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S U M M A R Y
Marchenko methods are based on integral representations which express Green’s functions
for virtual sources and/or receivers in the subsurface in terms of the reflection response at the
surface. An underlying assumption is that inside the medium the wave field can be decomposed
into downgoing and upgoing waves and that evanescent waves can be neglected. We present
a new derivation of Green’s function representations which circumvents these assumptions,
both for the acoustic and the elastodynamic situation. These representations form the basis
for research into new Marchenko methods which have the potential to handle refracted and
evanescent waves and to more accurately image steeply dipping reflectors.

Key words: Controlled source seismology; Seismic interferometry; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Marchenko redatuming, imaging, monitoring and multiple elimination are all derived from integral representations which express Green’s
functions for virtual sources or receivers in the subsurface in terms of the reflection response at the surface (Ravasi et al. 2016; Jia et al.
2018; Staring et al. 2018; Brackenhoff et al. 2019; Lomas & Curtis 2019; Mildner et al. 2019; Elison et al. 2020; Reinicke et al. 2020; Zhang
& Slob 2020). These representations, in turn, are derived from reciprocity theorems for one-way wave fields (Slob et al. 2014; Wapenaar
et al. 2014), building on ideas presented by Broggini & Snieder (2012). Marchenko methods deal with internal multiples in a data-driven
way and have the potential to solve large-scale 3-D imaging and multiple elimination problems (Pereira et al. 2019; Staring & Wapenaar
2020; Ravasi & Vasconcelos 2021). Of course Marchenko methods have also limitations. One of the limitations is caused by the fact that the
one-way reciprocity theorems require that the wave field in the subsurface region of interest can be decomposed into downgoing and upgoing
fields. Moreover, one of these reciprocity theorems (the correlation-type theorem) is based on the assumption that evanescent waves can be
neglected. These assumptions complicate the imaging of steep flanks and exclude a proper treatment of refracted waves and evanescent waves
tunnelling through high velocity layers.

To address some of the limitations, Kiraz et al. (2021) propose a Marchenko method without decomposition inside the medium, assuming
the input data are acquired on a closed boundary. On the other hand, for reflection data on a single horizontal boundary, a first step has been
made towards a Marchenko method that deals with evanescent waves (Wapenaar 2020). This method is restricted to horizontally layered
media and uses wave field decomposition inside the medium.

In this paper, we derive more general Green’s function representations which do not rely on wave field decomposition in the subsurface
and which hold for an arbitrarily inhomogeneous medium below a single horizontal acquisition boundary. These representations form a
starting point for new research on Marchenko methods which circumvent several of the present limitations. Diekmann & Vasconcelos
(2021) independently investigate the same problem, but without specifying a focusing condition for their focusing function f and requiring
a time-symmetric source function for f. Our derivation follows a different approach, using an explicit focusing condition and requiring no
source function for our focusing function f. Moreover, we derive several forms of Green’s function representations, including one for the
homogeneous Green’s function between a virtual source and a virtual receiver in the subsurface. We also derive elastodynamic versions of
these representations.

This paper is restricted to the derivation of the Green’s function representations; a discussion of their application in new Marchenko
methods is beyond the scope of this paper.
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Figure 1. Illustration of the focusing function F(x, xR, t), which focuses at xR. For x at and above ∂DR it is purely upgoing. For x in the half-space below ∂DR

it is a complex wave field. The near-horizontal arrows in the thin layer illustrate tunnelling evanescent waves.

2 A C O U S T I C WAV E F I E L D R E P R E S E N TAT I O N

We consider a lossless acoustic medium, consisting of a homogeneous isotropic upper half-space and an arbitrary inhomogeneous anisotropic
lower half-space, separated by a horizontal surface ∂DR . Coordinates in the medium are denoted by x = (xH, x3), with xH = (x1, x2) denoting
the horizontal coordinates and x3 the depth coordinate (the positive x3-axis is pointing downward). The horizontal surface ∂DR is defined at
x3 = x3, R (in the next section we choose this as the surface at which seismic acquisition takes place). The medium parameters of the lower
half-space x3 > x3, R are the compressibility κ(x) and the mass density tensor ρ jk(x). At the micro scale (much smaller than the wavelength
of the acoustic field) the mass density is isotropic. However, small-scale heterogeneities of the isotropic mass density, for example caused by
fine-layering, may manifest themselves as effective anisotropy at the scale of the wavelength (Schoenberg & Sen 1983). The mass density
tensor is symmetric, that is, ρ jk(x) = ρkj(x). The parameters of the upper half-space x3 < x3, R are the constant compressibility κ = κ0 and
the constant isotropic mass density ρ jk = δjkρ0, where δjk is the Kronecker delta function. The propagation velocity of the upper half-space is
c0 = (κ0ρ0)−1/2. At ∂DR we choose the same constant isotropic medium parameters as in the upper half-space.

The basic equations for acoustic wave propagation are the linearized equation of motion

ρ jk∂tvk + ∂ j p = 0 (1)

and the linearized deformation equation

κ∂t p + ∂ivi = q, (2)

respectively. Here p(x, t) is the space (x) and time (t) dependent acoustic pressure, vi (x, t) the particle velocity and q(x, t) a source in terms of
volume-injection rate density. Operator ∂ i stands for differentiation in the xi-direction. Lower-case subscripts (except t) take on the values 1, 2
and 3, and the summation convention applies to repeated subscripts. Operator ∂ t stands for differentiation with respect to time. We introduce
the specific volume tensor ϑij(x) as the inverse of the mass density tensor, with ϑijρ jk = δik. Applying the operator ∂ iϑij to eq. (1), operator ∂ t

to eq. (2), and subtracting the two equations yields the acoustic wave equation

∂i (ϑi j∂ j p) − κ∂2
t p = −∂t q. (3)

We introduce a focusing function F(x, xR, t), in which xR = (xH, R, x3, R) denotes the position of a focal point at ∂DR (Fig. 1). For fixed xR and
variable x and t, this focusing function is a solution of wave eq. (3) for the source-free situation, hence, for q = 0. We define the focusing
condition as

F(x, xR, t)|x3=x3,R = δ(xH − xH,R)δ(t), (4)

and further demand that F(x, xR, t) is purely upgoing at ∂DR and in the homogeneous isotropic upper half-space. Note that F(x, xR, t) is
similar, but not identical, to the focusing function f2(x, xR, t) introduced in Wapenaar et al. (2014). We come back to this in Section 3.2.

We define the temporal Fourier transform of a space- and time-dependent function u(x, t) as

u(x, ω) =
∫ ∞

−∞
u(x, t) exp(iωt)dt, (5)

where ω is the angular frequency and i the imaginary unit. The integral is taken from t = −∞ to t = ∞ to account for non-causal functions,
such as the focusing function F(x, xR, t) for which no causality condition is implied (hence, in general it can be non-zero for positive and
negative time). With this transform, wave eq. (3) transforms to

Lp = iωq, (6)
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186 K. Wapenaar et al.

Figure 2. Explanation of the first (a) and second (b) integral in eq. (11) in terms of Huygens’ principle. The focusing functions F(x, xR, ω) and F∗(x, xR, ω)
propagate the fields p−(xR, ω) and p+(xR, ω) from all xR at the surface ∂DR to x in the lower half-space. The superposition of these propagated fields gives the
field p(x, ω) for any x in the lower half-space.

with

L = ∂iϑi j∂ j + ω2κ. (7)

The focusing function F(x, xR, ω) obeys in the frequency domain the wave equation

LF = 0, (8)

the focusing condition

F(x, xR, ω)|x3=x3,R = δ(xH − xH,R), (9)

and it is upgoing at and above ∂DR . We discuss a representation for a wave field p(x, ω), which may have sources in the upper half-space
above ∂DR , but which obeys the source-free wave equation Lp = 0 for x3 ≥ x3, R. In the lower half-space we express p(x, ω) as a superposition
of mutually independent wave fields that obey the same source-free wave equation as p(x, ω) for x3 ≥ x3, R. For this purpose, we choose the
focusing functions F(x, xR, ω) and F∗(x, xR, ω) (the asterisk denotes complex conjugation, which corresponds to time-reversal in the time
domain). To be more specific, we express p(x, ω) as

p(x, ω) =
∫

∂DR

F(x, xR, ω)a(xR, ω)dxR +
∫

∂DR

F∗(x, xR, ω)b(xR, ω)dxR, for x3 ≥ x3,R . (10)

Here a(xR, ω) and b(xR, ω) are as yet undetermined coefficients, which depend on the position xR at ∂DR . In Appendix A1 we formulate
boundary conditions for the acoustic pressure and the vertical component of the particle velocity at ∂DR , from which we solve a(xR, ω) and
b(xR, ω). We thus obtain

p(x, ω) =
∫

∂DR

F(x, xR, ω)p−(xR, ω)dxR +
∫

∂DR

F∗(x, xR, ω)p+(xR, ω)dxR, for x3 ≥ x3,R, (11)

where p−(xR, ω) and p+(xR, ω) represent the upgoing (−) and downgoing (+) parts, respectively, of p(xR, ω) for xR at ∂DR . These upgoing and
downgoing fields are pressure-normalized, meaning that p− + p+ = p at and above ∂DR . Below ∂DR we only consider the total (undecomposed)
wave field p.

