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Generalisation Ability of Proper Value Equivalence Models
in Model-Based Reinforcement Learning

Abstract
We investigate the generalization performance of
predictive models in model-based reinforcement
learning when trained using maximum likelihood
estimation (MLE) versus proper value equivalence
(PVE) loss functions. While the more conven-
tional MLE loss aims to fit models to predict state
transitions and rewards as accurately as possible,
value-equivalent methods (e.g. PVE) prioritize
value-relevant features. We show that in a tabular
setting, MLE-based models generalize better than
their PVE counterparts when fit to a small num-
ber of training policies, whereas PVE-based mod-
els perform better as the number of policies in-
creases. With increasing model rank, generalisa-
tion error tends to improve for MLE and PVE, and
the two become closer in generalisation ability.

1 Introduction
Reinforcement learning (RL) is broadly divided into model-
free and model-based methods, where model-based methods
(MBRL) equip the agent with an internal model of the envi-
ronment dynamics and rewards, which can be used for plan-
ning to make better decisions based on the anticipated conse-
quences of agent’s actions [1].

In standard model learning, models are commonly fit on
sampled state transitions and rewards from the environment,
to predict the next state and reward based on a given state,
with a loss based on the maximum likelihood estimation
principle (MLE). However, in a complex environment with
some features irrelevant for the ultimate objective of the agent
(which is to maximise the value function), not all aspects of
the environment need to be accurately modelled for optimal
planning behaviour. This is addressed by value-equivalent
(VE) methods, which enforce that the dynamics model most
closely captures value-relevant features of the environment.
[2]

Recent work has introduced the value equivalence princi-
ple: two models are value-equivalent with respect to a set of
functions and a set of policies if they result equivalent up-
dates under the corresponding induced Bellman operators for
any function and policy in the sets [3]. Further work has in-
troduced proper value equivalence (PVE), which no longer
requires a set of functions to be specified [4]. Often in MBRL
one is interested in models that are value-equivalent to a
model that describes the environment perfectly [3]. A model
which is PVE to the environment wrt all possible policies, is
sufficient for planning – a policy optimal in PVE will also be
optimal in the modeled environment [4].

Some empirically successful RL methods, e.g. MuZero
[5], have been shown to approximately optimize the PVE loss

(wrt to the behaviour policy) [4]. However, MuZero’s predic-
tive model fails to generalize in policy evaluation for unseen
or unfamiliar policies [6]. Generalization ability of models fit
by PVE loss has not yet been systematically explored, though
it may offer insights on applicability of VE methods.

In this work, we aim to answer the following question:

How do predictive models based on MLE and PVE
loss functions compare in evaluation of unseen
policies?

We hypothesize in a low-data regime with relatively large
models MLE-based models will generalize better, as they do
not prioritise any particular set of policies. In a high-data
regime with smaller models we hypothesize VE-based meth-
ods will have an advantage, since they are able to use the lim-
ited model capacity to best represent value-relevant features.

Based on the above we pose the following sub-questions:

1. How does the number of policies included in PVE loss
affect the generalisation ability of the resulting model?

2. How do MLE-based and PVE-based models trained on
the same data compare in test set value prediction error,
as (a) model size varies, (b) training dataset size varies?

To answer the above questions, we focus on a tabular do-
main, where it is tractable to define (deterministic) policies
as matrices, and provide policy values for the PVE loss. We
measure generalisation ability as the value prediction error
on the test set. The experimental setup is as follows: we de-
fine two sets of policies Πtrain, Πtest, train models with PVE or
MLE loss wrt the policies in Πtest, and evaluate the resulting
models on the policies in Πtest.

We find that, as expected, models trained on PVE loss im-
prove in generalisation ability as the number of policies used
in their training is increased. When only a few policies are
used (4–16), PVE models generalise much worse than those
of MLE, and when many are used (32–256), PVE models out-
performs MLE models.

2 Background
2.1 General background for dynamics’ modeling
The agent’s interaction with the environment will be modeled
as a Markov decision process (MDP) M ≡ ⟨S,A, r, p, γ⟩,
where S is the state space, A is the action space, r(s, a) ≡
Es′∈S r(s, a, s′) is the expected reward when taking action
a from state s, p(s′|a, s) is the transition kernel defining the
distribution of the next state s′ when taking action a from
state s, and γ ∈ [0, 1) is a discount factor [7].

