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Abstract

The purpose of this thesis is to compare the Hull-White short rate model to the Cheyette short
rate model. The Cheyette short rate model is a stochastic volatility model, that is introduced to
improve the fit of the implied volatility skew to the market skew. Both models are implemented
with piecewise constant parameters to match the term structure. We calibrate the Cheyette
model to the EURO, USD and KRW swaption markets and compare the calibration results
to the Hull-White model. We propose an efficient implementation method to speed up the
calibration process. In general we see that the Cheyette model gives indeed a better fit, in
particular for the EURO and KRW markets. The models with calibrated parameters are used
to price exotic interest rate derivatives by Monte Carlo simulation. Comparing the results of
the Cheyette model to the results of the Hull-White model, can give insight in the skew and
curvature impact on exotic interest rate derivatives. We consider digital caplets, digital caps,
range accrual swaps, callable range acrruals and a callable remaining maturity swap. The price
impact on digital caplets and digital caps are in line with static replication. By this we mean
that the prices computed with static replication are better matched by the Cheyette model than
by the Hull-White model. For the callable range accrual on LIBOR we have to be more careful,
since a one-factor model cannot be calibrated to two market skews per option maturity. This
implies that the price of the underlying range accrual is not in line with static replication, since
we calibrate to co-terminal swaptions, while the underlying depends on the cap market. For the
callable remaining maturity swap we do not encounter this issue, since the underlying depends
on the same co-terminal swaption skews. For a callable RMS we observe that the Hull and
White model underestimates the option price, compared to the Cheyette model.



7

Glossary

bp Basis point, a unit equal to 1/100th of 1%.
L(S, T ) Spot LIBOR rate for a time interval [S, T ], see (2.1).
P (t, T ) The zero-coupon bond price, contracted at time t with maturity T .

This is the fundamental quantity in interest rate derivatives pricing.
See (2.7).

r(t) The short rate at time t, see (2.5). Short rate models are modelling
this mathematical variable.

τ(T, S) The year fraction between time T and time S.
Pay IRS, Recv IRS Payer interest rate swap respectively receiver interest rate swap.

See Sections 2.2.3 and 2.2.4.
Swap rate That rate on the fixed leg such that, both the Pay IRS and Recv IRS,

are worth zero. See section 2.2.5.
Swaption An option where the holder has the right but not the obligation to

enter into a plain vanilla interest rate swap. See Section 2.2.6.
ATM swaption A swaption where the fixed rate K of the fixed leg is equal

to the swap rate of the underlying swap.
Annuity Numeraire corresponding to the swap measure. See Formula (2.18).
Q0 The risk neutral measure corresponding to the money market

account as a numeraire.
QT The T forward measure with the zero-coupon bond P (t, T ) as a

numeraire.
Q1,m The swap measure, with the annuity as a numeraire.
Black’s model A model to value european style options. See Section 2.1
N (x) The standard normal distribution function evaluated in x.
Fundamental transform This is the Fourier inversion method described in Section 5.3.1.
Riccati ODEs This is a class of non linear ODEs. In this thesis we refer to the

system given by Equation (5.27).
Implied volatility The value of σ such that Black’s price matches the reference price.
DD The displaced diffusion formulation of the Cheyette model. This

model is discussed in Chapter 4.
DDSV The displaced diffusion with stochastic volatility formulation of

the Cheyette model. This model is discussed in Chapter 5.
QE-scheme The Quadratic Exponential scheme to simulate the CIR variance

process, described in Section 5.6.
Co-terminal A series of swaptions whose expiry plus tenor is equal.
KRW Korean Won market.
RAC Range accrual where the observation index is the LIBOR rate,

see Section 7.1.2.
CRAC Callable range accrual on LIBOR, see Section 7.1.3.
RMS Remaining maturity swap, see Section 7.1.3.
LS Longstaff and Schwartz method, see [23].
SR Static replication, the decomposition of a digital into two caplets

or floorlets, see Section 7.1.1.
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Chapter 1

Introduction and research objectives

This thesis is about the Cheyette stochastic volatility model, belonging to the class of short rate
models. The short rate r(t) is a mathematical quantity representing the interest rate valid for
an infinitsimally short period of time from time t. Short rate models are frequently used to price
interest rate derivatives. The interest rate derivatives market is the largest derivatives market
in the world and a wide range of products are traded. Roughly speaking we have three levels,
the plain vanilla instruments like swaps, caps and swaptions. The intermediate level is the class
of convexity derivatives, examples are range accruals, in-arrears swaps and constant maturity
swaps. The third level are the exotic derivatives like, target redemption notes, callable range
accruals and snowballs.

For the plain vanilla instruments we do not need advanced models to price them. A plain vanilla
interest rate swap is priced on the yield curve. To price swaptions we can use Black’s model, this
model is equivalent to the Black and Scholes model that is well-known from equity world. For
the convexity derivatives and exotic interest rate derivatives, we cannot apply Black’s model,
since this model only applies to European-style options. In interest rate modelling there are
two important classes of models to value those derivatives, first of all the short rate models and
secondly the LIBOR market models. We can use these models for the valuation of exotic interest
rate derivatives. In this thesis we restrict ourselves to the class of short rate models.

In interest rate modelling we are interested in modelling the short rate, since there is a rela-
tionship between the short rate and the zero-coupon bond price. The zero-coupon bond price
is a fundamental quantity in interest rate derivatives pricing. In Chapter 2 we give some back-
ground information on interest rate modelling. We introduce the definitions of the short rate,
zero-coupon bond and several plain vanilla interest rate products. We use these definitions
throughout this thesis. We recommend this chapter for people who are not familiar with inter-
est rate derivatives.

One popular short rate model is the Hull-White model. This model has the following properties.
There exists an analytic formula for the zero-coupon bond price, it is a mean reverting process,
which is a desired property in interest rate modelling and moreover the state variables are
Gaussian distributed. Due to the last property there are analytic formulas to price plain vanilla
interest rate products like bond options, caps and swaptions. In general, pricing models are
calibrated to plain vanilla market instruments. Due to the analytic formulas, there is a fast
calibration to these instruments. A drawback of the Hull-White model is that in general we
have a poor fit to the market skew. In Chapter 3 of this thesis we will go more into detail on
this.

13



14 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

The first research objective is to improve on this shortcoming of the Hull-White model. Therefore
we investigate a different class of short rate models, the Cheyette models. In this thesis we
consider the displaced diffusion formulation of the Cheyette model. We subdivide the theoretical
discussion into two parts. In Chapter 4 we discuss the displaced diffusion formulation without
stochastic volatility and in Chapter 5 we discuss the displaced diffusion model with stochastic
volatility. We show that the stochastic volatility model has control of the level, skewness and
curvature of the implied volatility skew. We expect that this is sufficient to improve the fit
to the market skew. In these chapters we focus on a detailed derivation of the closed-form
swaption price, since the Cheyette model is not analytically tractable this swaption price will be
an approximation of the true model implied swaption price. Moreover we contribute an efficient
implementation method, which allows us for an efficient calibration. After we have provided the
theoretical discussion of the Cheyette stochastic volatility model, we compare numerical results
from the Cheyette model to the results from the Hull-White model.

In Chapter 6 we discuss the calibration of the Cheyette stochastic volatility model to the swaption
market. We show calibration results for three different currencies and three historical sets of
market data.

The second research objective is to investigate the price impact of the Cheyette stochastic
volatility model on (exotic) interest rate derivatives, this will be the main topic of Chapter 7.
We consider a digital cap, a range accrual swap, a callable range accrual and a callable remaining
maturity swap. We investigate the price impact between the Hull-White model and the Cheyette
stochastic volatility model, which is the skew and curvature impact of the Cheyette model. We
expect that the market price of a digital, obtained with static replication, is better matched by
the DDSV model than by the Hull-White model. Hence we expect that the Cheyette model
gives a more consistent price of a series of digitals, a range accrual. This is important for the
valuation of a callable range accrual, since this contract has a Bermudan-style option to enter
into a range accrual where the legs are reversed relative to the underlying range accrual of the
contract.



Chapter 2

Plain vanilla interest rate derivatives

This chapter is for readers who are not familiar with interest rate products, different types of
interest rates and some well known pricing formulas such as the risk neutral pricing formula and
Black’s formula. This chapter discusses the following topics:

• Interest rates and pricing formulas, see Section 2.1.

• Interest rate derivatives, see Section 2.2.

• Pricing swaptions under different measures, see Section 2.3.

It is important to have clear in mind what we mean with time. Unless otherwise stated we
assume all times to be year fractions. If we write τ(S, T ) for the year fraction between two year
fractions S and T , it is clear that τ(S, T ) = T −S. In case we have two dates, D1 = (ds,ms, ys)
and D2 = (dt,mt, yt), τ(D1, D2) depends on the choice of market conventions. One example is
the Actual/360 convention. In this case a year is assumed to be 360 days long. The year fraction
between two dates D1 and D2 is

D2 −D1

360
.

Therefore, the year fraction between January 4, 2000 and July 4, 2000 is 182/360, since there
are 182 days between these dates (leap year). We refer to [1] for more information about day
count conventions.

2.1 Interest rates and pricing formulas

Definition 2.1. We denote by P (t, T ) the value of a zero-coupon bond at time t, which pays
1 at maturity T i.e. P (T, T ) = 1. Remember that we assume all times to be in year fractions.
For t ≤ T ;

1. The spot LIBOR-rate for a time interval [S, T ] is given by:

L(S, T ) =
1

T − S

(
1

P (S, T )
− 1

)

. (2.1)

2. The simply compounded forward LIBOR rate contracted at time t for the interval
[S, T ] is defined by:

15



16 CHAPTER 2. PLAIN VANILLA INTEREST RATE DERIVATIVES

Flib(t;S, T ) =
1

(T − S)

(
P (t, S)

P (t, T )
− 1

)

for 0 ≤ t ≤ S. (2.2)

Notice that for t = S

Flib(S;S, T ) =
1

(T − S)

(
P (S, S)

P (S, T )
− 1

)

=
1

(T − S)

(
1

P (S, T )
− 1

)

= L(S, T ),

i.e. the simply compounded forward rate equals the spot LIBOR-rate.

3. The continuously compounded spot rate for the period [S, T ] is defined by:

R(S, T ) = − log(P (S, T ))

T − S
. (2.3)

4. The instantaneous forward rate with maturity T, contracted at time t is defined
by:

f(t, T ) = −∂ log(P (t, T ))
∂T

. (2.4)

5. The instantaneous short rate at time t is given by:

r(t) = f(t, t). (2.5)

Theorem 2.2. From the Fundamental Theorem of Asset Pricing it is well-known that the price
at time t of any contingent claim with payoff V (T ) at time T is given by:

V (t) = EQ0
[

e−
∫ T

t
r(s)dsV (T )

∣
∣
∣Ft

]

, (2.6)

where the expectation is taken under the risk neutral measure Q0.

Proof. For a proof of this theorem we refer to [2].

Corollary. The price of a zero-coupon bond at time t with maturity T is given by:

P (t, T ) = EQ0
[

e−
∫ T

t
r(s)ds

∣
∣
∣Ft

]

, (2.7)

since V (T ) = P (T, T ) = 1.

Theorem 2.3. Given a European call option, with maturity T , on an underlying with value
V (t). Define:

• 0 ≤ t ≤ T .

• µ(t) the forward price of V at time t of a contract with maturity T , i.e.,

µ(t) = EQT
[V (T )|Ft], where the expectation is taken under the T -forward measure.

• K the strike of the option.

• σ the volatility of the forward price.
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Assuming that conditioned on the information available at time t, V (T ) is distributed log-normal
with mean µ(t) and standard deviation σ

√
T − t, then the price of a European call option with

strike K is given by:

C(t) = V (t)N (d1)−KP (t, T )N (d2) = P (t, T )

{
V (t)

P (t, T )
N (d1)−KN (d2)

}

= P (t, T )

{

ET

[
V (T )

P (T, T )

]

N (d1)−KN (d2)

}

= P (t, T ) {µ(t)N (d1)−KN (d2)} ,
(2.8)

with

d1 =
log(µ(t)/K) + σ2(T − t)/2

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

N (x) =

∫ x

−∞

1√
2π
e−

1
2
s2ds.

This theorem is known as Black’s Pricing Theorem. When we use Black’s formula in this text
we mean the formula given by this theorem.

Proof. The proof of

C(t) = V (t)N (d1)−KP (t, T )N (d2),

is based on the general pricing theorem of Geman-El Karoui-Rochet , we refer to [3] p.361 for a
proof. The other equalities in (2.8) are straight forward.

2.2 Interest rate derivatives

In this section the definitions of some interest rate derivatives are given.

Define Tm := {T0, T1, . . . , Tm} in year fractions and τ (m) := {τ1, . . . , τm} where

τi := τ(Ti−1, Ti) = Ti − Ti−1.

2.2.1 Fixed rate bond

Given a fixed rate K, a notional amount N and a set of payment dates Tm\{T0}, a fixed interest
rate bond is an instrument whose coupon payments are given by:

V fix
i (Ti) =

{
NτiK i ∈ {1, 2, . . . ,m− 1}
NτmK +N i = m

Using the zero-coupon bond P (t, Ti) as a numeraire, the value at time t ≤ T0 of a payment at
time Ti is given by:

V fix
i (t)

P (t, Ti)
= EQT

i

[

V fix
i (Ti)

P (Ti, Ti)

∣
∣
∣
∣
∣
Ft

]

⇔ V fix
i (t) = P (t, Ti)V

fix
i (Ti),
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where the expectation is taken under the Ti-forward measure. Note that we take the expectation
of a constant. The value at time t of the fixed rate bond is the sum of these time t values.

VBfix
(t) =

m∑

i=1

P (t, Ti)V
fix
i (Ti). (2.9)

2.2.2 A floating rate bond

Given a floating interest rate, in general the L(Ti−1, Ti) LIBOR rate, a notional amount N and
a set of payment dates Tm\{T0}, a floating interest rate bond is an instrument whose coupon
payments are given by:

V fl
i (Ti) =

{
NτiL(Ti−1, Ti) i ∈ {1, 2, . . . ,m− 1}
NτmL(Tm−1, Tm) +N i = m

Using the zero-coupon bond P (t, Ti) as a numeraire, the value at time t ≤ T0 of a payoff at time
Ti is given by:

V fl
i (t) = P (t, Ti)E

QT
i

[

V fl
i (Ti)

∣
∣
∣Ft

]

,

where the expectation is taken under the Ti-forward measure. A simple calculation, using the
fact that EQT

i [L(Ti−1, Ti)| Ft] = Flib(t;Ti−1, Ti), Equation (2.2) and assuming that the year
fraction corresponding to the spot LIBOR-rate equals the year fraction with respect to our day
count convention1, shows that

V fl
i (t) =

{
N(P (t, Ti−1)− P (t, Ti)) i ∈ {1, 2, . . . ,m− 1}
NP (t, Tm) +N(P (t, Tm−1)− P (t, Tm)) i = m

Hence the value at time t of the floating rate bond is given by:

VBfloating
(t) =

m∑

i=1

V fl
i (t) = NP (t, T0). (2.10)

2.2.3 Plain Vanilla Payer Interest Rate Swap (Pay IRS)

Given a notional amount N , a fixed rate K, and a set of payment dates Tm\{T0}, a Pay IRS is a
contract where the holder pays at Ti the amount NτiK and receiver the amount NτiL(Ti−1, Ti).
In the plain vanilla case the payments are made in the same currency. In general the notionals
are not exchanged between both parties. This is a safe assumption, since at time Tm, the
exchange of the same notional between both parties has no financial effect. To derive the value
of a Pay IRS we can assume that at time Tm both parties exchange the notional. We can then
see this as a contract where the holder pays a fixed rate bond and receives a floating rate bond
in exchange. Hence the value of the Pay IRS is given by:

VP-IRS(t) = NP (t, T0)−NP (t, Tm)−
m∑

i=1

P (t, Ti)NτiK. (2.11)

The swap tenor is defined as the distance between T0 and Tm.

1This is the case when we assume the Actual 360 day count conventions.
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2.2.4 Plain Vanilla Receiver Interest Rate Swap (Recv IRS)

This is the same contract as a Pay IRS, but in this case the holder receives the fixed leg and
pays the floating leg. The value of the floating Recv IRS is the value of the Pay IRS with a
negative sign.

VR-IRS(t) = NP (t, Tm)−NP (t, T0) +
m∑

i=1

P (t, Ti)NτiK. (2.12)

2.2.5 Swap Rate

Given a Pay IRS or a Recv IRS, the corresponding swap rate is the rate K of the fixed leg such
that the Pay IRS (or Recv IRS) is worth zero at time t. Equating Equation (2.11) or (2.12) to
zero yields:

S0,m(t) =
P (t, T0)− P (t, Tm)
∑m

i=1 P (t, Ti)τi
. (2.13)

2.2.6 Plain Vanilla Swaptions

A swaption is a contract where the holder has the right, but not the obligation, to enter into
a plain vanilla (receiver or payer) swap at some future time T0, the option maturity. We start
with a discussion of a payer swaption. Let N and K be the notional amount and fixed rate
respectively, of this underlying payer swap. At time T0 a party will exercise the option if the
underlying swap has positive value. I.e. the following inequality holds

N −NP (T0, Tm)−
m∑

i=1

P (T0, Ti)NτiK ≥ 0.

Or equivalent S0,m(T0) > K, with S0,m(T0) corresponding to an identical swap as that of the
underlying swaption, since S0,m(T0) is the fixed rate that makes the underlying swap worth zero
at time T0. At all payment dates Ti ∈ Tm, with 1 ≤ i ≤ m there is a cashflow equal to

Nτimax(S0,m(T0)−K, 0), i ∈ {1, . . . ,m}.

When we assume Black’s model, we can calculate the value of this payer swaption at time t ≤ T0.
Looking at the individual cashflows it is obvious that this can be expressed as a European call
contract on the swap rate with strike K. We assume that S0,m(T0) is log-normal conditional on
the information at time t with mean S0,m(t), and standard deviation σ

√
T0 − t. Using Black’s

Formula, the value at time t of the payer swap is given by (see [1])

VP-swaption(t) = N

(
m∑

i=1

τiP (t, Ti)

)

[S0,m(t)N (d1)−KN (d2)] ,

d1 =
log
(
S0,m(t)

K

)

+ 1
2σ

2(T0 − t)

σ
√

(T0 − t)
,

d2 = d1 − σ
√

T0 − t,

(2.14)

where σ is the volatility of the forward swap rate. This quantity is retrieved from market data.
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With similar reasoning we can discuss the receiver swaption. One can derive that this is a
European put option on the swap rate. Assuming Black’s model, the value at time t ≤ T0 of a
receiver swaption is given by (see [1]):

VR-swaption(t) = N

(
m∑

i=1

τiP (t, Ti)

)

[KN (−d2)− S0,m(t)N (−d1)] , (2.15)

where d1 and d2 are the same as in Equation (2.14).

If K = S0,m(t), then we call this an at the money (ATM) swaption.

2.2.7 Caps and floors

An interest rate cap is designed to provide insurance, for the holder which has a loan on a floating
rate, against the floating rate rising above a certain level. This level is called the cap-rate K. A
cap is the sum of a number of basic contracts, known as caplets, which are defined as follows:

Definition 2.4. Given two times Ti > Ti−1, with τi = Ti −Ti−1, we define the Ti−1-caplet with
rate Ki and nominal amount Ni as a contract that pays at time Ti:

Niτimax(L(Ti−1, Ti)−Ki, 0), i = 1, 2, . . . ,m.

At time Ti−1 we observe L(Ti−1, Ti) in the market, but the payoff takes place at time Ti. A cap
can be seen as m caplets with the same strike Ki = K and notional Ni = N . The value of a cap
at time t < T0 is the sum of the values of the individual caplets at time t.

It is easy to see that a caplet is a European call contract. If we assume Black’s model to value
this option then the value of caplet i is given by:

Capleti(t) = NiτiP (t, Ti) [Flib(t;Ti−1, Ti)N(d1)−KiN(d2)] ,

d1 =
log
(
Flib(t;Ti−1,Ti)

K

)

+ 1
2σ

2
i (T0 − t)

σi
√

(T0 − t)
,

d2 = d1 − σi
√
T − t.

(2.16)

Here we assume the simply compounded LIBOR rate L(Ti−1, Ti), conditional on the information
at time t, log-normal distributed with mean Flib(t, Ti−1, Ti). The volatility parameter σi is
retrieved from market data. Hence the value of a cap at time t < T0 with Black’s Formula is

given by:

Vcap(t) =
m∑

i=1

Capleti(t),

with Capleti(t) from Equation (2.16).

An interest rate floor is designed to provide insurance, for the holder which has a loan on a
floating rate, against the floating rate rising below a certain level. This level is called the floor-
rate K. A floor is the sum of a number of basic contracts, known as floorlets. A floorlet differs
from a caplet in the sense that it pays at time Ti:
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Niτimax(Ki − L(Ti−1, Ti), 0), i = 1, 2, . . . ,m.

At time Ti−1 we observe L(Ti−1, Ti) in the market, but the payoff takes place at time Ti. A floor
can be seen as m floorlets with the same strike Ki = K and notional Ni = N . The value of a
floor at time t < T0 is the sum of the values of the individual floorlets at time t.

It is easy to see that a floorlet is a European put contract. If we assume Black’s model to value
this option then the value of floorlet i is given by:

Floorleti(t) = NiτiP (t, Ti) [KiN(−d2)− Flib(t;Ti−1, Ti)N(−d1)] ,

d1 =
log
(
Flib(t;Ti−1,Ti)

K

)

+ 1
2σ

2
i (T0 − t)

σi
√

(T0 − t)
,

d2 = d1 − σi
√
T − t.

(2.17)

Hence the value of a floor at time t < T0 with Black’s Formula is given by:

Vfloor(t) =

m∑

i=1

Floorleti(t),

with Floorleti(t) from Equation (2.17).

2.3 Pricing swaptions under different measures

Let Tm = {T0, T1, . . . , Tm} be a set of dates in year fractions, with T0 being the swaption maturity
and T1, . . . , Tm the payment dates. We recall that the value of Pay IRS is given by Formula
(2.11). Setting this equation to zero and solving for the fixed interest rate yields the swap rate
at time t, see Equation (2.13).

S0,m(t) =
P (t, T0)− P (t, Tm)
∑m

i=1 P (t, Ti)τi
=
P (t, T0)− P (t, Tm)

P1,m(t)
,

where we defined

P1,m(t) :=
m∑

i=1

P (t, Ti)τi. (2.18)

P1,m(t) is called the annuity. Note that the payoff of a payer swaption with strike K at time T0
is given by the maximum of the value of the swap at time T0 and 0. Hence

(

V pay
0,m (T0)

)+
=

[

NP (T0, T0)−NP (T0, Tm)−
m∑

i=1

P (T0, Ti)NτiK

]+

= N

[

P (T0, T0)− P (T0, Tm)−K
m∑

i=1

P (T0, Ti)τi

]+

= N [S0,m(T0)P1,m(T0)−KP1,m(T0)]
+

= NP1,m(T0) [S0,m(T0)−K]+ .

(2.19)
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This can be seen as a payoff of a European call on the swap rate. If we take P1,m(t) as a
numeraire with the corresponding martingale measure Q1,m, then the time t value of the payer
swaption is given by

V pay
0,m (t) = NP1,m(t)EQ1,m

[

P1,m(T0) [S0,m(T0)−K]+

P1,m(T0)

∣
∣
∣
∣
∣
Ft

]

= NP1,m(t)EQ1,m [
[S0,m(T0)−K]+

∣
∣Ft

]
.

(2.20)
We will call this martingale measure the swap measure. See Appendix A.2.1 for further expla-
nation on this topic.

To price swaptions with Monte Carlo simulation, it is convenient to derive the swaption price
under the T0-forward measure. If we take P (t, T0), the price of a zero-coupon bond at time t
with maturity T0, as a numeraire corresponding to the T0-forward measure QT0 , then the time
t value of the payer swaption is given by

V pay
0,m (t) = NP (t, T0)E

QT0

[

(1− P (T0, Tm)−K

m∑

i=1

τiP (T0, Ti))
+

∣
∣
∣
∣
∣
Ft

]

. (2.21)



Chapter 3

The one-factor Hull-White model

The one-factor Hull-White model is one of the most popular short rate models, that models a
mathematical variable (not observed in the market), the instantaneous short rate. The Hull-
White model belongs to the class of affine term structure models, hence the logarithm of the
bond price is a linear function of the state variables. The state variables are Gaussian. Moreover
the Hull-White model can be fitted perfectly to the initial yield curve. The model is analytic
tractable and given that, closed form formulas can be obtained for basic interest rate products
like bond options, caps and swaptions. But the model has also disadvantages, it gives an
inaccurate fit to the swaption market volatility skew. That is why we are looking for new short
rate models to overcome the drawbacks of Hull-White. This chapter discusses the following
topics.

• The constant volatility Hull-White model, see Section 3.1.

• The piecewise constant volatility one-factor Hull-White model, see Section 3.2.

• Analytic pricing formula for swaptions, see Section 3.3.

• Calibration of the one-factor Hull-White model, see Section 3.4.

• Implied volatility skew under the Hull-White model, see Section 3.5.

3.1 The constant volatility Hull-White model

The dynamics of the instantaneous short rate under the risk neutral measure are given by

dr(t) = [θ(t)− ar(t)]dt+ σdW 0(t) = a

[
1

a
θ(t)− r(t)

]

dt+ σdW 0(t), (3.1)

where θ(t) is a parametric function that replicates the currect term structure observed in the
market, a the mean reversion rate and σ the volatility. This model is mean reverting, a desired
property in interest rate modelling. From Equation (3.1) we see that if at time t, the rate r(t)

is above (below) θ(t)
a , then the drift term becomes negative (positive) and the rate is pushed to

the level θ(t)
a . The speed at which the rate is pushed back to θ(t)

a is a. That is why we call a the
mean reversion rate.

Using Itô’s formula we get

r(t) = r(0)e−at +

∫ t

0
θ(u)e−a(t−u)du+ σ

∫ t

0
e−a(t−u)dW 0(u). (3.2)

23
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The Hull-White model has an affine term structure, hence the zero-coupon bond price is given
by (see [5]).

P (t, T ) = A(t, T )e−B(t,T )r(t),

log (A(t, T )) = −σ
2

2

∫ T

t
B2(u, T )du+

∫ T

t
θ(u)B(u, T )du,

B(t, T ) =
1

a

(

1− e−a(T−t)
)

.

(3.3)

To fit the initial term structure we take

θ(t) =
∂

∂t
f(0, t) + af(0, t) +

σ2

2a
(1− e−2at), (3.4)

where f(0, t) is given by (2.4). Substituting (3.4) into (3.2) we can write r(t) as

r(t) = r(0)e−at + g(t)− g(0)e−at + σ

∫ t

0
e−a(t−u)dW 0(u), (3.5)

where

g(t) = f(0, t) +
σ2

2a2
(
1− e−at

)2
. (3.6)

With this explicit formulation of the short rate, we can conclude that1:

• For any t > 0, the short rate r(t) in the Hull-White model, is normally distributed.

• For any t > 0, there is a positive probability that r(t) < 0.

Substituting (3.4) into the formula for log (A(t, T )) in (3.3), we can obtain an explicit formula
for the zero-coupon bond price

P (t, T ) =
P (0, T )

P (0, t)
exp

{

B(t, T )f(0, t)− σ2

4a
B2(t, T )(1− e−2at)−B(t, T )r(t)

}

. (3.7)

To get rid of f(0, t) in the expression above, we consider the zero mean process

dx(t) = −ax(t) + σdW 0(t), (3.8)

x(0) = 0. (3.9)

Using Itô’s formula we derive

x(t) = x(0)e−at + σ

∫ t

0
e−a(t−u)dW 0(u). (3.10)

One easily sees that

r(t) = x(t) + g(t),

where g(t) is given by Equation (3.6). Substituting this identity in (3.7) eliminates the f(0, t)
term. In this case the zero-coupon bond price is given by

1For more details we refer to [5]
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P (t, T ) =
P (0, T )

P (0, t)
exp {−G(t, T )−B(t, T )x(t)} , (3.11)

where

G(t, T ) =
σ2

2a
B(t, T )(1− e−at)

{
B(t, T )

2
(1 + e−at) +

(1− e−at)

a

}

.

3.2 The piecewise constant volatility Hull-White model

In this section we discuss the zero-coupon bond price for the one-factor Hull-White model with
piecewise constant volatility. We assume that the instantaneous short rate is modelled by

r(t) = x(t) + g(t), (3.12)

with g(t) a deterministic function of time, which allows an exact fit to the initial zero-coupon
bond curve. x(t) satisfies the following SDE under the risk-neutral measure:

dx(t) = −ax(t)dt+ σ(t)dWQ0
(t)

x(0) = 0
(3.13)

where σ(t) is piecewise constant on intervals between 0 = t0 < t1 < t2 < . . . < tn = T , e.g.
σ(t) = σj for t ∈ (tj−1, tj ].

The advantage of a piecewise constant volatility function σ(t), with respect to a constant volatil-
ity function σ, is the extra degree of freedom in the calibration process. With σ(t) piecewise
constant, we can calibrate the model to n swaptions, with maturities t1 < t2 < · · · < tn. The val-
ues of the piecewise constant volatility function are chosen such that the model implied swaption
prices match the market prices.

Proposition 3.1. Define the piecewise constant volatility function by σ(t) = σj for any t ∈
(tj−1, tj ], j ∈ {1, 2, . . . , n}. Then the price at time t of the zero-coupon bond with maturity
T (= tn) under a piecewise constant volatility Hull-White model is given by

P (t, T ) =
PM (0, T )

PM (0, t)
exp

(
1

2
(V (t, T )− V (0, T ) + V (0, t))−B(t, T )x(t)

)

, (3.14)

with

B(t, T ) =
1

a

(

1− e−a(T−t)
)

,

V (t, T ) = V̄ (t, tj) +
n−1∑

k=j

V̄ (tk, tk+1),

where for every (l, u) ⊆ (tk, tk+1]

V̄ (l, u) =

∫ u

l
σ2k+1B(s, T )2ds =

σ2k+1

2a3

(

e−2aT (eau − eal)(eau + eal − 4eaT ) + 2a(u− l)
)

.

Proof. The proof is given in Appendix B.1.
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3.3 Analytic pricing formula for swaptions

For the one-factor Hull-White model, with piecewise constant volatility, an analytic formula to
price swaptions exists. In this section we give this formula for a European swaption, whose
underlying is a payer interest rate swap with notional N and strike K. As before, let

Tm := {T0, T1, . . . , Tm} ,
be year fraction times related to the option on the swap and

τ := {τ1, . . . , τm} ,
where τi = Ti−Ti−1. We assume the option maturity to be T0. We have to satisfy two conditions
such that an analytic price exists. The first condition is that the dynamics of

Zi(t) =
P (t, Ti)

P (t, Ti−1)
,

can be expressed as

dZi(t) = mi(t)Zi(t)dt+ vi(t)Zi(t)dW
0(t),

with the volatility proces vi(t) deterministic. The second assumption is ∂P
∂r < 0. Both assump-

tions are satisfied for the constant and the piecewise constant volatility H-W model, see [5].
Under these assumptions the value at time t ≤ T0 is given by

PSwaption(t, Tm, N,K) = N
m∑

i=1

ci [P (t, T0)P (T0, Ti, x1)N (d1)− P (t, Ti)N (d2)] , (3.15)

where

ci = τiK for i = 1, 2, . . . ,m− 1,

cm = 1 + τmK,

N (s) =
1√
2π

∫ s

−∞

e−p2/2dp,

and x1 is defined as the value of x(T0) that satisfies

m∑

i=1

ciP (T0, Ti, x1) = 1,

where P (T0, Ti, x1) is calculated using Equation (3.14) and

d1(P (T0, Ti, x1), T0, Ti, ϑ) =
log
(
P (t,T0)P (T0,Ti,x1)

P (t,Ti)

)

+ ϑ2(T0)
2

ϑ(T0)
,

d2(P (T0, Ti, x1), T0, Ti, ϑ) = d1(P (T0, Ti, x1), T0, Ti, ϑ)− ϑ(T0).

(3.16)

In this equation ϑ(T ) is given by:
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ϑ2(T ) = ν(t, tj) +
n−1∑

s=j

ν(ts, ts+1),

where for any t ∈ (ts, te] ⊆ (tj−1, tj ] ,

ν(ts, te) =

∫ te

ts

v2(u)du,

and

v(u) = [B(u, Ti−1)−B(u, Ti)]σi.

3.4 Calibration of the one-factor Hull-White model

For an extensive motivation of the calibration of the piecewise Hull-White model we refer to
[6]. In this section we give a summary of the main ideas. If we want to use the model for
pricing purposes, we have to determine a and σ(t). The process of determining parameters
is called calibration. To calibrate a model one chooses a set of calibration instruments, for
example a set of swaptions. The parameters of the model are choosen in such a way that the
model generated prices match the market prices of the calibration instruments. In the Hull-
White model with piecewise constant volatility, we have to determine the mean reversion and
the piecewise volatility function σ(t). In this case we do not calibrate the mean reversion rate
a. This parameter is fixed, in most cases a ∈ [0.01, 0.05].

When the mean reversion rate is fixed the piecewise constant volatility function is calibrated to
the calibration instruments. For example, if we want to calibrate the model to the market data,
one can choose the following calibration instruments.

Option Maturity Tenor Swap type Strike

1Y 9Y PAYER ATM

4Y 6Y PAYER ATM

7Y 3Y PAYER ATM

9Y 1Y PAYER ATM

Table 3.1: Set of Swaption calibration instruments.

When a is chosen, one can calibrate the volatility step function in a bootstrap fashion, the
function is piecewise constant between successive option maturities. So given the set of n
swaptions, with maturities S1 < S2 < . . . < Sn, then σ(t) = σi for all t ∈ [Si−1, Si]. Given the
first swaption, σ(t) = σ1 is chosen such that

PSwaption(0, T 1
m, N,ATM){σ1} = V 1

P-swaption(0){σ1market},
where PSwaption(0, T 1

m, N,ATM) given by (3.16), the analytic pricing formula for swaptions
under the one-factor Hull-White model and V 1

P-swaption(0) given by (2.14), Black’s pricing formula

for swaptions. The superscript in T 1
m is to make clear that we have to take the set of payment

dates of the underlying swap of the first swaption. Note that the volatility parameter σ which we
use in Black’s formula is not the same as σ1. We take in Black’s formula the volatility observed
in the swaption market. Having σ1, · · · , σi−1, we determine σi by
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PSwaption(0, T i
m, N,ATM){σ1, · · · , σi} = V i

P-swaption(0){σimarket}
This method is fast because at each step we have to solve one equation with one unknown and
there exist fast and stable analytic or numerical methods to calculate the swaption prices in the
one-factor Hull-White model.

3.5 Implied volatility skew under the Hull-White model.

In this section we show a couple of calibration results of the Hull-White model to market data.
We illustrate that the Hull-White model is not able to fit the whole volatility skew, only the
instrument to which we calibrate. This will be the starting point of this thesis. We try to
find better short rate models which are more powerful in fitting the market volatility skew. In
Chapter 4 we explain the Cheyette model and later on we discuss a stochastic volatility (SV)
model.

The results in this section are based on the USD data for date 31 May 2010. Our set of calibration
instruments contains nine payer at the money (ATM) swaptions such that maturity plus tenor
equals ten years. We call this a strip of co-terminal swaptions. See Table 3.2.

Option Maturity Tenor Swap type Strike

1Y 9Y PAYER ATM

2Y 8Y PAYER ATM
...

...
...

...

9Y 1Y PAYER ATM

Table 3.2: Set of Swaption calibration instruments.

The mean reversion is chosen to be a = 0.03. The calibration of the piecewise constant function
σ(t) is done as described in Section 3.4, using the analytic pricing formula for swaptions in
the piecewise constant Hull-White model. In this case the set [0 = S0, S1, . . . Sn] is given by
[0, 1, 2, . . . , 10]. The result of the calibration process is given in Table 3.3.

t ∈ (l, u] (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9] (9, 10]

σi × 10−2 1.244 1.219 1.123 1.119 1.126 1.009 0.943 0.831 0.662 0.662

Table 3.3: Piecewise constant σ(t), with mean reversion a = 0.03.

