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Introduction

After completing an internship and successfully passing all courses, the Master’s thesis is the final work be-
fore obtaining the degree of Master of Science at the Faculty of Aerospace Engineering at Delft University
of Technology. This project has been undertaken in collaboration with KLM Cargo, who saw a need in their
business for a research project to conceptualize an improvement in their cargo hub operations. After some
discussion between all parties to set up a clear goal and framework, an internship contract was signed and
the project was started.

The research project was carried out at the department of Performance Management (PFM) at KLM Cargo,
with periodic visits to the university. The office of PFM is located in the cargo warehouse which made it
possible to be closely situated to the ongoing operations inside the warehouse. At PFM the performance
indicators of all the processes occurring at the KLM Cargo Hub at Schiphol Airport are monitored. Data is
collected to support these indicators and the department identifies, with the help of data analytics tools, what
can be improved on the basis of operational data of past events. The aim is however, to have a more predictive
role. In that way, with the help of more advanced tools and access to real-time data, difficult situations can
be tackled early on and preferably avoided.

This research project has been designed in an effort to work towards such a predictive role. The problem
at hand is a bottleneck in the cargo buildup phase where shift leaders spend much time on setting up out a
good work schedule for an upcoming shift. Based on the tasks, available personnel and flight departure times,
shift leaders write up schedules in the best way possible to avoid delayed shipments. The current approach is
not only a cumbersome endeavour, it takes lots of time as well for all three daily shifts. A solution needed to be
found to make better buildup schedules in a shorter time with which difficult situations could be identified
early on.

A scheduling model has been designed that not only aims at saving time and preventing delays, but also
distributing the workload more evenly among personnel. The latter contributes to a happier workforce that
can have their breaks on time as a result of better planning. Delivering shipments in time is important from
a business perspective, but fairly distributing work according to everyone’s abilities should be as equally im-
portant. The model presented here allows KLM Cargo to not only improve their schedule, but provide their
employees with a fair distribution of work that prevents working overtime or last minute reallocation of tasks.

One of the questions that was very unclear to everyone who looked at this problem before, was the deter-
mination of work in one of the shifts. Out of all the shipments that move through the Hub, what constitutes
as work, what is not work, and how can a better classification of work be made? There were some estimates
and results from prior studies executed by KLM themselves, but the analysis in this research uses an entirely
different approach. In addition, the allocation of tasks has never been studied before for any of the cargo
handling phases. There has never been a team assigned to come up with an improved way of doing so. This
project has tried to give an answer to both of these questions and in that sense, it was a very unique project.

From academic standpoint, the goal of the Master’s thesis is to acquaint oneself with the process of academic
research, recognize how new research can add to the existing collection of scientific literature and experience
writing their own work in the from of a scientific paper. With the help of expert supervision from both the
university and KLM, it has led to this final thesis document containing the process and findings of this re-
search.

This thesis report is organized as follows : In Part I, the scientific paper is presented. Part II contains the study
of relevant literature that supports the research. Finally, in Part III, some additional results are presented.

xi
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A Multi-Objective Optimization Model for the Buildup Allocation at
KLM Cargo

Using a local search heuristic in a data driven application

Thomas Hultermans
Department of Air Transport & Operations, Delft University of Technology, The Netherlands

Abstract — The buildup phase at KLM Cargo requires cumbersome planning actions because of a slow
data handover at the warehouse and an uncertain initial state of the buildup process at the beginning
of the shift. This study presents a model to improve scheduling of future buildup shifts according to
flight departure times of KLM. The most important objectives are to minimize the delays and equally
distribute the workload. For this purpose, a MILP model has been created. The problem is modeled as a
scheduling problem with time windows. Next to the branch-and-bound method, an adapted tabu search is
implemented as an alternative optimization technique. Both methods show adequate performance in terms
of computation time and model convergence. With the help of a real-time data architecture, scheduling can
now be standardized, take less time, incorporate more detailed information and in addition, bottlenecks
can be identified early.
Keywords — Operations Research; Scheduling Problem; Time Windows; Tabu Search;

1 Introduction
Workforce scheduling problems arise whenever a performance index
is dependent on the allocation of personnel. This class of problems is
common in many fields, including the service industry. KLM Cargo,
situated at Amsterdam Schiphol Airport is experiencing such a problem
in their cargo handling operations. Cargo handling is carried out from
the arrival of shipments at the landside until the loading of the cargo
hold of the aircraft on the airside. The logistic chain of events to get a
shipment on the right aircraft involves sorting and building up shipments
inside the Cargo warehouse. The buildup process is the subject of this
research, where hours per day are spent on allocating the large number
of personnel to a large number of buildup tasks. The Cargo department
plays an important role in transporting shipments in time to consignees
The allocation of personnel to tasks is subject to strict deadlines and the
performance with respect to these deadlines has an effect on the relations
with KLM Cargo’s clients.

At the moment, the workforce scheduling is done manually by team co-
ordinators and shift leaders while simultaneously considering multiple
sources of information. A new allocation for the buildup phase needs to be
made before the start of each of the three daily shifts. Due to cumbersome
planning, shipments miss their flights. Flights are sometimes even forgot-
ten to be allocated and information can change up until the final minutes
before the shift. This makes scheduling teams to tasks difficult and time
consuming. As indicated by KLM Cargo themselves, it can take 0.5 to 1.5
hrs per shift to allocate and adjust the teams to their tasks.

The goal of the scheduling process is to prevent delays of shipments.
In addition, the work should be distributed equally because it requires
additional coordination effort to reallocate teams to other workstations
later on during the shift. When employees notice they have time to spare,
they could slow down while others may be working faster. This is also the
reason why a previous (internal, unpublished) study at KLM Cargo about
productivity did not give accurate results when trying to track individual
workers. The best solution is to give everyone a similar work package. A
model needs to be developed that determines an optimized staff allocation
based on the flight schedule. To give a proper recommendation, it is
important to show the workings of the model on real data from KLM
Cargo.

There is no scheduling model in earlier research that faithfully describes
and incorporates all the constraints and features of this problem of interest,
i.e. assigning teams to ULD workstations in the warehouse of an air cargo
supply chain Hub. This research fills up that gap by developing such a
scheduling model.

The work schedules will be made on the basis of flights. All flows of
cargo destined for outbound international flights are considered. As will
be clear later on, the only freight building subject to this research is freight
building 3. A forecast of the work for future shifts is not part of this thesis.
The work will be estimated by assuming a real-time database connection
with the Cargo Hub.
The remainder of this thesis is organized as follows. The next section re-
views relevant work on scheduling problems and linear optimization. Sec-
tion 3 gives an overview of the business activities inside the Cargo Hub
and the current process of assigning work to employees will be reviewed.

Section 4 will explain the data behind many assumptions used in the model
and how the inputs are retrieved from the data sources. The model will be
defined in Section 5, together with a heuristic method. After that the pa-
rameters are set and the model is validated Section 7. The last section is
the conclusion of this work.

2 Related Work
In this section the state-of-the-art of resource allocation and scheduling is
reviewed. As stated by Ernst et al. (2004): ”Task assignments are often
required when working shifts have been determined but tasks have not
been allocated to individuals.” (p. 9).

Assignment Problems
Assignment problems are about finding optimal pairings of agents and
tasks depending on a suitability function. Kuhn (1955) developed the Hun-
garian algorithm as the first practical solution method to solve the clas-
sic assignment problem (AP). Pentico (2007) provides an overview of the
many variations of the assignment problem.

This project classifies as a GAP since there are more flights than there
are teams. Ravindran and Ramaswami (1977) presents the bottleneck AP.
This particular problem is not aimed at minimizing the total costs, but
minimizing the most costly assignment. Duin and Volgenant (1991) stud-
ied two variations of the bottleneck AP. One is minimizing the difference
between the least and most costly assignment. The other minimizes the
difference between the maximum and average assignment cost. An exam-
ple is given of minimizing the idle time of simultaneously operating ma-
chines. These bottleneck problems showed a good example for balancing
the workloads in this research. Mulla et al. (2016) shows how in addition
to a bottleneck formulation, hard constraints for workload, utilization and
productivity can be used while taking into account awareness of fairness
among the employees.

Geetha and Nair (1993) studied a bi-criteria bottleneck AP. Next to the
assignment cost, their model assumes an additional supervisory cost as a
bottleneck objective. Scarelli and Narula (2002) consider the problem of
assigning referees to football matches with multiple independent selection
criteria by using (in)compatibility and priority indices their method is able
to include indifference, preference and veto thresholds. Equivalently so at
KLM Cargo, different teams posses different skills. Shen et al. (2003) se-
lects appropriate individuals for tasks based on a multi-criteria assessment
of individual suitability, social relationships and existing tasks. Next to
workload balancing, it focuses on qualitative impacts including specializa-
tion of labor and job enrichment.

Scheduling Problems
Graham et al. (1979) presents an overview and introduces a classifica-
tion of different machine scheduling problems. Uniform parallel machine
scheduling assumes a job as a single operation and the processing time de-
pends on the speed factor of each machine. Oyetunji (2009) discuss com-
mon performance measures in scheduling problems, like total completion
time and makespan. Janiak and Kovalyov (1996) looks at resource depen-
dent processing times, which is an application of the critical path method
where allocating more resources, or another form of extra cost, reduces
processing time. The timing or sequencing of tasks in machine schedul-
ing problems is often done by allocating a machine with a task to a time
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slot. The advantage is that it is very easy and intuitive to obtain a schedule
from the solution. The drawback however, is that the schedule works with
minimal steps in time equal to the length of a time slot.

Cattrysse and van Wassenhove (1990) identify vehicle routing in
distribution systems as applications of the GAP. Vehicle routing problems
(VRP) are not modelled as bipartite graphs as done by Chang and Ho
(1998) where edges represent an agent-task assignment, but graphs in
which edges represent a relation between the nodes/tasks (e.g. distance).
The VRP is a generalisation of the traveling salesman problem (TSP),
which does not typically include capacity limits, but has a similar formu-
lation. Laporte (1992) provides an overview of VRPs with different side
conditions, among which are time windows and precedence constraints.
The shipments belonging to a flight can only be build up when they
have passed the breakdown phase and each flight has a deadline which
would reflect an upper bound of the time window. Desrochers et al.
(1990) introduce, like Graham et al. (1979) did for machine scheduling,
a classification scheme for vehicle routing and machine scheduling
problems together with examples. Variations discussed previously for
the AP/GAP are also possible for the VRP, because it is an extension of
the former. Bottleneck constraints and vehicle characteristics (e.g. team
skills) are included in the problem described by Bell et al. (1983), which
shows that the VRP can include such characteristics too.

A comparison is made by Beck et al. (2003) between a vehicle routing and
job shop scheduling problem as a representation of a real world schedul-
ing problem. Both problems can be reformulated to represent the other
and both problems are solved in different ways. It is found that routing
technology is superior when the problem involves optimizing the sum of
total transition times, few precedence constraints and low resource special-
ization. This is in line with the project context. At KLM Cargo, there is
low resource specialization because there will be multiple teams capable
of executing the same task/flight and there are generally a few star flights
which require precedence over other flights.

Optimization Techniques
When working with a linear problem containing binary and integer vari-
ables, commercial optimizers such as Gurobi will use a branch-and-bound
or branch-and-cut technique to optimize relaxed subsets of these problems.
Cordeau (2006) presents an example of valid inequalities for the dial-a-ride
problem with time windows.

In turn, many heuristic methods have been developed tailored to specific
problems in order to find good-solutions in a shorter time. Heuristics can
be (non-)deterministic using local/global search procedures. Hillier and
Lieberman (2015) explains that the tabu search is both deterministic and
can be used as a local search method. An initial solution should set a
good starting point. If a good initial solution can be generated, the optimal
solution should be located somewhere in the neighbourhood. ? generates
an initial solution by ordering the nodes by the angle made with the depot
in a Euclidean coordinate space by randomly testing new nodes. At KLM
Cargo the travel time is less of a concern since its greatly exceeded by the
service time. Focusing directly on the deadlines instead of distances could
be more promising.

Cordeau et al. (2001) presents a unified tabu search heuristic for the
VRP with time windows and the periodic and multi-depot VRP with time
windows. The algorithm consists of a local search metaheuristic and a di-
versification mechanism to explore a broader portion of the solution space.
The best feasible solution is post-optimized according to the specialized
heuristic by Gendreau et al. (1998). This method thrives in its simplicity
because it is based on a limited number of parameters and a simple scheme,
compared to alternative heuristic approaches.

Modeling under uncertainty
The research done in Delgado et al. (2019) contains an example of dealing
with uncertain parameters. The article presents the allocation of cargo to
passenger flights as a multi-commodity flow problem with uncertainty in
demand and capacity. The demand is assumed to be normally distributed
and is converted into a deterministic chance constraint. The constraint is
subject to change depending on the required confidence level requested by
management or attainable confidence level from the input data.

Next to chance constraints, Hillier and Lieberman (2015) also describes
that robust optimization can be applied in order to deal with uncertainties.
The goal of robust optimization is to virtually guarantee a solution for all
practically possible parameter values. For this a distinction is made be-
tween a soft constraint and a hard constraint. A hard constraint defines a
limit that must be satisfied and a soft constraint can be violated a little bit
without serious complications.

