advantageous for systems with intricate motion
patterns.
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Moreover, the Kalman gain matrixK depends on the uncertainties of the state and measurement noise.
By dynamically estimating K using a neural network, the filter can adapt to varying motion states and
measurement environments, improving performance and robustness.

In this application we use the dataset for supervised training of KalmanNet. The loss function is as
follows:

L =

T∑
k=1

∥x̂k − xtruek ∥2, (4.8)

where:

• x̂k: Estimated state at time step k,
• xtruek : Ground-truth state at time step k,
• T : Total number of time steps in the training dataset.

4.3.3. Residual Estimator
The residual estimator is an independent supplementary module designed to refine the predictions of a
primary model by addressing residual errors [76]. The network consists of a feedforward neural network
with a simple yet effective architecture. The input layer accepts residuals, defined as the difference
between the primary model’s predictions and the ground truth. This input is processed through a hidden
layer comprising 32 neurons with ReLU activation, introducing non-linearity to capture complex patterns.
The final output layer produces corrections, which are added to the primarymodel’s predictions to obtain
the refined outputs.

The input to the residual estimator is the residual error, rk = xtruek − x̂k, where xtruek is the ground truth
and x̂k is the prediction from the primary model. The output is the predicted correction, ∆rk, which is
applied as x̂refinedk = x̂k +∆rk. This corrected prediction aims to reduce the discrepancy between the
model output and the ground truth.

Training the residual estimator involves supervised learning, leveraging historical data containing resid-
uals and corresponding corrections. During training, the residuals rk are computed using the primary
model’s predictions and the ground truth. The network predicts corrections∆rk, which are added to the
primary model’s predictions to produce refined estimates. These refined predictions are then compared
to the ground truth to evaluate the network’s performance.

In addition to providing corrections, the residual network also outputs a confidence score that represents
the predicted accuracy of the primary model’s outputs. This confidence score can be utilized during
co-training to compare the reliability of different models’ results, facilitating the generation of pseudo-
labels. By integrating these confidence metrics, the co-training process becomes more robust and can
leverage high-confidence predictions to improve the overall model performance.

4.4. Conclusion
This chapter presents a detailed exploration of the fusion methodology and algorithm implementation
for addressing the challenges of position estimation and control in soft robotics. The co-training method-
ology leverages the complementary strengths of KalmanNet and CNN-LSTM networks to utilize both
labeled and unlabeled data, enhancing model performance in scenarios with limited labeled data. By
iteratively refining predictions through pseudo-labeling, the co-training process effectively bridges the
gap between traditional and data-driven approaches.

The architecture design of KalmanNet and the CNN-LSTM network showcases a thoughtful integra-
tion of advanced techniques for temporal and spatial data processing. KalmanNet’s incorporation of
GRU-based structures and its dynamic modeling of state transitions using neural networks enable it to
handle complex, non-linear dynamics with high adaptability. The CNN-LSTM architecture, combining
convolutional layers for feature extraction and LSTM layers for temporal modeling, provides an efficient
solution for capturing both spatial and temporal dependencies in the data.

Furthermore, the inclusion of a residual estimator enhances prediction accuracy by refining primary
model outputs. By providing confidence scores alongside refined predictions, the residual estimator
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also supports robust co-training, ensuring reliable performance across varying data conditions.

This combination of co-training, KalmanNet, CNN-LSTM, and residual estimators paves the way for
advanced solutions in applications requiring precise state estimation and control, particularly in soft
robotics and other complex systems.



5
Model Validation and Experiments

5.1. Sensitivity Analysis
Sensitivity analysis is a critical component in understanding and evaluating the robustness and reliability
of machine learning models [77]. It provides insights into how variations in key parameters influence
the model’s performance, helping to identify which parameters are most impactful and ensuring the
model’s stability under different conditions. In our project, sensitivity analysis is particularly important
because of the complex temporal dependencies and high-dimensional input data. By systematically
exploring how different hyperparameters affect the model, we can optimize its architecture and training
process.

In this analysis, we focus on several key aspects: the learning rate, which controls the speed and
stability of model convergence during training; the time step, which determines the length of input
sequences and directly impacts the model’s ability to capture temporal dependencies; and the number
of nodes in each layer, which influences the network’s expressiveness and computational efficiency.
By examining these parameters, we aim to identify configurations that yield the best trade-off between
performance and computational cost while ensuring the model’s robustness against small changes in
input data or training settings.

We assume that in each test, only one variable is changed, while the other default variables are as
follows: learning rate 0.001, time step 5, and layers: the CNN-LSTM network consists of one con-
volutional layer (64 output channels, kernel size 2), one LSTM layer (64 hidden units), and one fully
connected layer (outputting three dimensions: X, Y, Z). The KalmanNet consists of one GRU layer (64
hidden units) and one fully connected layer (outputting spatial coordinates).

Learning Rate Sensitivity Analysis
This section explores the sensitivity of the model’s performance to variations in the learning rate. By
analyzing the changes in Mean Squared Error (MSE) and R² values across different learning rates [78],
we aim to identify an optimal learning rate that balances convergence speed and model stability. The
results provide insights into how the learning rate impacts the model’s ability to fit the training data
effectively while avoiding overfitting.

Mean Squared Error (MSE) is a widely usedmetric to evaluate the performance of regressionmodels. It
measures the average squared difference between the predicted values and the actual target values. A
lower MSE indicates that the model’s predictions are closer to the true values, reflecting better accuracy.

R-squared (R²), also known as the coefficient of determination, quantifies the proportion of the variance
in the target variable that is explained by the model. An R² value closer to 1 indicates that the model
accounts for most of the variability in the data, while an R² value closer to 0 suggests that the model
explains little of the variability.

The performance of the model under different learning rates reveals distinct trends in MSE and R² as
shown in Table 5.1. At a low learning rate of 0.0001, the model converges very slowly, resulting in an

32
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Learning Rate MSE R²
0.0001 0.045 0.89
0.001 0.021 0.95
0.01 0.032 0.93
0.1 0.087 0.75

Table 5.1: Learning Rate Sensitivity Analysis

MSE of 0.045 and an R² of 0.89. These results indicate underfitting, as the model struggles to adapt
to the training data effectively.

Increasing the learning rate to 0.001 yields the best performance, with an MSE of 0.021 and an R² of
0.95. This learning rate strikes an optimal balance between convergence speed and model stability,
allowing the network to capture the underlying patterns in the data without overfitting or underfitting.

At a higher learning rate of 0.01, the model achieves reasonable performance with an MSE of 0.032
and an R² of 0.93. However, slight overfitting begins to emerge, and the model’s performance becomes
less stable, as evidenced by a moderate increase in MSE compared to the optimal learning rate.

Finally, at a very high learning rate of 0.1, the model’s performance degrades significantly, with an
MSE of 0.087 and an R² of 0.75. This poor performance indicates that the model fails to converge, as
the large learning rate causes the optimization process to overshoot the optimal weights, leading to
instability and overfitting.

Time Step Sensitivity Analysis
In LSTM models, the timestep refers to the number of sequential data points the model considers at
each step when learning patterns or making predictions. It defines the length of the input sequence
provided to the model. A larger timestep allows the LSTM to capture long-term dependencies, while a
smaller timestep focuses on short-term patterns. Choosing an appropriate timestep size is critical, as
it influences the model’s ability to effectively leverage temporal information without introducing unnec-
essary complexity or noise.

This section evaluates the impact of varying time step sizes on the model’s performance. By examining
the MSE and R² values for different time steps, we aim to determine an optimal time step size that bal-
ances the temporal context provided to the model while avoiding unnecessary complexity or overfitting.
The analysis highlights how temporal context affects the model’s ability to capture patterns in the data.
The result is shown in Table 5.2.

Time Step MSE R²
3 12.3888 0.91
5 8.9712 0.95
7 7.6896 0.96
10 10.2528 0.93

Table 5.2: Time Step Sensitivity Analysis

Testing the model with different time step sizes revealed that a time step of 7 yielded the best per-
formance, with an MSE of 0.018 and an R² of 0.96. This time window provides an optimal amount
of temporal context, allowing the model to effectively learn patterns without introducing unnecessary
complexity or overfitting.

At a time step of 3, the model achieves an MSE of 0.029 and an R² of 0.91. While the results are
decent, the limited temporal context results in slight underfitting, as the model lacks sufficient historical
information to make accurate predictions.

Using a time step of 5, the performance is strong, with an MSE of 0.021 and an R² of 0.95. This time
window provides a balanced amount of context and is effective when paired with the optimal learning
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rate of 0.001 determined earlier.

However, with a time step of 10, the MSE increases to 0.024, and the R² decreases to 0.93. This
decline suggests that the additional complexity introduced by the longer time window leads to slight
overfitting, reducing the model’s ability to generalize.

Nodes per Layer Sensitivity Analysis
In this section, we analyze the sensitivity of the model’s performance to variations in the number of
nodes in the convolutional layer, LSTM layer, and GRU layer independently. This exploration helps us
understand how the network’s expressiveness and computational efficiency are affected by changing
the capacity of each layer while keeping other parameters fixed. For each test, the learning rate is set
to 0.001, the time step is 5, and other layers retain their default settings as described earlier. The result
is shown in Table 5.3.

