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Abstract: This paper presents a methodology to support decision making based on the tram wheel-rail 
interface condition. The methodology relies on the following measurements: tram failure log-files 
regarding wheel-sliding events, monitored acoustics data and open source weather information. The 
proposed methodology consists of three stages: 1) data collection and pre-processing, 2) spatial analysis 
based on clustering, and 3) decision support based on the extracted information. For clustering, the 
Density-Based Algorithm (DBSCAN) is used for the analysis of wheel-sliding events. Self-organizing 
maps (SOMs) are employed for the analysis of acoustics data. A real-life case study is used to show how 
use of the methodology can find interesting hotspots that are candidates for further monitoring and 
maintenance actions. The measurements were obtained from the tram system in the city of Rotterdam, 
The Netherlands.  

Keywords: Decision support systems; wheel-rail interface; tram infra maintenance; self-organizing maps; 
density-based clustering. 



1. INTRODUCTION 

In the literature, a tram is usually included in the wider term 
“light rail transit” (Hensher, 2016; Love et al., 2017). Tram 
systems are embedded in cities and urban areas (Shi et al., 
2017; Zhao et al., 2018). Over time, tram traffic and various 
exogenous variables cause the natural deterioration of the 
whole tram infrastructure (Oregui et al., 2017). Without an 
adequate tram asset management strategy, safety and the 
good structural health condition of the tram system cannot be 
guaranteed by the infrastructure manager (Talbot, 2013; Wu 
et al., 2018). Unexpected faults and accidents might have a 
strong impact on the users, affecting travel time, safety, and 
the operation of other transportation modes in the city. 
Because of all the interactions with other modes of 
transportation and the environment, the tram system should 
be analyzed as a whole, with integrated tram asset 
management strategies. 

One approach to improve tram infrastructure performance is 
to implement efficient health condition monitoring systems 
that can provide actual information to decision support tools 
(Kouroussis et al., 2017). Decision support systems provide 
systematic methods to ease the selection of problem-solving 
strategies in complex environments (Information Builders, 
2017; Jamshidi et al., 2017). In the literature, different 
decision support systems have been applied in various fields 
(Marcomini et al., 2008).  

In the case of tram systems, the design of decision support 
systems that rely on conditioning monitoring faces three main 
challenges. First, the volume of measured data originating 
from the tram system is large and continues to grow with 
every new measurement. The increasing number of tram 
vehicles, the accessibility of new modern monitoring 
systems, and the desire to implement continuous monitoring 
of the wheel-rail interface are the three factors that highlight 
the importance of new methodologies that can automatically 
handle large datasets. Second, tram data are affected by 
different disturbances and sources of noise. For example, 
when a tram is running in an urban area, tunnels or 
surrounding buildings could obstruct the GPS signals. In 
addition, noise and disturbances that might affect the sensors 
of the monitoring systems inevitably occur. To extract the 
valuable information from the tram datasets, disturbances and 
noises must be studied and eliminated when possible. Third, 
tram datasets are composed of many different types: 
acoustics, weather, tram failures, video images, and 
ultrasonics, among others. The integration of the multiple 
sources of information with different data type is difficult. 
For example, positioning may not be perfectly matched 
among diverse datasets.  

In this paper, we propose a methodology to make use of the 
extracted information regarding the tram system and to 
suggest concrete maintenance actions. In the case of tram 
systems, few methodologies have been reported in the 
literature. Relying on measured tram failure logfile and 
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acoustics data, the proposed methodology can extract 
information from the large datasets affected by disturbances. 
We claim that the data collected is valuable, and information 
can be provided that is conducive to the support of tram asset 
management decisions. 

2. METHODOLOGY 

The methodology for the design of a decision support tool 
based on multi-source data analysis for the tram wheel-rail 
interface is presented in this chapter. Three stages are 
considered, as described next.  

In Stage I, the data source that refers to the condition of the 
tram and wheel-rail interface for supporting the decision-
making process is obtained from sensors mounted on the 
tram; these data include the tram failure logfile and the 
monitored acoustics dataset (see Figure 1). The tram failure 
logfile is considered as an internal dataset originating from 
the tram itself. Each failure event logs consists of the tram 
identification serial, the date and the time when the failure 
occurred, the GPS locations where the failure occurred, and 
other features (such as speed of the tram and type of failure). 
In this paper, the focus is on the wheel-sliding events. In the 
case of the monitored acoustics dataset, this is considered an 
external data set as it is obtained by normal trams equipped 
with the sensors. The acoustic data is obtained for the whole 
tram network infrastructure and recording the following: the 
time of the measurement, GPS location, the speed of the 
tram, and the 24 relevant frequency bands (dB_32 Hz, …, 
dB_6300 Hz). 