3 Business Analysis
This section presents the operations at the Hub of KLM Cargo at Schiphol
Airport. First the business structure and key terms in the process within
the scope of this research are defined. Next an overview of the buildup
phase with its scheduling challenges is analyzed. Finally, the framework
for optimization and the model inputs and parameters are derived from this
section.

3.1 KLM Cargo and the Hub
Air France-KLM Group has 3 main business activities: Passenger Busi-
ness, Cargo Business, and Engineering & Maintenance. KLM Cargo is
part of the dedicated cargo business in the Air France-KLM Group. Freight
from national and international destinations passes through this facility to
be processed for further transportation. As part of the Skyteam, KLM
Cargo not only handles its own cargo, but also that of Delta Airlines and
Martinair. The fleet of passenger-, freighter-, and combination (combi) air-
craft transports the cargo between airports around the world. The amount
of space to store cargo depends on the aircraft type. The cargo facility
is referred to as the Cargo Hub, since it is located at KLM’s hub airport,
Schiphol.
Transporting cargo in an aircraft requires a special carrier device called
Unit Load Device (ULD). ULDs are crucial in transporting air cargo safely
and maximize the use of the aircraft’s cargo space. A ULD is either an air-
craft pallet and pallet net combination, or an aircraft container. The Inter-
national Air Transport Association (IATA) regulates the design of ULDs
to ensure standardization and safety in the aviation industry. They come in
many different shapes, but they can, for this research, be distinguished by
three types:

� Main Deck Pallet (MDP): Main deck pallets are taller than lower
deck pallets. The cargo is loaded onto a large plate and secured with
a sail and net.

� Lower Deck Pallet (LDP): Lower deck pallets are constructed simi-
larly to the MDP, but are built less tall.

� Container Pallet (AKE): A container fully encloses the shipments
rather covering them with a tightly secured sail and net. They are
lightweight structures with a base, and side- and roof panels.

MDPs cannot be carried by passenger aircraft, since they are built for taller
cargo spaces in the main deck. Freighters and combi-aircraft carry all types
of ULDs with the freighter, as the name suggests, being fully dedicated to
cargo load instead of passengers.

The KLM cargo Hub consists of 3 freight buildings, shown in Figure 1.
Freight building 1 is a stand alone building and takes care of all the cargo
that includes mail, small packages, special shipments, pharmaceuticals and
animals. It has its own handling process and is outside the scope of this
project. Freight building 2, or Europort, is responsible for all incoming
general cargo arriving by aircraft and headed for European destinations.
Freight building 3, or World Port, is connected to building 2 and handles
all of the general cargo, either arriving from trucks or from aircraft, which
is destined for Intercontinental destinations.

Figure 1: The freight buildings at the Cargo Hub at Schiphol Airport.

3.2 The Hub process
Looking at the flow of cargo on international flights, the process at freight
building 3 can be separated into 5 stages: Acceptance, Storage, Break-
down, Buildup, and Transport.

Acceptance

The process at freight building 3 starts with the arrival of a trucks at the
landside of the Hub. Documentation is reviewed and the Air Way Bill
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(AWB) is stored in the operational management system, CHAIN. Freight
can either be transit from outside The Netherlands, or export, from inside
The Netherlands. Trucks are unloaded at the Moving Truck Dock (MTD),
Ready For Carriage (RFC) checks are executed to confirm proper packing,
completeness and no damages. Freight can be loose or stored on skids
in which case it identifies as loose freight or on ULDs. The ULDs are
unloaded and the ULD-category is established which determines further
actions:
� Bijbouwer ULD (BB): A ULD of which not all space is used. There

is room for other shipments with the same destination to be loaded
on this ULD.

� Mixed ULD (M-ULD): This ULD contains shipments with different
destinations. The shipments need to be separated for further trans-
portation. If some shipments are left on the ULD, its status is changed
to a BB.

� Through ULD (T-ULD): This ULD contains shipments with the same
destination. It is usually immediately ready for flight, but sometimes
there is space left, or it needs a check due to poor build quality. In
those cases, the status is changed to a BB and is checked during
buildup.

If a T-ULD is in order, it is moved to storage and needs no further work.
Loose freight is sorted on non-mixed skids, grouped by destination. M-
ULDs and BB-ULDs are moved to storage and are collected later on. Ex-
ceptions to the regular process of unloading freight at MTD or Export go
through the bypass, located on the far side of freight building 3. It is used
for special shipments, which have a short connection time like flowers, or
have a large volume like a car.

Storage

Once the ULDs from the MTD satisfy the checks, they are moved to the
Pallet Container Handling System (PCHS) by elevator or onto a dolly cart.
The PCHS is an automatic storage system located on the upper floor of the
Hub which can store up to 1200 ULDs. T-ULDs are brought down auto-
matically a couple of hours before the scheduled departure time. M-ULDs
come down earlier since they require additional handling. Loose freight
can be moved to regular shelves, cooled storage, shelves for dangerous
goods, and the buffer zones. A dolly cart is used if it contains very large
cargo or if the cargo needs cooled storage. T-ULDs with very short con-
nection times are sometimes also put on dolly carts and directed via the
bypass to shorten the throughput time.

Breakdown

Two processes follow inside the Hub: Breakdown & Buildup. In short,
these stand for separating shipments of different destinations from one
ULD and putting them back together on different ULDs for the same desti-
nations. At Breakdown, M-ULDs are automatically brought down from the
PCHS, depending on the shipment with the earliest departure time. When
the ULD is broken down completely, only skids and loose freight remain.
Loose freight is placed on skids to enable transportation to the shelves or
buffer zones. When a large volume shipment is left on the ULD, it is trans-
ported back to the PCHS and given the BB status. There can also be freight
on the ULD heading for European destinations, which is then transported
to freight building 2. So after Breakdown, cargo is stored in one of three
ways: in the shelves, at the buffers, (back) in the PCHS system or trans-
ported to freight building 2. Shipments can also come from the breakdown
in freight building 2, when they are on transfer from a European flight to
an intercontinental flight.

Buildup

The buildup area consists of bays. Each bay is made up of buffer zones,
buildup pits and transport trains. Figure 2 gives an overview of the layout.
The buffer zones are marked out areas on the floor where shipments are
placed, sorted by flight, that need to be loaded onto ULDs that are placed
in the pits. The train is used to move the ULD once it is checked and Ready
For Flight (RFF).

Shipments arrive at the buffer zone directly from breakdown or are taken
from storage locations. Buildup implies putting a ULD onto the buildup
pit, taking shipments from the buffer zones, placing them on the ULD, and
carefully securing them for further transport. When considering the type
of work for buildup there are 2 categories in which they can be divided:
� Leeg Fust (LF): An LF is an empty pallet on which all shipments are

newly placed.

� Bijbouwer (BB): As mentioned in Section 3.1, when there is space
for other shipments, a ULD is labled as BB. Two subcategories are
distinguished in terms of work.

– BB to build: When there is space left to place more shipments,
it is labeled as BB to build in order to utilize the full capacity
of the cargo hold and not waste cargo space in the aircraft.

– BB to check: When a full T-ULD does not satisfy RFC require-
ments, it is labeled as BB to perform a check. This type of work
does not imply loading shipments but rather checking nets, la-
bels and build quality.

When the ULD has reached its maximum volume, it is covered with a net
secured at the rim. It then gets pushed back onto a so-called train.

Transport

The trains move the ULD further down through the freight building into
the Transportation area. Here the ULD is prepared for transport over the
apron or stored back in the PCHS for later shipping.

3.3 Scheduling tasks for buildup
The KLM Cargo Hub is operating all day during three shifts. Rostering
personnel for each shift starts months before the actual buildup shift and is
done by a staff planner. On the day itself, the buildup tasks are scheduled
for the next shift. The terms task and flight are considered interchange-
able since a task encompasses the buildup of all ULDs for one flight. A
buildup task involves the assignment of either entire bays or individual
flights to teams. Each team has two employees and is then responsible
for the buildup of all ULDs on its assigned bay or flights. Table 1 shows
the characteristics of each shift. Notice the indication of a generally more
resource intensive morning shift in relation to the evening shift.

Table 1: Shifts in the KLM Cargo Hub

Shift Starting time Ending time Allocation by Resources

Night 22:00 06:00 Bay Low
Morning 06:00 14:00 Flight High
Evening 14:00 22:00 Flight Medium

The list of teams per shift contains permanent KLM employees and con-
tractors (or flex-employees). A shift leader takes the list of teams from the
staff planner and is then responsible for making a task allocation per team
based on the current work progress, using: multiple attendance sheets, the
operational database Chain to track Hub operations, a list of starflights set
by the Cargo Control Center (CCC), and the list of skills and preferences
per employee and team. Starflights are high yield or constrained flights
which are more important to build in time than other flights. The flight
schedules are made twice a year and so are the assignments of flights to
specific buffer zones. An assignment of a team to a flight therefore auto-
matically implies a work location in the Hub.

3.3.1 The inputs used for scheduling
Inputs for the scheduling problem can be divided into two groups: the
set of tasks and the set of teams. They are combined to make a work
schedule for the coming shift. Each set of inputs comes with its own list
of characteristics.

The task input characteristics

In estimating the amount of work, the Hub assumes a nominal build time
for MDPs, LDPs, and AKEs or 45, 40, and 25 minutes, respectively. This
is for LF ULDs, but a BB generally take less time. Additionaly, work
could have already started for some ULDs which reduces build time for
the coming shift.

Each task is executed at a specific buffer-pit location and teams move
from one buffer to the other. Tasks can start depending on the amount of
shipments available at the buffers. Each task has a RFF time, or deadline.
For KLM and Martinair cargo, this is 2.5 hours before flight departure and
for Delta Airlines it is 3 hours before departure. Finally, the starflights are
high yield or constrained flights and are more important to build in time
than other flights.

The team input characteristics

Employees are sometimes not fully employable and are given a smaller
workpackage. Teams also differ in skill. A Subject Matter Expert (SME)
at buildup estimated that a team of two Flex employees works 10% slower
than two regular KLM employees or a KLM/Flex combination. Further-
more, employees that are of age or in training are on the Golden Bay
(bay 7). They are often given the same tasks and do not work on other bays.
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Figure 2: Layout of bays, buffer zones and buildup pits in the KLM Cargo Hub

3.4 Preliminary conclusions
Based on the evaluation of the scheduling process, there is a list of con-
clusions and assumptions within the scope of this research that should be
considered in the modeling of the problem. The simplifications are as fol-
lows:

� A schedule is made for one shift at a time, either morning or evening.

� Schedules are made by allocating tasks by flight, not by ULD, to one
or more teams during the shift.

� Multiple teams can work on the same flight.

� Each task has a RFF threshold, or deadline before which buildup
should have finished.

� Deadlines for KLM and Martinair are set at 2.5 hours before departure
and 3 hours for Delta Airlines.

� ULD types are assumed to be one of: MDP, LDP, or AKE.

� The nominal buildup time for an MDP, LDP and AKE is 45, 40, and
25 minutes, respectively.

� Teams on the Golden Bay do not work on other bays.

� It is assumed that a team of Flex/Flex works 10% slower in building
up a pallet than a KLM/KLM or KLM/Flex team.

� Some employees can have a lower employability.

� Starflights are more important to finish in time and have priority over
regular flights.

� It takes some time for a team to move from one buffer to another.

� Each team is always given a break during their shift.

4 Exploratory Data Analysis
In order to validate a model, it needs to be computed with real data. This
section is dedicated to the collection and analysis of real operational input
data from the Cargo Hub. The goal is to answer the question ”What is
work?”, in other words, define the amount of work per shift per flight to
estimate schedule times. To achieve this, a couple of data related questions
need answering:

1. Out of all ULDs that went on a specific flight, which of those gener-
ated work for buildup?

2. How can the release time of a flight be set for a specific flight?

As mentioned in Section 3.3, the input data consists of a set of teams and
a set of flights. All the information regarding the teams alongside the
(star)flights and corresponding workstations can be extracted from plan-
ning documents used during a shift. Apart from that there needs to be in-
formation on the flight departure times, the type and number of ULDs and
their release times. By doing an exploratory data analysis, assumptions
about these parameters can be made. The information about the amount of

work for each flight should be more reliable and lead to better schedules
instead of being determined based on experienced guesses with incomplete
information.

After reviewing the data architecture in Section 4.1, Section 4.2 will
show the findings of this analysis after which answers to the questions are
given in Section 4.3.

4.1 Database architecture

The raw data is extracted from a data visualization tool called Spotfire.
This application has a.o. a live data connection to Teradata, an Air
France-KLM server located in Paris containing data from Chain, an
operational database that logs actions in the KLM Cargo Hub. The
information from Chain is uploaded once a day between 3 A.M. and 4
A.M. The collection of tables used in this project is called HubTrack, a
temporary database used for this project that consolidates multiple data
points in order to track the actions of each shipment in the Hub.

Hubtrack is a auto-refreshing database containing data from the past 8
weeks. The data subject to this analysis is compiled by extracting new
data every couple of weeks and combining it into a dataset of 13 weeks
from Monday June 22nd to Sunday September 20th.