We can use this set of parameters to price interest rate products. For example, to price swaptions
along a set of strikes, not necessarily ATM, using the analytic pricing formula for swaptions.
Our choice is to show results for a X into Y year swaption for strikes

K ∈ ATM+ {−3%,−2%,−1%,−0.25%, 0, 0.25%, 1%, 2%, 3%} .
To calculate the implied volatility we make use of Black’s formula. Given a Hull-White model
price for a swaption, we find the implied volatility σ that yields the same swaption price using
Black’s formula. If the Hull-White model has a satisfactory performance to fit the market skew,
then the implied volatility skew should be close to the market volatility skew.
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3.5.1 Results 1Y into 9Y swaption

In this subsection the results for a 1 year maturity swaption with 9 year tenor are given. In
Table 3.4 the Hull-White price, model implied volatility and market volatility are summarized.

Strike Hull-White Price Implied Volatility Market Volatility

ATM - 2% 1566.65 0.54187 0.371485

ATM - 1% 859.81 0.408656 0.346571

ATM - 0.25% 444.998 0.355662 0.341898

ATM 339.465 0.341999 0.342297

ATM + 0.25% 251.593 0.329736 0.342696

ATM + 1% 84.7359 0.299305 0.347294

ATM + 2% 12.1729 0.268851 0.356597

ATM + 3% 0.954037 0.245723 0.367135

Table 3.4: Results of a 1Y into 9Y swaption. ATM ≈ 0.0321581

In Figure 3.1 the implied volatility skew is drawn in comparison to the market skew.
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Figure 3.1: 1Y9Y: Model implied volatility skew compared to market skew.
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3.5.2 Results 9Y into 1Y swaption

In this subsection the results for a 9 year maturity swaption with 1 year tenor are given. In
Table 3.5 the Hull-White price, model implied volatility and market volatility are summarized.

Strike Hull-White Price Implied Volatility Market Volatility

ATM - 3% 238.829 0.431434 0.313412

ATM - 2% 177.804 0.317207 0.265022

ATM - 1% 125.243 0.261441 0.238545

ATM - 0.25% 92.4272 0.234348 0.228753

ATM 82.8262 0.226973 0.227276

ATM + 0.25% 73.8975 0.220223 0.225798

ATM + 1% 51.0765 0.202977 0.225134

ATM + 2% 29.2048 0.185027 0.228503

ATM + 3% 15.4143 0.170939 0.234153

Table 3.5: Results of a 1Y into 9Y swaption. ATM ≈ 0.0419482

In Figure 3.2 the implied volatility skew is drawn in comparison to the market skew.
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Figure 3.2: 9Y1Y: Model implied volatility skew compared to market skew.

3.5.3 Conclusion

From these results we see that Hull-White performs poorly when trying to fit the market volatil-
ity skew. As expected we matched the ATM-level, since we calibrated the model to this strike.
For small strikes we have a big mismatch with the market skew. In this case the model overprices
the swaption and for high strikes we underprice the swaption. This is one of the main drawbacks
of the Hull-White model. The model performs bad in fitting the market volatility skew, as we
have seen in the previous subsection. For this reason we look for other short rate models, to
improve the fit to the market volatility skew. In Chapter 4 we start with a discussion of the
Cheyette model with constant elasticity of variance and displaced diffusion formulation.



Chapter 4

The Cheyette model without
Stochastic Volatility

In this chapter we give a formulation of the constant elasticity of variance and displaced diffu-
sion formulation of the Ritchken-Sankarasubramanian model, without stochastic volatility. A
stochastic volatility formulation will be discussed in Chapter 5. Another more convenient name
for the Ritchken-Sankarasubramanian model is the Cheyette model. These models are embed-
ded in the HJM framework for the instantaneous forward rates. The aim of introducing this
kind of models is to get a better fit to the market skew of swaption volatilities. This chapter
discusses the following topics.

• Theoretical background, see Section 4.1.

• CEV and DD formulation of the Cheyete model, see Section 4.2.

• Brief discussion of the CEV formulation, see Section 4.3.

• Displaced Diffusion model, see Section 4.4.

4.1 Theoretical background

In this section we give the main results without all proofs. For details about the derivations, we
refer to [4].

The Cheyette model is an instantaneous short rate model embedded in the HJM-framework that
models the instantaneous forward rates. In the HJM-framework we assume that the dynamics
under the risk-neutral measure of the instantaneous forward rates are given by:

df(t, T ) = αf (t, T )dt+ σ(t, T )dWQ0
(t),

f(0, T ) = fmkt(0, T ),
(4.1)

where fmkt represents the market instantaneous short rate at time t = 0, for maturity T . In
order for this model to be arbitrage free, the drift term must be of the form:

αf (x, y) = σ(x, y)

∫ y

x
σ(x, s)ds.

Substituting this expression into the dynamics (4.1), and integrating both sides from 0 to t,
yields

31
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f(t, T ) = f(0, T ) +

∫ t

0
σ(u, T )

(∫ T

u
σ(u, s)ds

)

du+

∫ t

0
σ(u, T )dWQ0

(u).

Hence, since r(t) = f(t, t), the instantaneous short rate given by the HJM-framework is

r(t) = f(0, t) +

∫ t

0
σ(u, t)

(∫ t

u
σ(u, s)ds

)

du+

∫ t

0
σ(u, t)dWQ0

(u). (4.2)

From the equation above, we can see that the time variable t appears in the stochastic integral
as an integration upper bound and as part of the integrand function, which in general is not a
Markov process. For more information on this topic see [9]. In order to get a Markovian process,
one needs a restriction on the volatilities σ(x, y) of all forward rates. If we assume them to be
of the form

σ(x, y) = η(x, x)k(x, y),

k(x, y) = exp

(

−
∫ y

x
κ(v)dv

)

,

where η(x, x) is the instantaneous volatility of the spot interest rate and κ(v) is some determin-
istic function, then this will lead to a one- or two-state Markovian term-structure model. See
also [9]. Calculating the differential of (4.2) with this choice of σ(x, y) yields:

dr(t) =

(

κ(t) [f(0, t)− r(t)] + y(t) +
∂f(0, t)

∂t

)

dt+ η(t, t)dWQ0
(t), (4.3)

dy(t) =
(
η2(t, t)− 2κ(t)y(t)

)
dt, (4.4)

where y(t) represents the accumulated variance for the forward rate up to date t which captures
the path dependence of the process, and has the form

y(t) =

∫ t

0
σ2(u, t)du.

Note that σ2(u, t) is allowed to be non-deterministic. In order to avoid the computation of the
derivative of the instantaneous forward rate we model:

x(t) = r(t)− f(0, t). (4.5)

The differential is given by dx(t) = dr(t)− ∂f(0,t)
∂t dt. Hence the dynamics of x(t) are

dx(t) = (y(t)− κ(t)x(t)) dt+ η(t, t)dWQ0
(t),

dy(t) =
(
η2(t, t)− 2κ(t)y(t)

)
dt,

(4.6)

with initial conditions x(0) = y(0) = 0. One can show that for this setup in the HJM framework,
the price at time t of a zero-coupon bond, maturing at time T , is:

P (t, T ) =
PM (0, T )

PM (0, t)
e−x(t)B(t,T )− 1

2
y(t)B2(t,T ), (4.7)

with PM (0, t) the zero-coupon bond price observed in the market and B(t, T ) =
∫ T
t k(t, x)dx.

Proof. See Appendix B.2.



4.2. CEV AND DD FORMULATION OF THE CHEYETE MODEL 33

Moreover when we assume the mean reversion parameter κ(t) to be constant, κ(t) = a, then
B(t, T ) is given by

B(t, T ) =

∫ T

t
e−

∫ x

t
advdx =

∫ T

t
e−a(x−t) =

1

a

(

1− e−a(T−t)
)

. (4.8)

For some purposes it is convenient to work with the dynamics of x(t) under the T -forward
measure, for example in a Monte Carlo implementation. This means that we have to change the
martingale measure Q0, corresponding to the money market account,

M(t) = exp
(∫ t

0 r(s)ds
)

as a numeraire, to a martingale measure QT corresponding to the

zero-coupon bond with maturity T as a numeraire. We briefly describe the steps to derive the
dynamics of x(t) under the T -forward measure:

Denote the Radon Nikodym derivative process by ζ(t)0,T = dQT

dQ0 in Ft. In this case

ζ(t)0,T = M(0)
P (0,T )

P (t,T )
M(t) , which is a martingale under Q0. The differential is given by

dζ(t)0,T = −ζ(t)0,TB(t, T )η(t, t)dWQ0
(t).

Solving this SDE yields

ζ(t)0,T = exp

(

−1

2

∫ t

0
B2(s, T )η(s, s)2ds−

∫ t

0
B(s, T )η(s, s)dW (s)

)

.

Taking B(t, T )η(t, t) as the Girsanov kernel and by defining

dWQT

(t) := dWQ0
(t) +B(t, T )η(t, t)dt,

we find that WQT
(t) is a standard Brownian motion under QT . This is a result from Gir-

sanov’s Theorem. Substituting dWQ0
(t) = dWQT

(t) − B(t, T )η(t, t)dt in Equation (4.9) gives
the dynamics of x(t) under the forward measure:

dx(t) =
(
−κ(t)x(t) + y(t)−B(t, T )η2(t, t)

)
dt+ η(t, t)dWQT

(t),

dy(t) =
(
η2(t, t)− 2κ(t)y(t)

)
dt.

(4.9)

4.2 CEV and DD formulation of the Cheyete model

In this section we discuss the constant elasticity of variance (CEV) and displaced diffusion (DD)
formulation of the Cheyette model. In the CEV formulation the instantaneous volatility η(t, t)1

is given by:

η(t, x(t)) := σ(t)[r(t)]γ(t). (4.10)

In the DD formulation the instantaneous volatility is given by

η(t, x(t)) := σ(t)[γ(t)r(t) + (1− γ(t))R0], (4.11)

where σ(t) and γ(t) are parameters which one has to calibrate to appropriate market data. We
allow both to vary in a piecewise constant time-dependent manner. In the DD formulation R0

is a constant.
1Note that we replace η(t, t) by η(t, x(t)). Since η(t, t) is allowed to depend on the state variable x(t). Writing

η(t, x(t)) instead of η(t, t) makes this more clear.
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4.3 Brief discussion of the CEV formulation

We will briefly discuss the CEV formulation of the Cheyette model. First, the term r(t)γ(t) can
become a complex number if r(t) < 0. This creates numerical complications in the diffusion
part. To avoid this, one can use a different formulation for the instantaneous volatility, such as

η(t, x(t)) = σ(t) |r(t)|γ(t) .

This choice is valid, since under the HJM framework there is complete freedom on the choice of
the instantaneous volatility.

Another inconvenience arrises if r(t) → 0, since the term |r(t)|γ(t) might go to infinity. We can
avoid this problem by setting |r(t)|γ(t) = 0 for r(t) ∈ [−δ, δ] and small values of δ. But then the
empirical distribution of the forward rate has a spike near low levels. Another possibility is to
set |r(t)|γ(t) = δγ(t). In this case we get rid of this peak. Since we allow γ(t) to take negative
values. The drawback is that it is possible that we obtain a bi-model distribution for x(t). So
to avoid this, a domain for the pair (σ, γ) has to be defined on a regular basis such that this
never happens. But this is not an easy task. Further details about this model and these issues
can be found in [7].

The calibration of this model is done so far by Monte Carlo methods, a discussion of the calibra-
tion part can be found in [6]. The model can be calibrated to two swaptions with two different
strike levels per maturity. For example, take a set of swaptions where for each maturity we have
a payer swaption with strike ATM + 0.5% and a receiver swaption with strike ATM − 0.5%.
Because the model has two degrees of freedom, we can choose γ(t) and σ(t) such that both
options are priced back with the model. Hence a better fit around the ATM-level of the model
implied volatility skew to the swaption market volatility skew is expected.

4.4 Displaced Diffusion model

Because of the drawbacks found in the CEV formulation of the Cheyette model we will investigate
the DD formulation of the Cheyette model. In this model we take for the instantaneous volatility

η(t, x(t)) = σ(t) [γ(t)r(t) + (1− γ(t))R0] . (4.12)

We restrict γ(t) to take values in [0, 1]. In this section we discuss a pricing method to approximate
the swaption prices under the DD model. We discuss the following topics:

• Dynamics of the swap rate under the swap measure.

• Approximation of the swap rate dynamics.

• Pricing formulas.

• Remarks on the approximations.

• Validation of the approximation method.
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4.4.1 Dynamics of the swap rate under the swap measure

For the DD formulation of the Cheyette model, we want to derive the dynamics of the swap
rate under the annuity measure (or equivalent swap measure). There is literature available [10]
on how to do this for general dynamics under the risk-neutral measure. We refer the reader to
Appendix A for more details. To apply what is discussed in Appendix A to the DD model, we
note that the model can be written as

dx(t) = a

(
y(t)

a
− x(t)

)

dt+ η(t, x(t))dWQ0
,

η(t, x(t)) = σ(t) [γ(t)r(t) + (1− γ(t))R0] ,

x(0) = 0.

where

y(t) =

∫ t

0
η(s, x(s))2e−2(t−s)ds.

With the notation given in (A.1),

A = a,

θ =
1

a

∫ t

0
η(s, x(s)2e−2(t−s)ds,

α = 1,

β = 0,

Σ = η(t, x(t)).

(4.13)

Note that A, θ,Σ and V (t) = 1 are adapted processes to the filtration F generated by the
Brownian motion under the risk-neutral measure Q0. The swap rate dynamics under the swap
measure are given by

dS0,m(t) =

{
m∑

i=0

qSi (t)B(t, Ti)

}

σ(t) [γ(t)r(t) + (1− γ(t))R0] dW
Q1,m

(t)

=
∂S0,m(t)

∂x
σ(t) [γ(t)r(t) + (1− γ(t))R0] dW

Q1,m
(t),

(4.14)

with the coefficients qSi (t) as in Equation (A.8).

4.4.2 Approximation of the swap rate dynamics

In this subsection we make some approximations to the derived swap rate dynamics for the DD
model. The approximations are made to replace the non-deterministic terms by time-depenent
terms. Once this is done, we can obtain closed form formulas of swaption prices.

Note that we can rewrite the swap rate dynamics in Equation (4.14) as

dS0,m(t) =

[
∂S0,m(t)

∂x

γ(t)r(t) + (1− γ(t))R0

γ(t)S0,m(t) + (1− γ(t))R0

]

(γ(t)S0,m(t) + (1− γ(t))R0)σ(t)dW
Q1,m

(t),

(4.15)
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see [11]. To remove part of the randomness we replace all Q1,m martingale terms (and factors) by
their time zero values. The only non-deterministic term which is not a martingale under the swap
measure is r(t). One can make several suggestions to remove the randomness. One possibility is
to set r(t) ≈ EQ1,m

[r(t)]. Another, more crude estimate is to replace r(t) by r(t)|x(t)=0 = f(0, t)
(see Equation (4.5)). Because replacing r(t) by its expectation is non trivial, we choose the
latter option. Hence we approximate the dynamics of the swap rate under the swap measure by
the following SDE.

dS0,m(t) ≈ (γ(t)S0,m(t) + (1− γ(t))R0)λ(t)σ(t)dW
Q1,m

(t), (4.16)

with

λ(t) =

[

∂S0,m(t)

∂x

∣
∣
∣
∣
qSi (0)

γ(t)f(0, t) + (1− γ(t))R0

γ(t)S0,m(0) + (1− γ(t))R0

]

,

where

∂S0,m(t)

∂x

∣
∣
∣
∣
qSi (0)

=
m∑

i=0

qSi (0)B(t, Ti).

4.4.3 Pricing Formulas

If we assume the displacement parameter γ(t) to be constant, then we can derive semi-exact
pricing formulas. We distinguish two cases, γ = 0 and γ > 0.

Pricing formula for γ > 0

To derive the pricing formula we define

S0,m(t) = γS0,m(t) + (1− γ)R0, (4.17)

K = γK + (1− γ)R0. (4.18)

Now it is easy to see that S0,m(t)−K = 1
γ

[
S0,m(t)−K

]
. The differential of S̄0,m(t) is given by

dS̄0,m = d (γS0,m(t)) + d ((1− γ)R0)

= γd (S0,m(t)) ≈ γλ(t)σ(t)S̄0,m(t)dWQ1,m
(t).

Hence S̄0,m(t) has an (approximate) log-normal distribution. The price of the payer swaption
in terms of the new variables is

V pay
0,m (0) = P1,m(0)EQ1,m [

(S0,m(T0)−K)+
]
=
P1,m(0)

γ
EQ1,m

[(
[S̄0,m(T0)−K]

)+
]

.

If we solve the expectation, then we obtain Black’s Formula with a specific volatility. To prove
this Proposition 4.4.1 is helpful.

Proposition 4.4.1. Let x(t) be some stochastic process with dynamics

dx(t) = ν(t)x(t)dW (t),

x(0) = x0,
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where W (t) is a standard Brownian motion and ν(t) some deterministic function of time. Then

E
[
(x(t)−K)+

]
= x0N (d1)−KN (d2),

where

d1 =
log(x0/K) + 1

2 σ̄
2

σ̄
,

d2 = d1 − σ̄,

σ̄2 =

∫ t

0
ν(s)2ds,

N (x) =

∫ x

−∞

1√
2π
e−

1
2
s2ds.

This is Black’s formula with Black’s volatility σ2 = σ̄2/t.

Proof. See Appendix B.3.

Hence the price of a payer swaption at time 0 is given by the following formula

V pay
0,m (0) =

P1,m(0)

γ

(
S̄0,m(0)N (d1)− K̄N (d2)

)
, (4.19)

where

d1 =
log(S̄0,m(0)/K̄) + 1

2 σ̄
2

σ̄
,

d2 = d1 − σ̄,

σ̄2 = γ2
∫ t

0
σ(s)2λ(s)2ds.

Note that we have derived a semi-analytic formula for the swaption price, since
∫ t
0 σ(s)

2λ(s)2ds
has no explicit expression. λ(t) depends on the instantaneous forward rate f(0, t) which we
observe in the market. To calculate this integral numerically we propose to use the Trapezoidal
rule. Divide [0, t] in an equidistant grid with N+1 points and make the following approximation.

∫ t

0
g(s)ds ≈ t

N

{

g(0) + g(t)

2
+

N−1∑

i=1

g

(

i
t

N

)}

.

Pricing formula for γ = 0

If we take γ = 0 then (4.16) simplifies to

dS0,m(t) ≈ R0λ(t)σ(t)dW
Q1,m

(t),

with

λ(t) =
∂S0,m(t)

∂x

∣
∣
∣
∣
qSi (0)

=

m∑

i=0

qSi (0)B(t, Ti).
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In this case S0,m(t) has a normal distribution. To calculate the expectation and variance note
that

S0,m(t) = S0,m(0) +

∫ t

0
σ(s)λ(s)R0dW

Q1,m
(s).

Simple calculations show that

µ̄ = S0,m(0),

and

σ̄2 = R2
0

∫ t

0
σ(s)2λ(s)2ds = R2

0

∫ t

0
σ(s)2

(
m∑

i=0

qSi (0)B(s, Ti)

)2

ds.

Under the assumption of a piecewise constant σ(t) this integral has an analytic solution. Suppose
σ(t) is piecewise constant on intervals 0 = s0 < s1 < s2 < . . . < sp = t, then

∫ t

0
σ(s)2λ(s)2ds =

p
∑

i=1

σ2i

∫ si

si−1

m∑

j,k=0

qSi (0)q
S
k (0)B(s, Tj)B(s, Tk)ds

=

p
∑

i=1

σ2i

m∑

j,k=0

qSi (0)q
S
k (0)

∫ si

si−1

B(s, Tj)B(s, Tk)ds.

Some calculus shows that

∫ u

l
B(s, Tj)B(s, Tk)ds =

1

a3

(

a(u− l)− e−a(Tk−u) + e−a(Tk−l) − e−a(Tj−u) + e−a(Tj−l)

+
1

2
e−a(Tj+Tk−2u) − 1

2
e−a(Tj+Tk−2l)

)

.

Hence we can calculate the expectation and variance of the corresponding normal distribution
analytic.

The time zero price of a payer swaption is given by

V pay
0,m (0) = P1,m(0)EQ1,m [

(S0,m(T0)−K)+
]

= P1,m(0)
[
σ̄N ′(α) + (S0,m(0)−K)N (α)

]
,

where

α =
S0,m(0)−K

σ̄

N ′(x) =
1√
2π
e−

1
2
x2

Proposition 4.4.2 proves this result.
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Proposition 4.4.2. Let X be a normally distributed random variable with expectation µ and
standard deviation σ. Fix K ∈ R then

E[(X −K)+] = σN ′(α) + (µ−K)N (α),

where

α =
µ−K

σ
,

N ′(x) =
1√
2π
e−

1
2
x2
.

Proof. Define Z to be a standard normal random variable and f(x) the standard normal density
then:

E[(X −K)+] = E[(Zσ + µ−K)+] =

∫ ∞

−∞

(zσ + µ−K)+f(z)dz

= σ

∫ ∞

−α
zf(z)dz + (µ−K)

∫ ∞

−α
f(z)dz

= σN ′(α) + (µ−K)N (α).

4.4.4 Remarks on the approximations

We approximated the non-deterministic terms in the swap rate dynamics by deterministic, time-
dependent terms. With these dynamics we derived (semi-)analytic formulas to price payer
swaptions. In this subsection we discuss the quality of the approximations we made. Recall that
we had to remove non-deterministic terms in

∂S0,m(t)

∂x

γ(t)r(t) + (1− γ(t))R0

γ(t)S0,m(t) + (1− γ(t))R0
.

We made the following approximations:

1. S0,m(t) ≈ S0,m(0).

2. qSi (t) ≈ qSi (0).

3. r(t) ≈ f(0, t).

The first approximation is equivalent to replacing the non-deterministic term by its expectation,
because the swap rate is a martingale under the swap measure.

The second approximation deals with
∂S0,m(t)

∂x . By this we approximate:

∂S0,m(t)

∂x
=

m∑

i=0

qSi (t)B(t, Ti) ≈
m∑

i=0

qSi (0)B(t, Ti).

If we look at the expressions of qSi (t), given in Equation (A.8), we see that the coefficients are
products of Q1,m martingales. This implies that we approximate all non-deterministic terms
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by their expectations, or equivalent their time zero values. If we assume independence between
P (t, Ti)/P0,m(t) and S0,m(t), we make an unbiased approximation i.e.:

EQ1,m (
qSi (t)

)
= qSi (0), ∀i ∈ {0, 1, · · · ,m},

and hence

EQ1,m

(
∂S0,m(t)

∂x

)

=
∂S0,m(0)

∂x
.

The third approximation deals with the term r(t). We noticed in Section 4.4.2 that this is a very
crude estimate, because we do not take properties of x(t) into account. The reason to ignore
x(t), is that its expectation is non-trivial. To see this note that:

x(t) =

∫ t

0
e−a(t−u)y(u)du+

∫ t

0
e−a(t−u)η(u, r(u))dWQ0

(u),

where

y(t) =

∫ t

0

[

σ(s) (γ(s)r(s) + (1− γ(s))R0) e
−a(t−s)

]2
ds.

If γ(t) 6= 0 then y(t) is non-deterministic. This makes the Riemann integral, in the expression
of x(t), path-dependent, which makes the expectation of x(t) non-trivial. If all randomness
was captured in the Itô integral, then it is possible to find a deterministic expression for the
expectation. Unfortunately this is not the case.

We expect that small values of the displacement parameter γ will minimize the effects of the
third approximation. With small values we mean γ ∈ (−δ, δ) for small δ ∈ R+. We have good
hope that the first approximation works quite well, under the assumption that the swap rate
is a low variance martingale under the swap measure. If there is no independence between
P (t, Ti)/P0,m(t) and S0,m(t), we expect a bias in the second approximation. Further we expect
that small values of the volatility parameter σ reduces the effects of all the approximations we
made.

In the next subsection we investigate how well these approximations work in practice.

4.4.5 Validation of the approximation method.

To investigate the approximations, we compare them with a Monte Carlo benchmark method,
for different sets of parameters. In the DD model we have four parameters: a mean reversion
parameter a, a displacement parameter γ, a scaling parameter R0 and a volatility parameter σ.
We assume the mean reversion parameter a and scaling parameter R0 to be constant and set
them equal to a = 0.03 and R0 = 0.02. The displacement parameter γ and volatility parameter
σ are varying.

In this subsection we discuss:

• Market data and implementation details.

• Test strategy.

• Criteria to determine the validity of Dirkmanns method.

• Pricing results and the impact on the implied volatility skew.

• Conclusion.
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Market data and implementation details.

For the validation of the approximations we consider the market data from 31 May 2010. For
the implementation we used Matlab, where we ignored day count conventions and all dates were
given in year fractions. The tests were done for two different swaptions with maturities of 10-,
and 20 years. We considered these swaptions on an underlying Pay IRS, with notional N = 1,
swap tenor of 10, semi annual coupons and for different strikes K, where:

K ∈ ATM+ {−2%,−1.5%,−1%,−50bp,−25bp, 0, 25bp, 50bp, 1%, 1.5%, 2%}. (4.20)

We implemented two pricing methods:

1. A Monte Carlo method, where we use Euler discretization for the process given in (4.9).

2. The approximation method, described in Sections 4.4.1 - 4.4.3, proposed by Dirkmann
[11]. We use the semi-analytic pricing formulas, given in Section 4.4.3. In the remainder
of this chapter, we call this Dirkmann’s method.

We take the Monte Carlo method as our benchmark method. We discretize the process in
(4.9) with stepsize dt = 0.01. With this discretization we can obtain samples (X(T0), Y (T0))
and calculate realizations of (2.21). Taking the mean gives an approximation of the swaption
price. We take N = 50, 000 Monte Carlo samples to get an accurate price2. We assume that
our benchmark method generates unbiased swaption prices and hence corresponding implied
volatilities. Since we take a small time step and a large number of simulations, this is a safe
assumption, since the mean is an unbiased estimator for the expectation.

Test strategy

To test the performance of Dirkmann’s method for different sets of parameters (γ, σ), we perform
the following steps.

1. Choose two parameters γ and σ, γ ∈ R and σ > 0.

2. Compute for all strike levels K, given in Equation (4.20), the swaption price via the Monte
Carlo method to get a benchmark price.

3. Corresponding to each benchmark price compute Black’s implied volatility.

4. Compute for all strike levelsK, given in Equation (4.20), the swaption price via Dirkmann’s
method.

5. Corresponding to each Dirkmann price compute Black’s implied volatility.

6. Compute the relative difference between the benchmark prices and the Dirkmann prices.

Criteria to determine the validity of Dirkmann’s method

Dirkmann’s method is a fast pricing method to price swaptions, because there are closed form
pricing formulas available. This is one of the main advantages of Dirkmann’s method, however
Dirkmann’s price is an approximation of the true swaption price. Here we define the ‘true
swaption price’ as the swaption price implied by the DD model.

2N = 50, 000: We compared benchmark prices generated with dt = 0.01 to benchmark prices with dt = 0.005.
The relative difference between them is approximately 50bp. Prices are not sensitive to changes in dt anymore,
hence we assume that dt = 0.01 is a sufficiently small timestep for testing.
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Figure 4.1: Market data: 31 May 2010. Swaption: 10Y10Y

Fast pricing methods are interesting for calibration purposes. Suppose that we calibrate the
model to one option maturity. Then we need two swaptions with the same option maturity,
but with different strikes since we have two degrees of freedom in the model, namely σ and γ.
One choice is to take one strike to be ATM+100bp and the other ATM− 100bp. From market
experience it is known that the volatility at a strike of ATM−100bp is approximately 100bp
higher than at the ATM-level. At a strike of ATM+100bp it is approximately 50bp lower than
at the ATM-level. We illustrate this with a market data example. In the left plot of Figure 4.1,
we show the swaption market volatility skew corresponding to a 10Y-10Y swaption. The right
plot of Figure 4.1 shows the difference in basis points between the volatility at strike ATM+x%
and the volatility at strike ATM.

We assumed that our benchmark method generates unbiased swaption prices. This implies that
for dt→ 0 and N → ∞ the benchmark price converges to the true swaption price. Hence Black’s
implied volatility, corresponding to our benchmark price, converges to the true Black’s implied
volatility. In the calibration process we need a swaption pricer. If we use our benchmark method
in the calibration process, then it is possible to match the market volatility skew at strike levels
ATM− 100bp and ATM+100bp, for some set of parameters (γ, σ). For N sufficiently large and
dt sufficiently small, we assume to have an accurate approximation of the true swaption price.
Hence with this set of parameters the model is calibrated perfectly to the market volatility skew
at strike levels K = ATM ± 100bp . A drawback is that this pricing method is slow compared
to Dirkmann’s method.

To speed up the calibration we can choose Dirkmann’s method in the calibration process. Since
Dirkmann’s method approximates the true swaption price, the question is how much confidence
we have in the resulting parameters. To decide whether Dirkmann’s method is a satisfactory
pricing method for calibration purposes or not, we make the following analysis.

• Choose an arbitrary set of parameters (σ, γ). We assume these are the values obtained
when calibrating to strike levels ATM± 100bp, using Dirkmann’s method.

• For strike level ATM + 100bp, calculate the difference between Black’s implied volatility
corresponding to Dirkmann’s method and Black’s implied volatility corresponding to the
benchmark method. We denote the absolute difference by d+.
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• For strike level ATM − 100bp, calculate the difference between Black’s implied volatility
corresponding to Dirkmann’s method and Black’s implied volatility corresponding to the
benchmark method. We denote the absolute difference by d−.

• If d+ or d− are larger then 100bp, or 50bp respectively, we do not have much confidence
in the set of parameters (σ, γ).

Assume that σ and γ are calibrated. We are then able to use these calibrated parameters to price,
with the DD benchmark model, the instruments that were used for calibration. We denoted the
difference between both methods d+ and d− for the ATM+100bp and ATM−100bp swaption,
respectively. Finally d+ and d− are compared to 100bp and 50bp respectively to determine the
reliability of the parameters.

As we have mentioned before, in Section 4.4.4, we expect Dirkmann’s method to work quite well
for small values of the displacement parameter γ and volatility parameter σ.

Pricing results and the impact on the implied volatility skew

After performing the steps described in the test strategy section, we discuss the results corre-
sponding to a 10Y-10Y swaption and a 20Y-10Y swaption. We show the results for the following
choice of parameters:

• Swaption 10Y-10Y: γ = 0.2, σ = 0.2.

• Swaption 10Y-10Y: γ = 0.8, σ = 0.2.

• Swaption 20Y-10Y: γ = 0.2, σ = 0.1.
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Results for the 10Y-10Y swaption, with parameters γ = 0.2, σ = 0.2

Strikes Benchmark Dirkmann Relative Benchmark Dirkmann Difference
around price price difference implied implied in implied
ATM volatility volatility volatility

-2% 0.12128 0.12121 -0.050% 0.11528 0.11326 -20.2 bp

-1% 0.0661 0.06620 0.115% 0.09754 0.09800 4.6bp

-50bp 0.04374 0.04381 0.143% 0.09261 0.0928 2.5bp

-25bp 0.03445 0.03449 0.121% 0.09052 0.09067 1.5bp

0 0.02655 0.0265 -0.01% 0.0887 0.08868 -0.16bp

+25bp 0.01999 0.0199 -0.188% 0.08700 0.08687 -1.2bp

+50bp 0.01473 0.01464 -0.593% 0.08551 0.08521 -3.0bp

+1% 0.0075 0.0073 -2.533% 0.08310 0.08227 -8.3bp

+2% 0.00157 0.00139 -11.871% 0.07953 0.07753 -20.0bp

Table 4.1: 10Y-10Y: γ = 0.2, σ = 0.2, ATM-level ≈ 0,0394

−0.02 −0.01 0 0.01 0.02
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12
Figure with implied volatility skews

ATM + x %

Im
pl

ie
d 

vo
la

til
ity

 

 

−0.02 −0.01 0 0.01 0.02
−5

0

5

10

15

20

25
Difference in implied volatility

ATM + x%

di
ffe

re
nc

e 
in

 b
as

is
 p

oi
nt

s

Benchmark implied volatility
Dirkmanns implied volatility

Figure 4.2: 10Y-10Y: γ = 0.2, σ = 0.2, ATM-level ≈ 0.0394

Figure 4.2 looks quite promissing, although there is a relative pricing mismatch of at most 2.5%
for strikes between ATM− 100bp and ATM+ 100bp. If we look to strike levels
ATM± 100bp, we see an absolute difference of at most 8.3bp in the implied volatility. Hence, if
we get these parameters from the calibration process, we have to include an uncertainty region
of approximately 10bp around the implied volatility at strike ATM+ 100bp and an uncertainty
region of 5bp at strike ATM− 100bp .
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Results for the 10Y-10Y swaption, with parameters γ = 0.8, σ = 0.2

Strikes Benchmark Dirkmann Relative Benchmark Dirkmann Difference
around price price difference implied implied in implied
ATM volatility volatility volatility

-2% 0.1213 0.1217 0.36 % 0.115 0.1265 115.6 bp

-1% 0.0694 0.0706 1.83% 0.1159 0.1226 67.3bp

-50bp 0.0499 0.0511 2.28% 0.117 0.1214 44.1bp

-25bp 0.042 0.043 2.25% 0.1175 0.1209 33.6 bp

0 0.0352 0.0359 2.04% 0.118 0.1204 24.3bp

+25bp 0.0294 0.0299 1.66% 0.1184 0.12 16.2bp

+50bp 0.0245 0.0247 1.02% 0.1188 0.1196 8.3bp

+1% 0.0169 0.0167 0.91% 0.1195 0.119 -5.5bp

+2% 0.008 0.0074 -7.5% 0.1209 0.118 -29.9bp

Table 4.2: 10Y-10Y: γ = 0.8, σ = 0.2, ATM-level ≈ 0,0394
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Figure 4.3: 10Y-10Y: γ = 0.8, σ = 0.2, ATM-level ≈ 0.0394

From Figure 4.3 we see that the approximation method performs poorly for this set of parame-
ters. The shape of the implied volatility skew is different from that of our benchmark method.
Although we have a relative pricing mismatch of at most 2.28% for strikes between ATM−100bp
and ATM+100bp. If we look to strike level ATM−100bp, we see an absolute error of 67.3bp in
the implied volatility. Hence, if we get these parameters from the calibration process, we have
to include an uncertainty region of approximately 70bp, around the implied volatility at strike
ATM − 100bp. This uncertainty is clearly greater than the 50bp difference observed at strike
levels at ATM+100bp.
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Results for the 20Y-10Y swaption, with parameters γ = 0.2, σ = 0.1

Strikes Benchmark Dirkmann Relative Benchmark Dirkmann Difference
around price price difference implied implied in implied
ATM volatility volatility volatility

-1.5% 0.0654 0.0654 0.09% 0.074 0.0816 75.9bp

-1% 0.0443 0.0444 0.23% 0.0693 0.0713 19.9bp

-50bp 0.0258 0.0259 0.46% 0.0636 0.0645 8.4bp

-25bp 0.0182 0.0183 0.55% 0.0613 0.0618 5.5bp

0 0.0122 0.0123 0.53% 0.0592 0.0596 3.2bp

+25bp 0.0077 0.0077 0.23% 0.0575 0.0576 0.9bp

+50bp 0.0046 0.0045 -0.28% 0.0559 0.0558 -0.7bp

+1% 0.0013 0.0013 -2.82% 0.0532 0.0529 -3.9bp

+2% 5.76E-5 4.92E-5 -14.52% 0.0492 0.0484 -8.4bp

Table 4.3: 20Y-10Y: γ = 0.2, σ = 0.1, ATM-level ≈ 0.0266
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Figure 4.4: 20Y-10Y: γ = 0.2, σ = 0.1, ATM-level ≈ 0.0266

Again, like in the 10Y-10Y case, we have for a small γ and small σ quite good pricing results
for the 20Y-10Y swaption. For strikes between ATM ± 100bp we have at most a mismatch in
the price of 2.82%. However, at strike level ATM − 100bp we have a mismatch of 19.9bp in
the implied volatility. This means, if we calibrate to a strike level of ATM− 100bp, we have to
include an uncertainty region of approximately 20bp.
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Conclusion

From the results we have shown, we can draw several conclusions.

1. We saw that we can obtain approximations of the swaption price, up to an accuracy of 2%
with respect to our benchmark price, given small values of the displacement parameter γ
and volatility σ. The implied volatility skews from Dirkmann’s method and our benchmark
method have the same shape and match each other closely.

2. For calibration purposes Dirkmann’s method may not work satisfactory. As we saw ear-
lier, if we calibrate to a 20Y-10Y swaption with strikes ATM ± 100bp and the resulting
parameters are (γ̄, σ̄) = (0.2, 0.1), then we have to include an uncertainty region of 20bp
around the implied volatility.

