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Abstract

The author has, in order to obtain a M.Sc. degree, worked on the development of the Distributed
Collinear Triad Approximation (DCTA), a spectral formulation of the effects of triad interactions in wind
generated waves. The basic idea was first suggested by N. Booij and further developed by L.H.
Holthuijsen. It was first presented at the 30" International Conference on Coastal Engineering in San
Diego (Holthuijsen and Booij, 2006). The present study was a collaborative effort of these two authors and
the present author, which consisted of two parts, a description of the contribution of the author to the

conceptual formulation and a description of the quantification of the DCTA .

The contributions of the author to the formulation, the first part of this report, entailed his participation in
discussions among the developers, the implementation of the resulting suggestions of these conversations
in an experimental version of the spectral wave model SWAN (Boojj et al., 1999) and testing of the
suggestions with trial calculations. The final formulation of the DCTA was presented in a second
publication (Boojj et al., 2009) of which the present author is co-author. This manuscript was included in

this report.

In the second part, the latest formulation and its quantification were presented. After the validation of the
DCTA, in which its ability to converge any spectrum to a universal shape in various simple bathymetries
was established, the calibration was subsequently done with measurements of Smith (2004). To remove
the influence of a malicious simulation of the dissipation, a joint calibration was executed of both the
Battjes-Janssen breaker parameter y and the tuneable coefficient of the DCTA A. For every incident
spectrum (out of 31), the optimum values for y and A was found through a minimisation of the error-

values for H,, and T,,,. The average value for y was 0.787 (standard deviation 0.068) and the average

e
value for A was 0.130 (standard deviation 0.064). The performance calibrated DCTA was then verified on
a series of laboratory (Beji and Battjes, 1993; Smith, 2004; Boers, 2005) and field measurements (Delilah,
Amelander Zeegat, Haringvliet from Ris et al.,, 2002). This indicated that the DCTA estimated the
evolution of the spectra towards a universal shape and the generation and smoothening of harmonic

frequency peaks well. Contrary to the LTA, it generated harmonic frequency peaks at every multiple of

the base frequencies and was able to remove the peak in shallow water. However, it overestimated the



height of the peak and the height of the tail and did not smooth the shape frequencies between harmonic

frequencies sufficiently.

It was concluded that the transfer of energy towards higher frequencies was inhibited by a rapid
saturation of the spectral tail. Including a frequency dependent distribution of the dissipation, as
suggested in the literature and confirmed with measurements (Mase and Kirby, 1992; Kirby and Kaihatu,
1996; Chen et al., 1997; Herbers et al., 2000; Kaihatu et al., 2007), will probably improve the results, as this
will invoke a continued energy flux through the spectrum from lower frequencies to higher where energy

is eventually dissipated.
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1 Introduction

The aim of the study that is described in this report was to quantify (validate, calibrate and verify) the
Distributed Collinear Triad Approximation (DCTA), a spectral formulation of the effects of triad
interactions. The basic idea was first suggested by N. Booij and further developed by L.H. Holthuijsen. It
was first presented at the 30t International Conference on Coastal Engineering in San Diego (Holthuijsen
and Booij, 2006). The present study is a collaborative effort of these two authors and the present author,
which started in September 2008. It began with a continuation of the development of the formulation of
the DCTA and ended with its quantification. Before the ending of the present study, a second publication,
with an updated form of the formulation and intermediate results of the quantification was submitted to

the 6th International Conference on Coastal Dynamics in Tokyo (Booij et al., 2009).

Although the general formulation was clear, several details, such as the exact expression of the scaling

and the manner in which mismatches from exact resonance are accounted for”, were still being perfected
by the time the present study commenced. The author participated in, and contributed to, discussions
between the developers, N. Booij and L.H. Holthuijsen. He implemented the suggestions that were the
result of these conversations in an experimental version of the spectral wave model SWAN (Booij et al.,
1999) and conducted trial simulations of the evolution of several different incident spectra that were
measured by Smith (2004). The results were analysed and used for the continuation of the detailed
conceptual development in succeeding discussions. It is impossible to describe in detail the exact
suggestions and contributions of the present author to the latest formulation of the DCTA due to its
gradual, evolutionary development. These contributions have become an integral part of the DCTA and
therefore the present author is co-author of the second publication on the DCTA: the manuscript that was

submitted to the Coastal Dynamics Conference (Boojj et al., 2009).

* See chapter 4.



As the conceptual development crystallized, the focus gradually shifted towards the quantification of the
DCTA. In order to investigate and improve its ability to simulate the effects of triad interactions, it was
verified and consequently calibrated with measurements by the present author. The calibration was
executed for two different formulations for the scaling of the DCTA. The results of the latest formulation
(equation 4-7) are presented in this report. Finally, the calibrated version of the DCTA was applied to a

large series of laboratory and field measurements.

This study was carried out by the present author to obtain a M.Sc. degree and this report describes in
detail the work carried out by the present author to fulfil the necessary requirements. Its structure
therefore reflects the dualistic nature of his activities by a division in two separate parts. The
contributions to the conceptual development of the DCTA are described in the first part. It presents the
manuscript of Booij et al. (2009) that was submitted to the Coastal Dynamics Conference. This work was
done in close collaboration with the other authors of that manuscript. Some additional remarks about the
work that the present author has carried out are made in chapter 3. The second part describes work that
was exclusively done by the author and is a supplement to this manuscript. It starts with some
background information on triad interactions (chapter 3) and then describes the formulation of the DCTA
(chapter 4) in more detail than the Coastal Dynamics manuscript and its implementation (chapter 5).
Next, the quantification is treated: the validation, the calibration and the verification are described in

chapters 6, 7 and 8. In chapter 9, the conclusions of this study and recommendations are presented.

The following remarks concerning the design of the plotted parameters and spectra in this report may
help the reader to understand the displayed content promptly. Throughout the whole report, a fixed set
of colours has been used to represent the plotted spectra. The red line always represents measured
spectra, the green line DCTA results, the blue line LTA results and the black line results from simulations
without the triad interaction source term. The locations of which the spectra are presented in this report
are marked in the bathymetry figures with an orange colour. Although the formulation of the DCTA was
in expressed in terms of intrinsic (relative) radian frequencies and action densities N (), the output of
SWAN is usually given in terms of absolute angular frequencies and energy densities E( f). Additionally,
the displayed spectra are always scaled throughout this report according to equation 6-2. Therefore, all

spectra represent scaled energy densities as a function of angular frequency G( f).



Part |

Manuscript submitted to the
International Conference on Coastal

Dynamics 2009
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2 Manuscript submitted to the ICCD 2009

A DISTRIBUTED COLLINEAR TRIAD APPROXIMATION IN SWAN

N. Booij’, L.H. Holthuijsen” and M. P. Bénit®

Abstract

Waves entering the surf zone initially develop higher harmonics, which disappear after two or three
wave lengths. The default Lumped Triad Approximation (LTA) in the SWAN wave model generates only
(persistent) second harmonics. An alternative approximation (DCTA) is suggested which is based on an
analogy with quadruplet wave-wave interactions. It initially generates all (transient) higher harmonics
and subsequently a smooth universal spectral tail, in agreement with observations. The DCTA is
calibrated with 31 published laboratory cases and then applied to 20 other, one- and two-dimensional
cases, including field cases. The conclusion is that using the DCTA instead of the LTA barely affects the
significant wave height but improves the mean period and spectral tail of the computed spectra. Further

improvements are expected with enhanced high-frequency dissipation.

Key words: wave model, surf zone, triad wave-wave interactions, laboratory wave observations, field

wave observations, wave breaking

*6t" International Conference on Coastal Dynamics 2009 in Tokyo, Japan
¢ Digital Hydraulics, Willemsplein 535, 3016 DR, Rotterdam, the Netherlands, n.booij@digital-hydraulics.com

¢ Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the
Netherlands, [.h.holthuijsen@citg.tudelft.nl

¢ Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the
Netherlands, m.p.benit@student.tudelft.nl



1. Introduction

When random waves, with a unimodal spectrum, enter the surf zone, triad wave-wave interactions often
generate a secondary peak at twice the peak frequency, and sometimes also at higher multiples of the
peak frequency. However, these peaks seem to persist only over a short distance because triad wave-
wave interactions force the spectral tail into a smooth, universal shape. Observations and theoretical
consideration (Toba, 1973; Zakharov, 1999; Resio et al., 2001; Smith, 2004) show that the shape of this tail
is k™" for kd <1 (where k is wave number and d is water depth) and k™ for kd > 1. This evolution to a
smooth universal tail also occurs for multimodal spectra. This behavior can be explained with the theory
of near-resonant triad interactions (e.g. Herbers et al., 2000; Janssen et al., 2006) but using this theory in
operational models is prohibitively expensive in terms of required computer capacity. Some models
therefore use a parameterization of the triad interactions. One of the simplest is the Lumped Triad
Approximation of Eldeberky (1996), which is used in the third-generation wave model SWAN (Booij et
al.,, 1999). However, this approximation only accounts for the initial evolution of the second harmonics as
the waves enter the surf zone. It does not properly account for the evolution of the universal smooth tail
as the waves travel further. A simple reduction of the expression for quadruplet wave-wave interactions
(Hasselmann, 1963), supplemented with forcing the universal tail and a tuneable scaling suggests another
parameterization that does account for both the initial evolution of higher harmonics in the spectrum and

the transition to a universal, smooth tail.

2. The wave model

Our parameterization is formulated in terms of a source term of the spectral action balance of the waves:

oN(0,0;x,y,t) . dc, N(0,0;x,y,t) . oc,,N(0,0;x,y,t) .
ot Ox oy
. dc,N(0,0;x,y,t) . dc,N(0,0;x,y,t) _ S(0,6;x,y,t)
00 oo o

M

=S"(0,0;x,y,t)

where N (0,0) is the action density spectrum (action density is defined as energy density divided by the
relative frequency N(o,0) = E(0,0)/0). The first term in the left-hand side of these equations represents
the local rate of change of action density in time, the second and third terms represent propagation of

action in geographical space (with propagation velocities ¢, . and ¢, , in x- and y-space, respectively, thus



accounting for depth and current-induced shoaling or bunching). The fourth term represents depth- and
current-induced refraction and diffraction (with propagation velocity c, in O-space). The fifth term
represents depth- and current-induced frequency shifting (with propagation velocity c, in o-space). The
term S (0,0) is the source term for the energy evolution of the waves and S" (0,0) is the same for the
action evolution, representing the effects of generation, nonlinear wave-wave interactions and
dissipation. For the computations of this study, we will use the SWAN model of Booij et al. (1999), which

is based on this equation.

We use the default settings of SWAN for all physical processes and numerical schemes except for the

following. In the calibrations, we use the bottom friction coefficient C,,,,,. in the JONSWAP expression of

bottom
Hasselmann et al. (1973) to calibrate the dissipation outside the surf zone (and continue to use it inside
the surf zone) and we use the ratio of maximum wave height over local depth y=d/H,  in the
formulation of depth-induced breaking of Battjes and Janssen (1978) as a tuning parameter to calibrate
the dissipation inside the surf zone. It must be emphasized that (a) the default formulation for white-
capping in SWAN is due to Hasselmann (1974) as adapted by the WAM group (1988), which implies that
this form of dissipation is proportional to the energy density E(o,0) and wave number k and that (b) in
the formulation of Battjes and Janssen (Battjes and Janssen, 1978) dissipation by depth-induced breaking
is proportional to the energy density E(o,6) and does not otherwise depend on wave number, frequency
or direction. Rogers et al. (2003) argue that dissipation due to white-capping should be proportional to k'"°
or k* and Chen et al. (1997) argue that dissipation due to depth-induced breaking should be proportional
to 0. We will have cause to return to these options in the following. The default formulation in SWAN

for the triad wave-wave wave interactions is the Lumped Triad Approximation (LTA) of Eldeberky

(1996). It is the purpose of the present study is to propose an alternative formulation for this.

3. The triad parameterization

Our parameterization of the triad wave-wave interactions is based on a reduction of the expression for

the quadruplet wave-wave interactions (e.g., Hasselmann, 1963), which can be represented as

Sua (k)= ””N(ks )N (Ky5) |:TaN(k2)_TbN(k1 ):| dk,dk, @



for the resonance conditions of wave numbers k,,, , =k, +k, -k, and frequencies ¢0,,, ; =0, +0, -0, T,
and T, are interaction coefficients. We similarly formulate triad wave-wave interactions by removing one

component from this expression:

Sui3 (kl):_[[N(khz)[)(aN(kZ)_Xb N(k, )]dkz @)

for the resonance conditions o,,, =0, +0, and k,,, =k, +k,, with unknown coefficients x, and x,. Triad
resonance can occur only for collinear non-dispersive waves, so we reduce the formulation to (replacing

the notation of k,,, by k,):
SzS(kl):J.N(kS)[XaN(kZ)_XbN(kl)}de 4

for the quasi-resonance conditions k, :|k3 —k1| (i.e., the wave numbers match but the frequencies not

necessarily). To force the spectrum towards a universal tail, N(0) o'c;'k " we take the coefficients as
Xo = X050 ,k; and X, = xo,c,,k} (5)
so that in terms of the frequency spectrum,
Shs(0y)= J.XN(Us)[Gng,zng(Uz )—0,¢,.kIN (0, )J do, )

A dimension analysis of expressions (5) shows that the dimension of the coefficient [x]=m"". The
dimension m” results from forcing the spectral tail to the k *-shape. We therefore assume x = x,k " where
k is a characteristic wave number of the triad (we take k = (k, +k, +k;)/3). A comparison with the scaling

of the Lumped Triad Approximation (LTA; Eldeberky, 1996) suggests in addition that

X=Xk 7 =Ad”|sinplk'" @)
where the bi-phase f is parameterized as

B =m(tanh(6/Qyp ) —1)/2 ®)

(Doering and Bowen, 1995) in which the Ursell number

Qureat =k 2m, / (lgd)3 )



(the average wave number k is estimated as k = a( gd)_l/2 with the average frequency ¢ determined from
the zero-th and first moment of the energy spectrum) and 0 =0.2 (Eldeberky, 1996). To account for the
increasing resonance mismatch with increasing wave number, we scale the interactions with the ratio of
the dispersion relationship for shallow water and the dispersion relationship for water of arbitrary depth,

i.e., with tanhkd/ kd. The final expression is therefore
S (o)) = I/\d‘z |sin B k"N (o) tanh Ed/Ed[azcglzng(o‘z ) —0,¢,,kIN (0, )J do, (10)

for the quasi-resonance conditions k, = |k3 -k,

, with only the scaling coefficient A as a tuneable parameter.
We call this approximation the distributed, collinear triad approximation (DCTA), to contrast it with the

lumped triad approximation (LTA; which is also collinear).