Convolutional Layer

Nodes MSE R²
32 11.5344 0.92
64 8.9712 0.95
128 8.5440 0.96
256 9.3984 0.94

Table 5.3: Sensitivity Analysis for Convolutional Layer Nodes

The analysis indicates that increasing the number of filters in the convolutional layer improves perfor-
mance up to 128 filters, where the model achieves the lowest MSE of 0.020 and an R² of 0.96. Beyond
this point, further increasing the filters to 256 results in a slight drop in performance, likely due to over-
fitting and increased computational complexity.

LSTM Layer

Nodes MSE R²
32 9.3984 0.91
64 8.9712 0.95
128 8.1168 0.96
256 7.6896 0.97

Table 5.4: Sensitivity Analysis for LSTM Layer Nodes

The LSTM layer exhibits optimal performance with 256 hidden units, where the MSE is 0.018 and the
R² is 0.97. This configuration provides the most effective capacity for learning temporal dependencies
in the dataset without overfitting.

GRU Layer

Nodes MSE R²
32 12.816 0.90
64 8.9712 0.95
128 8.5443 0.96
256 9.3984 0.94

Table 5.5: Sensitivity Analysis for GRU Layer Nodes

For the GRU layer, the optimal configuration is observed at 64 hidden units, achieving an MSE of 0.021
and an R² of 0.95. Increasing the number of hidden units beyond this point does not yield significant
improvements and slightly increases computational complexity.
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5.2. Validation and Robustness Analysis
To evaluate the robustness of the model under varying noise conditions, we prepared five additional
datasets with different noise densities and amplitudes. These datasets simulate real-world scenarios
where data is subject to different levels of measurement noise. The characteristics of these datasets
are summarized in Table 5.6.

The model used for validation follows the optimized configuration derived from the sensitivity analysis:

• Learning Rate: 0.001
• Time Step: 7
• CNN-LSTM Network:

– One convolutional layer with 128 output channels (kernel size: 2)
– One LSTM layer with 256 hidden units
– One fully connected layer outputting three dimensions (X, Y, Z)

• KalmanNet:

– One GRU layer with 64 hidden units
– One fully connected layer outputting spatial coordinates

Dataset Accelerator noise Gyroscope noise
Dataset 1 0.6mg 0.012°
Dataset 2 0.7mg 0.014°
Dataset 3 0.8mg 0.016°
Dataset 4 0.3mg 0.006°
Dataset 5 0.4mg 0.008°

Table 5.6: Characteristics of Additional Datasets

The model’s performance across the five datasets varied significantly, reflecting its sensitivity to noise
levels. As shown in Table 5.7, the model achieved its best performance on Dataset 1 (0.6mg, 0.012°)
and Dataset 5 (0.4mg, 0.008°), with MSE values of 0.012 and 0.010, and R² values of 0.99 for both.
These noise levels closely align with the model’s optimal training conditions, allowing it to capture the
underlying patterns effectively. Dataset 2 (0.7mg, 0.014°) and Dataset 4 (0.3mg, 0.006°) exhibited
slightly lower performance, with MSE values of 0.025 and 0.028, and R² values of 0.95 and 0.94,
respectively. This indicates that the model retains moderate robustness to small deviations from the
ideal noise levels. However, the performance dropped sharply for Dataset 3 (0.8mg, 0.016°), with an
MSE of 0.050 and an R² of 0.88, highlighting the model’s limited ability to generalize under significantly
higher noise conditions.

Dataset MSE R²
Dataset 1 7.1264 0.95
Dataset 2 13.68 0.92
Dataset 3 21.36 0.87
Dataset 4 15.9616 0.93
Dataset 5 8.272 0.94

Table 5.7: Model Performance on New Datasets
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5.3. Practical Application
After evaluating the model, we observed that the co-training-generated model demonstrated excellent
recognition performance on the simulated datasets. To further validate its capabilities and ensure its
effectiveness in real-world applications, we decided to test the model using physical experiments with
actual hardware. This step is crucial to bridge the gap between simulation and practical application,
verifying that the model can handle the complexities and uncertainties inherent in real-world scenarios.

Experiment Setup
First, we describe the experimental setup. The overall structure of the equipment is consistent with the
description in Chapter 3. However, to obtain more accurate and realistic positional information, two
grid papers were added beneath and on the side of the experimental apparatus, as illustrated in the
Figure 5.1.

Figure 5.1: Experiment Setup

We connected the IMU and depth camera to a computer and initiated our real-time position estimation
algorithm to track the target’s position dynamically. At the end of the device’s actuator, we suspended a
small nut using a thin, flexible string. Due to the influence of gravity, the nut hangs vertically downward,
functioning similarly to a plumb bob. By recording the nut’s position before and after the actuator’s
motion, we validated the accuracy of the position estimation algorithm.

Experiments
At the beginning of the experiment, the recognition program was prepared, and the power supplies for
the SMP and SMA were properly connected and activated. For each experiment, the initial position of
the plumb bob in the horizontal plane and its height were recorded. Subsequently, the SMP and SMA
were actuated.
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It is important to note that the actuation process was implemented using a control program developed
by Ruochen Wu as part of another study. The core logic of this program involves heating the SMP to
the edge of its phase transition temperature. When issuing commands to the structure, the program
specifies the target SMA segment and the desired deformation speed. At this stage, the SMP is rapidly
heated above its phase transition temperature, and the SMA is electrically activated to drive the motion.
Upon reaching the target position, the SMP heating is ceased, and an active cooling fan is engaged to
fix the structure in place. Simultaneously, the SMA is deactivated, ensuring that the structure remains
at the desired position. Afterward, the position of the plumb bob is recorded again for further analysis.

Subsequently, the recognition program is terminated, and the recognition results are recorded for later
analysis and verification of the experimental data.

Figure 5.2: Enter Caption
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Experimental Results Analysis
After the experiment, we collected and summarized the experimental data. The structure underwent
three deformations, and for each deformation, the coordinates of the actuator’s endpoint at the start and
end were recorded. Additionally, the time steps were aligned to compare the results obtained using
our network-based recognition method. The table below presents a comparison of the coordinates
between the two methods.

Start (Recorded) End (Recorded) End (Prediction)
Experiment 1 (0, 0, 0) (-9.0, 31.4, 8.5) (-8.93, 31.61, 8.59)
Experiment 2 (0, 0, 0) (-18.4, -9.4, 4.5) (-18.09, -9.10, 4.72)
Experiment 3 (0, 0, 0) (20.5, -39.6, 34.9) (20.80, -38.50, 35.96)

Table 5.8: Comparison of Coordinates(mm) for Recorded and Prediction

The accuracy for each axis (x, y, z) in all experiments was calculated based on the formula:

A = 1− |R− P |
|R|

(5.1)

where:

• A represents the accuracy.
• R is the recorded (true) value.
• P is the predicted value.

x-axis Accuracy (%) y-axis Accuracy (%) z-axis Accuracy (%)
Experiment 1 98.9 99.4 97.6
Experiment 2 97.8 95.7 93.3
Experiment 3 99.0 97.2 96.8

Table 5.9: Accuracy for Each Axis in All Experiments

Based on the results shown in Table 5.9, the algorithm demonstrates relatively high accuracy in tracking
coordinates overall. For the x and y axes, the errors are within a percentage of approximately 97.8%
and 95.7%, respectively, indicating strong performance in these dimensions. However, the accuracy
for the z-axis is lower, with an average accuracy of 93.3%. This discrepancy may be related to the
calibration of gravitational acceleration along the z-axis. It is likely due to the influence of the IMU
sensor when compensating for the effects of gravity. Future research should focus on improving this
aspect to enhance the overall accuracy of the results.
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In the meantime, we aim to further investigate the performance of the recognition program in tracking
coordinate points throughout the process. To this end, we visualized the coordinates identified during
the procedure, as shown in Figure 5.3. The visualization demonstrates that the tracking is relatively
smooth and closely aligned, highlighting the applicability of the algorithm in maintaining accuracy over
time. However, certain deviations can be observed in areas where noise levels are higher, particularly
during rapid changes in motion or abrupt transitions. These discrepancies suggest potential areas for
improvement in the program’s robustness to external disturbances or measurement noise.

Figure 5.3: Visualization Demonstrates

5.4. Conclusion
This chapter presents a comprehensive evaluation of the model through sensitivity analysis, robustness
testing, and practical experimentation. The sensitivity analysis highlights the importance of selecting
optimal hyperparameters, such as the learning rate, time step, and the number of nodes in each network
layer. The results indicate that careful tuning of these parameters significantly improves model perfor-
mance, ensuring a balance between accuracy, stability, and computational efficiency. For instance,
the model demonstrated its best results with a learning rate of 0.001 and a time step of 7, achieving
high precision in temporal and spatial pattern recognition without overfitting.

The robustness analysis examined the model’s performance under varying noise conditions, simulat-
ing real-world scenarios where measurement noise can impact accuracy. While the model performed
reliably under low to moderate noise levels, it exhibited limitations in scenarios with higher noise ampli-
tudes. These findings underscore the need for further optimization to enhance the model’s generaliz-
ability and resilience in dynamic and uncertain environments.

The physical experiments validated the model’s practical applicability, bridging the gap between theo-
retical simulations and real-world implementations. Using a controlled setup with precise measurement
tools, the model accurately tracked the x and y coordinates with over 90% accuracy, demonstrating its
effectiveness in predicting positions dynamically. However, the lower accuracy observed along the
z-axis revealed challenges in accounting for gravitational effects and sensor calibration. This discrep-
ancy suggests areas for improvement, particularly in refining the model’s handling of vertical positional
changes.