Only for short maturities and calibration to strikes close around the ATM level, say ±25bp,
it may give an acceptable uncertainty window. So even in the case where we have a small
σ and γ, it does not imply that this approximation method works well satisfactory for
calibration.

3. From the case of a 10Y-10Y swaption and a displacement parameter γ = 0.8 in the model,
we observed that the errors obtained in the approximations become more visible than in
case of small values for the displacement γ. This is something we already expected in
paragraph 4.4.4. The implied volatility skew of the approximation method has a totally
different shape than our benchmark implied volatility skew, see Figure 4.3. This directly
implies that we have to include a larger uncertainty window than with a small displacement
parameter.

4. The uncertainty regions we have to include are relatively large with respect to an expected
increase or decrease of 100bp respectively 50bp in the market volatility skew at strike levels
ATM ± 100bp. Even for a small displacement and a small volatility, where we expect a
good performance of Dirkmann’s method, we have to include a significant error window.
As we have seen from the 20Y-10Y swaption with displacement γ = 0.2 and σ = 0.1 an
error window of 20bp.

These effects will have more impact in case of longer maturities, larger displacement parameters
γ, and larger volatility parameters σ. Even in case of small values of γ and σ, we see that
Dirkmann’s method is not suitable as a swaption pricer in the calibration process. For the DD
model, Dirkmann’s method has a limiting scope of applicability. If we want to apply this method
in the calibration process, we have to make several restrictions:

1. A short option maturity T .

2. Strike levels, to which we want to calibrate the model, should be close to the ATM-level.

3. γ ∈ [0, δ] with δ ∈ R+ small.

4. σ ∈ [0, ǫ] with ǫ ∈ R+ small.

Only under these conditions and the assumption that there exists a pair of parameters (γ, σ),
γ ∈ [−δ, δ] and σ ∈ [0, ǫ], such that Dirkmann’s method matches the market skew at the strike
levels to which we calibrate the model, we may expect a sufficiently small error window around
the implied volatily. But for general calibration purposes we do not choose for Dirkmann’s
method.
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Chapter 5

Displaced Diffusion model with
Stochastic Volatility

In Chapter 4 we discussed the DD formulation of the Cheyette model without stochastic volatil-
ity. In this model the instantaneous short rate r(t) is modelled by the one-factor model:

r(t) = f(0, t) + x(t)

Recall that the differential of x(t), under the risk-neutral measure, is given by;

dx(t) = (y(t)− ax(t)) dt+ η(t, x(t))dWQ0
(t),

dy(t) =
(
η2(t, x(t))− 2ay(t)

)
dt,

where the instantaneous volatility function is given by:

η(t, x(t)) = [γ(t)r(t) + (1− γ(t))R0]σ(t). (5.1)

In this formulation there are no stochastic terms involved that are driven by some other random
process than the Brownian motion driving x(t). Up to now, the instantaneous volatility function
depends on two deterministic functions of time, one constant and the state variable x(t). To
extend the DD model to a displaced diffusion model with stochastic volatility (DDSV), we make
the instantaneous volatility function dependent on some stochastic process, V (t), driven by a
different Brownian motion process than the Brownian motion driving x(t).

In this chapter we consider the following topics

• Formulation of the DDSV model, see Section 5.1.

• The dynamics of the swap rate under the annuity measure, see Section 5.2.

• Approximation of the swaption price under the DDSV model, see Section 5.3.

• Parameter averaging, see Section 5.4.

• Efficient implementation method, see Section 5.5.

• Simulation of the DDSV model under the T -forward measure, see Section 5.6.

• The case of non zero correlation, ρ 6= 0, see Section 5.7.

• Numerical results, see Section 5.8.

49
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5.1 Formulation of the DDSV model

To formulate the DDSV model, which is the main focus of the present thesis, we have to specify
a variance process, V (t), on which our instantaneous volatility function will depend. We choose
a Cox-Ingersoll-Ross (CIR) model to model V (t), hence the dynamics of V (t) are given by:

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWV (t). (5.2)

With β constant, ǫ(t) a deterministic function of time and WV (t) a standard Brownian motion.
This process has a unique solution if the well-known Feller condition holds

2βV (0)

ǫ(t)2
> 1, ∀t ≥ 0.

To make the instantaneous volatility function of the x(t) process dependent on the process V (t),
we choose to multiply (5.1) by

√

V (t):

η̄(t, x(t)) = η(t, x(t))
√

V (t). (5.3)

It is a trivial exercise to show that E(V (t)) = V (0). Since we multiply η(t, x(t)) by the square
root of V (t), a common choice is to set:

V (0) = 1.

We take (5.3) as the instantaneous volatility function in the DDSV formulation of the Cheyette
model. A complete formulation of the dynamics under the risk-neutral measure of this model is
given by:

Model 1: The DDSV model

dx(t) = (y(t)− ax(t))dt+ η(t, x(t))
√

V (t)dWQ0

x (t),

dy(t) = (η2(t, x(t))V (t)− 2ay(t))dt,

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ0

V (t),

(5.4)

with η(t, x(t)) given by Equation (5.1) and initial conditions x(0) = 0, y(0) = 0. To summarize,
we have the following parameters in our model:

• a the mean reversion rate of the x(t) process.

• γ(t) the piecewise constant skew function.

• σ(t) the piecewise constant volatility function.

• R0 a scaling parameter in (5.1).

• β the mean reversion of the variance process.

• ǫ(t) the piecewise constant volatility of volatility function.

Our first analysis will consider the case of uncorrelated Brownian motions, hence:

dWQ0

x (t) · dWQ0

V (t) = 0. (5.5)

In Section 5.7 we discuss the case of non-zero correlations.
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Like in the DD model, the zero-coupon bond price is given by,

P (t, T ) =
PM (0, T )

PM (0, t)
e−x(t)B(t,T )− 1

2
y(t)B2(t,T ), (5.6)

with

B(t, T ) =
1

a

(

1− e−a(T−t)
)

.

This is because the zero-coupon bond price, in the Cheyette model, is independent of the choice
of the instantaneous volatility function. To formulate a stochastic volatility model we only made
a change in the instantaneous volatility function in the x(t)-dynamics. Hence we can follow the
same proof, given in Appendix B.2, for the Cheyette zero-coupon bond price without stochastic
volatility.

Following the same ideas as in Section 4.1 and using the assumption made in Equation (5.5), we
can derive the dynamics of the process, given by Equation (5.4), under the T -forward measure.

Model 1b: The DDSV model under the T -forward measure

dx(t) =
[
y(t)− ax(t)−B(t, T )η2(t, x(t))V (t)

]
dt+ η(t, x(t))

√

V (t)dWQT

x (t),

dy(t) = (η2(t, x(t))V (t)− 2ay(t))dt,

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQT

V (t),

(5.7)

with η(t, x(t)) given by Equation (5.1) and initial conditions x(0) = 0, y(0) = 0. These dynamics
are convenient if we want to use Monte Carlo methods to price interest rate products.

5.2 The dynamics of the swap rate under the annuity measure.

To derive the dynamics of the swap rate under the swap measure, we take a similar approach
as in Section 4.4.1. The only difference is the choice of Σ in (4.13). From the dynamics of x(t),
given in Equation (5.4), we see that:

Σ = η(x(t), t)
√

V (t).

After a change of measure, from Q0 to Q1,m and due to the zero correlation between WQ0

x (t)
and WQ0

v (t) so that the drift term of V (t) remains unchanged, we derive the following system
of SDEs which models the swap rate under the annuity measure:

dS0,m(t) =

{
m∑

i=0

qSi (t)B(t, Ti)

}

η(x(t), t)
√

V (t)dWQ1,m

1 (t), (5.8)

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ1,m

2 (t). (5.9)

For a derivation we refer to Appendix A. The initial conditions are given by S0,m(0), the swap
rate corresponding to the underlying swap at time zero.

We approximate the swap rate dynamics given by Equation (5.8) by making the volatility term
deterministic

{
m∑

i=0

qSi (t)B(t, Ti)

}

η(x(t), t).



52 CHAPTER 5. DISPLACED DIFFUSION MODEL WITH STOCHASTIC VOLATILITY

We make the same approximations as in Section 4.4.2, yielding:

Model 2: The swap rate model

dS0,m(t) = [γ(t)S0,m(t) + (1− γ(t))R0]λ(t)
√

V (t)dWQ1,m

1 (t),

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ1,m

2 (t),
(5.10)

with

λ(t) :=

{
m∑

i=0

qSi (0)B(t, Ti)

}(
γ(t)f(0, t) + (1− γ(t))R0

γ(t)S0,m(0) + (1− γ(t))R0

)

σ(t), (5.11)

the deterministic part of the volatility function and f(0, t) the instantaneous forward rate at
time 0 with maturity t.

5.3 Approximation of the swaption price under the DDSV model

In this section we discuss how to calculate the price of a payer and receiver swaption, using
the swap rate model given by (5.10), under the same settings as those described in Section
2.3. To derive a semi-analytic formula for the swaption price, we need a constant displacement
parameter γ(t). For now, assume γ(t) ≡ γ to be constant, hence we consider the following
model:

dS0,m(t) = (γS0,m(t) + (1− γ)R0)λ(t)
√

V (t)dWQ1,m

1 (t),

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ1,m

2 (t),

with λ(t) defined in (5.11). For convenience we omitted the ≈ sign in the dynamics of S0,m(t).
From Formula (2.20) we know that the price of a payer swaption is given by:

V pay
0,m (0) = P1,m(0)EQ1,m [

(S0,m(T0)−K)+
]
, (5.12)

with P1,m(0) the annuity.

Under the assumption that γ > 0 and defining

S̄0,m(t) := γS0,m(t) + (1− γ)R0,

K̄ := γK + (1− γ)R0,

we obtain

V pay
0,m (0) =

P1,m(0)

γ
EQ1,m

[(
S̄0,m(T0)− K̄

)+
]

. (5.13)

The dynamics of S̄0,m, under the annuity measure Q1,m, are given by

dS̄0,m(t) = γλ(t)S̄0,m(t)
√

V (t)dWQ1,m

1 (t),

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ1,m

2 (t).
(5.14)

With initial condition:
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S̄0,m(0) = γS0,m(0) + (1− γ)R0. (5.15)

The random variable S̄0,m is then modelled by the well-known Heston dynamics. There are
several methods to calculate the expectation in (5.13). We call this the Heston part of the
option value:

Heston(S̄0,m(T0), K̄) := EQ1,m
[(
S̄0,m(T0)− K̄

)+
]

(5.16)

The problem of pricing payer swaptions is reduced to solving Equation (5.16). This equation can
be solved using the so called fundamental transform. This method will be discussed in Section
5.3.1. Before we explain this method, we derive the price of a receiver swaption. Note that the
price is given by:

V rec
0,m(0) = P1,m(0)EQ1,m [

(K − S̄0,m(T0))
+
]
, (5.17)

and that the following relation holds:

(S0,m(T0)−K)+ − (K − S0,m(T0))
+ = S0,m(T0)−K. (5.18)

Taking expectations on both sides of Equation (5.18) and using the fact that the swap rate is a
martingale under the swap measure yields:

EQ1,m [
(K − S0,m(T0))

+
]
= EQ1,m [

(S0,m(T0)−K)+
]
− S0,m(0) +K. (5.19)

Substituting (5.19) in (5.17) yields:

V rec
0,m(0) = P1,m(0)EQ1,m [

(S0,m(T0)−K)+
]
+ P1,m(0)(K − S0,m(0))

= V pay
0,m (0) + P1,m(0)(K − S0,m(0)).

Hence the relationship, between the price of a payer swaption and a receiver swaption, is given
by the following put-call parity:

V rec
0,m(0) = V pay

0,m (0) + P1,m(0)(K − S0,m(0)). (5.20)

5.3.1 Fundamental transform

In this subsection we state a result from Lewis, to calculate the Heston part in Equation (5.16).
For more information about the fundamental transform, we refer to [14]. The Heston part can
be calculated by the following inverse Fourier integral,

Heston(S̄0,m(T0), K̄) = S̄0,m(0)− K̄

2π

∫ ∞

−∞

e−(iω+α) log(K̄/S̄0,m(0))

(α+ iω)(1− α− iω)
ψX(α+ iω, T0)dω, (5.21)

where α defines the integration contour in the complex plane, a common choice is α = 1
2 .

ψX(u, T0) is given by (see [21] for more details):
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ψX(u, T ) := exp(A(0, T0) + V (0)B(0, T0)),

where A(t, T0) and B(t, T0) satisfy the following Riccati ODEs

d

dt
A(t, T0) = −βV (0)B(t, T0),

d

dt
B(t, T0) = −1

2
γ2u(u− 1)λ2(t) + βB(t, T0)−

ǫ2(t)

2
B2(t, T0),

with terminal conditions (A(T0, T0), B(T0, T0)) = (0, 0).

Special case ǫ(t) ≡ 0

We can apply this result to the SV model with ǫ(t) ≡ 0. Under this assumption our SV model
is given by:

dS̄0,m(t) =
√

V (0)γλ(t)S̄0,mdW
Q1,m

(t),

since

dV (t) = β(V (0)− V (t))dt,

implies V (t) ≡ V (0). This is a trivial exercise left to the reader. To show this, apply Itô’s
product rule to eβtV (t) to solve the equation for V (t). Hence the dynamics of S̄0,m(t) are
log-normal and we can solve the Heston part using the results from Section 4.4.3.

EQ1,m [
(S̄0,m(T0)− K̄)+

]
= S̄0,m(0)N (d1)− K̄N (d2),

with

ν2 = γ2V (0)

∫ T0

0
λ2(t)dt,

d1 =
log(S̄0,m(0)/K̄) + 1

2ν
2

ν
.

d2 = d1 − ν

Or equivalent in terms of Black’s formula:

EQ1,m [
(S̄0,m(T0)− K̄)+

]
= Black(S̄0,m(0), K̄, 0, T0, ξ), (5.22)

with Black’s volatility

ξ =
ν√
T0
.

Another way to solve the Heston part is to use Equation (5.21):

Hestonǫ(t)≡0(S̄0,m(T0), K̄) = S̄0,m(0)− K̄

2π

∫ ∞

−∞

e−(iω+α) log(K̄/S̄0,m(0))

(α+ iω)(1− α− iω)
ψ0
X(α+ iω, T0)dω, (5.23)
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with ψ0
X(u;T0) given by (see [21] for more details).

ψ0
X(u;T0) = e

1
2
ν2(u2−u),

Since (5.22) and (5.23) yield the same value, we have that:

Black(S̄0,m(0), K̄, 0, T0, ξ)− S̄0,m(0) +
K̄

2π

∫ ∞

−∞

e−(iω+α) log(K̄/S̄0,m(0))

(α+ iω)(1− α− iω)
ψ0
X(α+ iω, T0)dω = 0.

(5.24)

Fourier integral with control variate

We add the identity in (5.24) to the result in Equation (5.21), i.e. we use the case ǫ(t) ≡ 0 as a
control variate for integration, then the Heston part is given by:

Heston(S̄0,m(T0), K̄) = Black(S̄0,m(0), K̄, 0, T0, ξ)

− K̄

2π

∫ ∞

−∞

e−(iω+α) log(K̄/S̄0,m(0))

(α+ iω)(1− α− iω)
(ψX(α+ iω, T0)− ψ0

X(α+ iω, T0))dω.

Substituting α = 1/2 and the definitions of ψX(u, T0) and ψ
0
X(u, T0) into this expression yields:

Heston(S̄0,m(T0), K̄) = Black(S̄0,m(0), K̄, 0, T0, ξ)

− K̄

2π

∫ ∞

−∞

e(iω+
1
2) log(S̄0,m(0)/K̄)

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

dω,

(5.25)

with

ν2 = γ2 V (0)

∫ T0

0
λ2(t)dt,

ξ =
ν√
T0
,

(5.26)

and Aω(t, T0), Bω(t, T0) satisfying:

d

dt
Aω(t, T0) = −βV (0)Bω(t, T0),

d

dt
Bω(t, T0) =

(
1

8
+

1

2
ω2

)

γ2λ2(t) + βBω(t, T0)−
ǫ2(t)

2
B2

ω(t, T0),
(5.27)
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Simplification of the integral

The integral in (5.25) can be simplified if we note that:

∫ ∞

−∞

e(iω+
1
2) log(S̄0,m(0)/K̄)

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

dω =

∫ ∞

−∞

cos
(

ω log
(
S̄0,m(0)

K̄

))√
S̄0,m(0)

K̄

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

dω+

i

∫ ∞

−∞

sin
(

ω log
(
S̄0,m(0)

K̄

))√
S̄0,m(0)

K̄

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

dω =

2

∫ ∞

0

cos
(

ω log
(
S̄0,m(0)

K̄

))√
S̄0,m(0)

K̄

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

dω,

where we used:

• (Aω(0, T0), Bω(0, T0)) = (A−ω(0, T0), B−ω(0, T0)), this follows from the Riccati ODEs.

• The integrand with the sine is odd and vanishes.

• The integrand with the cosine is even and the region of integration is symmetric around
0.

Using this result, the Heston part simplifies to

Heston(S̄0,m(T0), K̄) = Black(S̄0,m(0), K̄, 0, T0, ξ)−

√

S̄0,m(0)K̄

π

∫ ∞

0
f(ω)dω. (5.28)

with

f(ω) :=
cos
(
ω log

(
S̄0,m(0)/K̄

))

ω2 + 1
4

(

eAω(0,T0)+V (0)Bω(0,T0) − e−
1
2
ν2(ω2+ 1

4)
)

,

where

ν2 = γ2 V (0)

∫ T0

0
λ2(t)dt,

ξ =
ν√
T0
,

and Aω(t, T0), Bω(t, T0) satisfying:

d

dt
Aω(t, T0) = −βV (0)Bω(t, T0),

d

dt
Bω(t, T0) =

(
1

8
+

1

2
ω2

)

γ2λ2(t) + βBω(t, T0)−
ǫ2(t)

2
B2

ω(t, T0),
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Solutions of the Riccati ODEs for constant λ(t) and ǫ(t)

Assume that we are in the case that λ(t) ≡ λ and ǫ(t) ≡ ǫ are both constant. Then the system
of Riccati ODEs, given by Equation (5.27), has an analytic solution. We state the following
general result

Result 5.1. Consider the following set of ordinary differential equations

dx(t)

dt
= dy(t), (5.29)

dy(t)

dt
= a+ by(t) + cy2(t), (5.30)

with terminal conditions (x(T ), y(T )) = (0, 0). Assume that a, b, c and d are constants, satisfying
ac < 0, b ≥ 0 and d ∈ R. Then the solutions for x(t) and y(t) are given by:

y(t) =
1

2c



−b+
1 +

(
b−η
b+η

)

e−η(T−t)

1 +
(
η−b
b+η

)

e−η(T−t)
η



 , (5.31)

x(t) =
bd(T − t)

2c
− d

2c
log






[

1 + η−b
η+be

−η(T−t)
]2

4 η2−b2

(η+b)2
e−η(T−t)

(

1− b2

η2

)




 , (5.32)

where we defined:

η :=
√

−4ac+ b2.

Proof. For a proof of this result, we refer to Appendix B.4 .

To get the analytic solutions of the Riccati ODEs, given by Equation (5.27), take in Result 5.1

x(t) = Aω(t, T0), y(t) = Bω(t, T0)

and

a =

(
1

8
+

1

2
ω2

)

γ2λ2, b = β, c = −1

2
ǫ2, d = −βV (0).

This implies two restrictions

1. c 6= 0 implies ǫ > 0.

2. a 6= 0 implies γ > 0, λ > 0. Note that γ > 0 is satisfied by assumption.

Implementation

In this subsection we discuss some implementation details. We have to calculate the improper
integral in Equation (5.28) numerically. For a sufficiently accurate numerical integration we
need:
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• u ∈ R+ sufficiently large to truncate the region of integration, such that
∣
∣
∣
∣

∫ ∞

u
f(ω)dω

∣
∣
∣
∣
< TOL,

for some tolerance level TOL. Then we get an initial estimate of the improper integral.
Hence ∫ ∞

0
f(ω)dω ≈

∫ u

0
f(ω)dω.

We have to truncate the region of integration, since numerical integration schemes can not
handle infinite domains.

• A numerical integration rule to approximate proper integrals:

∫ b

a
g(x)dx, [a, b] ⊂ R.

• A numerical ODE solver, to solve the Riccati ODEs when ǫ(t) and λ(t) are time-dependent.

Truncation of the region of integration

We restrict our analysis to the constant coefficient case i.e.: λ(t) and ǫ(t) constant. For now we
assume that Aω(0, T0) ≤ 0 and Bω(0, T0) ≤ 0

∣
∣
∣
∣

∫ ∞

u
f(ω)dω

∣
∣
∣
∣
≤
∫ ∞

u
|f(ω)| dω

≤
∫ ∞

u

∣
∣
∣cos

(

ω log
(
S̄0,m(0)

K̄

))∣
∣
∣

ω2 + 1
4

(∣
∣
∣eAω(0,T0)+Bω(0,T0)V (0)

∣
∣
∣+
∣
∣
∣e−(ω

2+ 1
4)ν

2/2
∣
∣
∣

)

dω

≤ 2

∫ ∞

u

1

ω2 + 1
4

dω.

(5.33)

To show that for an arbitrary ω both Aω(0, T0) ≤ 0 and Bω(0, T0) ≤ 0 hold in the constant
coefficient case, we use the following steps:

1. We can show that dy(t)
dt ≥ 0 for all t ∈ [0, T ], with y(t) given by Equation (5.31).

2. We use the terminal condition y(T ) = 0 and the fact that y(t) is increasing in t on [0, T ].
This proves y(t) ≤ 0 for all t ∈ [0, T ]. Hence Bω(t, T0) ≤ 0 for all t ∈ [0, T0].

3. We use in Equation (5.29) that y(t) ≤ 0 for all t ∈ [0, T ], this proves that dx(t)
dt ≥ 0 if d < 0

hence x(t) is increasing in t on [0, T ]. Note that d < 0 is satisfied, since d = −βV (0).

4. Since x(t) is increasing and x(T ) = 0 we have shown that x(t) ≤ 0 for all t ∈ [0, T ]. Hence
Aω(t, T0) ≤ 0 for all t ∈ [0, T0].

Solving for u in the inequality

2

∫ ∞

u

1

ω2 + 1
4

dω ≤ TOL,

yields
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u ≥ 1

2
tan

(
π

2
− TOL

4

)

, with 0 < TOL/4 < π.

If we choose our integration region to be [0, u] with u equal to:

u =
1

2
tan

(
π

2
− TOL

4

)

, (5.34)

then we are sure that:

∣
∣
∣
∣

∫ ∞

u
f(ω)dω

∣
∣
∣
∣
≤ TOL

For example, if we take TOL = 0.005 then u = 400.

We make some remarks on the choice of u.

0 20 40 60 80 100 120 140 160 180 200
0

1

2
x 10

−4

ω

f(
ω

)

Figure 5.1: Fundamental transform integrand with model parameters γ = 0.1, ǫ = 0.80 and
σ = 0.20 with numerical ODE solutions.

• We made very crude estimations to derive (5.34). We do not take the exponential decay
into account:

e−(ω2+1/4)ν2/2 → 0 if ω → ∞,

and

eAω(0,T0)+Bω(0,T0)V (0) → 0 if ω → ∞.

The latter limit is not difficult to prove in the constant coefficient case. We already showed
Aω(0, T0) ≤ 0 and Bω,T0(0) ≤ 0. It is thus sufficient to prove Aω(0, T0) → −∞ if ω → ∞.
This is equivalent to showing that x(0) → −∞ if a → ∞, with x(t) given by Equation
(5.32). This is a trivial calculus exercise left to the reader.

• If we take u = 500, this corresponds to TOL = 0.004. Then we expect a much higher
accuracy, since the integrand decays to zero exponentially. We illustrate this in Figure 5.1.
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Numerical integration rule to approximate
∫ b
a g(x)dx

To compute the improper integral
∫∞

0 f(ω)dω, we have to compute a proper integral of the form

∫ b

a
g(x)dx

numerically, we propose an adaptive Simpson quadrature. For a detailed explanation of adaptive
integration rules we refer to [17]. There are Matlab and C++ libraries available to perform an
adaptive Simpson quadrature with a desired level of accuracy.

Numerical ODE solver

If ǫ(t) and λ(t) are time-dependent, we have to solve the Riccati ODEs given by Equation (5.27)
numerically. We choose a Runge Kutta scheme to solve the Riccati ODEs.

5.4 Parameter averaging

In this section we start with the swap rate model, given by Equation (5.10). We state it once
again for convenience:

Model 2: The swap rate model

dS0,m(t) = [γ(t)S0,m(t) + (1− γ(t))R0]λ(t)
√

V (t)dWQ1,m

1 (t),

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dWQ1,m

2 (t),
(5.35)

where ǫ(t), γ(t) and λ(t) are time-dependent functions. We wish to find appropriate time-
homogeneous parameters ǭ, γ̄ and λ̄ for the functions ǫ(t), γ(t) and λ(t), to obtain an approxi-
mating system of SDEs:

Model 3: The time-homogeneous swap rate model

dS̃0,m(t) = (γ̄S̃0,m(t) + (1− γ̄)R0)λ̄

√

Ṽ (t)dWQ1,m

1 (t),

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t),

(5.36)

with S̃0,m(0) = S0,m(0) and Ṽ (0) = V (0), so that the terminal distribution of the swap rate
model, is approximated by the terminal distribution of the time-homogeneous swap rate model.
Once we derived a time-homogeneous swap rate model the form (5.36), we approximate the
swaption price by:

V pay
0,m (0) ≈ P1,m(0)EQ1,m

[(

S̃0,m(T0)−K
)+
]

. (5.37)

Using this model, we can apply the concepts given in Section 5.3 to calculate the expectation in
Equation (5.37).

Note that it is sufficient to find an appropriate constant skew parameter γ, to replace the time-
dependent skew function γ(t). Then we can apply the techniques from Section 5.3 to compute
an approximation of the swaption price. A drawback is that the Riccati ODEs have to be solved
numerically. This is computationally expensive. If we are able to derive the time-homogeneous
swap rate model, given by Equation (5.36), then there exists an analytic solution for the Riccati
ODEs. This will speed up the computation of the fundamental transform integral.
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Hence the pricing problem is reduced to finding appropriate time-averaged values of the time-
dependent functions γ(t), ǫ(t) and λ(t). This is the main topic in the subsequent subsections.

5.4.1 Averaging the volatility of volatility function ǫ(t)

In this subsection we discuss a method to calculate a time-averaged value ǭ for ǫ(t) over a time
horizon [0, T0], so that we can replace the process V (t) by a process Ṽ (t) with dynamics:

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t),

Ṽ (0) = V (0).
(5.38)

Recall that the swap rate dynamics are approximated by:

dS0,m(t) = [γ(t)S0,m(t) + (1− γ(t))R0]λ(t)
√

V (t)dW1(t),

with:

γ(t)S0,m(t) + (1− γ(t))R0,

the skew function and
√

V (t)λ(t) the volatility function. The volatility of volatility parameter ǭ
allows us to control the curvature of the implied volatility skew. In stochastic volatility models
this is controlled by the variance of the quantity [21]:

∫ T0

0
λ2(t)V (t)dt, (5.39)

which depends on the path of V (t). If we replace the process of V (t) by Ṽ (t), with dynamics
given by (5.38), then the accumulated variance is given by:

∫ T0

0
λ2(t)Ṽ (t)dt, (5.40)

which depends on the path of Ṽ (t). The quantities in Equations (5.39) and (5.40) are both
stochastic, hence random variables, with some unknown distribution. To get an appropriate
value for ǭ, we choose it so that the first and second moments of (5.39) and (5.40) are the same1.
This is an obvious choice, since the variance of this quantity controls the curvature. Therefore
we state the following theorem.

Theorem 5.2. Given the process

dS0,m(t) = [γ(t)S0,m(t) + (1− γ(t))R0]λ(t)
√

V (t)dW1(t),

and let V (t) and Ṽ (t) be two stochastic processes with dynamics

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dW2(t),

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dW2(t),

where ǭ is given by:

1If the first and second moments are the same, then the variances of both distributions are the same.
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ǭ2 =

∫ T0

0 e2βrǫ2(r)ρT0(r)dr
∫ T0

0 e2βrρT0(r)dr
, (5.41)

and

ρT0(r) =

∫ T0

r
e−βsλ2(s)

∫ T0

s
λ2(t)e−βtdtds.

Then the following holds:

E

[∫ T0

0
λ2(t)Ṽ (t)dt

]

= E

[∫ T0

0
λ2(t)V (t)dt

]

and

E

[(∫ T0

0
λ2(t)Ṽ (t)dt

)2
]

= E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

.

Proof. For a proof of this theorem we refer to Appendix B.5.

5.4.2 Averaging the time varying displacement γ(t)

As already noticed, we need a constant displacement parameter γ(t) to derive the Heston part
(5.16). Since we allow γ(t) to be a piecewise constant function in the model, we have to find
an appropriate time-averaged displacement parameter γ̄. For this, we state a theorem from
Piterbarg [13].

Theorem 5.3. For the SDE with a time-dependent displacement γ(t):

dS(t) = (γ(t)S(t) + (1− γ(t))S(0))λ(t)

√

Ṽ (t)dW1(t),

with the dynamics of Ṽ (t) given by:

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dW2(t),

the effective skew parameter γ̄ over a time horizon [0, T0] is given by:

γ̄ =

∫ T0

0 γ(t)v(t)λ2(t)dt
∫ T0

0 v(t)λ2(t)dt
, (5.42)

where v(t) is given by:

v(t) = V (0)2
∫ t

0
λ2(s)ds+

V (0)ǭ2e−βt

2β

∫ t

0
λ2(s)(eβs − e−βs)ds. (5.43)

Using this γ̄, we define a new stochastic process S̄, whose dynamics are given by:

dS̄(t) = (γ̄S̄(t) + (1− γ̄)S(0))λ(t)

√

Ṽ (t)dW1(t),

with S̄(0) = S(0). This choice of γ̄, minimizes the difference of the second and third moment
between the distribution of S(T0)− S(0) and S̄(T0)− S̄(0).
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Proof. For a detailed proof we refer to [13].

We summarize the results we have up to this point. In Subsection 5.4.1 we derived an appropriate
time-averaged volatility of volatility parameter ǭ, so that the first and second moments of the
processes given in Equations (5.39) and (5.40) match. Using a result from Piterbarg, we derived
an effective displacement parameter γ̄, so that the differences between the second and third
moment of the distributions:

S(T0)− S(0) and S̄(T0)− S̄(0)

are minimized. With this choice of γ̄ we can base our pricing on the ideas of Section 5.3.1.

Hence we transformed the swap rate model, given in Equation (5.35), to an approximating
model:

Model 2a: Swap rate model with time-homogeneous skew

dŜ0,m(t) = (γ̄Ŝ0,m(t) + (1− γ̄)R0)λ(t)

√

Ṽ (t)dWQ1,m

1 (t),

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t),

(5.44)

with intial conditions: Ŝ0,m(0) = S0,m(0) and Ṽ (0) = V (0). We call this model from now on
‘swap rate model with time-homogeneous skew’. With this model we can solve the Heston part
with the fundamental transform. The drawback is that the Riccati ODEs, given by Equation
(5.27), have to be solved numerically. This can be computationally time consuming. We call
this the ODE fundamental transform solution. In order to overcome this inconvenience we
model λ(t) to be constant and use analytic solutions for the Riccatti equations. We call this the
analytic fundamental transform solution. This is the topic of the next subsection.

5.4.3 Averaging the time-dependent volatility function λ(t)

To obtain an appropriate time-averaged parameter λ̄ for the time-dependent function λ(t) over
a time horizon [0, T0], we use a result from Piterbarg. This result derives a time-homogeneous
parameter λ̄, to replace the time-dependent volatility function λ(t), so that the price of an at
the money swaption is preserved to satisfactory approximation. Before we state this result as a
theorem, we sketch the main ideas underlying the result. Up to this moment we have a system
of the following form.

dS(t) = [γS(t) + (1− γ)S(0)]λ(t)
√

V (t)dWQ1,m

1 (t),

dV (t) = β(V (0)− V (t))dt+ ǫ
√

V (t)dWQ1,m

2 (t),
(5.45)

For convenience we omited tildes and other confusing symbols. Recall from Equation (5.12),
that for an ATM swaption we have to compute the following expectation:

EQ1,m [
(S(T0)− S(0))+

]
= EQ1,m

[

EQ1,m [
(S(T0)− S(0))+

∣
∣ {V (t)}0≤t≤T0

]]

.

This equality follows from the tower property for conditional expectations. Because the Brow-
nian motion that drives V (t) is independent of the Brownian motion that drives S(t), the
distribution of S(T0) is displaced log-normal when conditioned on a particular path of V (t).
Using techniques from Chapter 4.4.3, we can derive an expression for the inner expectation.
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EQ1,m (
(S(T0)− S(0))+

∣
∣ {V (t)}0≤t≤T0

)
=
S(0)

γ
(2N (d1)− 1) ,

with

d1 =
1

2
σ̄,

σ̄2 = γ2
∫ T0

0
λ2(s)V (s)ds.

Hence:

EQ1,m [
(S(T0)− S(0))+

]
= EQ1,m

[

h

(∫ T0

0
λ2(s)V (s)ds

)]

, (5.46)

with h(x) given by

h(x) :=
S(0)

γ

(
2N (γ

√
x/2)− 1

)
. (5.47)

We can derive a similar result if we have a constant volatility function λ(t) ≡ λ̄ in our system
of SDEs (5.45). Then we obtain:

EQ1,m [
(S(T0)− S(0))+

]
= EQ1,m

[

h

(

λ̄2
∫ T0

0
V (s)ds

)]

.

Hence we can reformulate the problem of finding the effective time-homogeneous parameter λ̄
in the following way. Solve λ̄ from the following equation:

EQ1,m

[

h

(

λ̄2
∫ T0

0
V (s)ds

)]

= EQ1,m

[

h

(∫ T0

0
λ2(s)V (s)ds

)]

. (5.48)

We expect that this choice of λ̄ preserves accurate approximations of the ATM-level swaption
prices. The problem with both expectations in Equation (5.48) is that they are not available in
closed form. However the moment-generating functions of the following random variables

∫ T0

0
λ2(s)V (s)ds and

∫ T0

0
λ̄2V (s)ds,

are known in closed form, see [21]. Recall that the moment-generating function of a random
variable X is defined as

E [exp(tX)] , t ∈ R.

This suggests to approximate h(x) with an exponential function of the form

h(x) ≈ c1 + c2e
c3x = g(x).

We choose the coefficients c1, c2 and c3 to get a second-order accurate fit around the mean ζT0

of
∫ T0

0 λ2(s)V (s)ds:



5.4. PARAMETER AVERAGING 65

ζT0 := E

[∫ T0

0
λ2(s)V (s)ds

]

= V (0)

∫ T0

0
λ2(s)ds. (5.49)

Writing out the Taylor expansions yields:

g(x) ≈ g(ζT0) + g′(ζT0)(x− ζT0) +
1

2
g′′(ζT0)(x− ζT0)

2,

h(x) ≈ h(ζT0) + h′(ζT0)(x− ζT0) +
1

2
h′′(ζT0)(x− ζT0)

2.

To get a second order accurate approximation around x = ζT0 we have to satisfy:

h(ζT0) = c1 + c2e
c3ζT0 ,

h′(ζT0) = c2c3e
c3ζT0 ,

h′′(ζT0) = c2c3c3e
c3ζT0 ,

from which we derive

c3 =
h′′(ζT0)

h′(ζT0)
.

with h(x) given by (5.47) and ζT0 given by Equation (5.49). Note that the coefficients c1 and c2
are not relevant. With this choice of c3 we replace the problem, given by Equation (5.46), by
the following problem:

EQ1,m

[

c1 + c2 exp

(
h′′(ζT0)

h′(ζT0)

∫ T0

0
λ̄2V (s)ds

)]

= EQ1,m

[

c1 + c2 exp

(
h′′(ζT0)

h′(ζT0)

∫ T0

0
λ2(s)V (s)ds

)]

,

or equivalently

EQ1,m

[

exp

(

κλ̄2
∫ T0

0
V (s)ds

)]

= EQ1,m

[

exp

(

κ

∫ T0

0
λ2(s)V (s)ds

)]

, (5.50)

where we defined

κ :=
h′′(ζT0)

h′(ζT0)
.