For an intuitive explanation of the right-hand side of eq. (11) we refer to Fig. 2. First we consider the second integral, which is illustrated
in Fig. 2(b). The downgoing field p+(xR, ω) is incident from the homogeneous upper half-space to ∂DR . The complex conjugate focusing
function F∗(x, xR, ω) propagates this downgoing field from xR at ∂DR to x in the lower half-space and the integral superposes the contributions
from all xR at ∂DR . Next we consider the first integral of eq. (11), which is illustrated in Fig. 2(a). Here the upgoing field p−(xR, ω) is
backpropagated by the focusing function F(x, xR, ω) from all xR at ∂DR to x in the lower half-space. The sum of the two integrals gives the
wave field p(x, ω) in the lower half-space. This is a modified form of Huygens’ principle, with the focal points xR denoting the positions of the
secondary sources at ∂DR , and with the forward and backward propagating focusing functions replacing the Green’s functions in the usual
form of Huygens’ principle. Note that the two integrals cannot be separately associated with p+(x, ω) and p−(x, ω) in the lower half-space;
only the sum of the two integrals gives the total field p(x, ω), according to eq. (11).

The underlying assumption in the derivation of eq. (11) is that evanescent waves can be neglected at ∂DR . Hence, it only holds for waves
that are propagating at ∂DR , having a horizontal slowness s obeying

|s| ≤ 1/c0, at ∂DR . (12)

This implies that the foci (and hence the secondary sources) at ∂DR are not ideal delta functions [as formulated by eq. (9)] but band-limited
versions of delta functions. Note that ignoring evanescent waves at ∂DR does not imply that evanescent waves are not accounted for inside the
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Green’s function representations 187

inhomogeneous medium below ∂DR . For example, in an isotropic horizontally layered medium with depth-dependent velocity c(x3), in which
the horizontal slowness is independent of depth, waves that are propagating at ∂DR become evanescent when they reach a depth at which
1/c(x3) < |s| ≤ 1/c0. In Section 3.4, we show with a numerical example that eq. (11) indeed accounts for such evanescent waves. Although
for laterally varying media we cannot formulate a similar precise condition for waves becoming evanescent, it is still true that eq. (11) holds
for evanescent waves inside the medium, as long as they are related to propagating waves at the surface, as formulated by eq. (12).

Note that we previously derived a representation similar to eq. (11) with heuristic arguments, and used it as the starting point for deriving
the Marchenko method (Wapenaar et al. 2013). However, further on in that derivation we applied up/down decomposition to the wave field
at an artificial internal boundary in the lower half-space and we neglected evanescent waves throughout space. In the following derivations
we avoid up/down decomposition in the lower half-space and evanescent waves are only neglected at ∂DR . From eq. (11) we derive Green’s
function representations for the full wave field at any point x in the subsurface, expressed in terms of the reflection response at the surface.

3 A C O U S T I C G R E E N ’ S F U N C T I O N R E P R E S E N TAT I O N S

3.1 Representation for the acoustic dipole Green’s function

We introduce the Green’s function G(x, xS, t) as a solution of eq. (3) for an impulsive monopole source of volume-injection rate density at xS,
hence

∂i (ϑi j∂ j G) − κ∂2
t G = −δ(x − xS)∂tδ(t). (13)

We demand that G is the causal solution of this equation, hence G(x, xS, t) = 0 for t < 0. Note that G obeys source–receiver reciprocity, that
is G(x, xS, t) = G(xS, x, t). In the frequency domain, G(x, xS, ω) obeys the following wave equation

LG = iωδ(x − xS). (14)

We choose xS = (xH, S, x3, S) in the upper half-space, at a vanishing distance ε above ∂DR , hence, x3, S = x3, R − ε. We define a dipole-source
response as

	(x, xS, ω) = − 2

iωρ0
∂3,S G(x, xS, ω), (15)

where ∂3, S denotes differentiation with respect to the source coordinate x3, S. For x at ∂DR (i.e. just below the source level) we have for the
downgoing part

	+(x, xS, ω)|x3=x3,R = δ(xH − xH,S). (16)

We define the reflection response R(xR, xS, ω) of the medium below ∂DR as the upgoing part of the dipole-source response 	(xR, xS, ω), with
xR at ∂DR , hence

R(xR, xS, ω) = 	−(xR, xS, ω)

= − 2

iωρ0
∂3,S G−(xR, xS, ω)

= − 2

iωρ0
∂3,S Gs(xR, xS, ω), (17)

where superscript s stands for scattered. Substituting p(x, ω) = 	(x, xS, ω) and p±(xR, ω) = 	±(xR, xS, ω) into eq. (11), using eqs (16) and
(17), gives

	(x, xS, ω) =
∫

∂DR

F(x, xR, ω)R(xR, xS, ω)dxR + F∗(x, xS, ω), for x3 ≥ x3,R . (18)

This is a representation for the dipole response 	(x, xS, ω) at virtual receiver position x anywhere in the half-space below ∂DR , expressed in
terms of the reflection response R(xR, xS, ω) at ∂DR . It is similar to our earlier derived Green’s function representations for the Marchenko
method, but here it has been derived without applying decomposition in the lower half-space. It only excludes the contribution from waves
that are evanescent at ∂DR . Another difference with our earlier representations is that the Green’s function on the left-hand side is a dipole
response instead of a monopole response. We address this in Section 3.2.

It may be counter intuitive that in eq. (18) we use focusing functions F(x, xR, ω) and F∗(x, xS, ω), with their focal points xR and xS

situated at the surface ∂DR . This is different from the focusing functions in the classical representations for the Marchenko method, which
have their focal points in the subsurface. For an intuitive explanation of the right-hand side of eq. (18) we refer again to Fig. 2, this time with
p+(xR, ω) and p−(xR, ω) replaced by δ(xH, R − xH, S) and R(xR, xS, ω), respectively. In a similar way as in Section 2, the focusing functions
propagate the downgoing source field at xS and the upgoing reflection response at xR from ∂DR to x in the lower half-space, with the focal
points acting again as secondary sources in a modified form of Huygens’ principle. The sum of the two integrals gives 	(x, xS, ω).
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3.2 Representation for the acoustic monopole Green’s function

In this section we turn eq. (18) into a representation for the monopole Green’s function G(x, xS, ω). To this end we introduce a modified
focusing function f (x, xR, ω) via

F(x, xR, ω) = 2

iωρ0
∂3,R f (x, xR, ω), (19)

where ∂3, R denotes differentiation with respect to x3, R. According to eqs (8), (9) and (19), f (x, xR, ω) obeys the wave equation

L f = 0, (20)

the focusing condition

∂3,R f (x, xR, ω)|x3=x3,R = iωρ0

2
δ(xH − xH,R), (21)

and it is upgoing at and above ∂DR . Eq. (19) implies

F∗(x, xS, ω) = − 2

iωρ0
∂3,S f ∗(x, xS, ω). (22)

Substituting eqs (15), (17), (19) and (22) into eq. (18), applying source–receiver reciprocity to the scattered Green’s function and dropping
the operation − 2

iωρ0
∂3,S from all terms gives

G(x, xS, ω) = 2

iωρ0

∫
∂DR

{∂3,R f (x, xR, ω)}Gs(xS, xR, ω)dxR + f ∗(x, xS, ω), for x3 ≥ x3,R . (23)

We transfer the operator ∂3, R from f to Gs, which is accompanied with a sign change (see Appendix A2). Using the definition of R in eq. (17)
(with ∂3, S replaced by ∂3, R and with xR and xS interchanged on both sides of the equation) this yields

G(x, xS, ω) =
∫

∂DR

f (x, xR, ω)R(xS, xR, ω)dxR + f ∗(x, xS, ω), for x3 ≥ x3,R . (24)

This is the main result of this paper. We discuss a number of aspects of this representation.

(i) Eq. (24) has the same form as eq. (13) in Wapenaar et al. (2014), with f2 in that paper replaced by f. Using ∂3,R f (x, xR, ω) =
−∂3 f (x, xR, ω) for x3 = x3, R (i.e. at the boundary of the homogeneous upper half-space), eq. (21) can be written as

∂3 f (x, xR, ω)|x3=x3,R = − iωρ0

2
δ(xH − xH,R). (25)

This is the same focusing condition as was defined for f2(x, xR, ω). An important difference between f and f2 is the medium in which these
focusing functions are defined. Focusing function f2 is defined in a truncated version of the actual medium, where the medium below some
depth level is replaced by a homogeneous medium. It is assumed that up/down decomposition is possible at the truncation level. On the other
hand, focusing function f in eq. (24) is defined in the actual medium (similar as F in Fig. 1).
Moreover, the derivation in Wapenaar et al. (2014) of the representation is different: in that paper we start with decomposed focusing functions
f +
1 (x, xA, ω) and f −

1 (x, xA, ω) in the truncated medium, with xA being a focal point at the truncation depth. Next, we derive representations
for decomposed Green’s functions G+(xA, xS, ω) and G−(xA, xS, ω) and combine the two into a single representation for G(xA, xS, ω) = G+(xA,
xS, ω) + G−(xA, xS, ω), using the relation f2(xA, xR, ω) = f +

1 (xR, xA, ω) − { f −
1 (xR, xA, ω)}∗ (note the different order of coordinates in f1 and

f2). The latter relation is only valid when evanescent waves can be neglected at the truncation level inside the medium. In our current approach
we do not make use of decomposition at a truncation level inside the medium and we avoid the approximate relation f2 = f +

1 − { f −
1 }∗. The

only requirement for f (x, xR, ω) is that it obeys eqs (20) and (21). Hence, representation (24) gives the full wave field at the virtual receiver
position x inside the medium, including multiply reflected, refracted and evanescent waves. It only excludes the contribution from waves that
are evanescent at ∂DR , see the condition formulated by eq. (12).