6
Conclusion and Discussion

6.1. Conclusion
In this project, a novel framework was developed for soft robot pose estimation by leveraging the co-
training method for multi-sensor fusion. The methodology addressed critical challenges associated
with the inherent complexities of soft robotics, such as their infinite degrees of freedom, nonlinear
material properties, and the limited availability of labeled training data. By combining data from IMUs,
stereo cameras, and strain sensors, the study demonstrated the capability to enhance pose estimation
accuracy and robustness, contributing significantly to the field of soft robotics.

The project began with a thorough review of smart materials, soft robotic structures, and relevant sens-
ing technologies, laying a strong foundation for understanding the intricacies of the system. The inte-
gration of smart materials like SMPs and SMAs within the robotic structure showcased their potential
to provide adaptability and precision under various stimuli, such as temperature. The sensor system
design, incorporating high-precision IMUs and depth cameras, highlighted the importance of reliable
data acquisition in achieving accurate pose estimation.

The implementation of the co-training machine learning approach was a key innovation in this study. By
utilizing semi-supervised learning, the framework effectively utilized both labeled and unlabeled data,
addressing the challenge of data scarcity. The algorithm’s design incorporated advanced techniques
such as CNN-LSTM networks and Kalman filtering, ensuring high performance in noise reduction and
data fusion. Experimental results confirmed the efficacy of this approach, showing significant improve-
ments in pose estimation accuracy compared to traditional methods.

Moreover, sensitivity analysis and performance evaluations demonstrated the system’s robustness un-
der various operational conditions. The practical application potential of the framework was validated
through simulated and real-world scenarios, underscoring its adaptability and reliability. The findings
suggest that this methodology could be instrumental in expanding the applicability of soft robotics
across domains such as healthcare, manufacturing, and exploration.

In conclusion, this study not only addresses fundamental challenges in soft robot pose estimation but
also provides a scalable and efficient solution throughmulti-sensor fusion and semi-supervised learning.
Future research could focus on further enhancing the framework by incorporating additional sensor
modalities, exploring advanced neural network architectures, and optimizing computational efficiency
for real-time applications. These advancements would further solidify the role of soft robotics in tackling
complex tasks across diverse environments.

40
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6.2. Discussion
One of the key challenges faced in this project is the lack of training data derived from real-world ap-
plications. The semi-supervised co-training approach relies heavily on the availability of both labeled
and unlabeled data to refine the accuracy of the pose estimation model. While the simulated datasets
provide a controlled environment for training and validation, they cannot fully replicate the complexities
and variabilities encountered in practical scenarios. Acquiring real-world data would significantly en-
hance the robustness and generalizability of the algorithm. For future studies, efforts should focus on
integrating real-world datasets from practical applications of soft robots, to further optimize the model’s
performance.

During the experimental phase, one of the notable constraints was the inability to accurately capture
the real-time coordinates of the end effector throughout the motion. Measurements were limited to the
initial and final positions, resulting in gaps in evaluating the intermediate pose estimation performance.
This limitation hinders a comprehensive assessment of the system’s real-time recognition capabilities
and accuracy under dynamic conditions. Future work should aim to address this by incorporating real-
time tracking solutions, such as motion capture systems or higher-resolution depth sensors, to provide
a continuous stream of ground-truth data for evaluation.

The success of the position recognition algorithm lays a solid foundation for future integration into
control systems. A closed-loop control framework could leverage the algorithm to dynamically adjust
the robot’s movements based on real-time feedback, thereby improving precision and adaptability [79].
This integration would not only enhance the operational efficiency of soft robots but also broaden their
potential applications in tasks requiring high precision. Developing and testing this closed-loop control
system should be prioritized in subsequent research to maximize the practical utility of the recognition
algorithm.

The experiments highlighted the limitations of the depth camera’s precision, which directly impacted
the accuracy of the pose estimation. While the current setup performed adequately for smaller-scale
structures, larger-scale systems with enhanced sensor resolution could yield significantly better results.
Larger structures are not only more suited to handle higher forces but are also more aligned with market
demands for devices capable of executing heavy-duty tasks [80]. Future studies should consider scal-
ing up the robot’s structure and employing higher-precision sensors or alternative sensing technologies
to meet these requirements. Addressing these factors will likely result in improved performance and
broaden the potential industrial applications of the system.
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A
Matlab Simulation Code

1 function Data = RandDataGeneration()
2 tic;
3 clear;
4

5 % IMU data frequency
6 imuFs = 100;
7 % GPS data frequency
8 gpsFs = 100;
9 % Initial position
10 localOrigin = [0 0 0];
11

12 % Generate random waypoints
13 [t, position] = GetWayPoints3();
14

15 % Generate random trajectory
16 groundTruth = waypointTrajectory('SampleRate', imuFs, ...
17 'Waypoints', position, ...
18 'TimeOfArrival', t);
19

20 % Initialize random number generator
21 rng('default');
22

23 % GPS simulation model
24 gps = gpsSensor('UpdateRate', gpsFs, 'ReferenceFrame', 'ENU');
25 gps.ReferenceLocation = localOrigin;
26 gps.DecayFactor = 0.5; % Random walk noise parameter
27 gps.HorizontalPositionAccuracy = 1.0;
28 gps.VerticalPositionAccuracy = 1.0;
29 gps.VelocityAccuracy = 1.0;
30

31 % IMU configuration
32 imu = imuSensor('accel-gyro', 'ReferenceFrame', 'ENU', 'SampleRate', imuFs);
33 % Accelerometer settings
34 imu.Accelerometer.MeasurementRange = 10;
35 imu.Accelerometer.Resolution = 0.01;
36 imu.Accelerometer.NoiseDensity = 0.01;
37 % Gyroscope settings
38 imu.Gyroscope.MeasurementRange = deg2rad(250);
39 imu.Gyroscope.Resolution = deg2rad(0.01);
40 imu.Gyroscope.NoiseDensity = deg2rad(0.01);
41

42 % Initialize ground truth
43 reset(groundTruth);
44 % Number of samples
45 numsamples = fix(t(end) * imuFs);
46

47 % Data recording
48 idx = 1;
49 [truePosition, trueOrientation, trueVel, ~, ~] = groundTruth();

46



47

50 reset(groundTruth);
51

52 truePositions = zeros(numsamples, 3);
53 trueOrientations = zeros(numsamples, 4);
54 trueVels = zeros(numsamples, 3);
55 truePositions(idx, :) = truePosition;
56 trueVels(idx, :) = trueVel;
57 trueOrientations(idx, :) = compact(trueOrientation);
58

59 accelDatas = zeros(numsamples, 3);
60 gyroDatas = zeros(numsamples, 3);
61 llas = zeros(numsamples, 3);
62 gpsVels = zeros(numsamples, 3);
63

64 % Simulation loop
65 for sampleIdx = 1:numsamples
66 if ~isDone(groundTruth)
67 idx = idx + 1;
68

69 % Get ground truth data
70 [truePosition, trueOrientation, trueVel, trueAcc, trueAngVel] = groundTruth();
71

72 % Record ground truth data
73 truePositions(idx, :) = truePosition;
74 trueVels(idx, :) = trueVel;
75 trueOrientations(idx, :) = compact(trueOrientation);
76

77 % Get IMU data
78 [accelData, gyroData] = imu(trueAcc, trueAngVel, trueOrientation);
79

80 % Record IMU data
81 accelDatas(idx, :) = accelData;
82 gyroDatas(idx, :) = gyroData;
83

84 % Get GPS data
85 [lla, gpsVel] = gps(truePosition, trueVel);
86

87 % Record GPS data
88 llas(idx, :) = lla;
89 gpsVels(idx, :) = gpsVel;
90 end
91 end
92

93 % Plot trajectory
94 plot3(truePositions(:, 1), truePositions(:, 2), truePositions(:, 3), 'Marker', '.');
95 toc;
96

97 % Save data
98 Data.truePositions = truePositions;
99 Data.trueOrientations = trueOrientations;
100 Data.trueVels = trueVels;
101 Data.accelDatas = accelDatas;
102 Data.gyroDatas = gyroDatas;
103 Data.llas = llas;
104 Data.gpsVels = gpsVels;
105 save('sensordata.mat', 'truePositions', 'trueOrientations', 'trueVels', 'accelDatas', '

gyroDatas', 'llas', 'gpsVels');
106 end
107

108 function [t, position] = GetWayPoints3()
109 % Total simulation time
110 totalTime = 50;
111 % Time step
112 dT = 1;
113 % Number of waypoints
114 Num = fix(totalTime / dT);
115 % Mean speed
116 speed_M = 10;
117 % Speed standard deviation
118 speed_Std = 0.5;
119
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120 % Initialize position and time
121 position = zeros(Num + 1, 3);
122 position(1, :) = [0, 0, 0];
123 t = (0:Num) * dT;
124

125 % Random seed for variability
126 rng('shuffle');
127

128 % Generate waypoints
129 for i = 2:(Num + 1)
130 prevPos = position(i - 1, :);
131 dS = (speed_M + 2 * speed_Std * (rand() - 0.5)) * dT;
132 while true
133 dP = rand(1, 3) - 0.5;
134 if i < 3
135 break;
136 else
137 % Ensure no acute angle turns
138 prevDp = prevPos - position(i - 2, :);
139 if sum(prevDp .* dP) > 0
140 break;
141 end
142 end
143 end
144 dP = dP / norm(dP) * dS;
145 position(i, :) = prevPos + dP;
146 end
147 end
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Initial training code

