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Abstract. Remotely Triggered Black Hole (RTBH) is a common DDoS
mitigation approach that has been in use for the last two decades. Usu-
ally, it is implemented close to the attack victim in networks sharing
some type of physical connectivity. The Unwanted Traffic Removal Ser-
vice (UTRS) project offers a free, global, and relatively low-effort-to-join
and operate RTBH alternative by removing the requirement of physi-
cal connectivity. Given these unique value propositions of UTRS, this
paper aims to understand to what extent UTRS is adopted and used
to mitigate DDoS attacks. To reach this goal, we collected two DDoS
datasets describing amplification and Internet-of-Things-botnet-driven
attacks and correlated them with the information from the third dataset
containing blackholing requests propagated to the members of UTRS.
Our findings suggest that, currently, just a small portion of UTRS mem-
bers (approximately 10%) trigger mitigation attempts: out of 1200+
UTRS members, only 124 triggered blackholing events during our study.
Among those, with high probability, 25 Autonomous Systems (ASes)
reacted on AmpPot attacks mitigating 0.025% of them globally or 1.03%
targeting UTRS members; 2 countered IoT-botnet-driven attacks allevi-
ating 0.001% of them globally or 0.06% targeting UTRS members. This
suggests that UTRS can be a useful tool in mitigating DDoS attacks,
but it is not widely used.

Keywords: UTRS · RTBH · DDoS attacks

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are on the rise [10], and they are
proving difficult to defend against. DDoS attacks aim to bring down a targeted
server, service, or network by overwhelming the target system or its network
infrastructure with traffic [22]. DDoS attacks have financial costs to victims,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14345, pp. 23–41, 2024.
https://doi.org/10.1007/978-3-031-51476-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51476-0_2&domain=pdf
http://orcid.org/0000-0002-0556-1742
http://orcid.org/0009-0007-6553-5662
http://orcid.org/0000-0003-4976-4311
http://orcid.org/0009-0006-1706-7529
http://orcid.org/0000-0003-2155-2667
http://orcid.org/0000-0003-0964-8631
http://orcid.org/0000-0002-4699-3007
http://orcid.org/0000-0001-9116-0728
https://doi.org/10.1007/978-3-031-51476-0_2


24 R. Anghel et al.

as they could lose thousands of dollars and possibly go out of business [10].
Attackers employ different techniques and tools to launch them. Lately, massive
DDoS attacks are often fueled by embedded and IoT devices [4] and widely
leverage reflectors to amplify the volume of traffic directed at victims [2].

To mitigate DDoS attacks, network operators and service providers have at
their disposal various countermeasures and mitigation strategies. Among some
of the most common countermeasures are clean pipe, content delivery network
(CDN) attack dilution, antiDDoS proxy, and Remotely Triggered Black Hole
(RTBH) service [9,14,20]. The latter has become popular and used by Internet
Service Providers (ISPs) for about two decades [25]. RTBH leverages the Border
Gateway Protocol (BGP) to reroute attack traffic to places that minimize harm,
typically by dropping it [25].

There are two approaches to putting RTBH into practice. The first one relies
on the direct connection between Autonomous Systems with customer-provider
or peering relationships. The second approach employs an Internet Exchange
Point (IXP), e.g., DE-CIX [8] or Equinix [11], that acts as a central point dis-
tributing blackholing requests to their participants. Regardless of the chosen
approach, RTBH requires physical connectivity from all participants. Moreover,
IXP-provided RTHB is typically a paid service [3].

For those network operators that do not have access to IXPs offering RTBH
or the service is too expensive, there is at least one free alternative, namely
joining an RTBH project. An example of such a project is the Unwanted Traffic
Removal Service (UTRS) [17], a community project of Team Cymru. To the best
of our knowledge, UTRS is currently the only global free-to-participate RTBH
initiative. UTRS is essentially an RTBH operated by a trusted third party, sim-
ilar to RTBHs operated by IXPs. In this case, instead of an IXP, UTRS acts as
the central point that decides whether to accept and distribute the blackholing
requests to its participants. Because it does not need the physical connectivity
of participants, UTRS is not limited geographically.

UTRS is an initiative that any network can join with relatively low effort. As
stated on the project webpage [23], UTRS is offered as a free service to owners of
unique Autonomous System Numbers (ASNs). Joining the UTRS project is done
by filling out an online form that is manually checked by Team Cymru to validate
ownership/access of the AS. If the validation is successful, Team Cymru provides
BGP configuration details and generic guides for various router types [24]. As of
August 2021, 1200+ networks were participating in this initiative [7].