We can solve λ̄ from Equation (5.50), since the moment-generating functions are known. The

moment-generating function of
∫ T0

0 λ2(s)V (s)ds is given by:

EQ1,m

[

exp

(

κ

∫ T0

0
λ2(s)V (s)ds

)]

= exp (A(0, T0) +B(0, T0)V (0)) ,

where A(t, T0) and B(t, T0) satisfy the following system of Riccati ODEs.

d

dt
A(t, T0) = −βV (0)B(t, T0),

d

dt
B(t, T0) = −κλ2(t) + βB(t, T0)−

ǫ2

2
B2(t, T0),

with terminal conditions (A(T0, T0), B(T0, T0)) = (0, 0). To obtain the moment-generating func-

tion of
∫ T0

0 λ̄2V (s)ds, replace λ(t) by λ̄ in the sytem of Riccati ODEs. We summerize this result
in the following theorem.
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Theorem 5.4. A second-order accurate effective volatility parameter λ̄, over a time horizon
[0, T0], is given as a solution to the equation

ϕ0

(
h′′(ξ)

h′(ξ)
λ̄2
)

= ϕ

(
h′′(ξ)

h′(ξ)

)

, (5.51)

with

ξ := V (0)

∫ T0

0
λ2(t)dt,

h(x) :=
S0,m(0)

γ̄

(

2N
( γ̄

2

√
x
)

− 1
)

.

ϕ0 is given by

ϕ0(µ) := exp (Cµ(0, T0) + V (0) ·Dµ(0, T0)) ,

with Cµ(t, T0), Dµ(t, T0) satisfying the following system of Riccati ODEs

dCµ(t, T0)

dt
= −β · V (0) ·Dµ(t, T0),

dDµ(t, T0)

dt
= −µ+ βDµ(t, T0)−

1

2
ǭ2D2

µ(t, T0),

and terminal condition (Cµ(T0, T0), Dµ(T0, T0)) = (0, 0).

Function ϕ is given by:

ϕ(µ) = exp(Aµ(0, T0) + V (0) ·Bµ(0, T0)).

The functions Aµ(t, T0) and Bµ(t, T0) satisfy the Riccati system of ODEs:

dAµ(t, T0)

dt
= −β · V (0) ·Bµ(t, T0)

dBµ(t, T0)

dt
= −µλ2(t) + βBµ(t, T0) +

1

2
ǭ2B2

µ(t, T0),

subject to the terminal conditions (Aµ(T0, T0), Bµ(T0, T0)) = (0, 0).

Note the following:

1. ξ in (5.51) is a constant, obtained by numerical integration of λ2(.), hence κ = h′′(ξ)
h′(ξ) is

constant.

2. h′(x) and h′′(x) are given by:

h′(x) =
S0,m(0)√

8πx
e−

1
8
γ̄2x,

h′′(x) = − S0,m(0)

16x
√
2πx

(
4 + xγ̄2

)
e−

1
8
γ̄2x.

For any x > 0, h′(x) and h′′(x) have opposite signs, which implies κ < 0.
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3. ϕ0(.) is known in closed form. The analytic solution is obtained by an application of Result
5.1, with

a = κλ̄2, b = β, c = −1

2
ǭ2 and d = −βV (0).

4. We have to solve one system of Riccati ODEs numerically, with µ = h′′(ξ)
h′(ξ) , to obtain ϕ.

Hence the problem of solving λ̄2, from Equation (5.51), is a simple root-finding problem.

A Newton iteration scheme to solve Equation (5.51)

Using the notation and symbols from Theorem 5.4, we see that the equation given by (5.51), is
equivalent to

log(ϕ0(κλ̄
2)) = log(ϕ(κ)), (5.52)

The right-hand side of Equation (5.52) is constant. We use the second-order Newton scheme to
solve the non-linear equation (5.52) for the unknown λ̄2. If we write ρ = λ̄2, then the iteration
scheme reads:

ρi+1 = ρi −∆i,

with

∆i :=
log(ϕ0(κρi))− log(ϕ(κ))

∂ log(ϕ0)
∂ρ (κρi)

.

Stopping criterion Newton iteration

We propose the following rule to terminate the iteration scheme:

Stop the iteration scheme if the following condition is satisfied:

|ρi+1 − ρi| = |∆i| ≤ TOL

for some tolerance level TOL > 0.

Initial guess Newton iteration

As an initial guess we propose

ρ0 :=

∫ T0

0 λ2(t)dt

T0
, (5.53)

and assume it to be in the ball of attraction. This choice is arbitrary, but we give the following
motivation for this choice of ρ0. We solve the equation for ρ = λ̄2, which will be some average
value of λ2(t) on the interval [0, T0]. It is well-known from calculus that the definition of ρ0,
given by (5.53), is a measure for the average value of a function λ2(t) on a closed interval [0, T0].
Hence we expect that ρ0 is sufficiently close to λ̄2 so that Newton’s method converges.
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Summary

We summarize the steps we have to take to price payer swaptions with the concepts from Section
5.3. We assume time-dependent functions γ(t), ǫ(t) and λ(t) in the swap rate model given by
Equation (5.10).

• Apply Theorem 5.2 to obtain a time-averaged parameter ǭ for the piecewise constant
volatility of volatility function ǫ(t). Use this parameter to define the variance process
Ṽ (t), given by Equation (5.38). Replace the variance process V (t) in the swap rate model,
by the proces Ṽ (t) to obtain the following system:

dS∗
0,m(t) = (γ(t)S∗

0,m(t) + (1− γ(t))R0)λ(t)

√

Ṽ (t)dWQ1,m

1 (t),

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t).

(5.54)

• Apply Theorem 5.3, using the model given by Equation (5.54), to obtain a time-averaged
parameter γ̄ for the piecewise constant skew function γ(t). With this parameter define a
new stochastic process Ŝ0,m(t), with dynamics given by:

dŜ0,m(t) = (γ̄Ŝ0,m(t) + (1− γ̄)R0)λ(t)

√

Ṽ (t)dWQ1,m

1 .

With this random variable we approximate the model, given by Equation (5.54), by the
swap rate model with time-homogeneous skew:

dŜ0,m(t) = (γ̄Ŝ0,m(t) + (1− γ̄)R0)λ(t)

√

Ṽ (t)dWQ1,m

1 ,

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t).

(5.55)

This system approximates the terminal distribution of S0,m(T0) driven by the swap rate
model (5.10).

• Apply the theory of Section 5.3 to the swap rate model with time-homogeneous skew,
given by Equation (5.55), to derive the Heston part of the option value.

• Solve the Heston part, using the fundamental transform, described in Section 5.3.1. This
can be done in two ways:

1. Solve the Heston part, derived from the system defined in Equation (5.55) where λ(t)
is time-dependent with the ODE fundamental transform. This is computationally
time-consuming, since the Riccati ODEs have to be solved numerically. To avoid
this, use the second method.

2. Apply Theorem 5.4, to obtain a time-averaged parameter λ̄ for the time-dependent
function λ(t). Using this parameter define a stochastic process S̃0,m with dynamics:

dS̃0,m(t) = (γ̄S̃0,m(t) + (1− γ̄)R0)λ̄

√

Ṽ (t)dWQ1,m

1 .

With this stochastic process we approximate the swap rate model with time-homogeneous
skew, given by Equation (5.55), by the time-homogeneous swap rate model:
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dS̃0,m(t) = (γ̄S̃0,m(t) + (1− γ̄)R0)λ̄

√

Ṽ (t)dWQ1,m

1 ,

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dWQ1,m

2 (t).

(5.56)

Derive the Heston part for this system and solve it with the analytic fundamen-
tal transform. This is faster than the ODE fundamental transform, since there are
analytic solutions for the Riccati Equations available.

5.5 Efficient implementation method

In this section we propose an efficient method to implement the closed form swaption price,
to speed up the swaption pricing in the stepwise calibration process. A detailed discussion of
the stepwise calibration process is postponed until Chapter 6. If one is not familiar with the
stepwise calibration process, we recommend the reader to read Section 6.1 before this section. We
propose this implementation method, since a naive implementation of the closed form swaption
price slows down the stepwise calibration process considerably.

We start with a discussion of the problem. Assume that we calibrated to the nth set of calibra-
tion instruments, this means that the piecewise constant functions are defined on the interval
[0, Sn−1]. When the optimizer solves the nth optimization problem, it evaluates the objective
function. One function evaluation of the objective function requires the computation of three
swaption prices. There are two steps involved. In the first step we average the piecewise constant
functions ǫ(t), γ(t) and λ(t), over a time-horizon [0, Sn], with Sn the option maturity. In the
second step we apply the fundamental transform (Equation 5.28), with the averaged values ǭ, γ̄
and λ̄, to obtain an approximation of the swaption price.

First of all, the time-homogeneous values of the piecewise constant functions do not depend on
the strike of the swaption. They are only dependent on the option maturity and the piecewise
constant functions. Secondly, if we take a closer look to the ǫ(t)− and γ(t)-averaging formulas,
both formulas contain multidimensional integrals. In the ǫ(t) averaging formula it is a three-
dimensional integral, in the γ(t)-averaging formula a two-dimensional integral. The drawback of
multidimensional integrals is that they are computationally expensive to evaluate numerically.
Hence for a longer option maturity, the computation of the homogenized parameters requires
more time. For every evaluation of the objective function, with at each time a different extension
of the piecewise constant functions on (Sn−1, Sn], we have to apply the averaging formulas before
we can use the closed form solution.

To reduce the work that has to be done with the averaging formulas, we store information after
calibration to a previous option maturity Sn−1. At this moment we know the values of ǫ(t), γ(t)
and σ(t) on [0, Sn−1]. Hence if we store the correct information up to time Sn−1, then we only
have to compute multidimensional integrals over [Sn−1, Sn]

d instead of [0, Sn]
d. In combination

with the information up to time Sn−1 we can compute the homogenized parameters over the
time-horizon [0, Sn].

5.5.1 Implementation of the averaging formulas

ǫ(t) averaging formula

Here we show how we implement the ǫ(t) averaging formula to speed up the homogenization of
the volatility of volatility parameter.
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Assume that we calibrate the model to the calibration instruments with maturity Sn and that N
evaluations of the objective function are necessary to determine the optimal set of parameters.
Then we have priced the calibration instruments, by extending the piecewise constant functions
(ǫ(t), γ(t), σ(t)) on (Sn−1, Sn] with N different triplets

(ǫ1n, γ
1
n, σ

1
n), (ǫ2n, γ

2
n, σ

2
n), · · · , (ǫNn , γNn , σNn ).

For every triplet i ∈ {1, 2, · · · , N}, we have to apply the parameter-averaging procedure for ǫ(t)
to price the calibration instruments. Hence we have to compute for every triplet:

ǭ2 =

∫ Sn

0 e2βrǫ2(r)ρSn(r)dr
∫ Sn

0 e2βrρSn(r)dr
, (5.57)

with

ρSn(r) =

∫ Sn

r
e−βsλ2(s)

∫ Sn

s
λ2(t)e−βtdtds. (5.58)

The numerator and denominator in Equation (5.57) are both three-dimensional integrals. They
are computationally expensive to evaluate numerically. The numerator in Equation (5.57) can
however be written as:

∫ Sn

0
e2βrǫ2(r)ρSn(r)dr = (ǫin)

2

∫ Sn

Sn−1

e2βr
∫ Sn

r

∫ Sn

s
e−β(s+t)λ2(s)λ2(t)dtdsdr+

∫ Sn−1

0
e2βrǫ2(r)

∫ Sn−1

r

∫ Sn−1

s
e−β(s+t)λ2(s)λ2(t)dtdsdr+

∫ Sn−1

0
e2βrǫ2(r)

∫ Sn−1

r
e−βsλ2(s)dsdr

∫ Sn

Sn−1

e−βtλ2(t)dt+

1

2

(∫ Sn−1

0
e2βrǫ2(r)dr

)(∫ Sn

Sn−1

e−βtλ2(t)dt

)2

.

(5.59)

The denominator in Equation (5.57) can be written as:

∫ Sn

0
e2βrρSn(r)dr =

∫ Sn

Sn−1

e2βr
∫ Sn

r

∫ Sn

s
e−β(s+t)λ2(s)λ2(t)dtdsdr+

∫ Sn−1

0
e2βr

∫ Sn−1

r

∫ Sn−1

s
e−β(s+t)λ2(s)λ2(t)dtdsdr+

∫ Sn−1

0
e2βr

∫ Sn−1

r
e−βsλ2(s)dsdr

∫ Sn

Sn−1

e−βtλ2(t)dt+

1

2

(∫ Sn−1

0
e2βrdr

)(∫ Sn

Sn−1

e−βtλ2(t)dt

)2

.

(5.60)

The integrals in Equations (5.59) and (5.60) with upper bounds Sn−1 can be computed after
calibrating to maturity Sn−1. If we store these values, then the problem of averaging ǫ(t) is
reduced to:



5.5. EFFICIENT IMPLEMENTATION METHOD 71

• Compute for every triplet (ǫin, γ
i
n, σ

i
n),

∫ Sn

Sn−1

e2βr
∫ Sn

r

∫ Sn

s
e−β(s+t)λ2(s)λ2(t)dtdsdr, (5.61)

and

∫ Sn

Sn−1

e−βtλ2(t)dt, (5.62)

since λ(t) depends on (γin, σ
i
n).

• Substitute ǫin and the values of the integrals, given by Equations (5.61) and (5.62) in
Equations (5.59) and (5.60).

• Since all other terms are known, the integrals in Equations (5.59) and (5.60) are known
numerically. Hence we can calculate ǭ.

This strategy to apply the parameter averaging procedure for ǫ(t) saves a lot of work for the
nth optimization problem.

γ(t) averaging formula

Here we propose a method to implement the γ(t)-averaging procedure in the stepwise calibration
process, we follow the same ideas as described in the previous paragraph. We note that:

γ̄ =

∫ Sn

0 γ(t)v(t)λ2(t)dt
∫ Sn

0 v(t)λ2(t)dt
=

∫ Sn−1

0 γ(t)v(t)λ2(t)dt+ γin
∫ Sn

Sn−1
v(t)λ2(t)dt

∫ Sn−1

0 v(t)λ2(t)dt+
∫ Sn

Sn−1
v(t)λ2(t)dt

, (5.63)

with v(t) given by Equation (5.43). The Sn−1 integrals in Equation (5.63) are known after
calibrating to maturity Sn−1. Hence the new part, which depends on the values of the parameters
on (Sn−1, Sn], is:

∫ Sn

Sn−1

v(t)λ2(t)dt.

Time decomposition

In this subsection we investigate the speed we gain from the described implementation method.
In the test we calibrate to co-terminal2 swaptions

1Y10Y, 2Y9Y, . . . 10Y1Y.

Assume that the model is calibrated to the 9Y2Y swaptions and we calibrate to the last option
maturity. In the calibration process we price swaptions with a 10Y maturity. In our test we
compare the computation time to compute the time homogenous parameters with two different
methods. First of all we measure the time it takes to compute ǭ with Equation (5.41) and γ̄
with Equation (5.42). Secondly, we measure the time to compute ǭ and γ̄ with the proposed
implementation method. In Table 5.1 we show the results. Hence we speed up the parameter
averaging procedure with a factor 10.
Note that this becomes more important if we calibrate to a strip of swaptions with expiries
beyond 10Y.

2Co-terminal swaptions are a series of European swaptions whose expiry plus tenor is equal.
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Slow method Fast method Speed up factor

ǭ 2.025 0.206 9.8

γ̄ 0.0650 0.007 9.8

Table 5.1: Time decomposition in seconds for the calculation time of the time homogeneous
parameters.

5.5.2 Instantaneous forward rate

Another time consuming operation is the computation of the instantaneous forward rate f(0, t)
from market data. The instantaneous forward rate is a term in the swap rate volatility function
λ(t), given by Equation (5.11). The forward rate f(0, t) is computed by the following formula:

f(0, t) := R(0, t) + t
∂

∂t
R(0, t),

where R(0, t) is the yield. The yield is computed from the available market data. However, only
for a finite number of t > 0 there is a quoted value R(0, t). The missing values are interpolated
between these quotes. We use cubic spline interpolation to interpolate between the market
quotes.

If we look at the definition of the instantaneous forward rate, we see the derivative of R(0, t)
with respect to t, which is approximated by a second order central difference approximation:

f(0, t) ≈ R(0, t) + t
R(0, t+ h)−R(0, t− h)

2h
. (5.64)

For one value of the instantaneous forward rate we have to compute three yield values from the
market data. Cubic spline interpolation is computationally expensive compared to linear inter-
polation. If we implement the instantaneous forward rate in a naive way, then the computation
of the closed form swaption price slows down. If we apply the ǫ(t) and γ(t) averaging formulas,
then the n-dimensional adaptive integration routines require many λ(t) function evaluations.
The same holds for the numerical ODE solver, which is used when we apply the λ(t) averaging
formula.

Since it is not known a priori for which values t ≥ 0 the numerical routines require the value
f(0, t), it is not possible to precompute them. Hence to speed up the computation of f(0, t) we
have to find a different approach. We propose the following method.

Assume that we compute the closed form swaption price for a swaption with maturity T . Dis-
cretize the interval [0, T ] with a time-step dt = 0.01. Hence we define a grid3

0 < 0.01 < 0.02 < . . . < T.

Define N the number of nodes, on this grid we precalculate the values of f(0, t). Hence we
obtain a vector:

f = (f0, f1, . . . , fN−1)
T ,

with

3We assume that T/0.01 ∈ N. If T/0.01 /∈ N, then we define the last interval of the grid to be: [⌊T/0.01⌋ ×
0.01, T ]
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fi := f(0, i× 0.01).

Any missing value of the instantaneous forward rate f(0, t), which is required for the computa-
tions, is linearly interpolated between the values of f . To illustrate the performance, we assume
piecewise constant parameters and price a 10Y1Y swaption with two different methods. First of
all we compute the instantaneous forward rate with Formula (5.64). Secondly, we precompute
the instantaneous forward rates and use linear interpolation to compute the missing forward
rates. In Table 5.2 we show the results. From this table we conclude that we maintain the same
accuracy, hence we do not expect a significant bias in the option price if we use this method to
compute the forward rates. Furthermore, we conclude that this method is 8 times faster.

Swaption price Computation time

Formula (5.64) 52.1659 26.5 sec

Linear interpolation 52.1659 3.3 sec

Table 5.2: Pricing results of an ATM-swaption on a notional of 10, 000.

5.6 Simulation of the DDSV model under the T -forward mea-
sure.

In this section we discuss how to simulate the process, given by Equation (5.7), by Monte
Carlo methods. A naive approach would be to discretize the whole system using the Euler
discretization. Theoretically the variance process cannot yield V (t) < 0. Unfortunately, using an
Euler discretization to simulate the variance process can yield V (t) < 0. This happens especially
if the Feller condition is violated. There are several ways to overcome this inconvenience.

1. Sampling from a non-central χ2 distribution, this is a result from Broadie and Kaya [18].
An advantage is that we have an exact simulation of the process. Under the assumption
that

4βV (0)

ǫ2
> 1,

a fast implementation is possible. Hence if this condition is violated, then simulation of
the variance process is slow. For more information see [18], this is the main drawback of
this method.

2. Use a moment-matched, log-normal approximation [19]:

V (t+∆t) =
(

V (0) + [V (t)− V (0)]e−β∆t
)

exp

(

−1

2
Γ(t)2 + Γ(t)Zt

)

,

Γ(t)2 = log

(

1 +
ǫ2V (t)(1− exp(−2β∆t))

2β(V (0) + [V (t)− V (0)] exp(−β∆t))2
)

,

(5.65)

with Zt a Gaussian sample. An advantage is that, without restrictions on the parameters,
a fast implementation is possible. Since sampling from a standard normal distribution
is relative cheap with respect to sampling from a non-central χ2 distribution. It is also
possible to work with antithetic variables. The scheme cannot yield V (t) < 0. This is
clear from Equation (5.65), since V (t) > 0 implies V (t+∆t) > 0. A drawback is that we
sample from an approximating distribution and we need a sufficiently small timestep ∆t
to get convergence to the true distribution. If the Feller condition is violated this method
has a poor performance.
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3. The Quadratic-Exponential (QE) scheme. This is a moment-matched scheme, based on a
combination of a squared Gaussian and an exponential distribution. For large values of
V (t) we use a moment-matched squared Gaussian distribution. For small values of V (t)
we approximate the conditional distribution of V (t + ∆t) given V (t) by an exponential
distribution. We summarize the entire sampling algorithm step-by-step. For further details
we refer to [20].

(a) Conditional on V (t) compute the first and second moments of V (t+∆t):

m := E [V (t+∆t)|V (t)] = V (0) + [V (t)− V (0)]e−β∆t,

s2 := Var (V (t+∆t)|V (t)) =
V (t)ǫ2(t)e−β∆t

β

(

1− e−β∆t
)

+
V (0)ǫ2(t)

2β

(

1− e−β∆t
)2
.

(b) Compute ψ = s2

m2 .

(c) Fix an arbitrary ψc ∈ [1, 2].

(d) If ψ ≤ ψc

i. Compute

c2 =
2

ψ
− 1 +

√
2

ψ

√
2

ψ
− 1,

d =
m

1 + c2
.

ii. Set V (t+∆t) ≈ d(c+ Z)2 with Z ∼ N (0, 1).

With this choice of c and d, the first and second moments of d(c + Z)2 and
V (t+∆t) are equal.

(e) Otherwise, if ψ > ψc:

i. Compute

p =
ψ − 1

ψ + 1
,

q =
2

m(ψ + 1)
.

ii. Set V (t+∆t) ≈ ψ−1(U ; p; q) with ψ−1(u; p; q) given by

ψ−1(u; p; q) =

{
0 0 ≤ u ≤ p
1
q log

(
1−p
1−u

)

p < u ≤ 1

and U ∼ U(0, 1).

With this choice of p and q, the first and second moments of ψ−1(U ; p; q) and
V (t+∆t) are equal.

We wish to use a scheme that approximates the distribution of V (t + ∆t) given V (t) accu-
rately, without restrictions on the parameters. Note that the variance process cannot reach zero
(theoretically) if the Feller condition is satisfied. Recall that the Feller condition is given by:

2βV (0)

ǫ2
> 1.
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It may happen that under certain market conditions the Feller condition is violated, for example
with a small β and a high ǫ is required. In this case V (t) can reach zero with non-zero proba-
bility. By construction the log-normal scheme cannot give a value
V (t + ∆t) = 0, but the QE scheme can yield V (t + ∆t) = 0. Hence if the Feller condition
is violated, this argues in favor of the QE scheme and it seems more obvious to use this dis-
cretization method. To illustrate the performance of the discretization schemes we present some
figures with the sampled distribution of V (t+∆t) given V (t). We show two extreme cases, one
in which the Feller condition is satisfied and another in which the Feller condition is violated.
In our tests we compare the sampled distributions to the exact distributions.

In Figures 5.2(a) and 5.2(b) we show the results for V (t) = 0.09, t ∈ [0, T ] and ∆t = 0.10. We
see that the QE scheme has a satisfactory performance in both cases, we have almost a perfect
match with the true distribution. We see that the moment-matched log-normal scheme has
difficulties to approximate the true distribution if the Feller condition is violated, which is clear
from Figure 5.2(a). If the Feller condition is satisfied, then the log-normal method exhibits an
improved performance but not better than the QE scheme.

It is known from the literature that the log-normal scheme requires a small time step to get
convergence to the true distribution. Hence we can take a smaller timestep, ∆t = 0.01 and do
the same excercise. If we look to Figures 5.3(a) and 5.3(b), we can conclude that the QE scheme
replicates the true distribution in both cases quite accurately, but the log-normal scheme has
still a poor perfomance when the Feller condition is violated. It is better than using a timestep
∆t = 0.10, but it is still not as accurate as the QE scheme.

These results give us confidence to use the QE scheme. For any β, ǫ and V (0), we expect that
this method gives us a more accurate simulation of the variance process than the log-normal
scheme.

To simulate the x(t) and y(t) dynamics we use the Milstein scheme.
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Figure 5.2: ∆t = 0.10: Performance of the QE-scheme and the lognormal scheme, compared to
exact simulation.
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Figure 5.3: ∆t = 0.01: Performance of the QE-scheme and the lognormal scheme, compared to
exact simulation.
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5.7 The case of non zero correlation, ρ 6= 0.

In this section we discuss the influence of a non-zero correlation coefficient ρ between the Brown-

ian motion processesWQ0

V (t) andWQ0

x (t), in the dynamics of (x(t), y(t), V (t)), given by Equation
(5.4). A correlation ρ between both Brownian motions can be written as:

dWQ0

x (t) · dWQ0

V (t) = ρdt. (5.66)

5.7.1 The dynamics of the x(t) process under Q0.

We use Cholesky decomposition to decouple the correlated Brownian motions, given in (5.66),
into two independent Brownian motions under the same measure. Note that the correlation
matrix Σ is defined by:

Σ =

(
1 ρ
ρ 1

)

.

The Cholesky decompostion Σ = CCT of the correlation matrix is given by:

C =

(
1 0

ρ
√

1− ρ2

)

.

Using matrix C to decouple the correlated Brownian motions under Q0 gives:

[

dWQ0

x (t)

dWQ0

V (t)

]

=

(
1 0

ρ
√

1− ρ2

)[

dWQ0

1 (t)

dWQ0

2 (t)

]

,

where WQ0

1 (t) and WQ0

2 (t) are independent Brownian motions under Q0. With this notation we
can rewrite the dynamics in (5.4) as a system of SDEs with independent Brownian motions:

dx(t) = (y(t)− ax(t))dt+ η(t, x(t))
√

V (t)dWQ0

1 (t),

dy(t) = (η2(t, x(t))V (t)− 2ay(t))dt,

dV (t) = β(V (0)− V (t))dt+ ρǫ(t)
√

V (t)dWQ0

1 (t) +
√

1− ρ2ǫ(t)
√

V (t)dWQ0

2 (t).

(5.67)

5.7.2 The dynamics of x(t) and S0,m(t) under the annuity measure

Recall that the instantaneous short rate r(t) is modelled by:

r(t) = f(0, t) + x(t).

We apply a change of measure, from the risk-neutral measure Q0 to the annuity measure Q1,m,
to derive the dynamics of x(t) under the swap measure. This will affect the drift term in the
x(t)- and variance process. From Appendix A we derive:

WQ1,m

1 (t) =WQ0

1 (t) +

∫ t

0
φ(s)ds,

with

φ(s) = η(s, x(s))
√

V (s)

m∑

i=1

P (s, Ti)

P1,m(s)
τiB(s, Ti).
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The dynamics of the x(t) process are given by:

dx(t) = (y(t)− ax(t)− φ(t)η(t, x(t))
√

V (t))dt+ η(t, x(t))
√

V (t)dWQ1,m

1 (t),

with

dy(t) = (η2(t, x(t))V (t)− 2ay(t))dt,

and

dV (t) =
[

β(V (0)− V (t))− ρǫ(t)φ(t)
√

V (t)
]

dt+ ρǫ(t)
√

V (t)dWQ1,m

1 (t)

+
√

1− ρ2ǫ(t)
√

V (t)dWQ1,m

2 (t).

(5.68)

The system of SDEs, to model the swap rate under the annuity measure, is given by:

dS0,m(t) =

(
m∑

i=0

qSi (t)B(t, Ti)

)

η(t, x(t))
√

V (t)dWQ1,m

1 (t),

dV (t) =

[

β(V (0)− V (t))− ρǫ(t)η(t, x(t))V (t)
m∑

i=1

P (t, Ti)

P1,m(t)
B(t, Ti)

]

dt

+ ρǫ(t)
√

V (t)dWQ1,m

1 (t) +
√

1− ρ2ǫ(t)
√

V (t)dWQ1,m

2 (t).

(5.69)

Note that we substituted the definition of φ(t) in the dynamics of the variance process V (t). As
we expect for ρ = 0 the system in (5.69) reduces to the system given in Equations (5.8) and
(5.9), which we derived in the zero correlation case.

5.7.3 Implications for the solvability

We can approximate the swap rate dynamics, in the same way as we did in Section 5.2. In
addition, we have to approximate the non-deterministic terms in the variance process. We use
similar approximations, the martingale terms under the annuity measure are approximated by
their time zero values and x(t) by x(0). Then, we obtain

dS0,m(t) ≈ (γ(t)S0,m(t) + (1− γ(t))R0)λ(t)
√

V (t)dWQ1,m

1 (t),

dV (t) ≈ [β(V (0)− V (t)) + f(t)V (t)] dt+ ρǫ(t)
√

V (t)dWQ1,m

1 (t)

+
√

1− ρ2ǫ(t)
√

V (t)dWQ1,m

2 (t).

(5.70)

with λ(t) defined by (5.11) and f(t) by:

f(t) := −ρǫ(t)η(t, x(0))
(

m∑

i=1

P (0, Ti)

P1,m(0)
B(t, Ti)

)

.

To derive the Heston part, given by Equation (5.16), we have to transform the system given by
Equation (5.70) to a system with a constant skew parameter γ.
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Assume that γ(t) = γ is constant in the system given by Equation (5.70). In this case we can
derive Equation (5.16) by defining the random variable S̄0,m(t):

S̄0,m(t) := γS0,m(t) + (1− γ)R0.

The system, given by Equation (5.70), in terms of the new stochastic process S̄0,m(t) reads:

dS̄0,m(t) ≈ γλ(t)S̄0,m(t)
√

V (t)dWQ1,m

1 (t),

dV (t) ≈ [β(V (0)− V (t)) + f(t)V (t)] dt+ ρǫ(t)
√

V (t)dWQ1,m

1 (t)

+
√

1− ρ2ǫ(t)
√

V (t)dWQ1,m

2 (t).

(5.71)

A transformation to log-space, x(t) := log(S̄0,m(t)), makes the process affine.

dx(t) ≈ −1

2
γ2λ2(t)V (t)dt+ γλ(t)

√

V (t)dWQ1,m

1 (t),

dV (t) ≈ [β(V (0)− V (t)) + f(t)V (t)] dt+ ρǫ(t)
√

V (t)dWQ1,m

1 (t)

+
√

1− ρ2ǫ(t)
√

V (t)dWQ1,m

2 (t).

(5.72)

Equation (5.16), in terms of x(t), reads:

Heston(S̄0,m(T0), K̄) = Heston(x(T0), K̄) = EQ1,m
[(
exp(x(T0))− K̄

)+
]

(5.73)

Since x(t) is modelled by an affine process, Equation (5.73) can be solved using Fourier tech-
niques, for example the COS method [15] or fundamental transform [21]. Hence we can calculate
an approximation of the swaption price.

To obtain the system, given by Equation (5.71), we have to find an appropriate time averaged
value for the piecewise constant function γ(t) over a time horizon [0, T0]. To apply the result
from Piterbarg, given by Theorem 5.3, for an effective skew parameter γ, we require that V (t)
is modelled by a Cox-Ingersoll-Ross process with dynamics:

dz(t) = θ(z(0)− z(t))dt+ ηz(t)dW (t), (5.74)

with θ and η constant. If we look at the process, given by Equation (5.70), we see that the
variance process V (t) is not of the form (5.74). We have two Brownian motions in the dynamics
of the variance process, so that it is impossible to transform the process to a CIR-process of
the form (5.74). This implies that we cannot apply Theorem 5.3 to derive an effective skew
parameter γ.

The formulation of a theorem to compute an effective skew parameter γ over a time horizon
[0, T0], for the system with dynamics given by Equation (5.70), is an issue for future research.
Once this problem is solved, we can calculate an approximation of the swaption price in the case
of non-zero correlation.

Another possibility is to fix the skew parameter γ. But then we loose control of the skewness
of the implied volatility skew. At this moment we do not see any reason to include correlation
into our model, since our volatility of volatility parameter ǫ(t) gives us control of the curvature,
γ(t) control of the skewness and σ(t) control of the level. We expect that this is sufficient to
obtain accurate fits to the market skews. Adding correlation makes things more complicated in
the sense of making additional approximations.
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5.8 Numerical results

In this section we give numerical results based on the topics we discussed in the previous sections.
There are three questions we would like to answer in this section:

• The impact of the different model parameters on the implied volatility skew?

• The performance of the averaging formulas?

• Which restrictions on the parameters are necessary to obtain accurate results.

To answer these questions we subdivide this section in three parts, in each part we show corre-
sponding numerical test results. In the numerical tests we use Monte Carlo simulation to price
swaptions. We use the Monte Carlo method as described in Section 5.6. Unless otherwise stated
the Monte Carlo parameters are: discretization step dt = 0.005 and N = 100, 000 simulations.

5.8.1 The impact of the model parameters on the implied volatility skew

In this subsection we discuss the impact of the parameters R0, β, σ, γ and ǫin the DDSV model
on the implied volatility skew. We illustrate our arguments with a simulation experiment. In the
experiment we take a 10Y into 1Y swaption and simulate the x(t) process under the T -forward
measure, given by Equation (5.7). When we illustrate the impact of a certain parameter, we fix
the remaining parameters and price the swaption for a vector of strikes. The fixed values of the
parameters are:

a = 0.03, R0 = 0.04, β = 0.40, ǫ = 0.80, γ = 0.15, σ = 0.20.
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Figure 5.4: Impact of parameter R0 and β on the implied volatility skew.

We start the discussion with parameters R0. This parameter has impact on the level of the
skew. In Figure 5.4(a) we see the impact of R0. Increasing R0 implies higher swaption prices
and hence a shift in the implied volatility skew. To explain this behaviour we give the following
argument. R0 is part of the instantaneous volatility function. If R0 increases, then we have
larger values in the instantaneous volatility function:
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η(t, x(t)) = γ(t)r(t) + (1− γ(t))R0.

Hence this explains why the resulting swaption prices are higher. Note that the effect of R0 is
controlled by parameter γ. For values of γ close to zero, R0 has larger impact.

Next we discuss the mean reversion of variance parameter β. It is known from the literature
[21] that β controls the speed of decay of the volatility smile convexity. In Figure 5.4(b) we
illustrate this behaviour. We can explain this behaviour by looking to the long-term variance of
the variance process. Recall that the long-term variance is given by:

V (0)ǫ2

2β
.

Increasing β decreases the long-term variance of V (t) and limits the effect of the stochastic
variance process on the volatility skew for long-dated maturities. Since this parameter is assumed
to be constant in the model, we have to fix this parameter before we calibrate the model. From
market observations and [21] we expect that for major interest rate markets, β ∈ [0.05, 0.20] is
a typical setting.

In the model we have three time-dependent parameters, σ(t), γ(t) and ǫ(t). We calibrate these
parameters to market data. Hence it is interesting to discuss the impact of these parameters on
the implied volatility skew.

The volatility parameter σ controls the level of the skew. This is clear from Figure 5.5(a). It is
straight forward to explain this behaviour. Larger values in the instananeous volatility function,
imply larger prices and hence a shift in the implied volatility skew.
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(a) Impact volatility parameter σ.
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Figure 5.5: Impact of parameter σ and γ on the implied volatility skew.

Parameter γ is the skew parameter. This parameter controls the slope of the implied volatility
skew. We illustrate this in Figure 5.5(b). From this figure we see that a small γ implies a steeper
skew than γ close to one. We can explain this if we look to the dynamics x(t). If γ ≡ 0, then
our state variable x(t) is normally distributed. If γ → 1 then we are close to a log-normal model
and it is well-known that a log-normal model implies a flat implied volatility skew.
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The last parameter we discuss is the volatility of volatility parameter ǫ. In the literature this
parameter is also known as the smile parameter. As the name suggests this parameters controls
the convexity of the implied volatility skew. In Figure 5.6 we illustrate this behaviour.
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Figure 5.6: Impact of parameter ǫ on the implied volatility skew.

To understand this, we can give a similar argument as for parameter β. Looking to the long-term
variance of the CIR process, we see that increasing ǫ increases the long-term variance. Decreasing
ǫ decreases the long-term variance and hence limits the effects of the variance process on the
implied volatility skew. This immediately explains why it is sufficient to calibrate ǫ and fix β.
Both parameters have the same effect on the implied volatility skew. A good choice of β will
be sufficient for the parameter ǫ to do the job of adding the required convexity to the implied
volatility skew to match the market skew.

Note that there is another constant parameter in the model, which we did not discuss in this
section: the initial condition V (0) of the variance process. For scaling reasons we take V (0) = 1.
This implies E[V (t)] = 1 for every t ≥ 0. To motivitate this choice note that we multiply the
DD instantaneous volatility function η(t, x(t)) by

√

V (t). Due to this multiplication, the most
obvious choice to keep a proper scaling of the problem is V (0) = 1. Note that we do not multiply
by a random variable with expected value one, since by Jensen’s inequality for concave functions
we get:

E[
√

V (t)] ≤
√

E[V (t)] = 1.