A policy π(a|s) maps a state s to a distribution over ac-
tions. A policy π is deterministic, if for every state s it selects
some single action a with probability 1.
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A policy’s value function (or state-value function) is de-
fined as

vπ(s) ≡ E
π

[ ∞∑
i=0

γir(St+i, At+i) |St = s
]

(1)

where Eπ[·] is the expectation over the trajectories induced
by policy π and transition kernel p, and the random variables
St, At are the state and the action at time t. The problem
of computing a policy’s state-value function is called policy
evaluation, or value prediction [1].

The objective of the agent is to seek a policy that max-
imises the value function of every state. In order to evaluate a
candidate policy in this search, one can repeatedly apply the
policy’s Bellman operator to an arbitrary function v : S 7→ R.
The Bellman operator Tπ for a policy pi is defined as follows:

Tπ[v](s) ≡ E
A∼π(·|s)

S′∼p(·|s,A)

[
r(s,A) + γv(S′)

]
(2)

It is known that this procedure converges to the pol-
icy’s true value function, for any initial v – formally
limk→∞ T k

π v = vπ . However, the environment dynamics
r, p are not known to the agent, so it cannot apply the Bell-
man operator directly. Instead, the agent can learn a model
m̃ ≡ (r̃, p̃) from experience, and use an approximate Bell-
man operator T̃π induced by the model, replacing r, p by the
modeled r̃, p̃, resp.

2.2 Loss functions for learning models
To find r̃, it is common to minimise the following MSE loss:

ℓr,D(r, r̃) ≡ E
(S,A)∼D

[
(r(S,A)− r̃(S,A))2

]
(3)

where D is a distribution over the space of state-action pairs
S ×A.

The loss to learn p̃ is typically formulated based on the
maximum likelihood estimation principle (MLE):

ℓp,D(p, p̃) ≡ E
(S,A)∼D

[DKL(p(·|S,A) || p̃(·|S,A))] (4)

where DKL is the Kullback-Leibler divergence [3]. Minimis-
ing the KL-divergence between the actual data probability
and the approximate probability also maximises the likeli-
hood of the data, given the sample size is large enough [8],
[9].

Models based on MLE loss will learn to predict aspects of
the state transition dynamics not relevant to the value, when
a model with a smaller capacity would be able to plan bet-
ter by focusing on dynamics’ value-relevant features [10].
Motivated by this, recent work [4] has introduced the notion
proper value equivalence: given a set of policies Π, and a set
of models M, let

M∞(Π) = {m̃ ∈ M : ṽπ = vπ ∀π ∈ Π} (5)

where vπ is the true value function of π (in the environment),
and ṽπ is the value function of π as evaluated by the model m̃.
Each m̃ ∈ M∞(Π) is then said to be proper value equiva-
lent to the environment with respect to Π.

Importantly, if a policy is optimal when evaluated by a
model m̃ ∈ M∞(Π), the policy is also optimal in the en-
vironment. Here Π denotes the set of all possible policies.
The property also holds for Πdet, the set of all deterministic
policies. This implies that it is sufficient for an agent to have
a model that belongs to M∞(Π) or M∞(Πdet) to find an op-
timal policy.

The PVE loss can be formulated as follows (for any k ∈
N):

ℓkΠ(m
∗, m̃) ≡

∑
π∈Π

∥vπ − T̃ k
π vπ∥ (6)

where ∥·∥ is any vector norm. Here m∗ denotes the exact
model of the environment, which in this loss formulation is
required to obtain true values of vπ . The loss is valid for any
value of k ≥ 1. Note that vπ is here represented as a vector,
where each entry holds the value of a state by policy π. Note
also that the PVE loss requires a set of policies with their true
state-value functions to be specified, whereas the MLE loss
requires a distribution.

3 Related work
Our work builds upon previous research on value equiva-
lence [3], [4], [11], which introduces a theoretic framework
with model equivalence classes based on the future use of the
model in planning. The VE theory is motivated by the so-
called objective mismatch problem – dynamics’ models fit to
conventional approaches, like maximum likelihood estima-
tion (MLE), maximum entropy estimation, the maximum a
posteriori estimation, or Bayesian posterior inference, have
an objective distinct from the planning objective – in other
words, models that achieve better likelihood will not neces-
sarily produce high-value policies [10], [12]–[14]. Further-
more, when using an imperfect model for sample rollouts,
small errors in value estimation tend to compound, magnify-
ing this discrepancy [15].