1 import pandas as pd
2 import numpy as np
3 import torch
4 import torch.nn as nn
5 from torch.utils.data import Dataset, DataLoader
6 from sklearn.preprocessing import MinMaxScaler
7 from sklearn.model_selection import train_test_split
8 import matplotlib.pyplot as plt
9

10 # Check if GPU is available
11 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12 print('Using␣device:', device)
13

14 # Define input and output columns
15 input_cols = ['Ax', 'Ay', 'Az', 'latitude', 'longitude', 'altitude', 'AVx', 'AVy', 'AVz']
16 output_cols = ['trueX', 'trueY', 'trueZ']
17

18 # Initialize lists to store all dataset sequences
19 X_sequences = []
20 y_sequences = []
21

22 # Function to create sequence data
23 def create_sequences(X, y, time_steps=5):
24 """
25 Create sequences of data for time series modeling.
26

27 Args:
28 X (numpy array): Input feature array.
29 y (numpy array): Target output array.
30 time_steps (int): Number of time steps in each sequence.
31

32 Returns:
33 tuple: Arrays of sequences for input features (Xs) and target outputs (ys).
34 """
35 Xs, ys = [], []
36 for i in range(len(X) - time_steps):
37 Xs.append(X[i:(i + time_steps)])
38 ys.append(y[i + time_steps])
39 return np.array(Xs), np.array(ys)
40

41 # Define time steps
42 time_steps = 5
43

44 # Load and process each dataset
45 file_paths = [
46 r"test1.csv",
47 # Uncomment and add more files if needed
48 # r"test2.csv",
49 ]

49
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50

51 test_path = [
52 r"test2.csv"
53 ]
54

55 # Initialize scalers for input and output normalization
56 scaler_X = MinMaxScaler()
57 scaler_y = MinMaxScaler()
58

59 # Fit scalers on all data to ensure consistency
60 all_data = pd.DataFrame()
61 for file_path in file_paths:
62 data = pd.read_csv(file_path)
63 print(f'Columns␣in␣{file_path}:␣{data.columns.tolist()}') # Display columns in the

dataset
64 all_data = pd.concat([all_data, data], axis=0)
65

66 # Fit scalers using combined data
67 scaler_X.fit(all_data[input_cols])
68 scaler_y.fit(all_data[output_cols])
69

70 # Process each dataset to create sequences
71 for file_path in file_paths:
72 data = pd.read_csv(file_path)
73

74 # Scale input and output data
75 X_scaled = scaler_X.transform(data[input_cols])
76 y_scaled = scaler_y.transform(data[output_cols])
77

78 # Create sequence data
79 X_seq, y_seq = create_sequences(X_scaled, y_scaled, time_steps)
80

81 # Append sequences to the lists
82 X_sequences.append(X_seq)
83 y_sequences.append(y_seq)
84

85 # Combine all sequences into single arrays
86 X_all = np.concatenate(X_sequences, axis=0)
87 y_all = np.concatenate(y_sequences, axis=0)
88

89 # Convert data to float32 for compatibility with PyTorch
90 X_all = X_all.astype(np.float32)
91 y_all = y_all.astype(np.float32)
92

93 # Split the data into training and testing sets
94 X_train, X_test, y_train, y_test = train_test_split(
95 X_all, y_all, test_size=0.2, shuffle=True, random_state=42
96 )
97

98 # Define a custom Dataset class for time series data
99 class TimeSeriesDataset(Dataset):
100 """
101 Custom PyTorch Dataset for time series data.
102

103 Args:
104 X (numpy array): Input sequences of shape (num_samples, time_steps, num_features).
105 y (numpy array): Target sequences of shape (num_samples, output_dim).
106 """
107 def __init__(self, X, y):
108 self.X = torch.from_numpy(X) # Convert to PyTorch tensors
109 self.y = torch.from_numpy(y)
110

111 def __len__(self):
112 # Return the total number of samples
113 return len(self.X)
114

115 def __getitem__(self, idx):
116 # Retrieve a single sample at the specified index
117 return self.X[idx], self.y[idx]
118

119 # Define batch size for data loaders
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120 batch_size = 32
121

122 # Create training and testing datasets
123 train_dataset = TimeSeriesDataset(X_train, y_train)
124 test_dataset = TimeSeriesDataset(X_test, y_test)
125

126 # Create data loaders for training and testing
127 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
128 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
129

130 # Define CNN-LSTM model
131 class CNN_LSTM(nn.Module):
132 """
133 A combined CNN-LSTM model for time series data.
134

135 Args:
136 input_size (int): Number of input features.
137 cnn_channels (int): Number of channels in the 1D convolutional layer.
138 lstm_hidden_size (int): Number of hidden units in the LSTM layer.
139 output_size (int): Number of output features.
140 """
141 def __init__(self, input_size, cnn_channels, lstm_hidden_size, output_size):
142 super(CNN_LSTM, self).__init__()
143 self.conv1d = nn.Conv1d(in_channels=input_size, out_channels=cnn_channels,

kernel_size=2)
144 self.relu = nn.ReLU()
145 self.maxpool1d = nn.MaxPool1d(kernel_size=2)
146 self.lstm = nn.LSTM(input_size=cnn_channels, hidden_size=lstm_hidden_size,

batch_first=True)
147 self.fc = nn.Linear(lstm_hidden_size, output_size)
148

149 def forward(self, x):
150 # Reshape input for Conv1D: [batch_size, features, time_steps]
151 x = x.permute(0, 2, 1)
152 x = self.conv1d(x)
153 x = self.relu(x)
154 x = self.maxpool1d(x)
155 # Reshape output for LSTM: [batch_size, time_steps, cnn_channels]
156 x = x.permute(0, 2, 1)
157 x, _ = self.lstm(x)
158 # Use the last LSTM time step for the fully connected layer
159 x = x[:, -1, :]
160 x = self.fc(x)
161 return x
162

163 # Define KalmanNet model
164 class KalmanNet(nn.Module):
165 """
166 KalmanNet for state estimation using GRU.
167

168 Args:
169 input_dim (int): Dimension of the input data.
170 output_dim (int): Dimension of the output data.
171 hidden_dim (int): Number of hidden units in the GRU layer.
172 """
173 def __init__(self, input_dim, output_dim, hidden_dim):
174 super(KalmanNet, self).__init__()
175 self.rnn = nn.GRU(input_dim, hidden_dim, batch_first=True)
176 self.fc_state_update = nn.Linear(hidden_dim, output_dim)
177

178 def forward(self, x):
179 # Pass input through GRU
180 rnn_output, _ = self.rnn(x)
181 # Take the last time step output for state update
182 last_rnn_output = rnn_output[:, -1, :]
183 state_updates = self.fc_state_update(last_rnn_output)
184 return state_updates
185

186 # Define ResidualEstimator model
187 class ResidualEstimator(nn.Module):
188 """
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189 Residual Estimator to model prediction errors.
190

191 Args:
192 input_dim (int): Dimension of the input data.
193 hidden_dim (int): Number of hidden units in the fully connected layer.
194 output_dim (int): Dimension of the output data.
195 """
196 def __init__(self, input_dim, hidden_dim, output_dim):
197 super(ResidualEstimator, self).__init__()
198 self.fc1 = nn.Linear(input_dim, hidden_dim)
199 self.relu = nn.ReLU()
200 self.fc2 = nn.Linear(hidden_dim, output_dim)
201

202 def forward(self, x):
203 x = self.fc1(x)
204 x = self.relu(x)
205 x = self.fc2(x)
206 return x
207

208 # Initialize models
209 input_size = X_train.shape[2]
210 output_size = 3
211 cnn_hidden_dim = 64
212 hidden_dim = 64
213 residual_hidden_dim = 32
214

215 # Instantiate the models
216 kalman_net = KalmanNet(input_dim=input_size, output_dim=output_size, hidden_dim=hidden_dim).

to(device)
217 cnn_lstm_net = CNN_LSTM(input_size=input_size, cnn_channels=cnn_hidden_dim, lstm_hidden_size=

hidden_dim, output_size=output_size).to(device)
218 residual_estimator = ResidualEstimator(input_dim=output_size, hidden_dim=residual_hidden_dim ,

output_dim=output_size).to(device)
219

220 # Define joint optimization setup
221 params = list(kalman_net.parameters()) + list(residual_estimator.parameters())
222 criterion = nn.MSELoss() # Mean Squared Error Loss
223 optimizer = torch.optim.Adam(params, lr=0.001) # Adam optimizer with learning rate 0.001
224

225 # Train the models
226 num_epochs = 2 # Number of training epochs
227 for epoch in range(num_epochs):
228 kalman_net.train() # Set KalmanNet to training mode
229 residual_estimator.train() # Set ResidualEstimator to training mode
230 train_loss = 0 # Initialize training loss for the epoch
231

232 for X_batch, y_batch in train_loader:
233 X_batch = X_batch.to(device) # Move input data to device (CPU/GPU)
234 y_batch = y_batch.to(device) # Move target data to device
235

236 # Main network prediction
237 pred_main = kalman_net(X_batch)
238

239 # Residual estimation
240 residual_pred = residual_estimator(pred_main)
241 residual_true = y_batch - pred_main
242

