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SUMMARY

Electricity consumption is increasing on a global level. In 2017, non-renewable energy
sources such as crude oil, natural gas and coal provided 76% of the required energy,
while 24% came from renewable sources such as hydro, wind and solar. Non-renewable
sources are finite because they do not replenish rapidly enough relative to the rate at
which they are being used, and harvesting these resources is environmental costly. Since
renewable energy sources replenish naturally in a relatively short period of time and are
cleaner, they are suitable for the sustainable production of electricity.

Wind overtook coal as the second largest form of power generation capacity in Eu-
rope in 2016 and is approaching gas, which is currently the largest contributor. However,
in 2017 in The Netherlands, only 9.6% of the average annual electricity demand is cov-
ered by wind, indicating that there is still room for improvement. A goal described in the
Dutch 2018 climate agreement is to increase the offshore wind turbine power to 4450
MW by 2023 (this with respect to 357 MW in 2015). Nevertheless, it is not sufficient to
only increment the number turbines to increase the overall share of wind energy. It is
also necessary to reduce the cost of wind energy, which will in turn stimulate further
investments in the wind energy industry.

Another cost reduction strategy is by placing turbines in each other’s proximity since
this reduces maintenance as well as cabling costs. A collection of turbines placed to-
gether is called a wind farm. However, a wake develops downstream of each turbine,
which is a region of air flow characterized by a flow velocity deficit and an increased
turbulence intensity. Since wind turbines are placed together in a farm, the wakes of
upstream turbines influence the performance of downstream turbines. For example, the
flow velocity deficit reduces the potential power production of downstream turbines and
it can deteriorate the provision of ancillary services such as wind farm power reference
tracking. An increased turbulence intensity will increment the turbine’s fatigue loads,
which can reduce its lifetime. The idea of wind farm control is to take wake interactions
into account when necessary, and to find control signals such that the levelized cost of
wind energy decreases through, e.g., power optimization or load reduction. An advan-
tage of control is that, for existing farms, wind energy cost can be reduced and ancillary
services can be delivered. That is, there is no need for redesigning the wind farm though,
performance is enhanced by the implementation of wind farm control.

Research on wind farm (control-oriented) models and wind farm controllers has
been carried out since the eighties with different results presented in a vast variety of
papers. This thesis provides an elaborate overview of the published results. From this
overview it is concluded that not many closed-loop wind farm controllers that employ
a dynamical control-oriented model are evaluated in a high-fidelity wind farm model
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(a first serious step towards practical implementation). Closed-loop control is neces-
sary because 1) it can partially compensate for modelling errors and 2) it can reject
time-varying disturbances. Employing a dynamical model allows for utilizing model
predictive control, a strategy that admits for control under constraints. This thesis
presents a closed-loop control framework for such an approach. One major build-
ing block of this closed-loop framework is a control-oriented model. In this thesis, a
control-oriented model is defined as a model that can be employed in a controller that
works in real-time, i.e., the controller evaluates new control signals within one sample.
The control-oriented model’s parameters are subsequently updated according to new
measurements to increase its accuracy.

This thesis develops a control-oriented model that is based on the three-dimensional
unsteady Navier-Stokes equations. Since the closed-loop framework should work in
real-time, model assumptions are made. However, which assumptions can be made
while ensuring controller performance is an open question in wind farm control. An
answer to this question depends, i.a., on the control objective. It is possible to adapt the
spatial and temporal resolution of the developed control-oriented model to change its
fidelity according to a specific control task. For two case studies, the developed model
estimates flow velocities at hub-height and turbine power data. The results are evalu-
ated and validated with a high-fidelity wind farm model. Additionally, the controller
model has been employed in several wind farm closed-loop control applications, which
illustrates its potential.

This thesis also develops a complete closed-loop wind farm control solution for
power reference tracking by utilizing the closed-loop framework presented in this the-
sis. Therefore, this thesis develops a second dynamical (parameter-varying) wind farm
model that is employed in a model predictive controller. Although more modelling
assumptions were made during the development of this model with respect to the
model presented previously, this control application illustrates that wind farm power
tracking is ensured in several simulation cases. Consequently it is concluded that, in
order to ensure power tracking, no full wake information needs to be included in the
control-oriented model. This results in a time efficient controller implementation that
is suitable for online control. The closed-loop control solution also demonstrates that
by applying optimized yaw angles, the set of feasible signals for power reference tracking
is enlarged. The optimized yaw angles are found by employing a steady-state wind farm
model. It is concluded that, in order to find the optimized yaw settings, a full wake
model (minimal steady-state) needs to be employed in the controller.

The control application in this part of the thesis also demonstrates that different
controller settings result in 1) wind farm power tracking and 2) different distributions
of the control signals among the turbines. Accordingly it is concluded that there are
multiple solutions to the wind farm power tracking problem. A second performance
indicator (besides power tracking) referred to as dynamical loading is included in the
controller. It is shown that tracking can be ensured while also dynamical loading can
be reduced. The developed control solution is evaluated in a high-fidelity wind farm
model, which is a serious first step towards practical implementation.
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Overall, this thesis demonstrates that the necessary control-oriented model’s fidelity
depends on the controller’s objective, and that in one control solution, different control-
oriented models can be employed for different tasks.





SAMENVATTING

Elektriciteitsconsumptie stijgt wereldwijd. In 2017 namen niet duurzame bronnen zoals
ruwe olie, natuurlijk gas en kolen 76% van de benodigde energie voor hun rekening
terwijl 24% van duurzame bronnen zoals water, wind en zon kwam. Niet duurzame
bronnen zijn eindig omdat ze niet snel genoeg aangevuld worden vergeleken met de
snelheid waarmee ze worden verbruikt en het delven van deze bronnen is kostbaar voor
het milieu. Duurzame energiebronnen aan de andere kant zijn (bijna) altijd aanwe-
zig, worden natuurlijk aangevuld in een relatief korte periode en zijn schoner. Ze zijn
daarom geschikter voor de duurzame productie van elektriciteit.

Wind nam in 2016 de tweede plaats over van kolen in de lijst van capaciteit om
vermogen op te wekken en het is gas, de huidige nummer 1, aan het naderen. Des-
alniettemin werd in 2017 maar 9.6% van de Nederlandse jaarlijkse gemiddelde elek-
triciteitsvraag door wind geleverd, wat aantoont dat er nog werk aan de winkel is. De
Nederlandse regering heeft echter als doel (zie klimaat akkoord 2018) om voor 2023
minimaal 4450 MW vermogen aan windturbines op zee te hebben geplaatst. Dit ten
opzichte van de 357 MW in 2015. Desalniettemin is het plaatsen van meer windturbines
om het aandeel windenergie te verhogen niet voldoende. De reductie van de kosten
moet ook een speerpunt zijn, wat dan de industrie weer zal stimuleren om nog meer te
investeren in windenergie.

Een andere kostenvermindering kan behaald worden door turbines bij elkaar te
plaatsen omdat dit de onderhoudskosten en ook de netwerkbekabelingskosten vermin-
dert. Een verzameling bij elkaar geplaatste windturbines noemt men een windpark.
Echter, (stroomafwaarts) achter de turbine ontwikkelt zich dan een zog. Een zog is een
regio lucht die is gekarakteriseerd door windsnelheid vermindering en een verhoging
van de turbulentie intensiteit. Het zog van stroomopwaartse turbines zal de prestatie
van stroomafwaartse turbines beïnvloeden omdat deze windturbines dicht bij elkaar
zijn geplaatst. De windsnelheidsvermindering bijvoorbeeld vermindert de potentiële
vermogensproductie van stroomafwaartse turbines en kan het leveren van aanvullende
diensten, zoals het volgen van een windparkvermogenssignaal, negatief beïnvloeden.
Een verhoging van de turbulentie intensiteit verhoogt de vermoeiingsintensiteit van de
turbines wat de levensverwachting van de turbine vermindert. Het idee achter windpar-
kregeltechniek is om, waar nodig, zog interactie in acht te nemen in de regeltechnische
oplossing om zo de windenergie kosten verder te verminderen, door bijvoorbeeld ver-
mogensoptimalisatie en vermoeiingsvermindering. Een voordeel van regeltechniek is
dat, voor bestaande parken, de kosten voor windenergie verminderd kunnen worden en
er aanvullende services geleverd kunnen worden. Met andere woorden, het is niet nodig
om een windpark opnieuw te ontwerpen, maar de prestatie kan verbeterd worden door
regelaars te ontwerpen.

xiii
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Onderzoek naar windpark (regeltechnische) modellen en windparkregelaars wordt
sinds de jaren tachtig gedaan en heeft verschillende resultaten opgeleverd die in meer-
dere artikelen zijn gepubliceerd. Deze dissertatie geeft de lezer een uitgebreid overzicht
van deze gepubliceerde resultaten. Hieruit is geconcludeerd dat er niet veel resultaten
zijn behaald met een gesloten lus windparkregelaar die online (real-time) gebruik maakt
van een dynamisch regeltechnisch model en die is getest in een hoogwaardig (precies)
windparkmodel (een eerste serieuze stap richting praktische implementatie). Gesloten
lus regeltechniek is nodig omdat 1) het gedeeltelijk voor modelleringsfouten kan com-
penseren en 2) het tijd variërende perturbaties weg kan regelen. Het gebruik van een
dynamisch model staat toe dat een model-voorspellende regelaar gebruikt kan worden,
een strategie die signaalbeperkingen in de regelaar toelaat. Deze thesis presenteert
een gesloten lus raamwerk voor een dergelijke aanpak. Een bouwsteen hiervoor is een
regeltechnisch model. In deze thesis is een regeltechnisch model gedefinieerd als een
model dat gebruikt kan worden in een regelaar die real-time werkt. Met andere woor-
den, de regelaar berekent nieuwe regelsignalen binnen één sample. De parameters van
het regeltechnische model kunnen dan herzien worden op grond van nieuwe metingen,
met een verhoogde modelprecisie als gevolg.

Deze dissertatie ontwikkelt een regeltechnisch model gebaseerd op de drie dimen-
sionale onstabiele Navier-Stokes vergelijkingen. Model aannames zijn gemaakt omdat
het gesloten lus raamwerk gebruikt moet worden in real-time. Desalniettemin, welke
aannames precies doorgevoerd kunnen worden om nog steeds regelaarsprestatie te
kunnen garanderen is een open vraagstuk in windparkregeltechniek, en hangt onder
andere af van het doel van de regelaar. Het is mogelijk om de spatiële en temporale
dichtheid van het ontwikkelde model te veranderen om zo een modelprecisie te verkrij-
gen die past bij de specifieke regeltechnische taak. In twee casussen wordt aangetoond
dat het ontwikkelde windparkmodel in staat is om windsnelheden op hub-hoogte en
turbinevermogenssignalen van een hoogwaardig windparkmodel te schatten. Tevens is
het regeltechnische model gebruikt in meerdere windpark gesloten lus regelapplicaties
wat het model potentieel aangeeft.

Deze dissertatie ontwikkelt ook een geheel gesloten lus windpark regeltechnische
oplossing voor het volgen van een vermogensreferentiesignaal, gebruikmakend van
het eerder gepresenteerde gesloten lus raamwerk. Hiervoor ontwikkelt deze disertatie
een tweede dynamisch (parameter-variërend) regeltechnisch windpark model dat in
een model-voorspellende regeltechnische oplossing wordt gebruikt. Alhoewel meer
modelaannames zijn gemaakt tijdens het ontwikkelen van dit model ten opzichte van
het model gepresenteerd in deze dissertatie, laat de regelapplicatie gepresenteerd in dit
gedeelte zien dat windparkvermogensvolging gegarandeerd kan worden in meerdere
simulatiecasussen. Vervolgens is geconcludeerd dat geen volledige informatie over het
zog aanwezig hoeft te zijn in het regeltechnische model als windparkvermogensvol-
ging het regeldoel is. Dit resulteert in een tijdsefficiënte regelaar implementatie die
in real-time (online) gebruikt kan worden. De gesloten lus regeltechnische oplossing
gepresenteerd in dit gedeelte van de thesis laat ook zien dat door het toepassen van
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geoptimaliseerde gierhoeken, de mogelijke set van vermogenssignalen die gevolgd kun-
nen worden, wordt vergroot. De geoptimaliseerde gierhoeken worden gevonden door
gebruik te maken van een statisch windparkmodel. Om de geoptimaliseerde gierhoeken
te vinden is er geconcludeerd dat een volledig (minimaal statisch) zogmodel aanwezig
moet zijn in de regelaar.

De regelapplicatie in dit gedeelte van deze dissertatie laat ook zien dat verschillende
regelaarsinstellingen resulteren in 1) windpark referentievolging en 2) verschillende
verdelingen van de regelsignalen over de turbines. Vervolgens is geconcludeerd dat er
meerdere oplossingen zijn voor het windpark referentievolgingsprobleem. Er is gecon-
cludeerd dat de regelapplicatie een tweede prestatie indicator (genaamd dynamische
belasting) kan doen verbeteren, terwijl het referentievolging garandeert. De voorge-
stelde regeltechnische oplossing is geëvalueerd in een hoogwaardig windparkmodel: dit
is een eerste serieuze stap naar praktische implementatie.

In zijn algemeenheid laat deze thesis zien dat de noodzakelijke regeltechnische mo-
delprecisie afhangt van het doel van de regelaar, en dat in één regeltechnische oplossing
verschillende regeltechnische modellen gebruikt kunnen worden.





1
INTRODUCTION

This introductory chapter provides a motivation for the research presented in this the-
sis, followed by the problem statement and a brief literature overview. This chapter con-
cludes with the presentation of the thesis contributions and outline.

1.1. MOTIVATION
Electricity consumption is increasing on a global level (Enerdata, 2017). In 2017, non-
renewable energy sources such as crude oil, natural gas and coal provided 76% of the re-
quired energy, while 24% came from renewable energy sources such as hydro, wind and
solar (Enerdata, 2017). Non-renewable sources are finite because they do not replenish
rapidly enough relative to the rate at which they are being used, although this argument
has lost some significance due to the shale gas revolution (Boersma and Losz, 2018).
However, the environmental costs related to the harvesting of non renewable resources
is high. Since renewable energy sources replenish naturally in a relatively short period
of time and have a smaller environmental impact, they are suitable for the sustainable
production of electricity. In fact, in 2017, 97.9% of Norway’s electricity stemmed from
renewable sources, and this mode of production represents 84.0%, 82.0% and 37.3% of
New Zealand’s, Colombia’s and Italy’s electricity, respectively (Enerdata, 2017). Although
on a global level, the majority of the electricity production is still generated using non-
renewable sources, a clear trend towards renewable sources is observed. In fact, their
share in global energy generation is expected to grow to 40% in 2040 (International En-
ergy Agency, 2017). The fact that renewable sources accounted for 85% of all new power
installations in European Union countries in 2017 (WindEurope, 2018) indicates that we
are heading in the right direction.

One of these renewable energy sources is wind, which consists of a bulk movement
of air. This movement is due to, i.a., temperature changes that are caused by the sun. In
Europe, wind overtook coal as the second largest form of power generation capacity in
2016 and it is approaching gas, which is currently the largest form of power generation
capacity (see Fig. 1.1).

1
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Figure 1.1: Total power generation capacity in the European Union 2005-2017 (WindEurope, 2018).

For example, 44% of Denmark’s average annual electricity demand was covered by wind
energy in the year 2017. On the other hand, in Holland, this is only 9.6% (WindEurope,
2018) indicating that there is still room for improvement. This should not only be real-
ized by increasing the percentage of wind energy through the placement of additional
wind turbines, but also by reducing the cost of wind energy, which will in turn stimulate
further investments in the wind energy industry (hence more wind turbines). Figure 1.2
illustrates the coast of Holland with existing and future wind turbine locations, indicat-
ing that the previously mentioned 9.6% will increase significantly. A cost reduction can

Figure 1.2: Coast of Holland with existing (purple) and future (red) locations where wind turbines are or will be
placed, respectively. Figure taken from (International Renewable Energy Agency, 2016) and adapted.

be achieved by, e.g., improving the turbine’s structural design such that its lifetime can
be extended. Additional cost reduction can be realized by increasing the turbine’s energy
extraction efficiency and optimizing the turbine’s power curve by correctly designing the
turbine’s controller. Placing turbines in each other’s proximity reduces maintenance as
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well as cabling costs. It is also easier to provide ancillary services to the electricity grid
due to the fact that large power output variations can be regulated more easily when
controlling multiple turbines that operate in similar atmospheric conditions. A collec-
tion of turbines placed together is called a wind farm. On a farm level, additionally cost
reductions can be achieved by, e.g., optimizing the wind farm topology with respect to
annual averaged atmospheric conditions and by utilizing wind farm control to optimize
turbine fatigue and the wind farm power curve. This last optimization entails, i.a., the
maximization of power output or the wind farm’s ability to track a power reference signal.
The latter is a so called ancillary service that could be delivered by the wind farm (Aho
et al., 2012). An advantage of control is that, for existing wind farms, wind energy cost can
be reduced and ancillary services can be delivered. In other words, without redesigning
the wind farm, but by having proper controllers, performance can be enhanced. Wind
farm modelling and control have been research topics since the eighties (Clayton and
Filby, 1982; Jensen, 1983; Ainslie, 1988; Katic et al., 1986; Steinbuch et al., 1988).

1.2. PROBLEM STATEMENT AND BRIEF LITERATURE OVERVIEW
It was stated before that it is beneficial to place turbines together in a so called wind farm.
However, when doing so, a wake develops downstream of each turbine as illustrated in
Fig. 1.3.

Figure 1.3: Horns Rev offshore wind farm with, normally invisible, wakes. Source: Christian Steiness. See
also (Hasager et al., 2013) for more information on the picture.

A wake is a region of air flow that is characterized by a flow velocity deficit and an
increased turbulence intensity (Barthelmie et al., 2007). Since wind turbines are placed
together in a farm, the wakes of upstream turbines influence the performance of down-
stream turbines. For example, the flow velocity deficit reduces the power production of
downstream turbines (Barthelmie et al., 2010) and it can deteriorate the provision of an-
cillary services such as wind farm power reference tracking. An increased turbulence in-
tensity will increment the turbine’s fatigue loads as suggested in (Rosen and Sheinman,
1995), which possibly can reduce the turbine’s lifetime. The idea of wind farm control
is to take wake interactions into account when necessary and find control signals such
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that the levelized cost of wind energy decreases through, e.g., power optimization or load
reduction. Wind farm control emerged in science around the eighties and is slowly find-
ings its way to industry. Three common wind farm performance objectives are generally
considered:

• maximization of power generation,

• minimization of fatigue loading,

• provision of ancillary services.

In current practice, wind farm control typically relies on greedy control, in which
structural loading and power production are optimized for a single turbine. However,
this often appears to be suboptimal for the overall performance of the wind farm since
wake interactions are not taken into account (Pao and Johnson, 2009). On a wind farm
level, greedy control could be considered as open-loop control, since no measurements
are fed back into a wind farm controller and new controller settings are evaluated locally.

Current research on wind farm control aims to provide plant-wide improvement of
the wind energy cost, while (partially) taking wake interactions into account in a closed-
loop controller. Closed-loop control is interesting since it can partially compensate
for model mismatches and it can reject time-varying disturbances. It can be done by
designing a controller offline using a wind farm model, or by incorporating a model
in the controller itself, and employ this to evaluate optimized control settings online
(within one sample) using measurements (referred to as “online model-based closed-
loop wind farm control”). The latter approach will be detailed later, but includes a
major challenge due to the complex nonlinear dynamics in a wind farm. This challenge
can be circumvented by approaching the wind farm control problem with model-free
methods Extremum-seeking control (Ciri et al., 2016, 2017, 2018). The challenge in
using model-free methods remains the relatively long convergence time of the algo-
rithms, especially when large wind farms need to be considered, although not enough
data is available to make definite statements on its applicability. A model free open-
loop approach that does not deal with the convergence time challenge is the application
of pre-defined time-varying control signals as proposed in (Munters and Meyers, 2018b).

When putting more information in the controller, the problem requires a turbine and
flow model that can be complex and high dimensional, as will be discussed in Chapter 2
and Chapter 3. It should already be clear that different wind farm models exist, and that
one categorization of these models can be according to the model’s fidelity. In general,
an increase in model fidelity results in an increase in computational time and the other
way around, as indicated in Fig. 1.4. Here, four model categories are defined and their
corresponding computational time is depicted in a graph. The first-principle models are
the discretized three-dimensional Navier-Stokes equations and could include a subgrid
scale model and high-fidelity turbine model. The physics-based models typically solve a
set of simplified and discretized Navier-Stokes equations. Simplification can be made by,
e.g., neglecting terms in the three-dimensional Navier-Stokes equations, by including a
simplified subgrid scale model or by neglecting the vertical dimension. The engineering
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models are heuristically found wind farm models. These models are generally based on
multiple different and relatively simple expressions that, e.g., approximate the turbine’s
power generation and wind velocities in the farm. These expressions are then coupled
and tuning parameters are generally used to match wind farm data or initially, data from
a high-fidelity wind farm model. The pre-calculated models can be seen as lookup tables
that contain heuristically found models, each tuned for specific atmospheric conditions.
Consequently, when an atmospheric condition, such as wind velocity, changes, another
simplified wind farm model is used from the lookup table to evaluate optimized con-
trol settings (something that can be done offline). Chapter 2 and Chapter 3 provide the
reader with examples and a more elaborate discussion on wind farm models.
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Figure 1.4: Model fidelity versus computational time (CPU time). Figure taken from (Mann et al., 2006) and
adapted.

A controller model is defined as a model that is employed in a controller. Wind farm
control results that are obtained with a high-fidelity controller model can be found in,
e.g., (Munters and Meyers, 2018a) in which the objective is to maximize the wind farm
energy production by employing Economic Model Predictive Control as control strategy.
Due to the large controller computation time, practical implementation is not feasible.
However, the results are scientifically interesting and can serve as an upper bound on
the possibilities. Wind farm control results that are obtained using a steady-state engi-
neering model can be found in, e.g., (Gebraad et al., 2014). Due to the fact that the model
is found heuristically and contains many tuning parameters, it is difficult to interpret the
results. Generally, the conclusions can be summarized as whether the controller pro-
vides satisfactory performance or not. However, researching why the controller does not
work properly by, e.g., including missing wind farm characteristics is difficult due to the
heuristic nature of the employed controller model. Additionally, the inclusion of more
heuristic expressions results in more tuning parameters and consequently increases
the model’s complexity. Despite these limitations, these types of controller models are
very suitable for practical implementation and can be updated online based on past
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measurements due to the relatively low computational cost (Bottasso and Schreiber,
2018). The results given in (Munters and Meyers, 2018a) and (Gebraad et al., 2014)
employ controller models that can be found on the spectrum’s edges of controller model
fidelity currently known in literature (see Fig. 1.4). Wind farm control results that can
be found in the spectrum’s middle are not widely present in literature. One example of
this is (Shapiro et al., 2017a). The controller model employed in (Shapiro et al., 2017a)
is based on a dynamical version of the Jensen model (Jensen, 1983) and additionally
utilizes the wake superposition principle of (Katic et al., 1986). There is however no
controller that employs a controller model based on the governing flow equations, the
unsteady Navier-Stokes equations and that can potentially find optimized control sig-
nals in an online closed-loop control framework. In Chapter 2 and Chapter 4, a more
elaborate overview on the state-of-the-art in wind farm control and related topics is
presented.

A topic under investigation in the online model-based closed-loop wind farm control
approach is the necessary fidelity of the controller model. Which wind farm dynamics
should be taken into account in a controller model and which can be neglected is still an
open question. In any case, a trade-off has to be made between controller model fidelity
and computational time. Another topic under investigation is the necessary controller
sample period, i.e., how often do new control signals need to be applied. For example,
this can occur anywhere from every second to every fifteen minutes. An answer to this
question has a major impact on the possible choice of the controller model since, if
every fifteen minutes new control signals are applied, the computational cost of the
controller model becomes less of an critical issue and consequently, the controller’s
fidelity can increase.

It was previously mentioned that another option is to synthesize a controller offline
using a dynamical wind farm model (Soleimanzadeh et al., 2013). In such a case, com-
putational time is not really an issue because once the controller is derived, it can be
applied in a wind farm and no online forward nor (possibly) backward propagation is
necessary, like in Model Predictive Control (MPC). However, currently known controller
synthesis methods are in general limited to linear models and it is an open question
whether these type of models can be employed for designing a controller for offline wind
farm control. These type of controllers are especially interesting when power reference
tracking is the objective.
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1.3. THESIS CONTRIBUTIONS AND OUTLINE
Many wind farm models and wind farm control algorithms exist in current literature.
The first question that this thesis investigates is:

I. What is the state-of-the art in wind farm modelling and control, what is missing
and contributes to the current state of wind farm control?

One contribution of this thesis is a categorisation and overview of wind farm mod-
els and control results that have been published (see Chapter 2). The main conclu-
sion drawn from this overview is that wind farm controllers utilizing a medium-fidelity
control-oriented dynamical wind farm model are not extensively researched, while it is
hypothesized that these models can be employed in wind farm control. In this thesis, a
control-oriented model is defined as a model that is employed in a controller that works
in real-time, i.e., the controller evaluates new control signals within one sample. This
thesis proposes an online model-based closed-loop wind farm control approach that
employs a medium-fidelity dynamical control-oriented wind farm model. The objective
in online model-based closed-loop wind farm control is to, within one sample period of
the controller:

1. update the employed dynamical control-oriented model’s parameters based on
current measurements,

2. estimate wind farm states that can not be measured by employing an observer,

3. find optimized control settings such that a predefined performance measure is
ensured.

It is necessary to update the employed control-oriented model’s parameters accord-
ing to measurements (e.g., mean wind direction) due to the fact that modelling assump-
tions are made. Consequently, the controller model does not capture all temporally
and spatially varying nonlinear wake dynamics and is not suitable for all atmospheric
conditions. By properly updating the control-oriented model’s parameters according to
measurements, the control-oriented model can be adapted to match the current atmo-
spheric conditions. The control-oriented model in the proposed framework is dynam-
ical so that wake delays and flow transients can be captured by propagating the model
forward in time in a model predictive controller. Estimating system states such as flow
velocities in the wind farm is interesting because one can then predict the incoming
flow for each turbine in the farm and consequently power production and a measure of
fatigue can be predicted. These predictions can, in turn, be used in a control strategy
such as MPC. With MPC one can evaluate optimized control settings such that a pre-
defined performance (quadratic cost) is ensured (minimized), which is the objective of
wind farm control. The above can schematically be represented in a block scheme as
depicted in Fig. 1.5.
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Figure 1.5: General dynamical closed-loop control framework with measurements zk and its estimation ẑk
and state estimation q̂k at time index k. The signals rk and wk are reference and control signals, respectively.
The observer is the model and estimator combined.

An example of the signal zk can be the power generated by the turbines, and q̂k can
be wind velocity components in the wind farm. The reference rk can be a wind farm
power reference signal and wk the generated torque, pitch and yaw angle of all turbines
in the farm. The framework presented in Fig. 1.5 contains three main building blocks:

1. a control-oriented (surrogate) model,

2. an estimator (state observer),

3. an optimizer (model predictive controller).

