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PARALLEL SCALABILITY OF THREE-LEVEL FROSch
PRECONDITIONERS TO 220000 CORES USING THE THETA

SUPERCOMPUTER\ast 

ALEXANDER HEINLEIN\dagger , OLIVER RHEINBACH\ddagger , AND FRIEDERIKE R\"OVER\ddagger 

Abstract. The parallel performance of the three-level fast and robust overlapping Schwarz
(FROSch) preconditioners is investigated for linear elasticity. The FROSch framework is part of
the Trilinos software library and contains a parallel implementation of different preconditioners with
energy minimizing coarse spaces of generalized Dryja--Smith--Widlund type. The three-level exten-
sion is constructed by a recursive application of the FROSch preconditioner to the coarse problem.
In this paper, the additional steps in the implementation in order to apply the FROSch precon-
ditioner recursively are described in detail. Furthermore, it is shown that no explicit geometric
information is needed in the recursive application of the preconditioner. In particular, the rigid body
modes, including the rotations, can be interpolated on the coarse level without additional geomet-
ric information. Parallel results for a three-dimensional linear elasticity problem obtained on the
Theta supercomputer (Argonne Leadership Computing Facility, Argonne, IL) using up to 220 000
cores are discussed and compared to results obtained on the SuperMUC-NG supercomputer (Leibniz
Supercomputing Centre, Garching, Germany). Notably, it can be observed that a hierarchical com-
munication operation in FROSch related to the coarse operator starts to dominate the computing
time on Theta, which has a dragonfly interconnect, for 100 000 message passing interface (MPI) ranks
or more. The same operation, however, scales well and stays within the order of a second in all ex-
periments performed on SuperMUC-NG, which uses a fat tree network. Using hybrid MPI/OpenMP
parallelization, the onset of the MPI communication problem on Theta can be delayed. Further
analysis of the performance of FROSch on large supercomputers with dragonfly interconnects will
be necessary.

Key words. domain decomposition, high performance computing, overlapping Schwarz, soft-
ware, Trilinos, multilevel preconditioners
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1. Introduction. We consider the parallel scalability of recent three-level over-
lapping Schwarz domain decomposition preconditioners implemented in the Fast and
robust overlapping Schwarz (FROSch) software [19, 18], which is part of the Trilinos
software library [2].

Since the use of a direct coarse solver limits the parallel scalability of two-level
methods, we focus on using three-level methods where the coarse problem is solved
inexactly by applying another two-level preconditioner. Hence, these approaches are
based on the recursive construction of two-level preconditioners. In particular, we
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will use Schwarz preconditioners with energy minimizing coarse spaces which, once a
coarse level is available, can be constructed recursively in a fully algebraic way. These
methods are known as generalized Dryja--Smith--Wildund (GDSW) [12, 11] and re-
duced dimension generalized Dryja--Smith--Wildund (RGDSW) [13, 23] type precondi-
tioners, and they are well-suited for an efficient three-level implementation. In [20, 21],
three-level GDSW/RGDSW preconditioners have been introduced for two- and three-
dimensional problems, and first results have been presented. Furthermore, in [25], the
partitioning of the coarse problem has been discussed.

Here, we discuss the three-level implementation in FROSch in detail and show
parallel results for scalability up to 220 000 cores on the Argonne Leadership Comput-
ing Facility (ALCF; Argonne, IL) Theta supercomputer, which is facilitated by the
object-oriented FROSch implementation of three-level GDSW/RGDSW precondition-
ers. The computational results on Theta were obtained during the ALCF Performance
Workshop 2021.

We provide a comparison with computational results previously obtained on up
to 85 000 cores of the SuperMUC-NG supercomputer; cf. [22] for a detailed discus-
sion of these results. We also discuss that, on Theta, possibly due to message pass-
ing interface (MPI) congestion, using hybrid MPI/OpenMP parallelization can delay
the communication problem compared to pure MPI. The hybrid parallelization uses
the MPI parallel linear algebra provided by Tpetra and the shared memory par-
allel linear algebra kernels from Kokkos Kernels through the Kokkos programming
model [9]. Moreover, we use the shared memory parallelization of the sparse direct
solver PardisoMKL [7] used for the subdomain problems and the coarsest-level prob-
lem. Hybrid parallelization for two-level FROSch preconditioners has previously been
successfully used for large scale land ice simulations for Antarctica and Greenland;
see [24].

Our implementation is related to other parallel implementations of scalable over-
lapping Schwarz methods [26, 31]. The three-level GDSW and RGDSW approaches
are also related to three-level (or multilevel) balancing domain decomposition by con-
straints (BDDC) methods [35, 30, 4, 33].

2. FROSch preconditioners. The FROSch framework [19, 18] contains a par-
allel implementation of the GDSW preconditioner [11]. The GDSW preconditioner
is a two-level overlapping Schwarz domain decomposition preconditioner [34] with an
energy minimizing coarse space and a condition number bound.

An important feature of the GDSW coarse space is that it can be constructed
algebraically from the fully assembled stiffness matrix; in particular, it requires neither
a coarse triangulation nor Neumann matrices for the subdomains. Note that, in this
paper, for linear elasticity, we assume that a basis of the nullspace of the operator (or
approximations thereof) can be provided to the preconditioner by the user. Neglecting
certain dimensions of the coarse space, e.g., for elasticity the linearized rotations,
which cannot be constructed algebraically, GDSW may still scale [19, 17], but this is
not covered by theory.