In contrast to an RTBH, UTRS helps to mitigate DDoS attacks closer to
their source [23]. When implementing RTBH over direct connections such as
with upstream ISPs, peering relationships or IXPs, the blackholing happens
close to the attack destination, still causing congestion in networks transiting the
attack. With UTRS, however, the participants could be all over the world, that,
in theory, improves the chance of stopping an attack closer to its source. However,
the likelihood that DDoS attacks are stopped near their source is diminished if
the number of participants is low. Thus, it is important to incentivize ASes to
join such initiatives to decrease transition junk traffic [26].
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In this work, we focus on understanding to what extent UTRS is used globally
among the ASes to mitigate attacks and which DDoS attacks trigger mitigation
attempts via UTRS. To the best of our knowledge, we are the first who study
adoption and the effectiveness of this service in detail. The closest work [13] has
analyzed DDoS attacks and compared them to BGP blackholing events. The
information provided in our work may be valuable for network operators who
would like to asses joining UTRS as an alternative to the RTBHs offered through
direct connectivity.

To reach our goal, we collect six months of blackholed prefixes from UTRS
at five minutes intervals and compare them to two different data sources that
provide information about DDoS targets. The first source is an IoT botnets
Milker service designed to extract information about targets of IoT-driven DDoS
attacks. It gathers IoT botnet malware samples, analyzes them, and then behaves
as one of the bots, enabling us to gather DDoS attack commands from C&C
servers. The second, AmpPot [16], tracks reflection and amplification attacks.
We analyze the data collected from these sources to identify trends and patterns
in using UTRS to mitigate DDoS attacks. We set up ourselves to answer the
following research questions:

(RQ1): How many UTRS members use this service to mitigate attacks?
(RQ2): To what extent are DDoS attacks triggering mitigation attempts via

UTRS?
(RQ3): To what extent can UTRS announcements be explained by amplifi-

cation DDoS attacks?
(RQ4): To what extent can UTRS announcements be explained by IoT-

botnet-driven DDoS attacks?

The contributions of this paper are the following:

– Our analysis provides valuable insights into the adoption of the UTRS service.
It shows that only around 10% of all UTRS members actively use this service
to mitigate attacks.

– We provide a comprehensive analysis of the usage of UTRS in mitigating
DDoS attacks coming from IoT botnets and amplification attacks. Our results
show that while UTRS is used to mitigate reflection attacks, it is barely
triggered to handle IoT-botnet DDoS attacks.

– We identify trends and patterns in the use of UTRS to mitigate DDoS attacks.

2 Related Work

To combat DDoS attacks, various mitigation methods have been suggested, such
as blackholing and rate limiting. In this section, we examine the current research
on blackholing, a technique that discards traffic directed at a targeted IP address,
preventing it from reaching the victim. We focus on recent studies investigating
the effectiveness of blackholing, its limitations, and proposed enhancements to
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mitigate its drawbacks. We also discuss related work on detecting and analyzing
blackholing events and their correlation with DDoS attacks.

In the closest work, Jonker et al. [13] correlate BGP blackholing events with
the data from two attack datasets: “Randomly and Uniformly Spoofed Attacks”
collected from CAIDA’s telescope and AmpPot. The blackholing events are
inferred by applying some heuristics to public BGP data collected by Route-
Views and RIPE RIS. An attack is considered to be blackholed only if its tar-
get IP address is within the BGP announced network and happens no more
than 24 h prior to the announcement. Their results show that only 456k of the
28.16M attacks (1.62%) from CAIDA/AmpPot datasets are blackholed, involv-
ing only 0.81% of all uniquely targeted IP addresses. Another finding shows that
for attacks found in both CAIDA and AmpPot (447.6k attacks), 18.4k (4.12%)
involving 5.7k (3.25%) unique IPs are blackholed, suggesting that more serious
attacks are more likely to be blackholed.

In [26], the authors evaluated how much junk traffic is generated and trans-
ferred by ISPs due to amplification attacks. They proposed a method to filter
this traffic out by using an AmpPot-like honeypot to obtain information about
the victims and Software Defined Network (SDN) to block the traffic targeting
those victims. Similarly, UTRS can be used instead of SDN.

Giotsas et al. [12] developed a methodology to detect BGP blackholing activ-
ity using datasets from RIPE RIS, RouteViews, PCH, and a “CDN.” The find-
ings reveal that 26 IXPs and 242 networks offer RTBH services to customers,
peers, and members, and 96.64% of RTBH events are for IPv4, for the measure-
ment period between August 2016 - March 2017.

Nawrocki et al. [21] analyze RTBH events at a large European IXP, and
correlate the BGP data with IPFIX flows, which capture information about
actual traffic passing through the IXP. The paper finds that more than 95% of
traffic and more than 98% of RTBH events are for IPv4 addresses. The IXP
had 830 member ASes on average during the measurement period (104 days),
of which 78 member ASes announced 1107 IPs to be blackholed for 170 origin
ASes (some customers of the 78 members). The events were repeated, indicating
that the same IP was under different attacks at different times.