 

(a) 

 

(b) 

Fig. 1. (a) Tram under maintenance activities, (b) vibration 
and acoustic sensors mounted under a normal tram. 

Besides, in Stage 1, other information is collected from 
external sources to support the analysis of both the wheel-
sliding dataset and the acoustic dataset: weather condition 
and the map of the Rotterdam tram infrastructure.  

Stage II consists of the data clustering. Before clustering, the 
location information of the tram track segment is generated 
with the information of the map of Rotterdam.  

Next, to analyze the temporal features of tram wheel-sliding 
failure events, heterogeneous temporal data aggregation is 
performed. For this dataset, the density-based clustering 
algorithm (DBSCAN) is used to investigate the spatial ‘tram 
failure hotspots’. It is helpful to describe the collected data 
when the events occur regarding hours, days, months and 
years. In this study, the time structures of the hour, the day, 
the month and the year are inspected, as shown in Figure 2. 
For temporal analysis, the following phases are considered: 

Starting time of the dataset (Jan 1st 2014)

Yearly aggregated data

ending time of the dataset(Nov 7th 2016) 

Monthly aggregated data

Daily aggregated data

Hourly aggregated data

 

Fig. 2. Heterogeneous temporal data aggregation. 

Phase-1: Aggregated data generation. The time series is 
represented in a manner to compare the number of wheel-
sliding failure events between different time slots. Different 
aggregate levels are considered (hours, days, months, years).  

Phase-2: Time slot comparison. After the generation of the 
aggregated failure event count of the time slots, a comparison 
among the datasets is performed.  

Phase-3: Weather condition information is used to assist the 
temporal analysis. Along with the previous step, the time 
slots with large amount of tram failure events are exposed. In 
this phase, the obtained weather information is involved to 
gain insights into the failure event distribution over time.  

Phase-4: The extracted information is applied to Stage 3 to 
support the decision making. 

To uncover how the segments of infrastructure are associated 
with the particular tram failure events, the variation of failure 
event density among the research region must be determined. 
Hence, this section provides the information of the spatial 
clustering approach, which includes clustering method 
selection and clustering parameter determination.  

Spatial analysis is performed according to the following 
iterative procedure: 

Phase-1: Generate tram-track data with map development. 

Phase-2: Set the parameter ‘Eps’ (radius of the cluster) with 
the evaluated GPS disturbance and initialize the parameter 
‘MinPts’ (minimum points required inside the cluster). 
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Phase-3: Run the DBSCAN and validate the output. If the 
output is satisfied, then go to Phase-5; otherwise go to Phase-
4. 

Phase-4: Update the parameters Eps and MinPts and return to 
Phase-3. 

Phase-5: The extracted information will be applied to Stage 3 
for decision support. 

Figure 4a shows an example of wheel-sliding data for a 
segment in the tram infrastructure. Figure 4b shows an 
example of the results obtained based on DBSCAN algorithm 
to the wheel-sliding event dataset. Note that the GPS data of 
the obtained tram failure logfile is disturbed by noise, 
resulting in the scattered data around the track. From the 
results, the clusters are related with spots/locations with 
events that occurred near to each other. The different color 
crosses are the detected clusters, and the black crosses are 
recognized as spare dots and do not belong to any clusters.  

 

 

a) Illustration tram failure events and GPS location. Data 
before performing DBSCAN.        

 

 b) Failure events and GPS locations. Data after performing 
DBSCAN. 

Fig. 3. Wheel-sliding data, spatial analysis with DBSCAN. 

In the case of acoustics, a self-organizing map (SOM) is used 
for clustering responses that are similar to each other. SOM is 
suitable to determine the distribution of an input over a lower 
dimensional output (Ultsch, 1990; Kohonen, 1990, 2013). 
This facilitate visualization of complex data and further 

analysis of its similarities (Llanos et al., 2017). An SOM 
consists of neurons organized on a regular low-dimensional 
grid. The number of neurons may vary according to the 
complexity of the data. The neurons are connected to 
adjacent neurons by a neighborhood relation, which dictates 
the topology of the map. There exist many versions of the 
SOM. The basic SOM defines a mapping from the input data 
space onto a regular two-dimensional array of nodes; this 
SOM will be implemented in this study. The self-
organization process involves four major components 
(Bullinaria, 2004): 

- Initialization: All the connection weights are initialized 
with small random values. 