Grimm, Barreto, Singh, et al. [3] formulated the value
equivalence principle – two models are said to be value-
equivalent wrt to a set of functions and a set of policies if
if they yield the same Bellman updates of the functions on
the policies [3]. In particular, one is typically interested in
finding an approximate model that belongs to the same equiv-
alence class as the true model of the environment – since such
an approximate model may require less capacity than the ex-
act one. To illustrate their claims, Grimm, Barreto, Singh,
et al. include experiments on simple problems, i.e. Catch,
Four Rooms (tabular), and Cart-Pole (non-tabular), showing
that the VE models achieve better planning performance than
their MLE counterparts.

In a later work, Grimm, Barreto, Farquhar, et al. [4] gen-
eralise the notion of VE to order-k counterparts, defined wrt
k applications of the Bellman operator. Proper value equiva-
lence (PVE) is the limit of k-VE, as k → ∞. As in the limit,
after infinitely many applications of the Bellman operator, all
functions become value functions, the PVE equivalence class
does not require a set of functions to be specified. Impor-
tantly, Grimm, Barreto, Farquhar, et al. also show PVE mod-
els are sufficient for optimal planning. The work also details a
series of experiments on a stochastic version of Four Rooms,
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in particular, showing that performance improves with in-
creasing model capacity. The work omits any theoretical or
experimental comparison to MLE, or other reconstruction-
based losses.

Grimm, Barreto, and Singh [11] expand previous theoretic
results on VE to the approximate setting [11]. Their exper-
iments in the Four Rooms domain explore the effect of the
minimum tolerated estimation error ϵ (which tends to increase
with the number of functions in the VE specification), and
model capacity. The results show that good performance is
achieved when, first, enough value functions are used in fit-
ting the model (which relates to generalisation ability), and
model capacity is large enough.

In none of the three works by Grimm is value-equivalent
models’ generalisation ability in value prediction directly
evaluated. This is, however, an interesting niche to explore,
as, for instance, MuZero, which is PVE wrt its behaviour pol-
icy, has been shown to perform poorly in value prediction of
unseen policies different from its behaviour policy [6].

Value-equivalent models can be seen as Qπ-irrelevance ab-
stractions (wrt a set of policies Π) within the unified theory
of state abstractions for MDPs proposed by Li, Walsh, and
Littman [16] [6]. In other words, a value-equivalence model
may internally represent some states in a way such that they
will have the same action-value function for all actions and
policies. It is then reasonable to suppose generalisation can
be achieved when such a model identifies symmetries within
the environment wrt the value.

There exists a complementary framework to VE based on
the same premise of models that are fit to be accurate wrt
value, value-aware model learning (VAML) [13], [17], [18].
VAML focuses on the optimization problems induced by the
premise, while VE is concerned with model classes. In a
similar vein, policy-aware model learning methods [9] apply
the principle of value-awareness (or more broadly decision-
awareness) to policy gradient methods, as VAML originally
has focused only on value-based methods. However, these
and similar works [19] focus on measuring performance, and
not directly the generalisation error.

Some notable empirical successes in MBRL may be con-
ceptualised as applications of the VE principle, including the
Predictron [20], Value Iteration Networks [21], Value Predic-
tion Networks [22], MuZero [5], and others [2], [23]. In par-
ticular, minimizing MuZero’s loss minimizes a squared PVE
loss with respect to a single policy – the current behaviour
policy [4]. The ability of MuZero in evaluating unseen poli-
cies has been previously studied, demonstrating that MuZero
fails predict values accurately for unseen or unfamiliar poli-
cies [6].

The generalisation ability of value-equivalent models may
be a valuable area of study, since it relates to the potential use
of the model in policy exploration, and may possibly provide
insight to failures of value-equivalent or value-aware methods
in some applications [24].

4 Experimental Setup
In Section 1 we have posed the following research questions:

Figure 1: The Four Rooms environment. Source: [4]

1. How does the number of policies included in PVE loss
affect the generalisation ability of the resulting model?

2. How do MLE-based and PVE-based models trained on
the same data compare in test set value prediction error,
as (a) model size varies, (b) training dataset size varies?

To answer both questions, we analyse the collection of
models obtained as described further in this section. In brief,
we have trained 2 models (MLE and PVE) in each experi-
mental run, varying model rank and training policy set size,
for 10 instances of random seeds (in total 8 · 7 · 2 · 10 = 1120
models).