(ii) Using another approach, also without applying decomposition inside the medium, Diekmann & Vasconcelos (2021) derive an equation
of the same form as eq. (24), but without specifying a focusing condition for f. Their focusing function obeys a wave equation with a non-zero
time-symmetric source function which is not explicitly specified. The derivation of eq. (24) in the current paper uses an explicit focusing
condition (eq. 21) and does not require a source function for f.

(iii) Eq. (24) forms a starting point for deriving the Marchenko method. By applying an inverse Fourier transform we obtain

G(x, xS, t) − f (x, xS,−t) =
∫

∂DR

dxR

∫ t

−∞
f (x, xR, t ′)R(xS, xR, t − t ′)dt ′, for x3 ≥ x3,R . (26)

The Marchenko method is based on the separability in time of G(x, xS, t) and f (x, xS,−t). For horizontal plane waves in 1-D media (Burridge
1980; Broggini & Snieder 2012) and for point-source responses at limited horizontal distances |xH − xH, S| in moderately inhomogeneous
3-D media (Wapenaar et al. 2013), these functions only overlap at t = td, which is the time of the direct arrival of the Green’s function. This
minimum overlap in time allows the construction of a time-windowed version of eq. (26) with G(x, xS, t) suppressed and with f (x, xS,−t)
almost completely preserved (this is the 3-D Marchenko equation). From this equation the focusing function f (x, xS, t) can be resolved, given
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its direct arrival and the reflection response R(xS, xR, t). In essence the separability of the Green’s function and the time-reversed focusing
function has been the underlying assumption of all implementations of the Marchenko method. This assumption excludes, among others, the
treatment of refracted waves, which may arrive prior to the direct arrival of the Green’s function and interfere with the time-reversed focusing
function.
Since we have argued that the representations of eqs (24) and (26) hold for refracted and evanescent waves, it is opportune to start new
research on Marchenko methods which exploit the generality of these representations. Care should be taken to account for the overlap in time
of the Green’s function and the time-reversed focusing function, particularly when dealing with refracted waves. A further discussion of the
development of new Marchenko methods is beyond the scope of this paper.

(iv) Eq. (24) is, in principle, suited to retrieve the Green’s function G(x, xS, ω) for x anywhere in the lower half-space. However, a single
type of Green’s function is not a sufficient starting point for imaging. In the classical approach to Marchenko imaging, the downgoing and
upgoing parts of the Green’s function are retrieved, from which a reflection image can be obtained, either by a deconvolution (Broggini et al.
2014; Wapenaar et al. 2014) or a correlation method (Behura et al. 2014). In the full-wavefield approach, we need at least one other type of
field at x, next to G(x, xS, ω), which represents the acoustic pressure field at x in response to a volume-injection rate source at xS. To this end
we introduce a Green’s function Gv

i (x, xS, ω) which, for i = 1, 2 and 3, stands for the three components of the particle velocity field at x. From
the Fourier transform of eq. (1) we derive that the particle velocity vi can be expressed in terms of the acoustic pressure as vi = 1

iω ϑi j∂ j p.
Similarly, we relate Gv

i to G via

Gv
i (x, xS, ω) = 1

iω
ϑi j (x)∂ j G(x, xS, ω). (27)

Hence, when G(x, xS, ω) is available on a sufficiently dense grid, Gv
i (x, xS, ω) can be obtained via eq. (27). Alternatively, Gv

i (x, xS, ω) can be
obtained from a modified version of the representation for G(x, xS, ω). Applying the operation 1

iω ϑi j∂ j to both sides of eq. (24) yields

Gv
i (x, xS, ω) =

∫
∂DR

hi (x, xR, ω)R(xS, xR, ω)dxR − h∗
i (x, xS, ω), for x3 ≥ x3,R, (28)

with

hi (x, xR, ω) = 1

iω
ϑi j (x)∂ j f (x, xR, ω). (29)

The Green’s functions G(x, xS, ω) and Gv
i (x, xS, ω) together provide sufficient information for imaging. For example, one could decompose

the field into incident and scattered waves in any desired direction, say in a direction perpendicular to a local interface (Yoon & Marfurt 2006;
Liu et al. 2011; Holicki et al. 2019), and use these fields as input for imaging.

3.3 Representation for the homogeneous acoustic Green’s function

The representations in Sections 3.1 and 3.2 give the response to a source at xS, observed by a virtual receiver at x inside the medium. Here
we modify the representation of eq. (24), to create the response at the surface to a virtual source inside the medium. After that, we show how
to obtain the response to this virtual source at a virtual receiver inside the medium.

We start by renaming the coordinate vectors in eq. (24) as follows: xS → xR, xR → xS, x → xA. This yields, in combination with applying
source–receiver reciprocity on the left-hand side of eq. (24),

G(xR, xA, ω) =
∫

∂DR

R(xR, xS, ω) f (xA, xS, ω)dxS + f ∗(xA, xR, ω), for x3,A ≥ x3,R . (30)

Here R(xR, xS, ω) is the reflection response to a dipole source at xS, observed by a receiver at xR, both at the surface ∂DR . This is schematically
illustrated in Fig. 3(a). The integral in eq. (30) describes redatuming of the sources from all xS at the surface to virtual-source position xA

in the subsurface, see Fig. 3(b). After adding f ∗(xA, xR, ω) (according to eq. 30) this gives the Green’s function G(xR, xA, ω), which is the
response to the virtual monopole source at xA, observed by the receiver at xR at the surface.

Our next aim is to derive a representation for the response observed by a virtual receiver at x in the subsurface, given G(xR, xA, ω).
Eq. (11) cannot be used for this in the same way as before, since G(x, xA, ω) obeys a wave equation with a singularity at xA, whereas p(x, ω) in
eq. (11) is not allowed to have sources in the lower half-space. To overcome this problem, we define the homogeneous Green’s function
(Porter 1970; Oristaglio 1989)

Gh(x, xA, ω) = G(x, xA, ω) + G∗(x, xA, ω). (31)

Here G(x, xA, ω) and G∗(x, xA, ω) obey eq. (14), with source terms iωδ(x − xA) and −iωδ(x − xA), respectively, on the right-hand sides.
Hence, Gh(x, xA, ω) obeys the following equation:

LGh = 0, (32)

which confirms that the homogeneous Green’s function is source-free. This time we choose for p(x, ω) in eq. (11)

p(x, ω) = Gh(x, xA, ω), (33)
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190 K. Wapenaar et al.

Figure 3. Illustration of source and receiver redatuming as a two-step process. Starting with (a) the reflection response R(xR, xS, ω) at the surface, in step
one (b) the Green’s function G(xR, xA, ω) is obtained for a virtual source at xA, and step two (c) yields the homogeneous Green’s function Gh(x, xA, ω) for a
virtual receiver at x. All functions in this figure are represented by simple rays, but in reality these are wave fields, including primaries, multiples, refracted and
evanescent waves.

with Gh(x, xA, ω) defined in eq. (31). For x at ∂DR the Green’s function G(x, xA, ω) is purely upgoing, since the upper half-space is
homogeneous and the virtual source at xA lies in the lower half-space. Similarly, G∗(x, xA, ω) is downgoing at ∂DR , except for the evanescent
field [which we already neglected at ∂DR in the derivation of eq. (11)]. Hence, we may write

p−(x, ω) = G−
h (x, xA, ω) = G(x, xA, ω), for x3 = x3,R, (34)

p+(x, ω) = G+
h (x, xA, ω) = G∗(x, xA, ω), for x3 = x3,R . (35)

Substitution of eqs (33)–(35) into eq. (11) yields

Gh(x, xA, ω) =
∫

∂DR

F(x, xR, ω)G(xR, xA, ω)dxR +
∫

∂DR

F∗(x, xR, ω)G∗(xR, xA, ω)dxR, for x3 ≥ x3,R, (36)

or

Gh(x, xA, ω) = 2	
∫

∂DR

F(x, xR, ω)G(xR, xA, ω)dxR, for x3 ≥ x3,R, (37)

where R denotes that the real part is taken. For an intuitive explanation of the right-hand side of eq. (36) we refer again to Fig. 2, this time
with p+(xR, ω) and p−(xR, ω) replaced by G∗(xR, xA, ω) and G(xR, xA, ω), respectively. The focusing functions propagate these downgoing
and upgoing Green’s functions at xR from ∂DR into the lower half-space, with the focal points acting as secondary sources in a modified form
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of Huygens’ principle. The two integrals cannot be separately associated with G∗(x, xA, ω) and G(x, xA, ω) for x in the lower half-space (these
functions are singular at xA); only the sum of the two integrals gives Gh(x, xA, ω) (which is not singular at xA).