- Competition: For each input pattern, the neurons compute 
their respective values of a discriminant function, which 
provides the basis for competition. The neuron with the 
smallest value of the discriminant function is declared the 
winner. There is only one winner (output neuron) for one 
input neuron. 

- Cooperation: The winning neuron determines the spatial 
location of a topological neighborhood of excited 
neurons, thereby providing the basis for cooperation 
among neighboring neurons. 

- Adaptation: The excited neurons decrease their values of 
the discriminant function regarding the input pattern 
through suitable adjustment of the associated connection 
weights, such that the response of the winning neuron to 
the subsequent application of a similar input pattern is 
enhanced. 

To implement the self-organizing map algorithm, the SOM 
toolbox in MATLAB-R2106 is employed. The 
implementation phases are given below, with an example 
shown in Figure 4. 

Phase-1: Use SOM toolbox to perform clustering on the 
obtained high-dimensional signal data to obtain a two-
dimensional projection plot. Five basic steps of SOM are 
given according to (Kangas & Kohonen, 1996). 

Phase-2: Examine the reliability of the detected clusters of 
the physical response data regarding the tram wheel-rail 
interface, e.g., perform speed comparison among the clusters. 

Phase-3: Spatial analysis of the detected clusters. Determine 
the association between the locations and the detected 
clusters. 

Phase-4: The extracted information are integrated with those 
from internal dataset and applied to Stage 3 to support the 
decision making. 

As shown in Figure 4a, as the shapes of the nodes are 
hexagons, each of the neurons could maximally connect with 
6 other neurons. Taking Cluster #5 as an example, Cluster #2, 
Cluster #3, Cluster #4, Cluster #6, Cluster #7, and Cluster #8 
are the 1-neighborhoods. As the information delivered by 
different colors of the rhombuses, Cluster #8 is most similar 
with Cluster #5 among all the 1-neighborhoods, as is also 
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proved by the signal feature plots in the right sub-figure. 
Among all the 1-neighborhoods, Cluster #2 and Cluster #3 
have the greatest dissimilarity, as also shown by the dark 
rhombus in the left sub-figure. This can be observed from the 
data belonging to each cluster in Figure 4b. 

Finally, in Stage III, the extracted information is applied as 
decision support in the commercial context. As the physical 
properties of most of the signals are still the subject of further 
field validation and research, for this tram maintenance 
decision support, the decision generated is limited to identify 
where the most interesting areas are located. Thus, different 
priorities could be defined for the monitoring and 
maintenance of these locations. 

Cluster #1 Cluster #2 Cluster #3

Cluster #4

Cluster #5 Cluster #6

Cluster #7 Cluster #8 Cluster #9

 

a)    Topological grid output         

 

b)    Signal feature of the grouped clusters of the 3 by 3 SOM 

Fig. 4. A 3 by 3 SOM example. 
 

3. CASE STUDY 

The case study of the city of Rotterdam in The Netherlands is 
used to discuss the methodology.   

In the first stage, the internal data was based on the tram 
failure event logfile provided by RET (internal dataset), and 
the external data is the monitored acoustics data obtained by 
Sensornet (external dataset).  

In the second stage, for the internal data analysis, from the 
temporal perspective, autumn was identified as the wheel-
sliding season. Figure 5 shows an example of the daily 
aggregated visualization of the wheel-sliding event counts of 
the year of 2015. From Figure 5, it is obvious that October 
and November (as two months of autumn) have more wheel-
sliding events than the rest of the months.  

 

Fig. 5 Calendar plot of the wheel-sliding event counts. 

The autumn railway wheel-sliding issue (as a result of leaf 
contamination) has been investigated by several studies. First, 
leaf contamination has been identified as the primary cause of 
low adhesion incidents occurring on some railway networks 
in the last few decades (Arias-Cuevas et al., 2010), and the 
loss of adhesion between railroad wheel and the track has 
implications for both braking and traction. Second, leaf-
contaminated contact was found to lead to low adhesion 
under both dry and wet conditions (Arias-Cuevas et al., 
2008). Third, wet leaves were found to lead to a lower 
traction coefficient value (Zhu et al., 2014) and a lower 
minimum adhesion coefficient than under dry leave 
conditions (Arias-Cuevas & Li, 2011). In the natural 
environment, the wet leaves situation could be a result of 
leaves falling onto the line in the damp weather, followed by 
the rolling action of the passing wheels compressing them.  