4. The calibration

For the calibration of the scaling coefficient A, we use the rather extensive observations of Smith and
Vincent (2004) of waves in a laboratory flume propagating over a 1:30 flat bottom (Fig. 1) with a variety of
spectra (31 cases with unimodal and bimodal incident spectra, with various degrees of wave steepness
and spectral width). We determined the values of A and y that provided the best fit (in a least-square-
error sense) between the computed significant wave height and mean period (from the zero-th and first-
order moment of the spectrum). The technique that we employed was to first determine, for each
individual case, the rms-error between the computed and observed significant wave height for a large
number of values of A and y, and then to determine the loci of the line of slowest decent of the rms-error
(this gives the optimal value of A for any given value of y and vice versa). We then determined along this
line the minimum value of the rms error between the computed and observed mean period. We thus
determined for each individual case the optimum values of A and y. These values varied between 0.05
and 0.30 and between 0.69 and 0.93 respectively. This seems to be a disturbingly wide range but it turns
out that the results are only weakly sensitive to the value of A (see for example Figs. 2 and 3, to be treated
next). The mean values of A and y over all 31 cases thus obtained were A =0.13 and y =0.786. In the
following, we use the default value in SWAN y =0.73 as it is based on considerably more data (Booij et
al., 1999). Using the DCTA and these values A =0.13 and y =0.73 for all 31 cases slightly increased,

compared to the results obtained with the default LTA, the rms-error in the significant wave height from



0.0036 m to 0.0037 m (+ 3%) and decreased the rms-error in the mean wave period from 0.068 s to 0.047 s

(- 30%).
1 2 5 7
o S
m
0.2 |- B
1:30

0.4 - B
-0.6 - B

1 1 1 1 1 1

0 5 10 15 20 25 x[m] 30

Fig. 1 The bottom profile of the observations of Smith and Vincent (2004) with the locations of stations 1, 2, 5 and 7
used for the comparison with the spectra computed in this study.

To illustrate the effect of this calibration on the computed spectra, we show in Fig. 2 the results for the
steepest waves in the data set of Smith and Vincent (2004) with a spectrum that is nominally unimodal
(case 31 of Smith and Vincent, 2004; the small secondary and tertiary peaks at station 1 may have been
generated by the wave maker or in the flume before the waves arrived at station 1). Note that the vertical

scale in Fig. 2 is such that the universal k™"

-tail would appear as a horizontal line. It is obvious that in
this case, the LTA (a) generates only the second and fourth harmonic of the incident peak (the eighth
harmonic is outside the range of the computations), (b) considerably overestimates these peaks and (c)
does not remove these secondary peaks as the waves propagate further into the surf zone. However, it
reduces the primary peak reasonably well. It is equally obvious that in this case, the DCTA (a) generates
all harmonics of the incident peak with the correct magnitude and that it forces the tail to the universal
shape, but also that (b) it does not reproduce the reduction of the primary peak very well and that (c) it is
too slow in smoothing the spectral tail. Using the optimum (i.e., calibrated) values for this case of A =0.30
and y =0.69 reduces the primary peak slightly and enhances the spectral levels at the high frequencies

somewhat but overall this does not improve the results significantly (See Fig. 3; in other words, the

results are not very sensitive to changes in the value of A and y; at least not in combination).



5. The verification

We have verified the calibrated model (i.e., all coefficients at their default values and A =0.13) with the
laboratory observations of Boers (2005; also in Ris et al., 2002) and the field observations in a branch of the

Rhine estuary published by Ris et al. (2002).

E(f)c, k*® Station 1 0.03r Station 2
0.02 t
.............. LTA
0.02+
—————— DCTA
observations |
0.01 |
0.01+
0.0 h . . .
0.0
0.5 1 2 f  (Hz) 3 2 f (Hz)
0.015f
| Station 5 Station 7
0.02
0.010}

0.5 1 2 f (Hy 3 05 1 2 f (Hz)

Fig. 2 The evolution of the spectrum (stations 1, 2, 5 and 7 in Fig. 1), computed with the LTA and the DCTA over a
1:30 flat bed, compared with the spectra observed by Smith and Vincent (2004). Note that the vertical scale is such
that a k™>-tail would appear as a horizontal line.



0.01 ¢ E( f )Cg K43 Station 7

[ ———  DCTA
0.005 - —————— observation
0.0 ‘ ‘ ‘ ‘
0.5 1 2 f (Hz) 3

Fig. 3 The spectrum at station 7 (in the upper panel of Fig. 1), computed with the DCTA calibrated for this case,
compared with the spectrum observed by Smith and Vincent (2004). Note that the vertical scale is such that a k-
tail would appear as a horizontal line.

0 5 10 15 20 25 30

x[m]

Fig. 4 The bottom profile of the observations of Boers (2005) with the locations of stations 45, 55 and 65 used for the
comparison with the spectra computed in this study.



| E(f)cg K4/ Station 1 0.006 | Station 45
0012

DCTA
observations |0:004 |

0.006 |
0.002

0.0

;‘ (H‘z)

Station 65

0.004 1 Station 55

0.001
0.002 1

0.2 1 f (Hz) 2 0.2 1 f (Hz) 2

Fig. 5 The evolution of the spectrum (stations 1, 45, 55 and 65 in Fig. 4), computed with the LTA and the DCTA over
a natural bed in a laboratory flume, compared with the spectra observed by Boers (2005; also in Ris et al., 2002).
Note that the vertical scale is such that a k™"-tail would appear as a horizontal line.

Boers (2005) published rather detailed observations of the evolution of waves in 3 cases (69 spectra per
case, Fig. 4) over a natural bottom profile in a laboratory flume. We show here our results for his case 1 in
Fig. 5. Note that, just as in Figs. 2 and 3, the vertical scale in Fig. 5 is such that the universal k™*/’-tail
would appear as a horizontal line. Again, it is obvious that, the LTA (a) generates only the second and
fourth harmonic of the incident peak (the eighth harmonic is outside the range of the computations), (b)
generally overestimates these peaks and (c) does not remove these secondary peaks as the waves
propagate further into the surf zone. But again (as in the previous comparison), it reproduces the
reduction of the primary peak reasonably well. It is equally obvious that, the DCTA (a) generates all
harmonics of the incident peak but, in this case, not always with the correct magnitude and that it forces
the tail to the universal shape at approximately the correct level, but also that (b) it does not reproduce
the reduction of the primary peak very well and that (c) it creates a spectral tail that is too smooth

(although one may argue that the shape of the observed tail is rather irregular).
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Fig. 6 The bathymetry of the Haringvliet, a branch of the Rhine estuary in the Netherlands, with the southern North
Sea towards the west. The labels indicate the name and position of the buoys.

The Haringvliet is a branch of the Rhine estuary in the southwest of the Netherlands that is separated
from the main estuary by sluices. The bathymetry of the area and the locations of the eight observation
stations are shown in Fig. 6. The geographic situation can be characterized as a relatively shallow bay that
penetrates a few kilometers into the coast, with no currents during the observations (the sluices were
closed and the tides were low). The water depth is 4 to 6 m in the area considered (including the deep
water approach). And the surface area is about 10km x 10km. The bay is partly protected from the
southern North Sea by a shoal (called the “Hinderplaat”, Fig. 6) of roughly 1km x 4km surface area,
extending across half the bay entrance. The water depth over the top of the shoal during the observations
was about 2 m. The waves were measured in deep water with a WAVEC pitch-and-roll buoy (station 1),
six Waverider buoys scattered around the shoal (stations 2 to 7), and one wave gauge located about 5 km
behind the shoal (station 8). The wind velocity, the wind direction and the water level were measured at a
site near station 6. From the extensive data set, one case is selected from a local storm in the southern

North Sea on October 14, 1982, which generated waves from southwesterly directions. SWAN

M.Sc. thesis Matthijs Bénit



computations are carried out at 2300 UTC on this day. This time was selected because (1) the wind speed
and direction were fairly constant, (2) the waves were fairly high (for the observation period of 13 weeks),
and (3) the water level was sufficiently low to see the generation of a significant secondary peak in the
spectra near the shoal but not so low that the shoal would be dry. The observed incident significant wave
height was 3.56 m, the incident mean wave period (from the zero-th and first moment of the observed
spectrum) was 6.7 s and the incident mean wave direction was 306° and the directional spreading was 31°
(definitions of Kuik et al., 1988). The wind was assumed to be uniform and stationary with an observed
speed of 14.0 m/s and direction 300°. The waves approach the estuary from deep water and break over the
shoal with a reduction of the significant wave height from about 3.6 m in deep water to 2.5 m just in front
of the shoal to about 0.6 m behind the shoal. The local wind regenerates the waves behind the shoal to
about 1.1 m significant wave height at station 8. The observations at the various stations were not
synchronous. Therefore the two nearest observations on either side of 2300 UTC are considered at each

station (Fig. 5).
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Fig. 7 The computed spectra at the various stations compared with the observed stations bathymetry of the
Amelander Zeegat in the north of the Netherlands (southern North Sea). The labels indicate the name and position of
the buoys.

The travel time of the waves through the area is sufficiently short that stationary computations can be
used. The computations are carried out with all physical processes of propagation, generation, dissipation
and wave-wave interactions active (except diffraction). Triad wave-wave interactions are therefore
accompanied by all other processes. The agreement between the observed spectra and the spectra

computed with the LTA is reasonable (Fig. 7) if allowance is made for the large variation in scale of the



spectra (e.g., station 5 with a twenty fold change in scale in energy density compared to station 1).
Nevertheless, the decay of the primary peak is not well predicted and the regeneration of high-frequency
energy is over-predicted. It was verified with repeated computations that water level variations during
the residence time of the waves cannot explain these discrepancies at the low frequency peak. However,
it must be stressed that only small residuals of low-frequency energy are compared here. For instance, the
observed reduction of the peak level between stations 1 and 8 (where the discrepancy is largest) is about
95% whereas the computed reduction is 97%. The regeneration at high frequencies may be due to too
much energy transfer from the lower frequencies by the LTA or by too much generation by wind.
Repeated computations without triad wave-wave interactions but with wind and vice versa show that
both processes are equally responsible for this high-frequency regeneration. Using the DCTA instead of
the LTA improves the computational results for the higher frequencies in the sense that at stations 5, 6
and 7, ie. the stations just behind the shoal, where the effect of triad wave-wave interactions are
expected to be largest, the agreement with the observations at high frequencies is greatly improved.
However, the energy level of the primary peak is severely over-predicted. This indicates a restriction of
“pumping” energy from the primary peak to the higher frequencies (where that extra energy would
presumably be dissipated). The over-prediction at station 8 is not removed and it is therefore assumed to

be due to an over-estimation of the regeneration by wind.

We computed another 16 cases (1 laboratory case and 15 field cases; results not shown here) and found
basically the same results: an improvement in the level and shape of the spectral tail but a delayed decay

of the primary peak when using the DCTA instead of the LTA.

6. Summary and discussion

We have formulated an approximation of triad wave-wave interactions based on an analogy with the
formulation of quadruplet wave-wave interactions. For waves entering the surf zone, this approximation
allows the initial evolution of all collinear super-harmonics in the wave spectrum but eventually forces a
universal shape of the spectral tail (modeled as a saturation level). The time scale of these interactions is
derived from a dimension analysis, a comparison with the Lumped Triad Approximation (LTA - which is
based on a Boussinesq model), a heuristic correction for the resonance mismatch and a calibration of one
coefficient. This approximation transfers energy between all frequencies, permitting upward and

downward shifting of energy (along a common spectral direction) - hence the name “Distributed Collinear



Triad Approximation (DCTA)” as opposed to the “ Lumped Triad Approximation” (LTA) which transfers

energy only upwards to second harmonics.