In [15], DDoS attack types at a major IXP from September 2019 to April 2020
are analyzed. The authors find that 89.9% of the attacks use known amplification
protocols such as DNS and NTP and IP spoofing. The data is compared to a
“commercial world-wide honeypot network,” revealing a correlation with only
8% of the attacks observed at the IXP, covering only 33% of target IPs.

Finally, the authors in [9] introduced the “Advanced Blackholing” system
that was tested at a major IXP. The system provides improved granularity and
the authors claimed that it can successfully mitigate attacks without disrupting
the service to the victim. The “Stellar Advanced Blackholing” combines the ben-
efits of RTBH, FlowSpec, ACL filters, and Traffic Scrubbing, without requiring
cooperation between networks participating in the IXP. The signaling in Stellar
uses BGP, similar to RTBH, but the filters are deployed at the IXP level by
utilizing OpenFlow, thus relying on the IXP for both the software and hardware
implementation.
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Table 1. Datasets description

Dataset # entries # targets # unique target IPs Duration (sec)

min mean max

UTRS 533,257 7,820 7,830 300.0 4,682.7 413,700.0

AmpPot 1,616,184 1,080,770 1,080,770 0.5 891.5 1,949,571.0

Milker 223,267 46,764 2,787,522 1.0 93.0 3,600.0

3 Data Collection and Datasets Descriptives

Our study aims to determine to what extent DDoS attacks lead to UTRS partici-
pants triggering mitigation attempts. To achieve this goal, from October 2022 to
April 2023 (6 months), we gathered three datasets: UTRS, IoT Milker, and Amp-
Pot. Table 1 describes the collected datasets. The number of entries per dataset
presents the total number of observations per day in each data set aggregated
for the whole period of observation. Next, the column number of targets presents
the number of target networks in the case of UTRS and Milker, while for Amp-
Pot the number displayed is the number of individual IPs targeted. The column
number of unique targeted IPs is self-explanatory. Finally, the table shows the
minimum (min), mean, and maximum (max) duration of attacks.

By combining these datasets, we aim to provide a comprehensive analysis of
how amplification and IoT-botnet DDoS attacks influence UTRS participants to
trigger UTRS mitigation attempts. In this section, we describe the methodology
used to collect and analyze each of these datasets.

3.1 UTRS

To collect the UTRS data set, we registered our own AS and joined the UTRS
project. This allowed us to receive the BGP announcements to black hole traffic
to particular targets1 from this service. We made snapshots of active BGP routes
every 5 min. Then, we stitched the data using the following rule: if the same
target appears in several consecutive snapshots, we assume that it was blocked
during the whole period of time2. As a result, we get a dataset that consists of
targets with start and end blackholing times with 5 min granularity.

Our UTRS dataset has 533, 257 entries. Figure 1a shows entries distribution
per day (hereafter, the UTRS dataset lines are colored orange). On average, we
get 3, 122 entries each day in the UTRS dataset, with the maximum reaching
9, 427 entries.

In the dataset, there are 7, 820 unique target networks (see Table 1) from
124 ASes that contain 7, 830 individual IP addresses. The majority of UTRS
1 UTRS members can announce up to a /25 of IPv4 addresses and up to /49 for IPv6

from their ASes as targets.
2 If a target network is added and removed within a 5-minute interval, it will not

appear in any dump and we will not record it.
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(a) Number of entries in the datasets per day

(b) Number of targets in the datasets per day

Fig. 1. Daily datasets characteristics

announcements target individual IP addresses (/32 prefix length). Only 2 entries
within the 6-month observation period target the same /27 subnetwork on the
same day. The number of targets in the UTRS dataset varies greatly from day
to day (see Fig. 1b). The maximum number of observed IPs during one day was
776, and the minimum of 74. The mean is 357 IPs per day, with a standard
deviation of 159.9. In terms of trends, there is no clear pattern in the data. At
the same time, it is obvious that the number of targets in the months of 2022
seems to be consistently higher than in the ones of 2023.

There is a cluster of days between December 18th and January 11th where
the number of targets is relatively low (74 unique targets). Interestingly, during
the same period, the number of entries in the dataset varies from 74 to 654 (see
Fig. 1a), but the same 74 targets are announced during these days. We suspect
the service was not functioning properly because our test announcements were
not propagated through the service during that period.