Hence, eq. (36) describes redatuming of the receivers from all xR at the surface to virtual-receiver position x in the subsurface, see
Fig. 3(c). It gives the homogeneous Green’s function Gh(x, xA, ω), which is the response to the virtual source at xA, observed by a virtual
receiver at x, plus its complex conjugate. After transforming this to the time domain we obtain

Gh(x, xA, t) = G(x, xA, t) + G(x, xA,−t). (38)

The two functions at the right-hand side of this equation do not overlap in time (except for x = xA and only for t = 0), hence, G(x, xA, t) can
be extracted from Gh(x, xA, t) by selecting its causal part.

Note that there is an asymmetry in the focusing functions used for source redatuming [ f (xA, xS, ω) in eq. (30)] and for receiver
redatuming [F(x, xR, ω) in eq. (37)], see also Fig. 3(c). This is due to the difference in types of responses at the surface [the dipole response
R(xR, xS, ω)] and in the subsurface [the monopole response G(x, xA, ω)]. When the response at the surface were also a monopole response,
then the focusing function f (xA, xS, ω) for source redatuming should be replaced by F(xA, xS, ω).

Homogeneous Green’s function representations similar to eq. (37) were also derived by Wapenaar et al. (2016a), van der Neut et al.
(2017) and Singh & Snieder (2017), but here eq. (37) has been derived without up/down decomposition inside the medium. Hence, it also
holds for evanescent waves inside the medium, as long as condition (12) is obeyed. Moreover, the derivation presented here is much simpler
than in those references.

The source and receiver redatuming processes can be captured in one equation by substituting eq. (30) into (37). This gives

Gh(x, xA, ω) = 2	
∫

∂DR

∫
∂DR

F(x, xR, ω)R(xR, xS, ω) f (xA, xS, ω)dxSdxR

+2	
∫

∂DR

F(x, xR, ω) f ∗(xA, xR, ω)dxR, for {x3, x3,A} ≥ x3,R . (39)

The double integral on the right-hand side resembles the process of classical source and receiver redatuming (Berkhout 1982; Berryhill
1984), but with the primary focusing functions in those references replaced by full-field focusing functions. It also resembles source–receiver
interferometry (Curtis & Halliday 2010), but with the double integration along a closed boundary in that paper replaced by the double
integration over the open boundary ∂DR . Hence, via the theories of primary source–receiver redatuming (Berkhout 1982; Berryhill 1984),
closed-boundary source–receiver interferometry (Curtis & Halliday 2010) and open-boundary homogeneous Green’s function retrieval using
wave field decomposition (Wapenaar et al. 2016a; van der Neut et al. 2017; Singh & Snieder 2017), we have arrived at a representation for
open-boundary homogeneous full-field Green’s function retrieval (eq. 39), which accounts for internal multiples, and refracted and evanescent
waves in the lower half-space. In Section 5.3 this representation is extended for the elastodynamic situation.

3.4 Numerical examples

We illustrate the representations of Sections 3.2 and 3.3 with numerical examples. Our main aim is to demonstrate that these representations
hold for evanescent waves inside the medium. To this end we consider oblique plane waves in a horizontally layered medium, with isotropic
depth-dependent medium parameters c(x3) (propagation velocity) and ρ(x3) (mass density). We consider a horizontally layered medium
because in this case we can unequivocally distinguish between propagating and evanescent waves. However, as discussed in Section 2, the
representations also account for evanescent waves in more general inhomogeneous media. We define the spatial Fourier transform of a space-
and frequency-dependent function u(x, ω) as

ũ(s, x3, ω) =
∫
R2

exp{−iωs · xH}u(xH, x3, ω)dxH, (40)

with s = (s1, s2), where s1 and s2 are horizontal slownesses and R is the set of real numbers. This decomposes the function u(x, ω) into
monochromatic plane-wave components. Next, we define the inverse temporal Fourier transform per slowness value as

u(s, x3, τ ) = 1

π
	

∫ ∞

0
ũ(s, x3, ω) exp{−iωτ )dω, (41)

where τ is the so-called intercept time (Stoffa 1989).
First we investigate the representation of eq. (24) and take xS = (0, 0, x3, R). We use the definitions of eqs (40) and (41) to transform this

representation to the slowness intercept-time domain. Taking into account that for a horizontally layered, isotropic medium all functions in
eq. (24) are cylindrically symmetric, it suffices to consider the transformed representation for one slowness variable only. We thus obtain

G(s1, x3, x3,R, τ ) =
∫ τ

−∞
f (s1, x3, x3,R, τ ′)R(s1, x3,R, τ − τ ′)dτ ′ + f (s1, x3, x3,R, −τ ), for x3 ≥ x3,R . (42)

For any given value of s1, the Green’s function G(s1, x3, x3, R, τ ) is the response to a plane-wave source at x3, R as a function of receiver depth
x3 and intercept time τ . For |s1| ≤ 1/c(x3) the plane wave is propagating, whereas for |s1| > 1/c(x3) it is evanescent. For propagating waves,
the local propagation angle α(x3) follows from s1 = sin α(x3)/c(x3). The focusing function f (s1, x3, x3,R, τ ) obeys the focusing condition
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192 K. Wapenaar et al.

Figure 4. (a) Horizontally layered medium with two high-velocity layers. (b) Numerically modelled reflection response R(s1, x3, R, τ ) at the surface. The
horizontal slowness s1 = 1/2800 s m−1 is chosen such that the wave field is evanescent in the high-velocity layers. (c) Numerically modelled focusing function
f (s1, x3, x3,R, τ ). The trace at x3, R = 0 m illustrates the focusing condition of eq. (43).

formulated by eq. (25), transformed to the slowness intercept-time domain, hence

f (s1, x3, x3,R, τ )|x3=x3,R = ρ0c0

2 cos α0
δ(τ ), (43)

with α0 = α(x3, R). Consider the horizontally layered medium of Fig. 4(a). Two thin high-velocity layers (c2 = c4 = 3000 m s–1) are embedded
in a homogeneous background medium with a velocity of 2000 m s–1. The mass densities, in kg m−3, are assigned the same numerical values
as the velocities to get significant contrasts between the different layers. A plane wave is emitted from x3, R into the medium, with slowness s1 =
1/2800 s m−1, hence, this wave leaves the surface with an angle α0 = 45.6◦ and becomes evanescent in the high-velocity layers. For the source
function we use a Ricker wavelet with a central frequency of 50 Hz, hence, the wavelength for the central frequency in the high-velocity layers
is 60 m. The thickness of the high-velocity layers is 20 m, which is of the same order as the distance over which the evanescent waves decay

with a factor 1/e, which is equal to 1/(ωc

√
s2

1 − 1/c2
2)=24.8 m. Hence, we may expect that the waves tunnel through these layers. Fig. 4(b)

shows the numerically modelled reflection response R(s1, x3, R, τ ) for the chosen slowness. The first two events are composite reflections from
the two high-velocity layers (including internal multiples of evanescent waves inside these layers) and the other events are multiple reflections
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between these layers. Fig. 4(c) shows the numerically modelled focusing function f (s1, x3, x3,R, τ ) as a function of x3 and τ , convolved with
the same Ricker wavelet for a clear display. Blue and red arrows indicate upgoing and downgoing waves, respectively, in the homogeneous
background medium. The tunnelling of the waves through the high-velocity layers is clearly visible. A single upgoing wave reaches the
surface x3, R at τ = 0, conform the focusing condition formulated by eq. (43) [except that in this display δ(τ ) is convolved with the Ricker
wavelet]. Note that the amplitude increases with increasing depth (to compensate for the evanescent waves in the high-velocity layers), which
means that, in practice, the numerically computed focusing function becomes unstable beyond some thickness of the high-velocity layers.

The reflection response of Fig. 4(b) and the focusing function of Fig. 4(c) (the latter without the wavelet) are used as input for the
representation of eq. (42). This yields the Green’s function G(s1, x3, x3, R, τ ) (convolved with the Ricker wavelet) as a function of x3 and
τ , see Fig. 5(a). Blue and red arrows indicate again upgoing and downgoing waves, respectively. This figure shows the expected behaviour
of the response to a plane-wave source at x3, R (a downgoing wave leaving the surface, two composite primary upgoing waves and multiple
reflections between the high velocity layers). Fig. 5(b) shows G(s1, x3, A, x3, R, τ ) for x3, A = 300 m. The green line is the Green’s function
obtained from eq. (42), the red line is the directly modelled Green’s function. Similarly, Fig. 5(c) shows G(s1, x3, B, x3, R, τ ) for x3, B = 210 m,
that is inside the first high velocity layer. In both cases the match is perfect, which confirms that the representation of eq. (42) correctly
accounts for propagating and evanescent waves inside the medium.