The first objective of the closed-loop control framework proposed above is to de-
velop a dynamical control-oriented model that is suitable for online control. As dis-
cussed above, modelling assumptions need to be made such that the control-oriented
model becomes employable in the closed-loop control framework described above. The
following question is formulated:

II. Which wind farm dynamics need to be captured in a control-oriented wind farm
model such that the model can be employed in the online closed-loop control
framework, while the control objective is ensured?

One major factor that influences the answer to the above formulated question is the
defined control objective. In other words, what is the wind farm controller’s objective?
For example, if reducing the turbine’s fatigue is not included in this objective, no such
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information needs to be present in the controller model. Following this line of reason-
ing, the above question can be stated more specifically as:

III. Which wind farm dynamics need to be captured in a control-oriented wind farm
model such that the model can be employed in the online closed-loop control
framework, while wind farm power tracking is ensured?

As will be detailed in Chapter 4, the objective in wind farm power tracking is to
follow a predefined reference signal with the wind farm power by de- and up-rating
the power output of the turbines. This problem has in general multiple solutions. For
example, suppose that a 12 [MW] reference signal needs to be followed with six turbines.
One solution is to let each turbine produce 2 [MW], but another solution is to let two
turbines produce each 6 [MW], while shutting down the other four turbines. In order
to have a unique solution, additional objectives should be defined. An example of such
an additional objective could be the minimization of turbine fatigue. Consequently,
when assuming that wind farm power tracking is the objective, a fourth question can be
formulated:

IV. Can we impose additional objectives on the controller while providing wind farm
power tracking and what is the consequence on the control signal distribution
among the turbines?

Different aspects of the closed-loop control framework proposed above and a com-
plete wind farm control solution are presented in this thesis and in the related publica-
tions. The presented results aim to provide leverage for answering the stated questions
above. Each chapter in this thesis is self contained. Consequently, chapter abstracts and
parts of their introductions are repeated in different chapters.

• Chapter 2 is based on

S. Boersma, B.M. Doekemeijer, P.M.O. Gebraad, P.A. Fleming, J. Annoni, A.K. Schol-

brock, J.A. Frederik and J.W. van Wingerden, A tutorial on control-oriented modelling

and control of wind farms, American Control Conference, 2017.

B.M. Doekemeijer, S. Boersma, J. Annoni, P.A. Fleming and J.W. van Wingerden,

Wind Plant Controller design, ModSim book, 2018.

and presents a tutorial on control-oriented wind farm modelling and wind farm
control. This chapter elaborates on basic concepts and definitions that are used
in the wind farm scientific and engineering community. Additionally, the chapter
provides an elaborate state-of-the-art overview of wind farm control and provides
ideas on possible future research directions. Two of these conclusions are 1) there
is a potential need for a medium-fidelity control-oriented model that can be em-
ployed in a closed-loop control framework as depicted in Fig. 1.5 and 2) controller
solutions require thorough validation in a high-fidelity environment.
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• Chapter 3 is based on

S. Boersma, B.M. Doekemeijer, M. Vali, J. Meyers and J.W. van Wingerden, A control-

oriented dynamic wind farm model: WFSim, Wind Energy Science, 2018.

S. Boersma, P.M.O. Gebraad, M. Vali, B.M. Doekemeijer and J.W. van Wingerden, A

control-oriented dynamic wind farm flow model: WFSim, Journal of Physics: Confer-

ence Series, 2016.

and develops a nonlinear dynamical control-oriented medium-fidelity wind farm
model. The model originates from the three-dimensional Navier-Stokes equa-
tions that are simplified such that a two-dimensional control-oriented wind farm
model is obtained that includes an approximation of the third dimension. A new
parametrization of the mixing length turbulence closure model is proposed that
allows for spatially varying wake recovery. The model is agile in a sense that the
model’s spatial and temporal discretization can be adapted. It will be demon-
strated that the former has a large influence on the computational time of the
model, but also influences its accuracy. In other words, the model allows for a
trade-off between model accuracy and computational time. The presented model
is employed in an observer

B.M. Doekemeijer, S. Boersma, L.Y. Pao, T. Knudsen and J.W. van Wingerden, Online

model calibration for a simplified LES model in pursuit of real-time closed-loop wind

farm control, Wind Energy Science, 2018 (under review).

and in an adjoint-based model predictive wind farm controller

M. Vali, V. Petrović, S. Boersma, J.W. van Wingerden, L.Y. Pao and M. Kühn, Adjoint-

based model predictive control of wind farms: Beyond the quasi steady-state power

maximization, Control Engineering Practice, 2018 (under review).

All these elements together form the basis of the framework schematically de-
picted in Fig. 1.5. The control-oriented model is additionally utilized in a wake
redirection application

S. Raach, S. Boersma, B.M. Doekemeijer, J.W. van Wingerden and P.W. Cheng, Lidar-

based closed-loop wake redirection in high-fidelity simulation, Journal of Physics:

Conference Series, 2018.

• Chapter 4 is based on

S. Boersma, B.M. Doekemeijer, S. Siniscalchi-Minna and J.W. van Wingerden, A con-

strained wind farm controller providing secondary frequency regulation: an LES study,
Renewable Energy, 2018 (under review).

S. Boersma, V. Rostampour, B.M. Doekemeijer, J.W. van Wingerden and T. Keviczky,

A Model Predictive Wind Farm Controller with Linear Parameter-Varying Models, IFAC

Conference on Nonlinear Model Predictive Control, 2018.
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and proposes a complete closed-loop wind farm control solution. The time effi-
cient controller utilizes a second proposed dynamical control-oriented wind farm
model that is updated online according to measurements. Furthermore, the pro-
posed controller provides an ancillary service called power tracking in which the
objective is to track a wind farm power reference signal. It additionally reduces
dynamical loading on a farm level. The controller is tested in a high-fidelity wind
farm model for which software is developed that allows for evaluating wind farm
controllers in a high-fidelity wind farm model.

This thesis is concluded in Chapter 5.





2
A TUTORIAL ON

CONTROL-ORIENTED WIND FARM

MODELING AND CONTROL

Do the things you like and find others

who like to do the things you don’t like.

Wind turbines are often sited together in wind farms as it is economically advantageous.

However, the wake inevitably created by every turbine will lead to a time-varying interac-

tion between the individual turbines. Common practice in industry has been to control

turbines individually and ignore this interaction while optimizing the power and loads

of the individual turbines. However, turbines that are in a wake experience reduced wind

speed and increased turbulence, leading to a reduced energy extraction and increased dy-

namic mechanical loads on the turbine, respectively. Neglecting the dynamic interaction

between turbines in control will therefore lead to suboptimal behaviour of the total wind

farm. Therefore, wind farm control has been receiving an increasing amount of attention

over the past years, with the focus on increasing the total power production and reducing

the dynamic loading on the turbines. In this chapter, wind farm control-oriented model-

ing and control concepts are explained. In addition, recent developments and literature

are discussed and categorized. This chapter can serve as a source of background infor-

mation and provides many references regarding control-oriented modeling and control of

wind farms.

Parts of this chapter have been published in (Boersma et al., 2017).

13
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2.1. INTRODUCTION
This chapter is, with respect to the literature overview presented in (Knudsen et al.,
2015), focused on the corresponding flow control problem and discusses recent wind
farm research developments and field test experiments in more detail. It is organized
as follows. In §2.2, a brief introduction to wind and wind turbines will be given. At the
end of this section, the concept of a wake will be introduced. In §2.3, wind farm control
objectives in terms of performance indicators will be presented. Typically, controllers
are designed and evaluated according to these indicators. In §2.4, control-oriented wind
farm modeling will be discussed. These models can be used for designing and/or test-
ing a controller. In §2.5, control of wind farms will be introduced and typical wind farm
sensors and actuators will be discussed. In §2.6, a categorization of wind farm control
strategies will be presented. In §2.7, a number of field tests for model validation are
briefly discussed. In §2.8, conclusions and an outlook will be provided.

2.2. WIND AND WIND TURBINES
This section briefly introduces wind energy and single wind turbine control as it pertains
to the challenge of larger wind farm control. A more complete and detailed description
can be found in (Burton et al., 2001; Bianchi et al., 2007; Tong, 2010; Hansen, 2015). This
section will end by introducing the concept of a wake and its essential characteristics
relevant for wind farm control-oriented modeling and control.

2.2.1. WIND
Wind is the source of energy exploited by a wind turbine. Wind flows are mainly caused
by the Earth’s rotation and thermal heating of the Earth’s surface by the sun, hence wind
is ubiquitous. However, its force is not everywhere equivalent. The behavior of wind at
a specific location and for a certain time instant can be characterized by a direction and
magnitude. The process of energy extraction by turbine rotors can better be understood
by looking at the energy extracted from the wind flowing through a thin disk (see Fig. 2.1),
with this disk being equivalent to the rotor swept area.

Figure 2.1: Flow with velocity U [m/s] through a rotor disk with rotor swept area A [m2]. Figure adapted
from (Burton et al., 2001).

From the continuity equation of fluid mechanics, the mass flow of air is a function of
air density ρ [kg/m3], surface areaA [m2], and flow velocity U [m/s]. Assuming the latter
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is uniform across the rotor swept area, A, the mass flow of air dm
dt through a rotor disk is

defined as
dm

dt
= ρAU. (2.1)

The instantaneous kinetic power of the wind available at surface A, Pw [W], is calculated
by

Pw =
1

2

dm

dt
U 2

=
1

2
ρAU 3. (2.2)

Note that the power expression depends linearly on the rotor disk area, A, (and thus
rotor radius squared), and on the wind velocity, U , cubed. This implies that relatively
higher gains in power generation can be achieved by placing turbines at locations with
high wind velocities.

However, a wind turbine cannot extract all this available power from the wind, as the
flow is required to still have velocity behind the rotor. The theoretical limit for energy
extraction by a rotor is determined by the Betz limit (Betz, 1920). This limit will be, i.a.,
discussed in the following section.

2.2.2. WIND TURBINE
There are different types of vertical-axis and horizontal-axis wind turbines. The most
commonly produced and used wind turbine is the upwind horizontal-axis wind turbine.
One of its advantages can be explained by the fact that the blades are always facing fully
into the wind, because incoming wind does not have to pass the turbine tower first (in
contrast to downwind turbines) or other blades (in contrast to vertical-axis turbines). A
horizontal-axis wind turbine consists of a rotor, most often with three rotor blades, that is
attached to the generator through a drivetrain. The generator and drivetrain are housed
in the nacelle, which is supported by a tower. See Fig. 2.2 for a schematic representation
of the main wind turbine components.

The rotor blades convert the momentum of a wind field passing the rotor plane into
aerodynamic forces that drive the rotor. The drivetrain transfers the aerodynamic torque
from the rotor to the generator shaft, either directly (direct drive) or through a transmis-
sion (gearbox). The generator converts rotational kinetic power into electrical power by
generating a reactive torque on the shaft. To control the power production and forces
(torques) on the wind turbine, a number of degrees of freedom (control variables) are
typically available:

• Blade pitch (θ) - The rotor blades can rotate, with their axis of rotation aligned
with the blades, using hydraulic actuators or servo pitch motors. Pitch control
can be used to influence the power capture (see, e.g., (Hand and Balas, 2002)) and
the loads (see, e.g., (Bossanyi, 2003, 2005; Selvam et al., 2009; Ungurán and Kühn,
2016)) experienced by the wind turbine.

• Generator torque (τg) - The generator converts mechanical power into electricity.
Torque control is used to control the power capture.

• Yaw (γ) - The nacelle can rotate, with the axis of rotation aligned with the tower,
using a yaw motor. The yaw angle is defined as the angle between the axial rotor
axis and the incoming wind direction. In single turbine control, yaw control is
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nacelle
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Figure 2.2: Horizontal-axis wind turbine with labeled main components and control variables. Figure adapted
from (Bianchi et al., 2007).

often used to set the rotor plane perpendicular to the incoming wind direction to
increase the turbine’s power capture.

The control variables are shown in Fig. 2.2 with a number of basic components of a wind
turbine. With these control variables we can optimize the performance of a single wind
turbine, such as produced power, P , and turbine loading. An uncommon, and for now
more scientifically interesting, control variable is the tilt angle of a turbine. This is de-
fined as the difference of the wind angle of attack and the nacelle angle, with respect to
the horizontal plane. In current wind turbines, this tilt angle is fixed.

A wind turbine exerts a force on the wind flowing through the rotor. This thrust force
represents the amount of energy extracted from the flow and can be described by

F =CT (θ,λ,γ)
1

2
ρAU 2

∞ , (2.3)

with U∞ [m/s] as the free-stream wind velocity and CT (θ,λ,γ) as the dimensionless
thrust force coefficient, which is a function of the tip-speed ratio, λ, blade pitch, θ, and
yaw angle, γ. The tip-speed ratio is defined as the ratio of the tangential speed at the
blade tip to free-stream wind velocity:

λ=
ωR

U∞

, (2.4)

withR the rotor radius andω the rotor rotational speed. The tip-speed ratio is directly in-
fluenced by the rotor speed, which is influenced by the generator torque or by changing
the pitch angle to change the lift forces on the rotor blades. The generator torque con-
trol loop is relatively fast because the system is manipulated at the electrical level, though
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changes in the rotor speed itself are not that fast due to inertia, especially for large rotors.
Although the blade pitch control loop is slower than the torque loop, it is still relatively
fast because of powerful motors that typically can achieve up to a 10 [deg/s] blade pitch
rate for a utility-scale wind turbine.

The power in the wind across a rotor was given in (2.2). Although power production
can be improved using control, not all the power in the wind can be extracted by a wind
turbine. The wind power available for extraction by a turbine is given by:

P =CP (θ,λ,γ)
1

2
ρAU 3

∞ , (2.5)

where CP (θ,λ,γ) < 1 is the dimensionless power coefficient and the ratio of generated
power by the wind turbine to the available power in the wind (see (2.2) and (2.5)). There
are many models in literature that provide expressions for the thrust and power coef-
ficient. One popular way to get an expression for the force and power coefficients is
by exploiting the momentum theory developed in the 19th century by W. J. M. Rankine,
A. G. Greenhill, and R. E. Froude. R. E. Froude, D. W. Taylor, and S. Drzewiecki com-
bined momentum theory with blade element theory, which resulted in the blade ele-
ment model (BEM) for calculating the forces that a blade exerts on a flow. When these
forces are then converted into a disk of distributed forces that model the rotor, this is
referred to as the actuator disk model (ADM). In (Burton et al., 2001), it is explained that,
by using momentum theory for an ideal rotor, the thrust coefficient, CT , and power co-
efficient, CP , can be written as:

CT (a,γ) = 4a(cos(γ)−a), CP (a,γ)= 4a(cos(γ)−a)2, (2.6)

for 0 ≤ a≤ 1
2 and the yaw angle, γ. The parameter, a, is called the axial induction factor

of a wind turbine. It is the ratio of the difference between U∞ and the wind velocity at
the rotor Ur to U∞, and is defined as:

a=
U∞−Ur

U∞

. (2.7)

The axial induction factor is thus a measure of the decrease in wind velocity behind a
wind turbine and provides a relatively simple expression for coordinated control of wind
turbines. Note that this factor, or more precisely, Ur , can be controlled using the gener-
ator torque and blade pitch angle, but is also influenced by the yaw angle.

It was already stated that even a perfect wind turbine cannot fully capture all of the
available power in the wind. There is a theoretical maximum that can be extracted by a
turbine. This maximum can be obtained by calculating the supremum ofCP (a,γ), given
in (2.6), as a function of the axial induction factor and yaw angle. It can be found that
for any wind turbine, the induction factor that results in the maximum power extraction
is a⋆ = cos(γ)/3, which translates to a theoretical limit of CPmax = 16/27cos3(γ), which is
approximately 0.6 if γ = 0. This theoretical maximum is called the Betz limit. In a practi-
cal sense, the maximum power coefficient for horizontal-axis wind turbines lies around
0.45 according to (Bianchi et al., 2007). The maximum force can be found in a similar
way: for a= 1/2, the wind exerts the maximum force on the wind turbine. Note that em-
pirical data published in (Marshall and Buhl, 2005) revealed that the thrust coefficient
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expression given in (2.6) is not accurate when a > 1/2. A possible correction based on
empirical data has been proposed in that paper. This correction is based on the Glauert
empirical relation between the thrust coefficient and axial induction.

A more detailed representation of the rotor than the ADM is the actuator line
model (ALM), which represents each blade individually in the flow, as a distribution of
forces along a rotating line.

OPERATING REGIONS

For single wind turbines, different operating regions can be distinguished. Each region
has its own control strategy and is typically determined based on a generator speed feed-
back signal. The ideal power curve for a variable pitch/speed wind turbine is shown in
Fig. 2.3. In addition, a wind power curve is depicted and the ratio between this curve and

Wind Speed (m/s)

Rated Speed 

Cut -in Speed Cut -out Speed 

100 

 0 

Power Output

(% of Rated Output)

I II III

Wind Power

Figure 2.3: Typical wind turbine power curve. Figure adapted from (Tong, 2010).

the power curve is defined by the power coefficient. The ideal power curve exhibits three
main regions with distinct control objectives. In Region II, the control problem can be
seen as a tracking problem, whereas in Region III, the control problem can be seen as a
disturbance rejection problem.

2.2.3. WAKE
As a wind turbine extracts energy from the wind, it causes a change in the wind flow
downstream from the wind turbine. The altered flow is called the wake of a turbine.
The wake characteristics are space-, time-, and parameter-dependent. A wake is space-
dependent because, e.g., far downstream of a turbine, it is different from the wake closer
downstream of the turbine. The wake is also time-dependent because the operation
of a wind turbine changes over time as well as the surrounding flow. Finally, a wake
is parameter-dependent, as the external variables (such as temperature) influence the
behavior of the wake. It should be clear that studying and modeling a wake is a broad
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research topic by itself and ongoing (Sanderse et al., 2011; Bartl and Sætran, 2016). Mod-
els range from low to high fidelity, where the latter describes the wake in more detail and
tries to capture more of its characteristics than the former. However, this increase in pre-
cision will result in higher computational costs. A more complete discussion on different
wake models is presented in § 2.4.

Typical characteristics of a wake and its main causes are:

• Wind velocity deficit, as a result of the turbine’s energy extraction.

• Increased turbulence intensity, as a result of i.a., the turbine blade’s rotation.

• Wake recovery, which is the phenomenon that downwind a wind turbine, i.a., the
wind velocity recovers to the free-stream velocity due to mixing.

• Wake meandering, which is a large-scale stochastic phenomenon of a wake in
which the entire wake structure will show horizontal and vertical oscillations over
time, rather than maintaining a certain fixed position and shape (España et al.,
2011; Medici and Alfredsson, 2006).

• Wake expansion, which occurs with distance from the turbine and can be ex-
plained using the law of mass conservation and the assumption of flow incom-
pressibility. It can be shown that a decrease in velocity means a proportional
increase in the wake’s cross-sectional area (see e.g., (Hansen, 2015)).

• Wake deflection, which is the phenomenon that the complete wake is diverging in
the latitudinal direction from the rotor center because of blade rotations (Fleming
et al., 2014a) or the fact that the rotor is not oriented perpendicular with respect to
the incoming wind, i.e., a yawed or tilted turbine.

• Wake skewing, as a result of veer (Gebraad et al., 2016a).

• Vertical wind shear, which is the change of wake properties with height, typically
an increase of wind speed with height because of ground friction.

• A kidney-shaped wake, as a result of a yawed turbine (Howland et al., 2016).

• Wake rotation due to the rotating turbine blades.

Note that the external atmospheric properties also have a critical impact on wakes
and their propagation, and thus, i.e., land-based and offshore wind turbines develop
different wakes. Fig. 2.4 illustrates a horizontal slice of the wake at turbine hub height
with γ = 30◦. The contour plot with normalized velocities is obtained from wind tunnel
data.

Using momentum theory and assuming γ = 0, a lower bound on the wind velocity,
U_, and a wind velocity at the rotor, Ur, can be estimated as

U_ =U∞(1−2a), Ur =U∞(1−a). (2.8)

As stated before, it is through the wake that an upwind turbine can influence the per-
formance of downwind turbines. The key objective of wind farm modeling and control is
to take these interactions into account and use control variables to ensure a specific level
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Figure 2.4: A time-averaged, stream-wise wind velocity contour plot at hub height obtained from wind tunnel
data. The center of the wake is shown in filled magenta circles. Figure taken from (Howland et al., 2016).

of performance. One option is to capture the nonlinear stochastic behavior in a math-
ematical model and then use this model to design a controller that guarantees a per-
formance. The assumption is that, when applying this controller to the real wind farm,
equivalent performance will be achieved as predicted by the model used for controller
design. This assumption is based on the validity of the used model. In this approach
lies one of the main challenges in wind farm modeling and control: understanding wake
behavior and capturing the important dynamics of wake interactions. An open question
is: which wake dynamics are important for a control-oriented wind farm model. A sub-
sequent challenge is controller design for the identified model. Most standard controller
synthesis methods known in literature are based on linear state-space models. When
dealing with nonlinear and stochastic systems, control design techniques are less avail-
able, and optimal performance can (in these cases) not be ensured because of possible
local minima.

Another option is to find an optimal control policy following a model-free approach.
Both model-based and model-free approaches will be discussed later in this chapter.
In §2.3, an introduction to wind farms will be given. This chapter will then discuss
control-oriented modeling and control of a wind farm in §2.4 and §2.5, respectively.

2.3. WIND FARM: MOTIVATION AND CHALLENGES
The previous section gave a brief introduction on wind energy and single turbine control
and ended by introducing the concept of a wake. This was defined as the changed down-
stream flow caused by a wind turbine (see Fig. 1.3) and can result in interactions between
wind turbines. It was stated that wind farm control aims to take these interactions into
account while ensuring wind farm performance. This section follows by discussing rea-
sons why it is interesting to study wind farms, and also the related challenges.

Placing turbines together has a number of benefits, which are, i.a.:

• Reduced deployment costs of the turbines.

• Reduced deployment costs of the electricity grid.

• Reduced operation and maintenance costs.

Especially in densely populated countries such as the Netherlands, deploying turbines
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Figure 2.5: Part of the Gemini offshore wind farm located in the Netherlands. Picture taken from
http://geminiwindpark.nl/foto-s.html.

individually is unfeasible, with governments often investing in both land-based and off-
shore wind farms. However, grouping turbines together in farms also introduces a num-
ber of complications that often significantly affect their performance. These complica-
tions can impact downstream turbines as follows:

• Because of the wind velocity deficit in the wakes of upstream turbines, the down-
stream turbine will capture less power than when operated in free-stream condi-
tions (Steinbuch et al., 1988; Johnson and Thomas, 2009).

• As a result of increased turbulence in the wake, fatigue loads on the downstream
turbine can increase (see, e.g., (Hahm and Wußow, 2006; Bossuyt et al., 2017)),
thereby shortening its lifetime in the absence of control algorithms that take this
turbulence increase into account.

• In most cases, the center of the wake will not coincide with the center of a down-
stream rotor. This can be caused by wake meandering, deflection, and wind direc-
tion (mostly). Because of this, there is more thrust on one side of the rotor, leading
to large cyclic variations as the blades pass in and out of the wake (van Dijk et al.,
2017; Zalkind and Pao, 2016). This imbalance can contribute to an accelerated
structural degradation of waked turbines.

Wind farm control consists of finding control inputs using measurements to increase
the performance of a wind farm, thus improving quality or minimizing the cost of wind
energy. The latter can of course be carried out by increasing the spacing between tur-
bines, though this may have a negative impact on the aforementioned advantages, such
as reduced deployment costs of the electricity grid. Also, obtaining the required spacing
is an increasing challenge as rotor sizes grow with the newer turbines. Next, the objec-
tives and corresponding challenges in wind farm control will be discussed.

2.3.1. OBJECTIVES OF WIND FARM CONTROL
In this section, the two most common wind farm performance indicators will be dis-
cussed. In general, the goal of wind farm control is to minimize the cost of wind en-
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ergy. This can be translated into a number of technical objectives, namely maximizing
power production, minimizing structural degradation, and active power control (APC).
APC provides grid services, such as frequency control and power reference tracking, and
its objective is to improve the quality of wind energy. It will not be discussed in this chap-
ter, though interested readers can find related information in (Aho et al., 2012; Ela et al.,
2014; Fleming et al., 2016a; Göçmen et al., 2016a; van Wingerden et al., 2017; Shapiro
et al., 2017a; Vali et al., 2018b; Boersma et al., 2018a) and Chapter 4. The power produc-
tion and load performance indicators will be discussed in this section.

POWER PRODUCTION MAXIMIZATION

Wind turbines extract momentum from the flow, which results in the previously ex-
plained velocity deficit in the wake. The amount of this deficit limits the power produc-
tion of downwind turbines, but can be controlled using the wind farm control variables
that will be discussed in §2.5.1. In (Fletcher and Brown, 2010), the authors show that,
when considering a perfectly aligned two-turbine case, the power loss of the downwind
turbine scales approximately linearly with the spacing. Losses range from around 25%
for radially aligned turbines spaced 16 rotor diameters apart to 80% when the aligned
turbines are placed 4 rotor diameters apart. The study in (Barthelmie et al., 2009) reports
a power production loss of 12%, averaged over different wind directions, in an offshore
wind farm as a result of wake effects.

It is important to note that results like these are in general obtained using a specific
mathematical model trying to capture the wake dynamics for specific atmospheric con-
ditions. Outcomes can differ according to the model and method used. However, wake
loss predictions have also been measured in real wind farms. Wind farm control can mit-
igate part of the wake losses, although given the variable nature of a wake, it is still a point
of research to quantify how much wind farm control can reduce wake losses exactly.

LOAD MINIMIZATION

A wind turbine structure has been designed to withstand steady loads several times
larger than nominal loads (Spudic et al., 2010), and so it is necessary to study fatigue
loading with respect to the lifetime of a wind turbine. In (Sutherland and Herbert,
1999), it is stated that modern wind turbines are fatigue-critical machines, i.e., the de-
sign of many of their components is dictated by fatigue considerations. The authors
in (Soleimanzadeh et al., 2012) also conclude that mostly dynamic loads are responsi-
ble for fatigue and reduced lifetime of wind turbines in wind farms. In these papers,
different loading models were used, hence it is important to first investigate which
type of loading occurs. The three most important sources for the loading of an upwind
horizontal-axis wind turbine are (Hansen, 2015):

• Gravitational loading.

• Inertial loading.

• Aerodynamical loading.

The first type of loading is caused by the gravitational field of the Earth and rotation of
the blades. It is clear that a blade rotating downward experiences different forces than
a blade rotating upward. It causes a sinusoidal loading on the blades with a frequency
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corresponding to the rotor rotation of once per revolution (1P). Inertial loading occurs
when the wind turbine changes the rotation speed. Certain parts on the blades experi-
ence different changes that will result in inertial loading. Another source is the centrifu-
gal force acting on the blades. Aerodynamical loading is caused by the flow passing the
wind turbine and varies in space and time. For example, a wind field contains a velocity
profile with a bigger magnitude that is relatively high from the ground because of shear
effects, whereas the turbulent effects introduce time-varying behaviour in a wind field.
Also, according to (Hansen, 2015), the yaw (and tilt) angle of a wind turbine causes ad-
ditional aerodynamical periodical forces on a wind turbine. In a wind farm, a wind field
will also be perturbed by wind turbines causing changes in a wind field as highlighted
at the end of §2.2. Downwind turbines in a wind farm can then experience a changing
wind field over the rotor that can introduce additional aerodynamical loading. Loading
can, in the end, lead to fatigue damage and breakdowns. There are different measures
of fatigue loading, such as the rainflow counting, spectral, stochastic, and hysteresis op-
erator method. This chapter does not cover these methods, but the interested reader is
referred to (Berglind and Wisniewski, 2014).