The comparison with observations shows the required qualitative behavior of the initial generation of the
super-harmonics and the subsequent smoothing to a universal shape of the spectral tail. Both the time
scale of generating the super-harmonics and the magnitude of these super-harmonics agree reasonably
well with the observations (after calibration) but the transfer of energy from lower to higher frequencies
seems to be inhibited when the spectral tail attains its universal shape. This inhibition leaves the spectral
level of the primary peak of the spectrum at a value that is too high: the triad “pump”, which transfers
energy from the primary peak to the higher frequencies is stopped too soon because dissipation at the
high frequencies is too low. The LTA does not suffer from this problem to the same extent because the
saturation level of the high frequencies is much higher than that in the DCTA. This interpretation in
terms of an energy flux through the spectrum is essentially the model of Herbers et al. (2000). The
problem seems therefore to be in the high-frequency dissipation. In SWAN this dissipation is assumed to
be proportional to the spectral energy density with a uniform weighting over the frequencies (based on
Beji and Battjes, 1993). Adding a 0° dependency to the depth-induced dissipation (as suggested by Chen
et al., 1997) and a k'° or k* dependency (as suggested by Rogers et al., 2003) would enhance the high-
frequency dissipation, thus allowing the triad wave-wave interactions to “pump” more energy to the
higher frequencies and consequently decaying the primary peak at a higher rate than it does in the
present computations, even when the tail has achieved its equilibrium level. Adding such dependency is

obviously the next step in the development of SWAN.
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3 Triad interactions

This chapter is quoted almost verbatim from the book “Waves in coastal and oceanic waters” (Holthuijsen, 2007)

When random waves, with a unimodal spectrum, approach very shallow water, e.g., the surf zone, the
triad wave-wave interactions often generate a secondary peak in the spectrum, at twice the peak
frequency, and sometimes also peaks at higher multiples of the peak frequency. In addition, low-
frequency peaks are generated, which we ignore because they usually fall outside of the wind-wave
frequency range. However, these secondary peaks seem to persist only a short distance into the surf zone
(several wavelengths at most). As the waves propagate further into the surf zone, the same interactions
remove these peaks and force the spectral tail into a smooth, universal shape: E(k) k™" for kd <1 (these
components are in relatively shallow water) and E(k) k™' for kd > 1 (these components are in relatively
deep water), where k is wave number; d is local water depth and E(k) is the wave number spectrum.
Theoretical considerations (Toba, 1973; Zakharov, 1999), observations (Smith and Vincent, 1992, 2003;
Smith, 2004) and computations with extended Boussinesq and other types of models (Herbers and
Burton, 1997; Herbers et al., 2000; Resio et al., 2001; Kaihatu et al., 2007) indicate that this forcing to a
universal tail in very shallow water applies not only to a unimodal incident spectrum but also to a wide

variety of other spectral shapes.

A special case occurs when a unidirectional harmonic wave enters very shallow water. Such a wave can
interact with itself to create a second harmonic, at twice its frequency. The effect of this interaction is
visible as a distortion of the basic harmonic: as the wave propagates, it evolves into a wave with sharper
crests and flatter troughs. This is possible only if the second harmonic propagates with the same phase
speed as does the basic harmonig, i.e., the energy of the second harmonic is bound to the basic harmonic.
When the wave continues to propagate in ever-shallower water, it pitches forwards and breaks: it creates
a steep forward face and a gentler backward slope. This implies that the phase of the second harmonic

shifts in relation to the phase of the basic harmonic (while propagating at the same speed).

Similarly, when random waves with a unimodal spectrum approach the surf zone, the wave components at

or near the peak of the spectrum create Stokes-like wave profiles, generating the secondary peak at twice



the peak frequency referred to above. This added energy is superimposed on the freely propagating
energy at this frequency, but it is bound to the primary peak. This distinction between bound and freely
propagating energy is not evident in the spectrum since a variance density spectrum does not provide
such a distinction. When the random waves propagate further into the surf zone, essentially the same
happens as with a harmonic wave: they pitch forwards and break. Breaking reduces the energy scale of
the spectrum and is therefore quite evident in the spectrum but the forward pitching is not because phase

information is not provided by the spectrum.



4 Formulation

Our parameterization is formulated in terms of a source term of the spectral action balance of the waves,

which for the present formulation can be reduced to

oc,.N(0,0;x,t)  S"(g,0;x,t)
Ox o

=S"(0,0;x,t) Equation 4-1

where N (0,0;x,t) is the action density spectrum (action density is defined as energy density divided by
the relative frequency N(o,0;x,t)=E(0,0;x,t)/0), o is the relative (thus moving with the ambient
current) radial frequency, 0 is the Cartesian direction, x is the geographical position and t is time. The left-
hand side of this equation represent propagation of action in geographical space (with propagation
velocity ¢, . in x-space, thus accounting for depth and current-induced shoaling or bunching). The term
S*(0,6;x,t) is the source term for the energy evolution of the waves and S" (0,0; x,t) is the same for the
action evolution, representing the effects of generation, nonlinear wave-wave interactions and
dissipation. For the computations of this study, we will use the SWAN model of Booij et al. (1999), which

is based on this equation.

We use an analogy with the formulation for quadruplet wave-wave interactions (Hasselmann, 1963;

Herterich and Hasselmann, 1980)

Sr/:;4 (kl ) = _” ”N(ka ) N(k1+2—3) |:TaN(k2 ) - TbN(kl ):| dk,dk, Equation 4-2

for the resonance conditions k,,, , =k, +k, -k, and 0,,, ; =0, + 0, — 05, in which g, is the frequency of the
wave component with wave number k; as determined by the dispersion relationship of the linear wave
theory. Here, T, and T, are interaction coefficients dependent on the wave numbers and frequencies
involved in the interactions. We interpret this as the exchange of energy between the two components k,
and k, as affected by the third and fourth component k, and k,,, ;. We similarly formulate triad wave-

wave interactions as the interaction between two components k, and k, as affected by a third component

k

1+2



Sus (k) = _”.N(kuz )[XaN(kz)_Xb N(k, )] dk, Equation 4-3

for the resonance conditions o,,, =0, +0, and k,,, =k, +k,, with unknown coefficients x, and yx,. These
resonance conditions are only met by collinear, non-dispersive waves which occur only in extremely
shallow water (Phillips, 1960). However, triad interactions also occur under near-resonance conditions
(Armstrong et al., 1962) , before waves enter such shallow water, in deeper water. To parameterise this,
we consider collinear components under quasi-resonance conditions, i.e., under the condition that the

wave numbers match but not necessarily the frequencies (a mismatch with the exact resonance condition

for the frequencies is thus allowed). Since we consider collinear interactions only], the vector wave
number k is replaced by a scalar k and the double integral of equation 4-3 is correspondingly reduced to a

single integral. If we write this integral as

Sivzs (kl) = TN(k3)[XaN(k2)_XbN(kl )]dkz + TN(kS)[XaN(kZ)_XbN(kl )Jdk2 Equation 4-4

then, to ensure that all positive wave numbers are used, the quasi-resonance conditions are k, =k, +k, (or

k, =k, — k) for the first integral and k, =k, + k, (or k, = k; — k,) for the second integral. This expression may

therefore also be written according to equation 4-5 for the quasi-resonance condition k, =|k, —k,| %.

©

Sus (kl ) = jN(k3 )[XQN(kz ) —Xz,N(kl )] dk, Equation 4-5

0

 Due to this assumption, sub-harmonic action transfers are not represented correctly by the DCTA as these
transfers are the result of so-called difference triad interactions (Herbers and Burton, 1997) which typically
exchange energy among non-collinear wave components. The DCTA does calculate transfers to components with
lower frequencies but with completely erroneous directions. Moreover, these frequencies are usually outside the

wind-wave frequency range and are therefore ignored in this study.

® Inadvertently, this statement was stated as such in Booij et al. (2009) while the quasi-resonant condition that was
implemented in the code was ¢, = |03 -0, | As resonant triad interactions only occur for non-dispersive waves, for

which a linear relation exists between o and k, both expressions are equivalent.



To force the action density spectrum N (0)=0"E(0) to converge to the universal shape E(k) k™, with p
the power of the universal spectrum, we first express this shape in terms of frequency and action density:

N (o) o’lc;k”’ and then accordingly choose the coefficients x, = xo,c, .k} and x, = xo,c, ,k{. The result is

Sus (0, ) = J.XN(Gs)[Gng,zng(Gz) _Glcg,lka(Gl )] do, Equation 4-6

The interaction thus vanishes if the equilibrium shape N (0) = aa’lc;k"’ has been achieved for the spectral

tail (for arbitrary a). Booij et al. (2009) showed that this formulation also ensures that the interactions

conserve action.

We can infer the character of the interaction coefficient y from a dimension analysis, supplemented with
information from the Lumped Triad Approximation (LTA) of Eldeberky, which is based on a Fourier
transform of the extended Boussinesq equation (Madsen and Serensen, 1993; Eldeberky, 1996). A
dimension analysis of the above expression for S));(o,) shows that the dimension of the coefficient

[x]=m"". We therefore take

X=Xk =Ad? |Sin ﬁ|EH’ Equation 4-7

in which A is a tuneable constant and k =1(k +k, +k;), the average wave number of the triad under

consideration. In the LTA, the bi-phase f is parameterised as ﬁz%[tunh(é/ Qu,sm)—lj (Doering and

A A \3 A
Bowen, 1995) in which the Ursell number Q,,,.,, = k+/2m, / (kd) (the spectrum average wave number k is

estimated as k =G(gd) "' with the average frequency ¢ determined from the zero-th and first moment of

the energy spectrum) and 6 = 0.2 (Eldeberky, 1996).

To account for the increasing resonance mismatch with increasing wave number, we scale the interactions
with the ratio of the dispersion relationship for water of arbitrary depth water and the dispersion

relationship for shallow, i.e., with tanh kd/kd.

Trial calculations

The formulation of the DCTA that is presented in this chapter is the result of an extensive development

process. The author of the present report has contributed to this process by partaking in many



discussions among the first developers, N. Booij and L.H. Holthuijsen. During these discussions, various
formulations for the scaling coefficient y and the universal tail have been put forward and evaluated.
These have been implemented by the present author in an experimental version of the spectral wave

model SWAN (Booij et al., 1999). That code was subsequently used for trial calculations in which the

evolution of four different incident spectra that were measured by Smith" (2004) was simulated. The four
spectra (listed as cases 1, 5, 20 and 31 in the description of the experiments) were chosen to characterise
the full range of conditions that were investigated in the whole series of experiments. Cases 1 and 5
represent bimodal spectra with a low-frequency first peak (around 0.4 Hz) resp. a higher-frequency first
peak (around 0.8 Hz). The second peak is at 1.0 Hz for both cases. Cases 20 and 31 are a gentle and broad
(T,=1.0s;y,=3.3) resp. a steep and narrow (I, =2.5 s; , = 100) spectrum. The results of these calculations
were analysed and used in the succeeding discussions. For his contributions to this process, the present
author has been listed as co-author of the manuscript that was submitted to the Coastal Dynamics

conference.

" See chapter 7 and Smith (2004) for more details on these measurements.



5 Implementation

The DCTA was implemented by N. Booij in an experimental version of the spectral wave model SWAN
(Booij et al., 1999) before the start of this study. As the formulation of the DCTA changed throughout the

project, the code has been updated and its computational efficiency improved by the present author.

SWAN is a third generation numerical wave model that solves an Eulerian wave action balance equation
using, in contrast to many similar models, implicit numerical schemes for the geographical propagation
of wave action. The geographical grid that is used in the present study is regular with constant mesh sizes
Ax and Ay, the spectral space contains directional bins A@ on a regular grid and frequency bins Ao with a
logarithmic distribution (i.e., with a constant relative frequency resolution Ao/ g). The continuous integral

(I...da) in the formulation of the DCTA (equation 4-6) is replaced with the discrete sum (Z...AG) of all the

contributions from all frequencies o, to the source term of o,.

The DCTA was implemented in SWAN identical to the method for the triad interactions source term
described in the technical documentation of SWAN (SWAN-team, 2008) and Booij et al. (1999). To obtain
a solution for a wave problem, it is written as a linearized set of equations (AN = b) and solved iteratively.
As all source terms can be written as a quasi-linear term (S =¢@N), they can be approximated either
explicitly or implicitly by multiplying with the action density at the current resp. the prior iteration level.
Each source terms has been separated in positive and negative contributions to the wave component
under consideration. The positive contributions are evaluated explicitly and any negative contributions

are approximated implicitly.

The triad interaction source term, according to the DCTA, can be rewritten as

SZs (‘71 )n = [in_lN(Gz )H - Xln_lN(Ul )n] Equation 5-1

with x, = YN (03)oicg/ikf do, and n is the iteration step. The first, positive part was evaluated explicitly,

using values of x, and N(o,) from the prior iteration, and added to the right hand side vector b. The

second, negative part was approximated implicitly by adding it, without the minus sign and N (o, ), to the



main diagonal of matrix A. As such, it was multiplied with the action density at the current iteration level

when the system is solved. The subroutine with the implementation of the DCTA is listed in appendix A.



6 Validation

Expected behaviour

The DCTA behaves as a relaxation model that converges the action density spectrum towards the
universal shape N(0) o7'c;'k”*, by removing any deviation from this shape through interactions with
(near-) resonating frequencies. This can be illustrated by investigating the value of the source term for the

interaction between two fixed frequencies o, and o, (thus removing the integral, equation 6-1).