We measure generalisation ability by the average absolute
policy evaluation error (also further referred to as prediction
error) across all states with respect to the test policy set.

Policies as data In order to evaluate the models’ generalisa-
tion ability in value prediction, we sample a subset of distinct
deterministic policies Π ∈ Πdet, and split it into two equally-
sized sets Πtrain and Πtest, one to train the models, the other to
test their value prediction error (on policies unseen in train-
ing). We decided to focus on deterministic policies, since
they are easier to analyse, yet still sufficient to obtain a PVE
model [4].

Environment The experiments were performed in a
stochastic version of the Four Rooms environment [25] (see
Figure 1). The size of the state space is |S| = 104, corre-
sponding to the number of free tiles without walls. The action
space A consists of four actions corresponding to the cardinal
directions. As the agent takes an action, it will move in the
intended direction with probability .8, and otherwise move in
a random direction. If the agent attempts to move into a wall,
it will remain in place. Moving to the upper-right tile yields a
reward of 1, and all other moves result in a reward of 0. This
environment was selected in order to compare our results to
prior work.

Model representation and initialisation Models are rep-
resented tabularly as two components: a matrix R̃ ∈
R|S|×|A|, and a tensor P̃ ∈ R|S|×|A|×|S|, which can also
be thought of as a set of matrices P̃ a ∈ R|S|×|S| for a ∈ A.
Then R̃s,a = r̃(s, a) and P̃ a

s,s′ = p̃(s′|s, a).
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To compare PVE and MLE in settings with various degrees
of limited model capacity, we ensure that each P̃ a has a rank
of at most k by factoring as follows: P̃ a = DaKa where
Da ∈ R|S|×k, Ka ∈ Rk×|S|, and Da, Ka are both con-
strained to be row-stochastic.

Note, a matrix is row-stochastic if its rows sum to 1. A ma-
trix can be constrained to be row-stochastic by parameterising
it by a matrix of the same shape, and applying softmax on the
rows. Note that the product of row-stochastic matrices is also
row-stochastic. Thus each P̃ a is parameterised by the two un-
constrained matrices that parameterise Da and Ka. In model
initialisation, the entries of these two parameterising matri-
ces are sampled from a uniform distribution. The rewards’
model R̃ is also initialiased from a uniform distribution, as it
is unconstrained.

Loss functions The PVE-loss based model is fit on the loss
given in (6), with k = 1 and the L2 norm, on policies π
from Πtrain and their exact values vπ . The MLE-loss based
model is fit on the following expected loss wrt a set of policies
(compare with [13], [26]):

ℓΠ =
∑
π∈Π

 E
(S,A)∼Dπ

S′∼p(·|S,A)

[
− log P̃A

S,S′

] (7)

where Dπ is a distribution derived from policy π. For the
derivation of the loss, refer to Appendix A. We use the sta-
tionary distribution derived from the Markov chain induced
by the true environment dynamics P and policy π, however,
other choices for the distribution are possible in principle.
The MLE loss is expected, not empirical. This decision was
made to make the MLE loss comparable to the PVE loss,
by eliminating statistical sampling error, which would result
from fitting on episodes sampled from policies π ∈ Πtrain.

In the MLE model, R is provided to the agent directly,
without learning. This simplification is motivated by the fact
that with a distribution that visits all transitions with some
non-zero probability, in a tabular setting one can learn the re-
ward r(s, a) by keeping an average of the rewards after taking
action a in state s.

Training details All models were fit with mini-batch gradi-
ent descent (batch size of 50) using the Adam optimizer with
default hyperparameters β1 = 0.99, β2 = 0.999, ϵ =1e-8,
and a learning rate of 5e-4. We apply gradient descent as no
analytical solution was found to exist. Note, we do not con-
trol for overfitting, as we want the models to be fit as best as
possible to the loss objectives, so that they can be compared
at their minima. We train each model for 10,000 epochs, as
we have observed this was sufficient for convergence in all
scenarios.

Range of settings To assess how MLE and PVE compare
in different settings, we train the both, varying two fac-
tors: number of distinct policies included in training, rang-
ing over values {4, 8, 16, 32, 64, 128, 256}, and model capac-
ity (constrained by rank, as described above), ranging over
{10, 30, 50, 70, 90, 104, 130, 150}. Note, we have placed 104
instead of 110, as this is exactly the state space size. Also note

that the sequence of policy set sizes was chosen to be expo-
nentially increasing, to study the models at different magni-
tudes of training data size. Each of these 56 combinations
was tested ten times, with seeds ranging from 0 to 9.