For this case study, to further investigate the effect of the 
condition and the variation of weather to the occurrence of 
wheel-sliding events, the weather information is obtained 
from an external source. Based on weather data from 2014, 
2015 and 2016, it was found that wheel-sliding events in the 
autumn are highly related with high wind speed, and 
humidity, possibly leading to the fallen-leaf issue.  

The high wheel-sliding incidence locations were analyzed 
spatially using the density clustering algorithm (DBSCAN). 
Next, four ‘hotspots’ locations were distinguished among the 
100 detected ‘wheel-sliding’ spots (see Figure 6).  

 

Fig. 6 Detected wheel-sliding locations. 
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Third, monitored acoustics data are used to estimate the track 
health condition. Self-organizing map (SOM) was employed 
to classify the different acoustics responses into the different 
groups (see Figure 7). After tuning, a grid of 10×10 clusters 
was considered. For the external data analysis, by 
differentiating monitoring acoustics data into groups, four 
hotspots were detected in two special groups of the physical 
response. The two groups of the acoustics data exposed the 
crossings and sharp curves and the particular segments in the 
city center, respectively.  

Spatial analysis was performed on two groups of acoustical 
observations. One group, Cluster #95, is in Rotterdam 
Central, with three important wheel-sliding spots, see Figure 
8. The other group, Cluster #10, is related to crossings and 
sharp curves in the infrastructure, see Figure 9. 

  

Fig. 7 SOM projection of the acoustical data.  

   

Fig. 8 Spatial visualization of Cluster # 95. 

 

 
Fig. 9 Spatial visualization of Cluster # 10. Circles with solid 

line indicate sharp curves, circles with dashed-line are 
members of Cluster #10 but are not sharp curves. 

In the third stage, the uncovered facts from the previous two 
stages were used to support the decision-making process. 
From the seasonal perspective, the tram wheel-sliding events 
typically become intensified in winter and autumn. Moreover, 
from the spatial perspective, one hundred wheel-sliding spots 
were found. Weather indicators were uncovered as the factors 
that are highly associated with wheel-sliding events, 
especially in autumn. Four track spots were found to face a 
more severe wheel-sliding issue than the rest of the track 
segments. The common features of those four spots, such as 
sharp curve, nearby trees, and land slope, were determined. 

Hence, the information assists in making subsequent actions 
more intelligently. To minimize the number of occurrences of 
wheel-sliding events in the future and to avoid further track 
default, seasonal actions and location-related actions should 
be consistently taken by the tram operator.  

4. CONCLUSIONS 

New decision support approaches embedded into well-
designed tram asset management systems can have a great 
impact on their operations. This study proposed a 
methodology to facilitate the decision-making process during 
the development of the maintenance strategy regarding the 
tram wheel-rail interface. Using this methodology, spatial 
localization of interesting spots is systematically obtained and 
suggestions for maintenance operations based on the 
condition data are provided. Moreover, with the developed 
and implemented model with the use of different data 
sources, the results of the study match the forecasted issues 
related to the natural environment, e.g., the seasonal wheel-
sliding issues and the on-spot investigation of the detected 
four severe wheel-sliding locations. 

In the case study, 100 wheel-sliding spots were found, with 4 
having more severe wheel-sliding events. The common 
features of the 4 locations are: 1) trees are found along the 
track, 2) a slight land slope, and 3) sharp curves in the 
infrastructure. From the temporal perspective, autumn and 
winter were determined as wheel-sliding seasons and were 
found to be highly associated with temperature, wind speed, 
and humidity. By differentiating monitoring acoustics data 
into groups, two special groups of the physical response were 
found to be related to the detected four hotspots. Maintenance 
suggestions were provided to tram company as decision 
support regarding the spatial perspective and the temporal 
perspective.  
As part of the further research, the methodology could be 
applied to other tram networks in different cities and could be 
extended for use in the analysis of other railway systems. A 
better interpretation of the field observations and the physical 
meaning of the responses are also topics for further research.  
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