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ABSTRACT

It was shown before that stress fields around notches are very much
similar quantitatively, if the peak'streés at the_notch'root (Opeak) o
and the notch root radius (p) are the same. As a result, small cracks
(length 2) in similar stress fields should have the same stress intensity
factor. This implies that the geometry factor C in K = C opeak V% should
primarily depend on 2/0 only and not on other dimensions. Available data
from the literature was analysed, which confirmed the similarity concept.

From the data an equation for C (%/p) was obtained, which turned out to

be an accurate approximation for small cracks.

Kéy words: stress intensity factor, crack, notch

E w o= R OR R oM oMo oWowW O

NOTATION
.~ crack length measured from center of_notch
geometry faqtog in K = C Opeag /e
geometry factor in K = F S Y1a
c approximation of F based on C (eq.6) /
BK - approximation of F based on Benthem/Koiter equation
SM approximation of F based on Smith/Miller equation
stress intensity factor
‘. stress concentration factor based'on nét section stress
tg stress concentration factor based on gross stress .
crack. length measured from edge of notch root
gross stress
width
a/B major and minor axes of ellipse
o' stress gradient coefficient
p notch root radius _ ' : N

0 ., local maximum at root of notch
peak :



INTRODUCTION

Geometrical notches in a structure are causing local stress concentrations
with the maximum stress at the root of the notch. Fatigue cracks will
be initiated at this location, and this can occur early in the fatigue
life. In many cases the crack will be small for a large part of the
life. For this reason the stress distribution at the root of the notch
is significant. In a previous publication [1] it was shown that the
stress distribution in the proximity of .the notch is approximately the
same for a variety of. notches and stress concentration factors (Kt),,

if the peak stress at the notch (Opeak) and the root radius (p) are

the same. This is illustrated by Figure 1 drawn from reference [1].

It then should be expected that small cracks occurring in similar stress
fields should have the same stress infensity factor (K). In other words,

for small cracks K should predominantly depend on Op and P only.

eak
This idea is elaborated in the present report, adopting data from the
literature on stress intensity factors of cracks at notches. A

comparison is made with two other” approximations for K leués of small

cracks [2, 3, 4].

K AS A FUNCTION OF G_ |
-peak

The stress intensity factor will be written;here as:

K =CO vars Lo R ¢Y]
where % is the crack length as measured from the notch root- (Figure 2)p
and C is the geometry factor. If we now consider small cracks at
different notches, the basic arguments mentioned in the introduction
are: '
(a) Approximately similar stress distributions in the uncracked

and 0 apply,

condition are obtained if the same valués of Opeak

and:



(b) If small cracks of the same length % are preseﬁt, while Gpeak-and S
p are the same, it is a consequence.of (a) that again approximately:’ -
similar stress distributions should apply; and thus the same stress“
intensity factors should be obtained. It implies that the geoﬁetry

factor C in equapion (1) should be a function of the ratio 2/p only.

c=c (&p) ‘ L (2)

This will be checked by adopting K values calculated by Newman [5]

for cracks occurring at the ends of an akis of an elliptical hole'in an
infinite sheet. loaded in tension by a stress S. Newman made calculations
for 5 different ellipses with axes ratios o/B = O.25,>0.5, 1, 2 and 4,
correéponding to Kt—values of 1.5, 2, 3, 5 and 9 respectively._Newﬁan

defined the stress intensity factor by:
K=F ¢S VTa (3)

with the créck length "a" measured from the center of the ellipse
(Figure 2). The geometry factor F was calculated by Newman by an
improved boundary collocation method. His results are reproduced here
in Table 1. The F data are easily converted into C-data by combining

equations (1) and (3):

C = 'S __El = — / —
F 0] .\/;; K Q/
o}

peak ‘ t

For an eliipse in an infinite sheet: Kt=- pzak =1+ 2 (a/B)

With a = o+ (Figure 2) and p =B 2/& the final results are:

_ 5 _
_ __F / (a/8) :

C = S 1+ o ‘4)
o\ 2 [a ' '

%/p = (E) (a - 1) | ®




With these equations Newman's data in Table 1 were recalculated to C
values as a function of %/p. The results are presented in Table 2 and in
Figﬁre 2. The horizontal scale in Figure 2 is linear for /E76 which was
done to expand thé f/p axis for small values of &/p. This improves the
comparison of the C-data of different éllipses for small cracks on which
the major interest of the present paper is concentrated. It is
encouraging to see both in Table 2 and in Figure 2 that similar C values
are found indeed up to values of %/p v 0.6. This supports the basic idea
that similar K values will apply to small cracks at notches if cpeak and
p are similar. (In Figure 2 some deviating results occur for o/B = 0.25

and low %/p values. In view of the unsystematic values these results are

believed to be inaccurate.)