Evaluation Finally, we evaluate and compare the models
by the average absolute value prediction error ∥vπ − ṽπ∥ for
policies in the test set Πtest, as a measurement of their gener-
alisation ability.

Discussion on alternative methodology choices We could
have used the empirical versions of the loss functions instead
of the expected forms, however we have decided to focus on
comparing the behaviour of the losses at their simplest, with-
out accounting for the factor of statistical error, which we
leave for future work.

We have chosen to study tabular environments because it
allows us to exactly compute the value functions of policies
in closed form.

The central method of our study is experimental, which
limits the extent of the conclusions we can make, as we might
expect that in another, possibly more complex, environment
results would be unlike ours.

5 Results
5.1 Effect of training set size
To study the effect of the training policy set size on the PVE
models’ generalisation ability, we fix model rank to 104 (also
the size of the state space). These results are illustrated by
Figure 2. For other settings of model rank the trends are
similar to those in the case we have selected (see Figure 3,
heatmap on the top right).

Figure 2: Effect of the number of policies used to train the model
on the model’s value prediction error (on the test set of policies),
when either MLE or PVE loss is used. Model capacity is here un-
constrained (k = |S| = 104). Note the x-axis is in log-scale. Also
note that in this, and the following figures, the error bars represent
the standard error of the mean (SEM), across the ten seed instances.
We see that, as compared to MLE, performance of PVE loss based
model is more affected by the training set size. In both cases, more
policies in the test set lead to better generalisation ability.
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As expected, we find that the value prediction error on the
hold-out test policy set decreases with increasing the size of
the training policy set. On Figure 2, we see a sharp drop
as the size increases from 8 to 16, and then a slowing de-
crease, implying diminishing returns from adding new poli-
cies to the training set. If we compare the trends in PVE and
MLE generalisation performance for reference, we see that
the MLE models’ error in stays approximately on the same
level for all training set sizes. The explanation for this may be
that once enough policies are included in training, the MLE
model is fit to a transitions’ distribution with sufficient cov-
erage over all possible state-action pairs to estimate the next
states and rewards as accurately as MLE loss can allow. On
the other hand, in the case of PVE, including a new random
policy (along with its true value function) in the loss makes
the model evaluate an unseen policy significantly better than
before. We observe that 4–8 policies are not enough for PVE
to reach performance of MLE, yet 32–64 policies are – we
may explain this by the fact PVE loss takes policies’ value
into account, while MLE does not, hence PVE achieves an
higher test accuracy in policy evaluation.

Our observations confirm our intuitive expectations, as we
have anticipated that with more policies’ value functions in-
cluded in the model, it becomes able to generalise to a broader
set of policies.

5.2 Comparison of PVE and MLE in different
settings

In Figure 3 we see PVE gives extremely low error on the
training set, and high error on the test set. This may indi-
cate the model is overfit to its set of policies, as compared
to MLE, which has comparable levels of error on both train-
ing and test sets. Along the x-axis, we observe that test error
generally decreases as model capacity increases.

Figure 4 contains a compact comparison of MLE versus
PVE, across varied settings of training set size and model ca-
pacity. When few policies are used in training, PVE models
are markedly worse, though their performance improves with
training set size, and at size 64 and onwards, PVE outper-
forms MLE. The disadvantage of PVE is the greatest in the
low-data low-capacity setting (n = 10, k = 8). We can also
observe that with increase in the model rank, the magnitude
of the difference decreases – in other words, generalisation
performance of MLE and PVE tends to equalise as model ca-
pacity grows larger.

Firstly, we have hypothesized that in a setting with few
training policies and large model capacity, MLE-based mod-
els would generalize better than PVE. This has proven par-
tially correct, since though MLE models generalise better
with few training policies, they in fact show a higher advan-
tage over PVE when model representational capacity is large,
not low. The effect of training policy set size has been dis-
cussed in the previous subsection (5.1). Wrt model capacity,
we may hypothesise that when the PVE model capacity is
all too low, the effect of insufficient policies is exacerbated,
whereas MLE is able to maintain good generalisation ability
via keeping a sufficient estimate of transition probabilities,
even though given a limited range in data due to the small
number of deterministic policies used.