The purpose of single turbine control is to mitigate the effects of gravitational, iner-
tial, and aerodynamical loading. On a wind farm control level, it is more important to
focus on the effects of the changed aerodynamical loading caused by the upwind wind
turbines in the farm. Damage equivalent load (DEL) is a measure that is commonly used
in literature to quantify loading, and allows for direct quantitative comparisons of differ-
ent loading types on the turbine structure. DEL defines the equivalent fatigue damage
caused by a load, taking into account the fatigue properties of the material.

In this section, two wind farm performance indicators were introduced. Wind farm
control aims to optimize these indicators. For synthesis and evaluation of controllers,
wind farm models are typically used. This will therefore be the topic of the following
section.

2.4. CONTROL-ORIENTED WIND FARM MODELING
The advancements in wind farm control have gone hand in hand with advancements in
wind farm modeling, as typically modern control algorithms rely on an internal model.
These models are often simple and relatively computationally inexpensive. We refer to
these types of models as low fidelity (possibly parametric) models. High fidelity simula-
tion models are typically used to assess a controller’s performance as the last step before
being put to the test on an actual wind farm. These models are more accurate, but also
significantly more computationally time consuming, and can therefore not be employed
for real-time control. Although wind farm models are different, two main components
can always be distinguished:

• Turbine model: These models predict the interaction between the flow and the
turbine structure. Additionally, structural loads on the turbine given the incom-
ing flow field may be predicted, which can include extreme loading, vibrational
modes, and fatigue.

• Flow model: A model that predicts the flow properties in a wake or of the total flow
field in a wind farm.
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A turbine model gets a flow field from a flow model as an input, whereas the tur-
bine loadings are inputs to a flow model that indicates the unavoidable interconnection
between the two submodels. The two types are described next.

2.4.1. TURBINE MODEL

Wind turbine models describe the flow effect on the turbine structure, including loading
and vibrations. A flow field serves as an input with which the turbine model evaluates
the resulting loading. Two models traditionally used for estimating aerodynamic loading
are the ADM and ALM, both introduced in §2.2. These models can predict turbine flow
interactions and provide estimations of the turbine’s power capture and forces exerted
on the flow. A more elaborate turbine model is FAST (Jonkman and Buhl, 2005), devel-
oped by the National Renewable Energy Laboratory (NREL). It contains, i.a., the ALM
and takes into account, given an incoming flow field, all of the three types of loading
discussed in §2.3.1. DEL values can be determined and the lifetime of a turbine can be
assessed. Other turbine models exist, such as HAWC (Larsen et al., 2012), but will not be
further discussed in this chapter. By using models such as these, accurate predictions
can be made on the (extreme and fatigue) forces, moments, and vibrations of a turbine
structure for given wind conditions. Also, these models provide accurate predictions of
power capture of the turbine at given inflow conditions. It should be clear that more
advanced turbine models require relatively more computation time. An overview of the
components generally present in such turbine models can be found in (Moriarty and
Butterfield, 2009).

2.4.2. FLOW MODEL

It was previously stated that the dynamical behaviour of a wake (or more general, a flow)
is governed by the three-dimensional (3-D) unsteady Navier-Stokes equations. These
equations are mathematically defined as a nonlinear infinite dimensional system with
equality constraint. Under boundary conditions (inflow conditions) and forcing terms
(the wind turbines) typically used in a wind farm model, and without making significant
assumptions, no analytic solution has been found yet for these equations. Hence, in
such a case, it is impossible to solve the governing equations directly. Computational
fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and
algorithms to solve and analyze this type of problem.

Spatial discretization is a method that is applied to obtain a set of solvable equations.
Because turbulence exists on many different temporal and spatial scales in a wind farm,
the most accurate way to simulate turbulent flows is to directly solve the obtained set of
equations on a very dense grid, capturing all eddy scales. This method is referred to as di-
rect numerical simulation (DNS). It is computationally expensive because, after spatially
discretizing, the dimensionality of the obtained set of equations is huge as a result of the
fact that every cell in the wind farm has its own Navier-Stokes equations. Large-eddy
simulations (LES), on the other hand, resolve the governing equations (after spatially
or temporally filtering the Navier-Stokes equations) on a coarser mesh (capturing only
the large-scale eddies), but can approximate the smaller-scale eddies with subgrid mod-
els. Small-scale turbulence is then calculated within each coarse cell using this subgrid
model. Most wind farm flow solvers that are considered as high fidelity models employ
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this method.

Less computationally expensive models are also present in literature. Most of these
models consider a two-dimensional (2-D) space to reduce the model complexity and
assume incompressibility of the flow, and only have a simplified turbulence model to
induce wake recovery. In addition, parametric models exist that only estimate specific
characteristics of a wake, such as velocity deficit and wake deflection. This chapter will
continue giving a brief overview of some wind farm models that exist.

2.4.3. EXAMPLES

Wind farm models that use LES flow models include Simulator fOr Wind Farm Appli-
cations (SOWFA) (Churchfield et al., 2012) and UTD Wind Farm (UTDWF) (Martinez-
Tossas et al., 2014), a wind farm model developed at UT Dallas, and SP-Wind (Leu-
ven) (Meyers and Meneveau, 2010), and PArallelized LES Model (PALM) (Maronga et al.,
2015). These 3-D, high fidelity flow solvers contain, in general, sophisticated wind tur-
bine models and 106 or more states. The resulting computation time can be on the order
of days or weeks using distributed computation. It should be clear that these types of
models are not useful for online control, wherein measurements are fed into a controller
that calculates optimal actuator settings based on an internal model in real time. How-
ever, these models can serve as analysis tools. The cost of doing simulation experiments
using these solvers is significantly less than the cost of doing experiments on a real wind
farm. Moreover, simulation experiments can be done in controlled atmospheric condi-
tions, which is important for one-to-one quantitative comparisons after, e.g., changing
a control policy.

The authors in (Soleimanzadeh et al., 2014; Boersma et al., 2016b, 2018b) present
more control-oriented and relatively less computationally expensive wind farm mod-
els based on the unsteady 2-D Navier-Stokes equations following a LES approach. It is
attempted to solve the set of discretized equations governing the wake and wind tur-
bines directly, without model reduction nor any assumptions other than incompress-
ibility. The number of states in these models can easily be 103 or more, which makes it
challenging to use them for controller design. A second challenge using this approach
is the choice of a (relatively simple) turbulence model, which should be included to
account for wake recovery. In (Boersma et al., 2018b), the authors include a simpli-
fied mixing-length turbulence model to create wake recovery behind a turbine, whereas
in (Soleimanzadeh et al., 2014), no turbulence model is included. In these dynamic wind
farm models, the turbines are modeled using the ADM. The cost of solving these wind
farm models is relatively low because of the exploitation of sparsity and structure in the
system’s matrices.

Another approach is using simplified versions of the governing equations. For exam-
ple, in the 2-D Ainslie (Ainslie, 1988) and 2-D dynamic wake meandering (DWM) model
(also called the Larsen model) (Larsen et al., 2007), assumptions are made such that the
Navier-Stokes equations can be approximated with a thin shear layer approximation that
is less computationally expensive. Currently, NREL is developing FAST.Farm, which ex-
tends the DWM model to include more control-relevant dynamics (Jonkman et al., 2017).
WakeFarm (also referred to as Farmflow), developed at Energy research Centre of the
Netherlands (ECN), simulates the wind turbine wakes by solving the steady parabolized
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Navier-Stokes equations in perturbation form in three dimensions (Crespo et al., 1988;
Özdemir et al., 2013). When applying time averaging on the Navier-Stokes equations,
the Reynolds Averaged Navier-Stokes (RANS) equations can be obtained. With this ap-
proach used in, e.g., (Annoni and Seiler, 2015), a time-averaged (mean) flow is computed
and the effects of turbulence are implemented using the mixing-length hypothesis. The
computational cost for using RANS equations in a wind farm model will also be compu-
tationally less expensive than for high fidelity flow solvers. A combination is presented
in (Iungo et al., 2015b), in which the authors present a RANS wind farm model for which
model parameters are updated online using the high fidelity flow solver UTDWF. The au-
thors in (Bastankhah and Porté-Agel, 2016) present a, with wind tunnel experiment data
validated, wind farm model based on simplified RANS equations. The simplification
results in the approximate governing equations upon which an inexpensive analytical
model is built. A completely different dynamic wind farm model is presented in (Rott
et al., 2017) where the Navier-Stokes equations are solved using a semi-Lagrangian ap-
proach. The interested reader is referred to (Mcdonough, 2004; Blazek, 2001) for more
background information on the Navier-Stokes equations and its varieties.

One way to circumvent the complexity of wake modeling is by using 2-D parametric
models. The idea is to capture only the most dominant wake characteristics. Most of
these parametric wake models estimate a steady-state situation for, i.a., a given inflow
direction. If the wind farm is large, this inflow direction should then hold for the whole
farm, which can be an unrealistic assumption. Examples are the Frandsen model (Frand-
sen et al., 2006), the model presented in (Porté-Agel and Niayifar, 2016), and the Jensen
Park model (Jensen, 1983; Katic et al., 1986), which predict a linearly expanding wake
with a velocity deficit that only depends on the distance behind the rotor. Extending
Jensen’s model resulted in the parametric model called FLOw Redirection and Induction
in Steady-state (FLORIS) (Gebraad et al., 2014). A dynamical version named FLOw Redi-
rection and Induction Dynamics (FLORIDyn) of this is presented in (Gebraad and van
Wingerden, 2014) and a similar model is SimWindFarm (Grunnet et al., 2010), wherein
relatively simple dynamical equations are used to estimate the velocity deficit in a wake.
Interestingly, recent findings have shown that these simple parametric models, such as
the Jensen model and models based on the Jensen model like FLORIS, can in some cases
predict wake losses accurately, if uncertainty is included in the calculation (Rostampour
et al., 2013; Gaumond et al., 2014; Peña et al., 2015). Inclusion of uncertainty in wake
models, and evaluating controllers based on uncertain wake models, is an active field of
research.

Note that never all flow behaviour will be captured when simulating a wind farm us-
ing a model, especially when employing a 2-D model. For example, in the latter case,
the inflow from above and below is not taken into account, even though it influences
wake properties. In addition, the underlying assumption of infinitely tall turbines in 2-D
models that are based on the unsteady Navier-Stokes equations results in flow speedup
effects on the right and left downwind the turbines. Interestingly, the model presented
in (Boersma et al., 2017) includes information on the third dimension in the 2-D un-
steady Navier-Stokes equations, effectively reducing this undesired effect. However, for
some specific cases, 2-D wind farm models have been validated with high fidelity 3-D
models, which hints to the fact that the assumption could be reasonable. It is the time-
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reducing property that makes 2-D models attractive for wind farm control.
In addition to the above, the authors in (Sanderse et al., 2011; Sanderse, 2009; Cre-

spo et al., 1999; Vermeer et al., 2003; Göçmen et al., 2016b; Annoni et al., 2014) provide
overviews of rotor blade models and wake models. In Table 2.1, a classification of pre-
viously described models is given, noting that in this table the term "fidelity" is mainly
used to describe the amount of detail described by the model. This does not automati-
cally imply that more detailed models are more suitable for (online) control purposes, as
discussed before. In addition, it has been shown in several wind farm simulation cases
that medium and low fidelity models are able to estimate wind velocity and power data
from a high fidelity model. The acronym NS stands for the Navier-Stokes equations.

Table 2.1: A classification and properties of different models.

Table 1. Wind farm models overview.

Low fidelity Medium fidelity High fidelity

Model

type
Kinematic models Flow field models Flow field models

Funda-

mentals
Parametric 2D NS 3D NS

Models

Jensen,

FLORIS,

Frandsen, ...

FLORI-

Dyn,...

DWM, WFSim,

Ainslie...

SOWFA, WakeFarm,

UTDWF, SP-Wind,...

Flow

dimension
2D 2D 3D

Dy-

namic/Static
Static Dynamic Dynamic

Turbine

model
ADM

ADM/ALM and/or an aerodynamic package (e.g.,

FAST)

Comp.

effort

Order of seconds on a desktop

PC

Order of minutes on a

desktop PC

Order of days on a

cluster of 102 CPUs

Model

accuracy
Low – medium Medium – high High – very high

REDUCED ORDER MODELS

Performing model order reduction techniques, such as proper orthogonal decompo-
sition and dynamic mode decomposition on high fidelity flow solver data, is another
method to obtain a model. The authors in (Annoni et al., 2016b; Fortes-Plaza et al.,
2018) illustrate that it is possible to apply proper orthogonal decomposition and com-
pare the flow fields obtained with the low-order model with that of a high fidelity flow
solver. Other articles that deal with proper orthogonal decomposition applied to a wind
farm model are (Hamilton et al., 2015; Bastine et al., 2015). In (Hamilton et al., 2015)
and (Iungo et al., 2015a), the authors illustrate that by using data from a high fidelity flow
solver and dynamic mode decomposition, a low-order, two-turbine wind farm model
can be obtained in which states retain a physical interpretation.

Note that model order reduction techniques rely on specific operating conditions,
i.e., they provide linear models for a specific operating point and are only valid within
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small deviation from this point. These reduced-order linear models can be defined at,
e.g., specific wind speeds and directions. However, techniques in parameter-varying
control exist that can help link these models together (Annoni and Seiler, 2016). Also,
reduced-order models could be data-driven in a more system identification approach
(see e.g., (Schmid, 2010)) or model-based considering, e.g., the Navier-Stokes equations.
Examples of the latter are balanced proper orthogonal decomposition and the Galerkin
projection (see e.g., (Rowley et al., 2004)). This chapter will not discuss these different
techniques.

A note for this section is that a model’s accuracy and applicability are highly depen-
dent on the atmospheric conditions of the relevant wind site. It is shown in, e.g., (Abkar
and Porté-Agel, 2016) that wake characteristics change a lot relatively when the atmo-
sphere is stable or not. In addition, in unstable atmospheric conditions, often wakes
are extremely hard to control, and no significant improvements can be yielded by active
wind farm control. In stable conditions, wakes are less difficult to control; however, the
problem is still challenging.

In this section, two main components of a wind farm model were discussed and ex-
amples of wind farm models were given. These models can be used to conduct wind
farm analysis or control. The latter will be the topic of the following section.

2.5. WIND FARM CONTROL
It was stated earlier that wind farm control is aimed at optimizing the previously pre-
sented objectives: minimization of power losses and structural loading. More precisely,
wind farm control aims to find control actions that increase the wind farm performance
by taking measurements (and possibly an internal model) into account. By (partially) re-
lying on measurements, a controller can cope with changing environments. In this sec-
tion, wind farm actuators and sensors will first be discussed, followed by the discussion
of two wind farm actuation methods. The categorization of different control strategies
will be covered in §2.6.

2.5.1. ACTUATORS AND SENSORS
In wind farm control, measurements from sensors and/or possibly an internal model
are used to compute control settings. These control settings are assigned to the turbine’s
actuators, which can be considered the degrees of freedom in the wind farm control
problem. In this section, typical wind farm actuators and sensors will be discussed.

ACTUATORS

For a single turbine, actuators were defined as turbine yaw, γ, generator torque, τg , and
blade pitch angles, θ. Tilting the turbine’s rotor provides an additional actuator for con-
trol, though this approach has only been used in simulations until now (Fleming et al.,
2014a,b; Guntur et al., 2012; Annoni et al., 2017). In a real wind farm and some wind
farm models, the control variables are (γi,τgi ,θi) for i= 1,2, . . . ,ℵ, with ℵ the number of
turbines in the farm. However, it is common in wind farm modeling to define the ax-
ial induction (see (2.7)) or similarly the thrust force coefficient (see (2.6)), and the yaw
angles as actuators. Although this approach neglects the dynamics between the physi-
cal turbine actuators τgi ,θi and the axial induction or thrust force coefficient, it simpli-
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fies the modeling and control problem. Some studies (see e.g., (Knudsen and Bak, 2013;
Boersma et al., 2018c)) include a first-order time filter to circumvent sudden unrealis-
tic axial induction changes in simulations. The following wind farm actuators can be
defined for models employing the ADM:

• γi for i= 1,2, . . . ,ℵ,

• ai (or CTi
,C ′

Ti
) for i= 1,2, . . . ,ℵ.

Note that by changing ai, the thrust force, i.e., the amount of energy the turbine extracts
from the flow, will change. These two variables are illustrated for one turbine in Fig. 2.6.

Figure 2.6: A schematic representation of wind farm actuators typically used in simulations. The thrust force,
F (ai), is determined by the axial induction ai of turbine i.

SENSORS

Proper placement and choice of sensors is key to the success of wind farm control. Ex-
amples of wind turbine sensors include:

• Anemometers and wind vanes. These devices are mounted on the nacelle to lo-
cally determine the wind speed and direction at the rotor plane. However, note
that when a turbine is in operation, these measurements are disturbed because of
the interactions between the flow and turbine rotor, especially at small distances
around the rotor plane (Pao and Johnson, 2009).

• Power sensors.

• Strain sensors, which measure structural deformations.

• Accelerometers, which measure the turbine’s acceleration.

• Generator shaft-speed sensors.

• Torque sensors.

• Temperature sensors, which are used for anti- and de-icing techniques (Parent and
Ilinca, 2011).

These turbine sensors are also useful for wind farm control. Examples of sensors on a
wind farm level are:
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• Separate meteorological measurement masts, which are located in the farm, and
provide information on the flow velocity for their respective positions.

• Remote-sensing (RS) technologies, which measure the flow field at different posi-
tions upstream or downstream of turbines, without the need for repositioning the
sensor. RS can use sodar, lidar, or radar technology, or satellite scatterometry.

According to (Peña et al., 2013), sodar systems use sound waves and are deemed too
slow and of too low accuracy for wind farm applications, although they are capable of
wind field monitoring (Anderson et al., 2005; Barthelmie et al., 2003). More recently, li-
dar technology has been applied, which relies on the same principle as sodar but using
laser instead of sound waves (Rettenmeier et al., 2014). The authors in (Goossens, 2015)
show that sodar and lidar can achieve similar accuracy in field tests on one of the Vat-
tenfall wind farms. However, theoretically, lidar is able to achieve higher measurement
accuracy because of the nature of light (Peña et al., 2013). Furthermore, both (Retten-
meier et al., 2014; Schlipf et al., 2011a) show that lidar has real potential to improve the
accuracy of current wind speed measurements above the resolution of a mast. Also, a
lidar device can be placed on top of a wind turbine to measure upwind or downwind.
Because a lidar device is relatively expensive, it is interesting to investigate how to use
it in an optimal way such that expenses can be minimized. The authors in (Mirzaei and
Mann, 2016) present such a study. Interestingly, lidar technology was initially applied
for single-turbine control, incorporating feed-forward control (see, e.g., (Schlipf et al.,
2011a, 2013, 2014; Schlipf, 2016; Scholbrock et al., 2016; Mirzaei et al., 2013)). At this
moment, radar devices are relatively expensive and large regarding dimension.

The main challenges in RS technology are data outliers because of hard targets and
interference with the turbine blades, and problematic wind field reconstruction due to
the cyclops dilemma. For example, a single lidar system measures the wind from only
one angle of view. Thus, with a single lidar system, it is not possible to reconstruct the
full 3-D wind field without making any assumptions (Schlipf et al., 2011b). An example
of this can be found in (Raach et al., 2014), which shows that it is possible to estimate a
3-D wind field using lidar.

Given the actuators and sensors, the next question is which actuation methods can
be used to optimize performance within the wind farm. This will be the topic of the
following section.

2.5.2. ACTUATION METHODS FOR WAKE CONTROL
Currently, most wind farms are operated using individually optimal wind turbine con-
trol settings referred to as greedy control. As stated before, wind farm control consists of
finding control inputs using measurements (and possibly an internal model) to increase
the performance of a wind farm, thus minimizing the cost of wind energy. It has been an
active research topic since the 1990s and relies on the assumption that the performance
of a wind farm can be increased by operating turbines in the farm at configurations dif-
ferent from their individual optimal settings. Two general control methods exist for this
purpose: axial induction control (AIC) and wake redirection control (WRC). Simulation
studies such as (Horvat et al., 2012; Fleming et al., 2013), illustrated that both methods
have a potential to increase the power production and can influence structural loading.
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Another possible future method is to actively reconfigure the wind turbines in a wind
farm with floating turbines. Wind farm layout optimization can be considered as initial
work towards such a strategy. This will, however, not be discussed further in this chapter
though the interested reader is referred to (Stevens, 2015; Fleming et al., 2015; King et al.,
2016; Mittal et al., 2017). AIC and WRC will be topics of the remainder of this section.

AXIAL INDUCTION CONTROL

The idea of AIC is to reduce the power production of upwind turbines by changing the
axial induction so that downwind turbines can generate more. The axial induction is
changed by adjusting the blade pitch angles and generator torque away from individu-
ally optimal settings. AIC is worthwhile if the reduced power production of the upwind
turbines can be compensated for by the downwind turbines, and if performance of a tur-
bine is significantly impacted by an upstream turbine through its wake, e.g., in situations
with little wake recovery, dense turbine spacing, and relatively high wake-rotor overlap.
Fig. 2.7 illustrates an aligned two-turbine situation in which this is not completely the
case.
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Figure 2.7: A cut-through at different distances of a wake from SOWFA data (red colored area contains higher
wind velocity than the blue colored area). Figure taken from (Gebraad, 2014). It can be seen that more down-
wind, the wake is less overlapping the virtual downwind rotor.

Typically, in a wind farm, the distance between up and downwind turbines is around
7D, meaning seven times the rotor diameter. Hence, the power that is purposely not cap-
tured by the upwind turbine will not be captured completely by the downwind turbines
for the case in Fig. 2.7. It is the deviation of the upwind turbine wake which, according
to the authors in (Annoni et al., 2016a), is, i.a., determined by:

• Wind direction.
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• Relative position of turbines.

• Wake meandering.

• Atmospheric conditions.

• Wake expansion.

Wind direction is important in two ways. First, changes in the wind direction in the farm
contribute to deflection and skewing of the wake, which causes the wake to overlap less
with the downwind rotor. Second, the wind direction is never exactly perpendicular to
the rotor, and hence there will always be a deviation of the upwind turbine wake from
the downwind rotor. Note that especially the latter could be captured using uncertain-
ties in the model. Importance of wake expansion is emphasized because the authors
in (Annoni et al., 2016a) show that, when using pitch offsets, most power passed by the
upwind turbine is located in the outer ring of the wake. This complicates AIC, as it be-
comes more difficult for the downstream to capture this energy because of wake expan-
sion. Note that this specific spatial distribution of the power cannot be modeled using
the standard ADM, but can be captured using ALM.

Another interesting point regarding AIC is that, when the thrust force is reduced, the
turbulent wake mixing and thereby wake recovery will be reduced. There are thus two
counteracting effects: increased velocity in the near wake, but reduced recovery down-
stream (effectively decreasing velocity of the far wake). In (Annoni et al., 2016a), it is
shown that including this effect in an engineering model reduces the expected power
production increase from AIC.

Research of AIC is done quite extensively, showing inconclusive results on its feasi-
bility. Most work in recent literature only takes power production into account, whereas
loading is neglected. An example is the LES simulation results presented in (Goit and
Meyers, 2015), wherein power production is increased using AIC by enforcing quick vari-
ations in the thrust force. These variations will increase turbulence in the wake and mix-
ing with the upper boundary layer containing a higher flow velocity, which is beneficial
for the power production. Subsequent work (Munters and Meyers, 2016, 2017) shows
that by constraining thrust force variations, the power gain will again be reduced. The-
oretically, it can be possible to increase power, but of course quick variation of thrust
force will have implications on loads and these should be taken into account. Differen-
tiation of the results can be made with respect to the used models: steady-state (Horvat
et al., 2012; Mirzaei et al., 2015; Gebraad and Wingerden, 2015; Marden et al., 2013) or
dynamical (Goit and Meyers, 2015; Schepers and van der Pijl, 2007; Vali et al., 2018a). In
general, early results based on relatively simple steady-state parametric models illustrate
increases in wind farm power production. The simplified models in mentioned studies
might not represent the relevant wake phenomena in AIC, and thus it is questionable if
the optimized control settings would work for the atmospheric conditions under consid-
eration. High fidelity studies such as (Annoni et al., 2016a) and wind tunnel experiments
such as (Campagnolo et al., 2016b) show that it is not always possible to increase power
by AIC, and this can be explained by phenomena mentioned earlier. Interestingly, the
authors in (Santoni et al., 2015) show that, although it seems that the power production
cannot be increased, it can be interesting to employ AIC to reduce turbine loading while
maintaining equivalent power production. In addition, AIC can possibly be used in APC.
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It is still difficult to make conclusive statements on AIC. Perhaps a solution lies in
adjusting the structural design of wind turbines in a farm according to previously de-
scribed phenomena, but this is beyond the scope of this chapter. In conclusion, although
the concept of AIC is promising, recent advances in wind farm modeling and wind tun-
nel and field tests have shown that possible production gains may be smaller and more
difficult to harvest than initially expected based on static control strategies and more
simplified models. Further research is needed to conclude whether it is possible to find
a wind farm controller that will use AIC to reduce loads and/or increase production by
dynamically adjusting pitch and torque settings to atmospheric conditions.

WAKE REDIRECTION CONTROL

In this approach, the rotor of the upstream turbine is purposely misaligned with the in-
coming flow to deflect the wake downstream so that it will not at all or partially overlap
a downwind turbine. The deflection can be done using:

• Tilt actuation.

• Individual pitch control (IPC).

• Yaw actuation.

Tilt actuation will not be further discussed in this chapter, but the reader is referred
to (Fleming et al., 2014a,b; Guntur et al., 2012; Annoni et al., 2017). In simulation studies,
IPC is shown to be effective at inducing wake redirection, though this results in a large
increase in loads (Fleming et al., 2014a). Fig. 2.8 depicts a schematic illustration of yaw
actuation.

8  7  6  5  4  3  m/s

Figure 2.8: An illustration of wake redirection control with inflow angle ϕ and a second turbine placed d rotor
diameters D downstream of the first turbine. Figure taken from (Zalkind and Pao, 2016).

Wake redirection promises significant improvements in simulation with power pro-
duction increases on the order of 4%-7% (Knudsen et al., 2015) and an annual energy
production increase on the order of 3%-4% (Gebraad et al., 2016b). In (Gebraad et al.,
2015), a similar simulation is done as previously presented in Fig. 2.7, but instead of
changing the axial induction of the first turbine, it is actuated with a yaw angle of 25 de-
grees. The authors conclude that the induced velocity increase caused by yaw actuation
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is better concentrated within the rotor area of a downwind turbine placed more than 3D
behind the upwind turbine. Wake behavior as a result of yaw actuation is an actively
researched topic (Howland et al., 2016; Vollmer et al., 2016; Bastankhah and Porté-Agel,
2016). The developments in WRC as an actuation method go hand in hand with these
studies and more details regarding this method need to be investigated using simulation
and field studies.