5.8.2 Performance of the averaging formulas

In this subsection we discuss the performance of the averaging formulas from Section 5.4. Recall
that we derived averaging formulas for the time-dependent parameters ǫ(t), γ(t) and λ(t) in order
to obtain a fast pricing formula for swaptions. To illustrate the performance of these formulas
we did the following test. (For an extensive test we refer the reader to [13].)

We take a 10Y into 10Y swaption. We assume piecewise constant functions γ(t), σ(t) and ǫ(t)
and we keep the remaining parameters constant. The piecewise constant functions are assumed
to be constant on the following intervals:

S0 = 0 < S1 = 1 < S2 = 2 < . . . < S9 = 9 < S10 = 10,



5.8. NUMERICAL RESULTS 83

and are defined as

ǫ(t) =
9∑

j=0

It∈(Sj ,Sj+1] (2.2− 0.2j) ,

γ(t) =
9∑

j=0

It∈(Sj ,Sj+1] (1.0− 0.1j) ,

σ(t) ≡ 0.15.

For the constant parameters we take:

β = 0.40, V (0) = 1, a = 0.03, R(0) = S0,m(0).

We use these parameters to price the swaption for the following vector of strikes

ATM + {−0.02,−0.01,−0.005, 0, 0.005, 0.01, 0.02}.
To get a good understanding of how well the averaging formulas perform, we compare the
fundamental transform pricing results to Monte Carlo results. To avoid additional errors from
the approximations we made to derive the swap rate model, we simulate the swap rate model
instead of the DDSV model. To test the averaging formulas we take the following approach.

• To test the ǫ(t)-averaging formula we set γ(t) ≡ 0.15. We apply the averaging formula to
derive the swap rate model with constant skew. Note that swap rate volatility function λ(t)
is still time-dependent. We do not average λ(t), but solve the Riccati ODEs numerically.
Hence we use the ODE fundamental transform to price the swaptions. In the second step
we price the same instruments using the Monte Carlo method.

• To test the γ(t)-averaging formula we do exactly the same test as for the ǫ(t)-averaging
formula. But in this case we fix ǫ(t) ≡ 1 and keep the skew function piecewise constant.

• The third test is to keep γ(t) and ǫ(t) piecewise constant and perform the same test as in
the previous cases.

• To test the λ(t)-averaging formula, we price the instruments with the analytic fundamental
transform. I.e. we average the time-dependent volatility function λ(t) so that we obtain
the time-homogeneous swap rate model.

Results
In Figure 5.7 we present the results for the ǫ(t) averaging formula. From this figure we conclude
that the averaging formula has a satisfactory convergence. The difference between the ODE
fundamental transform solution and the Monte Carlo solution is at most 25 basis points. At the
ATM-level we are fewer than 5bp off.

In Figure 5.8 we present the results for the γ(t) averaging formula. From this figure we conclude
that the averaging formula has a satisfactory performance too. The difference between the ODE
fundamental transform solution and the Monte Carlo solution is at most 5 basis points. The
analytic fundamental transform has a good performance around the ATM-level. By construction
of this averaging formula this is exactly what we expect. We have more inaccuracy if we are far
of the ATM level, but we stay within a range of 40 basis points accuracy.
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Figure 5.7: Performance of the ǫ(t) averaging formula.

−0.02 −0.01 0 0.01 0.02
9

10

11

12

13

14

15

ATM + x %

Im
pl

ie
d 

V
ol

 

 

ODE FT vol
analytic FT vol
MC vol

(a) Implied volatility skews

−0.02 −0.01 0 0.01 0.02
−40

−35

−30

−25

−20

−15

−10

−5

0

5

ATM + x %

D
iff

er
en

ce
 in

 b
as

is
 p

oi
nt

s

 

 

ODE FT − MC
analytic FT − MC

(b) Difference in basis points

Figure 5.8: Performance of the γ(t) averaging formula.

In Figure 5.9 we present the results where we combine all averaging formulas. This figure shows
the power of the formulas. If we use the ODE fundamental transform solution we see that we
stay within a range of 35 bp accuracy. If we average the volatility function λ(t) then there is
more inaccuracy, but there is still an accurate price around the ATM-level.

We did the same tests for other parameter sets. From these tests we draw the same conclusions.
In general we expect similar results to the results we have shown in this section.

5.8.3 Restrictions on the parameters

In this subsection we discuss the approximations in the swap rate dynamics. All approximations
are made in the swap rate volatility function to derive λ(t), the volatility function of the swap
rate model. Recall that we approximate r(t) ≈ f(0, t). The effects of this approximation are
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Figure 5.9: Joint performance of the ǫ(t) and γ(t) averaging formulas.

small if γ is close to zero. The overall effect of all approximations is affected by the value of σ,
since σ is a factor in the swap rate volatility function λ(t).

We wish to use the closed form swaption price formula to calibrate the model, hence we are
interested for which parameter domains the approximation formulas are accurate. With a test
we determine the restriction on both parameters. The approximation error increases when the
option maturity increases, hence we choose a 10Y into 1Y swaption. We test based on trial and
error, we fix all parameters and vary σ and γ. Then we price a 10Y into 1Y swaption with the
closed form solution and the Monte Carlo method. We price the instrument for the following
strikes

ATM+ {−0.03,−0.02,−0.01,−0.0050,−0.0025, 0, 0.0025, 0.0050, 0.01, 0.02, 0.03}.

after pricing we compare the implied volatility skews. We assume that the closed form solution
works well, if the difference between the Monte Carlo skew and the one obtained from the closed
form solution is at most 100bp. Indeed, this value is quite arbitrary, but our goal is to improve
the fit to the whole market skew. With Hull-White’s model we match only one instrument
perfectly. The difference between the model implied skew and the market skew, was in some
cases 500 bp or more. (See Figure 3.2.)

In Cheyette’s model we have three parameters per option maturity to which we calibrate the
model. Theoretically this implies that we can fit three strike levels perfectly. Hence we expect
that we are able to fit the other points on the market skew more accurately than with Hull-
White. Assume that the Cheyette model is calibrated to a set of swaptions and we price back the
calibration instruments with Monte Carlo simulation, if skew implied by this method deviates
at most 100bp from the skew implied by the closed form solution (and hence market skew), then
we expect in many cases a better fit to the market skew than calibration with Hull-White. This
is our motivation why an overall error of 100bp is acceptable4.

4If we allow an overall error of 100 bp we expect a better performance around the ATM level, since our λ(t)
averaging formula is by construction more accurate around the ATM level.
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We did the following trial and error experiment on multiple market data sets. We take two
intervals, for γ we define [0, u1] and for σ we define [0, u2]. Then both, the skew and volatility
parameters are fixed to the worst case scenario i.e. γ = u1 and σ = u2 for all t ∈ [0, 10]. Finally
we compute the implied volatility skews. By increasing u1 and u2 we derived a safe upperbound
on the parameters, so that we have confidence that the overall error between both skews is
smaller than 100bp.

We derived that u1 = 0.30 and σ = 0.30 are safe upperbounds for the intervals. In Figure 5.10
we show the results. In Figure 5.11 we show that increasing both upperbounds to 0.35 exceeds
an overall error of 100bp.
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Figure 5.10: σ = 0.3, γ = 0.3: Accuracy of the closed form solution for a 10Y into 1Y swaption.
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Figure 5.11: σ = 0.35, γ = 0.35: Accuracy of the closed form solution for a 10Y into 1Y
swaption.



Chapter 6

Calibration of the DDSV model

In order to be able to use the model for option pricing, we have to determine the model param-
eters. The model parameters are chosen in such a way that the model prices match the market
prices of a certain set of market instruments as close as possible. The process of finding the set
of optimal parameters is called calibration. In practice it is common to calibrate to European
style products. In our analysis we are interested in calibration to the swaption market. The
way we calibrate the DDSV model to the swaption market is the main topic of this chapter. We
subdivide this chapter into the following sub-topics.

• Stepwise calibration of the DDSV model, see Section 6.1.

• Minimization problem, see Section 6.2.

• Calibration to market data, see Section 6.3.

• Calibration results, see Section 6.4.

6.1 Stepwise calibration of the DDSV model.

We calibrate the DDSV model parameters with a bootstrap method. This means that we
calibrate the parameters in a piecewise constant fashion for subsequent option maturities. The
mean reversion rate a of the x(t) proces, the mean reversion rate β of the variance process and
the scaling parameter R0 are fixed in advance. Hence we calibrate the skew function γ(t), the
volatility function σ(t) and the volatility of volatility function ǫ(t). To calibrate these piecewise
constant functions to the swaption market, we apply the following general algorithm. Details of
the algorithm are explained later.

1. Choose a set of option maturities 0 < S1 < S2 < . . . < Sp.

2. Per option maturity Si choose three payer swaptions with the same option maturity1 Si,
but different strike levels, K1,K2 and K3.

3. Start with the calibration instruments corresponding to the first option maturity S1. Cal-
ibrate parameters σ, ǫ and γ so that the model prices match the market prices as close
as possible. (In Subsection 6.2 we go into more detail on this.) Once the optimal set of
parameters σ∗1, γ

∗
1 , ǫ

∗
1 is found, define:

1Note that it is allowed to take swaptions with a different underlying swap. Unless otherwise stated we assume
three swaptions with the same underlying, but a different fixed rate K on the fixed leg.

87
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σ(t) ≡ σ∗1, ǫ(t) ≡ ǫ∗1, γ(t) ≡ γ∗1 ,

for all t ∈ [0, S1]. This defines the first parts of the piecewise constant functions γ(t), σ(t)
and ǫ(t), kept constant on this interval.

4. To calibrate the parameters to the other maturities, proceed as follows. Assume that we
have knowledge of the piecewise constant functions up to time Sn, n ∈ {1, 2, · · · , p−1} i.e.
the model is calibrated to the first n sets of calibration instruments. To calibrate the model
to the set of calibration instruments corresponding to maturity Sn+1, find σ

∗
n+1, γ

∗
n+1, ǫ

∗
n+1

on interval (Sn, Sn+1], such that the model prices match the market prices. Once the
optimal set of parameters σ∗n+1, γ

∗
n+1, ǫ

∗
n+1 is found, define

σ(t) ≡ σ∗n+1, ǫ(t) ≡ ǫ∗n+1, γ(t) ≡ γ∗n+1,

for all t ∈ (Sn, Sn+1].

5. Repeat the previous step until the model is calibrated to the last maturity.

Note that this is a very general description of the calibration algorithm. In Section 6.2 we explain
the minimization problem (objective function and constraints) and the minimization algorithm
we use to calibrate the model.

6.2 Minimization problem.

In general we minimize the difference between the model prices and the corresponding market
prices. A common choice is to minimize this distance in the ‖.‖2-norm. Since we calibrate
with the stepwise calibration algorithm, explained in Subsection 6.1, we have p minimization
problems. Before we state the nth minimization problem, we introduce definitions and notations.

The option maturity corresponding to the nth minimization problem is Sn. The market prices
of the three calibration instruments with maturity Sn are denoted by:

{Cmkt
n,i , i = 1, 2, 3}.

We denote the current state of the model by χn−1:

χn−1 := {σ(.), ǫ(.), γ(.)},
the elements of this set are the calibrated piecewise constant functions up to maturity Sn−1.
The model prices of the swaptions are denoted by

{Cn,i(χ;σn, ǫn, γn), i = 1, 2, 3},
We use the time-homogeneous swap rate model, given by (5.36), to compute an approximation
of the swaption price for the DDSV model. For this model there exists a closed-form solution for
the swaption price. For the nth optimization problem this price is computed conditional on the
current state χn−1 of the model and an extension of the piecewise constant function with values
σn, ǫn, γn on (Sn−1, Sn]. wi, i ∈ {1, 2, 3}, is the weight factor of the corresponding calibration
instrument.
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Using this notation, we define the nth minimization problem as:

minσn,ǫn,γn

3∑

i=1

wi

(

Cn,i(χn−1;σn, ǫn, γn)− Cmkt
n,i

)2
,

subject to: δ ≤ σn ≤ 0.30,

δ ≤ γn ≤ 0.30,

δ ≤ ǫn ≤ 5.00.

(6.1)

Unless otherwise stated, we take δ = 0.01. We do not allow our parameters to be zero, due
to numerical complications, for example, division by zero and the validity of the closed form
solution, since the closed form solution is only valid for γ > 0. Since there is no closed form
formula for the implied volatility, we calibrate to market prices and not to market volatilities. If
we calibrate to market volatilities, then we have to solve three nonlinear equations after pricing
the calibration instruments to evaluate the objective function. This is computationally more
expensive. Another drawback is that, for some sets of the parameters, there is no solution for
the implied volatility. For these sets the prices are too small, or too large, so that there is no
solution for the implied volatility.

To solve the p minimization problems we choose a Sequential Quadratic Programming method,
which is an iterative method for nonlinear optimization problems. For unconstrained problems
this method resembles the Newton method. Similar to the steepest gradient method, the SQP
method defines at every iterate xk an appropriate search direction dk as a solution to a quadratic
programming subproblem and performs a line minimization in the direction of this search direc-
tion to obtain a scalar λk. Once λk is obtained, the next iterate is defined as xk+1 = xk + λdk.
This method converges in general to a local minimizer in the neighborhood of the initial guess.

For an extensive description of the SQL method, we refer the reader to [22].

6.3 Calibration to market data.

In the previous sections we discussed in a very general way the calibration of the DDSV model.
In this section we discuss the test setup and we calibrate the model to market data. The
calibration of the DDSV model is implemented in an existing C++ library. To implement the
calibration in C++ we need numerical algorithms. We use functions available in the NAG2

library.

6.3.1 Choice of the constant parameters.

In the DDSV model we fix parameters a, R0, and β, before we calibrate the piecewise constant
functions. We give a discussion of how we choose these constant parameters. Recall from
Section 3.1 that a ∈ [0.01, 0.05] is a common choice. Unless otherwise stated we define a = 0.03.
With parameter R0 we can shift the level of the skew. From our experience R0 ∈ [0.04, 0.07]
is a common choice. To investigate wheter a suitable R0 is chosen, it is useful to look at the
calibration results. Recall that for accuracy reasons, σ is restricted to [0, 0.30]. If there are
boundary solutions for σ obtained, then it is better to increase R0 and recalibrate the model.

In Section 5.8.1 we mentioned that from the literature [21] and market observations it is known
that β ∈ [0.05, 0.20] is a common choice. We propose the following method to find the most

2For more information about NAG we refer to http://www.nag.co.uk/numeric/CL/CLdescription.asp
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suitable β. Before calibrating the model, we investigate the market skews. If there is a strong
curvature in the market skews for medium- and long-dated maturities, we expect that a small
beta is required. In this case we define β = 0.10 and we calibrate the DDSV model. If the market
skews are flatting out for medium- and long dated maturities, β = 0.20 is more suitable. If there
is no strong curvature in the market skews, even for short-dated maturities, β ∈ [0.60, 1.00] is a
suitable choice.

Recall that β and ǫ have a similar impact on the implied volatility skew. To investigate whether
a suitable choice for β is made, we look at the interplay of β and ǫ. If the piecewise constant
function ǫ(t) is strongly fluctuating in time, then we may have chosen a suboptimal β. In this
case we recommend to recalibrate the DDSV model with a different choice of β.

6.3.2 Choice of calibration instruments.

We need three calibration instruments (payer swaptions), for each option maturity to which
we calibrate the model. We take the same underlying swap, but different strike levels. In
this paragraph we discuss the choice of calibration instruments in our test. To decide which
swaptions to take, there are two important issues to take into account. First of all, which part
of the market skew do we wish to fit with the model? Secondly, how liquid are the calibration
instruments in the swaption market?

One choice is to calibrate to swaptions with the following strikes

ATM+ {−0.03, 0, 0.03}.

The problem with this choice is that we calibrate to two points of the market skew, ATM−0.03
and ATM+0.03, which are in general not liquid in the swaption market. The corresponding
quoted market prices are in general obtained by extrapolation. If a swaption is liquid in the
market, then we can have more confidence in the quoted market price. It is known from market
experience that the most liquid swaptions have strikes between:

[ATM− 150bp,ATM+ 150bp].

Hence it makes more sense to calibrate to swaptions with strike levels within this range. To
capture the whole market skew in this range we choose for each option maturity, unless otherwise
stated, swaptions with strike levels:

{ATM− 1.5%,ATM,ATM+ 1.5%}.

With this choice of calibration instruments we expect to have a good fit to the most liquid
instruments of the market skew.

6.3.3 The choice of weight factors w1, w2 and w3.

In the objective function from the optimization problems, given by Equation (6.1), we see weight
factors w1, w2 and w3. Defining w1 = w2 = w3 ≡ 1 assigns equal weight to the calibration
instruments. If we want to assign more weight to one particular calibration instrument, we can
assign unequal weights. Unless otherwise stated we choose:

w1 = w2 = w3 = 1.
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6.3.4 Initial guess for the model parameters.

The optimization routine requires an initial guess for the parameters. Since it is possible that
the optimization routine can converge to a local minimizer, one needs in general a good initial
guess close to the global minimizer of the optimization problem. If the initial guess is far away
from the global minimizer, then there is a chance that the optimizer will not reach the global
minimizer.

One way to obtain an initial guess, is to use a global optimization algorithm to obtain a start
solution for the SQP optimization algorithm. Global minimization schemes are in general based
on a stochastic algorithm. The drawback is that they are computationally expensive and slower
than local algorithms. We expect that a combination of a global minimization algorithm for the
initial guess and a local optimization algorithm has a better accuracy than restricting ourselves
to local algorithms. Since calibration is a trade-off between speed and accuracy and we are
focussing on a fast calibration, we restrict ourselves to local optimization algorithms to calibrate
the model.

Because we use the SQP algorithm, we have to define an initial guess for the p optimization
problems. We define them as follows, if we calibrate to the first set of calibration instruments,
or equivalently to the first option maturity S1, we define the following initial guess:

σinit1 =
1

2
(σmin + σmax), γinit1 =

1

2
(γmin + γmax), ǫinit1 =

1

2
(ǫmin + ǫmax),

where σmin, . . . , ǫmax are the lower- and upperbounds on the corresponding parameters. Assume
that for some n, n ∈ {1, 2, . . . , p − 1}, the optimization problem is solved and we obtained the
optimal parameters σ∗n, γ

∗
n, ǫ

∗
n on (Sn−1, Sn], then we define

σinitn+1 = σ∗n, γinitn+1 = γ∗n, ǫinitn+1 = ǫ∗n,

as an initial guess for the parameters on (Sn, Sn+1] for optimization problem n + 1. Defining
the optimal parameters from the previous optimization problem as an initial guess for the next
optimization problem is a good choice for parameter stability reasons.

6.3.5 Calibration of the DDSV model to real market data.

In this subsection we discuss the calibration results for real market data of three different cur-
rencies and three different dates. We show the results for the EURO, (European Union), USD
(United States) and KRW (Korean Won) market. For each currency we take the historical
data for 19 November 2009, 9 August 2010 and 15 April 2011. We calibrate the model to the
following set of co-terminal swaptions, {1Y10Y, 2Y9Y, . . . , 10Y1Y}. To validate the calibration
we perform the following analysis.

We use the calibrated parameters to price back the co-terminal swaptions for the following vector
of strikes,

ATM+ {−250,−200,−150,−100,−50,−25, 0, 25, 50, 100, 150, 200, 250}bp.
The instruments are priced back in two different ways. First of all we price the instruments with
the closed form formula, hence we obtain fits to the market skew using the time-homogeneous
swap rate model. Secondly, we price the instruments using the full-scale DDSV model, with the
Monte Carlo method described in Section 5.6. For convergence of the Monte Carlo method, we
need a sufficiently large N and sufficiently small timestep dt. In the Monte Carlo simulation we
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take N = 100, 000 and dt = 1/365. These settings were obtained by decreasing the time step
and increasing the number of simulations, so that the difference between the swaption prices,
for a swaption with notional of 10, 000, was less than one basis point.

To compare the DDSV calibration to the Hull-White results, we calibrate the Hull-White model
to the same co-terminal swaptions. Since there is only one degree of freedom, we take ATM
swaptions. In the Hull-White calibration process we use the analytic swaption formula to price
swaptions. We use the calibrated Hull-White parameters and the analytic formula to price back
the co-terminal swaptions for the same vector of strikes. Once the calibration instruments are
priced back, using the three different models, we compare the results.

At the end of this chapter, in Section 6.4, we present the calibration results for the market data
from 15 April 2011. In Appendix C we present the other calibration results, for the market data
from 10 November 2009 and 9 August 2010. The appendix is subdivived into three parts. In
Sections C.1 through C.2 we present the results for the EURO market. In Sections C.3 through
C.4 we present the results for the KRW market. And finally, in Sections C.5 through C.6 we
present the results for the USD market.

For each currency and date, we present here the following results. We include one table with
calibration results, in which we show for each calibration instrument the observed market price
and the time-homogeneous swap rate model price after calibration. With these two prices we can
compute the relative difference and the corresponding Black’s implied volatility. The difference
between the model implied volatility and the market volatility is given in basis points.

difference in bp = 10000× (σmodel − σmarket) .

Furthermore we present one table with the calibrated piecewise constant parameters and the
values of the constant parameters. Finally we include for the 1Y10Y, 3Y8Y, 6Y5Y, 7Y4Y, 9Y2Y
and 10Y1Y swaption, a figure in which we give the fits to the corresponding market skew. In
each figure we show the fit with DDSV model to the market skew (DDSV Monte Carlo line), the
fit with the time-homogeneous swap rate model (DDSV Closed formula line) and the fit with
the Hull-White model (H&W analytic line). In the caption of each figure we give information
about the accuracy of the closed form solution. With

Accuracy, ATM x bp, max y bp.

we mean the following. The difference between the DDSV Monte Carlo and DDSV Closed
formula is x bp at the ATM level and the maximum difference between ATM +[−150bp, 150bp]
is y bp. In the remaining part of this subsection we discuss the results for each market.
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The market of 15 April 2011
We start with the market conditions of 15 April 2011 for the EURO, KRW and USD markets.
In Figure 6.1 we show the yield curves and in Figure 6.2 we show the market volatility skews
for the 1Y10Y and the 10Y1Y swaptions. From the market skews we conclude that the USD
market is more volatile than the EURO and KRW markets. To obtain free σ parameters in
the calibration, we expect that a larger scaling parameter R0 is required for the USD market.
Furthermore we see that the EURO market has a steeper skew than the KRW and USD markets.
Hence we expect that the skew parameter γ is smaller for the EURO market than for the KRW
and USD markets. For the KRW market we observe a strong curvature in the market skews,
also for the 10Y maturity. We expect that a small mean reversion of variance parameter β, e.g.
β ≈ 10%, is a proper choice to fit these market skews.
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Figure 6.1: Yieldcurves for the EURO, KRW and USD market.
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Figure 6.2: Market skews for the 1Y10Y swaption and 10Y1Y swaption in the three different
currencies.

EURO swaption market
For the EURO market we use the EUR-M-SW-6M yield curve. For this market we have an
improvement in comparison to the Hull-White model. In general the skew function γ(t) is well
below 0.30. This implies a high accuracy between the closed form solution and the Monte Carlo
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method. We observe that the calibrated parameters are free3, but there are a few exceptions.
For the market of 19 November 2009 we obtain one boundary solution for γ and one boundary
solution for σ. For the market of 9 August 2010 we obtain two boundary solutions for γ, for
the 9Y and 10Y maturity swaptions. These boundary solutions are obtained after a jump from
γ = 0.068 to γ = 0.30 and a jump from ǫ = 1.12 to ǫ = 0.116. This tells us that the calibration
became unstable for the 9Y and 10Y maturities. Which is reflected in the results for the 10Y
maturity swaptions.

If we restrict the calibration to the 10Y maturity swaptions, then we obtain an accurate cali-
bration without any boundary solutions. In Table 6.1 we present the calibration results. The
calibrated parameters are given by γ = 0.1688, σ = 0.2384 and ǫ = 1.0299. To explain why the
calibration to the 10Y1Y swaption is less accurate, when we calibrate to co-terminal swaptions
in a bootstrap fashion, is explained by the following argument. For the 10Y1Y skew we require
a skew parameter γ = 0.1688. Since we calibrate to one option maturity we need to satisfy
γ(t) ≡ γ̄, the time-averaged skew parameter over a time-horizon [0, 10]. We investigated the
calibration process for the co-terminal swaptions into more detail. After calibration to the 10Y
maturity, we observed that the averaged skew parameter γ̄ was 0.1772. This is larger than
0.1688, which is required for an accurate match. We expect that the optimizer converged to a
local optimum. The use of a global optimizer, to obtain an initial guess for the SQP method,
may give a better performance.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

10 1 0.0263 132.77 132.77 1e-4 21.67 21.67 0

10 1 0.0413 61.53 61.53 3e-4 16.5 16.5 0

10 1 0.0563 27.25 27.25 4e-4 15.58 15.58 0

Table 6.1: Euro market 9 August 2010: Calibration to 10Y1Y calibration instruments, β = 0.10
and R0 = 0.04.

If we look at the constant parameters, we conclude the following. For all dates R0 = 0.04 gives
a satisfactory performance, since the calibrated σ parameter is always free. Depending on the
curvature in the market skews, choosing β ∈ [0.10, 0.20] gives a stable behaviour for the volatility
of volatility function ǫ(t). In general there is no strong curvature in the EURO market, hence
there is no need to choose β < 0.10.

The overall conclusion regarding the EURO market is that we are able to calibrate this market
well. We can improve the fit to the market skew in comparison to Hull-White.

KRW swaption market

For the KRW market we use the KRW-M-SW-MM yield curve. From the market skews we
observe that the KRW market has more curvature than the EURO market. This market is more
difficult to calibrate with the DDSV model than the EURO market. We have a better accuracy
at the ATM instruments, than the in-the-money and out-of-the-money instruments.

In general the calibrated parameters are stable. There is one exception for the market of 19
November 2009. There we observe a jump in the volatility of volatility function ǫ(t). There are

3With free we mean that there is no boundary solution obtained.
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two arguments to explain this behaviour. First of all, the choice of β is not optimal. Secondly
the calibration becomes unstable due to the boundary solutions for γ. Calibrating the model
with different values of β did not improve the stability in time of ǫ(t), hence we expect that the
instability is a result from the boundary solutions for γ.

If we look at the calibrated skew function γ(t), we observe many boundary solutions. This tells
us that we may require a larger skew parameter γ than we allow for accuracy reasons, which
suggests us that it is important to improve the crude approximation r(t) ≈ f(0, t), in a way that
we can loosen the restriction on parameter γ.

For the three dates we observe that for short-dated maturities the fits of the DDSV model to the
market skews are more accurate than the Hull-White fits. For the 9Y and 10Y maturities, the
fits are less accurate. For these maturities the Hull-White model is closer to the in-the-money
swaptions. Only for out of the money swaptions the DDSV is closer to the market skew. The first
observation is explained by the boundary solutions for γ. We expect that a larger γ is required
to improve the fit to the in-the-money swaptions, since increasing γ decreases the steepness of
the skew, see Figure 5.5(b). The second observation is explained by the fact that the DDSV
model has control on the curvature of the implied volatility skew. Hence we can obtain a better
fit to the out of the money swaptions, where the market skew has a strong curvature.

The overall conclusion for the KRW market is that the DDSV model is able to calibrate the
short-dated maturity swaption smiles more accurately than Hull-White. The KRW market
requires a larger skew parameter γ than we allow for accuracy reasons. This results in inaccurate
calibration results for the long-dated maturity swaptions.

USD swaption market

For the USD market we use the USD-M-SW-3M yield curve. We observe that the calibration
to this market is less accurate than the calibration to the EURO market.

We observe that the USD market is more volatile than the EURO and KRW markets. The
market skews are approximately 8% higher. This implies that we require R0 ∈ [0.06, 0.08] to
shift the implied volatility skew, so that we obtain free σ parameters in the calibration process.
Secondly, we observe that the market skews have little curvature. Hence β ∈ [0.20, 0.40] is a
proper choice and the volatility of volatility function has a stable behaviour in time.

We observe many boundary solutions for the skew parameter. We see this particular in the
results for the market data of 9 August 2010 and 19 November 2009. The market skews of 19
November 2009 are relatively flat, which implies that a large skew parameter γ is required. Since
we restrict this parameter to the interval [0, 0.30] it is not possible to fit these market skews. For
this date the calibration failed. To improve the calibration we propose to investigate a better
approximation for the short rate r(t), so that we can loosen the restriction on γ. To illustrate
why this is important, we calibrate the time-homogeneous swap rate model without restrictions
on the parameters. Hence we allow γ ∈ [0, 1]. In this case we are able to match the calibration
instruments accurately. In Table 6.2 we show the calibration results. The calibrated parameters
are γ = 0.7221, σ = 0.5138 and ǫ = 0.9647.

If we price back the instruments with the DDSV model, we obtain an inaccurate fit, see Figure
6.3. This is what we expect and illustrates why γ should be restricted to [0, 0.30]. Since for
both models, the time-homogeneous swap rate model and the DDSV model, we obtain a flatter
implied volatility skew if γ increases, we expect that improving the approximation of the short
rate will improve the accuracy of the calibration to USD markets.
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Figure 6.3: USD market 9 August 2010: Fit to the 1Y10Y market skew without restrictions on
the parameters.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0171 1325.58 1325.58 3e-4 38.08 38.08 0

1 10 0.0321 337.22 337.22 1e-4 30.19 30.19 0

1 10 0.0471 44.12 44.12 7e-4 29.22 29.22 0

Table 6.2: USD market 9 August 2010: Calibration to 1Y10Y calibration instruments, β = 0.40
and R0 = 0.07.

We also recommend to investigate the effects of introducing correlation between the Brownian
motions. This may give some additional control in the calibration process, such that we can
increase the accuracy of the calibration to the USD market. The conclusion for the USD market
is that, with the current knowledge, we are not able to calibrate the market skews accurately.

We have seen that the calibration is not perfect in the sense of accuracy. This is something
that we can also not expect, as there are many approximations involved to derive the time-
homogeneous swap rate model. There is a mismatch between the closed form solution prices
and the DDSV prices computed byMonte Carlo. We are interested in the skew and curvature
impact on exotic interest rate derivatives. Therefore we investigate the price impact between
the Hull-White model and the DDSV model on digitals, range accrual swaps and callable range
accruals. To investigate the impact, we restrict the test cases to dates for which we have
confidence in an accurate calibration. This will be the main topic of the next chapter, Chapter
7.
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6.4 Calibration results

6.4.1 EURO swaption market 15 April 2011.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0252 1224.18 1225.90 -0.14 0.2906 0.2966 -60

1 10 0.0402 267.20 267.20 0.00 0.2070 0.2070 0

1 10 0.0552 17.29 15.58 10.94 0.1975 0.1933 42

2 9 0.0267 1128.48 1130.63 -0.19 0.2852 0.2882 -30

2 9 0.0417 346.45 346.48 -0.01 0.2080 0.2080 0

2 9 0.0567 64.98 62.87 3.36 0.1965 0.1945 20

3 8 0.0279 1025.12 1027.40 -0.22 0.2749 0.2773 -24

3 8 0.0429 369.53 369.67 -0.04 0.2029 0.2030 -1

3 8 0.0579 100.83 101.81 -0.97 0.1913 0.1920 -7

4 7 0.0288 910.25 911.30 -0.11 0.2639 0.2649 -10

4 7 0.0438 358.82 358.06 0.21 0.1954 0.1950 4

4 7 0.0588 119.10 120.22 -0.93 0.1849 0.1856 -7

5 6 0.0296 782.03 782.73 -0.09 0.2494 0.2500 -7

5 6 0.0446 325.26 325.30 -0.01 0.1859 0.1859 0

5 6 0.0596 120.43 121.57 -0.94 0.1767 0.1774 -7

6 5 0.0302 652.05 652.49 -0.07 0.2389 0.2393 -4

6 5 0.0452 283.19 284.77 -0.55 0.1789 0.1799 -10

6 5 0.0602 113.76 114.77 -0.88 0.1704 0.1711 -7

7 4 0.0308 521.50 521.47 0.00 0.2310 0.2310 0

7 4 0.0458 234.86 236.66 -0.76 0.1736 0.1750 -14

7 4 0.0608 100.46 101.38 -0.90 0.1654 0.1662 -7

8 3 0.0314 389.26 389.60 -0.09 0.2225 0.2230 -5

8 3 0.0464 180.71 182.47 -0.97 0.1683 0.1700 -17

8 3 0.0614 81.14 81.60 -0.56 0.1605 0.1609 -5

9 2 0.0320 257.59 257.81 -0.08 0.2153 0.2157 -4

9 2 0.0470 122.90 124.63 -1.39 0.1640 0.1663 -24

9 2 0.0620 57.38 57.77 -0.67 0.1561 0.1567 -5

10 1 0.0326 127.68 127.64 0.03340 0.2079 0.2078 2

10 1 0.0476 62.32 63.31 -1.57 0.1594 0.1612 -26

10 1 0.0626 29.95 30.03 -0.28 0.1515 0.1517 -2

Table 6.3: EURO market 15 April 2011: Calibration results.

σ(t) 0.2484 0.2840 0.2888 0.2911 0.2646 0.2718 0.2787 0.2663 0.2593 0.2401

γ(t) 0.0100 0.0100 0.0100 0.0100 0.0511 0.0438 0.0354 0.0618 0.0610 0.0445

ǫ(t) 1.1541 1.1190 1.9676 1.8181 2.4517 2.4431 2.4394 2.4392 2.4395 2.3739

Table 6.4: EURO market 15 April 2011: R0 = 0.04, β = 0.20, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -9 bp, max. 90 bp.
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(b) 3Y8Y: Accuracy, ATM -9 bp, max. 27 bp.
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(c) 6Y5Y: Accuracy, ATM 20bp, max. 22bp.
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(d) 7Y4Y: Accuracy, ATM 8 bp, max. 11 bp.
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(e) 9Y2Y: Accuracy, ATM 43bp, max. 43 bp.
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(f) 10Y1Y: Accuracy, ATM 14 bp, max. 20bp.

Figure 6.4: EURO market 15 April 2011: Figures with Cheyette and Hull-White fits to the
market skew.
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6.4.2 KRW swaption market 15 April 2011.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0413 934.64 932.96 0.18 17.93 17.26 67

1 10 0.0563 183.15 183.13 0.01 13.20 13.20 0

1 10 0.0713 12.45 13.83 -10.01 14.51 14.84 -32

2 9 0.0407 863.65 859.43 0.49 17.32 16.66 67

2 9 0.0557 222.97 224.29 -0.59 12.78 12.86 -8

2 9 0.0707 38.09 38.30 -0.56 13.97 13.99 -2

3 8 0.0401 786.70 783.26 0.44 16.74 16.34 40

3 8 0.0551 236.09 240.40 -1.79 12.58 12.82 -23

3 8 0.0701 55.60 61.82 -10.07 13.45 13.94 -49

4 7 0.0394 705.75 700.95 0.68 16.60 16.10 50

4 7 0.0544 238.28 237.57 0.30 12.74 12.70 4

4 7 0.0694 68.07 73.98 -7.99 13.26 13.68 -42

5 6 0.0386 620.12 617.25 0.46 16.68 16.39 29

5 6 0.0536 230.36 229.00 0.59 13.04 12.96 8

5 6 0.0686 76.06 82.06 -7.31 13.31 13.73 -42

6 5 0.0378 526.76 525.36 0.27 16.58 16.44 15

6 5 0.0528 207.51 208.64 -0.54 13.08 13.15 -7

6 5 0.0678 74.65 83.99 -11.12 13.19 13.88 -70

7 4 0.0368 427.60 423.93 0.87 16.47 16.02 45

7 4 0.0518 175.22 175.74 -0.30 13.04 13.08 -4

7 4 0.0668 66.64 76.94 -13.39 13.03 13.91 -88

8 3 0.0361 327.70 323.62 1.26 16.75 16.13 62

8 3 0.0511 141.13 140.05 0.77 13.30 13.20 10

8 3 0.0661 57.00 65.61 -13.12 13.11 14.02 -91

9 2 0.0352 222.03 219.42 1.19 16.95 16.39 56

9 2 0.0502 99.66 98.82 0.86 13.55 13.43 12

9 2 0.0652 42.53 48.69 -12.66 13.25 14.16 -91

10 1 0.0338 112.56 110.90 1.50 17.30 16.61 69

10 1 0.0488 52.10 51.77 0.64 13.84 13.75 9

10 1 0.0638 23.09 27.20 -15.10 13.42 14.59 -117

Table 6.5: KRW market 15 April 2011: Calibration results.