Figure 2 shows the empirical Cumulative Distribution Function (eCDF) and
the corresponding Kernel Density Estimation (KDE) of durations. As we can see
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from this figure, the largest part of the UTRS announcements (around 21%) has
a duration equal to 5 min, which is connected with the peculiarities of the UTRS
dataset collection. This tells us that a huge portion of the UTRS announcements
lasts less than 5-min, and we might miss them dumping BGP tables using this
period. The longest duration of announcements in the UTRS dataset was 4 days,
18 h and 55 min (or 413, 700 s) happened at the end of October 2022, with the
mean and the median of 4, 682.7 and 1, 798.0 s correspondingly.

(a) eCDF

(b) KDE

Fig. 2. Events duration characteristics (axis x is in logarithmic scale)

3.2 AmpPot

As the second dataset, we gathered attack data provided by the AmpPot
project3, a reflection and amplification honeypot [16]. The AmpPot honeypot
tracks reflection and amplification attacks by mimicking vulnerable protocols,
such as DNS, NTP, and SSDP. This allows the honeypot to be discovered by

3 https://sec.ynu.codes/dos.

https://sec.ynu.codes/dos
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attackers scanning for reflectors and subsequently used in their attacks. By log-
ging the received requests, the AmpPot data allows for the inference of various
information about an attack, including the victim’s IP address and destination
port, the start and end time of the attack, and the attack intensity.

We collected the amplification attack data from 19 AmpPot sensors (11 prox-
ied and 8 agnostic, see [16] for details). As it was previously shown, e.g., in [18],
AmpPot attacks recorded by different sensors are often related. There are several
strategies for how to combine attacks recorded by different AmpPot sensors. In
this work, we use the same approach as in [16]: we stitch attacks seen by multiple
sensors into one combined attack if the target and the destination port are the
same and there is less than an hour time difference between the attacks. As a
result, we got a dataset that contains 1, 616, 184 attack entries (see Table 1).

The number of entries ranges from 2, 435 to 32, 908, with a mean of 8, 969.7
attacks per day. During this period, 1, 080, 770 unique IPs4 from 15, 825 ASes
were attacked. The count of unique IPs per day varies from 2, 082 to 29, 402, with
a mean of 6, 943.6. Figure 1a shows the count of unique attack entries per day
over the entire observation period, while Fig. 1b reports the number of targets
(hereafter, the AmpPot dataset lines are painted green).

The mean attack duration is 891.5 s, and the median is 150.0 s. Figure 2 shows
the eCDF and KDE plots of the duration of AmpPot attacks. As we can see on
the KDE plot, there are clear peaks at 1, 2 and 5 min, which show the typical
durations of AmpPot attacks. The longest recorded AmpPot attack lasts for 22
days 13 h 32 min and 51 s (1, 949, 571 s), which is probably a routine scan.

3.3 IoT Milker

We set up a C&C monitoring system to monitor IoT DDoS attacks. Our C&C
monitoring system consists of three main components: the sandbox, the C&C
identifier, and the C&C milker. The sandbox safely executes IoT malware and
observes its communications with C&C servers.

The C&C identifier part detects and identifies C&C servers using a two-step
process. In the first step, we use frequency analysis to look for frequent access to
certain IP addresses and ports, which can indicate the presence of a C&C server.
This method does not rely on signatures or other forms of static analysis, making
it less susceptible to evasion by IoT botnets. The second step uses predefined
rules, manually prepared by analysts, to identify the C&C protocol based on the
first payload sent by the sandboxed malware. The initial set of rules is based on
the Mirai source code, but new rules are added as needed. Each rule is associated
with a corresponding milker script, which imitates the identified C&C protocol
and allows the observation system to capture the real-time activities of the IoT
botnet.

The Milker script is a manually created script that imitates the IoT bot
behavior. Using the identified protocol, it connects to the combinations of IP

4 For this dataset, the number of targets corresponds to the number of IPs because
AmpPot records attacks to individual IPs rather networks.
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addresses and ports of C&C servers detected with the frequency analysis and
monitors the commands sent by the C&C servers. Thus, using the milker script,
we are able to capture the real-time activities of IoT botnets, including the
commands to DDoS particular victims. For this work, we collect the start time
of a DDoS attack, the target IP and port, and its duration. Since we collect the
commands sent by the C&C, we do not typically have other statistics on the
attack, like the total number of packets and packets per second.

Over the entire collection period, we gathered a dataset containing 223, 270
entries. The majority of entries (217, 565) attack individual IPs (have /32 prefix
length). At the same time, there are several cases that attack large subnetworks:
1 attack targets /2, and 2 – /4. Such distributed attacks do not make sense;
thus, we assumed that botnet owners initiated them due to mistyping. Most
likely, in one /2 and one /4 cases, the prefix length was intended as /24 by the
attacker. We decided to remove all these 3 entries from the dataset in order
to not overcount potential unique IP addresses, that would also overlap with
loopback ranges. As a result, we get a dataset that contains 223, 267 entries,
targeting 46, 764 unique victim networks with 2, 787, 522 unique IP addresses.