Secondly, we have hypothesized that PVE would gener-
alise better in a setting with many training policies and small
model capacity. This hypothesis holds generally true, though
model capacity has a less pronounced effect on generalisation
ability than the number of policies used in training. The re-
sults seem reasonable, if we see the amount of training data as
the main driving factor behind generalisation, and model ca-
pacity being a factor limiting model’s expressive ability, and
hence generalisation.

6 Discussion
6.1 Relation to known results
We have demonstrated that, at least in some tabular settings,
there exists a boundary that divides contexts where MLE is
preferable to PVE in policy evaluation generalisation ability,
and vice versa.

Our results are consistent with previous work on the sub-
ject. For instance, it has been previously shown that planning
performance (here the performance of the model-optimal pol-
icy in the environment) of MLE models improves with in-
creasing model rank [4]. This coincides with our observa-
tions, as model rank positively affects the ability to evaluate
unseen policies, which is helpful in planning, since in plan-
ning with policy iteration the model evaluates multiple mod-
els until finding the optimal one. A non-generalisable model
will evaluate unseen policies incorrectly, leading to a worse
estimate of the optimal policy.

However, we also see that superiority in planning perfor-
mance may not always correspond to superiority in general-
isation ability. Prior work [3] has, similarly to ours, com-
pared MLE and 1-VE (which is a smaller class than PVE)
models on Four Rooms in a series of bivariate experiments,
varying model-rank and number of policies, with notable dif-
ferences: (1) measuring planning performance, (2) fitting an
empirical loss from offline sample transitions. Their results
show PVE outperforms MLE across all scenarios, especially
with lower model ranks, illustrating ”value equivalence prin-
ciple can yield a better allocation of the limited resources of
model-based agents” [3]. In contrast, we show MLE outper-
forms PVE in generalisation with small policy set sizes, and
especially with low model ranks.

6.2 Limitations
We can identify multiple limitations in the experimental
setup. The experiments were made in a simple tabular grid-
world setting, without function approximation. Results may
be different in a more complex setting with function approx-
imation. In training the MLE model we used distributions
which, while valid, may not coincide with the normalized oc-
cupancy measure for the MDP [27]. Note that we have delib-
erately decided to remove the factor of statistical error when
comparing the losses, and hence used expected non-empirical
formulations.

7 Conclusion and future work
In this work we have shown experimentally in a tabular, grid-
world setting, that (1) number of policies used in training a
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Figure 3: Value prediction errors for PVE and MLE models, on training and test policy sets. We have varied the policy set size used in training
(y-axis of the heatmaps), and the model capacity, which is the rank of the tabular model parameters (x-axis of the heatmaps). Note, the color
scale begins at 0 (dark blue for the lowest error), and is capped at 10 (dark red for the highest error). We can see the range of MLE models is
more moderate than that of PVE in both the training and test sets. PVE models show a high test set error when trained on few policies. The
training set error is extremely low for PVE, implying overfitting. In general, errors tend to decrease with model capacity, but not necessarily
with training policy set size (except in PVE models’ prediction error on the test set).

Figure 4: Difference between MLE and PVE value prediction errors, for varied settings of training policy set size, and model capacity. The
visualised matrices were produced by taking the element-wise difference between the corresponding matrices on the right-hand side and
left-hand side of Figure 3. Shades of red indicate error of PVE is better, and blue – that that of MLE is better. We observe that although PVE
behaves significantly worse when trained on few policies, it improves as the training set grows, outperforming MLE in settings with larger
sizes.
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PVE loss based model will improve its ability to evaluate un-
seen policies, and (2) models trained on MLE loss generalise
better than those trained with PVE loss when few policies are
used in training, and the opposite is the case when many poli-
cies are used.

There exist multiple potential directions for future work.
For instance, it would be interesting to formally show the ex-
istence of the boundary identified in Section 6, and study its
properties. One could also compare MLE and PVE in a more
realistic setting, with a large state and action space requiring
function approximation, since in a non-tabular setting, there
will always be some generalisation error between the model
and the environment [26]. Additionally, this work has not ex-
amined how well PVE models generalise to policies similar
to those seen in training, for instance wrt policies from the
same trajectory of policy iteration.

8 Responsible research
This work is concerned with specific theoretic questions in
machine learning, and as thus we believe the work does not
possess any tangible potential for negative societal impact.
The limitations and scope of the work are discussed in Sub-
section 6.2.