Sz (07) = XN(G3)[Uzcg,zk§N(‘72 ) =016, kI N (0, )J do, Equation 6-1

The direction of the transfer of action between ¢, and o,, and the sign of the source term, depends on the
expression between the straight brackets. The action density spectrum is in complete equilibrium if both
sides within the brackets are equal for all o, and o,, i.e. if [azcglzkg’N (0,) = 0y¢, kN (0, )} =0. If the left
side 0,c, ,k}N(0,), is larger than the right side o,c, kN (0, ), the sign of the source term will be positive,

indicating that action will be transferred from o, too, .

It must be noted that, although SWAN calculates the action transfers between various frequencies, the
results of simulations are given in this report in terms of wave energy; a more tangible quantity. In the
remainder of this report, we will talk about energy densities and transfers. If the energy density spectrum
is scaled according to equation 6-2, the direction of energy transfer can easily be deduced from the shape

of the scaled spectrum G(o). A spectrum that complies with the universal shape E(o) ac/'k” is

transformed into a straight, horizontal line (equation 6-3 and figure 6-2).

G(o) E(0)-c k" Equation 6-2
G(o)

-11-p | p
ac, k cgk

(24

equilibrium

Equation 6-3

If the energy density at any o, is out of equilibrium with a second frequency o, (figure 6-3), the
transformed spectrum shows that the energy density at o, is above the equilibrium (figure 6-4). The
expression in the brackets becomes smaller than one, and the sign of the source term for frequency bin o,

will be negative. This means that energy is transferred from o, to 0, and the spectrum is pushed towards



the equilibrium shape. The typical harmonic frequency peaks (chapter 3) appear if the action densities at

the peak frequency and twice the peak frequency are in a similar manner out of equilibrium.

Figure 6-1: Schematic energy density spectrum E(0),  Figure 6-2: Scaled schematic energy density spectrum
in equilibrium G(0), in equilibrium

B

Figure 6-3: Schematic energy density spectrum E(0),  Figure 6-4: Scaled schematic energy density spectrum
out of equilibrium G(0), out of equilibrium

Validation with simple bathymetries

To validate whether the DCTA performs the expected behaviour, it was applied to three simple one-
dimensional bathymetries under various conditions. First, we looked at the models performance on flat
bottoms with three different water depths, then we turned to a straight 1:100 slope and we ended with a
one-dimensional version of a tidal inlet. SWAN was in all cases run with default settings (no deepwater
source terms, with default wave-induced setup, white-capping and depth-induced breaking dissipation)
and the tuning parameter of the DCTA A was set to one. Although it is normally done by default in
SWAN, a diagnostic tail was not included in the calculation of parameters since its shape is not influenced

by the DCTA.



Flat bottom cases

A JONSWAP spectrum (H,,, 1.0 m; T, 10.0 s; 0, 5.7°) was applied to a flat stretch of bottom of 11 km with

three different water depths (60.0, 6.0 and 0.6 m) with H,, = 4\/m7O and o, according to Kuik et al. (1988).

The 60 m case showed that the DCTA is not active in deep water and the spectral parameters identical

constant throughout the entire domain (figure 6-5). Reducing the water depth to 6.0 m did activate the

DCTA as could be derived from the reduction of the mean period, which was a result of the transfer of

energy to higher frequencies. The significant wave height was more or less constant except for a little

shoaling (figure 6-6).
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Figure 6-5: Spectral parameters flat bottom case, 60 m
water depth
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Figure 6-6: Spectral parameters flat bottom case, 6 m
water depth

A water depth of 0.6 m cannot sustain a significant wave height of 1.0 m and a sharp reduction of the

wave height occurred right behind the up-wave boundary, due to wave breaking (figure 6-7). The largest

energy transfer due to triad interactions and the corresponding reduction of T, took place right at the

beginning of the domain.
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Figure 6-7: Spectral parameters flat bottom case, 0.6 m water depth

The spectra in 60 m water depth confirmed that the DCTA was not activated under these conditions.

Throughout the entire domain, the spectra were constant, as were the parameter values (figure 6-8 and

figure 6-9).
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Figure 6-8: Scaled spectrum flat bottom case, 60 m  Figure 6-9: Scaled spectrum flat bottom case, 60 m
water depth, 1.000 m from up-wave boundary water depth, 10.000 m from up-wave boundary

In figure 6-11, it can be seen that the DCTA was able to create higher harmonic frequency peaks at all
multiples of the peak frequency (the first, second and third are visible at multiples of 0.1 Hz). From the
horizontal orientation of the (scaled) tail of the spectrum, we found that the model indeed created a
spectral tail with k"-shape. After 10.000 m propagation, the spectrum had not yet completely
transformed into the universal shape, indicating that the interactions were not very strong under these

conditions.



The transformation towards the equilibrium shape was not achieved for the whole spectrum
instantaneously, but achieved first at higher frequencies and then the rest of the spectrum smoothened
for progressively lower frequencies. This is remarkable since waves with high frequencies are the most
dispersive, and thus least prone to triad interactions, although all wave components had kd-values well
below one , the upper limit of the range of validity of the k™*'*-shape (Smith and Vincent, 2002). The
saturation of the spectral tail was attributed to the fact that the action density in the tail was generally low
and deviations from the universal shape small. The amount of action that had to be transferred towards

these frequencies in order to reach the equilibrium was thus accordingly small.
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Figure 6-10: Scaled spectrum flat bottom case, 6 m  Figure 6-11: Scaled spectrum flat bottom case, 6 m
water depth, 1.000 m from up-wave boundary water depth, 10.000 m from up-wave boundary

The transformation towards the universal spectrum of the same incident spectrum, occurred much
quicker in 0.6 m water depth than in 6.0 m (compare figure 6-10 with figure 6-12 and figure 6-11 with
figure 6-13, yet note the differences in the vertical scales). This might have been due to either the scaling

of the DCTA (equation 4-7), which is inversely proportional to the depth squared (and is thus 100 times

stronger in 10 times shallower water’) or the strong dissipation which reduced the quantities of energy

that had to be transferred through the spectrum in order to arrive at the equilibrium shape.

" This is only approximately true since the scaling also depends on the estimate of the local Ursell number, which in
turn depends on the inverse water depth cubed, but this dependency is much weaker due to the tangent hyperbolic in

the expression of the parameterized bi-phase (end of chapter 4).



x10° x10°

6,
3,
"\47 o~
&) )
o o
2 1
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 0 01 02 03 04 05

Figure 6-12: Scaled spectrum flat bottom case, 0.6 m  Figure 6-13: Scaled spectrum flat bottom case, 0.6 m
water depth, 1,000 m from up-wave boundary water depth, 10,000 m from up-wave boundary

Constant slope cases

Next, we propagated the same incident JONSWAP spectrum (H,,, 1,0 m; T, 10,0 s; 0, 5.7°) over a constant

1:100 slope that started at 11 m water depth and stretches over 11.000 m (figure 6-14). Additionally, a

bimodal spectrum was run (H,,, 1.0 m; T, 10.0 s; T, , 4.0 s; 0, 5.7°) that was constructed by superposing

m0

two unimodal JONSWARP spectra, each contributing half of the total energy.

The parameters (figure 6-15 and figure 6-16) were consistent with the result from the flat bottom cases. In
the deepest part of the domain, the parameters were constant as no wave breaking dissipation and triad
interactions took place. In the middle of the domain, where the water depth is approximately 6 m, the
wave heights increased due to shoaling and triad interactions caused the wave period to decrease. The
shoaling was less for the bimodal spectrum because more of its energy was located at high frequencies,
which are less inclined to shoaling. At the end of the domain, the wave height decreased due to depth-
induced breaking consistent with the flat bottom case in 0.6 m water depth. The average wave period on
the other hand did not decrease as much since the triad interactions had already transformed the

spectrum in the up-wave parts of the domain.
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Figure 6-14: Bathymetry constant slope cases
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Figure 6-15: Spectral parameters constant bottom case,  Figure 6-16: Spectral parameters constant bottom case,
unimodal spectrum bimodal spectrum

It can be seen from the spectra (figure 6-17 and figure 6-18), that the results were very similar to the
results of the flat bottom case with 6 m water depth, although the transfers were smaller at the beginning
of the domain and larger near the waterline. At the end of the domain, the spectra had almost completely
transformed to smooth, featureless shapes although the orientation of the tail was not exactly horizontal.
The upward orientation of the tail showed that the energy densities at lower frequencies are less than the
equilibrium levels. The upwards tail did not entail a strong increase of energy towards higher frequencies
since the vertical scale was reduced greatly (more than 15-fold). The spectra from the bimodal case
showed that the high frequency peak (no longer visible at distance 10.000 m) was removed much quicker
than the low frequency peak (still visible) which agreed with the observations by Smith and Vincent

(1992). Again, the tail was not horizontal but oriented upwards.
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Figure 6-17: Scaled spectrum constant slope case,
unimodal spectrum, 1.000 m from up-wave boundary
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Figure 6-18: Scaled spectrum constant slope case,
unimodal spectrum, 10.000 m from up-wave boundary
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Figure 6-19: Scaled spectrum constant slope case,
bimodal spectrum, 1.000 m from up-wave boundary
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Figure 6-20: Scaled spectrum constant slope case,
bimodal spectrum, 10.000 m from up-wave boundary

Tidal inlet case

Applying the model to a more complex bathymetry with the typical scales of a tidal inlet gave us an idea

of the models ability to smoothen the peaks at the inner part of the inlet after the generation of harmonic

peaks at the ebb tidal delta. We have taken a linear transect through the Amelander Zeegat (figure 6-21)

and smoothened it somewhat without distorting the length or depth scales. A JONSWAP spectrum (H,,,

1.0 m; T, 10.0 5; 0, 5.7°) was applied at the seaward boundary.
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Figure 6-21: Bathymetry tidal inlet case

In figure 6-22 through figure 6-25, the spectra of the simulation with the LTA (blue) and the DCTA
(green) at four locations (at 1, 5, 10 and 25 kilometre from the up-wave boundary) are presented. The
results indicated that the depth greatly influenced the strength of interactions. In the deeper parts no
harmonic peaks appeared (figure 6-22), but once the depth is reduced, the effects of triad interactions
were much more pronounced (figure 6-23). Behind the steep decrease of depth, the peaks slowly

disappeared in the shallow parts of the domain (figure 6-24 and figure 6-25).
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Figure 6-22: Scaled spectrum tidal inlet case, 1.000 m
from up-wave boundary
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Figure 6-24: Scaled spectrum tidal inlet case, 10.000 m
from up-wave boundary
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Figure 6-23: Scaled spectrum tidal inlet case, 5.000 m
from up-wave boundary
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Figure 6-25: Scaled spectrum tidal inlet case, 25.000 m
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7 Calibration

Method

The value of the tuneable coefficient A in the formulation of the DCTA was calibrated with measurements
from Smith (2004) of waves evolving over a flat, sloping (1:30) bottom. These measurements were
considered suitable because the presence of triad interactions could be clearly seen from the emergence of
peaks in the spectra at twice the peak frequency and the transformation of the high frequency tail
towards a smooth shape near the waterline. The universal shape of the spectral tail was previously

confirmed through analysis of these measurements by Smith and Vincent (2003).

The measurements were carried out in a flume that was 0.45 m wide, 0.9 m deep and 45.7 m long with a
flat bottom in front of a slope (1:30) that began 21 m from the wave generator. A total number of 10
capacitance wave gauges were installed, the first at a distance of 6.7 m from the wave maker, the others
along the slope at depths of 0.30, 0.24, 0.21, 0.18, 0.15, 0.12, 0.09, 0.07 and 0.05 m (figure 7-1). A number of
31 cases with uni- and bimodal spectra were tested during this experiment. The unimodal spectra were
TMA spectra (Bouws et al., 1985) and the bimodal spectra were two superposed TMA spectra. Among
these, the number of peaks (1 or 2), the peak period of the first peak (between 1 and 2.5 s), the significant

wave height (0.06 or 0.09 m) and the spectral peakedness parameter y, (3.3, 20 or 100) were varied

(appendix B).
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Figure 7-1: Bathymetry Smith measurements

The SWAN simulations were run in one-dimensional mode with the following spatial and spectral

resolutions: 0.25 m in x-direction, 10 directional bins in a 20° sector and 100 frequency bins between 0.4



times the peak frequency (this value was specified for each incident spectrum to leave out the influence of
sub-harmonic energy transfers) and 3 Hz. These resolutions were chosen to render smooth spectra while
not slowing down the computations more than necessary. The calculation of wave setup was included, as
were the Battjes-Janssen expression for depth-induced breaking (Battjes and Janssen, 1978) and the
JONSWARP bottom friction formulation (Hasselmann et al., 1973); all other source terms were switched
off. The measurements at the first location, 6.7 m from the wave maker, were used as boundary
conditions to leave out the discrepancy between the target boundary condition and the spectrum that was
generated by the wave maker. The distance between the wave maker and the first wave gauge was not
included in the modelling domain, which left a flume length of 39.0 m. Remember that the red line
always represents measured spectra, the green line DCTA results, the blue line LTA results, the black line
results from simulations without the triad interaction source term and all spectra are scaled according to

equation 6-2.