Figure 1a and Fig. 1b show the number of entries and targets per day (here-
after, the Milker dataset line has a blue color). On average, we observed 1, 306.7
entries per day targeting 399.2 networks, with the highest values being 5, 396
attacks and 1, 648 unique targets and the lowest 17 entries and 12 networks
per day correspondingly. Note that we do not have Milker data for 11th–22nd

February 2023, due to our infrastructure upgrade.
The duration of the Milker attacks, as observed by the value sent by the

C&C to the bots, ranges from 1 second to a maximum of one hour (see Fig. 2).
The upper limit of 3, 600 s is probably an artifact of the Mirai code5 which raises
an error if the duration is longer than an hour. As we can see in the figure, the
majority of attacks in the Milker dataset have 30 s, 1 or 2 min durations.

4 Findings

The two collected DDoS datasets, AmpPot and Milker, are the sources of infor-
mation about amplification and IoT-botnet DDoS attacks correspondingly. For
each DDoS dataset, we compute two views representing the intersections with
the UTRS dataset data. The first view (Exact Interval (EI)) contains data about
exact time interval intersections between DDoS attacks and UTRS announce-
ments, while the second (Offset Interval (OI)) represents the intersections of
DDoS attack intervals with the UTRS announcement span extended by 12 h in
both directions. The reason for computing the view with Offset Interval is the
following. A sensor can record an attack that may be already over before it is
blocked by UTRS. Similarly, some sensors can still continue registering attack
packets even though the corresponding entry is removed from the UTRS table.

5 https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/attack.
go.

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/attack.go
https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/attack.go
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UTRS Announcement OfffsetOffset

DDoS AttackDDoS Attack
t

EI Intersection

OI IntersectionOI Intersection

Fig. 3. Intersections views (EI - Exact Interval, OI - Offset Interval)

As we described in Sect. 3, both datasets, AmpPot and Milker, contain infor-
mation about the victims (individual IPs in the case of AmpPot and prefixes for
the Milker dataset). To build the views described above, we first compute a map
relating DDoS attack victims with the UTRS announcement targets. Then, for
each UTRS target, we search for all intersections of UTRS announcement spans
with the time intervals of DDoS attacks targeting the same victim. In the case
of Exact Interval (EI), we look for exact intersections of the time intervals. For
Offset Interval (OI), we, at first, expand the span of the UTRS announcement
in both directions by 12 h and then find the intersections of the attack’s time
intervals with this expanded period. Figure 3 shows the relative position of these
intervals graphically and explains the concepts visually. As a result, we get four
views: two (EI and OI) for the UTRS-AmpPot datasets and another two for the
UTRS-Milker datasets.

4.1 General Overview

Table 2 reports the characteristics of the computed views. The first row, “# of
entries”, contains the number of entries for the corresponding computed view.
As expected, the OI views contain considerably more entries. Interestingly, the
number of entries in the UTRS-Milker view is significantly lower than in UTRS-
AmpPot, although the number of target IPs in the former is higher than in
the latter (see Table 1). The reason is that the number of unique targets is
lower in the UTRS-Milker view. Additionally, the AmpPot attacks are longer
on average, which increases the probability of the intersection with a UTRS
announcement time interval. The row “# of unique UTRS targets” reports the
number of unique targets in the UTRS announcements. For UTRS-AmpPot,
the values in this row are equal to the ones in the “# of unique DDoS attack
targets” row, meaning that one AmpPot attack is typically covered by only
one UTRS announcement. At the same time, for UTRS-Milker, a Milker attack
may trigger several UTRS announcements because some Milker attacks target
networks rather than individual IPs. The values in the last row, “Mean entries
# per UTRS announcement”, show that one UTRS announcement covers more
than one attack. For instance, every UTRS announcement has an EI intersection
with about 1.55 AmpPot and 1.12 Milker attacks correspondingly.
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Table 2. Views characteristics (EI - Exact Interval, OI - Offset Interval)

Parameter UTRS-AmpPot UTRS-Milker

EI OI EI OI

# of entries 468 6,774 9 791

# of unique DDoS attack targets 249 1,268 2 143

# of unique UTRS targets 249 1,268 8 163

# of unique UTRS ASNs 25 43 2 6

Mean entries # per UTRS announcement 1.55 1.76 1.12 1.88

The “# of unique UTRS ASNs” row shows the number of ASes that launched
the UTRS announcements in the corresponding views. With high probability, we
can assume that only 25 and 2 ASes reacted to AmpPot and Milker attacks cor-
respondingly by commencing UTRS announcements (EI intersections), while 43
and 6 of ASes are triggered by AmpPot and Milker attacks with lower probability
(OI intersections).