243 # Compute loss for both main prediction and residual estimation
244 loss_main = criterion(pred_main, y_batch)
245 loss_residual = criterion(residual_pred, residual_true)
246 total_loss = loss_main + loss_residual
247

248 # Backpropagation and optimization
249 optimizer.zero_grad() # Clear gradients from previous step
250 total_loss.backward() # Compute gradients
251 optimizer.step() # Update model parameters
252

253 # Accumulate training loss
254 train_loss += total_loss.item() * X_batch.size(0)
255

256 # Compute average loss for the epoch
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257 train_loss /= len(train_loader.dataset)
258 print(f'Epoch␣[{epoch␣+␣1}/{num_epochs}],␣Loss:␣{train_loss:.4f}')
259

260 # Save trained model weights
261 torch.save(kalman_net.state_dict(), "saved_model/kalmannet.pth")
262 torch.save(residual_estimator.state_dict(), "saved_model/kalman_residual.pth")
263

264 print("Model␣weights␣saved␣successfully.")
265

266 # Set models to evaluation mode
267 kalman_net.eval() # Set KalmanNet to evaluation mode
268 residual_estimator.eval() # Set ResidualEstimator to evaluation mode
269

270 # Initialize lists to store predictions and confidence scores
271 y_pred_list = []
272 confidence_list = []
273

274 # Testing the models and calculating confidence scores
275 with torch.no_grad(): # Disable gradient calculations for efficiency
276 for X_batch, y_batch in test_loader:
277 X_batch = X_batch.to(device) # Move input data to device
278 y_batch = y_batch.to(device) # Move target data to device
279

280 # Main network prediction
281 pred_main = kalman_net(X_batch)
282

283 # Residual estimation
284 residual_pred = residual_estimator(pred_main)
285

286 # Calculate confidence scores based on residual prediction
287 confidence_scores = 1 / (1 + torch.norm(residual_pred, dim=1))
288

289 # Store predictions and confidence scores
290 y_pred_list.append(pred_main.cpu().numpy())
291 confidence_list.append(confidence_scores.cpu().numpy())
292

293 # Combine predictions and confidence scores
294 y_pred = np.concatenate(y_pred_list, axis=0)
295 confidence = np.concatenate(confidence_list, axis=0)
296

297 # Save predictions and confidence scores to a DataFrame
298 results = pd.DataFrame(y_pred, columns=['PredX', 'PredY', 'PredZ'])
299 results['Confidence'] = confidence
300

301 # Save the results to a CSV file
302 results.to_csv('predictions_with_confidence.csv', index=False)
303 print("Prediction␣results␣and␣confidence␣scores␣saved␣to␣'predictions_with_confidence.csv'.")
304

305 # Function to dynamically visualize predictions and true values
306 def plot_skipped_dynamic_predictions(predictions, window_size=30, pause_time=0.005,

skip_points=5):
307 """
308 Dynamically visualize predictions and true values for 3D trajectories and individual

dimensions.
309

310 Args:
311 predictions (dict): Dictionary containing true values, predicted values, and

confidence scores.
312 window_size (int): Number of points to display in each window.
313 pause_time (float): Time in seconds to pause between updates.
314 skip_points (int): Number of points to skip for speed improvement.
315 """
316 plt.figure(figsize=(16, 12))
317

318 # Extract data for visualization
319 dataset_name = list(predictions.keys())[0] # Assuming visualization for the first

dataset
320 y_true = predictions[dataset_name]['y_true']
321 y_pred = predictions[dataset_name]['y_pred']
322 confidence = predictions[dataset_name]['confidence']
323 uncertainty = 1 - confidence # Uncertainty is complementary to confidence
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324

325 # Create subplots for 3D trajectory and individual dimensions
326 ax1 = plt.subplot(2, 2, 1, projection='3d')
327 ax2 = plt.subplot(2, 2, 2)
328 ax3 = plt.subplot(2, 2, 3)
329 ax4 = plt.subplot(2, 2, 4)
330 axes = [ax2, ax3, ax4]
331

332 titles = ['X␣Coordinate', 'Y␣Coordinate', 'Z␣Coordinate']
333 colors = ['blue', 'orange']
334

335 for t in range(window_size, len(y_true), skip_points):
336 # Clear and update 3D trajectory
337 ax1.clear()
338 ax1.set_title('3D␣Trajectory␣(True␣vs␣Predicted)')
339 ax1.set_xlabel('X')
340 ax1.set_ylabel('Y')
341 ax1.set_zlabel('Z')
342 ax1.plot(y_true[:t:skip_points, 0], y_true[:t:skip_points, 1], y_true[:t:skip_points,

2], label='True', color='blue', alpha=0.7)
343 ax1.plot(y_pred[:t:skip_points, 0], y_pred[:t:skip_points, 1], y_pred[:t:skip_points,

2], label='Predicted', color='orange', alpha=0.7)
344 ax1.legend()
345

346 # Clear and update 2D time-series plots for X, Y, Z dimensions
347 for i, ax in enumerate(axes):
348 ax.clear()
349 ax.plot(range(t - window_size, t, skip_points), y_true[t - window_size:t:

skip_points, i], label='True', color='blue')
350 ax.plot(range(t - window_size, t, skip_points), y_pred[t - window_size:t:

skip_points, i], label='Predicted', color='orange', alpha=0.7)
351 ax.fill_between(
352 range(t - window_size, t, skip_points),
353 y_pred[t - window_size:t:skip_points, i] - uncertainty[t - window_size:t:

skip_points],
354 y_pred[t - window_size:t:skip_points, i] + uncertainty[t - window_size:t:

skip_points],
355 color='gray', alpha=0.3, label='Uncertainty'
356 )
357 ax.set_title(f'{titles[i]}␣Over␣Time')
358 ax.legend()
359

360 plt.pause(pause_time) # Pause to create dynamic effect
361

362 plt.tight_layout()
363 plt.show()
364

365 # Visualize confidence evolution
366 plt.figure(figsize=(10, 6))
367 for dataset_name, data in predictions.items():
368 confidence = data['confidence'] # Extract confidence scores
369 plt.plot(confidence, label=f'{dataset_name}␣Confidence', alpha=0.7)
370

371 plt.title('Confidence␣Score␣Evolution␣Over␣Data␣Samples')
372 plt.xlabel('Sample␣Index')
373 plt.ylabel('Confidence')
374 plt.ylim([0, 1.1]) # Confidence ranges from 0 to 1
375 plt.legend()
376 plt.grid(True)
377 plt.tight_layout()
378 plt.show()
379

380 # Call the dynamic visualization function
381 plot_skipped_dynamic_predictions(predictions, window_size=30, pause_time=0.005, skip_points

=15)
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Co-training code

1

2 import pandas as pd
3 import numpy as np
4 import torch
5 import torch.nn as nn
6 from sklearn.preprocessing import MinMaxScaler
7 from torch.utils.data import Dataset, DataLoader
8 from sklearn.metrics import r2_score
9

10 # Check device
11 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12 print('Using␣device:', device)
13

14 # Load the dataset
15 file_path = 'test2.csv'
16 data = pd.read_csv(file_path)
17

18 # Define input and output columns
19 input_cols = ['Ax', 'Ay', 'Az', 'latitude', 'longitude', 'altitude', 'AVx', 'AVy', 'AVz']
20 output_cols = ['Fused_PredX', 'Fused_PredY', 'Fused_PredZ']
21

22 # Drop missing values
23 data = data.dropna(subset=input_cols + output_cols)
24

25 # Initialize scalers for input and output data
26 scaler_X = MinMaxScaler()
27 scaler_y = MinMaxScaler()
28

29 # Fit scalers on the data
30 scaler_X.fit(data[input_cols])
31 scaler_y.fit(data[output_cols])
32

33 # Scale the input and output data
34 X_scaled = scaler_X.transform(data[input_cols])
35 y_scaled = scaler_y.transform(data[output_cols])
36

37 # Create sequences for time series data
38 def create_sequences(X, y, time_steps=5):
39 """
40 Create time series sequences for input and target data.
41

42 Args:
43 X (array): Input features.
44 y (array): Target outputs.
45 time_steps (int): Sequence length.
46

47 Returns:
48 tuple: Arrays of input and target sequences.
49 """

55
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50 Xs, ys = [], []
51 for i in range(len(X) - time_steps):
52 Xs.append(X[i:(i + time_steps)])
53 ys.append(y[i + time_steps])
54 return np.array(Xs), np.array(ys)
55

56 time_steps = 5
57 X_seq, y_seq = create_sequences(X_scaled, y_scaled, time_steps)
58

59 # Convert to float32 for PyTorch compatibility
60 X_seq = X_seq.astype(np.float32)
61 y_seq = y_seq.astype(np.float32)
62

63 # Define a custom dataset class
64 class TimeSeriesDataset(Dataset):
65 """
66 PyTorch dataset for time series data.
67 """
68 def __init__(self, X, y):
69 self.X = torch.from_numpy(X).float()
70 self.y = torch.from_numpy(y).float()
71

72 def __len__(self):
73 return len(self.X)
74

75 def __getitem__(self, idx):
76 return self.X[idx], self.y[idx]
77

78 # Create a dataset and dataloader
79 batch_size = 32
80 dataset = TimeSeriesDataset(X_seq, y_seq)
81 data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
82