This work includes instructions sufficient to reproduce the
main experimental results, see Section 4. The code reposi-
tory is publicly available at https://github.com/severinbratus/
compare pve mle. It is an extension of a repository by
Christopher Grimm [4], and uses several of their functions.
In particular, we have used their implementation of the grid-
world environment, and the PVE models’ training. Other
logic, e.g. MLE model training, was implemented by the
author. The original repository is available at https://github.
com/chrisgrimm/proper value equivalence.

All experimental data was generated pseudo-randomly,
with multiple seeds documented in the paper for reproducibil-
ity. Thus the FAIR Data Principles [28] do not directly apply,
as the input data to the training were not persistently stored,
but rather (re)generated at run-time – the data is however per-
fectly reproducible. Error bars were reported to truthfully
represent the uncertainty observed in our experimental data.
Training details (data splits, hyperparameters) are specified in
the codebase. All experiments were performed on the Delft-
Blue Supercomputer [29], with approx. 560 jobs in total, ap-
prox. 30 minutes each, on Intel Xeon E5-6448Y Processors.

References
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction. MIT press, 2018.
[2] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker,

et al., “Model-based reinforcement learning: A sur-
vey,” Foundations and Trends® in Machine Learning,
vol. 16, no. 1, pp. 1–118, 2023.

[3] C. Grimm, A. Barreto, S. Singh, and D. Silver, “The
value equivalence principle for model-based reinforce-
ment learning,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 5541–5552, 2020.

[4] C. Grimm, A. Barreto, G. Farquhar, D. Silver, and S.
Singh, “Proper value equivalence,” Advances in Neu-
ral Information Processing Systems, vol. 34, pp. 7773–
7786, 2021.

[5] J. Schrittwieser, I. Antonoglou, T. Hubert, et al., “Mas-
tering atari, go, chess and shogi by planning with a
learned model,” Nature, vol. 588, no. 7839, pp. 604–
609, 2020.

[6] J. He, T. M. Moerland, and F. A. Oliehoek, What model
does MuZero learn? Oct. 2023. DOI: 10.48550/arXiv.
2306 . 00840. arXiv: 2306 . 00840 [cs]. (visited on
05/03/2024).

[7] M. L. Puterman, Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley
& Sons, Aug. 2014, ISBN: 978-1-118-62587-3.

[8] M. Arjovsky, S. Chintala, and L. Bottou, Wasser-
stein GAN, Dec. 2017. DOI: 10 . 48550 / arXiv. 1701 .
07875. arXiv: 1701 . 07875 [cs, stat]. (visited on
06/16/2024).

[9] R. Abachi, M. Ghavamzadeh, and A.-M. Farahmand,
Policy-Aware Model Learning for Policy Gradient
Methods, Jan. 2021. DOI: 10.48550/arXiv.2003.00030.
arXiv: 2003.00030 [cs]. (visited on 05/03/2024).

[10] J. Joseph, A. Geramifard, J. W. Roberts, J. P. How, and
N. Roy, “Reinforcement learning with misspecified
model classes,” in 2013 IEEE International Confer-
ence on Robotics and Automation, May 2013, pp. 939–
946. DOI: 10.1109/ICRA.2013.6630686. (visited on
06/16/2024).

[11] C. Grimm, A. Barreto, and S. Singh, “Approximate
value equivalence,” Advances in Neural Information
Processing Systems, vol. 35, pp. 33 029–33 040, 2022.

[12] N. Lambert, B. Amos, O. Yadan, and R. Calandra,
Objective Mismatch in Model-based Reinforcement
Learning, Apr. 2021. DOI: 10 . 48550 / arXiv . 2002 .
04523. arXiv: 2002 . 04523 [cs, stat]. (visited on
06/14/2024).

[13] A.-M. Farahmand, A. Barreto, and D. Nikovski,
“Value-Aware Loss Function for Model-based Rein-
forcement Learning,” in Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and
Statistics, PMLR, Apr. 2017, pp. 1486–1494. (visited
on 05/03/2024).

[14] B. Eysenbach, A. Khazatsky, S. Levine, and R. R.
Salakhutdinov, “Mismatched No More: Joint Model-
Policy Optimization for Model-Based RL,” Advances
in Neural Information Processing Systems, vol. 35,
pp. 23 230–23 243, Dec. 2022. (visited on 06/18/2024).