Shipments are tracked by AWB number, i.e. a contract between car-
rier and shipper. Rows of data where an AWB was not associated with
either an outgoing ULD, an outgoing flight, or flight departure date, were
dropped. Additionally, when an outgoing ULD did not contain any times-
tamp information about its completion, its row was dropped. Furthermore,
incorrect data types where restored and flight number and flight date infor-
mation was enhanced. This created a clean dataset of 267,990 rows which
was used in this analysis.

4.2 Buildup Work Analysis

The analysis is done in 3 steps. First, the ULD types need to be identified to
assess the required time of work. Only ULDs that are passing the buildup
phase need to be included, which is determined next. Finally, the data is
examined to see what it can tell about the release times and buildup times.

Identifying ULD types

The identification of the 3 ULD types from Section 3.1 is done according
to a simple scheme shown in Table 2 based on two data points. For a subset
of name tags the height was ignored and assumed as an error in the data.

Table 2: Determination of ULD type

ULD Name Tag
ULD Height

< 165 cm ≥ 165 cm

AKE, AKH, RAP, RKN, DPE, DPL AKE -
AAP, PAJ, PAP, PLB, PLA LDP -
Other LDP MDP
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The Categorization of ULDs from the data

Dismissing the T-ULDs that need no checks and go straight to storage or
transport, there are two categories of ULDs that are encountered during the
work: LF and BB ULDs. For BB the distinction is made between building
and checking.

With the help of several data points, a decision tree was designed to filter
the different categories of ULDs. The scheme resulted in the distribution
of the different pallet categories and types shown in Table 3.

Table 3: Distribution of buildup ULDs on ICA flights

ULD Type

ULD Category

Total by type (%)T-ULD LF
BB

Build Check

Main Deck Pallet (MDP) 153 821 257 118 4%
Lower Deck Pallet (LDP) 11280 14669 2555 2579 86%
Container (AKE) 964 2641 21 93 10%

Total by category (%)
50% 50%

34% 50% 16% 100%

Table 3 shows that more than half of all ULDs require buildup activity.
34% of all ULDs on ICA flights are T-ULDs and do not require work. The
most common type of ULD is a LDP with 86%. Furthermore, most AKEs
are T-ULDs, which is verifiable by the fact that these are fully enclosed
and usually completely full from the outset.

Buildup ULDs summarized by flight and date

Depending on the aircraft type and amount of non-standard cargo, every
flight carries a different amount of ULDs. Figure 3 shows that Martinair
is represented in the lower range, which is because ULDs from Martinair
passing through the the KLM Cargo Hub are all for buildup and KLM
Cargo builds only part of Martinair’s ULDs. Still most of the ULDs that
move through the Hub are for KLM flights. The overall median amount of
ULDs per flight is 4.

Figure 3: Frequency of ULD amounts per ICA flight per carrier, n=3990

Some days of the week are less demanding than others. Figure 4 shows
the daily amount of ULDs that are transported on Intercontinental (ICA)
flights. Demand for air transport is clearly influenced by weekday as can
be seen by the periodic behavior of the graph. High demand occurs on Fri-
days and Saturdays, while low demand occurs on Mondays and Tuesdays.
Many typical customers of the air transport service produce goods during
the week and want these shipped over the weekend. Simultaneously, the
consignees expect new shipments after the weekend, when a new business
week starts. Therefore, the ULDs that are transported increases per day
over the course of the week towards the weekend.

Determine release time and deadline of ULDs

A handover is defined as placing a shipment in storage or at the buffer,
meaning it is available for buildup. The graph in fig. 5 shows the handover
progress at the time of the first buildup in bins of 5%. About 85% of all
ULDs have their first shipment placed when 96% -100% of shipments are
handed over. This suggests that teams start buildup of a ULD, when there
are enough shipments present to fill the entire ULD.

It needs to be noted however, that it often occurs that shipments are all
loaded onto ULDs first, and get scanned later, when more shipments have
already been put on the ULD. Even with this information, there is still too
little evidence suggesting many ULDs are built up when only a small part
of the shipments are available (looking at 0% - 50%).
Since the work packages are made per flight, not per ULD, it is necessary
to look at the buildup information of all shipments on a flight to see when

Figure 4: Buildup ULDs on ICA flights by date

Figure 5: ULD handover progress in percentages of total shipments on a
ULD.

a task can be started. Figure 6 shows the number of ULDs for which
all shipments have been handed over at the moment of the first buildup
for that flight, distributed by size of flight. A trend is visible that flights
with a larger work package starts buildup when more ULDs of shipments
have been handed over. At the same time, the spread is rather large. In
consultation with an SME it is decided that buildup can start when just
one ULD can be built, in order to not constrain the scheduling problem too
much.

Figure 6: ULDs with all shipments handed over at the time of first buildup
per flight as a function of the amount of buildup ULDs per flight.

Figure 7 shows the hours difference between the buildup of the 1st shipment
of a ULD and the flight departure time, quantized by 30 minutes. The
graph compares two airlines, KLM and Delta Airlines. It can be seen that
some ULDs from KLM flights and a little less for Delta Airlines, have their
first buildup more than 12 hours before departure, or even much earlier. A
large part of ULDs start buildup more than 8 hours before departure, which
confirms that ULDs are being built in earlier shifts.

On the other hand, the last buildup per ULD can be seen in Figure 8. The
data is significantly more skewed than in Figure 7. What needs to be noted
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is that for flights of KLM, the CCC set the RFF deadline 2 hours before
departure, while for flights of Delta Airlines, this is set at 3 hours before
departure. This difference is visible in the graph with some exceptions of
late completions of ULDs.

The smaller spread in Figure 8 is explained by the fact that ULDs are some-
times partly built up, only to be finished in a later shift closer to departure.

Figure 7: Frequency of times between first buildup and flight departure per
ULD

Figure 8: Frequency of times between last buildup and flight departure per
ULD

The three types of ULDs take a different time to buildup. This is shown in
fig. 9. What can be seen is that the median buildup times of LF ULDs are
37, 31, 12 for MDPs, LDPs, and AKEs, respectively. The median buildup
times of BB-build ULDs are 34, 25, and 11 for MDPs, LDPs, and AKEs,
respectively. The IQR of BB-build ULDs is on average 22% larger, which
indicates more variability among BB ULDs. The data is consistent with
the notion that an buildup times of an MDP > LDP > AKE for both LF
and BB-build.

The times indicated by the SME are above the median, but they do fall
within the IQR. The reason for this anomaly is that teams often scan the
first couple of shipments in one go instead of individually when they are
placed on the ULD. In consultation with the SME it is decided to leave
the nominal buildup times as is and assume an 20% reduction in case of
BB-build ULDs, rounded to whole numbers. Additionally, 15 minutes is
assumed for BB-check ULDs, regardless of ULD type. These are recog-
nized in the data when the ULD has been on a buildup pit, but there are no
shipments built up.

Figure 9: Timespan between begin and end of buildup for different cate-
gories and types of ULDs

Furthermore, ULDs could already have started their buildup in an earlier
shift. In this case, it is assumed in consultation with a SME that their re-
quired work should be halved, rounded to whole numbers. Table 4 summa-
rizes the buildup times for all categories and types of ULDs during buildup.

Table 4: Buildup times used for different types and categories of ULDs

LF 1
2 LF BBbuid

1
2 BBbuild BBcheck

MDP 45 25 35 18 15
LDP 40 20 30 15 15
AKE 25 15 20 10 15

4.3 Preliminary Conclusions
Based on this exploratory data analysis, there is a list of conclusions and
assumptions within the scope of this research that should be considered in
the modeling of the problem. The simplifications are as follows:

� The buildup times of different ULD cases are assumed as in Table 4.

� Release times of tasks are defined by the time when all shipments for
a single ULD are handed over.

5 The Mixed-Integer Linear Multi-Objective Schedul-
ing Problem

The scheduling problem consists of a set of n independent tasks N =
{i, j}n

i, j=1. Tasks are executed by a set of m teams K = {k}m
k=1. Through-

out the Hub there are different bays at which tasks are executed and it takes
a certain time ti j to transfer from one bay to the other. A time window [ri,
di] is associated with each task i ∈ (N,NB), where ri represent the release
time at which service of task i may begin and di represents its deadline.
Tasks have a nominal service which is subject to the skill attribute of a
team, resulting in the team-dependent service time of a task sk

i .
The measure of the scheduled margin between a task’s completion time

and its due time is defined as the lateness Li. When a task is scheduled to be
completed before its deadline, lateness is negative, also called scheduling
with earliness. In the opposite case when a task is scheduled to be com-
pleted after its deadline, lateness is positive, also called scheduling with
tardiness. A penalty PLi is assigned to the lateness of each task, starting
from 0 at the earliest possible completion time Cimin (that is, in case it is ex-
ecuted by either one of the fastest working teams and started immediately
at ri). The penalty increases linearly for every minute a task is scheduled
after Cimin . Tardiness of a task is discouraged by increasing the rate. The
relation between completion time, lateness and penalties is illustrated in
Figure 10a, along with three distinguished regions.

Completion of task i cannot occur before Cimin in region (1). Completion
in region (2) means completion is early and completion in region (3) means
it is tardy. Each team’s skill level affects its service time for a task. In ad-
dition, there are teams that will be working solely on the Golden Bay, i.e.
bay 7. When a team is assigned to the Golden Bay, it cannot be assigned
to flights on other bays. A team’s employability, is used here as a team’s
workload capacity, indicated by capk . The workload is not penalized in
absolute sense like the lateness. A workload penalty is incurred per abso-
lute percentage point difference between the workload of a team and the
average workload of all teams together. This is illustrated in Figure 10b.
The notation of the input sets, parameters and decision variables of this
model have been summarized in the list below.

6



T

PL

Cmini Ci di

PLi
pE

1

pT

1

(1) (2)
Earliness

(3)
Tardiness

(a) Example The lateness penalty PL as a function of lateness Li for
task i. Task completion Ci cannot occur earlier than Cmini and
tardiness demands a heavier penalty than earliness.

∣∣W −Wµ

∣∣

PW

PWk

Wµ

∣∣Wk−Wµ

∣∣
1

pW

(b) Example The workload penalty PW as a function of the
difference between workload Wk and the average workload Wµ

for team k. Workloads cannot exceed 1.0.

Figure 10: Progression of penalties as a function of lateness and workload

Indices and sets
i, j tasks i, j ∈ (0,N,NB,n+1)
0,n+1 the first and last task in the graph
k teams k ∈ K
N the set of tasks
K the set of teams
NG the set of tasks on the Golden Bay,

(NG = {i | i ∈ N, i at Golden Bay} and NG ⊆ N)
NB the set of tasks modeled as breaks, (NB = {ikb | k ∈ K}

and NB ⊆ N)
ikb break tasks for each team
KG the set of teams working only at the Golden Bay,

(KG ⊂ K)

Parameters
sk

i the service time of task i by team k
ti j the transfer time from task i to j
ri the release time of task i
di the due time of task i
p0 the penalty for completion at due time, i.e. Li = 0.
pE the penalty for every minute of reduced earliness of a

task
pT the penalty for every minute of increased tardiness of a

task
pW the penalty for every minute of increased workload of a

team
fi multiplier for the penalty of important tasks
Mk

i j a sufficiently large positive number
α the relative importance of lateness penalties

Decision Variables
Xk

i j assignment of team k to do task j after i
Bi the beginning time of task i
Ci the completion time of task i
Li the lateness of task i
PLi the penalty assigned for lateness of task i
PLmax the maximum assigned lateness penalty among all tasks

Wk the workload of team k
Wµ the average workload among all teams k ∈ K
PWi the penalty for the difference in workload of team k

from Wµ

PWmax the maximum assigned workload penalty over all teams

With these definitions of inputs, parameters and decision variables, the pro-
posed mixed-integer linear multi-objective scheduling problem (MILMSP)
can be formulated as follows by choosing the Xk

i j and Bi so as to:

Minimize α ·PLmax + (1−α) ·PWmax + β ·R (1)

where R =

(
1
|N|

N

∑
i

Bi + PLi +
1
|K|

K

∑
k

PWk

)
β � α

Subject to
N,NB,n+1

∑
j 6=i

K

∑
k

Xk
i j = 1 ∀ i ∈ (N,NB) (2)

N,NB,n+1

∑
j

Xk
0, j = 1 ∀ k ∈ K (3)

0,N,NB

∑
i

Xk
i,h =

N,NB ,n+1

∑
j 6=i

Xk
h, j ∀ h ∈ (N,NB), k ∈ K (4)

0,N,NB

∑
i

Xk
i,n+1 = 1 ∀ k ∈ K (5)

N,NB,n+1

∑
j 6=i

KG

∑
k

Xk
i j = 0 ∀ i /∈ NG (6)

N,n+1

∑
j

Xk
ikb , j

= 1 ∀ k ∈ K (7)

B j ≥ (Bi + sk
i + ti j) Xk

i j ∀ i, j ∈ (N,NB), k ∈ K (8)

Bi ≥ ri ∀ i ∈ N (9)

Bi ≤ di ∀ i ∈ NB (10)

Ci ≥ Bi +
N,NB,n+1

∑
j

K

∑
k

sk
i Xk

i j ∀ i ∈ (N,NB) (11)

PLi ≥ fi · pE · (Ci−Cmini )

PLi ≥ fi · pT · (Ci−di)+PL=0
∀ i ∈ (N,NB) (12)

PLmax ≥ max
i∈N,NB

{PLi} (13)

Wk =
1

capk

0,N

∑
i

N,n+1

∑
j

sk
i Xk

i j ∀ k ∈ K (14)

Wµ =
1
|K|

K

∑
k

Wk ∀ k ∈ K (15)

PWk = pW ·100 ·
∣∣Wk−Wµ

∣∣ ∀ k ∈ K (16)

PWmax ≥ max
k∈K
{PWk} (17)

Xk
i j ∈ {0,1} ∀i, j ∈ (0,N,NB,n+1), k ∈ K)

Bi ,Ci ∈ N ∀ i ∈ N, k ∈ K

Wk ,PLi ,PWk ,Wµ ,PLmax ,PWmax ∈ R+ ∀ i ∈ N, k ∈ K

The first term in the objective function (1) minimizes the maximum late-
ness penalty among all tasks as suggested by Ravindran and Ramaswami
(1977). The second term minimizes the difference between the maximum
and average workload among all teams, introduced by Duin and Volgenant
(1991). These minimax (or bottleneck) terms minimize the value of a
worst case (most costly) scenario. The other tasks which are not the worst
case can have any penalty as long as it is less than the maximum penalty.
This leads to suboptimal results and does not aid in the convergence of
the model. The third term therefore minimizes the aggregation of time-
and penalty variables as a residual factor and counters the inherent behav-
ior caused by the bottleneck terms. Because it only serves as a correction
and not as the primary objective, β will be given a value many orders of
magnitude smaller than the former terms, adjusted for the model size.