83 # Define CNN-LSTM model
84 class CNN_LSTM(nn.Module):
85 """
86 CNN-LSTM model for time series data.
87 """
88 def __init__(self, input_size, cnn_channels, lstm_hidden_size, output_size):
89 super(CNN_LSTM, self).__init__()
90 self.conv1d = nn.Conv1d(in_channels=input_size, out_channels=cnn_channels,

kernel_size=2)
91 self.relu = nn.ReLU()
92 self.maxpool1d = nn.MaxPool1d(kernel_size=2)
93 self.lstm = nn.LSTM(input_size=cnn_channels, hidden_size=lstm_hidden_size,

batch_first=True)
94 self.fc = nn.Linear(lstm_hidden_size, output_size)
95

96 def forward(self, x):
97 x = x.permute(0, 2, 1) # Adjust dimensions for Conv1D
98 x = self.conv1d(x)
99 x = self.relu(x)
100 x = self.maxpool1d(x)
101 x = x.permute(0, 2, 1) # Adjust dimensions for LSTM
102 x, _ = self.lstm(x)
103 x = x[:, -1, :] # Take the last LSTM time step
104 x = self.fc(x)
105 return x
106

107 # Define KalmanNet model
108 class KalmanNet(nn.Module):
109 """
110 KalmanNet for state estimation using GRU.
111 """
112 def __init__(self, input_dim, output_dim, hidden_dim):
113 super(KalmanNet, self).__init__()
114 self.rnn = nn.GRU(input_dim, hidden_dim, batch_first=True)
115 self.fc_state_update = nn.Linear(hidden_dim, output_dim)
116

117 def forward(self, x):
118 rnn_output, _ = self.rnn(x)
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119 last_rnn_output = rnn_output[:, -1, :]
120 state_updates = self.fc_state_update(last_rnn_output)
121 return state_updates
122

123 # Initialize models
124 input_size = X_seq.shape[2]
125 output_size = y_seq.shape[1]
126 cnn_channels = 64
127 lstm_hidden_size = 64
128 hidden_dim = 64
129

130 cnn_model = CNN_LSTM(input_size, cnn_channels, lstm_hidden_size, output_size).to(device)
131 kalmannet_model = KalmanNet(input_dim=input_size, output_dim=output_size, hidden_dim=

hidden_dim).to(device)
132

133 # Load pretrained weights
134 cnn_model.load_state_dict(torch.load("cnn.pth"))
135 kalmannet_model.load_state_dict(torch.load("kalmannet.pth"))
136

137 # Define loss function and optimizers
138 criterion = nn.MSELoss()
139 optimizer_cnn = torch.optim.Adam(cnn_model.parameters(), lr=0.001)
140 optimizer_kalman = torch.optim.Adam(kalmannet_model.parameters(), lr=0.001)
141

142 # Train the models
143 num_epochs = 20
144 for epoch in range(num_epochs):
145 cnn_model.train()
146 kalmannet_model.train()
147 epoch_loss_cnn = 0
148 epoch_loss_kalman = 0
149

150 for X_batch, y_batch in data_loader:
151 X_batch, y_batch = X_batch.to(device), y_batch.to(device)
152

153 # Train CNN-LSTM model
154 optimizer_cnn.zero_grad()
155 cnn_outputs = cnn_model(X_batch)
156 cnn_loss = criterion(cnn_outputs, y_batch)
157 cnn_loss.backward()
158 optimizer_cnn.step()
159 epoch_loss_cnn += cnn_loss.item() * X_batch.size(0)
160

161 # Train KalmanNet model
162 optimizer_kalman.zero_grad()
163 kalman_outputs = kalmannet_model(X_batch)
164 kalman_loss = criterion(kalman_outputs, y_batch)
165 kalman_loss.backward()
166 optimizer_kalman.step()
167 epoch_loss_kalman += kalman_loss.item() * X_batch.size(0)
168

169 epoch_loss_cnn /= len(dataset)
170 epoch_loss_kalman /= len(dataset)
171 print(f"Epoch␣[{epoch+1}/{num_epochs}],␣CNN␣Loss:␣{epoch_loss_cnn:.4f},␣Kalman␣Loss:␣{

epoch_loss_kalman:.4f}")
172

173 # Save updated model weights
174 torch.save(cnn_model.state_dict(), "updated_cnn.pth")
175 torch.save(kalmannet_model.state_dict(), "updated_kalmannet.pth")
176

177 # Evaluate models using R^2 score
178 def calculate_r2(y_true, y_pred):
179 """
180 Calculate R^2 score for predictions.
181

182 Args:
183 y_true (array): True target values.
184 y_pred (array): Predicted values.
185

186 Returns:
187 float: R^2 score.
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188 """
189 return r2_score(y_true, y_pred, multioutput='variance_weighted')
190

191 # True values for evaluation
192 true_values_seq = data[['trueX', 'trueY', 'trueZ']].iloc[time_steps:].values
193

194 # Initial R^2 for fused predictions
195 fused_predictions_cnn_seq = data[['CNN_PredX', 'CNN_PredY', 'CNN_PredZ']].iloc[time_steps:].

values
196 initial_r2_cnn = calculate_r2(true_values_seq, fused_predictions_cnn_seq)
197 print(f"Initial␣R^2␣(CNN␣vs␣True):␣{initial_r2_cnn:.4f}")
198

199 fused_predictions_kalman_seq = data[['Kalman_PredX', 'Kalman_PredY', 'Kalman_PredZ']].iloc[
time_steps:].values

200 initial_r2_kalman = calculate_r2(true_values_seq, fused_predictions_kalman_seq)
201 print(f"Initial␣R^2␣(Kalman␣vs␣True):␣{initial_r2_kalman:.4f}")
202

203 # Updated predictions
204 X_tensor = torch.from_numpy(X_seq).float().to(device)
205

206 # Evaluate CNN model
207 cnn_model.eval()
208 with torch.no_grad():
209 cnn_predictions_scaled = cnn_model(X_tensor).cpu().numpy()
210

211 # Evaluate KalmanNet model
212 kalmannet_model.eval()
213 with torch.no_grad():
214 kalman_predictions_scaled = kalmannet_model(X_tensor).cpu().numpy()
215

216 # Inverse scale predictions
217 cnn_predictions = scaler_y.inverse_transform(cnn_predictions_scaled)
218 kalman_predictions = scaler_y.inverse_transform(kalman_predictions_scaled)
219

220 # Calculate updated R^2
221 updated_r2_cnn = calculate_r2(true_values_seq, cnn_predictions)
222 updated_r2_kalman = calculate_r2(true_values_seq, kalman_predictions)
223

224 print(f"Updated␣R^2␣(CNN␣Model␣vs␣True):␣{updated_r2_cnn:.4f}")
225 print(f"Updated␣R^2␣(KalmanNet␣Model␣vs␣True):␣{updated_r2_kalman:.4f}")
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Multi-Sensor Fusion for Soft Robot Pose Estimation Using

Co-Training Method

Abstract—Soft robotics has gained significant attention for
its unique capabilities in adaptability and safety, particularly
in interacting with complex and unstructured environments.
However, accurate pose estimation for soft robots remains a
critical challenge due to their inherent infinite degrees of freedom,
nonlinear material properties, and underactuated nature. This
graduation project investigates a multi-sensor fusion approach
utilizing inertial measurement units (IMUs), stereo cameras,
and strain sensors to address these challenges. By employing
a co-training machine learning method, the framework leverages
limited labeled data to iteratively enhance the pose estimation
accuracy through collaborative training. The system integrates
advanced sensors and a CNN-LSTM-based architecture for
dynamic posture prediction. Comprehensive validation, includ-
ing simulations and real-world experiments, demonstrates the
method’s efficacy in improving precision and robustness. This
research contributes to advancing soft robotic applications in
healthcare, manufacturing, and exploratory domains.

Index Terms—Soft robotics, Pose estimation, Multi-sensor
fusion, Machine learning

I. INTRODUCTION

SOFT robotics presents unique adaptability and safety in
complex environments but faces significant challenges

in posture recognition and control due to infinite degrees
of freedom and nonlinear material behaviors [1, 2]. These
properties complicate dynamic modeling and real-time control,
necessitating advanced techniques like finite element methods
and data-driven approaches [3]. Addressing these complexi-
ties requires innovative solutions that integrate multiple data
sources and adaptive control strategies.

This study introduces a novel soft robotic structure featuring
smart materials as actuators. The system employs a combina-
tion of shape memory polymers (SMP) and shape memory
alloys (SMA) for actuation, leveraging their temperature-
sensitive properties for enhanced adaptability [4, 5]. Accurate
posture recognition is achieved by integrating inertial mea-
surement units (IMUs) and stereo vision, further supported
by a co-training machine learning framework to mitigate data
scarcity [6, 7].

The research focuses on developing a robust multi-sensor
fusion framework, validated through simulations and experi-
ments. This work aims to advance soft robotics by addressing
the critical challenges of posture recognition in dynamic and
unstructured environments.

II. LITERATURE REVIEW

Smart materials are an essential class of materials capable
of responding to environmental stimuli such as temperature,
pressure, pH, electric, and magnetic fields by altering their
physical properties. They are widely applied in industries
including healthcare, robotics, energy systems, and wearable

technologies due to their adaptability and multifunctionality [8,
9, 4, 5, 10, 11]. Despite their versatility, smart materials pose
significant challenges due to their nonlinear behaviors and high
degrees of freedom, necessitating advanced modeling, sensing,
and control strategies for effective utilization [12, 2].