Since the triad interactions are an energy conservative process, they should not influence the total amount
of wave energy throughout the domain. In the Battjes-Janssen formulation however, they influence the
rate of dissipation indirectly through the average frequency of the spectrum, which is affected by triad
interactions. The mean rate of dissipation according to the Battjes and Janssen formulation is given in
equation 7-1 in which a;; is a tuneable constant, Q, the fraction of broken waves and ¢ the spectrum

average frequency. The maximum wave height H . is defined as the breaker index parameter y times the

max

local water depth d (equation 7-2).

1 _
Dy = _Z‘XB/ Q (20_71) H:mx Equation 7-1

H,, =yd Equation 7-2

Stronger interactions cause a net flow of energy towards higher frequencies, which increases the average
frequency and hence the rate of dissipation. The influence between the formulations of the triad
interactions and dissipation also operates the other way around. The scaling of the DCTA depends on the
local Ursell number, which is affected by the rate of dissipation. A stronger dissipation yields less steep
spectra and hence lesser triad interactions. We wanted to remove the influence of an incorrect
representation of the dissipation from the calibration of the triad interactions. Therefore, we adjusted the

bottom friction coefficient ¢, for every case such that the measured and modelled values of H,,, were

equal at gauge 2, the first gauge on the slope. A joint calibration of both y (the Battjes-Janssen breaker



index) and A (the DCTA) was carried out to find values that represent the spectral evolution in the Smith

measurements optimally.

The measured and modelled spectra and spectral parameters, H, , =4,m, and T, =27zm,/m, were
compared at all the measurement locations along the slope for all 31 cases. The optimal values of y and A
were found through a minimisation of ¢, defined as root-mean-square of the difference between the
measured and the modelled values (e.g., H,,) at all measurement locations (equation 7-3, with C any
spectral parameter under consideration, i the measurement location and Z the total number of

measurement locations).

i=1

Z
€(C) = \/Z%(Ci,measured - Ci,modelled )2 Equution 7-3

The data from wave gauges 1 and 8 were not included in the calculation of the error values because we
used the spectrum of gauge 1 as boundary conditions and the significant wave height at gauge 8 was
consistently anomalous. They are not included in any of the parameter graphs of the Smith

measurements in this report (although gauge 8 is included as an example in figure 7-2).
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Figure 7-2: H, , Smith case 3, higher value at gauge 8

The calibration method was to minimize for each individual case, the error value of the significant wave
height ¢(H,,,) for a large number of values of A and y. From this set of A, y and corresponding ¢(H,,,),
the loci of the line of slowest descent of ¢(H,,, ) were determined to find the optimal value of y for each A.
The minimum error value of the mean wave period ¢(T,,, ) along this line then provided the optimal

combination of A and y that gives a minimum for both error values. The minimum value of ¢(H,,)



indicated that the amount of energy in the spectrum was correct, which is affected by the depth-induced
breaking, the minimum of £(T,,,, ) that the distribution of energy within the spectrum was right, which is

mainly affected by triad interactions.

Results

The results for each individual case are listed in a table that can be found in appendix C. The average
value of ¢, for all 31 calibrated cases was 0.11 m?s?, which was larger than the default value for fully
developed conditions in shallow water 0.067 m?2s3, with a standard deviation of 0.07 m?s3. The values of y
varied between 0.69 and 0.94. The average value of y was 0.787 (which was a bit larger than the default

value of 0.73) while its standard deviation was 0.068.

A e(H,,) e(T,y)
DCTA Average 0.130 0.0024 0.030
Standard deviation 0.064 0.0014 0.019
LTA Average - 0.0025 0.090
Standard deviation - 0.0011 0.030

Table 7-1: Results calibration Smith

The A-values varied between 0.05 and 0.285 and the average value was 0.130 (table 7-1). The scatter
around the average value for all cases was quite large, being about half of the average itself (0.064). This
suggested that some fundamental assumptions underlying the basic formulation or the scaling may be
wrong. For comparison, the model was also run with the LTA (and furthermore the same settings) which
indicated that the error values of T, were smaller than those with the DCTA (table 7-1). However, bear
in mind that a comparison is somewhat unfair because the LTA was not calibrated while the DCTA was.

As an example, the results of the steepest unimodal case (31) are given in figure 7-3.
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Figure 7-3: Spectral parameters Smith case 31

In figure 7-16 through figure 7-7, a selection of the spectra of four cases is presented. The cases that are
presented here are the same as were used for the trial calculations for the formulation of the DCTA
(chapter 4) and characterise the full range of conditions in the Smith experiments that were used for the
calibration. From these cases, the spectra from four wave gauges (1, 2, 5 and 7) are displayed. The results
of the unimodal spectra are discussed first (case 31 and 20) and then those of the more complex bimodal
spectra (case 5 and 1). The vertical black lines in figure 7-4 through figure 7-7 indicate the frequency at
which kd =1, the upward boundary of the validity of the universal tail shape k™*'* according to Smith and
Vincent (2003).
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Figure 7-6: Scaled spectra Smith case 31, gauge 5 Figure 7-7: Scaled spectra Smith case 31, gauge 7

The narrow and steep unimodal spectra of case 31 (figure 7-4 - figure 7-7) showed that there was already
a harmonic component visible in the boundary condition (remember it was taken from measurements at
6.7 m from the wave maker). The steepness of the spectrum invoked strong triad-interactions and the
measured spectra broadened and smoothened strongly. The harmonic frequency peaks were very well
simulated with the DCTA at the beginning of the slope (figure 7-5), but were more peaked than the
measurements at the shallowest locations (figure 7-7). The tail at the shallowest locations was also higher
and more horizontal than in the measurements. In addition, too little energy was transferred from the
peak to other frequencies and therefore the height of the primary peak was overestimated. The surplus of
energy at the peak should have been transferred to frequencies between the harmonic peaks, as we know

from the value of H,, in figure 7-3 that the total amount of energy in the spectrum is correct.
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Figure 7-10: Scaled spectra Smith case 20, gauge 5 Figure 7-11: Scaled spectra Smith case 20, gauge 7

The broad and gentle unimodal spectra of case 20 (figure 7-12 - figure 7-15) gave a rather different type of
results. The decay of the peak was very well calculated with the DCTA and the height of the first
harmonic peak was underestimated. The location of the peaks however, was not very well captured by
the DCTA. The measurements show that all peaks were shifted towards lower frequencies (from 1 Hz to
0.8 Hz) in shallow water. There is no mechanism in SWAN or the DCTA to reproduce this phenomenon

and the peaks remained at the original peak frequency and at multiples thereof.
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Figure 7-14: Scaled spectra Smith case 5, gauge 5 Figure 7-15: Scaled spectra Smith case 5, gauge 7

The peaks of the bimodal spectrum in case 5 (figure 7-8 - figure 7-11) were so close together in frequency,
that the spectra in this case were comparable to the broad spectra of case 20. Again, the height of the peak
was rather well simulated by the DCTA and the height of the high frequency peaks was a bit

underestimated.

In measurement with bimodal spectra on a constant slope, Smith and Vincent (1992) discovered that
nonlinear interactions tend to remove the higher frequency peak, irrespective of it size relative to the low-
frequency peak and peak period. This preferential decay of the high frequency peak indeed was observed
in the DCTA results, although the high-frequency peak did not decay enough (the ratio of the heights of

peak 1 over peak 2 was too low). The downshift of the peaks, again, was not represented by the DCTA.
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Figure 7-18: Scaled spectra Smith case 1, gauge 5 Figure 7-19: Scaled spectra Smith case 1, gauge 7

Case 1 (figure 7-4 - figure 7-7) represented a combination of the behaviour that was seen in case 31 (steep
spectrum) and case 5 (bimodal spectrum). As in case 31, the height of the tail that the DCTA produces
was more or less correct although it was too high at the highest frequencies. Its shape was more narrow
and pronounced than the measurements at intermediate frequencies and the energy density at high
frequencies was overestimated. The preferential decay of the high-frequency peak was observed in the

DCTA results, although again not strong enough.

The results with the LTA indicated that it strongly overestimated the height of high frequency peaks but
that it simulated the decay of the peak better than the DCTA. This could be seen in the results of case 31
and 20. It seemed to be able to infer stronger cross-spectral energy transfers. The preferential decay of the

high frequency peak that was observed in case 5 and 1, was not reproduced.



Discussion

In general, we could conclude that the DCTA estimated the general shape of the spectra well. Harmonic
peaks evolved and smoothened in shallow water, the lower peaks in bimodal spectra were sustained
while the higher peaks disappeared and the tails of the spectra transformed into universal, featureless
shapes. Comparison with the LTA showed that the DCTA reproduced the decay of the primary peak
poorer. On the other hand, it simulated the growth of the harmonic peaks better as it did not only create
peaks at even multiples of the peak frequency and was less prone to overestimating the height of these
peaks. In addition, the transformation towards a universal, featureless spectrum and the smoothing of the
peaks were very well modelled. Nonetheless, the DCTA overestimated the height of the peak and the

height of the tail and did not smooth the shape intermediate frequencies enough.

The overestimation of energy densities at the highest frequencies meant that the DCTA transferred too
much energy too the highest frequencies and did not transfer enough towards intermediate frequencies
(between the peak frequency and the highest frequency tail). This was unfortunate since it biased the
calculation of T, on which the calibration is based, towards higher values. The highest frequencies were
in relatively deep water and had values for kd which were well above one. At the boundary kd was above
one for frequencies larger than 0.6 Hz (vertical black line in figure 7-16), and at the shallowest
measurement location (of which the spectra are not displayed in this report), kd was above one for
frequencies larger than 1.9 Hz. The universal shape, as caused by triad interactions, is only valid for
kd <1, and we must draw the conclusion that the DCTA allowed too much triad interaction for dispersive

wave components (which are far from resonance).

The overestimation of the energy level of the peak, the underestimation of the heights of the harmonic
frequency peaks, and the slow smoothing at intermediate frequencies suggested that the triad
interactions in general were not strong enough. The horizontal orientation of the highest part of the
spectrum indicated that the spectral levels were saturated and no longer receptive to energy transfers.
Higher values of A could not solve this since that invoked an even larger transfer of energy towards the
high frequency part of the spectrum which was already close to equilibrium. Another issue was the
location of the peaks in the spectrum. In the measurements, the peaks shifted a little towards lower
frequencies when propagating further onshore and the higher harmonics were generated at according
lower frequencies. A possible explanation for both the weakness of interaction and the downshift of the

peaks may be that the dissipation is not distributed proportionally to the spectral densities, as assumed in



the Battjes-Janssen formulation, but is stronger at higher frequencies. In recent literature, it has been
suggested that depth-induced breaking dissipation is proportional to the frequency squared (Mase and
Kirby, 1992; Eldeberky and Battjes, 1996; Kirby and Kaihatu, 1996; Chen et al., 1997; Herbers et al., 2000;
Kuznetsov and Saprykina, 2004) and white-capping dissipation to the wave number squared (Rogers et
al., 2003). Increasing the dissipation at higher frequencies may allow the triad interactions to transport
more energy towards this part of the spectrum (Smith and Vincent, 2003) and consequently decrease the
height of the primary peak. This would also allow for stronger interactions and accordingly more
smoothing of the spectrum without overestimating the energy at the high frequencies, as dissipation is

stronger here.

The concept that the distribution of dissipation across the spectrum serves mainly to control the nonlinear
transfers of energy was confirmed in the paper of Kirby and Kaihatu (1996). They add in agreement with
Chen et al. (1997), that the shape of the predicted spectra is insensitive to the choice for a particular
distribution (they tested various dependencies between ¢ and ¢°) as the nonlinear transfers rapidly
compensate dissipation at higher frequencies to transform the spectra into the universal shapes. Wave-
shape related statistical parameters (asymmetry and skewness) however, do improve when a o’
distribution is applied, which may be related to the suggestion that this is an effect of the transformation
of waves towards a sawtooth shape when breaking is established (Kirby and Kaihatu, 1996). The
distribution of dissipation with o” infers an equilibrium level with the same spectral shape (or equivalently k>
in shallow water) where depth-induced breaking dominates the spectral transformation. Kaihatu et al.
(2007) find for a set laboratory observations that the spectral shape moves away from the parameterized
shapes that were proposed by Smith and Vincent (2003) and converges towards a o’-shape in the inner
surf-zone. Trial calculations with a ¢” distribution of the dissipation, which are not presented in this
report, confirm that the evolution of the spectra converges to the same shapes in the inner surf-zone, but

that the evolution of the peaks at the outer surf-zone has improved.

The correlation of the dissipation and triad interactions become also apparent when we made a
scatterplot of the values of y and A that we found for all 31 Smith cases (figure 7-20). This showed that
there is a negative correlation between their values. The effects of depth-induced breaking and nonlinear
triad interactions were not independent and a joint calibration was justified. The negative correlation can
be reasoned from the formulations. A higher value of A will invoke stronger triad interactions which will

increase the average frequency ¢ of the spectrum. As a result, the calculated amount of dissipation with



Battjes-Janssen formulation will increase. To simulate the measured dissipation correctly a lower value
for y is then applied. Vice versa, lower values of y increase the rate of dissipation, which decreases the
steepness of the spectra. The DCTA will therefore decrease the strength of the triad interactions and

higher values of A are required to represent the measured effects of triad interactions.
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Figure 7-20: Scatterplot y - A




8 Verification

To see whether the calibrated DCTA is generally applicable for a wide range of situations, it was tested
on a larger set measurements in both lab and field environments, with different bathymetries and of
different scales. Again, all red lines represent measured spectra, the green lines DCTA results, the blue
lines LTA results, the black line results from simulations without the triad interaction source term and all

spectra are scaled according to equation 6-2.