Constraint (2) is a degree constraint which ensures each task is visited
exactly once. Constraints (3) – (5) guarantee that each team k starts at node
(0) and ends at (n+ 1) while maintaining flow continuity. Constraint (6)
prohibits Golden Bay teams from leaving that bay. Constraint (7) makes
sure that each team is at least assigned a break, as was stated in Section 3.4.

Consistency of time variables is enforced by constraint (8). A new task
can be started after servicing and moving from the previous task. Each task
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is imposed a minimum starting time by constraint (9), but only the break
tasks are given an upper bound.

The completion time is defined by equality (11). The inequalities from
(12) represent the convex piece-wise linear penalty functions shown in Fig-
ure 10a. The maximum lateness penalty is defined by equality (13).

The workload per team is determined by equality (14) as a fraction of
a team’s workload capacity. The mean workload is expressed in equal-
ity (15) which governs the assigned workload penalty from equality (16)
as shown in Figure 10b. The maximum workload penalty is defined by
equality (17).

Linearization

Constraint (8) makes this formulation non-linear, so it is necessary to re-
formulate it. Linearization can be done by introducing a sufficiently large
constant Mk

i j (Hillier and Lieberman (2015)):

Bi + sk
i + ti j−Mk

i j(1−Xk
i j)≤ B j ∀ i, j ∈ N,k ∈ K (18)

The value of Mk
i j imposes large negative constants in the constraints that

are not part of the optimal solution. To be more computationally efficient
a minimum value of Mk

i j that is large enough is found by setting Cordeau
(2006):

Mk
i j = max {0, di− ri + sk

i + ti j} ∀ i, j ∈ N,k ∈ K (19)

Soft constraints

As can be seen, there is only an upper bound on the Bi-variables for the
breaks. It is uncertain whether all tasks can be completed before their
deadlines. This complication can be worked around by robust optimiza-
tion techniques described in Hillier and Lieberman (2015). Looking at
Figure 10a the model allows time window (deadline) violation in exchange
for a large penalty, imposed by constraint (12). This transforms the hard
constraint of an upper bound into a soft constraint.

On the contrary for the workload, there are no defined upper bounds.
Instead of penalizing a workload > 1, no penalty is given. A violation
of workload is not seen as a complication as serious as the violation of
task deadlines. Teams from the next shift or the same shift can take over
the excess work. The most important part is balancing the workloads, not
minimizing them.

Preprocessing

As a consequence of some constraints, some arcs can be excluded from
the model formulation. There are several grounds on which to do so. 1)
Teams can only visit their own break task and are thus not allowed to visit
the break tasks of other teams. The model will ensure the assignment of
a team to one break task according to constraints eq. (2) and (7). The
variables Xk′

bk , j
where k′ 6= k need therefore not be defined. In the same

way it is not necessary to define arcs to 0 and from n+ 1. The variables
Xk

i,0 and Xk
n+1, j need therefore not be defined either.

Another consideration could have been to eliminate variables where
Xk

i j = 0 ∀ k ∈ K when d j < ri. However, this has not been done because of
the soft upper bounds (di), which should allow the use of these arcs.

Valid inequalities

An additional constraint that does not eliminate feasible solutions is called
a valid inequality. The lower bounds of the time variables (Bi) can be
strengthened with knowledge about the order of the assigned tasks. This
has been suggested by Desrochers and Laporte (1991) and is adapted for
this problem in the following inequality:

B j ≥ ri +
N,NB

∑
i6= j

K

∑
k

max {0,ri + sk
i + ti j− r j} Xk

i j ∀ j ∈ N,k ∈ K (20)

6 The Tabu Search Method
A heuristic algorithm has been used during this project in light of the third
research question. It is an attempt to solve the scheduling model quicker,
speed up implementation of this model and to not be independent of com-
mercial solver software. The initiation of the algorithm is described in
Section 6.1 after which the heuristic algorithm defined in Section 6.1.

6.1 Algorithm for finding an Initial Feasible Solution
An initial solution is obtained through a greedy algorithm based on Jack-
son’s Theorem for static single-machine scheduling (Jackson (1955)),
which is an Earliest Deadline First (EDF) approach. The approach is
adapted to fit this study and allocates tasks in the order of ascending dead-
lines. At every step it looks for the most cost-effective allocation for the
unallocated task with the earliest deadline without backtracking, hence as-
signing each task to the earliest available team without correcting. Avail-
able means here that it considers the time of previous task completion and
the Golden Bay.

An example of 5 ordered tasks (A-B-C-D-E) with different ri (green)
and di (red) is depicted in Figure 11 and allocated by the following reason-
ing:

1. A→ t01: All teams are available at 0 minutes. Start task A straight
away with the first time in order.

2. B→ t02: t02 is earlier available than t01 and next in order.

3. C→ t02: t03 is next in order, but it stays on the Golden Bay and t02
is still earlier available than t01. C cannot be started straight away
because of rC .

4. D→ t03: t03 is a Golden Bay team and is available at the start of the
shift, so t03 can do task D.

5. E → t01: t01 is earlier available than t02 and task E can be started
right after A.

Figure 11: The initial task allocation according the EDF algorithm

This EDF algorithm only looks to allocate the task with the earliest dead-
line to a team, regardless of skill levels, transfer times, and workloads. The
next step in this heuristic approach initiates from the schedule created by
the EDF algorithm and aims to improve in all aspects of the model.

6.2 Tabu Search Algorithm
Because EDF provides a good initial solution when trying to minimize
delays, it is assumed that the initial solution is not far off from an optimal
solution.

A general outline of the tabu search algorithm

The basic concepts of a tabu search meta-heuristic has been covered in
(Hillier and Lieberman, 2015, p. 625) and a brief explanation is repeated
here. The application of tabu search includes a local search procedure
tailored to the problem at hand. Note that a tabu search in itself is a meta-
heuristic, which lays out the overall structure of the algorithm, but can be
written such that it applies to many different problems.

Starting from an initial trial solution, it acts like a local improvement
procedure trying to find the most improving solution at every iteration. Al-
though is not required that every new solution should be better than the
previous solution. After some iterations, it will logically arrive at a local
optimum by continuously improving on the former solution, but then the
key strategy kicks in. By allowing deteriorating solutions in the neigh-
borhood of the local optimum, it moves away from the local optimum and
arrives at a new point in the solution space where other better solutions can
be found. This way, it is manages to escape local optima and eventually
arrive at the global optimum.

The way it accepts deteriorating solutions is by means of a tabu list. This
list records forbidden moves, otherwise called tabu moves. A tabu move
is a move that cycles back to a local optimum and in order to escape this
point in the solution space, such moves are be forbidden for a number of
iterations. The only exception to a tabu move is when that move improves
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on the best solution known so far during the search. This is also known as
an aspiration condition.

A feature that can be incorporated is the concept of diversification. After
some iterations, the tabu moves are removed from the tabu list and the
algorithm can cycle back and forth between previously visited solutions.
In order to discourage such cycling behavior, a method of diversification
can force the search to unexplored areas of the solution space.

A local tabu search procedure for the scheduling problem

The algorithm is an adaptation of the tabu search method introduced by
Cordeau et al. (2001). It is a local search heuristic that addresses Vehicle
Routing Problems with Time Windows (VRPTW), which is very similar in
its formulation to this scheduling problem. It will later be shown that this
algorithm in fact does produce good results.

The method uses attributes to distinguish different solutions s. With
each solution s∈ S is associated an attribute set B(s)={(i,k): task i is visited
by team k}. An operator removes an attribute (i,k) from B(s) and replaces
it with an attribute (i,k′), where k != k′. The neighborhood N(s) of solution
s is defined as all possible attributes (i,k′) for B(s). This comes down to
task i being removed from the schedule of k and inserted into the schedule
of k′. At each iteration, the insertion is performed so as to minimize the
value of the objective.

The objective is f (s) = c(s)+ω1t(s), where c(s) is the original objec-
tive function of the MILMSP and t(s) is the time window variation. A
nonzero time window variation t(s) implies an assignment of a task out-
side its time window (Bi ≤ ri for any task or Bi ≥ di for break tasks). There
are no workload variations included because there is no upper bound on the
workload for teams.

Figure 12 shows the workings of the removal-insertion operator. The
colors represent the teams as shown in the figure. In the example, t01 was
assigned KLA-KLB, t02 was assigned KLC-KLD-KLE and t03 was assigned
KLF, representing the current solution s (Start and End are omitted). The
operator then removed (KLC, t02) from B(s) and inserted it in B(s′), chang-
ing the assigned routes for t01 and t02, keeping t03 unchanged.

Figure 12: Example The removal-insertion operator generates a neighbor-
hood solution. Attribute (KLD, t02) is removed and attribute
(KLD, t01) is inserted.

Once the operator has generated a neighborhood solution s′ with a minimal
value for f (s), the removed attribute (i,k) obtains a tabu status. The tabu
status is defined as the reinsertion of attribute (i,k) for the next θ iterations.

In order to have a diversified search, any solution s′ ∈ N(s) such that
f (s′)≥ f (s) is penalized by a factor proportional to the addition frequency
of its attributes, and a scaling factor. Let ρik be the number of times at-
tribute (i,k) has been added to the solution during the procedure. Then, a
penalty p(s′) = λc(s′)

√
nm∑(i,k)∈B(s′) ρik is added to every solution f (s′).

The product c(s′)
√

nm serves as a correction factor proportional to the so-
lution cost and the number of possible attributes in the entire problem. Ad-
ditionally, the factor λ controls the intensity of diversification. The penal-
ties drive the search process towards less explored regions of the search
space. It is assumed that p(s′) = 0 if f (s′)< f (s).

In short, the algorithm can be summarized as follows with the governing
parameters listed in Table 5:

1. Set ω1=1. If the initial solution sinit is feasible, set s∗=s and
c(s∗)=c(s); otherwise, set c(s∗)=∞.

2. For iteration = 1,...,η :

• Choose a solution s′ ∈ N(s) which minimizes f (s′)+ p(s′) that
is not tabu or that satisfies its aspiration criteria.

• If s′ is feasible and c(s′)≤ c(s∗), set s∗=s′ and c(s∗)=c(s′).
• Compute t(s) and update ω1 accordingly with δ .
• Set s=s′.

This heuristic has been used in experiments by REF for a PVRP and MD-
PVRP, where by means of a sensitivity analysis it was determined that the
best parameter settings were: δ = 0.5, λ = 0.015, θ = [7.5 · log10 n] . [x]
stands for the rounding of x to the nearest integer. These parameter settings
were found again in Cordeau et al. (2001) and used in their experiments.
Hence, in this study, these parameters are used as well. The number of iter-
ations have been set at η = 4 ·θ in the verification process, as an estimated
middle ground between number of tabu moves and iterations to reach the
optimal solution.

Table 5: Tabu Search parameters

Parameter Description

η the number of iterations
θ the number of iterations a move is tabu, i.e. the length of

the tabu list
δ the intensity of the change in weights a and b after each

iteration
λ the intensity of the diversification

7 Validation
The skill level of each team is based on the combination of regular KLM
employees and contractors, or in other words, flex employees. There are
3 different skill combinations: KLM/KLM, KLM/Flex, Flex/Flex. In
consultation with SME’s at KLM, their skill multipliers have been set at:
1.0, 1.0, 0.9, respectively. In addition, there are a couple of teams that will
be working on the Golden Bay, i.e. workstation 7.

7.1 Sensitivity Analysis

Setting model parameters
Before looking into the weighing of α , other parameters are set first. The
model has 6 parameters that directly affect the objective function value.
These are α,β , pE , pT , pW , and fi. As a starting point, pE := 1, meaning
the penalty of a task increases by one, for every minute a task is finished
late. To discourage tardiness of tasks, pT := 100 and fi := 2 to double the
importance of starflights. To penalize workloads, pW := 5. It has been rea-
soned that 1pp difference in workload on a 480 minute shift is 4.8 minutes
of extra work/task delay, hence the value of 5. These parameters have been
set in consultation with SME’s at KLM Cargo and are used from the outset
of this model validation.