It is obvious that equation (1) with C depending on /0 only can not
apply to large cracks because other dimensions, apart from the root
radius p, should become significant. Deviations can be observed in
Table 2 and Figure 2 for %/p > 0.8. Moreover, the data for o/B = 0.25
(Kt = 1.5) and o/B = 0.5 (Kt

1]

-2) do ot cover £/p values larger than
0.0875 and 0.35 respectively. Another aépect is that Newman's data apply
to elliptical holes of different shapes in.an infinite sheet. For finite
dimensions deviations may‘occur at lower %/p values. This will be explored

later in this report.
The curve in Figure 2 was approximated by a polyncmial equation:

C = 1.1215 - 3.21 (&/p) + 5.16 (,Q/p)l'5 - 3.73 (Q/Q)2 + 1.14 (SL/Q)2'5
(6)

It is in excellent agreement with Newman's data up to %2/p v 1 which is
more than sufficient for the present purpose. Equation (1) with C
according to equation (6) will be applied to other notches later in this

report. A somewhat simpler equation than (6) is:
C=1.1215-3 Wp + 4 Wm > - 1.7 /e (7)

It hardly deviates from equation (6) up to £/p Vv 0.6 (differences £ 0.2

percent) .



OTHER APPROXIMATIONS

Smith and Miller [2] have proposed a very simple formula for the stressé,
intensity factor of small cracks at the root of a notch. The small crack.
(length ) is compared to a largex one {length L) in the unnotched
configuration. Both cracks have the same stress intensity factor. As a
result of evaluating the same Newman data the relation between L and

2 was supposed to be represented on the average by:’
L=2%2+e withe=7.69 £ vbB/p - (8)
where D is the depth of the notch (or the semi axis of an ellips, .
D =0). '
Equation (8) was proposed to be applicable up to a crack length
2 = 0.13 VDp ~ (9a)
Substitution in equation (8) gives
L=2+D _ (9b)
B!

which implies that the depth of the notch is to be added to the physical
crack length (Q) to obtain the apparent crack length (L) for calculating
K. For a crack length exceeding the value in quation (9a) it ‘was proposed

to maintain equation (9b) as an approximation.

For an infinite sheet with an elliptical hole (p =62/a) equation (8)

implies:

‘K=8YTL =5 /18 /1 +.7.69 (0/B) (10

A comparison with equation (1) indicates: o

_ Y1 + 7.69 (a/B)

Cc = 1+ 2 (G/B) (11) ..




\

In other words: For a given 0/f the geometry factor C should be a constant,
which is not dependent on %/p. For the o/B values involved. in Figure 2

(0/B8 from 0.25 to 4) the value of C according to ‘equation (11) varies
"from 1.140 to 0.626. .In view of the results plotted in Figure 2 it

appears that the averaging idea behind equation (8) is a rather drastic

one. More results will be presented later.

Another method to estimate the K value for a small crack was adopted by
Karlsson and B&cklund [4]. The method is based on. the wo}k of Benthem
and Koiter [3] who gave a K solution for an edge crack in a semi-
infinite sheet with a linear distribution of the tensile stress in the
sheet. The solution is the same as for an edge crack with a linear load
distribution on the crack edges (see Figure 3), for which Benthem and

Koiter derived: !