An interesting but rarely seen approach is to use both AIC and WRC (Park and Law,
2015; Munters and Meyers, 2018a). In the former, a relatively simple engineering model
to capture wake dynamics is used, but its parameters are calibrated using one data set
from a high fidelity flow solver. The AIC and WRC analysis is done for different wind
directions. It is shown that a power increase is achieved for all studied wind directions
using the proposed approach. The obtained control settings are not tested on a real wind
farm nor a high fidelity flow solver. The wind farm controller presented in Munters and
Meyers (2018a) provides plant wide power maximization by utilizing AIC and WRC in an
adjoint based model predictive controller.

In this section, we discussed the most common wind farm actuation methods. Pos-
sible control strategies are discussed in the following section.

2.6. WIND FARM CONTROL STRATEGIES
In wind farm control, a supervisory controller determines a collective control policy us-
ing measurements (and possibly an internal model) so that performance (as defined
in §2.3.1) is achieved. According to this control policy, the supervisory controller assigns
individual control settings as defined in §2.5.1 to each turbine in the farm. Then, rel-
atively simple internal controllers enforce the tracking of this assigned turbine setting.
In this closed-loop approach, not only the atmospheric conditions but also quantities
such as power production and a turbine’s structural loading can be defined as measure-
ments. Hence, control actions can adapt to the changing wind farm and atmospheric
properties, which has the potential to lead to robust control solutions. Controllers are
evaluated using an internal model, which can be dynamic or static. For a dynamical
model, the model states can have a physical meaning, such as wind flow velocity, but it
can also be a nonvariable. No system states are present with (parametric) steady-state
models.

A distinction between closed-loop controllers can be made with respect to the mea-
surements used. In closed-loop state-feedback, all the states of the model (e.g., flow
velocity vectors or power signals from the turbines) are assumed to be measured and
fed back to the controller. This assumption can be unrealistic, because measuring each
system state can be impractical and often impossible depending on the used model. In
closed-loop output feedback, only the measurements, e.g., a subset of the states, are fed
back to the controller and used to evaluate control actions. State estimators (observers)
can be used to estimate the system states using only measurements. For example, the
state of a model can contain all flow velocities (or a linear combination of these veloci-
ties) in a wind farm, whereas the output may be only the flow velocity at hub height of
the rotors. An observer (discussed in § 2.6.3) can estimate all flow velocities using only
these few measured flow velocities at the rotors. Different closed-loop control strategies
and their applications to wind farms will be discussed next.
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2.6.1. OPTIMIZATION-BASED CLOSED-LOOP CONTROL

In this strategy, wind farm measurements are fed into a controller. Here, an optimiza-
tion procedure evaluates, using an internal model, optimal control inputs such as yaw
angles, pitch angles, and generator torque (or axial induction) values for the turbines in
the farm. In addition, the model parameters can be updated using the wind farm mea-
surements. Then, optimal control inputs are sent to the turbines in the farm and new
measurements are taken.

An algorithm that can be used for finding optimal inputs is game theory (GT). Here,
favorable actions lead to high rewards and unfavorable actions to low rewards. The algo-
rithm tries to find the most rewarding action according to the used model. The reward
can, e.g., be the amount of power or the experienced loading. Because of the random
search actions, the algorithm needs time to converge to optimal control settings. The
duration depends on the complexity of the internal model, but even if the model is a
simple parametric steady-state model and consequences of certain control actions can
be evaluated quickly, GT needs many iterations to converge to an optimal solution. If
atmospheric conditions in a wind farm change during the search for optimal control set-
tings, the algorithm has to start again finding optimal settings for these new atmospheric
conditions. Literature such as (Marden et al., 2012, 2013) illustrate AIC using GT. For spe-
cific conditions, power production improvements are shown with respect to a baseline
controller. However, relatively simple engineering wake models are used, and the found
optimal inputs are not applied on a wind farm nor a high fidelity model. It is therefore
not clear how these results would apply to real wind farms. The authors in (Jinkyoo Park
et al., 2013) illustrate AIC and WRC using GT to optimize the power production. Using
their approach on an engineering model results in improvements, though again the con-
trol settings are not tested on a more realistic situation. The authors in (Gebraad et al.,
2014) apply WRC using GT with FLORIS, a steady-state model introduced in §2.4. The
optimal inputs are then applied to a high fidelity model SOWFA. An increase in power
with respect to a baseline controller is presented.

Another approach is extremum seeking control (ESC), an optimization approach that
can work for nonlinear, time-varying systems. ESC algorithms estimate the gradient of
the cost function (e.g., the total power of a wind farm) using measurements. In litera-
ture such as (Johnson and Fritsch, 2012; Yang et al., 2015; Menon and Baras, 2014), AIC
using ESC and a greedy controller are applied on a relatively simple wind farm model
and the results are compared. The found optimal values are not sent to a high fidelity
model or real wind farm to validate the results. The authors show that, for different
cases, power production can increase with respect to greedy control. In (Ciri et al., 2016),
AIC using ESC is applied on the high fidelity model UTDWF and power production im-
provements with respect to a baseline controller are presented. In (Gebraad and Winger-
den, 2015), AIC using gradient-based ESC (therein defined as maximum power-point
tracking (MPPT)) while having information only from neighboring turbines is applied
to maximize the power output of a wind farm for different atmospheric conditions. An
extended Jensen Park wind farm model is used and a benchmark power production is
obtained using GT. The results illustrate that, by using gradient-based ESC, the power
production can be improved with respect to the benchmark results. The optimal con-
trol inputs are not tested on a wind farm nor a high fidelity model, hence results depend
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on the validity of the model used. In this case study, the information for the individ-
ual wind turbines is also limited, hence a global optimum cannot be guaranteed, but
the computation time is reduced. In (Campagnolo et al., 2016b), AIC and WRC using a
similar gradient-based ESC algorithm as (Gebraad and Wingerden, 2015) is applied in a
wind tunnel with power maximization as an objective. The case study includes three tur-
bines with limited information for the individual turbines. Hence, again, it is observed
that a global optimum cannot be guaranteed though a power production increase with
respect to a baseline controller is presented. In (Park and Law, 2016), AIC and WRC us-
ing a Bayesian Ascent method is presented. Simulation and wind tunnel test results are
shown for a four-turbine case. Dynamic programming is another algorithm also applied
to wind farm models (see, e.g., (Tang et al., 2014; Rotea, 2014; Dar et al., 2017)). The latter
aims at optimizing the power production among the yaw angles employing an extended
Jensen Park model. These results will not be discussed further in this chapter.

Note that the optimization-based closed-loop control results presented so far, ex-
cept for (Gebraad et al., 2014; Ciri et al., 2016, 2017, 2018; Campagnolo et al., 2016b;
Park and Law, 2016), are obtained using a relatively simple model. The control actions
are not tested in high fidelity simulations nor a real or scaled wind farm, and the ques-
tion is if similar results will be obtained when doing so. It is also important to note that
GT and ESC are, in essence, model-free approaches, hence they could be applied di-
rectly on a wind farm. However, this is due to, i.a., wake traveling delays, challenging
hence these methods are applied on relatively simple (fast) models. With ESC as well as
MPPT, only information from neighboring turbines is used, which decreases the neces-
sary wake traveling time. The computation time these optimization algorithms need to
converge remains a critical issue because of the time-varying conditions in a wind farm,
though not enough data is available to make conclusive statements on these methods.
We therefore encourage researching methods that can increase the convergence rate of
these optimization algorithms.

Closed-loop control based on a dynamic model has potential to find a temporally
optimal solution. An example of this is presented in (Goit and Meyers, 2015; Munters
and Meyers, 2016, 2018a). Here, model-predictive control is applied using the high fi-
delity model SP-Wind. Knowledge of all the flow velocities and wind turbine power sig-
nals is assumed and the algorithm maximizes the total power production among axial
induction factors for a given time horizon. Computationally, this is a heavy task, but
the results give insights into the possibilities of AIC. The authors in (Spudic et al., 2010;
Soleimanzadeh et al., 2012; Vali et al., 2016) also present AIC using MPC via a medium
fidelity flow model to reduce the computational effort. Power increase (and load reduc-
tion in (Spudic et al., 2010; Soleimanzadeh et al., 2012)) with respect to a baseline con-
troller are presented, though the controller is not tested in a high fidelity model. In all
the MPC examples, full state knowledge is assumed. As stated before, this is in general
not realistic.

2.6.2. LINEAR DYNAMIC CLOSED-LOOP CONTROL

Examples of these approaches are PID,H2 , andH∞ controllers. These controllers are de-
fined as dynamic controllers and can be designed using (mostly) linear models. Tracking
behavior and disturbance rejection are time-domain specifications that can be imposed



2.6. WIND FARM CONTROL STRATEGIES

2

37

relatively easily on closed-loop systems.

The authors in (Soleimanzadeh et al., 2013) did implement a H2 controller using a
medium fidelity wind farm model that neglects turbulence. The controller is tested on a
nonlinear model and the authors conclude that the controller provides a distribution of
power references between wind turbines so that demanded wind farm power is ensured
and structural loading is minimized. The authors claim that their method can also be
used to evaluate a H∞ controller. Unfortunately, the controller is not evaluated on a
high fidelity model.

In (Raach et al., 2016), the authors designed a PID controller for wake tracking. The
controller is applied in SimWindFarm, a model discussed in §2.4. In (Raach et al., 2017a,
2018) and (Raach et al., 2017b), a H∞ and a robust H∞ controller are designed, respec-
tively, to steer the wake while employing a dynamic wind farm model based on the 2-D
Navier-Stokes equations. Perfect knowledge of the center of the wake using lidar is as-
sumed in both papers. The concept of steering the wake to a certain position makes the
work in these papers unique. However, the question remains as to which position the
wake should be steered to increase wind farm performance as discussed in §2.3.1.

2.6.3. OBSERVER

An observer is able to estimate the full state (and possibly update model parameters)
based on specific measurements. A closed-loop control scheme using an observer is
depicted in Fig. 2.9.

external conditions

Wind farm

wk zk

Model + estimator
ẑk −

+
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Optimizer

q̂k

rk

Controller

Figure 2.9: General dynamical closed-loop control framework with measurements zk and its estimation ẑk
and state estimation q̂k. The signals rk and wk are reference and control signals, respectively. The observer
is the model and estimator combined. Note that this figure is similar as Fig. 1.5, but repeated for completeness
of this chapter.
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For example, given only rotor velocities, an observer can, when containing a proper
model, estimate the flow velocity vectors in the complete farm assuming observabil-
ity. The latter holds true if initial conditions can be inferred from measurements (see,
e.g., (Aström and Murray, 2008) for more information on this topic). Observers (also
called estimators) contain a dynamical model and can be used in combination with, e.g.,
a model-predictive controller. Observer properties include the ability to:

• Estimate states from specific measurements.

• Deal with noise in measurements and may act as a low-pass filter in estimating the
system states.

• Enrich the state estimation with small-scale flow behavior in which a control-
oriented model is able to estimate the large-scale flow behavior.

The latter property is especially interesting because model mismatches are most likely to
occur as a result of the dynamic complexity in a wind farm. In (Doekemeijer et al., 2016,
2017, 2018), the authors implement a type of observer called the Ensemble Kalman filter
using a medium fidelity flow model. Although the initial results are promising in sim-
ulation with LES data, no real closed-loop simulations have yet been performed with a
controller and state observer. The authors show that the flow estimations can be im-
proved using an observer, and flow fields can better approximate high fidelity flow data
when applying an observer.

In (Shapiro et al., 2016), the authors use a relatively simple dynamic wake model in
an observer while taking measurements from the LESGO flow solver. The objective of
the control framework is power reference tracking, and AIC using a MPC controller is
applied. The results look promising. Another example of applying an observer in a wind
farm simulation can be found in (Shapiro et al., 2017b).

Open questions regarding the application of an observer in wind farms are 1) what
are the optimal sensor locations and 2) how many sensors should be used such that state
reconstruction is still possible and qualitatively acceptable. The first question relates to
increasing the information density from each sensor. Minimizing the number of sen-
sors is from an economical perspective important. These questions are not easy to be
answered due to the time-varying behaviour a wind farm exhibits.

In §2.6.1, 2.6.2 and 2.6.3, a summary of wind farm control strategies has been given.
It can be concluded that most of these strategies are optimization-based and evaluate
optimal control settings by optimizing a cost function. However, most controllers in lit-
erature are not implemented in a wind farm or a high fidelity flow solver to validate their
true performance. Less research has been done regarding the application of modern
control strategies in wind farms, thereby making this a relatively undiscovered research
area. Applying observers in wind farms shows promising results, though more research
is necessary.

2.7. FIELD TESTS
From §2.4, it can be concluded that there are many wind farm models that predict flow
fields, power capture, and/or loading in a wind farm. Parametric and medium fidelity
models are sometimes validated using flow data from high fidelity wind farm models.



2.8. CONCLUSIONS

2

39

However, validation of these solvers using real wind farm data is still ongoing. Although
it is expensive to do field testing, it is essential for further development. Field tests are
not only used to validate high fidelity flow models, but also to obtain results that show
that wind farm control can be worthwhile in general. For example, field tests are de-
scribed in (Barthelmie et al., 2007, 2010; Wagenaar and Schepers, 2012; Hirth et al., 2014;
Fleming et al., 2016b; Sakagami et al., 2015; Fleming et al., 2017a,b). A less expensive ap-
proach is doing wind tunnel experiments (see e.g., (Howland et al., 2016; Bossuyt et al.,
2017; Bastankhah and Porté-Agel, 2016; Campagnolo et al., 2016b,a)). Although wind
tunnel tests can provide interesting data, the experiment environment remains a scaled
conditioned one. This prevents a one-to-one comparison to real wind farms. In addi-
tion, it appears to be challenging to have realistic turbines and flow characteristics at a
smaller scale. However, the advantage of this is that a more idealized experiment can
be performed, which can better be represented in simulation, and thus provide a better
comparison between a simulation and an experiment.

2.8. CONCLUSIONS
In this chapter, basic wind farm control-oriented modeling and control concepts have
been explained and literature has been categorized and discussed. The following sum-
marizing conclusions can be drawn:

• High fidelity models are suitable for flow and wind farm controller analysis. They
are also suitable for exploring the possibilities of wind farm control. However,
more validation of high fidelity models with field test data is necessary to improve
their quality. Because high fidelity models are computationally complex, they are
not suitable for online control.

• The use of medium fidelity dynamical models can, e.g., be employed to predict the
available power and/or flow fields in a wind farm. In addition, they can deal with
changing atmospheric conditions over space and time. However, current medium
fidelity dynamical models based on the Navier-Stokes equations are still compu-
tationally complex, hence studying simple dynamical and parametric steady-state
models could be helpful. The question is if a sufficient amount of dynamics can
still be captured with these models so that they can be used for wind farm control
resulting in realistic results. In some specific cases, medium fidelity dynamical
and low fidelity steady-state models have shown similar simulation results with
respect to high fidelity models, though no conclusive statement can be made yet.

• Reduced-order models can provide information on important wake farm dynam-
ics with limited computational complexity. However, these models are valid for
one specific atmospheric condition, and applicability in real wind farms is yet to
be proven. Still, the use of techniques in parameter-varying control that can help
link multiple linear reduced-order models is promising.

• Dynamic feedback control is a relatively open and interesting area that still can be
explored in wind farm control.

• Current literature tells us that axial induction control based on steady-state models
will most likely not result in power production increases without increasing struc-
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tural loading. Open questions are if axial induction control can be used to mini-
mize the turbine’s structural loading while maintaining power production and if it
is applicable in active power control.

• Wake redirection control is a promising actuation method for wake control. Addi-
tional field tests are required to provide more information on the true potential of
this actuation method. Furthermore, it could be beneficial to study the combina-
tion of axial-induction and wake redirection control in greater detail.

• Designed controllers should be tested on real wind farms, or at least in a high fi-
delity wind farm simulator for different test cases, to get a better idea of their ef-
fectiveness in realistic wind farm scenarios.

• Remote-sensing technologies, or other measurement devices used in wind farms,
should be researched further. These methods are critical for control algorithms
to obtain reliable measurements of wake dynamics used for determining a certain
control policy and to update an internal model.

• The application of an observer including model parameter estimation in a wind
farm is promising. It provides the ability to take a few measurements and thereby
estimate the full state space of the model. From a practical point of view, this is
much more realistic than assuming full state knowledge. An observer is based on
a dynamical model and can be used in combination with, e.g., a model-predictive
controller. However, relatively little research has been done regarding this topic,
and its true potential is still a question.

• More field experiments should be conducted to further investigate if wind farm
control can improve the performance of a real wind farm and to obtain data to
validate existing models.

• For long-term research challenges in wind energy, see (van Kuik and Peinke, 2016).



3
THE WINDFARMSIMULATOR

MODEL

Wind turbines are often sited together in wind farms as it is economically advantageous.

Controlling the flow within wind farms to reduce the fatigue loads, maximize energy pro-

duction and provide ancillary services is a challenging control problem due to the underly-

ing time-varying nonlinear wake dynamics. In this chapter, we present a control-oriented

dynamical wind farm model called the WindFarmSimulator (WFSim) that can be used

in closed-loop wind farm control algorithms. The three-dimensional Navier-Stokes equa-

tions were the starting point for deriving the control-oriented dynamic wind farm model.

Then, in order to reduce computational complexity, terms involving the vertical dimen-

sion were either neglected or estimated in order to partially compensate for neglecting

the vertical dimension. Sparsity of and structure in the system matrices make this model

relatively computational inexpensive. We showed that by taking the vertical dimension

partially into account, the estimation of flow data generated with a high-fidelity wind

farm model is improved relative to when the vertical dimension is completely neglected in

WFSim. Moreover we showed that, for the study cases considered in this work, WFSim is

potentially fast enough to be used in an online closed-loop control framework including

model parameter updates. Finally we showed that the proposed wind farm model is able

to estimate flow and power signals generated by two different 3D high-fidelity wind farm

models.

Parts of this chapter have been published in (Boersma et al., 2018b).
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3.1. INTRODUCTION
Optimizing the control of wind turbines in a farm is challenging due to the aerodynamic
interactions among turbines. These interactions come from the fact that downwind tur-
bines are often operating in the wakes of upwind ones (Barthelmie et al., 2009). Two
important wake characteristics are 1) a flow velocity deficit and 2) an increase in turbu-
lence intensity. The former reduces power production of the farm while the latter leads
to a higher dynamic loading on downstream turbines, but also induces wake recovery.
Individual turbine control variables can influence the wake’s flow velocity, turbulence
intensity and also location. Hence, by changing the control variables of individual tur-
bines, power production of and loading on these controlled turbines and the downwind
turbines can be manipulated. Wind farm control aims to find control variables under
changing atmospheric conditions such that demanded power production and/or a min-
imization of the loading can be guaranteed, improving the cost and quality of wind en-
ergy. State-of-the-art closed-loop dynamic wind farm controllers are based on compu-
tationally expensive wind farm models, which make these methods suitable for analysis
though unsuitable for online control. The latter is important, because it allows for model
adaptation to the time-varying atmospheric conditions using supervisory control and
data acquisition (SCADA) measurements. As a consequence, more reliable control set-
tings can be evaluated. A survey on wind farm control can be found in (Knudsen et al.,
2015) and (Boersma et al., 2017), for example. In the latter, a clear distinction is made
between model-based and model-free control algorithms. This chapter is focussed on
the former in which it is assumed that controllers are based on a mathematical model
of the system, which is done because there is knowledge on the system under consider-
ation. Consequently, the controller performance depends highly on the model quality.
Modelling is therefore a crucial step towards successful implementation of model-based
wind farm control.

Overviews on wind farm models can be found in (Crespo et al., 1999; Vermeer et al.,
2003; Sanderse, 2009; Sanderse et al., 2011; Annoni et al., 2014; Göçmen et al., 2016b;
Boersma et al., 2017). The spectrum of these models ranges from low-fidelity to high-
fidelity. The latter tries to capture relatively precise wind farm flow and turbine dy-
namics, while the former tries to capture only the dominant characteristics (dynamic
or static) in a wind farm. Examples of high-fidelity wind farm models are Simulator
fOr Wind Farm Applications (SOWFA) (Churchfield et al., 2012), UTD Wind Farm (UT-
DWF) (Martinez-Tossas et al., 2014), SP-Wind (Meyers and Meneveau, 2010) and PAral-
lelized LES Model (PALM) (Maronga et al., 2015). These three dimensional (3D) high-
fidelity wind farm models can easily have 106 or more states. The resulting computation
time can be of the order of days or weeks using distributed computation for simulation
times less than the computation time. In other words, the computation time needed
for large-eddy-simulation (LES) is in general more than the total time that is simulated.
Clearly, these types of models are not applicable for online model-based control. Rather,
these models serve as analysis or validation tools.

One way to reduce the high complexity of wake modeling is by using two-dimensional
(2D) heuristic models that only capture specific wake and turbine characteristics in a
wind farm in the horizontal plane at hub height. These types of models are found on
the low-fidelity side of the spectrum. Most of these wake models exclusively estimate a
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steady state situation for given atmospheric conditions. Examples of static models are
the Frandsen model (Frandsen et al., 2006) and the Jensen/Park model (Jensen, 1983)
and (Katic et al., 1986). One extension of the Jensen model resulted in the paramet-
ric model called FLOw Redirection and Induction in Steady-state (FLORIS) (Gebraad
et al., 2014). Two examples of low-fidelity dynamic models are SimWindFarm (Grunnet
et al., 2010) and the model used in (Shapiro et al., 2017a), in which relatively simple
approximations of the flow deficit are computed using heuristic expressions.

Medium-fidelity models can be found in the middle of the spectrum as they trade off
the accuracy of high-fidelity models, with the computational complexity of low-fidelity
models. These are in general based on simplified versions of the Navier-Stokes equa-
tions. For example, in the 2D dynamic wake meandering (DWM) model (Larsen et al.,
2007), assumptions are made regarding the thin shear layer such that the Navier-Stokes
equations can be approximated using less computational effort. The authors in (Trabuc-
chi et al., 2016) present a model, which is also based on the thin shear layer approxima-
tion, but according to the authors applicable for non-axisymmetric wind turbine wakes.
WakeFarm (also referred to as FarmFlow) simulates the wind turbine wakes by solving
the steady parabolized Navier-Stokes equations in three dimensions (Crespo et al., 1988)
and (Özdemir et al., 2013). Other wind farm models based on the 3D Reynolds averaged
Navier-Stokes (RANS) equations are (Avila et al., 2013) and (van der Laan et al., 2015).
In (Annoni and Seiler, 2015), time averaging is applied to the Navier-Stokes equations,
resulting in the 2D RANS equations. The number of states is then reduced by employing
a state reduction technique.

Also considered as medium-fidelity models are the ones presented in (Boersma
et al., 2016b) and (Soleimanzadeh et al., 2014). These wind farm models are based on
the discretized 2D Navier-Stokes equations. However, these models do not contain a
turbulence model that allows for wake recovery. In addition, these 2D models do not
take any neglected 3D effects into account and no yaw actuation of the individual tur-
bines is included.

In this chapter, a model will be presented that can be considered as a building block
for the closed-loop control framework as illustrated in Fig. 3.1.

In current practice, signals such as power can be measured from a wind farm, but
current research is also focussing on estimating wake characteristics using a lidar de-
vice (Raach et al., 2017a). These and other wind farm measurements are called SCADA
data and can be used by an estimator that is able to adapt the model parameters to cur-
rent atmospheric conditions and/or estimate the full state space, e.g. all the flow veloc-
ities at hub height in the farm. The work presented in (Doekemeijer et al., 2016) illus-
trates the latter and employs the dynamic wind farm model presented in this chapter.
Subsequently, the estimation can then be used to compute optimal control variables us-
ing a model predictive controller. The work presented in (Vali et al., 2016) illustrates the
application of such a model predictive wind farm controller using the dynamic model
presented in this work.

The online closed-loop control paradigm as depicted in Fig. 3.1 demands for a
control-oriented dynamic wind farm model that will be presented in this chapter.
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external conditions

Wind farm

wk zk

Model + estimator
ẑk −

+

ek
Optimizer

q̂k

rk

Controller

Figure 3.1: General dynamical closed-loop control framework with measurements zk and its estimation ẑk
and state estimation q̂k at time index k. The signals rk and wk are reference and control signals, respectively.
In this chapter we present a dynamic model that is compatible with this framework. Note that this figure is
similar as Fig. 1.5, but repeated for completeness of this chapter.

Characteristics of such control-oriented models are:

1. low computational cost such that online model update, state estimation and con-
trol signal evaluation is possible;

2. dynamical such that they can deal with varying atmospheric conditions within rel-
atively small timescales.

The dynamic control-oriented wind farm model presented in this chapter, referred to
as WindFarmSimulator (WFSim), is applicable in the framework discussed above and
satisfies the two points above. It is based on corrected 2D Navier-Stokes equations and
contains a heuristic turbulence model. The Navier-Stokes equations are modified in or-
der to partially correct for the neglected vertical dimension. Each turbine is modelled
using the actuator disk model (ADM) and features yaw and axial induction actuation.
An important model feature is the exploitation of the sparse system matrices, leading to
computational efficiency. WFSim will be compared to high-fidelity flow data and used
in a practical control application.

The remainder of this chapter is organized as follows. In Section 3.2, the mathemat-
ical background of the medium-fidelity wind farm model will be explained including a
discussion on the rotor and turbulence model. This section ends with an analysis regard-
ing the wind farm model’s computation time. In Section 3.4, WFSim will be validated in
two cases using flow velocities in the longitudinal and lateral directions at hub height
and turbine power signals computed with two different LES-based wind farm models.
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The first case considered is a two-turbine wind farm with turbines modelled using the
ADM. The second case is a nine-turbine wind farm with turbines modelled employing
Fatigue, Aerodynamics, Structures and Turbulence (FAST) (Jonkman and Buhl, 2005).
This chapter is concluded in Section 3.5.

3.2. FORMULATION OF A DYNAMICAL CONTROL-ORIENTED

WIND FARM MODEL
In the current section, a simplified wind farm model is formulated that is sufficiently fast
for online control but retains some of the elemental features of three-dimensional turbu-
lent flows. In order for the model to be fast, we envisage a 2D-like model, but adapted to
account for three-dimensional flow relaxation. We will dub the resulting model WFSim
(WindFarmSimulator).

As starting point we use the standard incompressible three-dimensional filtered
Navier-Stokes equations, as used in LES, i.e.

∂ṽ

∂t
+ (ṽ ·∇)ṽ+∇·τM +

1

ρ
∇p̃−f = 0, momentum equations,

∇· ṽ = 0, continuity equation.

(3.1)

The velocity field ṽ = (ṽ1, ṽ2, ṽ3)T and pressure field p̃ represent filtered variables, ∇ =

(∂/∂x,∂/∂y,∂/∂z)T , the air density ρ, which is assumed to be constant, and τM rep-
resents the subgrid-scale model, which will be defined in §3.2.1. As is common in LES
of high-Reynolds number atmospheric simulations with grid resolutions in the meter
range, direct effects of viscous stresses on the filtered fields are negligible, so that these
terms are left out. Finally, the term f represents the effect of turbines on the flow, as
further detailed in §3.2.2.