Using source–receiver reciprocity we may interpret Fig. 5(b) as G(s1, x3, R, x3, A, τ ), which is the response at the surface x3, R to a virtual
plane-wave source at x3, A = 300 m. Hence, G(s1, x3, R, x3, A, τ ) may be seen as the result of redatuming the source from the surface to x3, A.
We now discuss receiver redatuming. To this end, we transform the representation of eq. (36) to the slowness intercept-time domain, which
yields

Gh(s1, x3, x3,A, τ ) =
∫ τ

−∞
F(s1, x3, x3,R, τ ′)G(s1, x3,R, x3,A, τ − τ ′)dτ ′

+
∫ ∞

τ

F(s1, x3, x3,R, −τ ′)G(s1, x3,R, x3,A, τ ′ − τ )dτ ′, for x3 ≥ x3,R, (44)

with, analogous to eq. (19),

F(s1, x3, x3,R, τ ) = 2 cos α0

ρ0c0
f (s1, x3, x3,R, τ ). (45)

Note that the right-hand side of eq. (44) contains the Green’s function with the redatumed source at x3, A and the receiver at x3, R at the
surface. This representation redatums the receiver from x3, R to any depth x3 in the subsurface. This yields the homogeneous Green’s function,
which consists of G(s1, x3, x3, A, τ ) plus its time-reversal, see Fig. 5(d). The causal part (right of the green dashed line) is the retrieved
Green’s function G(s1, x3, x3, A, τ ). Conform expectation, we see a virtual source at x3, A emitting downgoing and upgoing plane waves, which
reverberate in the wave guide between the two high-velocity layers, but which also emit some energy through tunnelling into the half-spaces
above and below the high-velocity layers. This example illustrates the handling of propagating and evanescent waves inside the medium by
the homogeneous Green’s function representation of eq. (44).

4 E L A S T O DY NA M I C WAV E F I E L D R E P R E S E N TAT I O N

We derive the elastodynamic equivalent of the representation of eq. (11). We consider the same configuration as in Section 2, except that now
the medium parameters of the lower half-space x3 > x3, R are the stiffness tensor cijkl(x) and the mass density tensor ρ ik(x), with symmetries
cijkl = cjikl = cijlk = cklij and ρ ik = ρki. In the homogeneous isotropic upper half-space x3 ≤ x3, R the parameters are ρ ik = δikρ0 and cijkl =
λ0δijδkl + μ0(δikδjl + δilδjk), with λ0 and μ0 the Lamé parameters of the half-space. The P- and S-wave propagation velocities of the upper
half-space are cP = [(λ0 + 2μ0)/ρ0]1/2 and cS = (μ0/ρ0)1/2, respectively.

The basic equations in the frequency domain for elastodynamic wave propagation are the linearized equation of motion

− iωρikvk − ∂ jτi j = f̂ i (46)

and the linearized deformation equation

iωτi j + ci jkl∂lvk = 0, (47)

respectively. Here τ ij(x, ω) is the stress tensor (with symmetry τ ij = τ ji), vk(x, ω) the particle velocity and f̂ i (x, ω) a source in terms of
volume-force density (the circumflex is used to distinguish this source term from the focusing function). Eqs (46) and (47) can be combined
into the elastodynamic wave equation

Likvk = iω f̂ i , (48)

with

Lik = ∂ j ci jkl∂l + ω2ρik . (49)
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194 K. Wapenaar et al.

Figure 5. (a) Green’s function G(s1, x3, x3, R, τ ) obtained from Figs 4(b) and (c) via the representation of eq. (42). (b) G(s1, x3, A, x3, R, τ ), taken from figure (a)
for x3, A = 300 m (green), compared with directly modelled Green’s function (red). (c) Similarly, G(s1, x3, B, x3, R, τ ), taken from figure (a) for x3, B = 210 m
inside the first high velocity layer. (d) Homogeneous Green’s function Gh(s1, x3, x3, A, τ ) obtained from Figs 4(c) and 5(b) via the representation of eq. (44).
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We introduce an elastodynamic focusing function F(x, xR, ω) as a 3 × 3 matrix, according to

F(x, xR, ω) =

⎛
⎜⎝F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

F3,1 F3,2 F3,3

⎞
⎟⎠(x, xR, ω), (50)

where xR denotes again the position of a focal point at ∂DR . Each column of F is a particle velocity vector of which the components, for
fixed xR and variable x, obey the elastodynamic wave eq. (48) for the source-free situation. This is different from the elastodynamic focusing
function introduced by Wapenaar & Slob (2014), in which the different elements represent decomposed compressional and shear waves.

We define the focusing condition, analogous to eq. (9), as

F(x, xR, ω)|x3=x3,R = Iδ(xH − xH,R), (51)

(I is the 3 × 3 identity matrix) and demand that F(x, xR, ω) is purely upgoing at ∂DR and in the homogeneous isotropic upper half-space.
Eq. (51) implies that, for the kth column of F, the kth component of the particle velocity vector in that column focuses at xR and the other two
components are zero on ∂DR . Hence, the columns of F are mutually independent.

We discuss a representation for a wave field vk(x, ω), which may have sources in the upper half-space above ∂DR , but which obeys the
source-free wave equation Likvk = 0 for x3 ≥ x3, R. We store the components vk(x, ω) in a 3 × 1 vector v(x, ω) as follows:

v(x, ω) =

⎛
⎜⎝v1

v2

v3

⎞
⎟⎠(x, ω). (52)

In the lower half-space we express v(x, ω) as a superposition of mutually independent wave fields that obey the same source-free wave
equation as v(x, ω) for x3 ≥ x3, R. For this purpose we choose the focusing functions F(x, xR, ω) and F∗(x, xR, ω), of which the columns are
also mutually independent. Hence, analogous to eq. (10) we express v(x, ω) as

v(x, ω) =
∫

∂DR

F(x, xR, ω)a(xR, ω)dxR +
∫

∂DR

F∗(x, xR, ω)b(xR, ω)dxR, for x3 ≥ x3,R . (53)

Here a(xR, ω) and b(xR, ω) are as yet undetermined 3 × 1 vectors. In Appendix B1, we formulate boundary conditions for the particle velocity
and traction vectors at ∂DR , from which we solve a(xR, ω) and b(xR, ω). We thus obtain

v(x, ω) =
∫

∂DR

F(x, xR, ω)v−(xR, ω)dxR +
∫

∂DR

F∗(x, xR, ω)v+(xR, ω)dxR, for x3 ≥ x3,R, (54)

where v−(xR, ω) and v+(xR, ω) represent the upgoing and downgoing parts, respectively, of v(xR, ω) for xR at ∂DR . These upgoing and
downgoing fields are velocity-normalized, meaning that v− + v+ = v at and above ∂DR . Below ∂DR we only consider the total (undecomposed)
wave field v.

The explanation of the right-hand side of eq. (54) in terms of Huygens’ principle is similar to that of eq. (11). The main extension is that
the matrix–vector products in eq. (54) accomplish a summation over the different components of the secondary sources at ∂DR (corresponding
to the foci of the different columns of the focusing function F).

As for the acoustic representation of eq. (11), the underlying assumption in the derivation of eq. (54) is that evanescent waves can be
neglected at ∂DR . Hence, it only holds for waves which have a horizontal slowness s which obeys

|s| ≤ 1/cP , at ∂DR . (55)

Using similar arguments as given below eq. (12), it follows that eq. (54) accounts for evanescent waves inside the medium, as long as they
are related to propagating waves at the surface, as formulated by eq. (55).

5 E L A S T O DY NA M I C G R E E N ’ S F U N C T I O N R E P R E S E N TAT I O N S

5.1 Representation for a modified elastodynamic Green’s function

We introduce the elastodynamic Green’s function Gk, n(x, xS, ω) as a solution of eq. (48) for a unit point source of volume-force density at xS

in the xn-direction, hence

Lik Gk,n = iωδinδ(x − xS). (56)

We demand that the time domain version of Gk, n(x, xS, ω) is causal. Note that Gk, n obeys source–receiver reciprocity, that is Gk, n(x, xS, ω) =
Gn, k(xS, x, ω). We introduce G(x, xS, ω) as a 3 × 3 matrix, according to

G(x, xS, ω) =

⎛
⎜⎝G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3

⎞
⎟⎠(x, xS, ω). (57)
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Each column is a particle velocity vector of which the components, for fixed xS and variable x, obey wave eq. (56). The different columns
correspond to different directions of the force source at xS. This is different from the elastodynamic Green’s function used by Wapenaar & Slob
(2014), in which the different elements represent decomposed compressional and shear waves. In matrix form, source–receiver reciprocity
implies G(x, xS, ω) = {G(xS, x, ω)}t, where superscript t denotes transposition.