Non-dimensionalizing the model objective
In a multi-objective optimization problem, single objective terms can best
be compared when normalized to their ideal value. The ideal value of a
term indicates the optimal value when only that term would be of interest.
For a multi-objective minimization problem like the one formulated below:

Minimize Z (~x) = ∑i ai ·Fi (~x) ∀~x ∈ S

where ai stands for the weight of the ith−term and S is the feasible solu-
tion space. Optimizing solely for F1 by setting all ai = 0 except for a1,
gives F1∗. For each model instance, the objective function can be non-
dimensionalized by expressing each term as a fraction of its ideal value:

α · PLmax

PLmax∗
+ (1−α) · PWmax

PWmax∗
+ β · R

R∗
(21)

As mentioned, the third term is a residual term and is only included to
ensure proper convergence and output from the model. The purpose of β

is to have a sufficiently small effect in order to not let R be the governing
factor in the objective function. It is still desired to have β � α , so the
following approach was used, after identifying the maximum value for R
for a single shift:

max{R}= max
i
{Bi +PLi}+max

k
{PWk}

= 480+480 ·100 ·2+500

= 96980

(22)

Still this is a very conservative estimate since R is a sum of average values
instead of maximum values. Formally, the first two terms in (21) are
always ≥ 1. R∗ is set equal to max{R} to never let the third term exceed
1.0. The upper bound of R is strongly affected by PLmax and therefore β

is set to 1e−3 to ensure a marginal gain 3 orders of magnitude smaller
than the other two terms. From here on, the first two fractions in (21) are
referred to as F1 and F2, respectively.
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It is up to the stakeholder to make a definite setting of weight α . However,
some insight can be provided here. Typically in multi-objective optimiza-
tion, there does not exist one feasible solution that minimizes all objectives
simultaneously. The outcome of individual model objectives changes by
its allotted weight, which can be shown on a Pareto plot. Solutions that
cannot be improved in any of the objectives without deteriorating at least
one other objective are called Pareto optimal solutions and are indicated
by a Pareto front. The Pareto front is mathematically defined as the set of
feasible solutions ~x1 ∈ S that dominates other solutions ~x2 ∈ S if both the
following conditions are true:

1. Fi (~x1)≤ Fi (~x2) , ∀i ∈ {1,2, ..., p}

2. ∃i ∈ {1,2, ..., p} : Fi (~x1)< Fi (~x2) .

An example of a Pareto plot is given in Figure 13 for one model instance.
The scheduling model actually has three model objectives which would
create a 3-dimensional Pareto plane, but since the residual term is not of
interest for the weight assignment, the two-dimensional projection of the
Pareto plot is shown in Figure 13.

Figure 13: Pareto plot for scheduling of the evening shift of September
4th.

As shown, the two solutions on the outside are dominated by other solu-
tions and are therefore not on the Pareto front. The point [1.0113;1.0] is
actually the same for multiple solutions. Standing out from the Pareto plot
is the large difference in range of values for F1 and F2. The small range
of the workload penalty is attributed to it being a relative measure instead
of an absolute measure, which is the case for the scheduling penalty. Ad-
ditionally, the scheduling penalty increases much quicker once a task is
delayed after its deadline. With the large value of pT , PLmax can quickly in-
crease to many times its optimal value if α is set to a low value. The small
value of pW and the fact that PWmax is measured relative to other penalties,
explains in part why the change in F2 is so subtle.

The changes should be interpreted relative to the range between ideal
and worst values. Doing so, it can be seen that F2 can be decreased by
86% relative to its range while only increasing the scheduling penalty by
0.13% relative to its range. So for a large collection of weights, F1 can stay
very close to 1.0. Because F1 stays rather flat when approaching the ideal
value of F2 (two points at the top left) it suggests that the workload can be
improved a lot starting from the worst case (bottom right). The reason can
be explained as follows. In terms of the scheduling penalty, the optimal
schedule assigns the tasks to be completed as early as possible. To do this,
tasks cannot be given to one team, but need to be distributed as much as
possible to start as early as possible. The more the tasks are distributed, the
more equal the workload will be among teams. This explains why there
are good solutions for both F1 and F2.

The Pareto plot also indicates that by decreasing the importance of
workloads with 0.01%, changing (1−α) from 1.0 to 0.9999, F1 moves
by 55% from its worst value while F2 remains unchanged. Further
decreasing the importance of workloads by 0.1%, changing (1−α) from
1.0 to 0.9990, achieves a value of F1 of 96% lower than its worst value
and an increase in F2 by only 4.5% of its ideal value.

A method of selecting one of the Pareto Optimal solutions is formulated
by Laplace’s choice criterion in equation (23), described by Pereira et al.

(2015). Laplace’s criterion treats both objectives equally and in a mini-
mization problem it looks for the Pareto Optimal solution with the lowest
average cost. The fact that its an unbiased criterion is why its being used
here. The results of the application on a subset of instances is given in
Table 6.

Laplace’s criterion: min{E (F1 ,F2) | α = 0 , ... ,1.0} (23)

Using the Laplace criterion results in different weights for different model
instances. When taking both the median and mode of the α-column,
it suggests a value of 0.1 for α . This value corresponds to the point
(1.002;1.259) in Figure 13 and shows indeed a good consensus between
both objectives.

Table 6: The Laplace criterion for multiple model instances

Model Instance α (1−α) F1 F2 Criterion

Sept 1st, evening 0.5 0.5 1.155 2.635 1.895
Sept 2nd, evening 0.1 0.9 1.000 1.03 1.014
Sept 3rd, evening 0.1 0.9 1.000 1.007 1.003
Sept 4th, evening 0.2 0.8 1.000 1.011 1.005
Sept 5th, evening 0.1 0.9 1.000 1.011 1.006
Sept 6th, evening 0.1 0.9 1.000 1.003 1.001
Sept 7th, evening 0.1 0.9 1.000 1.003 1.001

Computational Results

For the remainder of this section, the model results have been computed
from a python script running on an Intel(R) Core(TM) i5-5200U CPU @
2.20 Ghz with 4 GB of memory. The results for 28 different instances are
shown in Table 8. It shows what kind of results can be expected and that
the model results are in line with the weekdays, shifts and task- and team
sizes. It can be seen that in general, there are more tasks in the evening shift
than in the morning shift and the most demanding weekdays are Friday and
Saturday. The delays are separated as early and tardy tasks. The early tasks
are not completed at Cmin but are done before the deadline. The tardy tasks
are completed after the deadlines. As is reflected in the values of pE and
pT , tardy tasks are penalized much more than early tasks. The average and
standard deviation therefore only refers to the tardy tasks and shows the
severeness of the delays exceeding the deadline.

The shifts with the highest averages of delays are also the shifts with
a high average workload. This shows that the busier the shift, the more
difficult it is to schedule all tasks in time. Since scheduling is done on
flight level and preemption is not allowed, complete tasks (< 6 ULDs)
cannot be separated as single ULDs in this formulation and poor results are
inevitable. Furthermore, the delays are heavily dependent on the estimated
release times ri, team-dependent service times sk

i , and task composition
(ULD types and categories).

The occurrences of large standard deviations for workloads are, apart
from the the Saturday morning shift on the 12th, the result of not being
able to assign tasks to Golden Bay teams. This means that other teams
take most of the work while the Golden Bay are only assigned to one or
two tasks, greatly impacting the standard deviation. It should be noted that
the shifts with few tasks on the Golden Bay are the evening shifts. When
looking at the small standard deviations for workloads, it shows that there
are plenty of tasks to be assigned to Golden Bay teams and there is much
room for shifting around tasks to obtain a fair workload distribution.

Then the tabu search algorithm has been run on the model instance of the
evening shift of September 4th. Figure 14 shows the convergence of the
model towards the optimal solution. The generated schedules as initial
solution and that of the final solution are shown in Figure 15.
What can be noted about Figure 14 is that the initial solution is not imme-
diately feasible as can be verified quickly from the allocation of the break
task (black) for team t06 in Figure 15a. The break task should be started
before 20.30 o’clock, or 390 minutes into the shift. The time window vari-
ation is therefore nonzero for the initial solution and hence it is said to not
be feasible. The first solution with no time window variation would be set
as the first optimal solution since it would be the first feasible solution.
Note that the difference between f (s) and c(s) is the time window varia-
tion of the solution. After the first iteration, a feasible solution is found and
saved as the optimal solution c(s∗). Note that better solutions seem to be
found around iterations 30-40, but these are not feasible since f (s)> c(s),
hence they are not accepted as new optimal solutions. An improved op-
timal solution is only found at the 40th iteration, which ultimately is the
overall optimal solution.
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(a) Overall

(b) Zoomed-in

Figure 14: Tabu search performance for scheduling the evening shift of
September 4th. δ = 0.5, λ = 0.015, θ = 11, η = 44

The peaks in the graph are getting higher as the algorithm is trying to
diversify its search by accepting other solutions after being penalized for
repeating and non-improving moves. As a result, the model eventually
moves from the worst solution (excluding f (sinit)) to the overall optimal
solution in a single iteration. This is the effect of δ and λ which penalize
the value of f (s) for repeating the same insertion moves. This example
model instance shows how the tabu search goes from the initial solution to
finding an optimal solution for a real shift. The effectiveness of the EDF is
clear since the optimal solution found on the first iteration is not improved
until the 40th iteration.

To conclude, Table 7 shows the average computation times for the model
instances from Table 8. Again it shows that due to a larger model size for
morning shifts, it takes longer for the tabu search to compute each iteration.
On average it takes almost half an hour to run all iterations of the morning
shift and less than two minutes to run all iterations of the evening shift.
When using the branch-and-bound method of the licensed solver, it takes
much less time. However, this does not include the effectiveness of the
EDF-algorithm of the tabu search which already provides good solutions
on early iterations.

Table 7: Computation time of both solution methods for both sets of model
instances

Solution method Instance set Avg. time per iteration Avg. total time

Tabu Search Morning shifts 29.31 sec 25 min 41 sec
Evening shifts 2.86 sec 1 min 58 sec

Branch & Bound Morning shifts - 5 min 3 sec
Evening shifts - 19 sec

8 Conclusion
This paper has presented a model to improve on the workforce scheduling
process of the buildup shift. This section will conclude this paper with an-
swers to the research questions and recommendations for KLM and future
research.

The risk of flight delays is quantified as a linear relation between com-
pletion time and severeness of delay. A piece-wise linear penalty function

(a) Initial Solution

(b) Final Solution

Figure 15: Schedules of the initial and final solution of the model when
computed with the tabu search algorithm

increments the penalty for every minute a task is completed later than its
minimum completion time. The penalty increases substantially in case
task completion is scheduled after the task deadline, hence a delay. The
method of allowing a penalty instead of a hard schedule deadline is called
using soft constraints and allows the model to always be solvable.

The workload distribution is quantified by a linear relation between dif-
ference from the mean and severeness of uneven workload distribution. A
linear penalty function increments the penalty per team for every percent-
age point of workload difference from the mean. The slope is not increased
for workloads over 100% because it is not the absolute workload that is of
interest, but the difference in workload. There is no upper bound on the
workload to allow the model to always be solvable.

For both performance metrics the model weighs the maximum penalty
cases or bottlenecks. This means that the model will minimize the worst
occurring cases among delays and workload differences.

The trade-off between both objectives is done by weight α . By looking
at the 2-dimensional projection of the Pareto front, it is shown with the
Laplace criterion that setting it to 0.1 gives a good average value to
consider both objectives. It became clear that the scheduling penalty is
much more sensitive to the weight than the workload penalty and that
there is a strong relation between both objectives.

The tabu search proved to be an effective method in optimizing model
instances when not working with licensed software. The EDF-method for
finding initial solutions proved to be a good starting point from which
the algorithm could progress. Although the branch-and-bound method of
the commercial solver shows a faster convergence to an optimal solution,
the tabu search showed that it can find an incumbent solution quickly
and that incumbent solution could already be close to the overall optimal
solution. Comparing the computation times of both solution methods with
the current time required of 0.5 - 1.5 hours, it shows that this model is a
faster way to schedule.