Among those, there are 43 unique ASes. Table 3 (in appendix) lists the ASes
(in the anonymized form) and what countries they belong to6. More than a
quarter (11 out of 43) of all the ASes are from Brazil. While this may seem
unexpected, a recent study [19] shows that Brazilian ISPs adopt anti-DDoS
security best practices (e.g., source address validation) significantly faster than
the providers in the rest of the world. Thus, it is highly likely that they have also
employed the protection provided by UTRS. Other prominent countries where
operators use UTRS to protect against DDoS attacks are the USA (21% or 9
ASes) and Argentina (16% or 7 instances).

Table 3 also reports the total number of AmpPot and Milker attacks and how
many of those are mitigated with the help of UTRS per each AS individually.
On average, only 1.03% of AmpPot and 0.06% of Milker attacks on the UTRS
members trigger the announcements for EI, while for OI, those figures are equal
to 8.86% and 6.88% correspondingly.

As for the absolute numbers, only 0.025% and 0.212% of all AmpPot attacks
trigger UTRS announcements for EI and OI correspondingly. These numbers
are considerably lower than the ones reported for AmpPot dataset in the work
by Jonker et al. [13]. According to their measurements, 1.97% of all AmpPot
attacks triggered BGP blackholing. There are two reasons for this difference.
First, UTRS-based blackholing events represent only a tiny subset of all BGP
blackholing events. Second, the authors use 24 h interval prior to a blackhol-
ing event to match the attacks, while we consider only 12 h. Moreover, the
authors relied on the assumption that all BGP announcements targeting net-
works smaller or equal to /24 correspond to BGP blackholing events, that can
be an optimistic overapproximation. In our work, we do not need to make such
an assumption because we know exactly what BGP announcements are trig-

6 The ASes’ country codes are obtained using the Caida’s AS Rank [6] dataset.
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gered by UTRS. As for the Milker attacks, the numbers are even lower: only
0.001% and 0.147% of all attacks trigger UTRS announcements for EI and OI
correspondingly.

4.2 Time Lags

Given the obtained views, we can analyze time lags between UTRS and DDoS
attack events. Based on the timestamps in the UTRS-AmpPot and UTRS-Milker
EI and OI views, we calculate time difference between the UTRS and the corre-
sponding DDoS attack start and end events. Figure 4 shows the eCDFs of these
time lags: a) for Exact Interval views, b) for Offset Interval views. The positive
lag (values on the x axis) means that the UTRS event has happened later than
the corresponding DDoS attack event.

For EI, as we can see in Fig. 4a, around 67% of all AmpPot attacks start
before the UTRS announcement, which is expected. At the same time, around
32% of AmpPot attacks start after the corresponding UTRS announcement. One
potential explanation is that attackers use different amplifiers, and our AmpPot
sensors are exploited at later stages. Moreover, due to the peculiarities of our
UTRS dataset collection, the reported time of a UTRS announcement is shifted
into the future compared to the actual time. As expected, for a large portion of
AmpPot attacks (around 79%), the corresponding target is removed from the
UTRS BGP table after the attack is over. However, the peculiarities of the UTRS
dataset collection may have a negative effect on such a high percentage. For 100%
of all entries in the UTRS-Milker EI view, announcements happen 1−3 h before
the start of the corresponding attacks recorded by Milker. However, the size
of the UTRS-Milker view is very small (only 9 entries), so the results may be
nonrepresentative.

Considering OI views (see Fig. 4b), as expected, the majority of UTRS
announcements (around 83%) and removals (roughly 83%) happen after the
AmpPot attack start and end events correspondingly. At the same time, the same
figures for the UTRS-Milker data constitute only 13% and 14% correspondingly.
That indicates Milker attacks are highly unlikely caused by the corresponding
UTRS announcement.

4.3 Characterization of Blackholed Attacks

To study the characteristics of the attacks that drive the UTRS requests, we
examine the properties, namely duration, the total number of packets, and their
intensity. Note that we can do this study only for the AmpPot attacks because the
amplification honeypots collect the attack metrics, such as the number of packets
and the duration of the attacks. Unfortunately, the Milker monitor does not
have access to such metrics7. Additionally, we consider only the Exact Interval

7 The Milker monitor registers attack durations, but those values are fixed by the IoT
malware owners.
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(a) Exact Interval

(b) Offset Interval

Fig. 4. Time lags between UTRS events and corresponding DDoS attack events (x axis
has a symmetrical log scale)

intersections because the UTRS requests are more likely to be driven by the
corresponding AmpPot attacks.