K = (1.122 p + 0.439 q) V7L (12)

(The numerical factor 1.122 is the same as 1.1215 used in equation (6)
ahd (7). It is the wellknown geometry factor for an edge crack in a
semi—infihite sheet). Karlsson and Backlund assumed that this equation
could be adopted as a first approximation for a small edge crack at the
root of the notch, where g/ was supposed to be equal to the stress
gradient at the notch root (x = 0) and p + q is equal to.the peak

stress. Equation (12) was thus rewritten as:

13 {1.122 Opeax * 0-683 [30y/8x]x=0 2} /1L (13)

"In reference [1] the stress gradient was written as:

lo] o .
/__X = - o' _peak (14)
\Bx p |



with the stress gradient coefficient o' still depending on the shape of
the geometry involved. Substitition of equation (14) into equation (15)

gives:
K = (1.122 - 0.683 o' —&) R (15)
] Y peak .

For an elliptical hole there is a simple relation . for the stress

grédient coefficient:

P _._+_0t/@
oc—2+Kt— ¥ 2 0/B (16)

Comparing equation. (15) to equation (1) and substitution of equation (16)

gives: _ A
_ _ L (3+4o/8
Cc=1.122 0.683 o (m) . (17)

In this case C for small cracks is depending on £/p, but also on the
shape‘of the ellipse (0/B) . However, the latter dependence is small as
shown by the two curves drawn in Figure 2 for the minimum and max1mum
a/B values adopted by Newman: /B = 0.25 (K = 1. 5) and o/B =

(Kt»= 9). The curves also show that there is a systematic dlfference
between equation (17) and the results of Newman. ThlS should not be too
surprising because there are some differences between the two cases of
Figure 3. In Figure 3b the edge is not a straight line and the stress
distribption Oy(x):is not a linearly decreasing function. Nevertheless
equation (17) gives a reasonable approximation up to 2/p v 0.2, the

_ differences with NeWmaﬂ's results being in the order of a few percent

only. More results for other notches will be given later.
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APPLICATIONS

Elliptical edge notch

Nisitani [6] has calculated stress concentration factors for a semi-
elliptical edge notch in a semi-infinite sheet, loaded in tension by
a stress S. For three notches of this type, v.i.z. for o/B = 0.5,

1 and 2 respectively, he also calculated the stress intensity factor

o .
for cracks at the tip of the ellipse (see table 3)..The configurations

are shown in Figures 4a, b and c. Nisitani presents his results as

values of F defined in the same way as by Newman

K = FS' Va = FS /T (0+) (3)

-A conversion of C in equation (1) to F of equation (3) gives:

K C K, C
P = e—— = x (18)
¢ JVir o/% %+ (AW (&\
_ (B) / o)

The subscript C is used to indicate that Fc has been qbtained from C
as a function of £/p (eq. 6). Fc as a function of 4/p is also shown
in Figures 4a, b and c¢. The agréement with Nisitani's data is very
good for small cracks. For large &/p values (> 0.4) deviations are

found.

In a similar way the approximations for small cracks by the Smith/

Miller formula (equation 10) and the Benthem/Koiter egquation as

. adopted by Karlsson and Bdcklund (equation 13) can also be compared

with Nisitani's data. Equation (10) according to the Smith/Miller

condept has to be rewritten for an edge crack:

K'= 1.1215 s /L = 1.1215 s ¥7% V1+7.69 (0/B) (10a)



Combining this equation with equation (3) gives:
P 1.1215 V1+7.69 (0/B)
SM !
V/l + L i// &
B P

The subcript SM refers to Smith and Miller.

(19)

The application of equation (15) still o6ffers a problem, because the
stress gradient at the root of the notch is unkwown. However, the
difference between the Kt—values of elliptical holes (Kt = 1+2 ao/B)

and semi-elliptical edge notches are small for o/f = 0.5, 1 and 2
respeéfively, as shown by the work of Nisitani. It then may be expected
that the exact equation for the stress gradieht'of the elliptical

hole (eqg. 16) will still be a good approximation for the semi-
elliptical edge notches. A comparison of equations (15) and (3) then.