We choose xS = (xH, S, x3, S) again in the upper half-space, at a vanishing distance ε above ∂DR , hence, x3, S = x3, R − ε. In Appendix B2,
we derive a modified version �(x, xS, ω) of G(x, xS, ω) (eq. B20), of which the downgoing part �+(x, xS, ω) for x at ∂DR (i.e. just below the
source level) is equal to a spatial delta function. Hence

�+(x, xS, ω)|x3=x3,R = Iδ(xH − xH,S). (58)

We define the reflection response R(xR, xS, ω) of the medium below ∂DR as the upgoing part of �(xR, xS, ω), with xR at ∂DR , hence

R(xR, xS, ω) = �−(xR, xS, ω). (59)

Substituting v(x, ω) = �(x, xS, ω) and v±(xR, ω) = �±(xR, xS, ω) into eq. (54), using eqs (58) and (59), gives

�(x, xS, ω) =
∫

∂DR

F(x, xR, ω)R(xR, xS, ω)dxR + F∗(x, xS, ω), for x3 ≥ x3,R . (60)

This is a representation for the modified version �(x, xS, ω) of the elastodynamic Green’s function. It has been derived without applying
decomposition in the lower half-space. It only excludes the contribution from waves that are evanescent at ∂DR .

5.2 Representation for the elastodynamic Green’s function

In Appendix B3 we show that eq. (60) can be reorganized into the following representation for the elastodynamic Green’s function G(x, xS,
ω)

G(x, xS, ω) =
∫

∂DR

f(x, xR, ω){R(xS, xR, ω)}t dxR + f∗(x, xS, ω), for x3 ≥ x3,R . (61)

Here f(x, xR, ω) is a modified version of the focusing function F(x, xR, ω) (eq. B25). This representation gives the full elastodynamic particle
velocity field at any virtual receiver position x inside the medium. It is similar to earlier derived elastodynamic representations for the
Marchenko method (da Costa Filho et al. 2014; Wapenaar & Slob 2014), but here it has been derived without applying decomposition at a
truncation level inside the medium. As a consequence, eq. (61) gives the full wave field at any virtual receiver position x inside the medium,
including multiply reflected, converted, refracted and evanescent waves. This representation only excludes the contribution from waves that
are evanescent at ∂DR , see the condition formulated by eq. (55).

Applying elastodynamic representations like the one in eq. (61) to derive a Marchenko method is not trivial. The functions G(x, xS, ω)
and f∗(x, xS, ω), transformed back to the time domain, partly overlap and hence they cannot be completely separated by a time window [similar
as discussed by Wapenaar & Slob (2014) and Reinicke et al. (2020) for Green’s functions and focusing functions consisting of decomposed
compressional and shear waves]. A discussion of elastodynamic Marchenko methods is beyond the scope of this paper.

Similar as in the acoustic situation, the representation of eq. (61) is not a sufficient starting point for imaging. We need at least one other
type of field at x, next to G(x, xS, ω), which represents the particle velocity at x in response to force sources at xS. To this end, we introduce a
Green’s function Gτ

j (x, xS, ω) which, for j = 1, 2, 3, stands for the three traction vectors at x. From eq. (47) we derive that the traction vector
τ j can be expressed in terms of the particle velocity as τ j = − 1

iω C jl∂lv, with (τ j )i = τi j and (Cjl)ik = cijkl. Similarly, we relate Gτ
j to G via

Gτ
j (x, xS, ω) = − 1

iω
C jl (x)∂lG(x, xS, ω). (62)

Hence, when G(x, xS, ω) is available on a sufficiently dense grid, Gτ
j (x, xS, ω) can be obtained via eq. (62). Alternatively, Gτ

j (x, xS, ω) can be
obtained from a modified version of the representation for G(x, xS, ω). Applying the operation − 1

iω C jl∂l to both sides of eq. (61) yields

Gτ
j (x, xS, ω) =

∫
∂DR

h j (x, xR, ω){R(xS, xR, ω)}t dxR − h∗
j (x, xS, ω), for x3 ≥ x3,R, (63)

with

h j (x, xR, ω) = − 1

iω
C jl (x)∂l f(x, xR, ω). (64)

The Green’s functions G(x, xS, ω) and Gτ
j (x, xS, ω) together provide sufficient information for imaging.

5.3 Representation for the homogeneous elastodynamic Green’s function

The representations in Sections 5.1 and 5.2 give the elastodynamic response to a source at xS, observed by a virtual receiver at x inside the
medium. Similar as in Section 3.3, here we modify the representation of eq. (61), to create the response at the surface to a virtual source
inside the medium. After that, we show how to obtain the response to this virtual source at a virtual receiver inside the medium.
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We start by renaming the coordinate vectors in eq. (61) as follows: xS → xR, xR → xS, x → xA. This yields, in combination with
transposing all terms and applying source–receiver reciprocity on the left-hand side of eq. (61),

G(xR, xA, ω) =
∫

∂DR

R(xR, xS, ω)f t (xA, xS, ω)dxS + f†(xA, xR, ω), for x3,A ≥ x3,R . (65)

Here superscript † denotes transposition and complex conjugation. The integral in eq. (65) describes elastodynamic redatuming of the sources
from all xS at the surface to virtual-source position xA in the subsurface.

Our next aim is to derive a representation for the response observed by a virtual receiver at x in the subsurface, given G(xR, xA, ω).
Similar as in Section 3.3, we define the homogeneous elastodynamic Green’s function

Gh(x, xA, ω) = G(x, xA, ω) + G∗(x, xA, ω). (66)

The components of G(x, xA, ω) and G∗(x, xA, ω) obey eq. (56), with source terms iωδinδ(x − xA) and −iωδinδ(x − xA), respectively, on the
right-hand sides. Hence, the components of Gh(x, xA, ω) obey this equation without a source on the right-hand side. Following a similar
reasoning as in Section 3.3, we substitute

v(x, ω) = Gh(x, xA, ω), (67)

v−(x, ω) = G−
h (x, xA, ω) = G(x, xA, ω), for x3 = x3,R, (68)

v+(x, ω) = G+
h (x, xA, ω) = G∗(x, xA, ω), for x3 = x3,R, (69)

into eq. (54). This gives

Gh(x, xA, ω) = 2	
∫

∂DR

F(x, xR, ω)G(xR, xA, ω)dxR, for x3 ≥ x3,R . (70)

This equation describes elastodynamic redatuming of the receivers from all xR at the surface to virtual-receiver position x in the subsurface.
It gives the homogeneous Green’s function Gh(x, xA, ω), which is the response to the virtual source at xA, observed by a virtual receiver at x,
plus its complex conjugate. After transforming this to the time domain, G(x, xA, t) can be extracted from Gh(x, xA, t) by selecting its causal
part.

An elastodynamic homogeneous Green’s function representation similar to eq. (70) was also derived by Wapenaar et al. (2016b) and
illustrated with numerical examples by Reinicke & Wapenaar (2019), but here the fields are not decomposed into downgoing and upgoing
compressional and shear waves inside the medium. Hence, it also holds for evanescent waves inside the medium, as long as condition (55) is
obeyed. Moreover, the derivation presented here is much simpler than in those references.

The source and receiver redatuming processes can be captured in one equation by substituting eq. (65) into (70). This gives

Gh(x, xA, ω) = 2	
∫

∂DR

∫
∂DR

F(x, xR, ω)R(xR, xS, ω)f t (xA, xS, ω)dxSdxR

+2	
∫

∂DR

F(x, xR, ω)f†(xA, xR, ω)dxR, for {x3, x3,A} ≥ x3,R . (71)

The double integral on the right-hand side resembles the process of classical elastodynamic source and receiver redatuming (Wapenaar &
Berkhout 1989; Hokstad 2000), but with the primary focusing functions in those references replaced by full-field focusing functions. It also
resembles elastodynamic source–receiver interferometry (Halliday et al. 2012), but with the double integration along a closed boundary
in that paper replaced by the double integration over the open boundary ∂DR . Hence, via the theories of elastodynamic primary source–
receiver redatuming (Wapenaar & Berkhout 1989; Hokstad 2000), closed-boundary source–receiver interferometry (Halliday et al. 2012)
and open-boundary homogeneous Green’s function retrieval using wave field decomposition (Wapenaar et al. 2016b), we have arrived at
a representation for elastodynamic open-boundary homogeneous full-field Green’s function retrieval (eq. 71), which accounts for internal
multiples, converted, refracted and evanescent waves in the lower half-space.