Not only does it take less time, from the moment it starts computing there
is no input required from a user, which also frees up time. Once the model
has provided a schedule, the shift leaders can start examining the opti-
mal schedule in terms of scheduling risk and workload penalties and also
the bottlenecks. The schedule can then be used as a starting point for the
allocation of the next shift. Over time the model can be tuned and the

11



Table 8: Validation results

Model Instance Delays Workloads
Day Weekday Shift Tasks (gb) Teams (gb) Early Tardy Avg. St. Dev Avg. St. Dev

01 Tue Morning 31 (5) 14 (1) 12 2 48 43.4 50% 0.9
02 Tue Evening 13 (2) 7 (1) 0 0 0 0 45% 9.7
02 Wed Morning 35 (7) 16 (2) 8 0 0 0 53% 4.0
02 Wed Evening 13 (0) 7 (1) 6 1 1 0 47% 19.3
03 Thu Morning 33 (9) 14 (1) 6 0 0 0 50% 5.4
03 Thu Evening 10 (0) 7 (1) 0 0 0 0 39% 16.8
04 Fri Morning 36 (8) 17 (1) 7 5 66 72.2 47% 9.3
04 Fri Evening 19 (1) 7 (1) 2 11 84 85.2 71% 37.2
05 Sat Morning 41 (7) 15 (2) 5 13 92 49.5 67% 8.2
05 Sat Evening 16 (0) 7 (1) 4 7 27 19.0 57% 36.3
06 Sun Morning 32 (6) 14 (1) 7 0 0 0 55% 2.8
06 Sun Evening 14 (0) 6 (1) 0 0 0 0 51% 23.5
07 Mon Morning 32 (6) 15 (1) 10 0 0 0 48% 4.5
07 Mon Evening 16 (0) 5 (1) 3 9 97 55.4 76% 38.0
08 Tue Morning 32 (7) 15 (1) 4 0 0 0 48% 1.6
08 Tue Evening 12 (1) 8 (1) 3 2 53 37.3 46% 21.0
09 Wed Morning 44 (11) 17 (1) 9 9 198 129.5 65% 3.2
09 Wed Evening 17 (0) 8 (2) 1 11 90 59.6 61% 47.5
10 Thu Morning 33 (10) 18 (1) 5 0 0 0 43% 6.0
10 Thu Evening 15 (0) 7 (1) 5 5 71 45.8 57% 37.0
11 Fri Morning 41 (7) 17 (1) 6 13 134 86.6 59% 4.1
11 Fri Evening 21 (1) 7 (1) 4 10 87 50.2 83% 20.3
12 Sat Morning 55 (8) 17 (2) 7 27 241 128.4 80% 22.5
12 Sat Evening 23 (0) 7 (1) 7 11 174 93.5 85% 54.6
13 Sun Morning 44 (11) 17 (2) 10 13 80 77.9 66% 8.4
13 Sun Evening 13 (0) 7 (1) 4 4 20 30.2 50% 32.2
14 Mon Morning 45 (11) 16 (2) 16 14 127 85.3 58% 9.7
14 Mon Evening 14 (0) 7 (1) 2 7 23 26.7 51% 32.9

recommended setting of weights can be altered. Tasks that are scheduled
to be tardy shall be known in advance. Especially the indication of tardy
starflights can spark additional action from early on. Some tasks are in-
evitably tardy due to their short time window. As a result, since deadlines
are determine by flight departure, release times can be investigated to allow
more time to build each task. This shows how the model can help uncover
bottleneck situations.

Although the model also allows to distribute workloads evenly among
teams, excessive workloads will occur on busy shifts. Teams that are likely
to have more work than their employability allows can be identified. They
can be aided by breaking down tasks further than has been done here (on
ULD level) and distribute parts of their work to other teams when possible.

What should be remembered is that this model represents a simplified
reality. Numerous assumptions have been made among which are levels
of skill, build times, release times and transfer times, to name but a few.
Moreover, even the assumption of a linear relation between the completion
time and its effect on the severeness of delays and the linearly increasing
effect on dissimilar workloads is a simplified estimation.

On the other hand, it must be stated that a scheduling model as it has been
implemented now is not fully attainable. During validation the model has
been used in back tests, assuming a real-time data connectivity with the
operational database Chain at the time of scheduling. In addition, infor-
mation has been used that could only be found from data points that would
not yet be available at the time of scheduling. The distinction between a
LF, BB Build, BB Check and T-ULD is made by looking at what has been
logged up until flight departure. Since the categorization is needed for the
work estimation, it is essential that this information is visible early before
the shift or the work starts. A separate model using a learning algorithm
on the data available at the moment of scheduling would be an interesting
addition to this research. It has been considered during this project, but
that would have extended the timeline considerably.

There are many different kinds of pallets and KLM makes a distinction
between 3 types (MDP, LDP, AKE) to assume the required processing
time of ULDs. No further distinction has been made in the types of ULDs,
but the model took advantage of the available data and labeled ULDs
that were already partly processed. If shift leaders want to take this into
account, they need to look a few layers deeper in to Chain in order to find
such information, if there is even time to do it, such that the ULDs in
progress can be taken into account.

For future work it is recommended to use chance constraints to incorpo-
rate the stochastic nature of many input parameters in this model. These
can be incorporated for release times and build up times. The restriction
of Golden Bay teams not leaving that bay could be lifted and new results
could be computed to more closely represent an actual shift. Initially, the
teams do not move from the Golden Bay, but once help is needed on an-

other bay to prevent delays, Golden Bay teams would help out as well.
The sensitivity of the model has not been tested for changes in service
time, team skills, and employability. It would add to the overall applica-
bility and understanding of the sensitivity of this model to further research
these aspects. With a more detailed model, incorporating the aforemen-
tioned subjects, the model could be used to make recommendations about
the precise operations occurring during buildup. The model could be used
in the assessment of the benefits of hiring more employees or the consid-
eration of providing additional training to employees to raise their skill
level.

The parameters of the tabu search have been copied from the extensive
research done by Cordeau et al. (2001). It is however, an adaptation and in
this project, the magnitudes of transportation times and processing times
are the opposite of a traditional vehicle routing problem. Therefore, these
parameters could be revised and another rule for stopping the tabu search
could be tested. Right now it stops after η = 4 ·θ iterations as was deter-
mined during verification on smaller instances, but a more robust method
can be developed.
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1
Introduction

1.1. Background

This research project will be concerned with the buildup phase in freight building 3 of KLM Cargo. Specif-
ically, it is the scheduling of work for the buildup phase that is subject of this research. During the buildup
phase, teams are assigned to flights for which they need to build up ULDs that need to be on outgoing inter-
continental flights. Flights are always prepared at a predetermined workstation. The teams are tasked with
completing the buildup phase of all ULDs in time before flight departure.

At the moment, it is done manually by team coordinators and shift leaders while simultaneously looking
at 4 different documents and an operational handling system dating back decades ago. A new schedule for
the buildup phase needs to be made before the start of each of the three daily shifts (6 a.m. to 14 p.m., 14 p.m.
to 10 p.m., and 10 p.m. to 6 a.m.). Due to inefficient planning, shipments miss their deadline and are not
built up in time. Flights are sometimes even forgotten and up until the final 15 minutes before the shift it is
not certain if everybody shows up. This makes last minute planning even more difficult and it often becomes
work during the shift itself. On average it takes 0.5 to 1.5 hrs per shift to allocate and adjust the teams. The
shift leaders have reached out to the department of Performance Management to look for a data driven solu-
tion. A model needs to be developed that determines an optimized schedule considering the distribution of
workload and the flight departure times.

The project will be carried out as a Master’s thesis assignment of a student of the TU Delft department of
Air Transport Operations. This project will be supported by Paul Roling and Alessandro Bombelli from the
deparment of Air Transport Operations at TU Delft and Bas Schmidt from the Performance Management
department at KLM Cargo.

1.2. Research Objective and Context

The research objective is to build a model for the KLM Cargo Hub to schedule workforce at
buildup aiming at reducing the ULDs missing their booked outgoing flights by writing a linear
program that determines the optimal allocation of staff to workstations for the upcoming shift.

The project is done at the department of Performance Management, where there is access to operational per-
formance data and access to the work floor of the hub itself. Additionally, the project will focus solely on the
algorithm and not on the implementation of it in the form of a computer application. The algorithm will not
only contribute to the automation of the scheduling process itself. An automated system could potentially
save hours of work spent before and during each shift and deliver a more consistent schedule where work-
loads are balanced and schedule risk is mitigated. To conclude, it can be stated that the research objective is
indeed useful, realistic, feasible, clear and informative.

From an academic standpoint considering earlier research, there is no scheduling model that faithfully
describes and incorporates all the constraints and features of this problem of interest, i.e. assigning teams
to ULD workstations in the warehouse of an air cargo supply chain Hub. This research fills up that gap by
developing a scheduling model.
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1.3. Research Questions
The project context explored at KLM, led to two KPIs for the scheduling model: the number of missed ULDs
and the equality of workload among teams. It leads to the following main research question and sub-questions:

To what degree can a workforce scheduling model for buildup improve scheduling
performance?

1. How can the workforce scheduling model be formulated?

• What team attributes and operational characteristics can be de-fined?

• What are the costs associated with delays and how can they be modelled?

• To what extent does additional workload impact the schedule and how can it be modelled?

2. How does the model perform on the defined KPIs for an upcoming shift?

• How can risk of delay per flight be quantified?

• How can workload distribution among teams be quantified?

• What is the trade-off between delays and workloads in schedule performance?

3. How can the schedule be optimized fast enough such that it can be used on a normal day of operation?

• What kind of simplifications must be applied?

• What is the consequence of these simplifications?

• What is an acceptable time span in which a schedule can be created?

4. How effective is the scheduling model compared to the current manual approach?

• What are the advantages and disadvantages of the scheduling model?

• What is the difference in schedule risk?

• What is the difference in the workload distribution among teams?

1.4. Report Structure
Other combinatorial optimization problems will be reviewed to assess the applicability in this project con-
text. Starting with assignment problems and thereafter scheduling problems. Then methods of optimization
will be discussed. Heuristic methods can be created to not be reliant on commercial software and some inter-
esting examples will be reviewed. Finally, a light will be shed on the stochastic nature of practical problems.
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Literature Study: Assignment Problems

Assignment problems are about finding optimal pairings of agents and tasks depending on a suitability func-
tion. [20] developed the Hungarian algorithm as the first practical solution method to solve the classic as-
signment problem (AP). Originally, the AP deals with one-to-one assignments and involves assigning jobs
to workers or machines. Allowing more assignments to one agent is known as the generalized assignment
problem (GAP). [24] provides an overview of the many variations of the assignment problem and a few will
be discussed here, including additional literature.

Even though this project context would immediately classify as a GAP since there are more flights or ULDs
than there are teams, there have been interesting contributions made to APs. [4] formulates an AP with a
binary qualification criterion per agent-task combination. An extension of this can be found in [3] where a
binary indicator specifies which of 3 different skills belong to an agent or are required for a certain task.

[25] presents the bottleneck AP. This particular problem is not aimed at minimizing the total costs, but
minimizing the most costly assignment. [12] studied two variations of the bottleneck AP.One is minimizing
the difference between the least and most costly assignment. The other minimizes the difference between the
maximum and average assignment cost. An example is given of minimizing the idle time of simultaneously
operating machines. These bottleneck problems could be suitable for balancing the workloads. The afore-
mentioned variations have also been applied to the GAP by [6], but the agent’s capacity limits are not taken
into account, which is not applicable at KLM. The model was written as a bipartite graph. [22] goes further
and combines the aforementioned model characteristics and defines hard constraints in terms of upper and
lower bounds on workload, utilization and productivity while being aware of fairness among the employees.
Their ILP-based allocation is compared with the manually assigned transactions by counting violations of
the baseline, which is the expected completion time of each transaction. A similar approach could be used
by taking the flight deadlines or expected ULD completion times as baselines.

2.1. Assignment problem objectives
The objective can consist of multiple criteria. [13] studied a bi-criteria bottleneck AP. Next to the assignment
cost, their model assumes an additional supervisory cost as a bottleneck objective, all expressed in one func-
tion. [26] consider the problem of assigning referees to football matches with multiple independent selection
criteria. By using (in)compatibility and priority indices their method is able to include indifference, prefer-
ence and veto thresholds. Equivalently so at the KLM, there are such qualitative factors that need to be taken
into ac- count. [27] selects appropriate individuals for tasks based on a multi-criteria assessment of individ-
ual suitability, social relationships and existing tasks. Next to workload balancing, it focuses on qualitative
impacts including specialization of labor and job enrichment. The concept of triangular fuzzy numbers is
introduced which represents imprecise linguistic terms (e.g. "good" and "bad") as real numbers.

[29] shows a sequential approach in multi-objective problems based on the priority of the objective crite-
ria. Each function that is optimized generates a set of optimal solutions which go through to the optimization
of the next function, and so on, until one optimal solution remains.
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2.2. Machine scheduling
[16] gives an overview and introduces a classification of different machine scheduling problems in a work-
shop. Unrelated and uniform parallel machines would not be suitable for this project but uniform parallel
machine scheduling would. It assumes a job as a single operation and the processing time depends on the
speed factor of each machine. Job shop, ow shop and open shop are problems in which a job consists of
multiple operations and each machine is dedicated to one or more operations. This is not relevant for this
project. Job preemption and precedence are reviewed as well.

[23] discuss common performance measures in scheduling problems, like total completion time and
makespan. [19] looks at resource dependent processing times, which is an application of the critical path
method where allocating more resources, or another form of extra cost, reduces processing time. The timing
or sequencing of tasks in machine scheduling problems is often done by allocating a machine with a task to
a time slot. The advantage is that it is very easy and intuitive to obtain a schedule from the solution. The
drawback however, is that the schedule works with minimal steps in time equal to the length of a time slot.
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scheduling problems

[5] identify vehicle routing in distribution systems as applications of the GAP. Vehicle routing problems (VRP)
are not modelled as bipartite graphs as done by [Chang and Ho, 1998] where edges represent an agent-task
assignment, but graphs in which edges represent a relation between the nodes/tasks (e.g. distance). The VRP
is a generalisation of the traveling salesman problem (TSP), which does not typically include capacity limits,
but has a similar formulation. [21] provides an overview of VRPs with different side constraints, among which
are time windows on nodes and precedence constraints, which arise in this project context as well. The ship-
ments belonging to a flight or to a ULD can only be build up when they have passed the breakdown phase
and each flight has a deadline which would reflect the upper bound of the time window. [11] introduce, like
[16] did for machine scheduling, a classification scheme for vehicle routing and machine scheduling prob-
lems together with examples. Variations discussed previously for the AP/GAP are also possible for the VRP,
because it is an extension of the former. Bottleneck constraints and vehicle characteristics (e.g. team skills)
are included in the problem described by [2], which shows that the VRP can include such characteristics too.