σ(t) 0.1139 0.1224 0.1280 0.1422 0.1613 0.1613 0.1613 0.1867 0.2005 0.2005

γ(t) 0.3000 0.2988 0.2897 0.2692 0.2919 0.2919 0.2919 0.2318 0.2981 0.2981

ǫ(t) 1.4138 0.8390 0.8128 0.9944 0.9817 0.9817 0.9816 1.0349 0.7242 0.7250

Table 6.6: KRW market 15 April 2011: : R0 = 0.06, β = 0.10, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -8 bp, max. 110 bp.
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(b) 3Y8Y:: Accuracy, ATM -16 bp, max. 50 bp.
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(c) 6Y5Y: Accuracy, ATM -17 bp, max. 51 bp.
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(d) 7Y4Y: Accuracy, ATM -24 bp, max. 44 bp.
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(e) 9Y2Y: Accuracy, ATM -7 bp, max. 48 bp.
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(f) 10Y1Y: Accuracy, ATM -21 bp, max. 26 bp.

Figure 6.5: KRW market 15 April 2011: Figures with Cheyette and Hull-White fits to the
market skew.
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6.4.3 USD swaption market 15 April 2011.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0255 1292.95 1283.61 0.727678417 34.28 31.97 232

1 10 0.0405 360.18 359.81 0.101438668 26.63 26.60 3

1 10 0.0555 48.78 57.32 -14.89816248 24.91 26.06 -116

2 9 0.0291 1219.44 1207.41 0.996331723 31.89 30.61 128

2 9 0.0441 465.14 464.14 0.216606061 25.45 25.40 6

2 9 0.0591 134.12 149.72 -10.41884144 23.82 24.88 -107

3 8 0.0319 1123.36 1114.82 0.765737804 29.61 28.92 69

3 8 0.0469 495.63 496.53 -0.180003299 24.05 24.10 -4

3 8 0.0619 185.91 206.11 -9.800168992 22.47 23.57 -110

4 7 0.0340 1011.84 1001.31 1.051493093 28.23 27.46 76

4 7 0.0490 492.59 489.29 0.675306166 23.26 23.10 16

4 7 0.0640 215.70 232.40 -7.186516983 21.69 22.53 -84

5 6 0.0355 879.55 867.80 1.353595927 26.86 26.01 85

5 6 0.0505 455.97 453.69 0.50324497 22.41 22.29 11

5 6 0.0655 219.39 233.45 -6.024150189 20.92 21.64 -72

6 5 0.0364 737.15 731.47 0.776000665 25.80 25.36 44

6 5 0.0514 398.35 397.30 0.26363044 21.65 21.60 6

6 5 0.0664 202.80 215.96 -6.095081598 20.19 20.92 -73

7 4 0.0370 589.28 586.42 0.486846564 24.92 24.66 26

7 4 0.0520 328.03 325.28 0.843541909 20.98 20.80 18

7 4 0.0670 173.35 181.02 -4.241547305 19.51 20.00 -50

8 3 0.0374 440.81 440.27 0.124660556 24.28 24.22 6

8 3 0.0524 251.89 249.06 1.135438393 20.50 20.27 24

8 3 0.0674 137.39 141.99 -3.236731959 19.01 19.39 -38

9 2 0.0377 291.36 291.86 -0.169607759 23.64 23.72 -8

9 2 0.0527 169.82 167.59 1.328675648 20.00 19.73 27

9 2 0.0677 94.75 97.35 -2.672302392 18.50 18.80 -31

10 1 0.0375 143.01 143.43 -0.293468201 22.87 23.00 -13

10 1 0.0525 84.03 82.95 1.29494734 19.35 19.10 26

10 1 0.0675 47.29 48.37 -2.233152609 17.86 18.11 -25

Table 6.7: USD market 15 April 2011: Calibration results.

σ(t) 0.2603 0.2645 0.2390 0.2401 0.2315 0.2049 0.1847 0.1815 0.1619 0.1185

γ(t) 0.3000 0.2816 0.2544 0.2500 0.3000 0.2652 0.2321 0.2311 0.2081 0.2198

ǫ(t) 1.0058 0.9927 1.1338 1.1225 1.2833 1.1306 0.9914 0.9818 0.8521 0.4306

Table 6.8: USD market 15 April 2011: R0 = 0.07, β = 0.20, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -17 bp, max. 145 bp.
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(b) 3Y8Y: Accuracy, ATM -41 bp, max. 92 bp.
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(c) 6Y5Y: Accuracy, ATM -37 bp, max. 73 bp.
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(d) 7Y4Y: Accuracy, ATM -50 bp, max. 100 bp.
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(e) 9Y2Y swaption: Accuracy, ATM -36 bp, max. 76
bp.
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(f) 10Y1Y swaption: Accuracy, ATM -58 bp, max. 99
bp.

Figure 6.6: USD market 15 April 2011: Figures with Cheyette and Hull-White fits to the market
skew.



Chapter 7

Pricing of exotic IR derivatives

In this chapter we investigate the skew and curvature impact on interest rate derivatives. We
consider digital caplets, digital caps, range accrual swaps, callable range acrruals and a callable
remaining maturity swap. We price these derivatives with the Hull-White model and the DDSV
model. We analyze the difference between the Hull-White and the DDSV prices, which is the
skew and curvature impact of the DDSV model. We subdivide this chapter into the following
sections.

• Definitions and pricing of the interest rate derivatives, see Section 7.1.

• Test strategy, see Section 7.2.

• Test results, see Section 7.3.

7.1 Definitions and pricing of the interest rate derivatives

In this section we give the definitions of the interest rate derivatives that are in the present
analysis. Define by T := {T0, T1, . . . , Tm} the set of coupon dates. We assume T0 to be the
start date and T1, T2 . . . Tm to be the pay dates. For convenience of notation we assume that
the fixing date of the LIBOR rate, or any other reference rate, coincides with the start date of
the coupon. In general there is a fixing lag between the fixing date of the rate and the start
date of the coupon. Secondly, we assume that the pay date coincides with the end date of the
coupon. We define τ(Ti−1, Ti) the year fraction between date Ti−1 and Ti. Recall that this
distance depends on the market conventions.

7.1.1 Digital caps and digital floors

A digital cap (digital floor) is the sum of a number of basic contracts, knows as digital caplets
(digital floorlets), which are defined as follows. A digital is a derivative with a non-linear
discontinuous payoff function. Given two dates T0 and T1, a notional amount N , a fixed rate K
and a floating interest rate, in general the LIBOR rate L(T0, T1). A digital floorlet with barrier
B is an instrument whose coupon payment at time T1 is given by:

Vd−floorlet(T1) := Nτ(T0, T1)KIL(T0,T1)<B.

Where I is the indicator function, i.e.

IL(T0,T1)<B :=

{
1 L(T0, T1) < B
0 L(T0, T1) > B

.

103
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Using the zero-coupon bond P (t, T1) as a numeraire and assuming Black’s model for the LIBOR
rate L(T0, T1), the value at time t ≤ T0 of the digital floorlet is given by:

Vd−floorlet(t) = P (t, T1)Nτ(T0, T1)KEQT1
[
IL(T0,T1)<B

∣
∣F(t)

]
= P (t, T1)Nτ(T0, T1)1KN (−d2),

(7.1)

where d2 is given by (2.16). A similar definition holds for the digital caplet. In this case the
coupon payment at time T1 is given by:

Vd−caplet(T1) := Nτ(T0, T1)KIL(T0,T1)>B.

The value at time t ≤ T0 of a digital caplet is given by:

Vd−caplet(t) = P (t, T1)Nτ(T0, T1)KN (d2). (7.2)

Static replication (SR)

One can show that the payoff of a digital floorlet can be written as:

IL(T0,T1)<B = lim
δ→0

(B + δ − L(T0, T1))
+ − (B − δ − L(T0, T1))

+

2δ
,

and the payoff of a digital caplet as:

IL(T0,T1)>B = lim
δ→0

(L(T0, T1)− (B − δ))+ − (L(T0, T1)− (B + δ))+

2δ
.

Hence we can decompose the digital floorlet into two floorlets with different strikes and the
digital caplet into two caplets with different strikes. The strikes of the floorlets, respectively
caplets, are given by B + δ and B − δ, with δ > 0, called the call spread. The decomposition of
the digital, into a set of more simple payoffs is called static replication (SR). To value the digital
floorlet or digital caplet with SR at any time t < T0, we can value the corresponding caplets
and floorlets by assuming Black’s model for the LIBOR rate. We refer to Section 2.2.7 for the
formulas. In practice, SR of a digital is applied to take the market skew into account. If the
digital is priced using Formula (7.1) or (7.2), then we assume a constant volatility. If we price
the digital with SR, then we take the market volatilities for strikes B − δ and B + δ to value
the caplets or floorlets. Hence, we take the local skewness around the barrier of the market
skew into account. The market price of a digital is in general computed with static replication.
For this reason it is important that for the valuation of interest rate derivatives, whose coupon
payments consist of digital payoffs, the short rate models give a consistent price compared to
the SR price.

A digital cap, respectively a digital floor, is defined as a contract with coupon dates

{T0, T1, . . . , Tm},

so that the coupon with start date Ti and end date Ti+1 is given by a digital caplet, respectively
digital floorlet. The value at time t < T0 with SR, is given by the sum of the time t values of
the digitals.
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7.1.2 Range Accrual

A range accrual is a structured coupon. This coupon is defined as given a rate, in the simplest
case fixed1, that only accrues when a different reference rate, for example the LIBOR rate, is
inside a given interval [l, u] ⊂ R. We denote the payment rate by Rn(t) and the reference rate
by Xn(t). At all payment dates Ti ∈ Tm\T0 there is a cashflow equal to:

Ci = Nτ(Ti−1, Ti)Ri(Ti−1)

∑

t∈T i
obs

IXn(t)∈[l,u]

#{t ∈ T i
obs}

,

with T i
obs the set of observation dates between Ti−1 and Ti. #{.} is used to denote the number

of days that a given criteria is satisfied. The most common choice of the reference rate Xn(t) is
the LIBOR rate, but a CMS rate (or any other rate) is also occasionally used. We note that a
range accrual coupon is a sum of digital payoffs. The value at time t < T0 of the range accrual
coupon payoff Ci, using the Ti forward measure as a numeraire, is given by:

V i
rac−coupon(t) := P (t, Ti)E

QTi [Ci| F(t)] .

Hence the value at time t of the range accrual is given by:

Vrac(t) :=
m∑

i=1

P (t, Ti)E
QTi [Ci| F(t)] . (7.3)

In general, we need Monte Carlo methods to compute the expectations in Equation (7.3).

7.1.3 Callable structured swap

In a structured swap, a regular plain vanilla floating LIBOR leg is swapped against a structured
leg. The plain vanilla floating leg is called the funding leg, the leg paying the structured coupon
is called the structured leg. A plain vanilla swap is a trivial example where the structured
coupon pays the fixed rate. Assume that the structured coupon pays a coupon Ci at time Ti.
The value of a structured swap2 at any time t < T0 is given by:

Vstruct−swap(t) :=
m∑

i=1

P (t, Ti)E
QTi [ (Ci − L(Ti−1, Ti))| F(t)] . (7.4)

A callable structured swap is a structured swap with a Bermudan style option to cancel the deal
on a schedule of exercise dates. Typically this call schedule will coincide with the coupon dates.
Hence if we define the set of call dates by:

E := {E1, E2, . . . Es},

then we have E ⊂ T . A callable structured swap can be seen as a structured swap, plus a
Bermudan-style right to cancel the structured swap. For valuation purposes it is convenient to
represent a callable structured swap as a structured swap plus a Bermudan-style option to enter
at any exercise date Ei a reverse structured swap with start date Ei and end date Tm. Hence a
structured swap with the same market conventions, day count conventions, observation index,
observation frequency and payment index, but where legs are reversed relative to the original
one.

1LIBOR, CMS or CMS spread are also allowed.
2We assume the same coupon dates on the funding and structured leg.
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For pricing callable structured swaps within a Monte Carlo framework an additional approxi-
mation is introducted to approximate the exercise decision, in the literature well-known as the
Longstaff & Schwarz (LS) method. We do not give a detailed description of this method, since
this method has been described extensively in the literature [23]. In this method the early exer-
cise boundary is determined based on a regression for the hold value of the Bermudan and the
immediate exercise value along a path. The key attributes controlling the performance of this
method are the choice of the explanatory variables and the degree of the polynomials.

Callable range accrual on LIBOR

A callable range accrual on LIBOR is a callable structured swap, where the underlying structured
swap has range accrual coupons on the structured leg with the LIBOR rate as the observation
rate (RAC). RAC we use as an abbreviation for range accrual on LIBOR. For the valuation of
this option we compare at each exercise date the immediate exercise value (the path- and time-
specific value of the RAC swap) to the continuation value (that is the value of holding the option
and not to exercise). As Longstaff and Schwarz proposed, the continuation value along the path
is approximated by regression, where the discounted path-specific future cashflows are regressed
on basis functions. The value of the RAC swap given the path- and state variables, cannot be
calculated analytically without introducing additional approximations. Therefore a regression is
performed in order to approximate the immediate exercise value. As discussed before, the choice
of explanatory variables and the degree of polynomials is crucial for the performance. This choice
has extensively been discussed in [8], for consistency we use the same regression variables. This
implies that for the immediate exercise value we use the model state variables and the analytic
cap floor prices as regression variables. The latter two variables contain information about the
sum of digital caplet and floorlet prices corresponding to the upper u and lower l boundaries.
The relative position of the LIBOR rate with respect to the observation range is embedded in
those prices. For the continuation value we use the model state variables and the value of the
RAC swap that is approximated in the underlying instrument regression.

The Hull-White model is analytically tractable and given that, closed form formulas for caps
and floors exist. We do not have a closed form formula to compute the cap and floor prices
in the DDSV model. This implies that we cannot compute the cap floor regression variables
in the DDSV model analytically. Since these regression variables are computed a large number
of times, it is not a good idea to compute them using Monte Carlo methods. This will slow
down the Longstaff and Schwartz algorithm dramatically. Fortunately, we do not need to be all
that exact in trying to match the exercise values with the explanatory variables. Piterbarg [24]
proposes that a rough estimate will give already satisfactory results. For example, one can use
Black’s formula to value the caps and floors, even in models where it does not exactly apply.
For the DDSV model, we propose to use the Hull-White cap floor analytic prices to compute
the regression variables.

Callable RMS

A callable remaining maturity swap (callable RMS) is a callable structured swap. The structured
leg of the underlying structured swap is given by a RMS range accrual. The reference rate of
the range accrual is defined as follows. For coupon i with start date Ti−1, define a plain vanilla
swap with start date Ti−1 and the end date Tm, hence the end date coincides with the end date
of the deal. Then the reference rate of the range accrual is the swap rate of this plain vanilla
swap, denoted by:
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S(Ti−1, [Ti−1, Tm]). (7.5)

Hence if we run over the coupons, the tenors of the swaps are decreasing and are equal to the
length of the remaining lifetime of the deal.

7.2 Test strategy

This section consists of the following aspects. We discuss which models are in scope to value
the interest rate derivatives and to which calibration instruments these models are calibrated.
Secondly, we discuss which numerical methods we apply to value the interest rate derivatives.
In the last subsection we give the characteristics of the deals.

7.2.1 Models and calibration

All the interest rate derivatives are priced using the Hull-White and the DDSV models. Before
we can use the models for option valuation, we have to calibrate the models. We calibrate the
models in a bootstrap fashion to the swaption market. For a digital caplet, the models are
calibrated to swaptions with maturity T0 and tenor τ(T0, T1). For a digital cap, we calibrate the
models to the following swaption strip:

{(T0, τ(T0, T1)), (T1, τ(T1, T2)), . . . , (Tm−1, τ(Tm−1, Tm))},
where (Ti, τ(Ti, Ti+1) is defined as the swaption with maturity Ti and tenor τ(Ti, Ti+1). To value
the RACs, callable RACs and RMS we calibrate to co-terminal swaptions. This implies that
the models are calibrated to the following swaption strip:

{(T0, τ(T0, Tm)), (T1, τ(T1, Tm)), . . . , (Tm−1, τ(Tm−1, Tm))}.

7.2.2 Valuation

To value the interest rate derivatives with the Hull-White and the DDSV model, we use Monte
Carlo methods. For the DDSV model we use the Milstein discretization for the x(t) and y(t)
dynamics and the QE scheme to discretize the variance process, see Section 5.6. For the Hull-
White model we use an exact simulation method without discretization error. In this method
we use the exact solution of the SDE under the T -forward measure, see [1]. We use 100, 000
simulations for both models and a time step of dt = 1/365 for the DDSV model. For the callable
RAC the Monte Carlo methods are based on the LS algorithm.

7.2.3 Trade characteristics

In Table 7.1 we give the characteristics of the test deals we have in scope. For the digital caps,
the RACs and the callable RACs, we use the market data of:

13 April 2011, 16 December 2010 and 30 June 2010.

We restrict the analysis of the digital caplet and the callable RMS to the market data of 13 April
2011. In Table 7.1 we show the characteristics of the test deals. Next, we give for each derivative
information about the fixed rates, barriers of the observation range and other information that
is not listed in the table.
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Digital Digital RAC & callable RMS
caplet cap callable RAC

notional 10,000 10,000 10,000 10,000
start date in 4Y or 10Y 5Y 1Y 1Y
tenor 1Y 5Y 10Y 10Y
swap type n/a n/a structured structured

receiver receiver

Structured leg
market convention EURIB12M EURIB12M EURIB12M EURIB12M
coupon type digital caplet digital caplet range acr range acr
payment index fixed fixed fixed fixed
coupon frequency annual annual annual annual
day count conventions Actual 360 Actual 360 Actual 360 Actual 360
observation index LIBOR LIBOR LIBOR S(Ti−1; [Ti−1, Tm])
observation frequency Annual Annual Annual Annual
observation index tenor 12 months 12 months 12 months 12 months
exercise schedule callable n/a n/a Annual Annual
# of coupons 1 5 10 10

Funding leg
market convention n/a n/a EURIB12M EURIB12M
coupon type n/a n/a floating floating
payment index n/a n/a LIBOR LIBOR
coupon frequency n/a n/a annual annual
day count conventions n/a n/a Actual 360 Actual 360
# of coupons n/a n/a 10 10

Table 7.1: Trade characteristics
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Digital caplet

The fixed rate K of the payment rate is 4%. Note that the value of K is not relevant for the
price of the digital caplet, it has only a linear scaling impact since it is a constant factor in the
payoff function. For the digital caplet starting in four years we take the following barriers B:

B ∈ {0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06}.

For the digital starting in ten years we take barriers B:

B ∈ {0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.065}.

Digital cap

Define by S the swap rate of the corresponding plain vanilla interest rate swap. Hence the swap
has the same start date and end date as the digital cap. Then we take the following barriers B:

B ∈ S + {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}%.

The fixed rate K of the payment rate is 4%.

RAC and callable RAC

The observation range for the LIBOR rate is (−∞, B]. We take three different values B, related
to the swap rate of the corresponding plain vanilla interest rate swap. Hence we define S the
swap rate of the plain vanilla interest rate swap with the same start date and end date as the
deal. We value the RAC and callable RAC for the following barriers B:

B ∈ S + {−1, 0, 1}%.

The fixed rate K of the payment index is defined as follows. Define Katm the fixed payment
rate, such that the Hull-White price of the RAC is approximately zero (at the money). We value
the RAC and callable RAC for the following fixed payment rates K:

K ∈ Katm + {−1, 0, 1}%.

RMS

The observation range for the observation index is (−∞, B]. We value the callable RMS for the
following barriers B:

B ∈ {3, 4, 5, 6, 7, 8, 9, 10}%.

The fixed rate K of the payment index is 5%.

7.3 Test results

In this section we show the test results for the test deals we described in Section 7.2. In
Subsection 7.3.1 we give the results for the digital caplets, in Subsection 7.3.2 the results for
the digital caps, in Subsection 7.3.3 the results for the RACs and the callable RACs and finally
in Subsection 7.3.4 the results for the callable RMS. In the main text we include the results for
the market data of 13 April 2011. For the other results we refer to Appendix D. These other
results are in correspondence with the results of April 2011.
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7.3.1 Digital caplets

In Table 7.2 we show the pricing results for the digital caplet starting in 4 years and in Table
7.3 we show the pricing results for the digital caplet starting in 10 years. In Figure 7.1 we plot
the Hull-White, DDSV and SR prices in a graph. For the calibration results we refer the reader
to Appendix D.1.1.

B - ATM % B SR H&W price H&W - SR DDSV price DDSV - SR

-2.11 0.02 310.98 299.86 -11.12 304.19 -6.80

-1.61 0.025 275.63 276.74 1.11 286.85 11.22

-1.11 0.03 263.92 247.90 -16.01 260.72 -3.20

-0.61 0.035 221.14 215.49 -5.65 223.38 2.24

-0.11 0.04 169.91 179.86 9.95 174.51 4.60

0.39 0.045 128.29 144.08 15.80 124.48 -3.81

0.89 0.05 92.04 109.96 17.92 86.59 -5.46

1.39 0.055 60.34 79.80 19.46 61.36 1.02

1.89 0.06 44.89 55.47 10.57 44.61 -0.29

Table 7.2: Pricing results: 13 April 2011, digital caplet starting in 4Y. The ATM level of the
4Y1Y swaption is 4.11%.

B - ATM % B SR H&W price H&W - SR DDSV price DDSV - SR

-2.30 0.025 220.50 218.71 -1.79 226.81 6.31

-1.80 0.03 201.35 203.74 2.39 215.21 13.86

-1.30 0.035 194.91 185.54 -9.37 198.76 3.85

-0.80 0.04 171.42 165.22 -6.20 176.48 5.06

-0.30 0.045 147.30 143.63 -3.68 147.84 0.54

0.20 0.05 121.58 121.78 0.21 116.29 -5.29

0.70 0.055 89.19 100.48 11.30 87.36 -1.83

1.20 0.06 61.26 80.82 19.56 65.14 3.88

1.70 0.065 48.70 62.77 14.06 49.04 0.34

Table 7.3: Pricing results: 13 April 2011, digital caplet starting in 10Y. The ATM level of the
10Y1Y swaption is 4.80%.

From these results we conclude that the SR prices are better matched by the DDSV model than
by the Hull-White model. We expected this for two reasons. First of all, the DDSV model has
a better fit to the market skew than the Hull-White model, see Appendix D.1.1. Secondly, we
use the same market volatility skew to price the digital caplet with SR, hence we use Black
volatilities from the market skew to which we have calibrated the short rate models.

In both results, we see an unstable behavior in the SR prices for small strikes. We think
that these instabilities are explained by extrapolation errors in the swaption market volatility
data. Recall that only for a finite number of strikes there is a quoted swaption price available.
This implies that the missing values are obtained by interpolation or extrapolation between the
existing quotes. This can explain the instabilities we observe in the SR prices for small strikes.
From these results we expect that the SR prices of a digital cap are better matched by the DDSV
model than by the Hull-White model. These results are discussed in the next subsection.
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Figure 7.1: Pricing results for the digital caplets.

7.3.2 Digital cap

In Table 7.4 we show the pricing results for a digital cap. The digital cap starts in five years and
pays five annual digital coupons, hence the end date of the contract is in ten years. In Figure
7.2(a) we plot the Hull-White, DDSV and SR prices in a graph. In Figure 7.2(b) we show a plot
of the difference between the model prices and the SR prices.

The tables with the pricing results for 30 June 2010 and 16 December 2010 are given in Appendix
D.2. In Appendix D.1.2 we show the calibration results for the market data of 13 April 2011
and in Appendix D.1.3 we show the calibration results for the market data of 30 June 2010. To
obtain the calibration results for 16 December 2010, we refer the reader to the author.

B - ATM B SR H&W price H&W - SR DDSV price DDSV - SR

-0.02 0.0248 1265.37 1240.70 -24.67 1291.47 26.10

-0.015 0.0298 1170.27 1137.69 -32.58 1208.16 37.89

-0.01 0.0348 1073.61 1018.59 -55.02 1088.15 14.54

-0.005 0.0398 910.59 887.05 -23.54 922.65 12.07

0 0.0448 723.62 749.54 25.92 721.40 -2.21

0.005 0.0498 537.94 613.48 75.55 529.52 -8.42

0.01 0.0548 381.80 485.43 103.63 381.05 -0.75

0.015 0.0598 269.07 371.46 102.39 277.53 8.47

0.02 0.0648 195.31 273.59 78.28 208.43 13.12

Table 7.4: Pricing results: 13 April 2011, digital cap. The ATM level of the 5Y5Y swaption
is 4.48%. H&W 99% confidence interval width, < 8.9. DDSV 99% confidence interval width,
< 13.3.

From the results in Table 7.4 and Figure 7.2, we conclude that the SR prices are better matched
by the DDSV model than by the Hull-White model. We expected this for two reasons, first of
all from the results that we have obtained for a single digital caplet. Secondly, since we calibrate
the model in a bootstrap fashion to the 5Y1Y, 6Y1Y, 7Y1Y, 8Y1Y and 9Y1Y swaption skews.
From the calibration results in Appendix D.1.2, we conclude that the DDSV model has better
fits to the market skews than the Hull-White model. If we price the digital cap with SR, then
we price each digital caplet of the series with SR. For example, if we price the digital starting
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Figure 7.2: 13 April 2011: Pricing results for a digital cap.

in 7 years and paying the coupon in 8 years, we use the volatilities from the 7Y1Y swaption
market skew to price the caplets with Black’s formula. This is also the market skew to which
we have calibrated the model. From the test for a digital caplet we conclude that the SR price
of a digital caplet is better matched by the DDSV model, hence we expect that the same holds
for the sum of n digital caplets, the digital cap. This is reflected in the results for 13 April 2011,
but also in the results given in Appendix D.2 for the other two historical dates.

Furthermore, from the results in the appendix, we conclude that there are some exceptions. In
Table D.2 with the results for 30 June 2010, we have for barriers B smaller than the 5Y5Y swap
rate a closer match with the Hull-White model to the SR price. Note that the 5Y5Y swap rate is
in general not equal to the ATM levels of the swaptions to which we calibrate the models, which
is clear from Table 7.5. From this table we conclude that the ATM level for the 5Y5Y swap is
at most 27 bp smaller than the ATM levels of the swaptions to which we calibrate. This implies
that for all the maturities and all the barriers B from our results with B − ATM > 0.005, we
are in the out of the money region.

13 April 2011 16 December 2010 30 June 2010

5Y5Y 4.48% 4.41% 3.90%

5Y1Y 4.28% 4.18% 3.58%

6Y1Y 4.43% 4.33% 3.80%

7Y1Y 4.49% 4.45% 3.97%

8Y1Y 4.58% 4.51% 4.04%

9Y1Y 4.69% 4.63% 4.17%

Table 7.5: For each historical date the swap rates of the swaptions to which we calibrate the
models.

From the calibration results we conclude that the DDSV model has a better fit to the out of
the money swaptions than the Hull-White model. Hence we expect that for the large barriers,
the SR prices are better matched by the DDSV model than by the Hull-White model. This is
indeed confirmed by the results in Table 7.4 and Appendix D.2. We have seen that for some
small barriers the SR price is better matched by the Hull-White model than by the DDSV model.
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We can explain this by the following argument. From the calibration results for 30 June 2010,
given in Appendix D.1.3, we conclude that the Hull-White model has an ‘accurate’ fit to the
in-the-money swaptions. For some market skews the fits are even more accurate than the DDSV
fits. This explains why for the small barriers the SR price is better matched by the Hull-White
model. Hence the results for 30 June 2010 are well explained by the calibration results.

7.3.3 RAC and callable RAC

In this section we show the results for the RACs and the callable RACs. From the trade
characteristics, given in Section 7.2.3, it is clear that we consider elementary range accruals. We
have one observation date per coupon, which coincides with the start date of the coupon and we
pay a fixed rate K if the LIBOR rate is less than some barrier B. Hence, we consider a series of
digital floorlets. For the RACs we consider the holder receives the structured leg. The callable
RACs have these RACs as underlying structured swaps. We choose these elementary RACs,
since they will give us relevant information about the pricing of the callable range accruals.

The callable RACs we consider have an annual exercise schedule. These exercise dates coincide
with the start dates of the coupons. Hence in this case the exercise dates are in one year,
two years up to ten years. At the evaluation date, the holder has a basket of options to enter
at any exercise date into a RAC, where the legs are reversed relative to the underlying RAC
of the option. We expect that the market volatilities of the co-terminal swaptions, 1Y10Y,
2Y9Y, 3Y8Y, . . ., 10Y1Y, reflect information about the value of the options in this basket. This
motivates why we calibrate the short rate models to co-terminal swaptions. In Table 7.6 we show
the pricing results for the RACs and in Table 7.7 we show the pricing results for the callable
RACs. We use the following abbreviations in the tables, K is the fixed rate of the underlying
RAC and B is the barrier of the digitals in the payoff function.

K B SR H&W H&W − DDSV DDSV −
price price SR price SR

0.0659 0.0311 -1600.87 -1558.94 41.93 -1719.67 -118.80

0.0659 0.0411 -367.72 -433.21 -65.49 -460.36 -92.64

0.0659 0.0511 742.07 523.38 -218.69 653.07 -89.01

0.0759 0.0311 -1345.23 -1296.94 48.29 -1482.11 -136.88

0.0759 0.0411 75.03 -0.40 -75.43 -31.71 -106.74

0.0759 0.0511 1353.22 1101.34 -251.88 1250.67 -102.55

0.0859 0.0311 -1089.59 -1034.95 54.64 -1244.54 -154.95

0.0859 0.0411 517.78 432.41 -85.38 396.94 -120.84

0.0859 0.0511 1964.38 1679.30 -285.08 1848.27 -116.11

Table 7.6: 13 April 2011: Hull-White and DDSV prices for the RAC, compared to the static
replication price. H&W 99% confidence interval width, < 58. DDSV 99% confidence interval
width, < 59.

From Table 7.6, we conclude the following for both models. The value of the underlying RAC is
not consistent with the SR price and we can explain this as follows. We calibrated the models to
different market skews than the market skews we use to price with SR. To price the underlying
RAC coupons with SR, which are digital floorlets with a one year tenor, we use the volatilities
from the 1Y1Y, 2Y1Y, . . . , 10Y1Y market skews. These market skews are in general not equal
to the 1Y10Y, 2Y9Y, . . ., 10Y1Y market skews, i.e. the skews to which we calibrated the models.
We illustrate this in Appendix D.1.4, where we show the calibration results for 13 April 2011.
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Moreover, we show for each option maturity to which we calibrate the corresponding market
skew we use to price with SR. For the other calibration results we refer the reader to the author.
From these results it is clear that we cannot expect that the DDSV prices have a good match to
the SR prices, since we use different market volatilities to price with SR. Hence both models are
not able to price back the underlying range accrual. So, we need a two-factor model to perform
a joint calibration to both, the co-terminal swaptions and the 1 year LIBOR volatilities market
skews. Since both, the Hull-White and the DDSV model are one-factor short rate models, we
have for both models the issue of joint calibration. We cannot expect that these models are able
to price back the underlying RAC, even for the DDSV model which is able to give accurate fits
to the market skews. We can draw the same conclusions from the results for the market data of
30 June 2010 and 16 December 2010, given in Appendix D.3.2.

K B RAC HW RAC DDSV C-RAC C-RAC C-RAC DDSV −
H&W DDSV C-RAC H&W

0.0659 0.0311 -1558.94 -1719.67 521.04 522.97 1.93

0.0659 0.0411 -433.21 -460.36 809.34 826.45 17.11

0.0659 0.0511 523.38 653.07 1139.85 1260.06 120.21

0.0759 0.0311 -1296.94 -1482.11 676.32 660.57 -15.75

0.0759 0.0411 -0.40 -31.71 1083.87 1100.35 16.48

0.0759 0.0511 1101.34 1250.67 1568.80 1738.87 170.07

0.0859 0.0311 -1034.95 -1244.54 844.65 807.59 -37.06

0.0859 0.0411 432.41 396.94 1386.45 1403.08 16.63

0.0859 0.0511 1679.30 1848.27 2037.88 2249.97 212.09

Table 7.7: 13 April 2011: The Hull-White and DDSV prices for the callable RAC.

Next, we discuss the skew and curvature impact of the DDSV model on the callable RACs. The
pricing results for the callable RACs, with the Hull-White and the DDSV models, are given in
Table 7.7. We conclude from these results that the largest skew and curvature impact is for
callable RACs where the underlying RAC is in-the-money. We see small price impact if the
underlying RAC is out-of-the-money for both models. We see a similar behavior in the results
for 30 June 2010 and 16 December 2010, given in Appendix D.3.

7.3.4 Callable RMS

In this subsection we show the pricing results for the callable RMS deal. In Table 7.8, we show
the Hull-White and DDSV prices of the callable RMS and the value of the underlying RMS
range accrual. In Figure 7.3, we show a plot with the pricing results.

For the callable RMS we can use the same argument as for the callable RAC, to explain why we
calibrate to co-terminal swaptions. Note that the i-th coupon of the structured leg has a payoff
given by:

Ci := Kτ(Ti−1, Ti)IS(Ti−1,[Ti−1,Tm])<B, (7.6)

with S(Ti−1, [Ti−1, Tm]) the swap rate defined in Section 7.1.3. To value these digital coupon
payments with static replication, we have to use the co-terminal swaption market skews. These
are exactly the skews to which we calibrate the models. We see that this differs from the callable
RACs, as in that case the coupon payment depends on the one year LIBOR rate. This implies
that we need the market skews with a one year tenor to compute the SR price. Hence for the
RMS we have consistency between the skews to which we calibrate and the skews we use to price
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Figure 7.3: Pricing results: 13 April 2011, (callable) RMS range accrual deal.

the RMS range accrual with SR. This implies that we do not have the issue of joint calibration
for a RMS.

We have confidence from the test on a digital cap, that the DDSV model is able to give a
consistent price compared to the SR price, if we have consistency between the skews to which
we calibrate and the skews we use for SR. Hence we expect that this also holds for the RMS
range accrual, since it is a series of digital floorlets but with a different reference rate. For this
reference rate, we cannot compute the SR price analytically. To see this, note that we can write
the digital in Equation (7.6) as:

IS(Ti−1,[Ti−1,Tm])<B = lim
δ→0

(B + δ − S(Ti−1, [Ti−1, Tm]))+ − (B − δ − S(Ti−1, [Ti−1, Tm]))+

2δ
.

In this expression we cannot value the two put options under the Ti forward measure using
Black’s formula, since the swap rate is not a martingale under the Ti forward measure. This
implies that the forward price of the swap rate S(Ti−1, [Ti−1, Tm]) under the Ti forward measure
is unknown. Hence we cannot compare the DDSV price of the RMS range accrual to the analytic
SR price like we have done for the digital cap, but from the experience with the digital cap we
assume that the DDSV model is close to the SR price.

B RMS rac RMS rac Difference callable RMS callable RMS Difference
H&W DDSV H&W DDSV

0.03 -2545.03 -2640.37 -95.34 270.56 296.00 25.44

0.04 -1717.86 -1824.26 -106.40 403.41 419.79 16.37

0.05 -749.47 -648.56 100.92 538.93 575.69 36.77

0.06 -32.58 60.60 93.18 668.39 717.42 49.04

0.07 387.64 396.23 8.58 767.62 802.89 35.27

0.08 606.66 562.43 -44.24 829.98 849.36 19.38

0.09 706.76 650.22 -56.54 860.21 874.47 14.26

0.10 746.48 699.20 -47.28 872.04 889.30 17.26

Table 7.8: 13 April 2011: The Hull-White and DDSV RMS prices.

From the results in Table 7.8 we conclude that for all barriers the DDSV prices of the callable
RMS are larger than the Hull-White prices. This implies an underestimate of the option price if
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we do not take the skew and the curvature of the volatility skews into account. On deals with a
large notional, that are priced with the Hull-White model, this can have a large impact on the
option value. If we look at the pricing result for B = 0.07, then we observe that the Hull-White
and DDSV price of the underlying RMS range accrual are approximately equal. Hence we expect
that the Hull-White model price of the RMS range accrual is close to the SR price. That for
this barrier the Hull-White model gives a consistent price compared to the SR price, does not
imply that we have consistency between the option values. We see a skew and curvature impact
of 35.27 in the option values.