6 C O N C LU S I O N S

We have derived acoustic and elastodynamic Green’s function representations in terms of the reflection response at the surface and focusing
functions. These representations have the same form as the representations that we derived earlier as the basis for Marchenko redatuming,
imaging, monitoring and multiple elimination. However, unlike in our original derivations, we did not assume that the wave field inside
the medium can be decomposed into downgoing and upgoing waves and we did not ignore evanescent waves inside the medium. We only
neglected the contribution of waves that are evanescent at the acquisition boundary. We have demonstrated with numerical examples that
the representations indeed account for evanescent waves inside the medium. The representations form a starting point for new research on
Marchenko methods which circumvent the limitations caused by the assumptions underlying the traditional representations. In these new
developments, care should be taken to account for the overlap in time of the Green’s function and the time-reversed focusing function,
particularly when dealing with refracted waves.
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A P P E N D I X A : D E R I VAT I O N O F T H E A C O U S T I C WAV E F I E L D R E P R E S E N TAT I O N

A1 Derivation of the representation of eq. (11)

We derive expressions for the coefficients a(xR, ω) and b(xR, ω) in the acoustic wave field representation of eq. (10). We do this by formulating
two boundary conditions at ∂DR . First, we consider the acoustic pressure p(x, ω) at ∂DR . To this end, we evaluate eq. (10) for x at ∂DR . Using
the focusing condition formulated in eq. (9) we thus obtain

p(x, ω)|x3=x3,R =
∫

∂DR

δ(xH − xH,R)a(xR, ω)dxR +
∫

∂DR

δ(xH − xH,R)b(xR, ω)dxR,

= {a(x, ω) + b(x, ω)}x3=x3,R , (A1)

where we used xR = (xH,R, x3,R). This is our first equation for the coefficients a(xR, ω) and b(xR, ω).
Next, we consider the vertical component of the particle velocity v3(x, ω) at ∂DR . From the Fourier transform of eq. (1), using ρ jk =

δjkρ0 at ∂DR , we obtain v3(x, ω) = 1
iωρ0

∂3 p(x, ω) for x at ∂DR . Substituting eq. (10) gives

v3(x, ω) = 1

iωρ0

∫
∂DR

∂3 F(x, xR, ω)a(xR, ω)dxR + 1

iωρ0

∫
∂DR

∂3 F∗(x, xR, ω)b(xR, ω)dxR, (A2)

for x3 = x3,R. Applying the spatial Fourier transformation of eq. (40) to both sides of eq. (A2) gives

ṽ3(s, x3, ω) = 1

iωρ0

∫
∂DR

∂3 F̃(s, x3, xR, ω)a(xR, ω)dxR + 1

iωρ0

∫
∂DR

∂3 F̃∗(−s, x3, xR, ω)b(xR, ω)dxR, (A3)

for x3 = x3, R. At this depth level the focusing function is an upgoing field (see Fig. 1), hence it obeys the following one-way wave equation

∂3 F̃(s, x3, xR, ω)|x3=x3,R = −iωs3 F̃(s, x3,R, xR, ω), (A4)

with the vertical slowness s3 defined as

s3 =
⎧⎨
⎩

√
1/c2

0 − s · s, for s · s ≤ 1/c2
0

i
√

s · s − 1/c2
0, for s · s > 1/c2

0.
(A5)

The two expressions in eq. (A5) represent the situation for propagating and evanescent waves, respectively. Applying the spatial Fourier
transformation of eqs (40) to eq. (9) we further have

F̃(s, x3,R, xR, ω) = exp{−iωs · xH,R}. (A6)

Substitution of eqs (A4) and (A6) into eq. (A3) for x3 = x3, R gives

ṽ3(s, x3,R, ω) = − s3

ρ0

∫
∂DR

exp{−iωs · xH,R}a(xR, ω)dxR + s∗
3

ρ0

∫
∂DR

exp{−iωs · xH,R}b(xR, ω)dxR

= − s3

ρ0
ã(s, x3,R, ω) + s∗

3

ρ0
b̃(s, x3,R, ω). (A7)

Combining the spatial Fourier transform of eq. (A1) with eq. (A7) gives(
p̃
ṽ3

)
x3=x3,R

=
(

1 1
s∗

3 /ρ0 −s3/ρ0

)(
b̃
ã

)
x3=x3,R

. (A8)

For s · s ≤ 1/c2
0 at ∂DR we have s∗

3 = s3, see eq. (A5). Hence, for propagating waves, eq. (A8) is recognised as the well-known system that
composes the total wave fields on the left-hand side from downgoing and upgoing fields on the right-hand side (Corones 1975; Ursin 1983;
Fishman & McCoy 1984). Hence

b̃(s, x3,R, ω) = p̃+(s, x3,R, ω), (A9)

ã(s, x3,R, ω) = p̃−(s, x3,R, ω), (A10)
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for s · s ≤ 1/c2
0 at ∂DR , where p̃+(s, x3,R, ω) and p̃−(s, x3,R, ω) are downgoing and upgoing fields, respectively, at ∂DR . Transforming these

expressions back to the space domain, using

p±(xR, ω) = ω2

4π 2

∫
R2

exp{iωs · xH,R} p̃±(s, x3,R, ω)ds (A11)

and similar expressions for a(xR, ω) and b(xR, ω), gives

b(xR, ω) ≈ p+(xR, ω), (A12)

a(xR, ω) ≈ p−(xR, ω). (A13)

The approximation signs signify that evanescent waves are neglected at ∂DR [since eqs (A9) and (A10) hold for propagating waves only,
whereas the inverse Fourier transformation involves an integration along all horizontal slownesses]. Substitution of eqs (A12) and (A13) into
eq. (10) gives eq. (11).

A2 Analysis of the integral in eq. (23)

We analyze the integral in eq. (23). We show that we can transfer the operator ∂3, R from f to Gs, and that this is accompanied with a sign
change. For a function of two space variables, u(x, xR, ω), we define the spatial Fourier transform along the second space variable as

ũ(x, s, x3,R, ω) =
∫
R2

u(x, xH,R, x3,R, ω) exp{iωs · xH,R}dxH,R . (A14)

Note the opposite sign in the exponential, compared with that in eq. (40). Using this Fourier transform and Parseval’s theorem, we obtain for
the integral in eq. (23)∫

∂DR

{∂3,R f (x, xR, ω)}Gs(xS, xR, ω)dxR = ω2

4π 2

∫
R2

{∂3,R f̃ (x,−s, x3,R, ω)}G̃s(xS, s, x3,R, ω)ds. (A15)

Note that f̃ (x, −s, x3,R, ω) is differentiated with respect to the focal point depth x3,R, hence, the one-way wave equation gets a sign opposite
to that in eq. (A4), that is ∂3,R f̃ (x, −s, x3,R, ω) = iωs3 f̃ (x, −s, x3,R, ω), with s3 defined in eq. (A5). We transfer iωs3 to the Green’s function
and use iωs3G̃s(xS, s, x3,R, ω) = −∂3,R G̃s(xS, s, x3,R, ω) (which is a differentiation with respect to the source depth x3,R). Making these
substitutions in the right-hand side of eq. (A15) and applying Parseval’s theorem again gives

− ω2

4π 2

∫
R2

f̃ (x, −s, x3,R, ω)∂3,R G̃s(xS, s, x3,R, ω)ds = −
∫

∂DR

f (x, xR, ω)∂3,R Gs(xS, xR, ω)dxR . (A16)

Hence, we have transferred the operator ∂3, R under the integral in eq. (23) from f to Gs, which involves a sign change.

A P P E N D I X B : D E R I VAT I O N O F T H E E L A S T O DY NA M I C WAV E F I E L D
R E P R E S E N TAT I O N

B1 Derivation of the representation of eq. (54)

We derive expressions for the coefficients a(xR, ω) and b(xR, ω) in the elastodynamic wave field representation of eq. (53). We do this by
formulating two boundary conditions at ∂DR . First, we consider the particle velocity vector v(x, ω) at ∂DR . To this end, we evaluate eq. (53)
for x at ∂DR . Using the focusing condition formulated in eq. (51) we thus obtain

v(x, ω)|x3=x3,R =
∫

∂DR

δ(xH − xH,R)a(xR, ω)dxR +
∫

∂DR

δ(xH − xH,R)b(xR, ω)dxR,

= {a(x, ω) + b(x, ω)}x3=x3,R . (B1)

For the second boundary condition we analyze the traction vector τ 3(x, ω) at ∂DR . First we establish a relation between τ 3(x, ω) and v(x, ω)
in the homogeneous isotropic upper half-space, including ∂DR . Using eq. (40), we transform v(x, ω) and τ 3(x, ω) for x3 ≤ x3,R to ṽ(s, x3, ω)
and τ̃ 3(s, x3, ω), respectively. These fields can be related to vectors p̃+ and p̃− containing downgoing and upgoing compressional and shear
wave fields, according to(

ṽ
−τ̃ 3

)
=

(
L̃+

1 L̃−
1

L̃+
2 L̃−

2

)(
p̃+

p̃−

)
, for x3 ≤ x3,R, (B2)

(Kennett et al. 1978; Ursin 1983; Wapenaar & Berkhout 1989). Next, we define the downgoing and upgoing parts of ṽ as ṽ± = L̃±
1 p̃± and

rewrite eq. (B2) as(
ṽ

−τ̃ 3

)
=

(
I I

D̃+ D̃−

)(
ṽ+

ṽ−

)
, for x3 ≤ x3,R, (B3)
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with D̃± = L̃±
2 (L̃±

1 )−1. The matrices L̃±
1 and L̃±

2 in eq. (B2) are not uniquely defined. They depend on the chosen normalization of the fields
contained in p̃+ and p̃−. However, independent of the normalization, the matrix D̃± in eq. (B3) is uniquely defined. It is given by