Laboratory measurements

Smith

Instead of calibrating each measurements of Smith (2004) separately, the average value of A (0.13) was
applied to the whole batch for verification of this value. The results with default values for y (0.73) and ¢,
(0.067) showed (table 8-1) that the average error value ¢(H,,, ) was rather small for both the DCTA (0.0039
m) and the LTA (0.0038 m). The value (T, ) was significantly smaller with the DCTA (0.047 s) than with
the LTA (0.086 s) with default settings. Unfortunately, the scatter was very large: the standard deviation
of the error values around the mean was 100% of the average error value. The largest error values
occurred for cases 30 and 31. These cases have very steep (T, = 2.5 s) and narrow unimodal spectra. In
figure 7-4 through figure 7-7, it can be seen that the DCTA already could not reproduce the strong
broadening of the spectral tail with the high, calibrated value of A (0.285). Without these cases, £(T,,, )
was reduced with 22% (0.037 s) and the standard deviation with 44% (0.027 s). From the scatter plot of the

error values of T

m0

, could be seen that these cases (the encircled values) really enlarged the extent of the

cloud and increased the average error value.



e(H,,) e(T,o) e(T,)

(without case 30 & 31)
DCTA Average 0.0039 0.047 0.037
Standard deviation 0.0012 0.048 0.027
LTA Average 0.0038 0.086 0.082
Standard deviation 0.0014 0.032 0.028
Table 8-1: Results verification Smith
03r
021
<
01r
0 L )
0 0.05 0.1
& (T 0
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Beji-Battjes

In the Beji-Battjes (1993) experiments, spectra were measured at 8 locations along a submerged
trapezoidal bar with a 1:20 upslope and a 1:10 down slope (figure 8-2). For the verification of the DCTA
the measurements of one, out of originally 66, incident spectra were used, i.e. the case that is included in
the ONR testbed (Ris et al., 2002). The incident spectrum was a JONSWAP shape with a peak frequency
of 0.5 Hz and H,,, was 0.23 m. The measurements showed a decrease of the peak energy, a broadening of
the spectrum and the appearance of a harmonic peak at twice the peak frequency. Unfortunately, the
spectra behind the bar were not measured and we could not see whether the harmonic peaks disappeared
and the tail transformed into a smooth shape. Since measurements from this experiment were used to
calibrate the LTA (Eldeberky, 1996), it is expected that the LTA is able to represent these measurements

very accurately.

Figure 8-2: Bathymetry Beji-Battjes measurements

For convenience, the default settings of SWAN in the ONR testbed were also applied in this study.
SWAN was run in one-dimensional mode on a grid that had 300 nodes in a 30 m geographical domain, 40
directional bins in a sector of 20° and a 40 logarithmically distributed frequencies between 0.0837 and 2.5
Hz. The source terms for wind growth, white-capping and quadruplet interactions were switched off,
those for wave-induced setup, breaking, bottom friction run in default mode. The results of the default

SWAN with LTA and with the DCTA (A = 0.13) were compared (table 8-2).

e(H,,) €(Tpo)
DCTA 0.0016 0.105
LTA 0.0019 0.059

Table 8-2: Results verification Beji-Battjes




The parameters indicated that the increase of H,,, over the bar, due to shoaling, was too large in both the
LTA and the DCTA results. The error values of H,,, were more or less equally good, but the T, error
values of the LTA were better (table 8-2). Above the bar, both models overestimated the value of T, , but
the LTA less than the DCTA. Behind the bar, the DCTA seemed to yield better results, though not many

measurements were done in this part of the domain.
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Figure 8-3: Spectral parameters Beji-Battjes

The spectra (figure 8-4 and figure 8-5) showed that the LTA reproduced the decrease of the peak energy
and generation of the first harmonic very nicely whereas the DCTA under-predicted the decay of the
primary peak and the generation of the first harmonic peak. The amount of energy in the high frequency
part of the spectrum, again, was overestimated by the DCTA. The LTA produced a higher harmonic peak
at 2 Hz, which is not visible in the measurements while the DCTA created a smooth tail. It is very
understandable that the LTA does not account for the smoothing of energy since this was not observed in

these measurements, which were used for its calibration.
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Figure 8-4: Scaled spectra Beji-Battjes, gauge 5 Figure 8-5: Scaled spectra Beji-Battjes, gauge 8
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Boers

Boers (2005) measured the evolution of three random, unimodal incident spectra (figure 8-7 - figure 8-9)
in a flume of 40 m length, 0.8 m width and 1.05 m height. For every incident spectrum, a total number of
69 spectra were measured along an irregular slope (figure 8-6). The three measurements (figure 8-7
through figure 8-9) were included in the ONR testbed (Ris et al., 2002) and their characteristics are listed
in table 8-3.
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Figure 8-6: Bathymetry Boers measurements

Case H

mo P
1 0.160 2.1
2 0.220 21
3 0.107 3.4

Table 8-3: Boers measurements
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Figure 8-7: Scaled initial spectrum  Figure 8-8: Scaled initial spectrum  Figure 8-9: Scaled initial spectrum
Boers case 1 Boers case 2 Boers case 3

Again, the settings from the ONR testbed were applied for this study. SWAN was run in one-dimensional
mode on a grid that had 313 nodes in a 31.3 m geographical domain, 30 directional bins in a sector of 15°
and a 53 logarithmically distributed frequencies between 0.15 and 2.5 Hz. The source terms for wind
growth, white-capping and quadruplet interactions were switched off and the source terms for wave-
induced setup, breaking, bottom friction run in default mode. The results of the default LTA and the

DCTA with A =0.13 were compared.

The results of the first incident spectrum are presented in this report as a typical example of the results
for the Boers case. The parameters in figure 8-10 showed that the significant wave heights were accurately
reproduced with default SWAN and the DCTA. The simulated average wave periods were also good,
except for the very shallow locations. An overview of the error-value results is given in table 8-4. The
DCTA clearly improved the predicted mean wave period values as the error-value was 35% smaller

compared to the result with the LTA.

e(H,,) €(Toor)
DCTA Average 0.007 0.125
Standard deviation 0.002 0.050
LTA Average 0.007 0.194
Standard deviation 0.003 0.050

Table 8-4: Results verification Boers
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Figure 8-10: Spectral parameters Boers case 1

The measured spectra (see for example some spectra from case 1 in figure 8-11 through figure 8-14)
showed that the spectra evolved from a rather steep towards the expected universal, smooth and broad
shapes. In the shallowest measurement locations (figure 8-14), the spectral tails had transformed into
horizontal spectra (remember the transformation), in which the peaks could hardly be distinguished from
other irregularities. Not only the highest frequencies gained energy compared to lower frequencies, also
the energy density at low frequencies increased as the spectrum transformed towards the universal
shape. In the boundary condition of this case, a harmonic frequency peak at twice the primary peak

frequency was already present. All peaks shifted towards lower frequencies for decreasing water depths.

The spectra that were simulated with the DCTA followed the general shape of the measurements very
well. The spectra became progressively more horizontal and the average heights of the energy densities
were well reproduced. The level of the high frequency tail though, increased too quickly, as very smooth
and was throughout the entire flume overestimated. The harmonic frequency peaks were too small and

less distinct than in the measurements. The first peak was too high and narrow. Again, this could be



explained by obstruction of the interactions due to the saturation of the spectral tail. The strength of the

interactions was too small to reproduce the measured effects of triad interactions.
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Figure 8-13: Scaled spectra Boers case 1, gauge 55 Figure 8-14: Scaled spectra Boers case 1, gauge 65




Field measurements

Delilah

The gauges of the Delilah (Duck Experiment on Low-frequency and Incident-band Longshore and
Acrossshore Hydrodynamics) were located north of the FRF pier, open to storm waves from the
northeast, and in an area with typically shore parallel contours (figure 8-15) near the town of Duck, North
Carolina, USA. The southern end of the gauges area was in the shadow zone of the FRF pier for waves
approaching from southeast (Ris et al.,, 2001). The measurement instruments are numbered from 10
around the shoreline (the leftmost black square of the Delilah array in figure 8-15, please note that the
devices between 10 and 70 are not numbered to keep the numbers decipherable) to 90 at the seaward end.
The boundary conditions were provided by a series of 13 measurements from the Samson array, about
1750 m from the waterline (located in the top-right corner of figure 8-15). These were supplemented with
parametric wave conditions at the lateral two boundaries that were the same for all cases (a JONSWAP

spectrum with H,, 0.54 m; T, 10.5 s; 0, 21°). From the measurement data, 13 different cases had been

selected. The wind field and water levels were assumed homogeneous in the area. Ambient currents were

absent.

SWAN was, identical to the ONR testbed (Ris et al., 2001), run in two-dimensional mode on a grid with
119x123 cells of 13.45 by 13.45 m. The spectral grid consisted of 36 directional bins in a full circle and a 53
logarithmically distributed frequencies between 0.044 and 0.6 Hz. Uniform, stationary wind fields and
water levels were applied for each of the 13 available cases. The source terms for wind growth, white-
capping (Hasselmann, 1974; WAMDI-group, 1988) and quadruplet interactions (Hasselmann, 1963) were
used in default mode and the source terms for wave-induced setup, breaking, bottom friction too. The

results of the default LTA and the DCTA with A = 0.13 were compared.
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Figure 8-15: Bathymetry Delilah measurements

Picture taken from (Rogers et al., 1998) and modified by author

When the simulations were run, several problems became apparent that had to be addressed in order to

obtain useful results. The spectral parameters provided by the Samson array and those obtained from

measurements of the Delilah array were very different in many of the 13 cases. The modelled significant

wave heights were highly overestimated and the average wave periods underestimated. The results of

case 1 are presented as an example in figure 8-16.
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Figure 8-16: Spectral parameters Delilah measurements case 1

The large deviation between the measured and modelled parameters at the boundary (the rightmost
value in figure 8-16) was a result of the fact that the spectra provided by Samson had a frequency range
between 0 and 0.24 Hz while the spectra from Delilah and the computational grid of SWAN ranged from
0.044 to 0.6 Hz (notice the end of the red line in figure 8-17). As a result, SWAN imposed a fictitious
energy spectrum distribution between 0.24 and 0.6 Hz based on a prognostic tail that decreased
monotonically with f™ and waves, propagating from the boundaries into the domain. In most cases, the
diagnostic tail indeed decreased monotonically. Only the spectra of case 1 showed a peak around 0.5 Hz
that visualized wind generated waves that propagated along the offshore model boundary parallel to the
shoreline. In general, the energy densities in the tail of the spectra were considered reasonable estimates

for the boundary conditions at the location of the Samson array although this was not definite.

The spectral parameters at the locations of the Delilah pressure meters gave very poor results. SWAN
was not able to reproduce the Delilah spectra from the Samson and parametric boundary condition with

default settings (compare figure 8-17 and figure 8-18). Trial calculations with non-default settings (such as



increased dissipation, or no wind), which are not presented here, could not improve the results

satisfactorily.
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Figure 8-17: Scaled spectra Delilah case 1, Samson Figure 8-18: Scaled spectra Delilah case 1, gauge 90

The ONR testbed manual (Ris et al., 2001) remarks in a small note that the large differences between the
measured spectra at the Samson station and the Delilah array may be due to differences in the duration
and the interval of the used data records. The Samson measurement records were 2 hrs and 16 minutes
long and created at intervals of three hours. The Delilah measurement records were 30 minutes long and
produced every 30 minutes. The maximum difference between the moment of measuring the wave
conditions at Samson and Delilah was therefore 30 minutes. Considering that the distance from the wave
gauges to a computational boundary was less than 2 km and the wave group celerity of the peak
frequency about 8 m/s at the boundary, this mismatch in measurement time was much larger than the
average residence time of a typical wave in the computational domain. The manual suggests that the data
of Delilah “should therefore be considered with care” and only 4 out of 13 cases were included in the

statistical analysis of the testbed (table 8-5).