Although LES filters are usually implicitly tied to the LES grid and filter length scale
in the subgrid-scale model, we presume here that ṽ corresponds to a top-hat filtered
velocity field, with filter width D, where D is the turbine diameter. Thus,

ṽ(x,y,z) =
1

D3

∫z+D/2

z−D/2

∫y+D/2

y−D/2

∫x+D/2

x−D/2
v(x′,y′,z′) dx′dy′dz′. (3.2)

From a wind farm simulation perspective, we are mainly interested in the flow velocity
field at hub height zh, i.e. ṽ(x,y,zh). Moreover, to evaluate turbine forces and power, it
suffices to know the velocity at turbine locations tn = (xn,yn)T (with n= 1 · · ·ℵ and ℵ the
number of turbines in the farm), since ṽ(xn,yn,zh) is a reasonable representation of the
turbine disk-averaged velocity.

Therefore, we focus on formulating a 2D-like set of equations for ṽ(x,y,zh). To this
end we define

u=
(
ṽ1(x,y,zh) ṽ2(x,y,zh)

)T
, (3.3)

=
(
u v

)T
, (3.4)
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and w = ṽ3(x,y,zh) and p = p̃(x,y,zh)/ρ. Moreover, we assume that w ≈ 0, so that the
LES equations given in (3.1) can be reformulated in terms of u as

∂u

∂t
+ (u ·∇H )u+∇H ·τH +∇Hp−f =−

∂(uw+τM,13)

∂z
e1 −

∂(vw+τM,23)

∂z
e2, (3.5)

∇H ·u=−
∂w

∂z
, (3.6)

with ∇H = (∂/∂x,∂/∂y)T , τH a 2D tensor containing the horizontal components of the
subgrid stressesτM , ande1 ande2 the unit vectors in thex and y directions, respectively.

Finally, we further simplify the equations above using two additional assumptions.
First of all, we presume ∂w/∂z ≈ ∂v/∂y. When centred at the turbine axis, this is one of
the conditions required for axial symmetry, though axial symmetry also requires further
conditions on ∂v/∂z and ∂w/∂y, which are not imposed. In general, ∂w/∂z ≈ ∂v/∂y im-
plies equal divergence/convergence of streamlines in y and z directions. Although this is
a very simple condition, we presume it to be good enough to resolve the lack of relaxation
of purely 2D models. If necessary, a more general form (w ≈ 0 and ∂w/∂z ≈ c ·∂v/∂y),
with c a tuning parameter (e.g., obtained through state estimation) could be considered,
but results in the current work indicate that this may not be necessary. Secondly, we
simply neglect the right-hand side of (3.5). Though this is a rather crude assumption,
the rationale is that the modelling term τH will suffice in the context of a control model,
where model coefficients can be updated online based on feedback (see also the discus-
sion in §3.2.1). Hence our final 2D-like model corresponds to

∂u

∂t
+ (u ·∇H )u+∇H ·τH +∇Hp−f = 0, (3.7)

∇H ·u=−
∂v

∂y
. (3.8)

We emphasize here that the model above is not a classical 2D model due to the dif-
ference in formulation of the continuity equation. In contrast to a standard 2D model,
this allows for flow relaxation in the third direction when, e.g., encountering slow down
by a wind turbine. This can be seen in Fig. 3.2, in which simulation results obtained
with the model above, a standard 2D dynamic wind farm model and LES are shown. The
simulation case itself will be discussed in more detailed in §3.4.2. Here we depict the
normalised flow deficit in the wake at 5D downstream of the turbine along the cross-
stream axis. The figure illustrates that the standard 2D Navier-Stokes equations lead to
a significant speed up at the wake edges. This is a result from conservation of mass in
two dimensions and the flow deceleration in front of the turbine, pushing part of the
air around the turbine. In the WFSim model, this speed up is smaller, as mass can also
flow around the turbine in the third dimension. In Fig. 3.2 it can be seen that LES data
are better estimated when imposing flow relaxation in the third dimension. Finally, note
that partially modelling the missing vertical dimension as proposed above is novel with
respect to the work presented in (Boersma et al., 2016a).

This section is further organized as follows. First, in §3.2.1, the subgrid-scale model
will be introduced. Then, in §3.2.2, the turbine model will be explained. The discretiza-
tion of the equations is presented in §3.2.3, and boundary and initial conditions are dis-
cussed in §3.2.4.
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Figure 3.2: Results of two-turbine simulations. Normalised time-averaged wake deficit (ū) at hub height 5D
downwind from the downwind turbine using standard 2D Navier-Stokes equations (red crossed), our model
with the adapted continuity equation (blue), and LES data (black dashed) as a function of the normalized y-axis
(ȳ).

3.2.1. TURBULENCE MODEL
In the literature, many subgrid-scale models are documented, and to date, model ac-
curacy remains a challenge in LES research (see e.g., (Sagaut, 2006)). However, in the
current work, an important factor in the selection of a model is simplicity and compu-
tational efficiency, rather than accuracy. In fact, in contrast to conventional modelling,
in a control-oriented model completeness of the turbulence model is not a major issue
since unknown model coefficients can be calibrated online using measurements and
feedback (Shapiro et al., 2017b), thus also controlling the overall error. Therefore, in this
work we fall back to one of the simplest and first known turbulence models, Prandtl’s
mixing length model.

We formulate the stress tensor τH using an eddy-viscosity assumption, i.e.

τH =−νtS, (3.9)

with S =
1
2 (∇Hu+ (∇Hu)T ) the 2D rate-of-strain tensor, and νt the eddy viscosity. The

latter is further modelled as in (Prandtl, 1925):

νt = lu(x,y)2
∣∣∣∣
∂u

∂y

∣∣∣∣ , (3.10)

where lu(x,y) is the mixing length. It could be interesting to define the mixing length for
each position in the wind farm separately, but this will lead to too many tuning variables.
Moreover, in (Iungo et al., 2015b), the authors illustrate that in a turbine’s near wake
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the mixing length is roughly invariant for different downstream locations, but in the far
wake, the mixing length increases linearly with downstream distance. We use this to
formulate a simple heuristic parametrization for the mixing length model so that the
number of decision variables will be reduced drastically. From now on we assume that
the wind is coming from the east, but can have a direction defined by ϕ. Then, the wind
farm will be divided in segments as illustrated in Fig. 3.3.

1
1

2
2

3
3

Figure 3.3: Schematic illustration of the mixing length.

Each segments has its own (x′
n,y

′
n) coordinate system located in the global (x,y) co-

ordinate system. Now we propose the following mixing length parametrization:

lu(x,y) =

{
G(x′

n,y
′
n)∗ lnu(x′

n,y
′
n), if x ∈X and y ∈Y.

0, otherwise,
(3.11)

with G(x,y) a (smoothing) pillbox filter with radius 3, ∗ the 2D spatial convolution oper-
ator, X = {x : x′

n ≤ x≤x′
n+cos(ϕ)d}, Y = {y : y′n−

D
2 +sin(ϕ)x′

n ≤ y ≤ y′n+
D
2 +sin(ϕ)x′

n}
and ϕ defined as the mean wind direction (see Fig. 3.3), which we bound by |ϕ| ≤ 45◦. In
addition we constraint d by cos(ϕ)d≤ |xq−xn|, with xn a turbine x-coordinate and xq its
downwind turbines x-coordinate. We can see lnu(x′

n,y
′
n) as the local mixing length that

belongs to turbine n and denote it as:

lnu (x′
n,y

′
n) =

{
(x′

n−d′)ls, if x′
n ∈X ′

n and y′n ∈Y ′
n.

0, otherwise.
(3.12)

with X ′
n = {x′

n : d′ ≤ x′
n ≤ d} and Y ′

n = {y′n : |y′n| ≤ D} and tuning parameter ls that
defines the slope of the (linearly increasing) local mixing length parameter. In fact, this
parameter could be related to turbulence intensity, i.e., the amount of wake recovery. In
this work we will not investigate this relation further. With the formulation above, the
number of tuning variables that belong to the turbulence model (ls,d,d′) is reduced to
3ℵ. Additionally, we assume that ls, d and d′ are equal for each turbine in the farm, which
reduces the number of tuning variables that belong to the turbulence model to three,
a quantity that could be dealt with by an online estimator. However, in order to have
only three tuning variables, the included turbulence model is defined as a simplified
mixing length model found heuristically using and adapting information from (Iungo
et al., 2015b).
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3.2.2. TURBINE MODEL
Turbines are modelled using a classical non-rotating actuator disk model (ADM). In this
method, each wind turbine is represented by a uniformly distributed force acting on
the grid points where the rotor disk is located. Figure 3.4 depicts a schematic top-view
representation of a turbine with yaw angle γ.

Figure 3.4: Schematic representation of a turbine with yaw angle γn and flow velocity U =
(
[u(xn,yn)]2 + [v(xn ,yn)]2)1/2

at the rotor. Figure adapted from (Jiménez et al., 2010).

Using such an approach, the force exerted by the turbines can be expressed as

f =

ℵ∑

n=1
fn, with

fn =
cf

2
C ′

Tn
[Un cos(γn)]2

(
cos(γn+ϕ)
sin(γn+ϕ)

)
H

[
D

2
−||s−tn||2

]
δ
[
(s−tn) ·e⊥,n

]
, (3.13)

with s = (x,y)T , H[·] the Heaviside function and δ[·] the Dirac delta function, e⊥,n the
unit vector perpendicular to the nth rotor disk with position tn. Furthermore, we have
C ′

Tn
the disk-based thrust coefficient following (Meyers and Meneveau, 2010), which can

be expressed in terms of the classical thrust coefficient CTn
using the following relation:

C ′

Tn
=CTn

/(1−an)2, with an the axial induction factor of the nth turbine. Interestingly,

the coefficient C ′

Tn
can be directly related to the turbine set point in terms of blade pitch

angle and rotational speed (see, e.g. Appendix A in (Goit and Meyers, 2015)). In the
WFSim model, C ′

Tn
and yaw angle γn are considered as the control variables and can

thus be used to regulate the wakes and hence wind farm performance. Furthermore, the
scalar cf in (3.13) can be regarded as a tuning variable and will in this work be set equal
for all turbines in the farm.

POWER
From the resolved flow velocity components, the power generated by the farm is com-
puted as

P =

ℵ∑

n=1

1

2
ρAC ′

Pn
[Un cos(γn)]3. (3.14)

It is stated in (Goit and Meyers, 2015) (Appendix A) that when there is no drag and swirl
is added to the wake, C ′

Tn
= C ′

Pn
. Since this is an idealized situation, a loss factor will
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be introduced such that C ′

Pn
= cpC

′

Tn
. The scalar cp can be seen as a tuning variable

and will be set equal for all turbines in the farm. In the power expression above, we have
the factor cos(γn)3 with exponent 3. In literature such as (Gebraad and van Wingerden,
2014) and (Medici and Alfredsson, 2006) (page 37), numerical values for the exponent
were given according to LES and wind tunnel data, respectively. However, to date, the
exact value for it is still under research and since this is outside the scope of this study,
the value of the exponent will be 3.

This concludes the formulation of the WFSim model. In order to resolve for flow ve-
locity components and wind farm power, the governing equations given in (3.7) and (3.8)
need to be discretized, a topic that will be discussed in the following section.

3.2.3. DISCRETIZATION
The set of equations are spatially discretized over a staggered grid following (Versteeg
and Malalasekera, 2007). This is carried out by employing the finite volume method and
the hybrid differencing scheme. Temporal discretization is performed using the implicit
method that is unconditionally stable (Versteeg and Malalasekera, 2007). This comes
down to deriving the integrals:

∫

∆t

∫

∆V

[
∂u

∂t
+ (u ·∇H )u+∇H ·τH +∇Hp−f

]
dV dt= 0,

∫

∆t

∫

∆V

[
∇H ·u+

∂v

∂y

]
dV dt= 0,

(3.15)

with ∆V the volume of one cell (see Fig. 3.5) and ∆t the sample period. One obtains, for
each cell, the following fully discretized Navier-Stokes equations (for detailed derivation
we refer to Appendix 3.A):

−x-momentum equation for the (i,J)th cell (black in Fig. 3.5):

a
px
i,J

ui,J =

(
anx
i,J

asx
i,J

awx
i,J

aex
i,J

)(
ui,J+1 ui,J−1 ui−1,J ui+1,J

)T

. . .+
(
anwx
i,J

aswx
i,J

anex
i,J

asex
i,J

)(
vI−1,j+1 vI−1,j vI,j+1 vI,J

)T

. . .−δyj,j+1
(
pI,J −pI−1,J

)
+fxi,J (3.16)

−y-momentum equation for the (I,j)th cell (yellow in Fig. 3.5):

a
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I,j
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wy
I,j
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I,j

)(
vI,j+1 vI,j−1 vI−1,j vI+1,j

)T
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(
a
nwy
i,J

a
swy
i,J

a
ney
i,J

a
sey
i,J

)(
ui,J ui,J−1 ui+1,J ui+1,J−1

)T

. . .−δxi,i+1
(
pI,J −pI,J−1

)
+f

y
I,j

(3.17)

−continuity equation for the (I,J)th cell (pink in Fig. 3.5):

0 = δyj,j+1
(
ui+1,J −ui,J

)
+2δxi,i+1

(
vI,j+1 −vI,j

)
, (3.18)

The states u•,•,v•,•,p•,• are defined for the time k+1 while the coefficients a••,• and the
forcing terms f •

•,• depend on the state at time k. Detailed definitions of these coefficients
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are given in Appendix 3.A, Table 3.4. Note the appearance of the previously explained
factor 2 (see (3.8)) in (3.18).

Figure 3.5: One cell for the x-momentum equation (grey with in its centre ui,J ), one for the y-momentum
equation (yellow with in its centre vI,j ) and one for the continuity equation (pink with in its centre pI,J ). All
three cells have equal dimensions and overlap.

Next, the state vectors uk,vk , and pk and control variable vectors νk and γk at time
step k will be defined:

uk =




u3,2
...

u3,Ny−1

u4,2
...

u4,Ny−1
...

uNx−1,2
...

uNx−1,Ny−1




, vk =




v2,3
...

v2,Ny−1

v3,3
...

v3,Ny−1
...

vNx−1,3
...

vNx−1,Ny−1




, pk =




p2,2
...

p2,Ny−1

p3,2
...

p3,Ny−1
...

pNx−1,3
...

pNx−1,Ny−2




, (3.19)

νk =

(
C ′

T1
C ′

T2
. . . C ′

Tℵ

)T
, γk =

(
γ1 γ2 . . . γℵ

)T
, (3.20)

with Nx and Ny the number of cells in the x and y directions, respectively, and ℵ the
number of turbines in the wind farm. Each component in uk , vk and pk represents a
flow velocity and pressure at a point in the field defined by the subscript. For clarity
reasons, an example of a staggered grid is depicted in Fig. 3.6.
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Figure 3.6: Example of a staggered grid with cells each having volume ∆V . In the WFSim model, the grid is
quadrilateral.

3.2.4. BOUNDARY AND INITIAL CONDITIONS

All the components that are not contained in the vector, uk,vk and pk , but do appear
in the staggered grid need to be defined. For the flow velocity components, first-order
conditions on the west side of the grid are prescribed assuming the wind is coming from
the east. These Dirichlet inflow boundary conditions are related to the ambient inflow
defined as ub and vb and can vary over time. Zero stress (also referred to as Neumann)
boundary conditions are prescribed on the other boundaries. Therefore, for the flow
velocity components on the boundaries we define:

u2,J =ub for J = 1,2, . . . ,Ny, v1,j = vb for j = 2,3, . . . ,Ny,

ui,Ny
=ui,Ny−1 for i= 3,4, . . . ,Nx, vI,Ny

= vI,Ny−1 for I = 2,3, . . . ,Nx,

ui,1 =ui,2 for i= 3,4, . . . ,Nx, vI,2 = vI,3 for I = 2,3, . . . ,Nx,

uNx,J =uNx−1,J for J = 2,3, . . . ,Nx−1, vNx,j = vNx−1,j for j = 3,4, . . . ,Ny −1.

For the initial conditions, we define all longitudinal and lateral flow velocity compo-
nents in the field as ub and vb, respectively, which are the boundary velocity values. The
initial pressure field is set to zero. Note that by defining the boundary conditions as given
above, the assumption is that the wind is coming from the east in Fig. 3.6, which coin-
cides with the definition of the mixing length (see §3.2.1). Finally, the equations given
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in (3.7) and (3.8) can be transformed to the difference algebraic equation 1:



Ax(uk,vk) Axy(uk) B1

Ayx(uk) Ay(uk,vk) B2

BT
1 2BT

2 0




︸ ︷︷ ︸
E(qk)



uk+1

vk+1
pk+1




︸ ︷︷ ︸
qk+1

=



A11 0 0

0 A22 0
0 0 0




︸ ︷︷ ︸
A



uk

vk
pk




︸ ︷︷ ︸
qk

+ . . .

. . .+



b1(uk,vk,νk,γk)
b2(uk,vk,νk,γk)

b3




︸ ︷︷ ︸
b(qk,wk)

, (3.21)

with nq = nu+nv +np and uk ∈ Rnu ,vk ∈ Rnv ,pk ∈ Rnp containing all flow velocities
in the longitudinal and lateral direction and the pressure vector at time k and control

variable wT
k
=

(
νk γk

)T
∈R2ℵ. The non-singular square descriptor matrix E(qk) con-

tains the coefficients a••,•, appearing in (3.16) and (3.17), that depend on the state at time
k. The square constant matrix A solely depends on grid spacing and sample period ∆t.
Note that the state vector contains three states for every cell hence an increase in grid res-
olution results in an increase in matrix dimensions. However, the system matrices that
occur in (3.21) are sparse and efficient numerical solvers are available for these types of
problems. This will be demonstrated in § 3.3. The vector b(qk,wk) contains the forcing
terms (turbines) and boundary conditions.

By defining Nx,Ny,∆xI,I+1,∆yJ,J+1, and the turbine positions, a wind farm topol-
ogy is determined. Next, ambient flow conditions ub and vb, tuning parameters
cf ,cp,d,d

′, ls and the control variable wk need to be specified. The system given
in (3.21) is then fully defined and can be solved.

3.3. COMPUTATION TIME

When discretizing partial differential equations, a trade-off has to be made between the
computation time and grid resolution. Typically, a higher resolution results in more
precise computation of the variables but also increasing computation time. In WFSim,
computational cost is reduced by exploiting sparsity and by applying the reverse Cuthill-
McKee algorithm (Cuthill and McKee, 1969).2 The latter is applicable due to the fact that
the matrix structure is fixed. The interested reader is referred to (Doekemeijer et al.,
2016) for more information on the Cuthill-McKee algorithm in WFSim.

In this section, the mean computation time needed for one time step ∆tcpu will be
analysed. The presented results are obtained on a regular notebook with an Intel Core
i7-4600U 2.7 GHz processor employing one core and MATLAB. Since the objective is to
do online control, i.e., it is desired to reduce computational complexity, this section in-
troduces a second WFSim representation. The first representation was given in (3.21)

1This type of system can also be referred to as a quasi-linear parameter-varying model or descriptor model.
2The sparse toolbox and reverse Cuthill-McKee algorithm are both utilised in MATLAB.
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while the second is defined as:



Ax(uk,vk) 0 B1

0 Ay(uk,vk) B2

BT
1 2BT

2 0




︸ ︷︷ ︸
E(qk)



uk+1
vk+1

pk+1




︸ ︷︷ ︸
qk+1

=



A11 0 0

0 A22 0
0 0 0




︸ ︷︷ ︸
A



uk

vk
pk




︸ ︷︷ ︸
qk

+ . . .

. . .+



b1(uk,vk,νk,γk)
b2(uk,vk,νk,γk)

b3




︸ ︷︷ ︸
b(qk,wk)

. (3.22)

The difference can be found in the descriptor matrix. In the representation above, the
elements Axy(uk),Ayx(uk) that occur in (3.21) are set to zero. This can be justified
by the fact that their contribution is negligible since these matrices contain elements
that, for our case studies, are of the order of O(1) while the elements in Ax(uk,vk) and
Ay(uk,vk) are of the order of O(3). Consequently, no significant change in the com-

1 2 3 4 5 6 7 8 9

×10
4

0.2

0.4

0.6

0.8

1

Figure 3.7: Mean computation time per simulation time step∆tcpu versus number of statesnq. The red dashed
line is WFSim as presented in (3.21) and blue is WFSim as presented in (3.22). Note that the number of cells is
approximately nq/3 with nq the number of states.

puted flow field has been observed, but a decrease in ∆tcpu has (see Fig. 3.7). There-
fore, the remainder of this chapter will continue with the WFSim representation given
in (3.22). Table 3.1 depicts more numerical values of ∆tcpu for this WFSim representa-
tion.

From Table 3.1 we can conclude that ∆tcpu increases between quadratic and linear
with respect to the number of states nq for nq < 221 ·103 . It depends on the computer
properties how much you can increase the number of states until the CPU is out of mem-
ory.
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Table 3.1: Mean computation time per simulation time step ∆tcpu versus number of states nq for the WFSim
representation as given in (3.22). Computations are performed on a regular notebook with one core.

nq ∆tcpu [s] nq ∆tcpu [s] nq ∆tcpu [s] nq ∆tcpu [s]

3 ·103 0.02 27 ·103 0.22 115 ·103 1.19 239 ·103 3.1
6 ·103 0.04 43 ·103 0.37 147 ·103 1.66 258 ·103 3.5
9 ·103 0.06 64 ·103 0.60 182 ·103 2.12 268 ·103 3.7

14 ·103 0.10 88 ·103 0.88 221 ·103 2.50 276 ·103 3.8

3.4. SIMULATION RESULTS
In this section, WFSim flow and power data will be compared with LES data and it is
organised as follows. In §3.4.1, quality measures are introduced. In §3.4.2, WFSim data
are compared with PALM data, and WFSim is validated against SOWFA data. In both
simulation cases (PALM and SOWFA), the thrust coefficients C ′

T
are varied while the yaw

angles are set to zero.

3.4.1. QUALITY MEASURES

Suppose we have at time k a measurement of one quantity zk ∈ RN and its estimation
ẑk ∈ RN . Define the prediction error ek = ẑk −zk . The quality measure RMSE is, for
time step k, defined as

RMSE(zk, ẑk) =

√
1

N
eT
k
ek. (3.23)

This measure is used to compare the flow centreline velocity U c
k

(x) and power signals
from LES and WFSim data for different model parameters. The flow centreline is, for
one time step, defined as the laterally averaged longitudinal flow velocity throughout
the simulation domain across the rotor diameter. Mathematically this can, for LES data
at time step k at longitudinal position xi, be defined as:

U c
k(xi) =

1

Ny

Ny∑

s=1
uk(xi,ys), (3.24)

with ys the y-coordinate of one cell across the line y ⊂ y, which contains Ny number of
cells and has a length equal to the rotor diameter. From WFSim data, the flow velocity
component at the rotor centre will be taken accross the position x.

In this work we compare lateral and longitudinal flow velocity components at hub
height and power signals calculated with LES with lateral and longitudinal flow velocity
components and power signals calculated with WFSim.3

3.4.2. AXIAL INDUCTION ACTUATION
Studies such as (Shapiro et al., 2017a; Munters and Meyers, 2017; Vali et al., 2017)
and (van Wingerden et al., 2017) illustrate that axial induction actuation can be used in
active power control where the objective is to provide grid facilities. In order to utilize

3The LES flow data are mapped onto the grid of WFSim using bilinear interpolation techniques.
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the WFSim model in active power control, it is important to first validate it when exciting
the thrust coefficient.

In the following, WFSim is compared with simulation data from PALM (Maronga
et al., 2015) and SOWFA (Churchfield et al., 2012), both high-fidelity wind farm mod-
els that were briefly discussed in Section 3.1. The latter includes the actuator line
model (ALM) while the former employs the ADM.4

PARALLELIZED LES MODEL (PALM) AND WFSIM

PALM predicts the 3D flow velocity vectors and turbine power signals in a wind farm
using LES and is based on the 3D incompressible Navier-Stokes equations.5 Table 3.2
gives a summary of the two-turbine wind farm simulated in WFSim. A summary of the
PALM simulation set-up can be found in Appendix 3.B (including a CP /CT -curve). The
applied control signals are depicted in Fig. 3.8 and are chosen such that different system
dynamics are excited. The final values for the tuning parameters are obtained using a
grid search. Figure 3.9 and Fig. 3.10 show a comparison of the mean flow centreline and
the wind farm power, respectively. A flow field evaluated with both the WFSim model
and PALM can be found in Appendix 3.B.

Table 3.2: Summary of the WFSim simulation set-up.

Domain size Lx×Ly 2×0.63 [km2] Turbine rotor diameter D 126.4 [m]
Grid size Nx×Ny 50×25 Turbine arrangement 2×1
Cell size ∆x×∆y 40×23 [m2] Turbine spacing 5D
Times ∆t= 1,∆tcpu = 0.02 [s] Atmospheric conditions ub = 8,vb = 0 [m/s], ρ= 1.2 [kg/m3]
Force and power factor cf = 1.7,cp = 0.95 Turbulence model d= 530,d′ = 122 [m] ls = 0.06

0 200 400 600 800 1000 1200 1400 1600
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1
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T

′

T1 (blue), T2 (red dashed)

Figure 3.8: Excitation signals for the 2-turbine simulation case. The yaw angles are set to zero.

In Fig. 3.9, the mean flow centrelines through the farms of WFSim and PALM are rel-
atively similar. The PALM data exhibit more turbulent fluctuations due to the presence
of a more sophisticated turbulence model, which allows for better capturing small-scale

4PALM also includes the rotating ADM, but in our case study the ADM is employed.
5In this work we consider PALM as a wind farm model since PALM is simulated with turbine models. However,

PALM is also applicable for simulating oceanic behaviour.
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Figure 3.9: Mean flow centreline at four time instances through the farm. The vertical red dashed lines indicate
the positions of the turbines.

dynamics such as turbine-induced turbulence. However, the WFSim model is capable of
estimating wake recovery similar to the PALM model. The recovery in the WFSim model
is due to the turbulence model as presented in §3.2.1. It is in fact the slope of the lo-
cal mixing length parameters that can determine the amount of wake recovery, or more
precisely, the larger this slope, the higher the wake recovery. It is therefore interesting to
link this tuning variable to the turbulence intensity in the farm. Furthermore, it can be
seen in Fig. 3.10 that the WFSim model is capable of estimating the wind farm power.
Since both the WFSim model and PALM employ the ADM, fast fluctuations in the power
signal can be observed. This is due to the lack of rotor inertia in both simulation cases.
The simulation case presented in this section illustrates that the WFSim model, in which
the third dimension is partially neglected, is able to estimate wind farm flow and power
signals computed with a 3D LES wind farm model. In the following, a SOWFA case study
will be presented, an LES model that includes turbine dynamics.
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Figure 3.10: Wind farm power from PALM (blue dashed) and WFSim (black).

SIMULATOR FOR WIND FARM APPLICATIONS (SOWFA) AND WFSIM

SOWFA predicts the 3D flow velocity vectors in a wind farm using LES and is based on
the 3D incompressible Navier-Stokes equations. For turbine modeling it employs the
ALM, which is a more sophisticated model than the ADM (Sanderse et al., 2011). In ad-
dition, the FAST model from the National Renewable Energy Laboratory (NREL) is im-
plemented (Jonkman and Buhl, 2005). This model calculates turbine power production,
blade forces on the flow and structural loading on the turbine. In the SOWFA simulation
presented, the NREL 5-MW wind turbine is simulated (Jonkman et al., 2009).

The SOWFA data set used in this work for validation is equivalent to the set used
in (van Wingerden et al., 2017). The thrust coefficient C ′

T
is not a control variable in

SOWFA due to the employment of the ALM and therefore has to be estimated. This will
be discussed in the following paragraph.