A comparison is made by [1] between a vehicle routing and job shop scheduling as a representation of a real
world scheduling problem. Both problems can be reformulated to represent the other and both problems are
solved in different ways. It is found that routing technology is superior when the problem involves optimizing
the sum of total transition times, few precedence constraints and low resource specialization. This is in line
with the project context. At KLM, there is low resource specialization because there will be multiple teams
capable of executing the same task/flight and there are generally a few starflights which require precedence
over other flights.

By comparison with scheduling problems using time slots, vehicle routing problems are scheduling prob-
lems which use the sequence of visited nodes as their decision variables. The time at which each node is
visited then fol- lows from the travel times between nodes and processing times at the nodes, which could be
seconds, minutes. This allows for more flexible planning than when using time slots. When looking at the size
of the models, 3-index ow-based routing/scheduling problems assign an edge to a vehicle that will traverse it
(X k

i j ). The problem size will therefore scale by n x (n - 1) x k, n being the number of tasks and k the number of

teams. Scheduling problems with time slots assign a team to a task at a time slot and the problem size scales
by n x k x t, with t the number of time slots. With the number of nodes assumed equal, the size depends on
the difference between n - 1 and t. Assuming that on a typical day at the KLM Cargo Hub, there are 60 flights
or 500 ULDs to be scheduled. n - 1 is then 59 or 499 but when scheduling in terms of minutes, t becomes
1440, which is an order of magnitude difference. Therefore, for this project context and project size, the VRP
formulation makes more sense.
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When working with a linear problem containing binary and integer variables, commercial optimizers such as
Gurobi will use a branch and bound or branch- and-cut technique to optimize these problems. Some lessons
can be learnt in terms of reducing model size in order to achieve a faster optimization. In turn, many heuristic
methods have been developed tailored to specific problems in order to find good-solutions in a shorter time.
Since computation time is of interest in practically-oriented projects like this one at KLM, some papers on
heuristic methods will be discussed here.

4.1. Branch-and-bound algorithm
Branch and bound is a solution technique used for integer programming problems where the total set of
solutions is partitioned into smaller subsets of solutions [18]. It begins by first solving the problem as a linear
programming model without integer restrictions. This is called an LP relaxation of the problem, since the
restrictions are relaxed. The optimal solution of the relaxed problem can therefore lay in between the rounded
solutions of the integer problem. This solution designates the upper bound of the problem. From there,
a diagram of nodes and branches is formed. A new node stands for a subset of the problem exploring a
different part of the feasible region. For some nodes (regions) it can be determined that no improvement
can be obtained from the best solution found up until that point. It is then decided to leave that node and
continue on other branches until the optimal integer solution is obtained.

A variety to the branch-and-bound is the branch-and-cut approach. It involves a branch-and-bound
and using the cutting planes method to refine the feasible region by means of linear inequalities. According
to [18], the approach uses mainly 3 kinds of techniques. Automatic problem preprocessing, generation of
cutting planes and branch-and-bound techniques. The preprocessing comprises of fixing variables at one
of their possible values since the other values cannot possibly be part of the solution. Another category is
eliminating redundant constraints which are automatically satisfied by other constraints. The last category
is tightening constraints to reduce the feasible region for the LP-relaxation of the MILP problem. The latter is
also an example of a cutting plane technique. A cutting-plane can also be generated by finding a minimum
cover of a constraint, which is a set of binary variables that once one of the variables changes from 1 to 0, the
constraint becomes satisfied. There are a myriad of cutting planes techniques, but fortunately commercial
software can help.

A commercial optimizer such as Gurobi is able to apply presolve and cutting planes techniques automat-
ically [17]. The former is used to reduce the size of the problem, similar to eliminating redundant constraints
in the branch-and-cut approach. This is nice from a practical standpoint, however it is not desirable from a
research standpoint, since the way of optimization is not entirely transparent to the user. Therefore it may be
a good idea to incorporate user-defined-cuts or valid inequalities to enforce the cuts yourself without elimi-
nating the feasible integer solutions.

[7] presents an example of valid inequalities for the dial-a-ride problem with time windows. It states that the
lower bound of a time window can be increased depending on the previously visited node. There is an earli-
est time of arrival from the previous node depending on the lower bound of the time window of that previous
node and its shortest possible service time. This means that an allocation of a vehicle to two nodes immedi-
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ately affects the width of the time window and therefore tightens the constraints concerning the beginning
time. A similar logic can be applied to the upper bound of the time window. There is a latest time of leaving a
node depending on its service time and the upper bound of the time window at the previous node. Similarly,
this can reduce the width of the time window, hence tightening the constraint.

Using a large constant to incorporate an if-else clause in the constraints is named as the big-M method
in [18]. A large constant is also used by [7] in its constraints. It is emphasized in the paper to put a bound
on those constants in order to avoid computational problems. It is therefore important to assign a value just
small enough depending on the other parameters and coefficients in the functional constraint. Another valid
inequality that is formulated are subtour elimination constraints. These are constraints that prohibit a vehicle
to take a smaller tour that is part of a larger tour. In the VRP, this would imply that tours without starting and
ending at the depot are not allowed, which is different from the classic TSP, where tours that do not visit
all nodes are prohibited. However, this example of a subtour elimination constraint for the VRP is different
than that for the dial-a-ride problem in [7] . The VRP subtours are a requirement in the original formulation
and should not be used as a cutting-plane technique to reduce the feasible region of the relaxed problem
in preprocessing. The paper also presents variable fixing, as described before by [18] and arc elimination
as a way of preprocessing the model in the branch-and-cut algorithm. Arc elimination occurs when two
nodes cannot be paired from the outset because of time windows, pairing and ride-time constraints and
their arc is then eliminated. The most obvious example would be the arc between the origin hub node and
the destination hub node. Other examples in this paper are more related to the dial-a-ride problem, but the
time windows of flights and position of workstations can be considered in order to eliminate arcs and reduce
the problem size.

4.2. Initial solutions
Finding an initial solution can speed up the optimization process for large problems considerably by setting
a good starting point. Depending on the problem objective, one initial solution method is better than the
other. One method for a VRP problem is proposed in [8] by ordering the nodes by the angle made with the
depot in a Euclidean coordinate space. This attempt at a solution is focused on trying to limit the travel time
between nodes. A random node is selected as the first node and the first arc is then made by adding a new
node in the predefined order until load or duration constraints are violated for that route. Once that happens,
a new route is initiated. The nodes/ flights in KLM’s case could be ordered in that way, but the travel time is
less of a concern since the service time at any node greatly exceeds the travel time between nodes. Therefore,
another ordering technique or approach for an initial solution more tailored towards the situation in the KLM
Hub would be better suited.

Based on the article of [8], a simple analogy can be made for KLM. An example of an important factor that
can be considered for the initial solution is the deadline of each flight. By ordering all flights from earliest
deadline to the latest, assign each flight to the team that has the earliest availability, and do the same for the
next flight. This focuses on minimizing the initial completion time of each flight and with that the delays.
Both this example and the aforementioned paper use a greedy method to choose the next node, which is a
locally lowest cost choice at each stage.

4.3. Heuristics
Heuristics are methods of problem-solving that are commonly used to find good feasible solutions that are
reasonably close to the optimal solution. A metaheuristic is a general method that provides a structure and
strategy guideline for developing a heuristic for a particular type of problem. It is among the most important
tools used in Operations Research. Two examples of metaheuristics will be discussed, the tabu search and
large neighbourhood search. Other examples are simulated annealing and genetic algorithms. Based on the
type of problem at hand one is more useful than the other.

[18] explains that, like many metaheuristics, simulated annealing and the genetic algorithm are derived
from natural phenomenon. Simulated annealing is a local search method governed by a temperature variable
that controls the selection of new solutions. It is incorporated in the paper on large neighbourhood search
that will be presented later in this section. The genetic algorithm is particularly good at exploring various
parts of the feasible region and finding solutions which are not local. This means that, if a good initial solution
can be generated, the optimal solution should be located somewhere in the neighbourhood and thus genetic
algorithms are not further explored in this review. The tabu search and large neighbourhood search will be
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discussed here along with a post-optimization method that compliments the tabu search.

4.4. Tabu search
[8] present a unified tabu search heuristic for the VRP with time windows and the periodic and multi-depot
VRP with time windows. The algorithm consists of a local search metaheuristic and a diversification mech-
anism to explore a broader portion of the solution space. The search includes solutions that only need to
satisfy two constraints. These are that every route should start and end at the depot and each node is visited
by only one vehicle. Infeasible regions may be therefore be included in the search since time window, load
and duration constraints are not considered during the search and can be violated for some solutions. A cost
function consisting of the original objective and the sum of the aforementioned violations is used to evalu-
ate each new solution. Each violation has a positive multiplier that facilitates the exploration of the solution
space, in particular for tightly constrained problems. The tabu search works with a set of attributes (i ;k) for
each solution B(s) that tracks if node i is visited by vehicle k or not. The neighborhood N (s) of a solution is
defined by applying a simple operator that removes an attribute from B(s) and replaces it with (i ;k ′) where
k ̸= k ′. This means that one node is removed from route k and inserted into route k ′. Route k is then restored
by connecting the predecessor and successor of node i .

The diversification is encouraged by prohibiting the reinsertion of i into route k for a number of itera-
tions, which characterizes the tabu search. It is given a tabu status, which is typical for a tabu search method.
An aspiration criterion can revoke the tabu status if that would allow the search to reach a solution of smaller
cost. A solution in the neighborhood N (s) of another solution with a larger cost function is penalized by a
factor proportional to the addition frequency of its attributes and a scaling factor depending on the model
size. This penalty also drives the search to less explored regions of the solution space whenever a local opti-
mum is reached because the presence of attributes in that solution that have been inserted before increase
the penalty of that solution. The intensity of the diversification can be controlled by a parameter.

Although only feasible solutions can be accepted as an optimal solution, the search can make a step to-
wards an infeasible solution if that solution has the lowest cost in the neighbourhood. The scaling parameters
of the violation of time window, load and duration constraints in case of infeasible solutions are adjusted after
each iteration. This is repeated for a number of iterations and then the best feasible solution is post-optimized
according to the specialized heuristic by [15].

This tabu search heuristic is proposed for the vehicle routing problem with time windows (VRPTW) and two
generalizations: the periodic vehicle routing problem with time windows (PVRPTW) and the multi-depot ve-
hicle routing problem with time windows (MDVRPTW). It is stated that this method is thrives in its simplicity
because it is based on a limited number of parameters and a simple scheme, compared to alternative ap-
proaches. When tested on real-life instances from a German grocery distributor, using 800-1000 nodes and
30-40 vehicles in the different instances, it took 20000-25000 iterations to arrive at good solutions, which was
also attributed to the post- optimization. It did take upwards of 2 hours to complete 10000 iterations, which
shows the time-intensive effort of this algorithm. For KLM, the problem size will be much smaller and more
comparable to earlier instances tested in this paper with 54 vehicles. The algorithm is also tested on the many
instances of the VRPTW originally studied by [28]. The C1 and C2 problems contain clustered nodes instead
of randomly distributed, which is comparable to KLM’s case because several nodes are on the same work- sta-
tion. In most of cases, with 100 nodes and 50-60 vehicles, good solutions were obtained after 105 iterations
which took 20-60 minutes to compute.

4.5. Post-optimization of the tabu search
[15] extends the ideas of [14] by creating a post-optimization procedure for the traveling salesman problem
with time windows. [14] introduces the GENIUS heuristic procedure that is developed for the traveling sales-
man problem. It is split up in to two steps: the generalized insertion (GENI) and the unstringing and stringing
(US) procedure. In the GENI algorithm, an initial tour is created by selecting an arbitrary subset of 3 nodes.
Then, each new arbitrary node is added to the tour by a least cost insertion considering one of two possible
orientations, which are named as Type I insertions and Type II insertions. A p-neighbourhood is defined
for every node as the p nodes on the tour closest to it. This p-neighbourhood defines the orientation of the
nodes for both types of insertions. This is repeated for all nodes until the traveling salesman tour is com-
plete. The amount of insertions are restricted by only considering the neighbourhood of the new node and
this makes the method more efficient than considering all possible insertions. It is showed in the paper, that
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for Euclidean problems, the size of the neighbourhood can cause a tour that crosses itself and eventually ar-
rive at suboptimal tours as the best possible solution. By increasing p, the size of the neighbourhood, the
complexity of the insertion increases, but the optimal tour can be reached.