Case Date / time Wind U,, Direction (Nautical) Water level (+N.A.P.)
1 06-10-1990 / 16:00 hrs 7.06 160 -0.46
2 07-10-1990 / 13:00 hrs 1.38 34 -0.29
3 09-10-1990 / 10:00 hrs 7.37 129 0.63
4 09-10-1990 / 13:00 hrs 6.92 134 0.35

Table 8-5: Delilah measurements

As we looked deeper and deeper into the set-up of the simulation, more and more problems and flaws

became apparent. The description of the data was unclear and incomplete (it is for instance not known at



what times exactly the Samson spectra were provided), the boundary conditions were not implemented
properly and created waves that propagated parallel to the coast near the offshore boundary; the
bathymetric data did not cover the entire computational grid; etc. In order to be able to use these
measurements for the validation of the DCTA a fundamental restructuring of the model set-up as
required which did not fit in the period of the present study. In the end, we have abandoned hope that
these measurements would provide us with useful information regarding the performance of the DCTA

and stopped working on them.
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Amelander Zeegat

The Amelander Zeegat is a tidal inlet in the Wadden Sea, between the islands of Terschelling and
Ameland (figure 8-19). Rijkswaterstaat (the implementing body of the Ministry of Transport, Public
Works and Water Management) deployed a set of 12 wave buoys (figure 8-21) to study the complex wave
processes in the inlet and the Wadden Sea behind it. Many hindcasts of spectra in the inlet during storm
conditions have been performed to gain insight of the physical processes and improve the performance of
SWAN. One of the recurring problems in these simulations was the underestimation of the wave periods
behind the inlet. This is unlikely to be mainly due to the transfer of energy from the peak to higher
frequencies by the LTA since the wave conditions behind the inlet are mainly determined by local wind
growth. Waves from the North Sea are either dissipated at the ebb tidal delta or at the inner shoals after
refraction out of the tidal channels (van der Westhuysen and van Vledder, 2007; van Vledder, 2008).
Furthermore it is suggested that the influence of triad interactions on depth limited locally generated
waves is negligible (van Vledder, 2008). Altogether, the influence of triad interactions on the spectra is
expected to be negligible and simulating these measurements served to verify that the DCTA is not

activated at the inner parts of the tidal inlet.
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Figure 8-19: The Wadden Sea and the Amelander  Figure 8-20: Grid AZG3A
Zeegat

The simulations were run on the curvilinear AZG3A grid (the default grid for simulations of the
Amelander Zeegat, figure 8-20) in stationary mode. The storm of February 1st 2005, 10:00 hr was modelled

with water levels and current fields from simulations with a two-dimensional flow model and a uniform
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wind field based on measurements near the inlet. A two-dimensional spectrum from a larger wave model
that covered a larger area around the Wadden Sea was applied as a boundary condition. Swan was run in
two-dimensional, stationary mode with 36 directional bins in a full circle and 37 frequency bins between
0.03 and 1 Hz. The deepwater source terms were either those of Komen (1994) or Rogers (2003), breaking
and bottom friction were applied with default values and triads were switched off or evaluated with the

LTA, or the DCTA.

Figure 8-21: Buoy network Amelander Zeegat

In figure 8-22 and figure 8-23, the spectra of eight buoys with the deepwater source terms of Komen resp.
Rogers are presented. As expected, the triads were only of limited influence on the shape of most spectra.
Before the ebb tidal delta (buoys AZB11 and AZB12), the influence of triad interactions was negligible
due to the large relative depths (more than five times the significant wave heights). The spectra behind
the tidal inlet (buoys AZB41, AZB42, AZB51 and AZB52) were dominated by local wind growth

(characterised by low energies at relatively high frequencies), there were no distinct peaks at higher
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harmonic frequencies and all results are almost identical. As expected, the influence of triad interactions

is not visible in the observations.

At buoys AZB31 and AZB32, behind the ebb-tidal delta, some differences between simulations with and
without triads, could be seen between 0.1 and 0.3 Hz. This showed that the influence was limited to small
transfers from the peak frequency to frequencies around twice the peak frequency. In the simulations
with either Komen (figure 8-22) or Rogers (figure 8-23), the results for the cases without triads gave the
best results for the peak energy and the LTA gave the best results for the high frequency side of the peak
(around 0.2 Hz.). The DCTA gave results that were in between those of the LTA and those without triads.
It was hard to say which formulation gave the best results based on so little information, but the scaling
of the DCTA worked well for this type of environment since the triad were active and inactive at the

buoy locations where they should be.



AZB11 AZB12
10
5
0 R
0 0.25 05
AZB32
1
05 A N
e
0 D S—
0 0.25 05
= AZB42
Nt
o 02
//"‘\‘ _
0.1 VAY 0.1
DN v LN \f/w/m
0 = — L Il 0 L Il
0 0.25 05 0 0.25 05
AZB51 AZB52
02 02
0.1 7 0.1 )
A A a
/ -/ ~
0 - 0 -
0 0.25 05 0 0.25 05
f f

Figure 8-22: Scaled spectra Amelander Zeegat, Komen source terms
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Figure 8-23: Scaled spectra Amelander Zeegat, Rogers source terms
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Haringvliet

The DCTA was subsequently used to simulate a series of field observations in the Haringvliet Estuary
(figure 8-24) where the presence of triad interactions was clear from the observed spectra. At the entrance
of the Haringvliet, eight wave buoys (figure 8-25) were employed around a large shoal called the
“Hinderplaat”, visible between buoys 4, 5 and 7. Note that the shape of the waterline in figure 8-25 does
not correspond with the situation at the time of the measurements as the Maasvlakte was considerable
smaller and the Slufter basin was not installed either. The northern part of the Haringvliet basin was
wider. As waves approach the estuary from deep water, they break over the shoal and undergo triad

interactions.

Figure 8-24:The Rhine estuary and the Haringuvliet Figure 8-25: Buoy network Haringvliet

A series of four measurements with wave buoys of October 14t 1982 between 21:00 and 0:00 hrs (table
8-6) from the ONR testbed (Ris et al., 2001) were reproduced to observe whether the DCTA was able to
reproduce the harmonic peaks in the spectra. Water levels and wind fields were taken uniform and
stationary for each case, currents were assumed negligible. Measurements from buoy 1 served as
boundary conditions along the westward model boundary. A rectangular grid of 8 by 22 kilometres with
a spatial resolution of 150 x 250 m was used. Swan was run in two-dimensional, stationary mode with 36
directional bins in a full circle and 31 frequency bins between 0.05 and 1 Hz. The deepwater source terms
were default, as were depth-induced breaking and bottom friction. Triad interactions were switched off,
computed with the LTA, or with the DCTA. In figure 8-26, the spectra of cases 4 are given as an example.

Not all measurements were obtained at the exact same moment as the boundary conditions (buoy 1).
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Therefore, the results from right before or right after the modelled moment are plotted (which moments

are plotted can be read in the legends).

Case Date / time Wind U, Direction (Nautical) Water level (+N.A.P.)
1 14-10-1982 / 21:00 hrs 17 330 0.30
2 14-10-1982 / 22:00 hrs 12 300 0.90
3 14-10-1982 / 23:00 hrs 14 300 1.70
4 15-10-1982 / 00:00 hrs 15 300 2.10

Table 8-6: Haringvliet measurements

The spectra transformed in all four cases from a rather narrow, unimodal shape at buoy 1 towards a
much broader shape with lower energy densities and the maximum level at a higher frequency. This was
predominantly due to a combination of wind generation, depth-induced breaking dissipation and triad
interactions as was verified with additional computations (which are not presented here). The general
decay of the total amount of spectral energy was very well simulated with SWAN (please keep the large
variation in the scale of the spectra in mind). The decay of the primary peak and the regeneration of high-
frequency energy however, were not well predicted in the shallow regions of the domain. Especially
behind the “Hinderplaat” (buoys 5 ,6 and 7), the level of the peak frequency was over predicted.

However, it must be stressed that only small residuals of low-frequency energy are compared here.

The regeneration at high frequencies may have been due to too much energy transfer from the lower
frequencies by the triad interactions or by too much generation by wind. Repeated computations without
triad wave-wave interactions but with wind and vice versa showed that both processes are equally
responsible for this high-frequency regeneration. The effect of simulated triad interactions could be seen
from the simulations without triad interactions, which indicated that only at buoy 8§, the energy around
the high frequency edge of the peak (around 0.3 Hz) was not a result of nonlinear interactions, but due to
wind sea, since all three triad formulations gave similar results. The DCTA improved the computational
results for the higher frequencies in the sense that at the stations just behind the shoal, where the effect of
triad wave-wave interactions were expected to be largest, the agreement with the observations at high
frequencies was greatly improved. It predicted the best balance between the simulation of both the
spectral peak and the high frequency flank of the spectrum. The peak energy was still over-predicted, but

this may be due to the blocking of triad interactions due to approaching the universal spectrum. As the



deviations from the universal spectrum become smaller, the magnitudes of the exchanges of energy
decrease accordingly. Since the tail is generally closer to the equilibrium, the “pumping” of energy
towards higher frequencies (where that extra energy would presumably be dissipated) is restricted. The
LTA improved the spectral peak levels by transferring energy to higher frequencies and gave the best

estimate for the peak energy, but then the energy at higher frequencies was overestimated.
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Figure 8-26: Scaled spectra Haringvliet case 4




9 Conclusions and recommendations

The basic formulation of the Distributed Collinear Triad Approximation (DCTA), as presented in a paper
to the International Conference on Coastal Engineering (Holthuijsen and Booij, 2006), was taken as a
starting point for this work. It derived an expression for triad interactions as an analogy with the
quadruplet interactions that converges towards a prescribed universal shape but leaves the magnitudes
free to develop. This expression was improved in a subsequent manuscript (of which the present author
is co-author) to transform spectra towards a more correct universal shape and extended with a scaling
that was based on an analogy with the scaling of the Lumped Triad Approximation (LTA; Eldeberky,
1996) and a heuristic scaling for the mismatch from resonance. The consequent implementation in SWAN
(Booij et al., 1999) and validation on horizontal and sloping bottoms indicated that the DCTA is capable
of transferring energy throughout the entire spectrum via resonant triads of wave components. Initially
harmonic peaks appear, but as the waves progress towards shallow water, these peaks disappear and the
spectrum converges towards a smooth shape of the spectral tail in a relaxation-type manner, in
qualitative agreement with laboratory measurements (Smith and Vincent, 2003). This was a huge
improvement over the LTA, which only transferred energy upwards to second harmonic frequencies and

did not converge towards a universal shape.

The scaling of the DCTA was calibrated with measurements of Smith (2004) to tune the calibration
coefficient A to these observations. This was done through finding for each incident spectrum separately,
the minimum of the error-values of the difference between measured and modelled parameter values in
the whole domain. The calibration of the DCTA had to be combined with a calibration for the dissipation
since these processes influence each other and the default depth-induced breaking dissipation in SWAN
did not agree with the measured dissipation. The optimum values thus obtained where A = 0.13 for the
tuneable coefficient of the DCTA and y = 0.79 for the Battjes-Janssen breaker coefficient. Whilst the
general shape of the spectral tail was reproduced satisfactorily, the magnitudes of the harmonic peaks
were under predicted, as was the decay of the peak. It seemed that once the energy at higher frequencies
approached the prescribed levels, the triad energy transfers were inhibited in the model. As a result, the

peak energy remained too high and the features in the spectrum were not smoothed sufficiently.



Subsequent verification of the calibrated DCTA with a large set of laboratory and field measurements
confirmed the same type of behaviour for various scales and conditions. From the same measurements as
the calibration, but now with the average calibrated value for A and default values for all other processes,
was concluded that the T, was better predicted but that the scatter was very large (as large as the
average error-value for all 31 Smith cases). For the Beji-Battjes experiment, which was used to calibrate
the LTA, the DCTA even gave worse estimates for T,,. Most field measurements gave little detailed
information about the performance of the DCTA since they showed either no distinct effects of triad
interactions (Amelander Zeegat) or a large dissipation that were not accurately reproduced by SWAN
(Delilah). The Haringvliet measurements indicated that the general shape of the spectra improved when
the DCTA was used, compared to the LTA or the triad source term switched off . The broadening of the

spectra was predicted better but the level of the spectral peak was overestimated.

In general, it was concluded that the calibrated DCTA produces a high frequency tail of the correct shape
but it does not represent the level of higher harmonic peaks satisfactorily. These peaks are too slowly
generated and not high enough while the primary peak is overestimated and not decay quickly enough.
Irregular features in the spectrum are not removed sufficiently and they are longer visible in the
simulated spectra than in the measured. Increasing the value of the tuneable parameter A does not solve
this since the energy densities at high frequencies are then overestimated and the saturation prohibits a
continual transfer of energy. A solution for this behaviour of the DCTA may lie in an increased
dissipation of energy at higher frequencies. At present, the dissipation is assumed to be distributed
linearly proportional to the energy densities. In literature, it is suggested that the depth-induced breaking
dissipation is proportional to o® (Mase and Kirby, 1992; Kirby and Kaihatu, 1996; Chen et al., 1997;
Herbers et al., 2000; Kaihatu et al., 2007) and the white-capping dissipation is proportional to either k'° or
k* (Rogers et al., 2003). With such adaptation, the triad interactions will continue to transfer energy from
the spectral peak towards higher frequencies with a later saturation of the spectral levels and
consequently decrease the energy at the spectral peak. The model of Herbers (2000) supports this idea of

a constant energy flux through the spectrum.