3+4 <

. K {1.122 - 0.683 X ( B)} ‘
; t P [¢)
1+27§

oeeve "

The subscript BK refers to the Benthem/Koiter équation.

leads to:

‘Equations (19) and (20) were used to show the results of the
corresponding approximations in Figures 4a, b-and c. Differences

between FBK and Fc are rather small up to &/p Vv 0.2. F_ takes

. SM
different positions as compared to the other approximations,

depending on Kt.
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. Circular hole in finite width strip

Newman [5] has calculated stress intensity factors for two hole
diameter to width ratios, viz. 2p/W = 0.25 and 0.50 respectively,
' see table 4. In a similar way as for the previous application we now

obtain:

K, C
Fo=—d » (21)

C '_1
V.1 + (4/0) .

th is the stress concéntration factor based on fhe gross itress in
the finite width strip. The values given in Figure 5 were obtained
~from a graph given by Peterson [7] representing célculated data of
Howland. The strip in Newman's calculations also had a finite length
(H), viz. H = 2W. According to data.of Schulz (also quoted by Peterson
[7]) for a finite width strip of infinite length with an infinite

row of holes, it should be expectéd that H = 2W is a sufficient
'length for the applicability of the Howland thAresults.

FC calculated with equation (21) is shown in Figures 5a and 5b.

Again the agreement with Newman's data is very good for small cracks.

With respect to the Smith/Miller éoncept equation 10 has now to be
rewritten for a central crack in a finite width specimen, and with

/8 = 1 it becomes

K = Vsec(ma/W) S /TL = V8.69 sec (ma/W) .S VTl v(10b)
Combining this with equation (3) and a = p+f gives:

1/2

= e (22)



For applicétion of equation (15) the diffiéulty is again that the
stress gradient is not exactly known. Estimates were made in [1]
(extenaed version) based on the sfress distributions as calculated.
by Howland [8] . From these déta the stress Qradient coefficient ¥
was found to be ' = 2.40 for p/W = 0.125 and a' = 2.75 for s

p/W = 0.250. Combining equations (15) and (3), and a.= p+i& gives:

Ky [1.122 - 0.683 o (l/p)]

= S =

Fak R - (23)
_ 1+ (&/p) : :

Calculated results for FSM and FBK according to equatiomns (22) and
(23) are also shown in Figures 5a and 5b. Initially FEK is fairly

close to Fc again. Differences with F_ are small in Figure 5a and

SM
large in Figure 5b..

3. Loaded hole in lug specimen

In a recent study [91 crack propagation in -a lug type specimen with
a pin loaded hole was studied. The dimensions are shown in Figure 6.
K—valueé as derived from the crack growth rate were compared with
caléulated K;valueé in the literature [10( 1] . The agreement

was good. A close approximation of the results was:

s
K =5 /ik [5.38 - 12.3 (%) +19.1 (%) 2 _14.6 (%) +

g \a :
4.55 (— ) ]‘ :
. (24)

vThe lug specimen is still symmetric with respect to the loading
direction (Y-axis), -but not with respect to the transverse direction

oEgaxis) .

Mmygreovg;,”thé loéding’on the hole is applied rather close
to the critical see

-ien, where opeak occurs. It is fairly optimistic .

to expect still a simila¥ stress distribution as for fully symmetric-.
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>4

configurations with remote loading. Nevertheless, a comparison of

K according to equation (24) with the K-value based on C

(equations 1 and 6) will be made. In.conformity with the previous
applications the compafison will be made for the geometry factor as
defined in equation (3). From this equation and the empirical result

in equation (24) we obtain (with a = p+4)

[5.38 - 12.3 (£) + 19.1 (&) 2 _ 146 (9’> 34 455 <&) 4]
- D \p p D
e V1 oL

. . _ 1 + (%/0)

(25)

The predicted Fc value based on C follows from a comparison between

equations (1) and (3)

c
F o= tg (26)

¢ / -1
1+ (&/p)

A comparison between FC and Femp is made in Figure 6. For &/p < 1
the difference is smaller than 3 percent, whereas it has increased to
9 percent at %/p = 0.2, At larger &/p values the comparison is

meaningless.