TURBINE OPERATING SETTINGS

For estimating the control signals C ′

Tn
, the turbine’s fore-aft bending moment M sowfa

k

calculated with FAST is exploited. Using the relation M sowfa
k

=F sowfa
k

zh with zh the hub

height, the (indirect) measured thrust force F sowfa
k

can be derived. An estimation from

SOWFA data of the rotor flow velocity U sowfa
k

is obtained by averaging the flow velocity
components across the rotor. Using the standard ADM yields for each turbine:

F sowfa
k =

1

2
AρC ′

T

[
U sowfa
k

]2
(
cos(γk+ϕk)
sin(γk+ϕk)

)
. (3.25)

Since F sowfa
k

,U sowfa
k

and ρ can be obtained from SOWFA data and the yaw angles are
given, all the variables in (3.25) are known hence the control variable C ′

T
can be esti-

mated from SOWFA data for each turbine.6 It will be used, together with the yaw angles,
as an input to the WFSim model.

6The estimated C ′
T

from SOWFA data is relatively noisy and hence filtered.
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In the following, flow data at hub height from a nine-turbine SOWFA simulation case
will be compared with WFSim data. See Fig. 3.12 (a) for the simulated wind farm topol-
ogy. The turbines are excited with thrust coefficients as depicted in Fig. 3.11. These
excitation signals are estimated from SOWFA data using the relation defined in (3.25).
Table 3.3 presents the WFSim parameters used during simulations. The tuning variables
of the WFSim model are found using a grid search and the inflow conditions ub,vb are
estimated from SOWFA data.
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Figure 3.11: Excitation signals for the nine-turbine simulation case. The yaw angles are set to zero. See (van
Wingerden et al., 2017) for more information on the simulation case study and turbine excitation signals.

Table 3.3: Summary of the WFSim simulation set-up.

Domain size Lx×Ly 2.5×1.5 [km2] Turbine rotor diameter D 126.4 [m]
Grid size Nx×Ny 100×42 Turbine arrangement 3×3
Cell size ∆x×∆y 25×15 [m2] Turbine spacing 5D×3D
Times ∆t= 1,∆tcpu = 0.1 [s] Atmospheric conditions ub = 12,vb = 0 [m/s], ρ= 1.2 [kg/m3]
Force and power factor cf =

5
2 ,cp = 1.1 Turbulence model d= 635,d′ = 76.2 [m] ls = 0.17

Figure 3.12 (b) and Fig. 3.13 depict a mean flow centreline (see (3.24)) comparison
for each row at four time instances. It can be concluded that the mean flow centreline
derived from WFSim data approximates the mean flow centreline derived from SOWFA
data. In Fig. 3.14, time series of the power signals from SOWFA and WFSim are depicted.
The signals from the latter are more oscillating than the power signals from SOWFA. This
is due to the fact that the power expression in WFSim is a nonlinear static map depend-
ing on the C ′

T
. Thus, no turbine dynamics are taken into account, which is contrary to

SOWFA in which the FAST turbine model is simulated. However, important characteris-
tics can be captured with WFSim. A flow field evaluated with both the WFSim model and
SOWFA can be found in Appendix 3.C.

WFSim is capable of estimating dominant wake dynamics, the objective of the
control-oriented model WFSim. Smaller-scale and stochastic effects can be measured
by sensors and incorporated using an estimator based on WFSim, as has been shown
in (Doekemeijer et al., 2016, 2017, 2018).

3.5. CONCLUSIONS
Current literature on wind farm control can be categorized into model-free and model-
based methods. This chapter focused on the latter category. Here, a distinction can be
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Figure 12. Topology simulated wind farm (a) and mean flow centreline at four time instances through the first row (b).

Figure 3.12: Topology simulated wind farm (a) and mean flow centreline at four time instances through the
first row (b).

made between type of model employed, a steady-state or dynamic wind farm model. In
order to use the closed-loop control paradigm, and account for model uncertainties, we
think it is important to utilize a dynamic wind farm model for controller design and pos-
sible online wind farm control. In this chapter, such a control-oriented dynamic wind
farm model, referred to as WFSim, has been presented.7 It is a wind farm model that can
predict flow fields and power production and includes turbines that are modelled us-
ing actuator disk theory and is based on modified two-dimensional Navier-Stokes equa-
tions. Completely neglecting the third (vertical) dimension is a too crude assumption to
describe the flow in a wind farm accurately enough for control purposes. In this chap-
ter, we included a correction term in the continuity equation. It has been illustrated that
the inclusion of this factor reduces the effect of neglecting the third (vertical) dimension.
More precisely, it has been shown that the speed-up effect of the flow on the right and
left downwind of a turbine will be reduced when solving for the corrected Navier-Stokes
equations compared to the standard two-dimensional Navier-Stokes equations. It has
been shown that this resulted in a better approximation of LES data.

In addition, a turbulence model was included taking into account the desired wake
recovery. The heuristically found turbulence model is based on Prandtl’s mixing length
hypotheses, where the mixing length parameter is made dependent on the downstream
distance from the turbine rotors and also dependent on the mean wind direction. After
theoretically formulating the WFSim model, this chapter followed by illustrating that the
computed flow velocities and power signals from the 2D-like WFSim model can estimate
flow velocity data and power signals from the 3D high-fidelity wind farm models PALM
and SOWFA. The necessary computation time of the WFSim model is however a fraction
of what is needed to do LES making the WFSim model potentially suitable for online con-
trol. More precisely, in the 9-turbine case, the controller model’s computational time8 is
0.1 [s] meaning that it takes 0.1 [s] to propagate one sample forward in time. However,

7The WFSim repository can be found in (Boersma, 2018b).
8All mentioned CPU times are obtained using a regular notebook and one single i7 core.
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Figure 13.Mean flow centreline at four time instances through the second row (a) and third row (b) of turbines. The vertical red dashed lin

Figure 3.13: Mean flow centreline at four time instances through the second row (a) and third row (b) of tur-
bines. The vertical red dashed lines indicate the positions of the turbines.

for a 80-turbine case, the computational time increases to approximately 8 [s] per time
step8. In both cases, the sample period was set to 1 [s] indicating that in the 80-turbine
case, no online control can be done if control signals are updated every second. It is
still an open question if control signals need to be updated every second. Nevertheless,
the developed WFSim model allows for varying the temporal and spatial resolution, and
thus the required model fidelity. This work focussed on axial induction actuation, but fu-
ture work will also include the validation of yaw actuation and wind direction changes.
For the simulation cases presented, no grid convergence studies have been performed,
but future work should entail this. Other work entails the online update of some of the
the tuning variables cf ,cp,d,d

′, ls by an observer (Doekemeijer et al., 2018) and the em-
ployment of the presented dynamic wind farm model in an online closed-loop control
scheme (Vali et al., 2018a).

3.A. DISCRETIZING THE NAVIER-STOKES EQUATIONS.
This section will present the necessary derivations to go from (3.15) to (3.21), i.e., it will
elaborate on the discretization of the NS equations. In the following subsections, all
terms in the NS equations will subsequently be dealt with.

DISCRETIZING THE CONVECTION (NONLINEAR) TERMS

The nonlinear term that occurs in the momentum equations can be spatially discretized
by deriving:

∫

∆V
ρ(u ·∇)u dV =

∫

∆V
ρ

(
∂u2

∂x
+ ∂uv

∂y
∂vu
∂x

+
∂v2

∂y

)
dV.
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Figure 3.14: Wind farm power from SOWFA (blue dashed) and WFSim (black).

X-MOMENTUM EQUATION

Deriving the term in the x-momentum equation (first element in the vector above) yields

∫

∆V
ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV = ρ

[(
u2δy

)
e−

(
u2δy

)
w+ (uv∆x)n− (uv∆x)s

]
,

where
(
u2δy

)
e ,

(
u2δy

)
w are the quantities u2 at the east and west sides of the cell with

surface δye,δyw , respectively. Similarly, (uv∆x)n ,(uv∆x)s are the quantities uv at the
north and south sides of the cell with surface ∆xn,∆xs, respectively. Assuming δy =

δye = δyw and ∆x=∆xn =∆xs, the above can be written as

∫

∆V
ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV = ρ

[(
u2)

e δy−
(
u2)

w δy+ (uv)n∆x− (uv)s∆x
]
,

Define: F ex = ρueδy,F
wx = ρuwδy,F

nx = ρvn∆x,F
sx = ρvs∆x. This is in (Versteeg and

Malalasekera, 2007) referred to as a convective mass flux approximation. The above can
then be written as

∫

∆V
ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV =F exue−Fwxuw+Fnxun−F sxus,

In Fig. 3.5 we observe that ue,uw,un,us,vn,vs are not defined for the black cell. Apply-
ing central differencing approximates the terms as follows

ue =
ui+1,J +ui,J

2
, uw =

ui−1,J +ui,J

2
, un =

ui,J+1 +ui,J

2
, us =

ui,J−1 +ui,J

2
,

vn =
vI−1,j+1 +vI,j+1

2
, vs =

vI−1,j +vI,j

2
. (3.26)
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We can now write
∫

∆V
ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV =F ex

i,Jui+1,J −Fwx
i,J ui−1,J +Fnx

i,J ui,J+1−F sx
i,Jui,J−1 + . . .

. . .+
(
F ex
i,J −Fwx

i,J +Fnx
i,J −F sx

i,J

)
ui,J .

In (3.26), central differencing is applied. A disadvantage of this method is that it does
not use prior knowledge on the flow direction. The upwind differencing scheme, how-
ever, employs this prior knowledge as explained in (Versteeg and Malalasekera, 2007). A
combination of the central and upwind differencing scheme is the hybrid differencing
scheme. When applying this, the above can be written as:

∫

∆V
ρ

[
∂u2

∂x
+
∂uv

∂y

]
dV = cexi,Jui+1,J −cwx

i,Jui−1,J +cnxi,Jui,J+1 −csxi,Jui,J−1 +c
px
i,J

ui,J ,

with cex
i,J

= max
[
−F ex

i,J
,0

]
,cwx

i,J
= max

[
Fwx
i,J

,0
]
,cnx

i,J
= max

[
−Fnx

i,J
,0

]
,csx

i,J
= max

[
F sx
i,J

,0
]

and c
px
i,J

= cex
i,J

+ cwx
i,J

+ cnx
i,J

+ csx
i,J

+F ex
i,J

−Fwx
i,J

+Fnx
i,J

−F sx
i,J

. In WFSim, the coefficients

c•
i,J

and F •

i,J
are evaluated for time k while the other flow velocity components are

computed for time k+1.

Y-MOMENTUM EQUATION

Deriving the nonlinear term in the y-momentum equation yields

∫

∆V
ρ

[
∂v2

∂y
+
∂vu

∂x

]
dV =F

ey
I,j

vI+1,j −F
wy
I,j

vI−1,j +F
ny
I,j

vI,j+1 −F
sy
I,j

vI,j−1 + . . .

. . .+
(
F
ey
I,j

−F
wy
I,j

+F
ny
I,j

−F
sy
I,j

)
vI,j ,

with F
ey
I,j

= ρue∆y,F
wy
I,j

= ρuw∆y,F
ny
I,j

= ρvnδx,F
sy
I,j

= ρvsδx and:

ve =
vI+1,j +vI,j

2
, vw =

vI−1,j +vI,j

2
, vn =

vI,j+1 +vI,j

2
, vs =

vI,j−1 +vI,j

2
,

ue =
ui+1,J +ui+1,J−1

2
, uw =

ui,J +ui,J−1

2
.

The intermediate steps are omitted here since they are similar to the steps presented
when handling the nonlinear term in the x-momentum equation. Note, however, that
the discretization is evaluated using the yellow cell (see Fig. 3.5). When applying the
hybrid differencing scheme, the above can be written as

∫

∆V
ρ

[
∂v2

∂y
+
∂vu

∂x

]
dV = c

ey
I,j

vI+1,j −c
wy
I,j

vI−1,j +c
ny
I,j

vI,j+1 −c
sy
I,j

vI,j−1 +c
py
I,j

vI,j ,

with c
ey
I,j

= max
[
−F

ey
I,j

,0
]
,c

wy
I,j

= max
[
F
wy
I,j

,0
]
,c

ny
I,j

= max
[
−F

ny
I,j

,0
]
,c

sy
I,j

= max
[
F
sy
I,j

,0
]

and c
py
I,j

= c
ey
I,j

+ c
wy
I,j

+ c
ny
I,j

+ c
sy
I,j

+F
ey
I,j

−F
wy
I,j

+F
ny
I,j

−F
sy
I,j

. Similar as before, the coef-

ficients c•
I,j

and F •

I,j
are evaluated for time k while the other flow velocity components

are computed for time k+1.
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DISCRETIZING THE PRESSURE GRADIENT
For the pressure gradient we evaluate

∫

∆V

(
∂p
∂x
∂p
∂y

)
dV =

((
pI,J −pI−1,J

)
δy(

pI,J −pI,J−1
)
δx

)
.

The pressure components are evaluated for time k+1.

DISCRETIZING THE STRESS TERM
Evaluate

∫

∆V
τ∇ dV =

∫

∆V




∂
∂x

[
lu(x,y)2

∣∣∣∂u∂y
∣∣∣ ∂u∂x

]
+

∂
∂y

1
2

[
lu(x,y)2

∣∣∣∂u∂y
∣∣∣
(
∂u
∂y

+
∂v
∂x

)]

∂
∂y

[
lu(x,y)2

∣∣∣∂u∂y
∣∣∣ ∂v∂y

]
+ ∂

∂x
1
2

[
lu(x,y)2

∣∣∣∂u∂y
∣∣∣
(
∂u
∂y

+ ∂v
∂x

)]

 dV. (3.27)

X-MOMENTUM EQUATION

Considering the x-momentum equation we have to evaluate multiple terms. The first
term evaluates as

∫

∆V

∂

∂x

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
dV =

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]

e
δy−

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]

w
δy.

Here we have:

∂u

∂y

∣∣∣∣
e
=
ui,J+1 −ui,J

∆yJ,J+1
,

∂u

∂x

∣∣∣∣
e
=
ui+1,J −ui,J

δxi,i+1
,

∂u

∂y

∣∣∣∣
w
=
ui,J −ui,J−1

∆yJ−1,J
,

∂u

∂x

∣∣∣∣
w
=
ui,J −ui−1,J

δxi−1,i
,

and δy = δyj,j+1. Substituting these expressions yields

∫

∆V

∂

∂x

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
dV = lu(xI−1,yJ )2

∣∣∣∣
(ui,J+1−ui,J )δyj,j+1

∆yJ,J+1δxi,i+1

∣∣∣∣
︸ ︷︷ ︸

T ex
i,J

(ui+1,J −ui,J ) . . .

. . .−lu(xI ,yJ )2
∣∣∣∣

(ui,J −ui,J−1)δyj,j+1

∆yJ−1,Jδxi−1,i

∣∣∣∣
︸ ︷︷ ︸

Twx
i,J

(ui,J −ui−1,J ). (3.28)

The second term evaluates as
∫

∆V

∂

∂y

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
dV = . . .

. . .
1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]

n
∆x−

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]

s
∆x.
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Here we have:

∂u

∂y

∣∣∣∣
n
=
ui,J+1 −ui,J

∆yJ,J+1
,

∂v

∂x

∣∣∣∣
n
=
vI,j+1 −vI−1,j+1

∆xI−1,I
,

∂u

∂y

∣∣∣∣
s
=
ui,J −ui,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣
s
=
vI,j −vI−1,j

∆xI−1,I
,

and ∆x=∆xI−1,I . Substituting yields

∫

∆V

∂

∂y

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
dV =

. . .
1

2

[
lu(xi,yj+1)2

∣∣∣∣
ui,J+1 −ui,J

∆yJ,J+1

∣∣∣∣
(
ui,J+1 −ui,J

∆yJ,J+1
+
vI,j+1 −vI−1,j+1

∆xI−1,I

)]
∆xI−1,I . . .

. . .−
1

2

[
lu(xi,yj )2

∣∣∣∣
ui,J −ui,J−1

∆yJ−1,J

∣∣∣∣
(
ui,J −ui,J−1

∆yJ−1,J
+
vI,j −vI−1,j

∆xI−1,I

)]
∆xI−1,I ,

which can be rearranged to
∫

∆V

∂

∂y

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
dV = . . .

. . .
1

2
lu(xi,yj+1)2

∣∣∣∣∣
(ui,J+1 −ui,J )∆xI−1,I

∆y2
J,J+1

∣∣∣∣∣
︸ ︷︷ ︸

Tnx
i,J

(ui,J+1 −ui,J ) . . .

. . .+
1

2
lu(xi,yj+1)2

∣∣∣∣
(ui,J+1 −ui,J )

∆yJ,J+1

∣∣∣∣
︸ ︷︷ ︸

Tnewx
i,J

(vI,j+1 −vI−1,j+1) . . .

. . .−
1

2
lu(xi,yj )2

∣∣∣∣∣
(ui,J −ui,J−1)∆xI−1,I

∆y2
J−1,J

∣∣∣∣∣
︸ ︷︷ ︸

T sx
i,J

(ui,J −ui,J−1) . . .

. . .−
1

2
lu(xi,yj )2

∣∣∣∣
(ui,J −ui,J−1)

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

T sewx
i,J

(vI,j −vI−1,j). (3.29)

Summarizing the above

∂

∂x

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
+

∂

∂y

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
= . . .

. . .T ex
i,Jui+1,J +Twx

i,J ui−1,J +Tnx
i,J ui,J+1+T sx

i,Jui,J−1+T
px
i,J

ui,J . . .

. . .+Tnewx
i,J (vI,j+1−vI−1,j+1)+T sewx

i,J (vI−1,j −vI,j),

with T
px
i,J

= T ex
i,J

+Twx
i,J

+Tnx
i,J

+T sx
i,J

. The coefficients T •

i,J
will be computed for time k

while the flow components will be evaluated for time k+1.
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Y-MOMENTUM EQUATION

Considering the y-momentum equation, the first term evaluates as

∫

∆V

∂

∂y

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV =

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

n
∆x−

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

s
∆x.

Here we have:

∂u

∂y

∣∣∣∣
n
=
ui+1,J −ui+1,J−1

∆yJ−1,J
,

∂v

∂y

∣∣∣∣
n
=
vI,j+1 −vI,j

δyj,j+1
,

∂u

∂y

∣∣∣∣
s

=
ui,J −ui,J−1

∆yJ−1,J
,

∂v

∂y

∣∣∣∣
s

=
vI,j −vI,j−1

δyj−1,j
,

and ∆x= δxi,i+1. Substituting these expressions yields

∫

∆V

∂

∂y

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV = . . .

. . . lu(xI ,yJ )2
∣∣∣∣

(ui+1,J −ui+1,J−1)δxi,i+1

∆yJ−1,Jδyj,j+1

∣∣∣∣
︸ ︷︷ ︸

T
ny

I,j

(vI,j+1 −vI,j) . . .

. . .−lu(xI ,yJ−1)2
∣∣∣∣

(ui,J −ui,J−1)δxi,i+1

∆yJ−1,Jδyj−1,j

∣∣∣∣
︸ ︷︷ ︸

T
sy

I,j

(vI,j −vI,j−1). (3.30)

The second term evaluates as

∫

∆V

∂

∂x

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
dV = . . .

. . .
1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]

e
∆y−

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]

w
∆y.

Here we have:

∂u

∂y

∣∣∣∣
e
=
ui+1,J −ui+1,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣
e
=
vI+1,j −vI,j

∆xI,I+1
,

∂u

∂y

∣∣∣∣
w
=
ui,J −ui,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣
w
=
vI,j −vI−1,j

∆xI−1,I
,
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and ∆y =∆yJ−1,J . Substituting these expressions yields

∫

∆V

∂

∂x

1

2

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+
∂v

∂x

)]
dV = . . . (3.31)

. . .
1

2
lu(xi,yj)2

∣∣∣∣
ui+1,J −ui+1,J−1

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

T
ensy

I,J

(ui+1,J −ui+1,J−1) . . .

. . .+
1

2
lu(xi,yj )2

∣∣∣∣
ui+1,J −ui+1,J−1

∆xI,I+1

∣∣∣∣
︸ ︷︷ ︸

T
ey

I,J

(vI+1,j −vI,j) . . .

. . .−
1

2
lu(xi+1,yj)2

∣∣∣∣
ui,J −ui,J−1

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

T
wnsy

I,J

(ui,J −ui,J−1) . . .

. . .−
1

2
lu(xi+1,yj)2

∣∣∣∣
ui,J −ui,J−1

∆xI−1,I

∣∣∣∣
︸ ︷︷ ︸

T
wy

I,J

(vI,j −vI−1,j). (3.32)

Summarizing the above

∫

∆V

∂

∂y

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV =

[
lu(x,y)2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

n
∆x−

[
lu(x,y)2
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will be computed for time k

while the flow components will be evaluated for time k+1.

DISCRETIZING THE FORCING TERM
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DISCRETIZING THE UNSTEADY TERM
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DISCRETIZING THE CONTINUITY EQUATION

0=

∫
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+2

∂v

∂y
dV

=
(
ui+1,J −ui,J

)
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)
δxi,i+1.

All the coefficients derived above are given in Table 3.4.
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Table 3.4: Fully discretized Navier-Stokes equations and all its coefficients.
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3.B. PALM CASE STUDY
In this appendix, a resolved flow field for an arbitrarily chosen time step is depicted in
Fig. 3.15 for the PALM case study presented in §3.4.2. Table 3.5 gives a summary of the
PALM simulation set-up and Fig. 3.16 depicts theCP /CT -curve of one turbine simulated
in PALM.

Table 3.5: Summary of the simulation set-up.

Domain size Lx×Ly×Lz 19.2×2.56×1.28 [km2] Turbine dimensions D=126 [m], zh =90 [m]
Grid size Nx×Ny×Nz 1920×256×1280 Turbine arrangement 2×1
Cell size ∆x×∆y 10×10×15 [m2] Turbine spacing 6D
Sample period ∆t 1 [s] Atmospheric conditions ub = 8,vb = 0,wb = 0 [m/s], ρ= 1.2 [kg/m3]
Simulation time t 1750 [s] Inflow uniform
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Figure 3.15: Flow field obtained with PALM (below) and WFSim at t = 750 [s]. The black lines indicate the
turbines.
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Figure 3.16: CP /CT -curve of one turbine simulated in PALM.
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3.C. SOWFA CASE STUDY
In this appendix, a resolved flow field for an arbitrarily chosen time step is depicted
for the SOWFA case study presented in §3.4.2. The SOWFA data set presented in (van
Wingerden et al., 2017) is utilized.
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Figure 3.17: Flow field obtained with SOWFA (below) and WFSim at t = 250 [s]. The black lines indicate the
turbines.
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A CONSTRAINED WIND FARM

CONTROLLER PROVIDING

SECONDARY FREQUENCY

REGULATION: AN LES STUDY

Active power control for wind farms is needed to provide ancillary services. One of these

services is to track a power reference signal with a wind farm by dynamically de- and up-

rating the turbines. In this chapter we present a closed-loop wind farm controller that

evaluates 1) thrust coefficients on a seconds-scale that provide power tracking and mini-

mize dynamical loading on a farm level and 2) yaw settings on a minutes-scale that maxi-

mize the possible power that can be harvested by the farm. The controller is evaluated in a

high-fidelity wind farm model. A six-turbine simulation case study is used to demonstrate

the time-efficient controller for different controller settings. The results indicate that, with

a power reference signal below the maximal possible power that can be harvested by the

farm with non-yawed turbines, both tracking and reduction in dynamical loading can be

ensured. In a second case study we illustrate that, when a wind farm power reference sig-

nal exceeds the maximal possible power that can be harvested with non-yawed turbines

for a time period, it can not be tracked sufficiently. However, when solving for and apply-

ing optimized yaw settings, tracking can be ensured for the complete simulation horizon.

Parts of this chapter have been published in (Boersma et al., 2018a).
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REGULATION: AN LES STUDY

4.1. INTRODUCTION

The trend towards clean energy is irreversible (Obama, 2017). A large part of the clean
energy we are currently generating is harvested by wind farms that extract energy from
the wind (WindEurope, 2018). A wind farm is a collection of wind turbines placed in each
other’s proximity to, i.a., reduce maintenance and electricity cabling costs. However, a
wake develops downstream of each turbine, which is a region that is characterized by
a flow velocity deficit and an increased turbulence intensity (Barthelmie et al., 2007).
Since wind turbines are placed together in a farm, the wakes of upstream turbines in-
fluence the performance of downstream turbines. For example, the flow velocity deficit
influences the power production of downstream turbines (Barthelmie et al., 2010) while
an increased turbulence intensity will increment the turbine’s fatigue loads as suggested
in (Rosen and Sheinman, 1995; Bossuyt et al., 2017), which possibly can reduce the tur-
bine’s lifetime. The objective of wind farm control is to reduce the levelized cost of wind
energy by intelligently operating the turbines inside the farm. Subgoals may include
the increase of the farm-wide power generation, the reduction of turbine fatigue, and
the integration of energy from wind farms with the electricity grid. This integration is
related to the provision of ancillary services. One example is secondary frequency reg-
ulation (a subclass of active power control) in which the objective is to have the wind
farm’s power generation track a power reference signal generated by transmission sys-
tem operators, during a time span of several minutes (Ela et al., 2014). We call this power
tracking and turbines need to increase and decrease their power output during this time
span such that tracking at a farm level is ensured. Since the power reference signal is
below the maximum possible power that can be harvested, the tracking problem has
multiple solutions. For example, one could uprate the downstream turbines while der-
ating the upstream turbines or the other way around while generating an equal amount
of power with the farm. It is therefore possible and necessary to add, besides tracking,
another performance measure, such as the decrease of load variations over time (dy-
namical loading) on the turbines and/or the increase of available power in the farm (see
e.g., (Siniscalchi-Minna et al., 2018a)). Two actuation methods to ensure these objectives
are axial induction and wake redirection control. In the former, generator torques and
pitch angles or thrust coefficients are utilized as control variables while in the latter, the
yaw angles are utilized as control variables (Boersma et al., 2017).