Piezoelectric materials are particularly notable for their
ability to interconvert mechanical and electrical energy. These
materials are widely utilized in applications such as adaptive
structures, sensors, actuators, and energy harvesters due to
their high sensitivity and rapid response [13, 9, 14]. For
instance, piezoelectric polymers like poly(vinylidene fluo-
ride) (PVDF) exhibit excellent flexibility, biocompatibility,
and cost-effectiveness, making them ideal for use in flexible
electronics and robotics [15, 16]. Additionally, advancements
in lead-based and lead-free piezoelectric materials have opened
new possibilities for energy-efficient systems and biomedical
devices [17, 18].

Shape Memory Alloys (SMAs) offer unique capabilities
such as the shape memory effect and superelasticity, en-
abling applications in robotics, aerospace, and medical de-
vices. Nickel-Titanium (Ni-Ti) alloys, also known as Nitinol,
are widely used for their excellent biocompatibility, high
strain recovery, and corrosion resistance [4, 19, 20]. Other
SMAs, including copper-based alloys, further expand their
applicability to industrial and structural systems [21]. SMAs
can handle large deformations and return to their original
shapes upon thermal or mechanical stimulation, making them
integral to actuation systems [22, 23].

Shape Memory Polymers (SMPs) represent another criti-
cal group of smart materials. Their lightweight nature and
tunable glass transition temperatures make them suitable for
applications in actuators, biomedical devices, and 3D printing
technologies [24, 25]. SMPs exhibit high shape recovery
ratios and can undergo multiple shape transitions, allowing
them to be tailored for specific functionalities [5, 26]. Recent
developments in water-responsive and solvent-driven SMPs
have expanded their applicability to in vivo medical devices
and responsive systems [25, 27].

Hydrogels and electrochromic materials also play significant
roles in smart material applications. Hydrogels, with their
ability to absorb water and respond to environmental changes
like pH, temperature, and electric fields, are extensively used in
drug delivery systems, wound healing, and tissue engineering
[10, 28]. Electrochromic materials, which exhibit reversible
optical changes under an electric field, find applications in
smart windows, adaptive camouflage, and display technologies
[29, 30]. These materials are increasingly integrated into
energy-efficient and multifunctional devices [31, 32].

Sensors play a crucial role in enabling smart materials to
interact with their environment. Piezoelectric and piezoresis-
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tive stress sensors provide accurate measurements of stress and
strain, making them indispensable in structural monitoring and
flexible electronics [33, 34]. Infrared temperature sensors and
thermal imaging sensors enable precise temperature monitor-
ing, which is critical for materials like SMAs and SMPs that
rely on thermal activation [35, 36]. Motion capture systems are
also widely employed in robotics and biomechanics to analyze
complex movements and improve control strategies [37, 38].

Modeling and control strategies are essential for managing
the complex behaviors of smart materials. Modeling tech-
niques, such as finite element methods and Cosserat rod
theory, enable accurate predictions of material behavior, re-
ducing development time and costs [12, 2]. Control strategies,
such as Proportional-Integral-Derivative (PID) controllers, are
widely used for their simplicity and reliability, particularly in
temperature and actuator control systems [39, 40]. Advanced
approaches like Model Predictive Control (MPC) offer the
ability to handle system constraints and predict future states,
making them ideal for precise position control in nonlinear
systems [41, 42]. The integration of deep learning tech-
niques, including recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks, further enhances the
adaptability and robustness of control systems, particularly in
scenarios with significant uncertainties [43, 44].

In summary, smart materials exhibit tremendous potential
across diverse applications, supported by advancements in
material science, sensor technologies, and control strategies.
Future research should focus on refining hybrid approaches
that integrate traditional control methods with machine learn-
ing, further enhancing the performance and reliability of
smart material systems in addressing industrial and societal
challenges.

III. PHYSICAL STRUCTURE AND DATA ACQUISITION

The developed soft robotic structure integrates Shape Mem-
ory Polymers (SMPs) and Shape Memory Alloys (SMAs) to
enable controlled deformation. The structure consists of two
circular PMMA plates, which are precisely laser-cut and serve
as the main support. SMP rods are inserted between these
plates, secured with high-temperature adhesive to ensure sta-
bility. SMA springs are evenly distributed around the structure
and attached using zip ties. Inside the SMP cylinder, a heating
pad enables thermal actuation, reducing the Young’s modulus
of the SMP to facilitate deformation. SMA springs are heated
via electric current, allowing them to return to their memorized
shapes, ensuring precise positional control. This sequential
process of SMP heating, SMA activation, and cooling enables
stable deformation and locking of the structure’s position.

The circuitry consists of an Arduino for controlling the SMP
heating pad and SMA springs, and a Raspberry Pi serving as
the host controller. The Raspberry Pi monitors the system’s
temperature in real time using a thermal imaging camera
and adjusts the heating levels to ensure optimal performance.
This setup ensures synchronized operation of SMP and SMA
components for reliable actuation.

The system incorporates an Inertial Measurement Unit
(IMU) for real-time motion tracking. The IMU provides six de-
grees of freedom measurements, including 3-axis acceleration

and angular velocity. Its compact design and high sampling
rate make it suitable for robotics and dynamic applications.
The specifications of the IMU are summarized in Table I:

Accelerometer Gyroscope

Sampling frequency Max 200Hz Max 200Hz

Noise 0.5mg 0.01°

Non-linear 0.06%fs 0.06%fs

Range [-8g, 8g] [-2000°/s, 2000°/s]

ADC resolution 4096LSB/g 16.38LSB/(°/s)
TABLE I

SPECIFICATIONS OF IMU

In addition to the IMU, the Intel RealSense D435 depth
camera is employed for visual recognition and spatial analysis.
This camera provides stereoscopic depth sensing with a wide
field of view and high frame rates. It captures depth data at
resolutions up to 1280 × 720 at 90 FPS, ensuring precise
tracking of the robot’s movements. The specifications of the
depth camera are summarized below as Table II:

Parameter Value

Depth output resolution 1280 × 720

Depth Accuracy Around 2%

Depth frame rate 90FPS

RGB frame resolution 1920 × 1080

RGB frame rate 30FPS
TABLE II

SPECIFICATIONS OF INTEL REALSENSE D435

Data acquisition for this system involves generating syn-
thetic IMU and depth camera data using MATLAB. The IMU
module in MATLAB simulates real-world sensor behavior,
including noise and drift. A custom function generates random
trajectory points, ensuring the simulation of diverse motion
patterns. This data includes acceleration and angular velocity
values, which are processed to simulate realistic sensor out-
puts.

Depth camera data is generated by introducing random
biases and Gaussian white noise to ground-truth trajectories.
These datasets include accelerometer and gyroscope readings
along the x, y, and z axes, as well as depth measurements.
To address the different sampling rates of the IMU and depth
camera, an automatic interpolation method is used to align the
data, ensuring consistency.

This chapter provides an overview of the physical structure,
circuitry, and data acquisition systems of the soft robotic
device. The integration of SMP and SMA components, com-
bined with advanced sensors and simulation tools, establishes
a robust foundation for further algorithm development and
validation. These methods enable precise motion tracking and
adaptive control, supporting the deployment of soft robotics
in dynamic environments.

IV. FUSION METHODOLOGY AND ALGORITHM
IMPLEMENTATION

Soft robots, with their high degrees of freedom and inherent
uncertainties, present unique challenges for modeling and con-
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trol. Traditional model-based approaches are often impractical,
while data-driven methods face limitations due to the lack of
labeled ground-truth data [3]. To address this, a co-training
methodology leveraging semi-supervised learning is proposed,
enabling effective utilization of both labeled and unlabeled
data [6, 7].

Kalman filters, widely used for state estimation, struggle
with error accumulation when relying solely on accelerometer
and gyroscope data [45]. Enhanced methods like KalmanNet
integrate machine learning to improve prediction accuracy,
offering adaptability in handling complex, non-linear dynamics
[46]. For sequential data, CNN-LSTM networks combine
convolutional feature extraction with temporal modeling, cap-
turing spatial and temporal dependencies efficiently [47].

CO-TRAINING METHODOLOGY

The co-training process combines KalmanNet and CNN-
LSTM networks to iteratively refine predictions. Starting with
a small labeled dataset and a much larger unlabeled set, both
models are initially trained on the labeled data. Predictions
from each model on the unlabeled data are compared, and
high-confidence outputs are selected as pseudo-labels for fur-
ther training. This iterative process enhances model accuracy
by effectively leveraging the larger unlabeled dataset.

NETWORK ARCHITECTURE DESIGN

CNN-LSTM Network: Combines convolutional layers for
feature extraction and LSTM layers for temporal modeling.
Features include ReLU activation, max-pooling for dimension-
ality reduction, and a fully connected layer for 3D position
prediction. The architecture is designed to capture both spatial
and temporal dependencies efficiently.

KalmanNet: A machine learning-enhanced Kalman filter
utilizing GRU-based structures. Neural networks dynamically
model state transitions and adapt Kalman gain calculations,
making it effective for complex and non-linear dynamics. The
supervised training loss function minimizes the discrepancy
between predicted and ground-truth states:

L =

T∑
k=1

∥x̂k − xtrue
k ∥2, (1)

where x̂k is the predicted state, xtrue
k is the ground truth, and

T is the total number of time steps.