[15] E. Talvitie, “Model Regularization for Stable Sample
Rollouts,” in Conference on Uncertainty in Artificial
Intelligence, Jul. 2014. (visited on 06/19/2024).

[16] L. Li, T. Walsh, and M. Littman, “Towards a Unified
Theory of State Abstraction for MDPs.,” in Proceed-
ings of the Ninth International Symposium on Artificial
Intelligence and Mathematics, Jan. 2006.

7

https://github.com/severinbratus/compare_pve_mle
https://github.com/severinbratus/compare_pve_mle
https://github.com/chrisgrimm/proper_value_equivalence
https://github.com/chrisgrimm/proper_value_equivalence
https://doi.org/10.48550/arXiv.2306.00840
https://doi.org/10.48550/arXiv.2306.00840
https://arxiv.org/abs/2306.00840
https://doi.org/10.48550/arXiv.1701.07875
https://doi.org/10.48550/arXiv.1701.07875
https://arxiv.org/abs/1701.07875
https://doi.org/10.48550/arXiv.2003.00030
https://arxiv.org/abs/2003.00030
https://doi.org/10.1109/ICRA.2013.6630686
https://doi.org/10.48550/arXiv.2002.04523
https://doi.org/10.48550/arXiv.2002.04523
https://arxiv.org/abs/2002.04523


[17] A.-M. Farahmand, A. M. Barreto, and D. N. Nikovski,
“Value-aware loss function for model learning in re-
inforcement learning,” in 13th European Workshop on
Reinforcement Learning (EWRL), vol. 1, 2016, p. 36.

[18] A.-M. Farahmand, “Iterative Value-Aware Model
Learning,” in Advances in Neural Information Pro-
cessing Systems, vol. 31, Curran Associates, Inc.,
2018. (visited on 05/03/2024).

[19] C. Voelcker, V. Liao, A. Garg, and A.-M. Farah-
mand, Value Gradient weighted Model-Based Rein-
forcement Learning, Jun. 2023. DOI: 10.48550/arXiv.
2204 . 01464. arXiv: 2204 . 01464 [cs]. (visited on
06/14/2024).

[20] D. Silver, H. Hasselt, M. Hessel, et al., “The Predic-
tron: End-To-End Learning and Planning,” in Proceed-
ings of the 34th International Conference on Machine
Learning, PMLR, Jul. 2017, pp. 3191–3199. (visited
on 05/03/2024).

[21] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel,
“Value Iteration Networks,” in Advances in Neural In-
formation Processing Systems, vol. 29, Curran Asso-
ciates, Inc., 2016. (visited on 05/03/2024).

[22] J. Oh, S. Singh, and H. Lee, “Value Prediction Net-
work,” in Advances in Neural Information Processing
Systems, vol. 30, Curran Associates, Inc., 2017. (vis-
ited on 05/03/2024).

[23] A. Plaat, W. Kosters, and M. Preuss, High-Accuracy
Model-Based Reinforcement Learning, a Survey, Jul.
2021. DOI: 10.48550/arXiv.2107.08241. arXiv: 2107.
08241 [cs]. (visited on 06/14/2024).
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Appendix
A Derivation of a MLE loss wrt a set of policies
Here we show the derivation of the MLE loss used in experiments (7) from its KL-divergence formulation (4).

ℓp,D(p, p̃) = E
(S,A)∼D

[DKL(p(·|S,A) || p̃(·|S,A))]

= E
(S,A)∼D

[∑
s′

p(s′|S,A) log p(s′|S,A)
p̃(s′|S,A)

]

= E
(S,A)∼D

[
E

S′∼p(·|S,A)

[
log

p(s′|S,A)
p̃(s′|S,A)

]]
= E

(S,A)∼Dπ

S′∼p(·|S,A)

[
log p(s′|S,A)− log p̃(s′|S,A)

]
As the first term in the expectation p(s′|S,A) is not dependent on the model being optimised, we may omit it from the loss.

Then, if we sum of this quantity over some set of policies Π, adjusting D to be a policy-specific distribution Dπ , we obtain:

ℓΠ =
∑
π∈Π

 E
(S,A)∼Dπ

S′∼p(·|S,A)

[
− log p̃(S′|S,A)

]
=

∑
π∈Π

 E
(S,A)∼Dπ

S′∼p(·|S,A)

[
− log P̃A

S,S′

]
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