Results that provide power tracking using axial induction actuation can be found
in (Biegel et al., 2013; Spudić et al., 2014; Madjidian, 2016; Zhao et al., 2015; Siniscalchi-
Minna et al., 2018b). More precisely, (Biegel et al., 2013) proposes a wind farm tracking
solution that additionally reduces the turbine’s tower and shaft bending moments. This
controller utilizes turbine models to illustrate the controller’s effectiveness, but is not
tested in a wind farm simulation model. It is therefore uncertain whether the proposed
solution works in a wind farm model. Then in (Spudić et al., 2014) and (Madjidian, 2016),
the authors each propose a different wind farm power tracking solution while minimiz-
ing the axial force exerted by the flow on the turbines. However, as stated in (Bossuyt
et al., 2017), the dynamical turbine loading is a better measure of fatigue than static tur-
bine loading. In (Zhao et al., 2015), the authors propose a distributed controller provid-
ing tracking while minimizing variation in the axial force that is exerted by the turbine
on the flow. In (Siniscalchi-Minna et al., 2018b), besides tracking, an power reference
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distribution among the turbines is also found by the controller that maximizes the avail-
able power in the farm. The work presented in (Jensen et al., 2016) demonstrates an
optimization algorithm that provides power tracking while minimizing the added tur-
bulence intensity. However, all the above proposed controllers except for (Biegel et al.,
2013) are tested in a simplified wind farm model (Grunnet et al., 2010), keeping the ques-
tion open if similar results can be obtained when a more realistic dynamical wind farm
model, such as a Large-Eddy Simulation (LES) based wind farm model, is utilized. The
authors in (Bay et al., 2018) propose a tracking controller that contains a simplified wind
farm model to evaluate control signals and the controller is tested in a simplified wind
farm model. In this work, no additional objectives are considered and also, it remains
questionable if the proposed controller will give similar results when tested in a more
realistic simulation environment. A controller that is tested in an LES based wind farm
model and employs axial induction actuation providing power tracking can be found
in (Shapiro et al., 2017a). The therein solved optimization problem contains dynamical
wake and turbine models, but the only objective is tracking and no constraint regarding,
e.g., dynamical loading is included. Additionally, the authors state that it takes approxi-
mately 20 seconds to evaluate new control settings, which makes the proposed method
not suitable for control on a seconds-scale. The controller presented in (van Wingerden
et al., 2017) is also tested in an LES based simulator, but no wake model nor constraints
were taken into account. The controller provides tracking and the wind farm power ref-
erence signal is distributed heuristically among the turbines without taking any measure
of fatigue into account.

Time-varying yaw actuation has, to the best of our knowledge, yet to be employed in
power tracking. However, this wake actuation method is utilized for the maximization
of wind farm power generation in LES based simulations (Fleming et al., 2014a; Munters
and Meyers, 2018a), a wind tunnel (Campagnolo et al., 2016b) and in a field test experi-
ment (Fleming et al., 2017a).

From the above, we conclude that results obtained with a closed-loop controller that
provides power tracking and dynamical load minimization in an LES based wind farm
model and additionally increases the available wind farm power using yaw actuation are
not yet available in current literature.

Therefore, in this work, a closed-loop reference power tracking solution is proposed
in which 1) thrust coefficients that provide wind farm power tracking while minimizing
dynamical turbine loading are evaluated for every second with a constrained model pre-
dictive controller (MPC) and 2) yaw settings that increase the available wind farm power
can be evaluated every fifteen minutes in the situation where the farm’s power genera-
tion has to be close to or above its upper limit, in order to increase the range of power
reference signals that can be tracked. The MPC employs a dynamical wind farm model
that is updated according to optimized yaw settings and rotor-averaged flow velocities,
and solves for a constrained optimization problem that finds a distribution of the thrust
coefficients among the turbines accordingly. This is different with respect to the pre-
vious work presented in (Boersma et al., 2018c) where a control signal distribution is
imposed. When doing so, it is not possible to change controller settings to have the con-
troller find a control signal distribution among the turbines that reduces, i.e., dynamical
turbine loading. In this work we investigate different controller settings and correspond-
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ing control signal distributions that minimize dynamical turbine loading. Note that the
dynamical wind farm model in this chapter is different from the model presented in
Chapter 3. The latter includes wake dynamics, while it will be shown in this chapter that
these dynamics are not necessary in the controller for providing power tracking. In ad-
dition to the MPC, if a reference will be above the maximum possible power extractable
from the wind with zero yaw settings, the FLOw Redirection and Induction in Steady-
state (FLORIS) tool (Gebraad et al., 2014) is employed to find optimal yaw settings that
maximize the power that could be harvested from the wind with zero yaw settings. In
addition to the proposed control strategy, another important contribution of this work is
the controller evaluation in LES. For this, a software framework referred to as the PALM
Supervisory Controller is developed that allows for programming controllers in a con-
troller friendly software environment and their evaluation in the PArallelized Large-eddy
simulation Model (PALM) (Maronga et al., 2015), an LES based wind farm model. Hence
this work is more focused on controller evaluation in a more realistic wind farm flow
model.

This chapter is organised as follows. In Section 4.2, the developed PALM Supervisory
Controller is introduced and a brief explanation of the PALM itself is presented. Then in
Section 4.3, a description of the employed surrogate models is given and in Section 4.4,
the wind farm controller is formally introduced. Simulation results are presented in Sec-
tion 4.5. More precisely, in §4.5.3, results obtained with different controller settings are
compared and we show that these can influence the control signal distribution among
the turbines. Consequences with respect to tracking behaviour and dynamical turbine
loading are also presented. Then, in §4.5.4, we illustrate the potential of including yaw
actuation when power generation has to be close to or above its upper limit. In §4.5.5
and§4.5.6, the proposed controller is tested against changes in the atmospheric condi-
tions and an unexpected turbine shut down, respectively. The mean computation time
of the controller as function of the number of turbines is investigated in §4.5.8 and this
chapter is concluded in Section 4.6.

4.2. SIMULATION MODEL

The true wind farm is replaced by the high-fidelity “PArallelized Large-eddy simulation
Model (PALM)” (Maronga et al., 2015), because 1) a wind farm is not available and 2) in a
high-fidelity model, controller settings can be compared under exactly equivalent atmo-
spheric conditions, which is not possible in a real wind farm. PALM is programmed in
FORTRAN, while almost all academic wind farm control algorithms are implemented
in MATLAB or Python. One of the contributions of this work is the development of
the PALM Supervisory Controller, which provides a communication interface between
PALM and wind farm controllers implemented in MATLAB. This allows the straight-
forward evaluation of such control algorithms in a high-fidelity simulation environment.
In §4.2.1, a brief summary of PALM is given. Then in §4.2.2, the PALM Supervisory Con-
troller is introduced and in §4.2.3, the specific controller implementation used through-
out this work is given.
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4.2.1. THE PARALLELIZED LARGE-EDDY SIMULATION MODEL
PALM is an meteorological model for atmospheric and oceanic boundary-layer flows. It
has been developed as a turbulence-resolving large-eddy simulation (LES) model and
is open source, available in the public domain (Leibniz Universität Hannover, 2018).
In the LES approach, only the large eddies are simulated due to spatially filtering the
Navier-Stokes equations. The dynamic influence of the small turbulent scales are conse-
quently not resolved, but their influence is accounted for with a so called subgrid model.
PALM is based on the unsteady, filtered, incompressible Navier-Stokes equations and the
subgrid-scale turbulent kinetic energy (SGS-TKE) model (Deardorff, 1980). PALM can
simulate the effect of the Coriolis forces and if non-cyclic boundary conditions are im-
posed, PALM can generate time-dependent turbulent inflow data by using a turbulence
recycling method (see (Maronga et al., 2015)). The resolved equations are discretized
using finite differences on a staggered grid. Examples of embedded models for PALM
are a land surface model, canopy model, radiation models and wind turbine models.
The latter is employed in this work. Two different turbine models are available in PALM.
The actuator disk model (ADM) (Betz, 1926) and the rotating actuator disk model (ADM-
R) (Dörenkämper et al., 2015). Both these turbine models can be utilized with the PALM
Supervisory Controller that is discussed in the following section.

4.2.2. PALM SUPERVISORY CONTROLLER
The Supervisory Controller is a MATLAB/FORTRAN interface that allows for communi-
cating with a wind farm controller implemented in MATLAB. This communication in-
frastructure is used for evaluating control signals by using measurements from PALM. A
schematic representation is depicted in Fig. 4.1, where Y is the set of available measure-
ments andU the set of control signals. The content of these sets depend on the employed
turbine model, on the assumed measurements, and on the control signals sent from the
wind farm controller. Table 4.1 gives all the possible options.
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PALM (FORTRAN)

external conditions

YU

Supervisory

Controller

(MATLAB)

Figure 4.1: Schematic representation of the PALM Supervisory Controller. The signals Y and U are the mea-
surements and control signals, respectively. External conditions are, i.e., boundary conditions.
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Table 4.1: Available set of measurements Y and control signals U for the different turbines models.

PALM+ADM

Y wind velocities, generated turbine power, axial force
U thrust coefficient, yaw angle

PALM+ADM-R

Y wind velocities, generated turbine power, axial force, generator speed
U generator torque, pitch angle, yaw angle

Note again that the developed framework is suitable for any controller programmed
in MATLAB and that the developed software is available in the public domain (Boersma,
2018a). Examples where it has already been utilized can be found in (Boersma et al.,
2018c; Raach et al., 2018). The specific implementation of the Supervisory Controller
used in this work is discussed in the following section.

4.2.3. SUPERVISORY CONTROLLER IMPLEMENTATION PROPOSED IN THIS

WORK
In this work, PALM includes the ADM to determine the turbine’s forcing terms acting
on the flow and power generation. This turbine model is efficient due its lower require-
ments of grid resolution and coarser allowed time-stepping as compared to having to
resolve detailed flow surrounding rotating blades (Meyers and Meneveau, 2010). A con-
sequence of choosing the ADM is that the control signals for turbine i are the disk-based
thrust coefficient C ′

Ti
(t) following (Meyers and Meneveau, 2010; Boersma et al., 2018b)

and yaw angle γi(t). Both of these signals can be used to manipulate the turbine thrust
force and power generation (see (4.2)). In this work, the measurements at time t are 1)
the axial force that a turbine exerts on the flow Fi(t), 2) the power generated by a turbine
Pi(t) and 3) the rotor-averaged wind velocity vi(t) for i = 1,2, . . . ,ℵ with ℵ the number
of turbines. The rotor-averaged wind velocity is assumed to be known, which could be
realized by employing online estimation of the rotor-averaged wind velocity with tech-
niques as presented in (Simley and Pao, 2014; Shapiro et al., 2017b; Doekemeijer et al.,
2018). This is however outside the scope of this work. The above defines the sets of
measurements and control signals as follows:

Y = {Fi(t),Pi(t),vi(t)}, U = {C ′

Ti
(t),γi(t)}, for i= 1, . . . ,ℵ (4.1)

Figure 4.2 illustrates the specific controller architecture programmed in the Supervisory
Controller. The architecture contains two closed loops with in one loop a model predic-
tive controller (MPC) containing a dynamical surrogate model of the wind farm and in
the other loop a wind farm controller containing a steady-state surrogate model of the
wind farm. The former regulates the thrust coefficients on the seconds-scale to provide
power reference tracking, while the latter is utilized when it is desired to increase the
available power in the farm. The following section will detail both the dynamical and
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steady-state surrogate models.
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external conditions
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Ĉ ′

T
(t)

P ref(t)

FLORIS
(optimization)

γ(t)

Controller

Figure 4.2: Proposed closed-loop control framework with measurements y(t) and power reference signal for
the farm P ref(t). The control signals are the filtered thrust coefficients Ĉ ′

T
(t) and yaw angels γ(t). The vertical

arrow connecting the MPC and FLORIS represents the information exchange between the different parts of the
controller.

4.3. CONTROLLER MODELS
The closed-loop controller proposed in this work contains two different surrogate mod-
els. Both are in the feedback loop (see Fig. 3.1), but work on different time scales, in
different situations and with different control signals. The first loop contains an MPC
employing a dynamical wind farm model. This controller works on the seconds-scale
and its goal is to track a wind farm reference power signal using the filtered thrust coeffi-
cients Ĉ ′

T
(t) as control signals (see Fig. 3.1). The dynamical model used for this control

loop is detailed in §4.3.1. The objective of the second control loop is to, when there will
not be enough energy in the farm, increase the possible power that can be harvested by
finding yaw settings γ(t). This loop is working on the minutes-scale and employs the
FLORIS optimization tool, which utilizes a steady-state model that is detailed in §4.3.2.

4.3.1. DYNAMICAL MODEL
An MPC is based on the receding horizon principle in which a constrained optimiza-
tion problem is solved at each time step using future predictions of the system and it
therefore needs a dynamical model. Additionally, we require a computationally efficient
model of the wind farm dynamics because we control on the seconds-scale. Yet, due to
nonlinear dynamics, uncertain atmospheric conditions and wind farm model dimen-
sions, it is challenging to obtain such a dynamical wind farm model suitable for control.
Examples of computationally expensive dynamical control-oriented wind farm models
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can be found in (Boersma et al., 2018b; Shapiro et al., 2017a). However, axial induc-
tion based wind farm power tracking results that are presented in (van Wingerden et al.,
2017; Boersma et al., 2018c) indicate that flow dynamics could be neglected and a wind
farm can be modelled as ℵ uncoupled subsystems, each subsystem consisting of a dy-
namical turbine model that is based on the actuator disk theory. While wake effects are
neglected in the surrogate dynamical model, the turbine dynamics are still affected by
the local flow conditions. Hence, the turbine models are updated according to the lo-
cal rotor-averaged wind velocity, which in reality may or may not be affected by other
turbines inside the farm. In this work, the following model for turbine i is employed

Pi(t) =
πD2

8

(
vi(t)cos[γi(t)]

)3
Ĉ ′

Ti
(t),

Fi(t) =
πD2

8

(
vi(t)cos[γi(t)]

)2
Ĉ ′

Ti
(t),

C ′

Ti
(t) = τ

dĈ ′

Ti
(t)

dt
+ Ĉ ′

Ti
(t),

(4.2)

for i= 1,2, . . . ,ℵ, with Pi(t) the generated power, Fi(t) the axial force that flow exerts on
turbine i, C ′

Ti
(t) the control signal, Ĉ ′

Ti
(t) the first-order filtered control signal, γi(t) the

yaw angle and vi(t) the rotor-averaged wind speed perpendicular to the rotor. Notice
that vi(t) is, i.a., influenced by the upstream turbine settings through wake propagation.
We furthermore have τ ∈R+, the time constant of the filter that acts on the control signal
such the applied control signal is smooth. Temporally discretizing (4.2) at sample period
∆t using the zero-order hold method yields the following state-space representation of
turbine i

xi,k+1 =Aixi,k+Bi(vi,k,γi,k)C ′

Ti,k
, yi,k =xi,k, (4.3)

with

Ai = e−∆t/τ I3 ∈R
3×3, Bi(vi,k,γi,k) =

∫
∆t

0
e−s/τds




πD2

τ8

(
vi(t)cos[γi(t)]

)2

πD2

τ8

(
vi(t)cos[γi(t)]

)3

1/τ


∈R

3,

C ′

Ti,k
∈R, xT

i,k =

(
Fi,k Pi,k Ĉ ′

Ti,k

)
∈R

3, yi,k ∈R
3.

(4.4)

Lifting the state variables of the turbines and adding the wind farm power error signal to
the state variable results in the following wind farm state-space model:

xk+1 =Axk+Bu(vk,γk)C ′

T,k+BrP
ref
k , yk =xk, (4.5)
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which is a linear parameter-varying system due to the varying matrix B(vk,γk). Fur-
thermore we have:

xT
k =

(
x1,k x2,k . . . xℵ,k ek

)
∈R

3ℵ+1,

vTk =
(
v1,k v2,k . . . vℵ,k

)
∈R

3ℵ,

C ′

T,k =

(
C ′

T1,k
C ′

T2,k
. . . C ′

Tℵ,k

)T
∈R

ℵ,

Ĉ ′

T,k =

(
Ĉ ′

T1,k
Ĉ ′

T2,k
. . . Ĉ ′

Tℵ,k

)T
∈R

ℵ, ek,P
ref
k ∈R

A1 = blkdiag
(
A1,A2, . . . ,Aℵ

)
∈R

3ℵ×3ℵ,

A2 =
(
0 −1 0 . . . 0 −1 0

)
∈R

1×3ℵ, A=

(
A1 0
A2 0

)
,

B1
u(vk,γk) = blkdiag

(
B1(v1,k,γ1,k),B2(v2,k,γ2,k), . . . ,Bℵ(vℵ,k,γℵ,k)

)
∈R

3ℵ×ℵ,

B2
u =

(
0 0 . . . 0 0

)
∈R

1×ℵ, Bu =

(
B1
u(vk,γk)
B2
u

)
,

Br =
(
0 0 · · · 0 1

)T
∈R

3ℵ+1×1,

where blkdiag(·) denotes block diagonal concatenation of matrices or vectors. Further-
more we have the wind farm power reference signal P ref

k
and tracking error signal ek.

The model described above will be employed in the controller part presented in §4.4.1.

4.3.2. STEADY-STATE MODEL
For the evaluation of the steady-state yaw angles that increase the possible power that
can be harvested, the FLOw Redirection and Induction in Steady-state (FLORIS) tool
is utilized, which is a low-fidelity steady-state wind farm model and it can be used for
the purpose of wind farm control, offline analysis and layout optimization. The most
recent version is based on the analytical wake model inspired by Bastankhah and Porté-
Agel (Bastankhah and Porté-Agel, 2016) and employed in this work. The interested
reader is referred to (Bastankhah and Porté-Agel, 2016) or (Boersma et al., 2018a) for a
derivation of the steady-state model that will be employed in the controller as described
in §4.4.2.

4.4. CONTROL STRATEGY
The proposed closed-loop controller executes two tasks. The first task is executed on
the seconds-scale and solves a finite-time constrained predictive optimization problem
using the model defined in §4.3.1 assuming full knowledge of the powers, axial forces
and rotor-averaged wind velocities. The main objective is to provide power tracking on
a farm level. The second task is executed on a 15-minutes scale and consists of an opti-
mization procedure using the steady-state surrogate model defined in §4.3.2 assuming
full knowledge of the measured wind direction. The main objective is to increase the pos-
sible power extractable from the wind by finding optimal yaw settings. However, the sec-
ond task will only be executed when the future wind farm reference signal will be above
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the maximal possible extractable wind farm power such that unnecessary yaw actuation
and consequently potential additional loading (Damiani et al., 2017) will not occur. If
more than the maximal possible extractable wind farm power with zero yaw settings is
demanded from the farm, optimal yaw settings can be evaluated and applied with the
additional second loop. The first and second task will be detailed in §4.4.1 and §4.4.2,
respectively.

4.4.1. AXIAL INDUCTION CONTROL FOR POWER TRACKING
The aforementioned MPC is stated to solve the following optimization problem from
time k0 until the prediction horizon k0 +Nh

min
C ′

T,k

k0+Nh∑

k=k0

eTkQek+ (Fk−Fk−1)TS(Fk−Fk−1) (4.6a)

s.t. xk+1 =Axk+Bu(vk0 ,γk0
)C ′

T,k +BrP
ref
k , P k ≤Pmax, (4.6b)

C ′

T,min ≤C ′

Ti,k
≤C ′

T,max, |C ′

Ti,k
−C ′

Ti,k-1
| < dC ′

T , (4.6c)

with

Fk =
(
F1,k F2,k · · · Fℵ,k

)T
∈R

ℵ, Pk =
(
P1,k P2,k · · · Pℵ,k

)T
∈R

ℵ,

Pmax =

(
P av

1,k0
P av

2,k0
. . . P av

ℵ,k0

)T
∈R

ℵ, ek =P ref
k −

ℵ∑

i=1
Pi,k ∈R,

and

P av
i,k0

=
πD2

8

(
vi,k0 cos[γi,k0 ]

)3
C ′

T,max ∈R. (4.7)

Furthermore, C ′

T,max
,C ′

T,min
, dC ′

T
and Pmax represent the upper and lower bounds on

the thrust coefficients, its variation and upper bound on the turbines power generation,
respectively, andγk0

and vk0 the yaw angles and measured rotor-averaged wind velocity
at time k0, respectively. Note that a constraint on the thrust coefficients is already an
indirect constraint on the turbine power signals. However, this generalized framework is
beneficial, as it will allow us to investigate different constraints on the power generation
of each turbine in future work. We furthermore have the weighting matrices

Q= q ∈R, S = Iℵ ·s ∈R
ℵ×ℵ (4.8)

with q,s ∈ R controller tuning variables. In fact, by tuning each weight one can increase
or decrease the importance of the corresponding term in the cost function. More specif-
ically, by increase the weight s relative to q, the controller puts more effort in minimizing
the dynamical turbine loading. We would like to stress here that the optimization prob-
lem defined in (4.6) tries to find a distribution of control signals among the turbines,
such that the tracking error and dynamical loading are minimized. This is different with
respect to the work presented in (Boersma et al., 2018c) in which a distribution is im-
posed before the optimization routine. Clearly, by not imposing a distribution manually
as done in this work, the controller is given relatively more freedom to find control sig-
nals that minimize tracking error and dynamical loading.
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4.4.2. AXIAL INDUCTION CONTROL FOR POWER TRACKING WITH OPTI-
MIZED YAW SETTINGS

The optimization algorithm described in this paragraph relies on the FLORIS tool de-
scribed in §4.3.2. In practice, first it is predicted whether the wind farm reference can be
tracked for the upcoming 15 minutes.1 A method to do this could be by taking the max-
imum value among the upcoming reference signal over a 15 minute horizon and then
estimate the available power using an algorithm such as presented in (Göçmen et al.,
2014). In this work we are not investigating such a method, but if it is possible to track the
wind farm reference signal over the upcoming 15 minutes, then the turbines are yawed
in alignment with the mean wind direction (zero yaw settings) so that no unnecessary
yaw actuation will occur. However, when it is estimated that tracking will not be en-
sured, first the steady-state surrogate model should be adjusted to match the present
atmospheric conditions inside the farm such as for example demonstrated in (Bottasso
and Schreiber, 2018). These atmospheric conditions such as wind direction could be
estimated using, e.g., SCADA data and lidar measurements (Raach et al., 2018). Subse-
quently, the following optimization problem is solved following an interior point method
to address the nonlinearity and nonconvexity of the problem:

γ∗
= argmin

γss

(
−

ℵ∑

i=1

P ss
i (γss)

)
, (4.9a)

s.t. −25◦ ≤ γss
i ≤ 25◦, for i= 1, . . . ,ℵ, (4.9b)

where γss =
(
γss

1 γss
2 · · · γss

ℵ

)T
. The yaw angle is constrained to suppress the in-

crease in structural loading for strongly yawed turbines (Damiani et al., 2017). The opti-
mal yaw settings, γ∗, are then distributed to the turbines and turbine models (see (4.2)),
and maintained for a fifteen minute period, upon which the above described cycle is
repeated. The steady-state power expression is defined as

P ss
i =

(
πD2

8

)
·

(
vss
i cos[γss

i ]
)3
·C

′

Ti
. (4.10)

For more details, the reader is referred to Bastankhah and Porté-Agel (2016); Boersma
et al. (2018a).

4.5. SIMULATION RESULTS
PALM simulation results are all of a neutral atmospheric boundary layer and will be dis-
cussed in this section. In all simulation cases, the controller is applied to a wind farm
with specifications as described in Table 4.2. A CP /CT -curve of a single turbine is de-
picted in Fig 3.16.

The time constant τ is chosen following (Munters and Meyers, 2017) and as a con-
sequence, no fast dynamics such as structural vibrations are captured with the turbine
model. However, it results in smooth control signals that are fed to the turbines in PALM.

1The necessity of using optimized yaw settings or non-yawed turbines to track the future reference is evaluated
every 15 minutes, but this time-span can be adapted according to atmospheric conditions. Additionally, it is
assumed that the reference is known for the upcoming 15 minutes throughout this work.
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Table 4.2: Summary of the simulation set-up.

Lx×Ly ×Lz 15.3×3.8×1.3 [km3] D,zh 120, 90 [m]
∆x×∆y×∆z 15×15×10 [m3] Turbine spacing 5D×3D [m]
∆t 1 [s] U∞,V∞,W∞ 8, 0, 0 [m/s]
N,τ,Nh 850, 5, 10 [s] TI∞, 6%
C ′

T,max
,C ′

T,min
,dC ′

T
, 2, 0.1, 0.2

The prediction horizon Nh is found after tuning the controller. The influence of τ,Nh

is not further investigated in this work. The value for C ′

T,max
corresponds to the Betz-

optimal value and hence no overinductive axial induction control is considered. Fur-
thermore, C ′

T,min
= 0.1 indicating that we do not allow turbines to shut down completely,

which is common practice in wind farms. The bound on the thrust coefficient varia-
tion dC ′

T
= 0.2 is set such that turbines can not de- and uprate instantaneously, but it

also provides an upper and lower bound on the maximum allowable dynamical loading
(see (4.2)).

The topology under consideration is illustrated in Fig. 4.3 and contains heavily waked
wind turbines due to the fact that turbines are aligned with the mean wind direction.
Although farms are designed such that the occurrence of this situation is minimized,
it remains an interesting case study to investigate farm dynamics in these worst case
scenarios (Fleming et al., 2016a). This section is organised as follows. Firstly in §4.5.1,
two performance measures are introduced such that controllers with different settings
can be evaluated. Secondly, in §4.5.2, a brief summary on how PALM is initialized is
given. In §4.5.3, we investigate the influence of the controller parameter s (see (4.8))
on the tracking performance, the dynamical loading and consequently the differences
between the found control signal distributions. Then in §4.5.4, we illustrate by example
that a wind farm power reference signal that temporarily exceed the maximal possible
extractable wind farm power with zero yaw can be tracked when yawing turbines in an
optimized way.
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Figure 4.3: Initial longitudinal flow velocity component at hub-height. The flow is going from west to east and
the black vertical lines represent the wind turbines.
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4.5.1. PERFORMANCE MEASURES
In order to evaluate the controller performance under different settings, two criteria is
introduced.

dFi =

N∑

k=1

(Fi,k−Fi,k−1)2, for i= 1, . . . ,ℵ and, dF =

ℵ∑

i=1
dFi. (4.11)

The turbine performance index, dFi, represents the turbine’s force variations and the
quantity dF represents the force variations on a farm level, both evaluated over the com-
plete simulation horizon. Clearly, a lower performance index indicates less force varia-
tions over the simulation horizon.

4.5.2. SIMULATION INITIALIZATION
Simulations are initialized as follows: a fully developed flow field is generated in the pre-
cursor such that the free-stream wind speeds are U∞=8 [m/s] and V∞=W∞=0 [m/s] in
the longitudinal, lateral and vertical direction, respectively, and a turbulence intensity in
front of the farm of approximately 6% at hub-height in front of the wind farm (see 4.A
for definition of turbulence intensity used in this work). Then, for the specific topology
considered in this work, the flow is propagated N seconds in advance with C ′

Ti,k
= 2

(corresponding to the Betz-optimal value) and γi,k = 0 for i = 1, . . . ,ℵ for the complete
N seconds so that the wakes are fully developed. Here, non-cyclic boundary conditions
and time-dependent turbulent inflow data are imposed by using a turbulence recycling
method (Maronga et al., 2015). The flow field obtained after these N seconds is utilized
as initial flow field (see Fig. 4.3) for the simulation results presented in this work.

The greedy power (P greedy) is defined as the time-averaged wind farm power har-
vested with C ′

Ti,k
= 2 and γi,k = 0 for i = 1, . . . ,ℵ and N seconds of simulation starting

with the previous described initial flow field. With unyawed turbines, a wind farm can
potentially harvest above the P greedy threshold for only a relatively short period of time.
Clearly, this period is defined by the wake propagation time. In this work, P greedy is de-
fined as the maximal possible extractable wind farm power.

4.5.3. POWER TRACKING WHILE MINIMIZING DYNAMICAL TURBINE LOAD-
ING

In this section, the controller parameter s is varied so that its influence on the previously
defined performance measures and control signal distribution can be studied. The value
of controller parameter q = 104 is found after tuning such that tracking is ensured. The
wind farm power reference signal is defined as:

P ref
k = 0.7P greedy

+0.2P greedyδPk, (4.12)

with δPk a normalized “RegD” type AGC signal (Pilong, 2013) coming from an operator
and P greedy ≈ 7.5 [MW]. As can be seen in (4.12), the reference will never exceed P greedy

during the simulation period and hence turbines are in derate mode for the complete
simulation period. Consequently, the problem described in §4.4.1 is exclusively solved
with Yalmip and CPLEX to provide power tracking, and the problem described in §4.4.2
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is not due to the fact that it is possible to track the reference signal given in (4.12) with
unyawed turbines over the complete simulation horizon.