Although the data pool with which the DCTA was calibrated (31 laboratory measurements) and
validated (35 laboratory measurements and 5 field observations) already is quite extensive, extending the
set with additional measurements will very likely improve the results. The calibration was only done

with laboratory measurements on a constant 1:30 slope. Quantification with measurements of a different



scale, at slopes of a different inclination or other with bathymetries will indicate whether the DCTA
remains accurate in a wider type of bathymetries, or tune its settings to more generic values. The current
analysis especially lacks good quality field observations in which triad interactions are clearly visible in
the spectra. As this study has pointed out the quantification of the DCTA depends highly on the quality
of the modelled dissipation, any further development of the DCTA should be accompanied by an
improvement of the dissipation formulation. The Battjes-Janssen formulation was in this study not able to
simulate the dissipation satisfactorily. To avoid that the dissipation has to be tuned in any successive
quantification or analysis of the DCTA, a better formulation is recommended. It should at least distribute
the dissipation with 6* and preferably estimate the bulk rate of dissipation throughout the domain better.
Finally, it is recommended that the analysis of the spectral parameters , is extended with additional
expressions. Currently only H,,, and T,,,, were analysed and used for the calibration. Investigating other
wave periods (such as T,_,,) may provide additional insight in the distribution of energy among the

spectrum and hence give a more solid interpretation of the quality of the DCTA.
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Nomenclature

Name Symbol Unit
System matrix A _
Right hand side vector b [N]
Bottom friction coefficient Cr _
Propagation velocity in geographical space C, ms™
Propagation velocity in direction space Cy Hzs™
Propagation velocity in frequency space [ °s7
Water depth d m
Energy density as a function of absolute angular frequency E(f) m* Hz™!
Energy density as a function of wave number E(k) m
Energy density as a function of intrinsic radian frequency E(o) m* Hz™!
Absolute angular frequency f Hz
Scaled energy density as a function of intrinsic radian frequency G(o) m>
Gravitational acceleration 4 ms?
Maximum wave height H,. m
Significant wave height H,, m
Wave number k m
Triad average wave number k m
Spectrum average wave number k m
Spectral moment n m, _
Action density as a function of intrinsic radian frequency N(o) m* Hz™
Action density as a function of wave number N (k) mHz™
Action density vector N [N]
Iteration step n -
Power coefficient of universal spectral shape p _
Fraction of broken waves Q _
Ursell number Quren -
Source term for energy balance SE m* Hz ' s™
Source term for action balance gN m* Hz s
Quadruplet interaction coefficient T _
Mean wave period T s
Peak period T, s

Time t S




Horizontal main direction

Total number of measurement locations
Universal shape level constant
Battjes-Janssen breaking coefficient
Parameterised biphase

Breaker index parameter

TMA spectral peakedness parameter
Ursell scaling parameter

Error-value parameter of parameter C
Arbitrary spectral parameter
Nautical direction

DCTA tuneable coefficient

Intrinsic radian frequency
JONSWAP spectral width

Spectrum average frequency

DCTA scaling coefficient

Yy

e(0)
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Appendix A  Code listing

The SWAN subroutine STRICL contains the code of the that was used to implement the DCTA in SWAN

: Code command continues on next line

SUBROUTINE STRICL (ACLOC ,DEPLOC ,SPCSIG ,KWAVE ,
& IDDLOW ,IDDTOP ,ANYBIN ,IMATDA ,IMATRA,
& CGO ,KMESPC ,ETOT » SMEBRK ) 40.45

EEAEEAIXEAXEAAXAAXAEA AKX EAAXAAXAAAXAEAAXAALAEAAAAAXAAXAAXAAAXAAAXAAXAXAAXAAAXAAXAXAAAAAXALAXAX)X

USE OCPCOMM4
USE SWCOMM3
USE SWCOMM4
USE M_WCAP

IMPLICIT NONE

1##COPYRIGHT
1##DISCLAIMER

1 0. Authors

40.45: Nico Booij
40.96: Matthijs Bénit

1 1. Updates

40.45, July 04: NEW SUBROUTINE
40.96: Aug 08 — Aug 09: IMPROVEMENTS

N

Purpose

In this subroutine the triad-wave interactions are calculated
with the empiric distributed colinear approximation.

w

Method

Transfer of action between two components under influence of a
third one is formulated as follows:

P+1 P+1
M*N (Sigma N - Sigma N )
3 1 1 2 2

in which:

M is a dimensional coefficient



! N is action density
Sigma spectral (angular) frequency

1 Dimensions:
1 ACL# : m2s2
1 KW# : 1/m
1 SIG# : 1/s
! SDIA# : 1/s

1 4. Argument variables

! REAL, INTENT(INOUT) :: SWTSDA(1:MDC,1:MSC,1:NPTST,1:MTSVAR) 1 Values of d
the triad source terms in test-points (defined in command TEST)

REAL, INTENT(IN) :: ACLOC(1:MDC,1:MSC) I local 4
action density spectrum

REAL, INTENT(CIN) :: DEPLOC 1 Depth at 4
gridpoint ix,iy (obtained from SWANCOM1)

REAL, INTENT(CIN) 2 SPCSIG(1:MSC) 1 Relative J
frequencies in computational domain in sigma-space

REAL s - KWAVE(1:MSC) I Wave J
number in stencil points

INTEGER, INTENT(IN) :: 1DDLOW I Minimum J
counter in directional space

INTEGER, INTENT(IN) - IDDTOP I Maximum .
counter in directional space

LOGICAL, INTENT(IN) :: ANYBIN(1:MDC,1:MSC) 1 1f True 4
this bin is going to be updated using the matrix

REAL :: IMATDA(1:MDC,1:MSC) I IMATDA: J
Diagonal of matrix

REAL :: IMATRA(1:MDC,1:MSC) T IMATRA: 4
Right hand vector of matrix

REAL, INTENT(IN) oo CGO(1:MSC) I Group 4
velocities in stencil points

REAL, INTENT(CIN) 2. KMESPC 1 Mean wave J
number of the spectrum

REAL, INTENT(IN) o ETOT L

REAL, INTENT(CIN) :: SMEBRK !
! Values from common
! MDC Size of array in theta-direction

1 MSC Size of array in sigma-direction
! ITRIAD indicates type of triad formulation
! Pl Circular constant Pi

MTRIAD : Size of array containing triad-coefficients

! PTRIAD Tunable coefficients for nonlinear triad sourceterms
! PTRIAD(1) Interaction coefficient (labda)

1 PTRIAD(2) Power of the tail of the spectrum (p)

! PTRIAD(4) : xxx (delta)

1 6. Local variables

INTEGER, SAVE :: 1ENT=0 I Number of J
entries into this subroutine

INTEGER 2 ID I Grid 4
counter in spectral space (direction)

INTEGER b | I Counterd

INTEGER :: IS1, 1S2, 1S3 I Grid 4

counter for spectral frequency



REAL :: SIG1, SIG2, SIG3
frequencies of 3 components

REAL 1 ACL1, ACL2, ACL3
densities of 2 components

REAL T OKW1, Kw2, Kw3
numbers of 3 components

REAL o CG1, CG2
velocities at interacting frequencies

REAL :: RS3, SS
for determining SIG3

REAL :: DSIG
increment

REAL 2 SIGMEAN
of the 3 components

REAL :: KMEAN
number

REAL :: SDIAl, SDIA2
term to diagonal

REAL :: SRHS

REAL :: DISPC
coefficient

REAL :: BETA

REAL :: SINABS

REAL :: BIPH

REAL :: URSLOC
coefficient

1 7. SUBROUTINES USED

! INTEGER :: CNTSIG

0

SUBROUTINES CALLING

SOURCE

©

ERROR MESSAGES

! 10. REMARKS

I 11. STRUCTURE

For all active directions do
For all first components do

For all second components do

1 13. Source text

T$OMP MASTER

determine frequency and wave number of component

determine frequency and wave number of components
determine frequency of third resonating component
IT this frequency is within spectral range
Then determine source terms

determine contributions to matrix

J

action J
wave J

wave group J
aux. var. J
frequency J
mean freq J
mean wave .

source

dispersion J

aux.

40.22



&

IF (LTRACE) CALL STRACE (IENT,*STRICL®)
T$0MP END MASTER

URSLOC
BIPH =
SINABS
BETA =

Ffirst 1
DO 11 =
ID =

= (GRAV*2.*SQRT(ETOT))/(SQRT(2.)*SMEBRK**2*DEPLOC**2)
P1/2 * (TANH(PTRIAD(4)/URSLOC) - 1.)

= ABS(SIN(BIPH))

PTRIAD(1) / DEPLOC / DEPLOC * SINABS *
KMESPC**(1-PTRIAD(2))

oop over all directions
1DDLOW, IDDTOP
mMob (Il - 1 + MDC, MDC) + 1

first loop over all frequencies

DO 1S
SIG
sec
DO

S
d
S
|

E

END

ENDDO
ENDDO
RETURN

END sub

1 =1, MSC

1 = SPCSIG(IS1)

ond loop over all higher frequencies
1S2 = 1S1+1, MSC

1G2 = SPCSIG(I1S2)

etermine properties of 3d component
IG3 = SIG2 - SIG1

F (SIG3.GT.SPCSIG(1)) THEN

SS = ALOG(SIG3/SPCSIG(1)) / FRINTF
1S3 = INT(SS) + 1
RS3 = SS - REAL(IS3 - 1)

ACL1 = ACLOC(ID,1S1)

ACL2 = ACLOC(ID, 1S2)

ACL3 = RS3 * ACLOC(ID,1S3+1) + (1. - RS3) * ACLOC(ID,IS3)
KWL = KWAVE(IS1)

KW2 = KWAVE(1S2)

KW3 = RS3 * KWAVE(I1S3+1) + (1. - RS3) * KWAVE(IS3)

CG1 = CGO(IS1)

€62 = CGO(IS2)

determine properties of triad

KMEAN = 0.3333 * (KW1 + KW2 + KW3)

DELTAK = KW2 - KW1 - KW3

DISPC = TANH(KMEAN * DEPLOC) / (KMEAN * DEPLOC)

SDIA1 = BETA * ACL3 * SIG1 * CG1l * KW1**(PTRIAD(2))
* DISPC**2

SDIA2 = BETA * ACL3 * SIG2 * CG2 * KW2**(PTRIAD(2))
* DISPC**2

IF (ANYBIN(CID,1S1)) THEN
DSIG = FRINTF * SIG2
SRHS = SDIA2 * ACL2
IMATDA(ID, I1S1) = IMATDA(ID,IS1) + SDIAL * DSIG
IMATRA(ID, I1S1) = IMATRA(ID,IS1) + SRHS * DSIG
ENDIF
IF (ANYBIN(CID,1S2)) THEN
DSIG = FRINTF * SIG1
SRHS = SDIA1 * ACL1
IMATDACID, 1S2) = IMATDA(ID,1S2) + SDIA2 * DSIG
IMATRA(ID, 1S2) = IMATRA(ID,1S2) + SRHS * DSIG
ENDIF
NDIF
DO

+

routine STRICL

40.22
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Appendix B Smith measurements

The table below was taken from Smith (2004)

Case Tp,l TP,2 Hm0 Y,
1 25 1.0 0.09 20
2 2.0 1.0 0.09 20
3 1.75 1.0 0.09 20
4 1.5 1.0 0.09 20
5 1.25 1.0 0.09 20
6 2.0 - 0.09 20
7 1.5 - 0.09 20
8 1.0 - 0.09 20
9 1.25 1.0 0.06 20
10 1.5 1.0 0.06 20
11 1.75 1.0 0.06 20
12 2.0 1.0 0.06 20
13 2.5 1.0 0.06 20
14 1.25 1.0 0.09 3.3
15 1.75 1.0 0.09 3.3
16 2.5 1.0 0.09 33
17 1.25 1.0 0.09 100
18 1.75 1.0 0.09 100
19 2.5 1.0 0.09 100

20 1.0 - 0.09 3.3
21 1.0 - 0.09 20
22 1.0 - 0.09 100
23 1.25 - 0.09 3.3
24 1.25 - 0.09 20
25 1.25 - 0.09 100
26 1.75 - 0.09 33
27 1.75 - 0.09 20
28 1.75 - 0.09 100
29 2.5 - 0.09 3.3
30 2.5 - 0.09 20

31 2.5 - 0.09 100




Appendix C

Results calibration

Case

g s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0.770
0.785
0.790
0.805
0.810
0.770
0.710
0.915
0.840
0.810
0.825
0.845
0.795
0.830
0.805
0.830
0.775
0.790
0.765
0.885
0.905
0.940
0.735
0.715
0.690
0.730
0.720
0.705
0.730
0.690

0.690

0.100
0.080
0.055
0.060
0.080
0.200
0.160
0.100
0.110
0.120
0.080
0.095
0.140
0.080
0.050
0.060
0.090
0.120
0.150
0.085
0.090
0.110
0.125
0.145
0.160
0.180
0.210
0.210
0.235
0.280

0.285

= (Hmo )DCTA
0.0012

0.0013
0.0013
0.0010
0.0013
0.0037
0.0047
0.0012
0.0007
0.0013
0.0009
0.0015
0.0016
0.0007
0.0010
0.0013
0.0021
0.0025
0.0026
0.0011
0.0009
0.0017
0.0026
0.0033
0.0035
0.0038
0.0044
0.0046
0.0043
0.0049

0.0047

& (Hmﬂ )LTA
0.0015
0.0015
0.0018
0.0018
0.0021
0.0019
0.0053
0.0025
0.0007
0.0018
0.0014
0.0018
0.0017
0.0012
0.0014
0.0013
0.0030
0.0028
0.0029
0.0015
0.0023
0.0035
0.0035
0.0045
0.0050
0.0032
0.0036
0.0036
0.0027
0.0027

0.0027

&(

TmOl )DCTA
0.042
0.042
0.037
0.022
0.012
0.047
0.029
0.008
0.012
0.015
0.027
0.026
0.045
0.021
0.035
0.043
0.009
0.031
0.056
0.023
0.014
0.008
0.012
0.015
0.021
0.025
0.021
0.025
0.054
0.072

0.087

&(

T

m01 )LTA

0.131
0.094
0.101
0.097
0.061
0.132
0.117
0.073
0.049
0.067
0.082
0.075
0.084
0.056
0.078
0.081
0.066
0.118
0.149
0.061
0.075
0.081
0.040
0.058
0.075
0.078
0.101
0.125
0.098
0.129

0.163
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