The US algorithm is a post-optimization that consist of removing a node from a feasible tour and inserts
it back. The removal of a node can again be done in two ways. These two possible removal types are the op-
posite of the insertion types in the GENI algorithm. By starting at an arbitrary node, this node is removed and
reinserted according to the two types of unstringing and stringing. The lowest cost orientation is stored and
in the next step, another node is tested. This process repeats until it results in a number of worse solutions in
a row. This number is equal to the amount of nodes. Because now all nodes are part of the tour, a node that is
to be removed is not necessarily located between two nodes belonging to its p-neighbourhood and therefore
reinsertion in the same orientation may be forbidden. It was found that the solution quality of the GENIUS
algorithm improves as p becomes larger, which is to be expected since more nodes are considered in the
neighbourhood of the node. The algorithm has been tested against other alternative heuristic approaches for
the TSP. It turned out that it is advantageous in terms of solution quality and computation times, especially
as the number of nodes grow beyond 200. The presented routines can be extended to a number of VRPs and
other types of minimum cost permutation problems, which has been done by [15] for a TSPTW.

[15] provides an approximate algorithm to handle TSPTWs with large time windows. It builds on the GENIUS
procedure introduced by [14]. It is stated that it is focused on finding good quality solutions for problems with
large time windows and as a post-optimization step in VRPTWs. The principles of GENIUS can be translated,
but care must be taken since paths are directed because of the time windows. The insertion procedure works
as follows. Both distance and time dimensions are considered in the definition of node neighbourhoods since
only looking at distance does not work well with time windows. Instead of defining a p-neighbourhood, a p+-
neighbourhood and p−neighbourhood are defined per node. The p+-neighbourhood are a number of closest
successors of a node on the tour in terms of distance and a number of closest successors on the tour in terms
of the proximity of the time windows. The p−-neighbourhood is defined the opposite way. The origin depot
is always part of the predecessors and the destination depot is always part of the successors. It also keeps
track of the latest time at which it is feasible to leave a node and enter a node. The order in which nodes
are inserted is not random and depends on a measure of difficulty of insertion, which can be window width,
earliest arrival times or earliest window closing time. The first option turned out to be the most satisfactory.
All nodes are then added to the routes. If a node cannot be added, a backtracking procedure is used in which
each routed node is tried to be replaced by an unrouted node. The nodes that are removed and replaced
are being tracked in a list and if some node reaches an upper limit of removals, the process stops with an
infeasible solution. This method looks a lot like the tabu search method. A tabu search keeps a tabu list of
forbidden moves and here no moves are tabu, but there is an upper limit on the amount of times a certain
move can be executed.

The next phase is the post-optimization. This can be applied when the insertion procedure produces a
feasible solution. It works the same way as the unstringing and stringing in [14], although now a lo- cal rear-
rangement is only considered of it preserves time window feasibility. This is repeated from the origin depot
to the destination depot. If the solution has not improved after a full pass of all nodes, the post-optimization
procedure stops. The results of this heuristic indicate that for problems with large time windows, this method
consistently produces feasible solutions in shorter times than other exact approaches with which it is com-
pared. The results are attributed to the GENIUS method, neighbourhood definitions and backtracking pro-
cedures when no feasible insertions are possible.

4.6. Adaptive large neighborhood search
A lot of research has been done on local search heuristics. The tabu search is a local improvement method
where marginal changes to the solution are tested in each iteration. This means that only solutions in the
close neighborhood are explored for improvements. A genetic search randomly explores different parts of
the solution space, but since good initial solutions can be created, it is expected that a controlled search over
a larger solution region is more beneficial for this research. Compared to the tabu search method, large neigh-
bourhood search, as the name implies, changes large parts of the solution.

[10] presents an adaptive large neighbourhood search (ALNS) for the pollution-routing problem (PRP), which
is an extension of the classical VRPTW. The problem is formulated as an integer programming problem which
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minimizes the pollution levels and driver wages as a consequence of the routing schedule. The heuristic
works in two stages. In the first stage, it involves solving a VRPTW using the ALNS heuristic to find optimal
routes, and the second stage is optimizing the speed on those routes to minimize fuel consumption and driver
wages. The removal and insertion involves removing not one, but several customers (nodes) and reinserting
them. It is stated that the initial solution quality is not so important since the algorithm can easily recover
from a poor initial solution. Twelve removal and five insertion operators are assigned a score and a probabil-
ity of selection during the optimization. Three of the removal operators and one of the insertion operators
is newly introduced in this paper. The score increases if the solution improves and decreases if the solution
deteriorates. A higher score has a positive impact on the probability of it being applied in the next iteration.
The removal starts with selecting an operator that removes some nodes and stores them in a removal list.
This is done a number of iterations and a partially destroyed solution is left. Insertion operators are used to
re- pair the partially destroyed solutions by inserting the nodes from the removal list. The nodes can only
be inserted when feasibility with respect to capacity and time windows can be maintained. A simulated an-
nealing framework was borrowed for the ALNS algorithm to assess the acceptance of a new solution. There
is a chance of accepting a new solution based on a temperature variable that decreases gradually, making it
more likely to accept new solutions over the course of more iterations. Once the routes have been found, the
speed optimization algorithm then solves a non-linear objective where the speed on a route is optimized per
vehicle.

Three groups of parameters were distinguished, which defined: (I) the selection criteria for the removal
and insertion procedures, (II) the calibration of the simulated annealing framework, and (III) the workings of
the removal and insertion operators, determining a.o. the removable nodes and candidate node weights. Also
in this paper, results were generated for [Solomon, 1987] benchmark VRPTW instances, not testing the speed
optimization algorithm. It turned out that the ALNS with the new operators performs very well, in particular
also in the clustered C1 and C2 instances where the optimal solutions were found within several minutes op
computation time. The speed optimization algorithm shows that for practical 50 to 75-node sized instances
(comparable to KLM), the ALNS heuristic is able to improve the optimal solution compared to CPLEX, a com-
mercial optimizer, by 2-6% while taking just a fraction of the time. In addition, the algorithm shows that it is
highly effective in finding good-quality solutions in a short time on instances with up to 200 nodes as com-
pared to CPLEX.

This ALNS heuristic is much more intricate than the formerly described tabu search algorithm. Instead of one
operator used in [8], this paper uses 17 in total for removal and insertion. That means that programming and
implementing the ALNS heuristic, also meaning finding the right parameter setting, will take significantly
longer than implementing the tabu search. However, it shows similar results as the tabu search method but
the computation time is much shorter, which is a positive aspect for operating it at KLM. Although it must be
mentioned that available computing power plays an important role in the computation time.
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uncertainty

The data stored from hub operations at KLM has shown not to be entirely reliable. The time at which pallets
can start to be build up, in other words the lower bound of the time window of a to be prepared flight, has
not been tracked before. This means that an attempt at a novel analysis needs to be made in order to get
input values based on real data. Even though many data points are being tracked, not all data points have
been verified and the booked shipments and pallets are often not equal to actual amounts. Assumptions or
forecasts need to be made in order to acquire useful data from the system to be used as input data into the
model when applying the model to real data. The nature of the input data means that uncertainty can be
present in capacity constraints.

The research done in [9] contains an example of dealing with uncertain parameters. The article presents
the allocation of cargo to passenger flights as a multi-commodity ow problem with uncertainty in demand
and capacity. Omitting the multistage scenario tree to determine capacity constraints, an easier to under-
stand and implement approach is the determination of demand. The demand is assumed to be normally
distributed and is converted into a deterministic chance constraint. The constraint will change depending
on the required confidence level requested by management or attainable confidence level from the input
data.

Next to chance constraints, [18] also describes that robust optimization can be applied in order to deal
with uncertainties. The goal of robust optimization is to virtually guarantee a solution for all practically pos-
sible parameter values. For this a distinction is made between a soft constraint and a hard constraint. A hard
constraint defines a limit that must be satisfied and a soft constraint can be violated a little bit without serious
complications. To determine the allowed violation of soft constraints, a range of uncertainty is defined for an
independent parameters surrounding its estimated value. By assigning the most conservative value to the
parameter, either the minimum or the maximum depending on whether the constraint is in the ≤ or ≥ form,
will guarantee a feasible solution regardless of the values taken on by these parameters. In other words, if the
model has a feasible solution in the worst case, it will have a feasible solution in a slightly better case.
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1
Appendix 1

In this part, some supporting figures will be presented which are not included in the scientific paper. It serves
as an additional explanation of the process undertaken during the research or to clarify some concepts men-
tioned in the paper.

1.1. Workforce planning
In the business analysis it is mentioned that schedules are made a few hours before each shift. Available
teams are assigned to buildup tasks. The tasks are, as shown in the paper, a consolidation of a set of ULDs
from the booked shipments for each flight. But how are the teams determined?

The teams are formed as a result of a long planning process. It starts months in advance on the planning
department. A forecast of the work for a certain shift is made by a rough estimation of the required number
of employees. Note that this estimate does not look at booking data and number of ULDs so it is a different
approach of estimating work than presented in the paper. From this estimate follows a preliminary roster
based on the availability of personnel. Over time the estimates are revised and a definite roster is made up
for regular KLM employees a couple weeks in advance. Because bookings can change up until the last hours
before a shift, there is a need for additional manpower that can be called up on a late notice. Also, employees
may not be able to show up because of illness. For these reasons there is a possibility to work with contractors,
or flex employees in order to have a sufficient workforce at the start of the shift.

All available employees for a shift are put together in teams based on their skills, experience and their
contract (regular/flex). These are made to the best of the abilities of the staff planner. All the aforementioned
steps occur in a planning tool called Novulo, as is shown in 1.1. Finally, a couple hours before the start of the
shift, the shift leader consolidates the team information with other inputs like attendance sheets, booking
data in the operational database and their own experience.

H

Figure 1.1: The planning of personnel starts far ahead of the buildup shift
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1.2. Data entities
The paper mentions a database in the form of a collection of tables with the name HubTrack. It is a temporary
database that consolidates multiple data points in order to track the actions of each shipment in the Hub from
the past 8 weeks. Shipments are tracked by AWB number, i.e. a contract between carrier and shipper. The
Hubtrack data can be viewed as a consolidation of information from multiple entities as shown in Figure 1.3.

Figure 1.2: Entity Relations Diagram of HubTrack

The diagram shows that AWBs (shipments) can be on zero or multiple incoming ULDs, while always leaving
on at least one outgoing ULD. An outgoing ULD could therefore not have any incoming ULD associated with
it, meaning it arrived as loose freight. Incoming flights can also be truck rides as shown by the data point
Mode of Transport. The BB status is given twice. For outgoing ULDs this is done when a ULD is only partly
build and then stored for a later shift.

Some data points are more useful than others and there were many missing entries in the data, which hin-
dered the exact ULD classification and release times. Often lines had to be dropped and therefore many data
could not be used. Wrong entries occurred too, where for example a ULD was tagged and moved to transport
before the last shipment was built onto it. These entries could not be included in the data.
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1.3. ULD categorization
During the exploratory data analysis, a classification scheme has been developed in order to separate the
different categories of ULDs from the data. The data entities and their data points like timestamps and infor-
mation tags are used throughout this scheme. It is shown in 1.3 and starts at the top left with an uncategorized
outgoing ULD.

For each outgoing ULD in the data, all rows are extracted containing corresponding AWBs and incoming
and outgoing modes of transport. The data points are compared in a decision tree. Once enough decisions
can be made in favor of a certain ULD category, it assigned that category.

An LF ULD is an empty ULD which requires 100% of work, and BB-ULDs are ULDs that are partly built
and need additional shipments (BB-build) or checking (BB-check). T-ULDs are through ULDs and if they are
correctly delivered they can immediately go through to the transportation department to be put on a flight.
In case something is not in order, it needs to be checked.

As can be seen from the figure, T-ULDs that need checking are converted to the same category as BB-
ULDs for checking. There is also only one combination of outcomes that would specify a T-ULD, meaning no
work for the buildup phase.

Data from before, during and after buildup had to be used in order to properly categorize the ULDs. This
can be seen as a flaw in this approach since it is desired to know this beforehand. This is discussed in the
conclusion of the paper.

Figure 1.3: The ULD categorization scheme used during the exploratory data analysis
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1.4. Valid inequalities in the model formulation
The model formulation makes use of so called valid inequalities. These are additional constraints that do
not eliminate feasible solutions. It is used to strengthen the lower bounds of the time variables (Bi ) with
knowledge about the order of assigned tasks from the X k

i j -variables. This is illustrated in 1.4. The equation is

repeated here for clarification:

B j ≥ ri +
N ,NB∑
i ̸= j

K∑
k

max {0,ri + sk
i + ti j − r j } X k

i j ∀ j ∈ N ,k ∈ K

In 1.4(a) the situation is shown when r j ≤ ri + sk
i + ti j . The lower bound of B j increases since task j cannot

start at r j . In 1.4(b) the situation is shown when r j > ri + sk
i + ti j . In this case, the ’max()’-function prevents a

miscalculated definition of the lower bound. The lower bound of B j remains the same (B j ≥ r j ) since task j
cannot start at the B j when it is before r j .

(a) An increase of the lower bound for the timing variables from
the valid inequality.

(b) The purpose of the ’max()’-function in the valid inequality.

Figure 1.4: Illustration of the strengthening the lower bounds of Bi -variables with valid inequalities
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