In this section, we compare the properties of the attacks that target only
the ASes that trigger UTRS announcements (mitigated/blackholed by UTRS).
To build the dataset for such analysis, we extracted all the attacks from the
AmpPot dataset (see Sect. 3.2) that target 25 ASNs from the UTRS-AmpPot
view (see Table 2). Then, we mark the attacks found in the UTRS-AmpPot
view as blackholed. Thus, our dataset contains 38, 251 entries overall, out of
which 398 are marked as blackholed. Note that our dataset is highly unbalanced:
only around 1% of all entries belong to the blackholed class, while the rest
99% are members of the non-blackholed class. Luckily, eCDFs, which we use in
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this section, accurately reflect the underlying distribution of the observed data,
regardless of whether the dataset is balanced or not.

Figure 5a shows the eCDFs of the AmpPot attack duration. Hereafter, the
solid line corresponds to all attack data (Overall), while the dashed one reflects
the information of the attacks marked as blackholed (Blackholed). As we can
see, the dashed line lies under the solid, showing that the attacks triggering
UTRS generally last longer. This result is easy to explain because ISPs prefer
to activate UTRS only for long-lasting attacks rather than short-lived ones. Our
results also coincide with the ones reported by Jonker et al. [13], who also found
that the AmpPot attacks mitigated using BGP blackholing last longer.

Figure 5b shows the eCDFs of the total number of packets recorded by Amp-
Pot sensors. As we can see, the dashed line lies under the solid, meaning that
UTRS-mitigated attacks have a higher volume. This result is also expected —
indeed, it is more likely for an ISP to mitigate more volumetric attacks.

Figure 5c shows the eCDFs of the intensity of the attacks — mean number
of packets per second (pps). Note that this parameter is obtained as the total
number of packets divided by the duration of the corresponding stitched attack.
Thus, this value correlates with the intensity of the attacks on a victim. As
we can see, below the speed of 10 pps, the dashed line lies under the solid one,
showing that the blackholed attacks are more intense below this speed. However,
after 10 pps, the lines switch. While it is harder to explain, in our opinion, such
behavior may be due to the victim ISPs (and their allies) starting to activate
multiple protection mechanisms, some of which may also include filtering of
attack packets to amplifiers.

5 Limitations and Future Work

In this study, we investigated the use of UTRS as a mechanism to mitigate DDoS
attacks. However, there are certain limitations to our findings that need to be
acknowledged.

Firstly, our study only captures data on the use of UTRS, and we do not have
information on whether network operators used other mechanisms in conjunction
with UTRS to mitigate DDoS attacks, or if the attack was successfully mitigated.
This means that we cannot accurately quantify the effectiveness of UTRS as a
standalone mechanism.

Secondly, our attack data only includes information from AmpPot and IoT
Milker. Therefore, we may have missed attacks that were not detected by these
sources. To address this limitation, we suggest future work to investigate the
effectiveness of UTRS in conjunction with other DDoS attack data sources.

Thirdly, we collected the UTRS data as periodic snapshots every 5 min. We
collected the data this way instead of logging all BGP updates due to the con-
stant errors in the BGP sessions with the UTRS project that caused the recorded
events to be mostly announces with few withdraws, thus making it impossible
to track when a blackholing event stops. However, if an announcement happens
within this interval, we will not be able to record it. This means we may miss
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(a) Attack duration

(b) Total number of packets

(c) Mean number of packets per second

Fig. 5. Blackholed and non-blackholed attack characteristics eCDFs

some of the announcements, thus potentially underestimating the number of
mitigated DDoS attacks and ASes making the announcements. Currently, we
are exploring the feasibility of collecting data about the UTRS announcements
as soon as they are propagated to the service members.
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Lastly, we cannot confirm whether UTRS participants actually blocked the
malicious traffic or not. We can only infer that UTRS was used based on the
announcement of blocked IP addresses.

6 Ethics

The research presented in this paper was conducted in accordance with the
ethical standards set forth by the Institutional Review Board (IRB) of our insti-
tution. The data used in this study was obtained through active and passive
internet measurements and monitoring botnet commands, which were carried
out in compliance with the principles outlined in the Menlo Report [5]. We took
steps to ensure that our monitoring did not interfere with the normal functioning
of any network and did not compromise the privacy or security of any operators.

7 Conclusions

DDoS attacks continue to remain a significant threat to the Internet. RTBH is
one of the most popular and effective mechanisms to mitigate this threat used by
ISPs for about two decades [25]. Unfortunately, it requires physical connectivity
between participants and may incur additional costs if provided by an IXP.
UTRS is a free, global, and low-effort-to-join alternative to RTBH. Given these
unique advantages, the goal of this work is to shed more light on this service. In
particular, we aim to investigate how many UTRS members use this service to
mitigate amplification and IoT-botnet-driven DDoS attacks.