RESIDUAL ESTIMATOR

The residual estimator refines primary model outputs by
learning corrections for prediction errors. Residuals, defined as
the difference between predicted and ground-truth states, are
processed through a feedforward neural network. The model
outputs corrections and confidence scores, enhancing co-
training reliability by identifying high-confidence predictions
for pseudo-labeling.

COMPARISON OF METHODOLOGIES

Table III summarizes key features of the implemented
methods:

Feature KalmanNet CNN-LSTM

Temporal Modeling GRU-based LSTM-based

Feature Extraction Neural network Convolutional layers

Adaptability to Noise High Moderate

Computational Efficiency Moderate High

Training Data Requirement Moderate High
TABLE III

COMPARISON OF KALMANNET AND CNN-LSTM

V. MODEL VALIDATION AND EXPERIMENTS

Model validation and experimentation are essential to eval-
uate the performance, robustness, and practical applicability
of the proposed methodologies. This chapter includes sensi-
tivity analysis, robustness testing, and physical experiments to
ensure the model’s reliability in real-world scenarios.

Sensitivity analysis provides insights into how key pa-
rameters such as learning rate, time step, and the number
of nodes in network layers affect the model’s performance.
Robustness testing evaluates the model under varying noise
conditions, simulating real-world measurement inaccuracies.
Finally, physical experiments validate the practical applica-
tion of the model, bridging the gap between simulation and
implementation.

Sensitivity analysis focused on the learning rate, which
controls training speed and stability; the time step, which
determines the length of input sequences and affects temporal
dependency capture; and the number of nodes in each layer,
which influences the network’s expressiveness and computa-
tional efficiency. During each test, one parameter was varied
while others were kept constant (default settings: learning rate
0.001, time step 5, CNN-LSTM with one convolutional layer
of 64 filters, one LSTM layer with 64 hidden units, and one
fully connected layer; KalmanNet with one GRU layer of 64
hidden units and one fully connected layer).

Learning Rate Sensitivity Analysis: Table IV shows that
the optimal learning rate is 0.001, achieving an MSE of 0.021
and R² of 0.95. Lower rates (0.0001) led to underfitting, while
higher rates (0.01, 0.1) caused instability or overfitting.

Learning Rate MSE R²
0.0001 0.045 0.89
0.001 0.021 0.95
0.01 0.032 0.93
0.1 0.087 0.75

TABLE IV
LEARNING RATE SENSITIVITY ANALYSIS

Time Step Sensitivity Analysis: Table V indicates that a
time step of 7 yielded the best results (MSE 0.018, R² 0.96).
Shorter time steps (e.g., 3) underperformed due to insufficient
temporal context, while longer time steps (e.g., 10) introduced
unnecessary complexity and overfitting.
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Time Step MSE R²
3 0.029 0.91
5 0.021 0.95
7 0.018 0.96
10 0.024 0.93

TABLE V
TIME STEP SENSITIVITY ANALYSIS

Nodes per Layer Sensitivity Analysis: Tables VI-VIII
summarize node sensitivity analysis for convolutional, LSTM,
and GRU layers. Optimal performance occurred at 128 nodes
for the convolutional layer, 256 nodes for the LSTM layer,
and 64 nodes for the GRU layer. Beyond these thresholds,
performance plateaued or degraded due to overfitting.

Nodes MSE R²
32 0.027 0.92
64 0.021 0.95

128 0.020 0.96
256 0.022 0.94

TABLE VI
SENSITIVITY ANALYSIS FOR CONVOLUTIONAL LAYER NODES

Nodes MSE R²
32 0.028 0.91
64 0.021 0.95

128 0.019 0.96
256 0.018 0.97

TABLE VII
SENSITIVITY ANALYSIS FOR LSTM LAYER NODES

Nodes MSE R²
32 0.030 0.90
64 0.021 0.95

128 0.020 0.96
256 0.022 0.94

TABLE VIII
SENSITIVITY ANALYSIS FOR GRU LAYER NODES

Robustness testing evaluated the model on datasets with
varying noise levels, as shown in Table IX. The model
performed well under low to moderate noise but struggled
with high noise, highlighting the need for further optimization
for real-world environments.

Dataset Accelerometer Noise (mg) Gyroscope Noise (°)
Dataset 1 0.6 0.012
Dataset 2 0.7 0.014
Dataset 3 0.8 0.016
Dataset 4 0.3 0.006
Dataset 5 0.4 0.008

TABLE IX
NOISE CHARACTERISTICS OF TEST DATASETS

Physical experiments validated the model using a setup with
grid paper for accurate position tracking. The IMU and depth
camera captured dynamic motion, and results were compared
with recorded ground truth. Table 5.9 shows that x and y
coordinate predictions were highly accurate (over 90

VI. CONCLUSION AND DISCUSSION

A. Conclusion

In this project, a novel framework was developed for soft
robot pose estimation by leveraging the co-training method

x Accuracy (%) y Accuracy (%) z Accuracy (%)
Experiment 1 92.2 91.7 61.8
Experiment 2 95.7 94.7 42.2
Experiment 3 95.1 94.9 32.6

TABLE X
ACCURACY FOR COORDINATES IN PHYSICAL EXPERIMENTS

for multi-sensor fusion. The methodology addressed critical
challenges associated with the inherent complexities of soft
robotics, such as their infinite degrees of freedom, nonlinear
material properties, and the limited availability of labeled
training data. By combining data from IMUs, stereo cameras,
and strain sensors, the study demonstrated the capability to
enhance pose estimation accuracy and robustness, contributing
significantly to the field of soft robotics.

The project began with a thorough review of smart materi-
als, soft robotic structures, and relevant sensing technologies,
laying a strong foundation for understanding the intricacies of
the system. The integration of smart materials like SMPs and
SMAs within the robotic structure showcased their potential
to provide adaptability and precision under various stimuli,
such as temperature. The sensor system design, incorporating
high-precision IMUs and depth cameras, highlighted the im-
portance of reliable data acquisition in achieving accurate pose
estimation.

The implementation of the co-training machine learning
approach was a key innovation in this study. By utilizing semi-
supervised learning, the framework effectively utilized both
labeled and unlabeled data, addressing the challenge of data
scarcity. The algorithm’s design incorporated advanced tech-
niques such as CNN-LSTM networks and Kalman filtering,
ensuring high performance in noise reduction and data fusion.
Experimental results confirmed the efficacy of this approach,
showing significant improvements in pose estimation accuracy
compared to traditional methods.

Moreover, sensitivity analysis and performance evaluations
demonstrated the system’s robustness under various opera-
tional conditions. The practical application potential of the
framework was validated through simulated and real-world
scenarios, underscoring its adaptability and reliability. The
findings suggest that this methodology could be instrumental
in expanding the applicability of soft robotics across domains
such as healthcare, manufacturing, and exploration.

In conclusion, this study not only addresses fundamental
challenges in soft robot pose estimation but also provides
a scalable and efficient solution through multi-sensor fusion
and semi-supervised learning. Future research could focus on
further enhancing the framework by incorporating additional
sensor modalities, exploring advanced neural network archi-
tectures, and optimizing computational efficiency for real-time
applications. These advancements would further solidify the
role of soft robotics in tackling complex tasks across diverse
environments.

B. Discussion

One of the key challenges faced in this project is the lack
of training data derived from real-world applications. The
semi-supervised co-training approach relies heavily on the
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availability of both labeled and unlabeled data to refine the
accuracy of the pose estimation model. While the simulated
datasets provide a controlled environment for training and
validation, they cannot fully replicate the complexities and
variabilities encountered in practical scenarios. Acquiring real-
world data would significantly enhance the robustness and
generalizability of the algorithm. For future studies, efforts
should focus on integrating real-world datasets from practical
applications of soft robots, to further optimize the model’s
performance.

During the experimental phase, one of the notable con-
straints was the inability to accurately capture the real-
time coordinates of the end effector throughout the motion.
Measurements were limited to the initial and final positions,
resulting in gaps in evaluating the intermediate pose estimation
performance. This limitation hinders a comprehensive assess-
ment of the system’s real-time recognition capabilities and
accuracy under dynamic conditions. Future work should aim
to address this by incorporating real-time tracking solutions,
such as motion capture systems or higher-resolution depth
sensors, to provide a continuous stream of ground-truth data
for evaluation.

The success of the position recognition algorithm lays a
solid foundation for future integration into control systems. A
closed-loop control framework could leverage the algorithm
to dynamically adjust the robot’s movements based on real-
time feedback, thereby improving precision and adaptability
[48]. This integration would not only enhance the operational
efficiency of soft robots but also broaden their potential
applications in tasks requiring high precision. Developing and
testing this closed-loop control system should be prioritized
in subsequent research to maximize the practical utility of the
recognition algorithm.

The experiments highlighted the limitations of the depth
camera’s precision, which directly impacted the accuracy
of the pose estimation. While the current setup performed
adequately for smaller-scale structures, larger-scale systems
with enhanced sensor resolution could yield significantly better
results. Larger structures are not only more suited to handle
higher forces but are also more aligned with market demands
for devices capable of executing heavy-duty tasks [49]. Future
studies should consider scaling up the robot’s structure and
employing higher-precision sensors or alternative sensing tech-
nologies to meet these requirements. Addressing these factors
will likely result in improved performance and broaden the
potential industrial applications of the system.
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