Chapter 8

Conclusion

In this thesis we considered two short rate models, the Hull-White model and the Cheyette
model. We derived a displaced diffusion stochastic volatility (DDSV) formulation of the Cheyette
model. We implemented this model with three piecewise constant parameters to incorporate
the term structure, these parameters are included in the calibration. The mean reversion of
variance, the mean reversion of the short rate and the scaling parameter R0 are not included in
the calibration. We have seen in Chapter 5 that the piecewise constant parameters can control
the curvature, skewness and level of the implied volatility skew. We assumed that these are the
key ingredients to improve the fit to the market volatility skew compared to the Hull-White fit,
since the Hull-White model is not able to control the skewness and curvature of the implied
volatility skew.

We showed how the DDSV model can be calibrated to the swaption market in an efficient way.
We have to change measure to obtain the dynamics of the swap rate under the swap measure.
Then there are several approximations involved to obtain a time-dependent volatility function
λ(t). To obtain a closed-form solution for the swaption price we use averaging theorems from
Piterbarg. Applying these theorems on the swap rate model, transforms the swap rate model
into the time-homogeneous swap rate model. The time-homogeneous swap rate model allows
for the derivation of a closed-form formula to compute the swaption price, which is computed
using the fundamental transform with a control variate for the integration. This swaption price
is an approximation of the true model implied swaption price, since there are approximations
involved. One of the approximations is the approximation of the short rate with the forward
rate. Since this is a crude approximation, we have to restrict the skew parameter γ. In Section
5.8.3 we derived an upperbound on the parameters, such that we conserve accuracy between
the closed-form swaption price and the Monte Carlo swaption price. Due to the closed-form
swaption price formula and the efficient implementation of the averaging formulas, we are able
to calibrate the model in an efficient way to the swaption market.

In Chapter 6 we discussed the calibration of the DDSV model on the market data for the EURO,
USD and KRW markets. We have seen that we calibrate the EURO market skews accurately.
For this market we obtain a major improvement with respect to the Hull-White model. For the
KRW market we improve the calibration to the short-dated maturities, but the USD markets are
in general difficult to calibrate. We observe that for the KRW market and the USD market we
obtain many boundary solutions for the skew parameter γ. This suggests that for both markets
larger values of the skew parameter are required to improve the calibration. At this moment
we can not weaken the restriction on γ, since γ deals with the crude approximation of the short
rate. We expect that improving this approximation will improve the accuracy of the calibration.
It is also worthwhile to investigate the case of non-zero correlation and compare the calibration
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results from the DDSV model with non-zero correlation to the results from the DDSV model
with zero correlation. This is adressed for future research. The choice of the constant parameters
β and R0 is crucial for the stability of the calibration. The choice of β is crucial for stability in
the volatility of volatility function. If there is no knowledge of this parameter, it may happen
that the model has to be calibrated for several choices of β to obtain an accurate calibration
result with a stable volatility of volatility function. The same holds for parameter R0. As a
result we note that calibration of the DDSV model is not robust. A methodology to define
optimal constant parameters is adressed for future research.

In Chapter 7 we investigated the skew and curvature impact on interest rate derivatives. We
have seen for a digital cap that the DDSV model price is close to the SR price, this is explained by
the accurate fit of the DDSV model to the market skew. In general the SR prices for digitals are
better matched by the DDSV model prices than the Hull-White model prices. For the valuation
of the callable range accrual on LIBOR, it is important that the model gives a consistent price
of a series of digitals, since the underlying structured swap of a callable RAC is a series of
digitals. The problem with the valuation of a callable RAC is that the models are calibrated to
co-terminal swaptions. We have seen that both models are not able to give a consistent price
of the underlying RAC, since we use different market volatilities to price the underlying RAC
with SR. We cannot calibrate one-factor short rate models to two different market skews per
swaption maturity, we recommend to investigate a multi-factor DDSV model. If we are able to
calibrate to both market skews per maturity, we expect that we will overcome this issue.



Future research direction

We recommend the following issues for future research.

• In this thesis we approximated the short rate r(t) by f(0, t), to derive a closed form
swaption price for the DDSV model. This is a crude approximation, since we do not take
properties of x(t) into account. (Recall that the short rate is given by r(t) = x(t)+f(0, t).)
This crude approximation implies a constraint on the skew parameter γ. For accuracy
reasons we have to restrict the skew parameter to γ ∈ [0, 0.30]. We have seen that this
interval is not always sufficient for the calibration, for some markets this restriction is
too severe. We have seen this for the USD and KRW markets, there we obtain a lot of
boundary solutions for γ. The EURO market skews are steeper, hence for this market
[0, 0.30] is sufficient. We propose to improve the approximation of the short rate, such
that we can improve the calibration to USD and KRW markets.

• We assume zero correlation ρ between the Brownian motion of the variance process and the
Brownian motion of the interest rate process. In Section 5.7 we showed that we complicate
the derivation of the closed-form swaption price if ρ 6= 0, since the averaging formulas do
not apply in this case and the drift term in the variance process changes. We propose to
investigate how the DDSV model can be calibrated in an efficient way, if the correlation
between the Brownian motions is non-zero.

• We have seen that the calibration of the DDSV model is not robust, the stability of the
calibration strongly depends on the choice of the constant model parameters. Given the
market data, the choice of the constant model parameters is non-trivial. We propose to
do future research on the optimal choice of the constant model parameters, such that we
can improve the robustness of the calibration.

• We have seen that the valuation of callable range accruals on LIBOR depends on the joint
calibration of the model to co-terminal swaptions and the LIBOR rate market volatilities.
We propose to extend the DDSV model to a two-factor short rate model, so that we can
calibrate to two market skews per option maturity. Furthermore we propose to investigate
the skew and curvature impact on callable range accruals on LIBOR with a two-factor
model.
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[4] C. González Sterling, ING Bank Quantitative Analytics Team CMRM Trading.
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Appendix A

Swap rate under the swap measure

In this appendix we derive for a general class of models the dynamics of the swap rate under
the so called swap measure. Fur further reading we refer to [10].

A.1 General setup

Our goal is to derive the dynamics of the swap rate under the swap measure. We derive these
dynamics for a general affine term structure model. In these models the short rate is modelled
as an affine function of state variables X(t) = (x1(t), . . . , xn(t))

T .

r(t) = g(t) +wTX(t)

Where g(t) is a scalar function of time and wT an n-vector. The n-dimensional factor dynamics
are given by the following diffusion process

dX(t) = A(θ −X(t))dt+Σ
√

V (t)dWQ0
(t) (A.1)

where WQ0
(t) is an n-dimensional Brownian motion under the risk neutral measure, θ is an

n-vector, A and Σ are n×n matrices. The entries of θ,A and Σ are adapted to the filtration Ft

generated by the Brownian motion. The matrix V (t) is a diagonal (n × n) matrix holding the
diffusion coefficients of the factors on the diagonal, hence

Vii(t) = αi + βTi X(t)

with αi a scalar and βi an n-vector. In the affine term structure models the zero-coupon bond
prices have the following form:

P (t, T ) = exp (C(t, T )−B(t, T ) ·X(t)) (A.2)

The coefficients C(t, T ) and B(t, T ) can be obtained by solving the Riccati equations. A simple
application of Itô’s Lemma to P (t, T ) gives the dynamics under the risk neutral measure.

dP (t, T ) = r(t)P (t, T )dt− P (t, T )B(t, T )TΣ
√

VtdW
Q0
(t). (A.3)

A.2 The dynamics of the swap rate under the swap measure

In this Subsection we derive the dynamics of the swap rate under the swap measure. First
we derive the Radon Nikodym process for a general ATSM and construct the corresponding
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4 APPENDIX A. SWAP RATE UNDER THE SWAP MEASURE

martingale measure Q1,m. Second we derive the swap rate and factor dynamics under the new
martingale measure.

A.2.1 The Radon Nikodym process to change measure and Brownian motion

In this subsection we derive the Radon-Nikodým derivative, such that we can change the risk-
neutral measure Q0, to the martingale measure Q1,m with P1,m(t) as a numeraire. The Radon-
Nikodým derivative of Q1,m with respect to Q0 is a FT0-measurable random variable, defined
by:

ζ(T0) :=
dQ0

dQ1,m
, on FT0 .

For all sufficiently integrable T0-claims, ζ(T0) is given by:

ζ(T0) =
P1,m(T0)/P1,m(t)

M(T0)/M(t)
.

For any s ∈ [t, T0], the induced likelihood process is given by:

ζ(s) := EQ0
[ζ(T0)|Fs] =

P1,m(s)/P1,m(t)

M(s)/M(t)
,

since the process P1,m(s)/M(s) is a martingale under Q0. Under these conditions, the measure
Q1,m defined by:

Q1,m(A) =

∫

A
ζ(T0)dQ

0, for all A ∈ FT0 , (A.4)

is a martingale measure for P1,m(t). Using the martingale property of ζ(s) under Q0 we can
derive its differential.

dζ(s) = d







P1,m(s)

M(s)

M(t)

P1,m(t)
︸ ︷︷ ︸
constant







=
M(t)

P1,m(t)
d

(
P1,m(s)

M(s)

)

=
M(t)

P1,m(t)







1

M(s)
dP1,m(s) + P1,m(s)d

(
1

M(s)

)

+ dP1,m(s)d

(
1

M(s)

)

︸ ︷︷ ︸

=0







(A.5)

One easily shows that

d

(
1

M(s)

)

= −r(s) 1

M(s)
ds

and

d(P1,m(s)) =
m∑

i=1

τid(P (s, Ti))

=
m∑

i=1

τir(s)P (s, Ti)ds− τiP (s, Ti)B(s, Ti)
TΣ
√

V (s)dWQ0
(s)
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Where we used Equation (A.3) for the differential of the bond price under the risk neutral
measure. Substituting these results in (A.5) yields

dζ(s) = − M(t)

P1,m(t)

1

M(s)

m∑

i=1

τiP (s, Ti)B(s, Ti)
TΣ
√

V (s)dWQ0
(s)

= − M(t)

P1,m(t)

P1,m(s)

M(s)

m∑

i=1

τi
P (s, Ti)

P1,m(s)
B(s, Ti)

TΣ
√

V (s)dWQ0
(s)

= −ζ(s)
m∑

i=1

τi
P (s, Ti)

P1,m(s)
B(s, Ti)

TΣ
√

V (s)dWQ0
(s)

= −ζ(s)
[
√

V (s)ΣT
m∑

i=1

τi
P (s, Ti)

P1,m(s)
B(s, Ti)

]

︸ ︷︷ ︸

φ(s):=

·dWQ0
(s)

Where φ(s) defined above is an n dimensional vector with all entries adapted processes to Fs.
We can solve this SDE with an easy application of Itô’s Lemma to f(x) = log(x).

ζ(s) = exp

(

−
∫ s

t
φ(p) · dWQ0

(t)− 1

2

∫ s

t
‖φ(p)‖2dp

)

.

Now by taking φ(s) as the Girsanov’s Kernel in the n- dimensional Girsanov’s Theorem1 we
get:

WQ1,m
(s) = WQ0

(s) +

∫ s

t
φ(p)dp,

a n-dimensional standard Brownian motion under the swap measure given in (A.4). In differen-
tial notation

dWQ0
(s) = dWQ1,m

(s)− φ(s)ds. (A.6)

A.2.2 Swap rate and factor dynamics under Q1,m

Using the previous results we easily derive the factor dynamics under the swap measure. By
substituting (A.6) in (A.1) we get

dX(t) =
[

A(θ −X(t))− Σ
√

V (t)φ(t)
]

dt+Σ
√

V (t)dWQ1,m
(s)

=

[

A(θ −X(t))− ΣV (t)ΣT
m∑

i=1

τi
P (t, Ti)

P1,m(t)
B(t, Ti)

]

dt+Σ
√

V (t)dWQ1,m
(s)

=
[
A(θ −X(t)) + ΣV (t)ΣT∇ logP1,m(t)

]
dt+Σ

√

V (t)dWQ1,m
(s).

The gradient in the last line is taken with respect to the state variables
X(t) = (X1(t), · · ·Xn(t))

T :

1under the assumption that EQ0
[

∫ T0

0
φ(s)2ζ(s)2ds

]

< ∞
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∇ logP1,m(t) =

(
∂

∂X1
logP1,m(t), · · · , ∂

∂Xn
logP1,m(t)

)T

=
1

P1,m(t)

(
∂

∂X1
P1,m(t), · · · , ∂

∂Xn
P1,m(t)

)T

= − 1

P1,m(t)

m∑

i=1

τiP (t, Ti) (B1(t, Ti), · · · , Bn(t, Ti))
T

= − 1

P1,m(t)

m∑

i=1

τiP (t, Ti)B(t, Ti),

where we used:

∂

∂Xj
P1,m(t) = −

m∑

i=1

τiP (t, Ti)Bj(t, Ti), for all j ∈ {1, · · · , n}.

The derivation of the dynamics of the swap rate under the swap measure is more complicated.
But to simplify things we use the fact that the swap rate is a martingale under the swap measure.
This is because the swap rate is given by a difference of two bonds divided by the numeraire,
see (2.13), hence a martingale under Q1,m. So if we calculate the differential of S0,m(t) under
this measure we can ignore all dt-terms.

First we calculate:

d

(
P (t, T )

P1,m(t)

)

=
1

P1,m(t)
d (P (t, T )) + P (t, T )d

(
1

P1,m(t)

)

+ d (P (t, T )) d

(
1

P1,m(t)

)

︸ ︷︷ ︸

Only dt-terms

We have to calculate two differentials under the swap measure. The first one is given by:

d (P (t, T )) = {· · · }dt− P (t, T )BT (t, T )Σ
√

V (t)dWQ1,m
(t)

Where we used Equation (A.1) in combination with Equation (A.6). An application of Itô’s
Lemma to f(x) = 1

x shows

d

(
1

P1,m(t)

)

= − 1

P1,m(t)2
d (P1,m(t)) +

1

P1,m(t)3
[d (P1,m(t))]2

︸ ︷︷ ︸

Only dt-terms

The latter term will contain only dt-terms. For the first term we have to substitute

d (P1,m(t)) =

m∑

i=1

τid (P (t, Ti)) = {. . .}dt−
m∑

i=1

τiP (t, Ti)B
T (t, Ti)Σ

√

V (t)dWQ1,m
(t)

When we substitute this we get

d

(
1

P1,m(t)

)

= {. . .}dt+ 1

P1,m(t)2

m∑

i=1

τiP (t, Ti)B
T (t, Ti)Σ

√

V (t)dWQ1,m
(t)

Collecting all dWQ1,m
(t) together we get
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d

(
P (t, T )

P1,m(t)

)

= {. . .}dt

− P (t, T )

P1,m(t)
BT (t, T )Σ

√

V (t)dWQ1,m
(t)

+
P (t, T )

P1,m(t)2

m∑

i=1

τiP (t, Ti)B
T (t, Ti)Σ

√

V (t)dWQ1,m
(t),

where we do not specify the dt-term. The previous result for the cases T = T0 and T = Tm
gives:

d (S0,m(t)) = d

(
P (t, T0)

P1,m(t)

)

− d

(
P (t, Tm)

P1,m(t)

)

=− P (t, T0)

P1,m(t)
BT (t, T0)Σ

√

V (t)dWQ1,m
(t)

+
P (t, Tm)

P1,m(t)
BT (t, Tm)Σ

√

V (t)dWQ1,m
(t)

+
P (t, T0)− P (t, Tm)

P1,m(t)2
︸ ︷︷ ︸

S0,m(t)/P1,m(t)

m∑

i=1

τiP (t, Ti)B
T (t, Ti)Σ

√

V (t)dWQ1,m
(t)

Or simplified

d (S0,m(t)) =

m∑

i=0

qSi (t)B
T (t, Ti)Σ

√

V (t)dWQ1,m
(t) (A.7)

with

qSi (t) =







−P (t, T0)/P1,m(t) i = 0
τiS0,m(t)P (t, Ti)/P1,m(t) i ∈ {1, 2, . . . ,m− 1}
(1 + τmS0,m(t))P (t, Tm)/P1,m(t) i = m

(A.8)
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Appendix B

Proofs of Propositions and Theorems

In this Appendix we list the proofs, which we have ommited in the main text.

B.1 Zero coupon bond price in the piecewise Hull-White model

Proposition B.1. Define the piecewise constant volatility σ(t) = σj for any t ∈ (tj−1, tj ],
j ∈ {1, 2, . . . , n}. The price at time t of the zero-coupon bond with maturity T (= tn) under a
piecewise constant volatility Hull-White model is given by

P (t, T ) =
PM (0, T )

PM (0, t)
exp

(
1

2
(V (t, T )− V (0, T ) + V (0, t))−B(t, T )x(t),

)

with

B(t, T ) =
1

a

(

1− e−a(T−t)
)

,

V (t, T ) = V̄ (t, tj) +
n−1∑

k=j

V̄ (tk, tk+1),

where for every (l, u) ⊆ (tk, tk+1]

V̄ (l, u) =

∫ u

l
σ2k+1B(s, T )2ds =

σ2k+1

2a3

(

e−2aT (eau − eal)(eau + eal − 4eaT ) + 2a(u− l)
)

.

Proof. From Equation (3.12) we derive that the dynamics of the instantaneous short rate under
the risk neutral measure are

dr(t) = dx(t) +
∂g

∂t
dt = (g′(t) + ag(t)− ar(t))

︸ ︷︷ ︸

b(t,r(t)):=

dt+ σ(t)
︸︷︷︸

c(t,r(t)):=

dWQ0
(t),

with g(t) an unknown, deterministic, differentiable function of time. The coefficients b(t, r(t))
and c(t, r(t))2 are affine functions of r(t). I.e. they can be written as:

b(t, r(t)) = λ(t)r(t) + η(t) c(t, r(t))2 = γ(t)r(t) + δ(t).

9
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In this case:

η(t) = g′(t) + ag(t),

λ(t) = −a,
δ(t) = σ2(t),

γ(t) = 0.

Hence for an Affine Term Structure model, the zero-coupon bond price is given by:

P (t, T ) = A(t, T )e−B(t,T )r(t). (B.1)

Where functions A(t, T ) and B(t, T ) can be obtained from the coefficients, λ, η, γ and δ by
solving the following ordinary differential equations:

∂

∂t
B(t, T ) = aB(t, T )− 1,

∂

∂t
[log(A(t, T ))] = (g′(t) + ag(t))B(t, T )− 1

2
σ(t)2B(t, T )2.

subject to final conditions B(T, T ) = 0 and A(T, T ) = 1. The solution for B(t, T ) is:

B(t, T ) =
1

a

(

1− e−a(T−t)
)

. (B.2)

To solve for A(t, T ), we integrate both sides of the second differential equation.

∫ T

t

∂

∂s
log(A(s, T ))ds =

∫ T

t
(g′(s) + ag(s))B(s, T )ds− 1

2

∫ T

t
σ(s)2B(s, T )2ds.

Using the final condition A(T, T ) = 1 we get

A(t, T ) = exp

{
1

2

∫ T

t
σ(s)2B(s, T )2ds−

∫ T

t
(g′(s) + ag(s))B(s, T )ds

}

. (B.3)

Since we assume a piecewise constant function σ(t) = σj , for t ∈ (tj−1, tj ] we define

V (t, T ) :=

∫ T

t
σ(s)2B(s, T )2ds = V̄ (t, tj) +

n−1∑

k=j

V̄ (tk, tk+1), (B.4)

where for every (l, u) ⊆ (tk, tk+1]

V̄ (l, u) :=

∫ u

l
σ2k+1B(s, T )2ds =

σ2k+1

2a3

(

e−2aT (eau − eal)(eau + eal − 4eaT ) + 2a(u− l)
)

.

With this definition we can rewrite A(t, T ):

A(t, T ) = exp







1

2
V (t, T )−

∫ T

t
(g′(s) + ag(s))B(s, T )
︸ ︷︷ ︸

φ(s):=

ds







. (B.5)
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Where we defined φ(s) for abbreviation. Substitution of A(t, T ) and B(t, T ) in Equation (B.1)
yields

P (t, T ) = exp

(
1

2
V (t, T )−

∫ T

t
φ(s)ds−B(t, T )r(t)

)

= exp

(
1

2
V (t, T )−

∫ T

t
φ(s)ds−B(t, T )g(t)−B(t, T )x(t)

)

= exp

(
1

2
V (t, T ) + h(t, T )−B(t, T )x(t)

)

.

(B.6)

where we defined

h(t, T ) := −
∫ T

t
φ(s)ds−B(t, T )g(t). (B.7)

h(t, T ) depends on, the still unknown, function g(t). We are going to use this unknown function
to fit the zero-coupon bond price to the initial zero-coupon bond curve observed in the market.
This means, that the model zero-coupon bond price satisfies:

P (0, t) = PM (0, t), ∀t ≥ 0, (B.8)

with P (0, t) the model zero-coupon bond price and PM (0, t) the market zero-coupon bond price.
To get an expression for g(t), such that we get an exact fit to the initial zero-coupon curve, we
require that:

PM (0, T ) = P (0, T ) = exp

(
1

2
V (0, T ) + h(0, T )

)

,

and

PM (0, t) = P (0, t) = exp

(
1

2
V (0, t) + h(0, t)

)

.

From these Equations, h(0, T ) and h(0, t) must satisfy:

h(0, t) = log
(
PM (0, t)

)
− 1

2
V (0, t),

and

h(0, T ) = log
(
PM (0, T )

)
− 1

2
V (0, T ).

Subtract the second equation from the first to obtain:

h(0, T )− h(0, t) = log

(
PM (0, T )

PM (0, t)

)

− 1

2
V (0, T ) +

1

2
V (0, t). (B.9)

Substituting the definition of h(0, t) and h(0, T ), given in Equation (B.7), yields:
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h(0, T )− h(0, t) = −
∫ T

t
φ(s)ds−B(0, T )g(0) +B(0, t)g(0)

= −
∫ T

t
φ(s)ds+ g(0) (B(0, t)−B(0, T )) .

(B.10)

Now we are going to derive a condition on g(t) such that: h(0, T ) − h(0, t) = h(t, T ). Writing
out the second term in the right hand side of (B.10) yields:

g(0)(B(0, t)−B(0, t)) = g(0)

(
1

a
(1− e−at)− 1

a
(1− e−aT )

)

= g(0)
1

a

(
−e−at + e−aT

)

= −g(0)e−at 1

a

(

1− e−a(T−t)
)

= −g(t)B(t, T )

(B.11)

where we defined g(t)as:

g(t) = g(0)e−at and g(0) = r(0). (B.12)

With this choice of g(t), substitution of (B.11) in (B.10) yields

h(0, T )− h(0, t) = −
∫ T

t
φ(s)ds− g(t)B(t, T ) = h(t, T ). (B.13)

Hence combining Equations (B.13) and (B.9) yields

h(t, T ) = log

(
PM (0, T )

PM (0, t)

)

− 1

2
V (0, T ) +

1

2
V (0, t). (B.14)

To finish the proof, substitute (B.14) in (B.6). Then we get the price of a zero-coupon bond
under the piecewise constant volatility Hull-White model:

P (t, T ) = exp

(
1

2
V (t, T ) + log

(
PM (0, T )

PM (0, t)

)

− 1

2
V (0, T ) +

1

2
V (0, t)−B(t, T )x(t)

)

=
PM (0, T )

PM (0, t)
exp

(
1

2
(V (t, T )− V (0, T ) + V (0, t))−B(t, T )x(t)

)

.

One easily sees that the model implied zero-coupon bond price satisfies the required condition
(B.8).

B.2 Zero coupon bond price in the Cheyette model

Proposition B.2. Under the same settings as those described in Section 4.1 the price at time
t of a zero-coupon bond, maturing at time T , is given by:

P (t, T ) =
PM (0, T )

PM (0, t)
e−x(t)B(t,T )− 1

2
y(t)B2(u,T ),

with PM (0, t) the zero-coupon bond price observed in the market and B(t, T ) =
∫ T
t k(t, x)dx.
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Proof. The instantaneous forward rate given by the HJM-framework is:

f(t, T ) = f(0, T ) +

∫ t

0
σ(u, T )

(∫ T

u
σ(u, s)ds

)

du+

∫ t

0
σ(u, T )dWQ0

(u),

with 0 ≤ t ≤ T , under the assumption that

σ(x, y) = η(x, x)k(x, y),

and

k(x, y) = exp

(

−
∫ y

x
κ(v)dv

)

.

Note that:

σ(x, y) = η(x, x)k(x, y) = η(x, x)k(x, s)k(s, y) = σ(x, s)k(s, y), 0 ≤ x ≤ s ≤ y.

We use this expression twice in the derivation below. Using these identities in the equation for
f(t, T ) yields:

f(t, T ) = f(0, T ) +

∫ t

0
σ(u, t)k(t, T )

(∫ T

u
σ(u, s)ds

)

du+

∫ t

0
σ(u, t)k(t, T )dWQ0

(u)

= f(0, T ) + k(t, T )

{∫ t

0
σ(u, t)

(∫ t

u
σ(u, s)ds+

∫ T

t
σ(u, s)ds

)

du

+

∫ t

0
σ(u, t)dWQ0

(u)

}

= f(0, T ) + k(t, T )







∫ t

0
σ(u, t)

∫ t

u
σ(u, s)dsdu+

∫ t

0
σ(u, t)dWQ0

(u)

︸ ︷︷ ︸

=f(t,t)−f(0,t)







+k(t, T )

∫ t

0
σ(u, t)

(∫ T

t
σ(u, s)ds

)

du

= f(0, T ) + k(t, T )

{

f(t, t)− f(0, t) +

∫ t

0
σ(u, t)

(∫ T

t
σ(u, s)ds

)

du

}

= f(0, T ) + k(t, T )

{

r(t)− f(0, t) +

∫ t

0
σ(u, t)2

(∫ T

t
k(t, s)ds

)

du

}

= f(0, T ) + k(t, T )x(t) + k(t, T )

∫ t

0
σ(u, t)2du

︸ ︷︷ ︸

y(t)

∫ T

t
k(t, s)ds

= f(0, T ) + x(t)
∂

∂T

∫ T

t
k(t, s)ds+

1

2
y(t)

∂

∂T

(∫ T

t
k(t, s)ds

)2

.

Hence we derived the following equation
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f(t, T ) = f(0, T ) +
∂

∂T

{

x(t)

∫ T

t
k(t, s)ds+

1

2
y(t)

(∫ T

t
k(t, s)ds

)2
}

. (B.15)

Using the definition of the instantaneous forward rate, see Equation (2.4), we derive:

P (t, T ) = exp

(

−
∫ T

t
f(t, s)ds

)

.

Using the identity for f(t, s), given in Equation (B.15), yields

P (t, T ) = exp

(

−
∫ T

t
f(0, s) +

∂

∂s

{

x(t)

∫ s

t
k(t, u)du+

1

2
y(t)

(∫ s

t
k(t, u)du

)2
}

ds

)

= exp

(

−
∫ T

t
f(0, s)ds

)

exp

(

−x(t)
∫ T

t
k(t, u)du− 1

2
y(t)

(∫ T

t
k(t, u)du

)2

ds

)

=
P (0, T )

P (0, t)
exp

(

−x(t)B(t, T )− 1

2
y(t)B(t, T )2ds

)

,

with

B(t, T ) =

∫ T

t
k(t, u)du,

as to be shown.

B.3 Proof of Proposition 4.4.1

Proposition B.3. Let x(t) be some stochastic process with dynamics:

dx(t) = ν(t)x(t)dW (t),

x(0) = x0,

where W (t) is a standard Brownian motion and ν(t) some deterministic function of time. Then

E
[
(x(t)−K)+

]
= x0N (d1)−KN (d2),

where

d1 =
log(x0/K) + 1

2 σ̄
2

σ̄
,

d2 = d1 − σ̄,

σ̄2 =

∫ t

0
ν(s)2ds,

N (x) =

∫ x

−∞

1√
2π
e−

1
2
s2ds.

This is Black’s formula with Black’s volatility σ2 = σ̄2/t.
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Proof. Using Itô’s formula on f(x) = log(x) yields

log(x(t)) = log(x0) +

∫ t

0
ν(s)dW (s)− 1

2

∫ t

0
ν(s)2ds,

hence the log of x(t) has a normal distribution at time t. The expectation at time t is trivial
since Itô integrals are martingales and the other terms are non random. (We assume ν(t) to be
deterministic.)

µ̄ := E[log(x(t))] = log(x0)−
1

2

∫ t

0
ν(s)2ds.

To compute the second moment note that

[log(x(t))]2 =

[

log(x0)−
1

2

∫ t

0
ν(s)2ds

]2

+ 2

[

log(x0)−
1

2

∫ t

0
ν(s)2ds

] ∫ t

0
ν(s)dW (s)

+

(∫ t

0
ν(s)dW (s)

)2

.

Taking expectations together with Itô’s Isometry yields

E
[
log(x(t))2

]
=

[

log(x0)−
1

2

∫ t

0
ν(s)2ds

]2

+

∫ t

0
ν(s)2ds.

Now we easily obtain the variance at time t

σ̄2 := Var(x(t)) = E
[
log(x(t))2

]
− E [log(x(t))]2 =

∫ t

0
ν(s)2ds.

With this information and defining Z a standard normal random variable, we can calculate
E [(x(t)−K)+].

E
[
(x(t)−K)+

]
= E

[
(exp(log(x(t)))−K)+

]
= E

[
(exp(Zσ̄ + µ̄)−K)+

]

= exp(µ̄)E
[
(exp(Zσ̄)−K exp(−µ̄))+

]

= eµ̄
∫ ∞

(log(K)−µ̄)/σ̄

(
ezσ̄ −Ke−µ̄

) 1√
2π
e−

1
2
z2dz

= eµ̄
∫ ∞

−α

1√
2π
ezσ̄−

1
2
z2dz −K

∫ ∞

−α

1√
2π
e−

1
2
z2dz,

(B.16)

where we defined:

α = (µ̄− log(K))/σ̄. (B.17)

Expressions for the integrals are:

∫ ∞

−α

1√
2π
e−

1
2
z2dz = P(Z ≥ −α) = P(Z ≤ α) = N (α)

∫ ∞

−α

1√
2π
ezσ̄−

1
2
z2dz = e

1
2
σ̄2

∫ ∞

−α−σ̄

1√
2π
e

1
2
p2dp = e

1
2
σ̄2N (σ̄ + α)

(B.18)
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Hence, a combination of formulas (B.16), (B.17), (B.18), definitions of µ̄, σ̄ and the fact that
µ̄+ 1

2 σ̄
2 = log(x0) yields:

E
[
(x(t)−K)+

]
= eµ̄+

1
2
σ̄2N (σ̄ + α)−KN (α)

= x0N
(

log(x0/K) + 1
2 σ̄

2

σ̄

)

−KN
(

log(x0/K)− 1
2 σ̄

2

σ̄

)

,

as to be shown.

B.4 Analytic solution of the Riccati ODEs

Result B.4. Consider the following set of ordinary differential equations

dx(t)

dt
= dy(t), (B.19)

dy(t)

dt
= a+ by(t) + cy2(t), (B.20)

(B.21)

with terminal conditions (x(T ), y(T )) = (0, 0). Assume that a, b, c and d are constants, satisfying
ac < 0, b ≥ 0 and d ∈ R. Then the solutions for x(t) and y(t) are given by:

y(t) =
1

2c



−b+
1 +

(
b−η
b+η

)

e−η(T−t)

1 +
(
η−b
b+η

)

e−η(T−t)
η



 , (B.22)

x(t) =
bd(T − t)

2c
− d

2c
log






[

1 + η−b
η+be

−η(T−t)
]2

4 η2−b2

(η+b)2
e−η(T−t)

(

1− b2

η2

)




 . (B.23)

where we defined:

η :=
√

−4ac+ b2.

Proof. Using standard techniques for solving Riccati Equations, we obtain the solution for y(t).

y(t) =
1

2c

[

−b+ tanh

(
1

2
(T − t)η + arctanh

(
b

η

))

η

]

(B.24)

Rewriting the hyperbolic functions, using the identities:

tanh(x) =
e2x − 1

e2x + 1
,

arctanh(x) =
1

2
log

(
1 + x

1− x

)

, |x| < 1,

(B.25)

yields the closed form solution for y(t). Since the derivation is tedious, we omit it here. One
can verify the solution by showing that y(t) satisfies the differential equation, given by Equation
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(B.20) and y(T ) = 0. To show that the solution is well defined, we have to show that b
η ∈ (−1, 1),

since arctanh(z) is only defined for z ∈ (−1, 1). Under the assumptions made, we satisfy

0 ≤ b <
√

−4ac+ b2 = η ⇒ b

η
∈ [0, 1).

We concentrate on the solution for x(t). Integrating both sides of Equation (B.19) from t to T
and using x(T ) = 0 yields:

x(t) = −d
∫ T

t

1

2c

[

−b+ tanh

(
1

2
(T − s)η + arctanh

(
b

η

))

η

]

ds

= −d
(
b(t− T )

2c
+

η

2c

∫ T

t
tanh

(

−1

2
ηs+

1

2
ηT + arctanh

(
b

η

))

ds

)

.

(B.26)

To work out the solution for x(t), we have to compute the following integral

∫ T

t
tanh (ρs+ κ) ds, {ρ, κ} ∈ R. (B.27)

The integrand is given by:

∫

tanh(ρs+ κ)ds = −1

2

log(ζ(s)− 1)

ρ
− 1

2

log(ζ(s) + 1)

ρ
+ C, C ∈ R,

where we defined:
ζ(s) := tanh(ρs+ κ).

Hence

∫ T

t
tanh (ρs+ κ) =

1

2ρ
(− log(ζ(T )− 1)− log(ζ(T ) + 1) + log(ζ(t)− 1) + log(ζ(t) + 1)) .

(B.28)
Note that we have to be careful with log(x), for negative values of x. We define for any
x ∈ (−∞, 0):

log(x) = log(|x| exp(iπ)) = log(|x|) + iπ. (B.29)

Observe that for any {ρ, κ, t} ⊂ R we satisfy:

tanh(ρt+ κ) ∈ (−1, 1) ⇒
{

tanh(ρt+ κ)− 1 ∈ (−2, 0)
tanh(ρt+ κ) + 1 ∈ (0, 2)

(B.30)

With the definition given in Equation (B.29) and the observations made in Equation (B.30), we
can rewrite Equation (B.28) as:

∫ T

t
tanh (ρs+ κ) =

1

2ρ
(− log(ζ(T ) + 1) + log(ζ(t) + 1) + log(|ζ(t)− 1|)− log(|ζ(T )− 1|)) .

Taking ρ and κ in Equation (B.26) equal to:

ρ := −1

2
η,

κ :=
1

2
ηT + arctanh

(
b

η

)

,
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yields, after some simplification, the solution for x(t):

x(t) =
bd(T − t)

2c
− d

2c
(log(1 + b/η) + log(1− b/η)− log(1− ζ(t))− log(ζ(t) + 1))

=
bd(T − t)

2c
− d

2c
log

(
1− b2/η2

1− ζ2(t)

)

=
bd(T − t)

2c
− d

2c
log

(
1− b2/η2

1− ϕ2(t)

)

=
bd(T − t)

2c
− d

2c
log

((
eη(T−t)(η + b) + η − b

)2

4(η2 − b2)e(T−t)η

(

1− b2

η2

))

=
bd(T − t)

2c
− d

2c
log






[

1 + η−b
η+be

−η(T−t)
]2

4 η2−b2

(η+b)2
e−η(T−t)

(

1− b2

η2

)




 .

with ϕ(t) defined by:

ϕ(t) :=
eη(T−t)(η + b) + b− η)

eη(T−t)(η + b) + η − b

The step from the second to the third line is easily verified by writing out the hyperbolic functions
with the identities given by Equation (B.25). The step from the third line to the fourth line is
justified by some algebraic manipulations. The last step is made for numerical stability.

B.5 Effective volatility of volatility parameter ǭ

Proposition B.5. Given the process

dS0,m(t) = (γ(t)S0,m(t) + (1− γ(t))R0)λ(t)
√

V (t)dW1(t),

and let V (t) and Ṽ (t) be two stochastic processes with dynamics

dV (t) = β(V (0)− V (t))dt+ ǫ(t)
√

V (t)dW2(t),

dṼ (t) = β(V (0)− Ṽ (t))dt+ ǭ

√

Ṽ (t)dW2(t),

where ǭ is given by:

ǭ2 =

∫ T0

0 e2βrǫ2(r)ρ(r)dr
∫ T0

0 e2βrρ(r)dr
, (B.31)

and

ρ(r) =

∫ T0

r
e−βsλ2(s)

∫ T0

s
λ2(t)e−βtdtds.