The results of our analysis show that only 0.025% of amplification and 0.001%
of IoT-botnet-driven attacks are highly likely mitigated using UTRS. Among
UTRS members, only 124 ASes (around 10%) actively use this service to mitigate
attacks. Such low adoption means that it might not be that effective. Indeed,
currently, only about 1% of all assigned ASNs [1] are UTRS members [7], and an
even smaller percentage abides the blackholing requests sent through this service.
Thus, we should incentivize ASes to join UTRS and other similar initiatives to
increase the effectiveness of this technology and to protect the Internet from
DDoS attacks.
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Appendix A: List of ASes Mitigating DDoS Attacks

Table 3. ASes mitigating DDoS attacks

AS CC

AmpPot Milker

Total
attacks

EI mitigated OI mitigated Total
attacks

EI mitigated OI mitigated

# % # % # % # %

UAO AR 2 2 100.00 2 100.00 0 0 0.00 0 0.00

GNX ES 1 1 100.00 1 100.00 0 0 0.00 0 0.00

VYC DE 6 5 83.33 6 100.00 0 0 0.00 0 0.00

SMI BY 5 3 60.00 4 80.00 0 0 0.00 0 0.00

H2W AR 4 2 50.00 4 100.00 0 0 0.00 0 0.00

BME AR 135 45 33.33 78 57.78 0 0 0.00 0 0.00

WO6 FR 99 30 30.30 30 30.30 0 0 0.00 0 0.00

WYU AR 4 1 25.00 3 75.00 0 0 0.00 0 0.00

FAX AR 15 3 20.00 3 20.00 0 0 0.00 0 0.00

MV3 TR 25 5 20.00 5 20.00 0 0 0.00 0 0.00

KIM KH 15 2 13.33 6 40.00 0 0 0.00 0 0.00

44I CA 24 2 8.33 7 29.17 1 0 0.00 0 0.00

FCF BR 139 9 6.47 55 39.57 6 0 0.00 0 0.00

L7L PL 173 9 5.20 66 38.15 38 0 0.00 1 2.63

IVB AU 98 5 5.10 29 29.59 12 0 0.00 8 66.67

SHB BR 315 11 3.49 20 6.35 0 0 0.00 0 0.00

QAM US 124 4 3.23 33 26.61 46 0 0.00 22 47.83

73H IE 38 1 2.63 7 18.42 3 0 0.00 0 0.00

564 US 6,140 141 2.30 743 12.10 819 2 0.24 116 14.16

QWW BR 1,252 22 1.76 22 1.76 0 0 0.00 0 0.00

PZS US 570 8 1.40 22 3.86 14 0 0.00 1 7.14

T7M BR 1,391 8 0.58 9 0.65 0 0 0.00 0 0.00

JA4 US 21,615 77 0.36 2,229 10.31 3,835 1 0.03 182 4.75

ZNH BR 308 1 0.32 1 0.32 0 0 0.00 0 0.00

RMF IR 5,753 1 0.02 1 0.02 22 0 0.00 0 0.00

Z76 BR 2 0 0.00 2 100.00 0 0 0.00 0 0.00

4T2 PL 53 0 0.00 1 1.89 4 0 0.00 0 0.00

OVZ US 2 0 0.00 1 50.00 0 0 0.00 0 0.00

RWB GB 14 0 0.00 7 50.00 0 0 0.00 0 0.00

G6P US 10 0 0.00 1 10.00 0 0 0.00 0 0.00

PXB AR 32 0 0.00 1 3.12 0 0 0.00 0 0.00

63A BR 7 0 0.00 4 57.14 0 0 0.00 0 0.00

6KY AT 2 0 0.00 2 100.00 0 0 0.00 0 0.00

JUX BR 3 0 0.00 1 33.33 0 0 0.00 0 0.00

XMN AR 3 0 0.00 3 100.00 0 0 0.00 0 0.00

RQI US 2 0 0.00 1 50.00 0 0 0.00 0 0.00

L4K SG 3 0 0.00 2 66.67 0 0 0.00 0 0.00

3L4 PK 7 0 0.00 1 14.29 0 0 0.00 0 0.00

VJC US 2 0 0.00 2 100.00 0 0 0.00 0 0.00

U75 BR 18 0 0.00 3 16.67 0 0 0.00 0 0.00

O2C US 12 0 0.00 1 8.33 0 0 0.00 0 0.00

SHL BR 3 0 0.00 3 100.00 0 0 0.00 0 0.00

QMK BR 298 0 0.00 9 3.02 0 0 0.00 0 0.00
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