13

DISCUSSION . ) AN
| 5
The basic idea of the present paper is that the stress intensity factor
of small cracks at the root of notch is predominantly depending on the
local peak strgss (Opeak) and the root radius (p) only. ?he main argument
for this assumption is that the’stress distribution around notches are

quantitatively very much similar if Op and p are the same while other

eak
dimensions and Kt may be different. As a result small cracks in

similar stress fields should imply similar ;trgss intensity factors.
Calculated K values of Newman [5] and Nisitani‘[G] for a variety of
notches have amply confirmed the above suppositions. Calculated data as
presented in [5] and [6] are assumed to have a hiéh accuracy - (with a

few exceptions in [5] .as referred to before) . Differences between

comparative data in [5] and [6] are in the order of 0.1 percent at most.‘

'Part of the proof of the above similarity concept could already be
derived from two graphs presented by Nisitani [6] . For small. cracks
he plotted

. K : _ ’ ’
P —— . @n_
1.1215 Kt S vYmg o

7

as a function of %/p. For'elliptica1~h61esvin'an infinite sﬁeet and for
‘ elLipticai edgevnotches his graphs show almost similar curves for. .
a/B = 0.5, 1 and 2 respectively. Nisitani did not present any discussion
on this result. However, if equation .{27) is compared to the present’

definition of C:

k=¢ opeak /2 , C L)

it follows that:
C

ta2s 0 (28

In other‘wofds, the fact that C for small cracks depends on £/p only
could have been deduced from Nisitani's graphs. ’ ' B
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It still has to be recognized that for larger cracks the small-crack
approximation can no longer be valid, and C will depend on other

' dimensions as wellt An impression of the validity can be obtained from
Figures'4 and 5 by comparing F as based on C (FC) with the calculated
results. Differences smaller than 2 percent are found up to maximum

&/p values compiled in the table below.

Kt Maximum £/p
Semi-infinite sheet, a/B = 0.5 .2.016 0.25
elliptical edge notch 1 3.065 0.4
' 2 5.221 0.8
Finite width strip, 2p/W = 0.25 2.43 0.35
central hole : ' 0.50 | 2.16 0.15

~

Table 5: Maximum %2/p values for FC as a good approximation of F.

1
1

The lower maximum 2/p values are found for the shallow elliptical edge
notch (/B = 0.5) and the relatively large central hole (2p/W = 0.5).
In the former case the free edge is relatively close to the tip of the
root of the notch, and in‘the latter case the same applies to the
finife width edges. In such cases the similarity of the stress field
around the notch‘will be more affected than in the other cases.

Note that the specimens in Figure 5 have been drawn to scale.
Apparently free edges close to the notch root will disturb the
similarity approach adopted in the present papei. For the lug specimen
(Figure 6) the 2 percent criterion gives a maximum %/p % 0.08, which is
still lower than for the other notches. However, in this case the
asymmetric load transmission, partly close to the notch root, will

more easily violate the similarity of root notch stress fields.



A

For large cracks the K factor can. be approximated by assuming that the
notch is. part of the crack. For elliptical edge notches the result is

F =1.1215 aﬁd for central holés in finite width strips F = /EEETE;ZFT.
Both results have been indicated in Figﬁres 4 and 5. For the elliptical
side notches (Figure 4) 'Nisitani's results are going asymptotically

to the "large-crack" approximation. For the central hole in the strip
the same trend is observed in Figure 5a, but 4t is not so obvidus in
Figure 5b. In the .latter case the large-crack approximation remains
fairly poor for all Vaiues of 4/p. This is not unéxpected because the

hole diameter is equal to 50 percent.of the width of the strip.’

The present results 1nd1cate a good approx1mat10n of the K value of
small cracks up to certain limits of the crack size. It still is
desirable to obtaln'accurate K values for other types of notches in view
of the applicability of equatioh (1), especially Qith respect to the
"maximum £/p values, where deviations become significant. ‘

Another line to follow as suggested by the present stress field
similarity approach, is the ?pplication to small cracks with curved
crack fronts, such as sémi—elliptical surface cracks and quarter

elliptical corner cracks.




CONCLUSION

1.
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For notched elements with various dimensions and Kt factors the
stress fields close to the root of the notch are quantitatively
very much similar, if the same peak stress (Opeak) and the same root
radius (p) are present. As a result of the similarity the stress
intensity factor of a small crack (length %) should primarily

i
depend on Op and p, and not on:.other dimensions. In other words

eak
in K = C Opeak /1% the geometry factor C should depend on %/p only.
This was confirmed by an analysis of calculated data available in

the literature.