Then we satisfy:

E

[∫ T0

0
λ2(t)Ṽ (t)dt

]

= E

[∫ T0

0
λ2(t)V (t)dt

]
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and

E

[(∫ T0

0
λ2(t)Ṽ (t)dt

)2
]

= E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

.

Hence the first and second moment of the realized volatility of S0,m(t), generated by the two
variance processes V (t) and Ṽ (t), are equal for this choice of ǭ.

Proof. To prove that the first moments are equal, i.e.:

E

[∫ T0

0
λ2(t)Ṽ (t)dt

]

= E

[∫ T0

0
λ2(t)V (t)dt

]

,

we have to notice that:

E(V (t)) = V (0) and E(Ṽ (t)) = V (0).

We prove this for V (t), it is literally the same for Ṽ (t). Define the process

x(t) := eβt(V (t)− V (0)) with x(0) = 0.

The differential and solution of x(t) are given by:

dx(t) = eβtǫ(t)
√

V (t)dW (t) ⇒ x(t) =

∫ t

0
eβsǫ(s)

√

V (s)dW (s)

hence the expectation of x(t) is given by

E(x(t)) = 0.

Using the definition of x(t) we derive the expecation of V (t).

V (t) = x(t)e−βt + V (0) ⇒ E[V (t)] = V (0)

Now we see that

E

[∫ T0

0
λ2(t)Ṽ (t)dt

]

=

∫ T0

0
λ2(t)E

[

Ṽ (t)
]

dt = V (0)

∫ T0

0
λ2(t)dt

and

E

[∫ T0

0
λ2(t)V (t)dt

]

=

∫ T0

0
λ2(t)E [V (t)] dt = V (0)

∫ T0

0
λ2(t)dt

This proves that, for every choice of ǭ, the first moments are equal. Now we derive a condition
on ǭ such that the second moments are equal i.e.:

E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

= E

[(∫ T0

0
λ2(t)Ṽ (t)dt

)2
]

(B.32)

In Equation (B.33) we work out the left hand side of Equation (B.32), the right hand side is
literally the same.
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E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

= E

[∫ T0

0

∫ T0

0
λ2(s)λ2(t)V (s)V (t)dsdt

]

=

∫ T0

0

∫ T0

0
λ2(s)λ2(t)E [V (s)V (t)] dsdt

= 2

∫ T0

0

∫ t

0
λ2(s)λ2(t)E [V (s)V (t)] dsdt

= · · ·

(B.33)

To work this equation, we derive an expression for E [V (s)V (t)] under the condition that s ≤ t.
Therefor it is convenient to calculate E [x(s)x(t)] for s ≤ t. Defining:

φ(a, b) :=

∫ b

a
eβrǫ(r)

√

V (r)dW (r),

and using previous results gives:

E [x(s)x(t)] = E

[∫ s

0
eβrǫ(r)

√

V (r)dW (r) ·
∫ t

0
eβrǫ(r)

√

V (r)dW (r)

]

= E

[(∫ s

0
eβrǫ(r)

√

V (r)dW (r)

)2

+ φ(0, s) · φ(s, t)
]

= E

[(∫ s

0
eβrǫ(r)

√

V (r)dW (r)

)2
]

+ E [φ(0, s)] · E [φ(s, t)]

= E

[∫ s

0
e2βrǫ2(r)V (r)dr

]

=

∫ s

0
e2βrǫ2(r)E [V (r)] dr

= V (0)

∫ s

0
e2βrǫ2(r)dr

In the third line we use the property of independent increments of the Brownian motion on
disjointness intervals. In the fourth line we use that Itô integrals are martingales and Itô’s
Isometry. Substitution of x(t) = eβt(V (t)− V (0) into the expression for E [x(s)x(t)] yields

E [V (s)V (t)] = V (0)2 + V (0)e−β(t+s)

∫ s

0
e2βrǫ2(r)dr. (B.34)

Substituting (B.34) in (B.33) yields:

· · · =2

∫ T0

0

∫ t

0
λ2(s)λ2(t)

(

V (0)2 + V (0)e−β(t+s)

∫ s

0
e2βrǫ2(r)dr

)

dsdt

=2

∫ T0

0

∫ t

0
λ2(s)λ2(t)V (0)2dsdt+

2

∫ T0

0

∫ t

0

∫ s

0
V (0)e−β(t+s)λ2(s)λ2(t)e2βrǫ2(r)drdsdt

Note that the triple integral above can be writen as:
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∫ T0

0

∫ T0

r

∫ T0

s
V (0)e−β(t+s)λ2(s)λ2(t)e2βrǫ2(r)dtdsdr =

V (0)

∫ T0

0
e2βrǫ2(r)

∫ T0

r
λ2(s)e−βs

∫ T0

s
e−βtλ2(t)dtdsdr =

V (0)

∫ T0

0
e2βrǫ2(r)ρ(r)dr

with

ρ(r) =

∫ T0

r
λ2(s)e−βs

∫ T0

s
e−βtλ2(t)dtds. (B.35)

Using this notation, the second moment of the realized volatility is given by:

E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

= 2V (0)2
∫ T0

0

∫ t

0
λ2(s)λ2(t)dsdt+ 2V (0)

∫ T0

0
e2βrǫ2(r)ρ(r)dr

A similar derivation, with variance process Ṽ (t) process, gives:

E

[(∫ T0

0
λ2(t)V (t)dt

)2
]

= 2V (0)2
∫ T0

0

∫ t

0
λ2(s)λ2(t)dsdt+ 2V (0)ǭ2

∫ T0

0
e2βrρ(r)dr

Equating both second moments yields ǭ2:

ǭ2 =

∫ T0

0 ǫ2(r)e2βrρ(r)dr
∫ T0

0 e2βrρ(r)dr
,

with ρ(r) defined by Equation (B.35), as to be shown.
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C.1 EURO swaption market 9 August 2010.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0159 1291.54 1291.47 0.01 36.28 36.22 5

1 10 0.0309 254.93 254.93 0 24.2 24.2 0

1 10 0.0459 12.58 12.64 -0.48 22.87 22.89 -2

2 9 0.0179 1183.66 1183.66 0 34.85 34.85 0

2 9 0.0329 333.85 333.86 0 23.79 23.79 0

2 9 0.0479 54.9 54.92 -0.05 22.39 22.4 0

3 8 0.0198 1069.68 1069.51 0.02 31.96 31.94 2

3 8 0.0348 352.95 353.24 -0.08 22.27 22.28 -2

3 8 0.0498 84.7 84.58 0.14 20.94 20.93 1

4 7 0.0213 942.51 943 -0.05 29.18 29.24 -6

4 7 0.0363 338.28 337.78 0.15 20.63 20.6 3

4 7 0.0513 96.72 97.21 -0.5 19.42 19.46 -4

5 6 0.0225 805.77 806.44 -0.08 26.53 26.61 -8

5 6 0.0375 306.24 307.47 -0.4 19.22 19.3 -8

5 6 0.0525 100.12 102.32 -2.15 18.33 18.5 -17

6 5 0.0235 673.59 674.61 -0.15 25.32 25.45 -13

6 5 0.0385 271.08 270.38 0.26 18.55 18.5 5

6 5 0.0535 97.54 98.54 -1.01 17.64 17.72 -8

7 4 0.0242 538.93 539.64 -0.13 24.27 24.37 -10

7 4 0.0392 225.46 224.69 0.34 17.86 17.8 6

7 4 0.0542 85.91 86.71 -0.91 16.91 16.98 -7

8 3 0.0249 405.26 404.41 0.21 23.69 23.55 14

8 3 0.0399 176.92 175.56 0.77 17.54 17.4 14

8 3 0.0549 71.42 71.74 -0.45 16.49 16.52 -4

9 2 0.0256 267.18 267.44 -0.1 22.32 22.38 -6

9 2 0.0406 119.33 119.64 -0.26 16.75 16.8 -4

9 2 0.0556 50.29 50.25 0.07 15.85 15.84 1

10 1 0.0263 131.8 132.77 -0.73 21.25 21.68 -42

10 1 0.0413 60.3 61.53 -1.99 16.16 16.5 -34

10 1 0.0563 26.41 27.25 -3.07 15.34 15.58 -24

Table C.1: Euro market 9 August 2010: Calibration results.

σ(t) 0.2573 0.2808 0.2589 0.2276 0.2234 0.2356 0.2139 0.2394 0.1890 0.1890

γ(t) 0.1810 0.1343 0.1047 0.0850 0.2826 0.1503 0.0878 0.0680 0.3000 0.3000

ǫ(t) 1.0372 0.9627 0.8939 1.1192 1.1425 1.1358 1.1416 1.1287 0.1160 0.1160

Table C.2: Euro market 9 August 2010: R0 = 0.04, β = 0.10, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -14 bp, max. 195 bp.

−0.02 −0.01 0 0.01 0.02

0.2

0.25

0.3

0.35

0.4

0.45

ATM + x%

Im
pl

ie
d 

vo
la

til
ity

 

 

DDSV Monte Carlo
DDSV Closed formula
H&W Analytic
Market

(b) 3Y8Y: Accuracy, ATM -29 bp, max. 47 bp.

−0.02 −0.01 0 0.01 0.02
0.15

0.2

0.25

0.3

0.35

ATM + x%

Im
pl

ie
d 

vo
la

til
ity

 

 

DDSV Monte Carlo
DDSV Closed formula
H&W Analytic
Market

(c) 6Y5Y: Accuracy, ATM -25 bp, max. 41 bp.

−0.02 −0.01 0 0.01 0.02
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

ATM + x%

Im
pl

ie
d 

vo
la

til
ity

 

 

DDSV Monte Carlo
DDSV Closed formula
H&W Analytic
Market

(d) 7Y4Y: Accuracy, ATM -32bp, max. 74 bp.
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(e) 9Y2Y: Accuracy, ATM 3 bp, max. 23 bp.
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(f) 10Y1Y: Accuracy, ATM -17 bp, max. 44bp.

Figure C.1: Euro market 9 August 2010: Figures with Cheyette and Hull-White fits to the
market skew.
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C.2 EURO swaption market 19 November 2009.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0239 1260.21 1260.21 0.00 34.31 34.31 0

1 10 0.0389 291.80 291.80 0.00 22.89 22.89 0

1 10 0.0539 31.96 31.96 0.00 23.21 23.21 0

2 9 0.0262 1165.08 1167.14 -0.18 30.98 31.25 -27

2 9 0.0412 357.20 356.83 0.10 21.32 21.30 2

2 9 0.0562 82.80 84.46 -1.97 21.38 21.53 -14

3 8 0.0278 1048.12 1048.18 -0.01 27.75 27.76 -1

3 8 0.0428 357.56 357.89 -0.09 19.28 19.30 -2

3 8 0.0578 106.22 106.35 -0.12 19.41 19.42 -1

4 7 0.0291 917.49 915.34 0.23 25.11 24.90 20

4 7 0.0441 332.72 337.77 -1.49 17.63 17.90 -27

4 7 0.0591 116.42 113.78 2.32 18.07 17.90 17

5 6 0.0301 778.14 772.38 0.75 22.75 22.20 55

5 6 0.0451 294.75 301.81 -2.34 16.30 16.70 -40

5 6 0.0601 111.79 108.55 2.99 16.78 16.57 21

6 5 0.0309 643.93 640.89 0.47 21.38 21.07 31

6 5 0.0459 257.30 261.53 -1.62 15.69 15.95 -26

6 5 0.0609 104.39 101.65 2.70 16.03 15.84 19

7 4 0.0315 508.33 506.28 0.40 20.06 19.82 24

7 4 0.0465 209.45 211.67 -1.05 14.94 15.10 -16

7 4 0.0615 87.41 86.05 1.59 15.14 15.04 11

8 3 0.0320 378.28 376.87 0.37 19.29 19.09 20

8 3 0.0470 162.84 163.38 -0.33 14.65 14.70 -5

8 3 0.0620 70.61 70.26 0.49 14.67 14.64 3

9 2 0.0327 249.20 248.33 0.35 18.46 18.28 18

9 2 0.0477 110.71 110.69 0.02 14.24 14.23 0

9 2 0.0627 49.14 49.22 -0.15 14.12 14.13 -1

10 1 0.0334 123.26 123.08 0.14 17.73 17.67 7

10 1 0.0484 56.44 56.13 0.56 13.88 13.80 8

10 1 0.0634 25.61 25.48 0.50 13.64 13.60 3

Table C.3: EURO market 19 November 2009: Calibration results.

σ(t) 0.2878 0.3000 0.2652 0.2595 0.2025 0.2180 0.1752 0.1981 0.1747 0.1689

γ(t) 0.0427 0.0359 0.0292 0.1617 0.3000 0.2689 0.2163 0.2311 0.2036 0.1910

ǫ(t) 1.6502 1.4572 3.5047 0.0101 0.0103 0.0122 0.0117 0.0112 0.0112 0.0112

Table C.4: EURO market 19 November 2009: R0 = 0.04, β = 0.20, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -14 bp, max. 90 bp.
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(b) 3Y8Y: Accuracy, ATM -9 bp, max. 52 bp.
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(c) 6Y5Y: Accuracy, ATM 15 bp, max. 97 bp.
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(d) 7Y4Y: Accuracy, ATM 25 bp, max. 84 bp.
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(e) 9Y2Y: Accuracy, ATM 37 bp, max. 70 bp.
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(f) 10Y1Y: Accuracy, ATM 29 bp, max. -78 bp.

Figure C.2: EURO market 19 November 2009: Figures with Cheyette and Hull-White fits to
the market skew.
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C.3 KRW swaption market 9 August 2010.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0415 945.54 942.85 0.29 20.22 19.47 75

1 10 0.0565 210.64 210.62 0.01 15.10 15.10 0

1 10 0.0715 20.12 22.98 -12.43 16.08 16.59 -51

2 9 0.0409 873.43 868.66 0.55 18.22 17.54 68

2 9 0.0559 239.45 241.99 -1.05 13.62 13.76 -15

2 9 0.0709 45.49 48.89 -6.95 14.65 14.98 -33

3 8 0.0401 795.42 790.37 0.64 17.37 16.81 56

3 8 0.0551 249.34 249.20 0.05 13.22 13.21 1

3 8 0.0701 62.37 67.15 -7.12 13.94 14.31 -37

4 7 0.0393 709.33 703.28 0.86 16.76 16.13 62

4 7 0.0543 242.90 242.54 0.15 12.97 12.95 2

4 7 0.0693 70.23 76.68 -8.41 13.42 13.88 -46

5 6 0.0385 617.96 613.32 0.76 16.27 15.80 48

5 6 0.0535 226.42 225.03 0.62 12.80 12.73 8

5 6 0.0685 72.37 78.01 -7.24 13.06 13.46 -40

6 5 0.0377 524.35 520.63 0.71 16.18 15.78 41

6 5 0.0527 205.55 203.31 1.10 12.94 12.80 14

6 5 0.0677 71.82 78.07 -8.01 12.98 13.46 -47

7 4 0.0367 427.47 423.69 0.89 16.29 15.82 47

7 4 0.0517 177.35 174.69 1.53 13.17 12.97 20

7 4 0.0667 66.52 73.73 -9.78 13.03 13.64 -62

8 3 0.0357 326.85 323.92 0.90 16.52 16.07 45

8 3 0.0507 142.77 139.98 1.99 13.48 13.22 27

8 3 0.0657 57.02 63.83 -10.68 13.16 13.88 -72

9 2 0.0344 221.21 220.33 0.40 16.74 16.55 19

9 2 0.0494 100.04 99.68 0.37 13.71 13.66 5

9 2 0.0644 41.63 48.96 -14.97 13.24 14.34 -110

10 1 0.0317 111.05 109.19 1.71 17.39 16.56 83

10 1 0.0467 51.22 49.99 2.46 14.15 13.80 35

10 1 0.0617 21.79 25.43 -14.33 13.52 14.60 -108

Table C.5: KRW market 9 August 2010: Calibration results.

σ(t) 0.1476 0.1347 0.1465 0.1507 0.1568 0.1758 0.1868 0.2020 0.2020 0.1924

γ(t) 0.1769 0.2609 0.2539 0.2616 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

ǫ(t) 1.5044 1.2467 1.1733 1.1236 1.0805 1.1199 1.0890 1.0890 1.0890 1.0911

Table C.6: KRW market 9 August 2010: R0 = 0.05, β = 0.20, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -10 bp, max. 120 bp.
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(b) 3Y8Y: Accuracy, ATM -15 bp, max. 70 bp.
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(c) 6Y5Y: Accuracy, ATM -13 bp, max. 36 bp.
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(d) 7Y4Y: Accuracy, ATM -18 bp, max. 43 bp.
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(e) 9Y2Y: Accuracy, ATM 2 bp, max. 33 bp.
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(f) 10Y1Y: Accuracy, ATM -15 bp, max. 20 bp.

Figure C.3: KRW market 9 August 2010: Figures with Cheyette and Hull-White fits to the
market skew.
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C.4 KRW swaption market 19 November 2009

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0452 933.06 929.48 0.39 21.23 20.50 73

1 10 0.0602 239.84 239.63 0.09 16.49 16.48 1

1 10 0.0752 35.57 38.98 -8.76 17.60 18.06 -46

2 9 0.0442 865.79 858.07 0.90 18.81 17.88 93

2 9 0.0592 253.33 257.27 -1.53 13.97 14.18 -22

2 9 0.0742 60.87 60.77 0.17 15.40 15.39 1

3 8 0.0429 787.78 779.41 1.07 17.64 16.80 84

3 8 0.0579 250.61 255.30 -1.84 12.98 13.22 -24

3 8 0.0729 76.70 74.72 2.64 14.51 14.37 14

4 7 0.0419 704.58 694.42 1.46 17.07 16.11 96

4 7 0.0569 242.65 247.30 -1.88 12.68 12.92 -24

4 7 0.0719 85.32 85.16 0.18 14.03 14.02 1

5 6 0.0408 615.00 607.21 1.28 16.68 15.94 74

5 6 0.0558 226.22 230.22 -1.74 12.58 12.80 -22

5 6 0.0708 86.65 86.09 0.64 13.69 13.65 4

6 5 0.0398 523.43 517.56 1.13 16.68 16.08 60

6 5 0.0548 206.61 208.82 -1.06 12.82 12.96 -14

6 5 0.0698 85.10 86.03 -1.08 13.65 13.72 -7

7 4 0.0386 430.14 423.45 1.58 17.20 16.42 78

7 4 0.0536 184.12 184.66 -0.29 13.53 13.58 -4

7 4 0.0686 81.72 85.99 -4.96 14.02 14.37 -35

8 3 0.0375 330.16 326.72 1.05 17.57 17.07 49

8 3 0.0525 149.52 151.06 -1.02 14.02 14.17 -15

8 3 0.0675 69.86 76.41 -8.57 14.26 14.92 -66

9 2 0.0359 224.27 223.24 0.46 18.00 17.79 21

9 2 0.0509 105.87 108.36 -2.29 14.47 14.82 -35

9 2 0.0659 51.35 58.07 -11.58 14.50 15.47 -97

10 1 0.0330 113.98 111.79 1.96 19.04 18.11 92

10 1 0.0480 55.48 56.32 -1.49 15.26 15.50 -24

10 1 0.0630 27.65 33.46 -17.35 15.07 16.72 -165

Table C.7: KRW market 19 November 2009: Calibration results.

σ(t) 0.2072 0.1624 0.1664 0.2034 0.2193 0.2523 0.2992 0.2992 0.3000 0.3000

γ(t) 0.2406 0.2136 0.2993 0.2948 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

ǫ(t) 1.4860 1.5358 0.9768 0.4695 0.4667 0.0100 0.0102 0.0102 0.0102 0.0102

Table C.8: KRW market 19 November 2009: R0 = 0.04, β = 0.05, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -14 bp, max. 101 bp.
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(b) 3Y8Y: Accuracy, ATM -30 bp, max. 100 bp.
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(c) 6Y5Y: Accuracy, ATM -19 bp, max. 32 bp.
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(d) 7Y4Y: Accuracy, ATM -6 bp, max. 32 bp.
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(e) 9Y2Y: Accuracy, ATM 27 bp, max. 37 bp.
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(f) 10Y1Y: Accuracy, ATM 39 bp, max. 42 bp.

Figure C.4: KRW market 19 November 2009: Figures with Cheyette and Hull-White fits to the
market skew.
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C.5 USD swaption market 9 August 2010.

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0171 1335.84 1325.58 0.77 42.40 38.08 432

1 10 0.0321 337.56 337.22 0.10 30.22 30.19 3

1 10 0.0471 35.02 44.12 -20.63 27.54 29.22 -168

2 9 0.0201 1243.78 1229.39 1.17 38.04 35.77 227

2 9 0.0351 428.50 427.70 0.19 28.15 28.09 5

2 9 0.0501 102.67 116.59 -11.94 25.81 27.03 -122

3 8 0.0227 1138.29 1126.89 1.01 34.35 33.08 127

3 8 0.0377 454.37 454.03 0.08 26.00 25.98 2

3 8 0.0527 148.79 160.43 -7.26 24.07 24.85 -78

4 7 0.0249 1016.57 1006.75 0.98 31.60 30.66 94

4 7 0.0399 444.29 445.75 -0.33 24.32 24.40 -8

4 7 0.0549 172.38 181.67 -5.12 22.67 23.23 -56

5 6 0.0265 880.73 869.42 1.30 29.40 28.35 105

5 6 0.0415 408.83 415.02 -1.49 22.94 23.30 -36

5 6 0.0565 174.51 186.32 -6.34 21.42 22.13 -71

6 5 0.0276 744.24 735.49 1.19 28.56 27.71 85

6 5 0.0426 367.38 369.65 -0.62 22.55 22.70 -14

6 5 0.0576 171.23 179.88 -4.81 21.01 21.56 -55

7 4 0.0283 602.07 596.25 0.98 27.99 27.35 64

7 4 0.0433 312.20 311.90 0.09 22.32 22.30 2

7 4 0.0583 155.02 163.77 -5.34 20.71 21.34 -64

8 3 0.0289 454.41 449.91 1.00 27.44 26.82 61

8 3 0.0439 245.06 243.60 0.60 22.07 21.93 14

8 3 0.0589 127.51 135.82 -6.12 20.40 21.15 -75

9 2 0.0294 303.47 299.61 1.29 26.82 26.08 74

9 2 0.0444 168.65 167.19 0.88 21.72 21.53 20

9 2 0.0594 90.75 97.67 -7.09 20.01 20.90 -89

10 1 0.0296 149.61 148.50 0.75 25.93 25.51 41

10 1 0.0446 84.45 84.48 -0.04 21.09 21.10 -1

10 1 0.0596 46.16 50.54 -8.66 19.38 20.47 -108

Table C.9: Calibration results.

σ(t) 0.2350 0.2414 0.2327 0.2261 0.2032 0.2222 0.2147 0.2047 0.1896 0.1449

γ(t) 0.3000 0.3000 0.3000 0.3000 0.2936 0.3000 0.3000 0.3000 0.3000 0.2999

ǫ(t) 1.0734 1.5080 2.2441 2.2790 2.2939 2.2078 2.2106 1.9635 1.9623 2.0840

Table C.10: USD swaption 9 August 2010: R0 = 0.07, β = 0.40, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -20 bp, max. 192 bp.
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(b) 3Y8Y: Accuracy, ATM -21bp, max. 115 bp.
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(c) 6Y5Y: Accuracy, ATM -5 bp, max. 74 bp.
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(d) 7Y4Y: Accuracy, ATM -36 bp, max. 126 bp.
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(e) 9Y2Y: Accuracy, ATM -7.2 bp, max. 58 bp.

−0.02 −0.01 0 0.01 0.02

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

ATM + x%

Im
pl

ie
d 

vo
la

til
ity

 

 

DDSV Monte Carlo
DDSV Closed formula
H&W Analytic
Market

(f) 10Y1Y: Accuracy, ATM -39 bp, max. 100 bp.

Figure C.5: USD swaption 9 August 2010: Figures with Cheyette and Hull-White fits to the
market skew.
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C.6 USD swaption market 19 November 2009

Maturity Tenor Strike Model Market Relative Model Market Diff
in years in years price price diff. impl vol. vol. in bp

1 10 0.0239 1326.85 1292.38 2.67 42.49 34.97 752

1 10 0.0389 431.29 429.51 0.42 33.12 32.98 14

1 10 0.0539 82.99 115.98 -28.44 30.15 33.79 -364

2 9 0.027 1269.8 1219.07 4.16 38.81 33.39 542

2 9 0.042 545.65 541.66 0.74 31.33 31.1 23

2 9 0.057 185.51 236.28 -21.49 28.38 31.67 -329

3 8 0.0292 1169.17 1119.79 4.41 35.36 31.18 418

3 8 0.0442 564.16 559.64 0.81 29.03 28.79 24

3 8 0.0592 233.38 283.92 -17.8 26.33 29.09 -276

4 7 0.0306 1047.13 1002.89 4.41 33.08 29.61 347

4 7 0.0456 539.87 538.19 0.31 27.28 27.2 9

4 7 0.0606 250.68 294.79 -14.96 24.89 27.18 -229

5 6 0.0316 912.66 874.76 4.33 31.71 28.71 300

5 6 0.0466 494.79 496.07 -0.26 26.23 26.3 -7

5 6 0.0616 249.3 285.66 -12.73 24.01 25.95 -195

6 5 0.0322 762.58 732.17 4.15 30.18 27.56 262

6 5 0.0472 426.09 427.19 -0.26 25.04 25.1 -7

6 5 0.0622 224.45 254.59 -11.84 22.94 24.71 -177

7 4 0.0326 608.44 583.15 4.34 28.95 26.41 254

7 4 0.0476 348.03 347.11 0.26 24.07 24 7

7 4 0.0626 189.42 214.02 -11.49 22.05 23.74 -169

8 3 0.0331 454.05 435.75 4.2 27.81 25.5 231

8 3 0.0481 264.6 264.1 0.19 23.18 23.13 4

8 3 0.0631 147.6 167.96 -12.12 21.24 23 -177

9 2 0.0336 297.8 287.1 3.73 26.32 24.4 192

9 2 0.0486 175.12 175.76 -0.37 22.01 22.1 -8

9 2 0.0636 98.73 114.07 -13.45 20.17 22.08 -191

10 1 0.0341 147.36 142.04 3.74 25.15 23.33 182

10 1 0.0491 87.55 87.14 0.47 21.1 21 10

10 1 0.0641 49.96 56.61 -11.74 19.34 20.92 -158

Table C.11: USD market 19 November 2009: Calibration results.

σ(t) 0.2703 0.2620 0.2231 0.2147 0.2155 0.1855 0.1754 0.1632 0.1249 0.1280

γ(t) 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

ǫ(t) 1.0532 0.4094 1.9795 1.9830 1.9826 2.2898 2.2725 2.2717 2.2737 2.2726

Table C.12: USD market 19 November 2009: R0 = 0.08, β = 0.40, a = 0.03, V (0) = 1.
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(a) 1Y10Y: Accuracy, ATM -23 bp, max. 150 bp.
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(b) 3Y8Y: Accuracy, ATM -28 bp, max. 103 bp.
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(c) 6Y5Y: Accuracy, ATM -16 bp, max. 73 bp.
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(d) 7Y4Y: Accuracy, ATM -46 bp, max. 93 bp.
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(e) 9Y2Y: Accuracy, ATM -21 bp, max. 75 bp.
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(f) 10Y1Y: Accuracy, ATM -53 bp, max. 119 bp.

Figure C.6: USD market 19 November 2009: Figures with Cheyette and Hull-White fits to the
market skew.
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Appendix D

Skew and curvature impact

In this appendix we include results from the skew and curvature impact analysis, which we have
not listed in the main text. We subdivide this into three parts. In Appendix D.1 we include
calibration results, in Appendix D.2 we include tables with pricing results for the digital cap
and in Appendix D.3 we include tables with pricing results for the RAC and callable RACS.
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D.1 Calibration results

D.1.1 13 April 2011: calibration to 4Y1Y and 10Y1Y swaptions

The DDSV model is calibrated to swaptions with strikes ATM− 150bp, ATM, ATM+ 150bp.
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(a) 4Y1Y: Fit to the market skew
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(b) 4Y1Y: Difference in basis points.

Figure D.1: 13 April 2011: Calibration results 4Y1Y swaption skew. ATM = 4.11%.
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(a) 10Y1Y: Fit to the market skew
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(b) 10Y1Y: Difference in basis points.

Figure D.2: 13 April 2011: Calibration results 10Y1Y swaption skew. ATM = 4.80%.
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D.1.2 13 April 2011: calibration to 5Y1Y, 6Y1Y, . . . 9Y1Y swaptions

The DDSV model is calibrated to swaptions with strikes ATM− 150bp, ATM, ATM+ 150bp.
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(a) 5Y1Y: DDSV accuracy, ATM -25 bp, max. 40 bp.
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(b) 6Y1Y: DDSV accuracy, ATM -15 bp, max. 45 bp.
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(c) 7Y1Y: DDSV accuracy, ATM -30 bp, max. 70 bp.
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(d) 8Y1Y: DDSV accuracy, ATM -9 bp, max. 93 bp.
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(e) 9Y1Y: DDSV Accuracy, ATM -3 bp, max. 49 bp.
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D.1.3 30 June 2010: calibration to 5Y1Y, 6Y1Y, . . . 9Y1Y swaptions

The DDSV model is calibrated to swaptions with strikes ATM− 150bp, ATM, ATM+ 150bp.
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(f) 5Y1Y: DDSV accuracy, ATM -21 bp, max. 76 bp
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(g) 6Y1Y: DDSV accuracy, ATM -33 bp, max. 102 bp
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(h) 7Y1Y: DDSV accuracy, ATM -18 bp, max. 137 bp
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(i) 8Y1Y: DDSV accuracy, ATM 6 bp, max. 75 bp
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(j) 9Y1Y: DDSV Accuracy, ATM 7 bp, max. 94 bp
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D.1.4 13 April 2011: calibration to 1Y10Y, 2Y9Y, . . . 10Y1Y swaptions

The DDSV model is calibrated to swaptions with strikes ATM− 150bp, ATM, ATM+ 150bp.
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(k) 1Y10Y
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(l) 2Y9Y
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D.2 Digital cap

In this section we include the tables with the results for the digital cap. In the main text we
included the results for 13 April 2011, in this section we show the results for 16 December 2010
and 30 June 2010.

B - ATM B SR H&W price H&W - SR DDSV price DDSV - SR

-0.02 0.0241 1268.46 1255.14 -13.32 1284.88 16.42

-0.015 0.0291 1156.76 1151.7 -5.06 1178 21.24

-0.01 0.0341 1035.71 1032.89 -2.82 1043.47 7.76

-0.005 0.0391 891.75 903.39 11.63 885.2 -6.55

0 0.0441 720.18 769.24 49.06 717.23 -2.94

0.005 0.0491 555.05 635.9 80.85 561.52 6.46

0.01 0.0541 414.19 510.55 96.36 429.17 14.98

0.015 0.0591 298.86 396.78 97.92 325.38 26.52

0.02 0.0641 212.99 299 86.01 247.85 34.86

Table D.1: Pricing results: 16 December 2010, digital cap starting in 5Y. The ATM level of the
5Y5Y swaption is 4.41%. H&W 99% confidence interval width, < 9.4. DDSV 99% confidence
interval width, < 12.1.

B - ATM B SR H&W price H&W - SR DDSV price DDSV - SR

-0.02 0.019 1373.7 1366.74 -6.96 1393.82 20.12

-0.015 0.024 1258.8 1253.33 -5.47 1286.92 28.12

-0.01 0.029 1133.43 1119.24 -14.19 1143.18 9.75

-0.005 0.034 968.71 968.73 0.03 963.11 -5.6

0 0.039 768.2 809.81 41.61 764.14 -4.06

0.005 0.044 572.28 653.6 81.32 579.74 7.47

0.01 0.049 402.4 506.32 103.92 427.72 25.32

0.015 0.054 273.18 377.6 104.42 313.22 40.04

0.02 0.059 184.99 269.54 84.55 231.28 46.29

Table D.2: Pricing results: 30 June 2010, digital cap starting in 5Y. The ATM level of the 5Y5Y
swaption is 3.9%. H&W 99% confidence interval width, < 8.8. DDSV 99% confidence interval
width, < 12.1.
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D.3 RAC and callable RAC results

In this section we include the tables with the results for the RAC and the callable RAC. In the
main text we included the results for 13 April 2011, in this section we show the results for 16
December 2010 and 30 June 2010. We use the following abbreviations in the tables with results,
K is the fixed rate of the underlying RAC, B is the barrier of the digitals in the payoff function.

D.3.1 16 December 2010: Tables with RAC and callable RAC results

K B SR H&W H&W − DDSV DDSV −
price price SR price SR

0.0613 0.0286 -1264.54 -1391.76 -127.22 -1487.40 -222.86

0.0613 0.0386 -317.45 -445.56 -128.12 -449.39 -131.94

0.0613 0.0486 561.07 383.55 -177.52 500.22 -60.85

0.0713 0.0286 -955.52 -1103.52 -148.00 -1214.49 -258.97

0.0713 0.0386 146.11 -2.92 -149.03 -7.09 -153.20

0.0713 0.0486 1167.98 961.49 -206.49 1097.47 -70.51

0.0813 0.0286 -646.51 -815.27 -168.76 -941.57 -295.06

0.0813 0.0386 609.67 439.73 -169.94 435.20 -174.46

0.0813 0.0486 1774.89 1539.42 -235.47 1694.72 -80.17

Table D.3: Pricing results: Hull-White and DDSV prices for the range accrual, compared to
the static replication price. H&W 99% confidence interval width, < 57. DDSV 99% confidence
interval width, < 59.

K B RAC HW RAC DDSV C-RAC C-RAC C-RAC DDSV −
H&W DDSV C-RAC H&W

0.0613 0.0286 -1391.76 -1487.40 492.54 513.19 20.65

0.0613 0.0386 -445.56 -449.39 755.46 800.51 45.05

0.0613 0.0486 383.55 500.22 1054.00 1154.71 100.71

0.0713 0.0286 -1103.52 -1214.49 649.54 659.42 9.88

0.0713 0.0386 -2.92 -7.09 1029.77 1080.97 51.20

0.0713 0.0486 961.49 1097.47 1474.37 1617.09 142.72

0.0813 0.0286 -815.27 -941.57 823.20 817.71 -5.49

0.0813 0.0386 439.73 435.20 1334.78 1389.45 54.67

0.0813 0.0486 1539.42 1694.72 1937.01 2116.65 179.64

Table D.4: Pricing results: The Hull-White and DDSV callable range accrual prices.
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D.3.2 30 June 2010: Tables with RAC and callable RAC results

K B SR H&W H&W − DDSV DDSV −
price price SR price SR

0.0500 0.0226 -1205.54 -1299.29 -93.75 -1406.65 -201.11

0.0500 0.0326 -418.72 -461.34 -42.62 -530.12 -111.41

0.0500 0.0426 376.72 262.57 -114.16 355.98 -20.74

0.0600 0.0226 -894.40 -1006.92 -112.52 -1135.66 -241.26

0.0600 0.0326 49.85 -1.31 -51.16 -83.75 -133.60

0.0600 0.0426 1004.45 867.44 -137.01 979.66 -24.79

0.0700 0.0226 -583.27 -714.55 -131.28 -864.67 -281.40

0.0700 0.0326 518.42 458.72 -59.70 362.63 -155.79

0.0700 0.0426 1632.18 1472.32 -159.86 1603.33 -28.85

Table D.5: Pricing results: Hull-White and DDSV prices for the range accrual, compared to
the static replication price. H&W 99% confidence interval width, < 49. DDSV 99% confidence
interval width, < 52.

K B RAC HW RAC DDSV C-RAC C-RAC C-RAC DDSV −
H&W DDSV C-RAC H&W

0.0500 0.0226 -1299.29 -1406.65 367.63 388.39 20.75

0.0500 0.0326 -461.34 -530.12 585.54 614.75 29.21

0.0500 0.0426 262.57 355.98 842.57 959.17 116.61

0.0600 0.0226 -1006.92 -1135.66 510.66 511.04 0.38

0.0600 0.0326 -1.31 -83.75 849.64 869.64 19.99

0.0600 0.0426 867.44 979.66 1266.48 1430.17 163.69

0.0700 0.0226 -714.55 -864.67 672.52 646.81 -25.72

0.0700 0.0326 458.72 362.63 1152.39 1159.14 6.75

0.0700 0.0426 1472.32 1603.33 1748.58 1948.22 199.64

Table D.6: Pricing results: The Hull-White and DDSV callable range accrual prices.