D̃±(s) = ρ0c2
S

s P
3 sS

3 + s · s

⎛
⎜⎝±((c−2

S − s2
2 )s P

3 + s2
2 sS

3 ) ±s1s2(s P
3 − sS

3 ) −s1(c−2
S − 2(s P

3 sS
3 + s · s))

±s1s2(s P
3 − sS

3 ) ±((c−2
S − s2

1 )s P
3 + s2

1 sS
3 ) −s2(c−2

S − 2(s P
3 sS

3 + s · s))
s1(c−2

S − 2(s P
3 sS

3 + s · s)) s2(c−2
S − 2(s P

3 sS
3 + s · s)) ±sS

3 c−2
S

⎞
⎟⎠ (B4)

with the vertical slownesses s P
3 and sS

3 for P and S waves, respectively, defined as

s P,S
3 =

⎧⎨
⎩

√
1/c2

P,S − s · s, for s · s ≤ 1/c2
P,S

i
√

s · s − 1/c2
P,S, for s · s > 1/c2

P,S,
(B5)

where cP and cS are the P- and S-wave velocities, respectively, of the upper half-space x3 ≤ x3, R. Applying the transform of eq. (40) to
eq. (53) we obtain for x at ∂DR

ṽ(s, x3,R, ω) =
∫

∂DR

F̃(s, x3,R, xR, ω)a(xR, ω)dxR +
∫

∂DR

F̃∗(−s, x3,R, xR, ω)b(xR, ω)dxR . (B6)

Since F̃(s, x3,R, xR, ω) is upgoing, the first term on the right-hand side is the upgoing velocity field ṽ−(s, x3,R, ω) and the second term is, for
propagating waves (i.e., for s · s ≤ 1/c2

P ), the downgoing velocity field ṽ+(s, x3,R, ω). Hence, using eq. (B3) we obtain for the transformed
traction vector

− τ̃ 3(s, x3,R, ω) = D̃−(s)
∫

∂DR

F̃(s, x3,R, xR, ω)a(xR, ω)dxR + D̃+(s)
∫

∂DR

F̃∗(−s, x3,R, xR, ω)b(xR, ω)dxR, (B7)

for s · s ≤ 1/c2
P at ∂DR . Applying the transform of eq. (40) to the focusing condition of eq. (51) gives

F̃(s, x3,R, xR, ω) = I exp{−iωs · xH,R}. (B8)

Substituting this into eq. (B7) we obtain

− τ̃ 3(s, x3,R, ω) = D̃−(s)ã(s, x3,R, ω) + D̃+(s)b̃(s, x3,R, ω), (B9)

for s · s ≤ 1/c2
P at ∂DR . Combining this equation with the Fourier transform of eq. (B1) yields(

ṽ
−τ̃ 3

)
x3=x3,R

=
(

I I
D̃+ D̃−

)(
b̃
ã

)
x3=x3,R

, (B10)

for s · s ≤ 1/c2
P at ∂DR . Comparing this with eq. (B3) we conclude

b̃(s, x3,R, ω) = ṽ+(s, x3,R, ω), (B11)

ã(s, x3,R, ω) = ṽ−(s, x3,R, ω), (B12)

for s · s ≤ 1/c2
P at ∂DR . Transforming these expressions back to the space domain gives

b(xR, ω) ≈ v+(xR, ω), (B13)

a(xR, ω) ≈ v−(xR, ω). (B14)

The approximation signs signify that evanescent waves are neglected at ∂DR . Substitution of eqs (B13) and (B14) into eq. (53) gives eq. (54).

B2 Derivation of the modified elastodynamic Green’s function

We derive a modified elastodynamic Green’s function �(x, xS, ω) (with x3,S = x3,R − ε), such that for x at ∂DR , that is just below the source
level, the downgoing part of �(x, xS, ω) obeys eq. (58), that is

lim
x3↓x3,S

�+(x, xS, ω) = Iδ(xH − xH,S). (B15)

To this end we first investigate the properties of the downgoing part of G(x, xS, ω) defined in eqs (56) and (57), just below the source level.
Consider the inverse of eq. (B3)(

ṽ+

ṽ−

)
=

(
−�̃

−1
D̃− �̃

−1

�̃
−1

D̃+ −�̃
−1

)(
ṽ

−τ̃ 3

)
, for x3 ≤ x3,R, (B16)

with

�̃ = D̃+ − D̃−. (B17)
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The upper-right matrix in eq. (B16), �̃
−1

, gives the relation between −τ̃ 3 and the downgoing velocity vector ṽ+. The same matrix transforms
a unit force source in a homogeneous half-space into the downgoing part of the Green’s function just below this source, hence

lim
x3↓x3,S

G̃+(s, x3, 0, x3,S, ω) = �̃
−1

(s)

= 1

2ρ0

⎛
⎜⎜⎜⎝

s2
1

s P
3

+
(

1
c2

S
− s2

1

)
1

sS
3

(
1

s P
3

− 1
sS
3

)
s1s2 0(

1
s P
3

− 1
sS
3

)
s1s2

s2
2

s P
3

+
(

1
c2

S
− s2

2

)
1

sS
3

0

0 0 s P
3 + s·s

sS
3

⎞
⎟⎟⎟⎠. (B18)

In eq. (B18) the source is located at (0, x3,S). Next, we consider G(x, xS, ω) for a laterally shifted source position (xH,S, x3,S). Applying a
spatial Fourier transform along the horizontal source coordinate xH, S, using eq. (A14) with xH,R replaced by xH,S, yields G̃(x, s, x3,S, ω). For
the downgoing part just below the source we obtain a phase-shifted version of the Green’s function of eq. (B18), according to

lim
x3↓x3,S

G̃+(x, s, x3,S, ω) = �̃
−1

(s) exp{iωs · xH}. (B19)

Comparing this with the desired condition of eq. (B15) suggests to define the modified Green’s function (for arbitrary x) as

�̃(x, s, x3,S, ω) = G̃(x, s, x3,S, ω)�̃(s), (B20)

such that

lim
x3↓x3,S

�̃
+

(x, s, x3,S, ω) = I exp{iωs · xH}. (B21)

The inverse Fourier transform from s to xH, S gives indeed eq. (B15).
We define the reflection response R̃(xR, s, x3,S, ω) of the medium below ∂DR as the upgoing part of the modified Green’s function

�̃(xR, s, x3,S, ω), with xR at ∂DR , hence

R̃(xR, s, x3,S, ω) = �̃
−

(xR, s, x3,S, ω), (B22)

or, using eq. (B20),

R̃(xR, s, x3,S, ω) = G̃−(xR, s, x3,S, ω)�̃(s)

= G̃s(xR, s, x3,S, ω)�̃(s), (B23)

where superscript s stands for scattered. The inverse Fourier transform of eq. (B22) from s to xH,S yields eq. (59).

B3 Derivation of the representation of eq. (61)

To obtain a representation for G(x, xS, ω) we start by transforming all terms in eq. (60) along xH,S, using eq. (A14), with xH,R replaced by
xH,S, hence

�̃(x, s, x3,S, ω) =
∫

∂DR

F(x, xR, ω)R̃(xR, s, x3,S, ω)dxR + F̃∗(x, −s, x3,S, ω), for x3 ≥ x3,R . (B24)

We introduce a modified focusing function f̃(x, s, x3,S, ω) via

F̃(x, s, x3,S, ω) = f̃(x, s, x3,S, ω)�̃(s). (B25)

According to eq. (B18) we have for propagating waves (i.e. for s · s ≤ 1/c2
P )

�̃(s) = �̃(−s) = �̃
∗
(s) = �̃

t
(s). (B26)

Hence, for F̃∗(x,−s, x3,S, ω) we obtain

F̃∗(x, −s, x3,S, ω) = f̃∗(x, −s, x3,S, ω)�̃(s). (B27)

Multiplying all terms in eq. (B24) from the right by �̃
−1

(s), using eqs (B20), (B23) and (B27), and transforming the resulting expression
back from s to xH,S gives

G(x, xS, ω) =
∫

∂DR

F(x, xR, ω)Gs(xR, xS, ω)dxR + f∗(x, xS, ω), for x3 ≥ x3,R . (B28)

We modify the integral step by step. First we use source–receiver reciprocity for the scattered Green’s function Gs(xR, xS, ω) and we apply
Parseval’s theorem. We thus obtain for the integral in eq. (B28)

ω2

4π 2

∫
R2

F̃(x,−s, x3,R, ω){G̃s(xS, s, x3,R, ω)}t ds. (B29)
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Substituting eq. (B25), using eq. (B26), gives

ω2

4π 2

∫
R2

f̃(x,−s, x3,R, ω){G̃s(xS, s, x3,R, ω)�̃(s)}t ds. (B30)

Using eq. (B23) this gives

ω2

4π 2

∫
R2

f̃(x,−s, x3,R, ω){R̃(xS, s, x3,R, ω)}t ds. (B31)

Applying Parseval’s theorem again and inserting the resulting integral in eq. (B28) yields eq. (61). It has been derived without applying
decomposition in the lower half-space, but it excludes the contribution from waves that are evanescent at ∂DR .
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