For the geometry factor C a polynoﬁial expression was obtained,
which gives accurate K predictions forvsmall cracks up to /0

values depending on the geometry of the specimen. The %/p range

in which C is applicable is larger if material edges, apart from the

notch profile, are more remote.

Two other methods for obtaining K values of small cracks at notches:

were found to be less accurate and less systematic.

.
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a

.
Values of F in K = F S_/E;

a/a o/B=4 o/B=2 | o/B=1 | o/B=0.5 | a/B=0.25
1.01 | - - .| o0.3256 | - -
1.02 | 0.9050 0.6757 | 0.4514 | 0.3068 | o0.2114
1.03 | 0.9597 0.7742 - - -
1.04 | 0.9865 0.8398 | 0.6082 | 0.4297 -
1.05 | 1.0013 0.8861 - - 0.3137
1.06 | 1.0098 0.9206 | 0.7104 | 0.5164 -
1.08 | 1.0179 0.9664 | 0.7843 | 0.5843 0.4463
1.10 | 1.0206 0.9925 | 0.8400 ©0.6401 0.5027
1.15 | 1.0202 1.0258 | 0.9322 | 0.7475 0.5901
1.20 | 1.0176 1.0357 | 0.9851 | 0.824i -
1.25° | - o 1.0168 | - - | 0.7248
1.30 - 1.0366 | 1.0358 | 0.9255 -| -
1.40 - 1.0317 | 1.0536 | 0.9866 0.8494
1.50 - - | 1.0582 | 1.0246 -
1.55 | - - - - 0.9279
1.60 - - 1.0571 | 1.0483 -
180 |. - | - 1.0495 | 1.0714 1.0063
2.00 - - | 1.0809 | 1.0777 | -
2.10 | - - - - - | 1.0551
2.20 - - 1.0336 | 1.0766 -
2.40 | - - 1.0252 | 1.0722 | 1.0788
3.00 | - | - 1.0161 | - -
400 | - - 1.0077 | - 1 -

Table 1: Numerical.data. calculated by Newman [5]
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values of F in K = F S /Ta
a/B=0.5" a/B=1 ' azB=2

L/a Kt =1.503 Kt =2.016 Kt =3.065
0.1 0.654 0.862 1.053
0.2 0.831 1.017 1.109
0.4 1.000 1.102 1.122
0.6 1.068 1,118 1.122
0.8 1.098 1.121 1.121
1.0 1.111 1.122 : 1.121

Table 3: Numerical data calculated.by Nisitani [6]

f ; f values of F in K = F S'/FEI
[} , 2a/W | 20/W=0.25 | 2a/W |20/W=0.50
0.25 | 0 0.50 | 0
0.26 | 0.6593 | 0.51 | 0.6527
0.27 | 0.8510 0.52 | 0.8817
o 0.28 | 0.9605 . | 0.525| -0.9630
H _@_ 0.29 | 1.0304 0.53 | 1.0315
0.30 | 1.0776 0.54 | 1.1426
e 0.35 | 1.1783 0.55 | 1.2301
H_, e 0.40 | 1.2156 0.60 | 1.5026
w 0.50 | 1.2853 0.70 | 1.8247
‘ 0.60 | 1.3965. | 0.78 | 2.1070
w 0.70 | 1.5797 0.85 | 2.4775
Ty 0.80 | 1.9044 | 0.90 | 2.9077 .
' ‘ ‘ ‘ { 0.85 | 2.1806 '
0.90 | 2.6248

Table 4: Numerical data calculated by Newman [ 5]
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a. Problem solved by Benthem
and Koiter [3].

Figure 3: Two approximately similar case

o

slope =<°—(‘-¥)
x X:O

stress distribution

in uncracked condition

nalogous -situation for a small
dge crack at a notch according
o Karlsson and Bdcklund [4].

s of edge cracks.
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Figure 4: Elliptical edge notch in semi-infinite sheet. Comparison between
data of Nisitani 6 and approximations.
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Figure 4 (continued) .
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Figure 4 (continued)
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Figure 5: Central hole in f1n1te w1dth strip. Compar1son between data

of Newman [5] and approximations.
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Figure 6: Lug specimen with loaded hole. Comparison between data of [9]
and approximation.
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