In Fig. 4.4, it can be observed that tracking is ensured for all presented cases and
hence we can conclude that, for the presented cases, the controller parameter s does
not have a significant impact on the tracking performance. However, in Fig. 4.5, it can be
seen that the performance index dF as defined in (4.11) reduces when s increases indi-
cating that dynamical loading can be reduced on a farm level. This is expected since dF
can be found in the controller’s objective function as defined in (4.6). However, Fig. 4.5
also depicts the turbine’s performance indices as defined in (4.11), and it can be observed
that, although dynamical loading on a farm level is reduced, it can increase for specific
turbines in the farm (see for example turbine 5). We note, but do not show, that for s> 50
no significant changes in the dynamical loading can be observed.
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Figure 4.4: Wind farm power and reference for different controller settings s.

Furthermore, from Fig. 4.6 it can be concluded that the control signal distribution
significantly changes for a varying controller parameter s. In fact, an increasing penalty
on the dynamical loading results in a decrease of the downstream thrust coefficients,
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Figure 4.5: Normalized performance indices as defined in (4.11) for different controller settings s.

while upstream turbines receive increased thrust coefficients. The latter results in a de-
creased rotor-averaged flow velocity and its variation, which reduces the fatigue loading
(see (4.2)). In other words, the dynamical loading of the upstream turbines is reduced
when increasing the weight s, while such a simple relation can not be observed for the
downstream turbines. This could possibly be due to the complex wake dynamics that
influence the dynamical loading of the downstream turbines. However, Fig. 4.5 indi-
cates that, on a farm level, the dynamical loading is reduced when increasing s, which is
expected since the weight s increases the penalty on the sum of the individual turbine
dynamical loading (see 4.6). Figure 4.7 additionally depicts the turbine power signals for
different controller settings. We observe that in all cases, the upstream turbines produce
relatively the most power since the wind speed in front of these turbines is the highest
and that an increase in s results in incremental power production of the upstream tur-
bines.

4.5.4. POWER TRACKING WITH OPTIMIZED YAW SETTINGS
In this section, the controller is evaluated with the following reference signal

P ref
k = 0.8P greedy

+0.5P greedyδPk. (4.13)

Observe that, for a period, more power is demanded from the farm than the averaged
power harvested under greedy control. Consequently, the optimization problem de-
scribed in §4.4.2 is solved firstly for the measured wind direction and topology under
consideration to increase the maximum possible power that can be harvested by the
farm. Solving the problem given in (4.9) takes approximately 30 seconds on a regular
notebook and single i7 core. The optimized yaw settings were found to be

γ∗

k =
(
−24.3 −24.3 −16.2 −16.2 0 0

)T
[deg]. (4.14)

These yaw settings are kept constant throughout the simulation case presented in this
section and applied instantaneously in the initial flow field. See Fig. 4.8 for instanta-
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Figure 4.6: Thrust coefficients for different controller settings s. The arrow on the left indicates the wind direc-
tion.
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Figure 4.7: Turbine power signals for different controller settings s. The arrow on the left indicates the wind
direction.

neous longitudinal flow velocity components at hub-height. Note that we assume no
deviation of the mean wind direction and free-stream wind speed during the simulation
period since we update yaw settings every 15 minutes.
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Figure 4.8: Instantaneous longitudinal flow velocity component at hub-height at t= 600 [s]. The flow is going
from west to east and the black vertical lines represent the wind turbines.

Secondly, the problem described in §4.4.1 is solved during the complete simulation
horizon and power tracking is provided with yawed turbines. On a regular note book and
single core, it takes approximately 0.07 seconds to solve the problem described in §4.4.1.
Hence, due to the fact that the sample time is chosen to be one second, online power
tracking can be achieved. The controller parameters q,s were found after tuning such
that tracking is ensured and set to q = 104,s= 25. Note that during the simulation time,
the wake mainly alters due to the changed yaw settings, which makes it extra challenging
for the MPC to track the reference signal. Figure 4.9 depicts simulation results of two
simulations.

In the top plot, tracking results are depicted that are obtained with unyawed tur-
bines. Here it can be seen that indeed, the reference can not be tracked sufficiently over
the complete simulation horizon, which is due to the absence of sufficient wind power.
Interestingly, from t = 300 [s] to t = 450 [s], the wind farm power produces more than
P greedy, which is due to the fact that wakes of upstream turbines are not fully devel-
oped yet. However, when the wake changes arrive at downstream turbines, the available
wind power decreases and the power production converges to P greedy from t = 450 [s]
to t = 520 [s]. In the below plot, it can be observed that power tracking can be ensured
over the complete simulation horizon, which is due to the fact that the yawed turbines
increase the possible power that can be harvested by the farm.

Figure 4.10 depicts the thrust coefficients that are found by the MPC and it can be
seen that in the non-yawed turbine case (i.e., γi,k = 0), the thrust coefficients reach their
boundaries from t = 300 [s] to t = 450 [s] and sufficient power tracking can not be en-
sured during this timespan. However, when the found optimized yaw settings γ∗

k
are

applied, the wind speed is higher in front of the upstream turbines hence more power
can be harvested with these turbines. In order to track the reference, it is therefore pos-
sible to reduce the thrust coefficients.
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Figure 4.9: Wind farm tracking results of the controller with γi,k = 0 (above) and optimized settings γ∗
k

(be-
low).
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Figure 4.10: Thrust coefficients with γi,k = 0 and optimized settings γ∗
k

. The arrow on the left indicates the
wind direction.
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4.5.5. POWER TRACKING UNDER ATMOSPHERIC PERTURBATIONS
The proposed controller is in this section evaluated under time varying lateral flow ve-
locity components ṽk . The controller settings are found to be q = 104,s = 0, and the
simulation results are obtained with non-yawed turbines. The following perturbation is
applied in PALM:

vk = ṽk+0.01, if 150 < k < 250, or 550 < k < 600. (4.15)

This perturbation is applied before time integration of the Navier-Stokes equations in
PALM. Hence PALM resolves, after perturbing the lateral flow velocity component, the
flow velocity components at time k + 1. Figure 4.11 depicts the longitudinal flow ve-
locity components at two different time steps. Clearly, after perturbing the lateral flow
velocity component, a cross-wind can be observed and consequently, less wake interac-
tion occurs. Nevertheless, Fig. 4.12 indicates that the controller is able to provide power
tracking. Figure 4.13 depicts the thrust coefficients for the complete simulation horizon.
Due to the imposed cross-wind, wakes are steered right from downstream turbines and
consequently, the averaged rotor flow velocity of downstream turbines increases. This
results in higher power production and thus, to maintain power tracking, thrust coeffi-
cients can be reduced. The latter can be observed in Fig. 4.13. It can thus be concluded
that the proposed controller is able to provide power tracking when a cross-wind, possi-
bly initiated by a butterfly far away, finds its way through the farm.
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Figure 4.11: Instantaneous longitudinal flow velocity component at hub-height at t = 50 [s] (above) and t =

600 [s] (below). The flow is going from west to east and the black vertical lines represent the wind turbines.
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Figure 4.12: Wind farm power signal and its reference under perturbation in the lateral flow velocity compo-
nent.
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Figure 4.13: Thrust coefficients with γi,k = 0 and under under perturbation in the lateral flow velocity compo-
nent. The arrow on the left indicates the wind direction.
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4.5.6. POWER TRACKING UNDER TURBINE FAILURE

In this section, the controller is tested under the situation in which one turbine fails
to produce power after a certain time instant. The same controller settings were used
in §4.5.5. During the first period of the simulation, all 6 turbines contribute to the power
tracking task, but at t = 99 [s], the third turbine is completely shut down and conse-
quently, the other turbines have to compensate for this loss. Figure 4.14 depicts the wind
farm power signal and its reference, and it can be seen that power tracking is again en-
sured. At t = 99 [s], there is a dip in the power production, but this is recovered after a
few time instances. This is due to the fact that thrust coefficients of the other turbines
are increased, as can be seen in Fig. 4.15. It can therefore be concluded that the pro-
posed controller is also able to cope with turbine shut downs, given that the remaining
turbines are able to provide enough power for the imposed reference signal. However,
if this appears not to be the case, optimized yaw settings can be found and applied that
increase the maximum possible power that can be harvested by the farm as discussed
in §4.5.4.
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Figure 4.14: Wind farm power signal and its reference under turbine failure condition at t= 99 [s].

4.5.7. POWER TRACKING CLOSE TO AND ABOVE GREEDY POWER

Greedy power (P greedy) has been defined as the time-averaged wind farm power har-
vested with C ′

Ti,k
= 2 and γi,k = 0 i = 1, . . . ,ℵ over the entire simulation horizon. This

section presents reference tracking results where the reference is constant over the sim-
ulation horizon, but increases in amplitude for each simulation case. In order to study
the controller’s performance when it is pushed to its limit, the reference was increased
towards and over the P greedy level. The same controller settings were used in §4.5.5 and
Fig. 4.16 depicts the results. The upper plot shows the wind farm’s power production with
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Figure 4.15: Thrust coefficients with γi,k = 0 and under turbine failure condition at t = 99 [s]. The arrow on
the left indicates the wind direction.

C ′

Ti,k
= 2 and γi,k = 0, so no control is activated. The other plots illustrate the controller’s

performance when reference signals are defined as percentages ofP greedy. In the bottom
plot for example, the wind farm’s power reference signal is one percent above P greedy.

The 0.8P greedy case shows good tracking results. However, the tracking deteriorates
around 100-150 seconds for the cases 0.9P greedy and above. This is mainly due to the
definition of P greedy since it is an average over the complete horizon. In the upper plot,
the wind farm power is between 1-1.5 [MW] lower than P greedy around 100-150 seconds.
Hence it is impossible to track power reference signals that are close to P greedy around
this period, simply because this power is not available in the farm. This is due to the
fact that the rotor-averaged wind velocities are not high enough and the control signals
are pushed to their maximum. However, when the amplitude of the oscillations around
P greedy decrease (from 400 seconds until the end), it can be observed that good tracking
can be ensured for cases below or equal to P greedy. Table 4.3 illustrates the root mean
squared level of the error between reference and wind farm power for the different cases.
From the table it can be concluded that the level increases if the reference gets closer to
the P greedy level or goes above this level.

Table 4.3: Root mean squared level of the error (Reference-WF power) signal for the different tracking cases.

Case RMSE [MW] Case RMSE [MW]

0.7P greedy 0.10 1.0P greedy 0.50
0.8P greedy 0.07 1.01P greedy 0.55
0.9P greedy 0.20 1.02P greedy 0.60

0.95P greedy 0.32 1.03P greedy 0.65

Figure 4.17 depicts three simulation cases. In the upper plot, the wind farm power
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Figure 4.16: Wind farm power (WF Power) reference tracking results.

reference is equal to P greedy. Then a case where the reference is one percent higher
than P greedy and the last plot depicts a case where the reference is 2 percent higher than
P greedy. Note that the depicted results are a zoom in of the complete simulation horizon.
From these specific cases it can be concluded that the reference signal can be tracked
only when there is in fact enough power available in the farm. The more the reference
increases relative to P greedy, the more the tracking performance deteriorates since there
are more time intervals in which more power is demanded than there is actually avail-
able. However, since the controller does not contain a full wake model, information
regarding future available wind farm power is not accessible for the controller. Hence it
aims to (when more power is demanded than available) capture the current maximum
available power for each time step.
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Figure 4.17: Wind farm power (WF Power) reference tracking results for the P greedy and above P greedy case.

4.5.8. COMPUTATION TIME

In this section we briefly investigate the computation time that the controllers take for
evaluating new thrust coefficients, i.e., for solving the problem given in (4.6). In the
closed-loop control framework presented in this chapter, the controller evaluates ev-
ery second new thrust coefficients. Hence, the problem given in (4.6) should be solved
within a second because online control is desired. Table 4.4 gives the mean computa-
tion time as a function of the number of turbines ℵ. Obviously, the mean computation
time increases as the number of turbines increases, which is due to the fact that the opti-
mization problem given in (4.6) becomes larger. The controller can evaluate new thrust
coefficients within one second for wind farms that have less than 36 turbines. However,
when a farm has 49 turbines, the mean computation time is already approximately 1.5
seconds, which is higher than the desired one second. In such a case it should be investi-
gated if the proposed closed-loop controller also can provide power tracking when every
two seconds new thrust coefficients are evaluated instead of every one second. Another
possible option is to partition the problem given in (4.6) in sub problems that can be
solved within a second (hierarchical approach as proposed in, e.g., Spudic et al. (2010))
or use a more powerful computer. This is however not investigated in this work. Further-
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more, this work does not investigate the mean computation time necessary to evaluate
new yaw settings,i.e., for solving the problem given in (4.9) as a function of the number
of turbines in the farm.

Table 4.4: Mean computation time per controller time step ∆tcpu versus number of turbines ℵ. Computations
are performed on a regular notebook with one core.

ℵ ∆tcpu [s] ℵ ∆tcpu [s] ℵ ∆tcpu [s] ℵ ∆tcpu [s] ℵ ∆tcpu [s]

3 0.049 6 0.068 9 0.091 12 0.10 15 0.16
20 0.22 25 0.38 36 0.77 49 1.5 64 2.9

4.6. CONCLUSIONS
Ancillary services in wind farms are important to increase the wind power penetration
in the energy market. One example is secondary frequency regulation in which the ob-
jective is to have the wind farm’s power generation track a power reference signal gen-
erated by transmission system operators during a time span of several minutes. Due to
the uncertain wake dynamics, a closed-loop control solution with a dynamical surrogate
model is needed to provide this so called power tracking. Since dynamical wake models
are generally complex, approximations are required such that the surrogate model can
be employed in a controller that should work in a real time application. In this chap-
ter, we present such a dynamical surrogate wind farm model and utilize it in a model
predictive controller that provides power tracking, and additionally is able to reduce the
dynamical loading on a farm level by finding for each simulation second new optimized
thrust coefficients in approximately 0.07 seconds for the presented case study. We note
here that the dynamical loading is parametrized via the rate of change in the axial forces
of the turbines. This is obviously a simplification (e.g., no partial wake overlap is con-
sidered), but the control framework can still easily be used when more complex linear
models are included that parametrize the fatigue in a more complex way.

To push the possible range of traceable power signals, wake steering is used when
future reference signals exceed the maximum power that can be harvested with non-
yawed turbines. Optimized yaw settings that maximize the possible power that can be
harvested are then found by employing a steady-state surrogate model and set for a sim-
ulation period of fifteen minutes. The necessity of applying optimized or zero yaw set-
tings to track the future reference can then be re-evaluated. Note that the optimized
yaw settings maximize the possible power that can be harvested, which can result in un-
necessary turbine yawing. In future work, a more sophisticated method could be incor-
porated in the controller for determining yaw settings that exactly increase the possible
power that can be harvested to the maximal value of the future reference. Nonetheless, it
takes approximately 30 seconds to find new optimized yaw settings and hence, this part
of the controller is also suitable for online control. In this chapter, we give an example
where the reference can not be tracked sufficiently when turbines are non-yawed, while
power tracking is ensured when optimized yaw settings are applied. Additional simu-
lation case studies were also presented that indicate that the proposed controller can
deal with alternating atmospheric conditions and a turbine shut down. The controller is
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evaluated in a high-fidelity simulation environment for which software is developed that
allows for programming controllers in MATLAB and evaluating these in a high-fidelity
simulation environment.

4.A. TURBULENCE INTENSITY
The turbulence intensity in font of the wind farm TI∞ is computed as follows: take
the longitudinal flow velocity at hub-height for the area defined by the vertices x ∈

(30,150) [m] and y ∈ (375,525) [m] for L seconds. Define this local time-varying flow
field as ul

k
. Define:

u′

k =ulk−µu with µu =
1

L

L∑

k=1

ulk. (4.16)

Using the above to compute the turbulence intensity yields:

TI∞ =µs

(
rms(u′

k) ·µ−1
u

)
, (4.17)

with rms(u′

k
) the root-mean-square level of u′

k
along the time axis and µs(·) the spatial

average in the x- and y-direction.
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CONCLUSION AND

RECOMMENDATIONS

One way to reduce the overall cost of wind energy is by placing turbines in each other’s
proximity in what is called a wind farm. Doing so has the advantage of reducing mainte-
nance and cabling costs. However, an upwind turbine develops a wake, which impacts
the performance of downstream turbines. In wind farm control, the aim is to take these
interactions into account and provide improved performance on a farm level, by devi-
ating from the standard turbine control strategy. A wind farm control objective can be
the combination of energy production maximization, fatigue loading minimization or
providing an ancillary service such as wind farm power tracking. Wind farm control is
expected to be crucial in further decreasing the cost of wind energy over the next several
decades. However, serious steps towards a practical wind farm control solution have
to be made in order to demonstrate its full potential. This thesis dealt with important
questions that need to be addressed in order to make these steps.

5.1. CONCLUSIONS
The first research question that we introduced in this thesis is:

I. What is the state-of-the art in wind farm modelling and control, what is missing
and contributes to the current state of wind farm control?

Based on a thorough literature review, it has been concluded that there is still un-
certainty on the necessary fidelity of the controller model and that closed-loop wind
farm controllers evaluated in a high-fidelity simulation environment are scarce. More
specifically, no results are published with a closed-loop wind farm control solution
that employs a medium-fidelity dynamical wind farm model, based on the unsteady
Navier-Stokes equations, online. Such a model allows for convenient adaptation of its

99
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fidelity by the capacity to vary the temporal and spatial resolution. Proposing such a
closed-loop control framework is an answer to the first research question presented in
Chapter 1. A closed-loop control framework is essential in wind farm control since it
can partially compensate for model mismatches and it can reject time-varying distur-
bances. Additionally, since the framework presented in this thesis employs a dynamical
control-oriented model1, wake delays and transients are captured and hence taken into
account by the controller. A last reason for utilizing a dynamical model in the controller
is that it allows for utilizing a sophisticated control methodology like Model Predictive
Control (MPC), which allows for constrained control. One key ingredient of MPC is a
control-oriented (surrogate) model. One contribution of this thesis is the development
of such a control-oriented model, which has been detailed in Chapter 3.

This brings us to the second research question that we introduced in this thesis is:

II. Which wind farm dynamics need to be captured in a control-oriented wind farm
model such that the model can be employed in the online closed-loop control
framework, while the control objective is ensured?

The derivation of the control-oriented model starts with the three-dimensional
unsteady Navier-Stokes equations. Modeling assumptions, reducing the fidelity, were
made to make the controller model suitable for online control. The model is employed
in an Ensemble Kalman filter (Doekemeijer et al., 2018) and an adjoint-based model
predictive wind farm controller (Vali et al., 2018a). Hence, leaps are taken towards a
practical implementation of the closed-loop control scheme proposed in this thesis.
A first serious step towards practical implementation would be to evaluate the pro-
posed closed-loop control solution in a high-fidelity simulation environment. This test
can provide insight on the necessary information/dynamics that the control-oriented
model should contain. If the test results are not successful or it is desired to improve the
controller’s performance, the scope of dynamics captured inside the control-oriented
model may need to be reconsidered. Since the developed model is derived from the
three-dimensional unsteady Navier-Stokes equations, it is relatively easy to include
dynamics that are neglected in the first place. Nevertheless, it can be concluded from
the presented cases in Chapter 3 that the developed dynamical control-oriented model
is able to estimate high-fidelity flow (at hub-height) and power data in a fraction of
the time with the high-fidelity model. Two novel contributions that resulted in this
successful estimation are:

1. A correction factor has been included in the continuity equation, which reduces
the unrealistic speed up effect (wind velocity increase) on both sides behind each
turbine. This effect is a consequence of neglecting the vertical dimension, but the
correction factor partially compensates for that.

2. A spatially dependent mixing length parametrization has been proposed that al-

1Note that the framework is not limited to dynamical control-oriented models, but can also employ a steady-
state wind farm model.
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lows for local adaptation of wake characteristics. The mixing length value depends
on the spatial distance downstream each turbine.

To provide leverage for answering the second research question, the control-oriented
model developed in Chapter 3 can be utilized. However, conclusive statements can not
be made since the controller model has not been employed in a controller that has been
evaluated in a high-fidelity simulation environment. However, it can be stated that,
when wake interactions should be taken into account, employing a steady-state model
can be seen as the minimum, whereas a model with the full Navier-Stokes equations as
the maximum. The model presented in Chapter 3 can be tailored as a compromise (in
terms of speed and accuracy) according to the specified controller objective.

Another, more specific, research question posed in this thesis is:

III. Which wind farm dynamics need to be captured in a control-oriented wind farm
model such that the model can be employed in the online closed-loop control
framework, while wind farm power tracking is ensured?

In Chapter 4 it has been shown that for power reference tracking, no full wake model
(such as the WFSim model presented in this thesis) has to be included in the controller
to ensure tracking in a high-fidelity simulation environment. The proposed model
predictive controller provides power reference tracking by employing a dynamical
parameter-varying model. The latter does not contain a full wake model, which results
in a model predictive controller that is time efficient and suitable for online control.
The closed-loop control solution presented in this part of the thesis also demonstrates
that by applying optimized yaw angles, the set of trackable wind farm power refer-
ence signals can be increased. The optimized yaw angles are found by employing a
steady-state wind farm model. Hence, this online closed-loop control solution contains
both a dynamical and steady-state wind farm model. It can be concluded that, for this
application, no full wake model has to be present in the controller to provide power
tracking, but to find optimized yaw settings that increase the set of trackable wind farm
power reference signals, a full wake model (minimal steady-state) needs to be employed.

The last research question that is posed in this thesis is:

IV. Can we impose additional objectives on the controller while providing wind farm
power tracking and what is the consequence on the control signal distribution
among the turbines?

This thesis showed that, by including additional performance measures in the model
predictive controller, different solutions (distributions of the control signals among the
turbines) can be found, while still ensuring power tracking. Additionally it has been
shown that different control signal distributions affect the turbine’s dynamical loading,
which in this thesis is parametrized as the variation in axial force on the rotor. In a
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real wind farm, this variable is normally not measured, but it can easily be replaced by,
e.g., the out of plane blade bending moments when these are captured in the control-
oriented model. As such, the presented closed-loop control solution provides an illus-
tration of how it can be utilized in a real wind farm.

5.2. RECOMMENDATIONS
Although this thesis presented steps towards closed-loop dynamical wind farm control,
still many roads need to be discovered. In the following, research recommendations are
given.

• The controller presented in Chapter 4 should be tested in a wind tunnel or bet-
ter, a real wind farm so that its performance can be evaluated in a more realistic
environment.

• A control-oriented model that contains more wake dynamics should be included
in the controller presented in Chapter 4. Then, controller performance and com-
putational time can be compared, and it can be determined whether a model of
increased fidelity results in increased controller performance.

• The controller presented in (Vali et al., 2018a) is not tested in a high-fidelity wind
farm model, i.e., the wind farm model and controller model are equivalent. It is
recommended to test the controller in a high-fidelity wind farm model since this
provides information on the online feasibility. In addition, the necessary dynam-
ics that should be included in the control-oriented model can be studied. Sec-
ondly, (Doekemeijer et al., 2018) and (Vali et al., 2018a) need to be coupled and
tested in a high-fidelity wind farm model. Then, a full solution to the problem
stated in Chapter 1 can be given (see Fig. 1.5).

• The online wind farm control framework presented in this thesis requires a con-
troller model. It has been explained that this is a challenge in this framework. Ex-
ploring the possibilities of distributing the controller model such that each parti-
tion can be solved separately could be interesting. Generally it holds that subdivid-
ing large mathematical problems into small problems, solve these and then gather
the results reduces the total computational time with respect to directly solving for
the large problem itself. Additionally, distributed control methodologies exist that
provide techniques that could possibly be applied in wind farms.

• Modelling directions such as those presented in (Annoni and Seiler, 2016) can be
explored in more detail for a wind farm application. The linear parameter-varying
models can be employed for offline controller synthesis.

• A direction hardly explored in wind farm control is the application of an offline
synthesized dynamic feedback controller. One example is presented in (Soleiman-
zadeh et al., 2013). An advantage is that online controller evaluation and propa-
gation in time (like in MPC) is not necessary, since synthesis can be done offline
and consequently, the computational time is less critical. The idea is to design a
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dynamical controller that ensures closed-loop stability and performance employ-
ing a wind farm model as presented in Chapter 3. Advanced controller synthesis
techniques exist or need to be adapted or developed for this research direction.
Closed-loop dynamic feedback control in wind farms is mainly suitable for power
tracking and reducing fatigue loading. Due to the lack of results in the literature,
this research direction can provide the wind community with new insights, but
can also provide the control community with new controller synthesis methods
with a wind farm as practical application.

• Another open research direction is the exploration of system identification tech-
niques (Birpoutsoukis et al., 2017) in wind farm modelling and control. The
general idea here is to excite the wind farm and measure its response. The in-
put/output data can be utilized to identify a control-oriented wind farm model,
online or offline.

• A practical implementable control solution as presented in (Munters and Meyers,
2018b) should be tested in a wind tunnel or real wind farm. It is interesting to ex-
plore this direction of wind farm control further in which standard periodic func-
tions are applied as control signals and consequently, additional wake recovery is
introduced and power yield is increased.
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R. Ungurán, S. Boersma, V. Petrović, J.W. van Wingerden, L.Y. Pao and M. Kühn, Feedback-

feedforward individual pitch control design with uncertain measurements, American Con-
trol Conference 2019 (under review).

S. Boersma, V. Rostampour, B.M. Doekemeijer, J.W. van Wingerden and T. Keviczky, A

Model Predictive Wind Farm Controller with Linear Parameter-Varying Models, IFAC Con-
ference on Nonlinear Model Predictive Control 2018.

125



126 LIST OF PUBLICATIONS

B.M. Doekemeijer, S. Boersma, L.Y. Pao and J.W. van Wingerden, Joint state-parameter es-

timation for a control-oriented LES wind farm model, Journal of Physics: Conference Series
2018.

S. Raach, S. Boersma, B.M. Doekemeijer, J.W. van Wingerden and P.W. Cheng, Lidar-based

closed-loop wake redirection in high-fidelity simulation, Journal of Physics: Conference Se-
ries 2018.

S. Boersma, V. Rostampour, B.M. Doekemeijer, W. van Geest and J.W. van Wingerden, A

constrained model predictive wind farm controller providing active power control: an LES

study, Journal of Physics: Conference Series 2018.

B.M. Doekemeijer, S. Boersma, J.W. van Wingerden and L.Y. Pao, Ensemble Kalman filter-

ing for wind field estimation in wind farms, American Control Conference 2017.

S. Raach, S. Boersma, J.W. van Wingerden, D. Schlipf and P.W. Cheng, Robust lidar-based

closed-loop wake redirection for wind farm control, International Federation of Automatic
Control 2017.

A. Rott, S. Boersma, J.W. van Wingerden and M. Kühn, Dynamic flow model for real-time

application in wind farm control, Wake Conference 2017.

M. Vali, J.W. van Wingerden, S. Boersma, V. Petrović and M. Kühn, A predictive control
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