For the construction of the preconditioner, the computational domain is first
decomposed into N nonoverlapping subdomains \{ \Omega i\} i=1,...,N . Then, each subdo-
main is extended by k layers of elements in order to obtain overlapping subdomains
\{ \Omega \prime 

i\} i=1,...,N with an overlap \delta = kh, forming the overlapping domain decomposition
of the first level. Furthermore, let V be the global finite element space, Vi the local
finite element space on the overlapping subdomain \Omega \prime 

i, and Ri the restriction operator
restricting functions from V to Vi.
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Let M - 1
GDSWK be the preconditioned system matrix. For the theory, we assume

that the system matrix K is symmetric positive definite. The two-level GDSW pre-
conditioner can be written in the following form:

(2.1) M - 1
GDSW = \Phi K - 1

0 \Phi T

\underbrace{}  \underbrace{}  
coarse level

+
\sum N

i=1
RT

i K
 - 1
i Ri

\underbrace{}  \underbrace{}  
first level

,

where Ki = RiKRT
i , i = 1, . . . N , are local subdomain matrices on the overlapping

subdomains. For the coarse level, we have K0 = \Phi TK\Phi . The matrix \Phi contains the
coarse basis functions as columns, which span the coarse space V0. In the classical
approach, these would be nodal finite element functions on a coarse triangulation.
In GDSW, for the coarse space, certain interface functions \Phi \Gamma are extended to the
interior of each subdomain in an energy minimizing way. In particular,

(2.2) \Phi =

\biggl( 
\Phi I

\Phi \Gamma 

\biggr) 
=

\biggl( 
 - K - 1

II KI\Gamma \Phi \Gamma 

\Phi \Gamma 

\biggr) 
,

where KII and KI\Gamma are submatrices of K if ordered with respect to the interior (I)
and interface (\Gamma ) degrees of freedom,

K =

\biggl( 
KII KI\Gamma 

K\Gamma I K\Gamma \Gamma 

\biggr) 
.

Note that KII = diag(K
(i)
II ) is a block-diagonal matrix, where K

(i)
II corresponds to

the ith nonoverlapping subdomain. Therefore, the extensions can be computed in-
dependently and concurrently for all subdomains. The choice of the functions \Phi \Gamma is
different for GDSW and the (more recent) RGDSW methods. In GDSW methods,
the interface functions \Phi \Gamma are restrictions of the nullspace Z of the global Neumann
matrix to the vertices, edges, and faces, which form a nonoverlapping decomposition
of the interface \Gamma of the nonoverlapping domain decomposition.

In detail, the columns of \Phi \Gamma are

(2.3) \Phi \Gamma =
\bigl( 
\phi 1
1 \cdot \cdot \cdot \phi 1

n1
\cdot \cdot \cdot \phi k

1 \cdot \cdot \cdot \phi k
nk

\bigr) 
,

where k is the dimension of nullspace Z, where we denote the number of coarse basis
functions belonging to the jth basis vector of Z by nj ; the different coarse basis func-
tions correspond to different interface components. Note that the number of coarse
basis functions is not necessarily the same for each basis vector of Z. In subsection 5.5,
we discuss this in detail. Our interface functions provide a partition of the nullspace
restricted to the interface.

Under certain regularity conditions for the domain decomposition and for scalar
elliptic and linear elasticity problems, the condition number bound is given by

(2.4) \kappa (M - 1
GDSWK) \leq C

\biggl( 
1 +

H

\delta 

\biggr) \biggl( 
1 + log

\biggl( 
H

h

\biggr) \biggr) 
,

where h andH are the sizes of the finite elements and the nonoverlapping subdomains,
respectively, and C is a constant independent of the other parameters; cf. [12, 11].

Compared to typical coarse spaces of scalable finite element tearing and inter-
connecting--dual-primal (FETI-DP) [28] and BDDC [34] methods the standard GDSW
coarse space is larger, especially in 3D. BDDC and FETI-DP preconditioners, however,
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cannot be constructed algebraically. A large dimension of the coarse space will lead to
a scaling bottleneck if the coarse problem is solved using a direct solver. The parallel
scalability of the GDSWmethod can be extended by using more recent RGDSW coarse
spaces [13], which are also implemented in FROSch; cf. [23]. Therefore, for large paral-
lel computations using two-level methods, we often focus on the use of RGDSW coarse
spaces. For the RGDSW coarse spaces, we consider a different partition of unity of
the interface. The RGDSW coarse space is a nodal coarse space, where the basis func-
tions are associated with the vertices. As in the classical GDSW coarse spaces, we use
energy-minimizing extensions to define the interior degrees of freedom; see also Fig-
ure 10, where the basis functions are given for linear elasticity. FROSch currently
implements two options of RGDSW coarse spaces, the algebraic variant (Option 1),
where the interface values are defined based on adjacency relations of interface compo-
nents, and the geometric variant (Option 2.2) [13, 23], where the interface values are
computed using Euclidean distances of interface nodes; see [13, 23] for more details.

Two-level GDSW preconditioners are typically suitable for thousands for cores,
while two-level RGDSW preconditioners can scale to tens of thousands of cores. For
large numbers of subdomains, however, the coarse problem of both methods may
become too large to be solved by a sparse direct linear solver. Therefore, we will here
focus on extending the scalability by means of using another level of an (R)GDSW
preconditioner as an inexact coarse solver.

3. Three-level extension. To overcome the scaling bottleneck arising from
using a sequential or parallel direct solver on the second level of the GDSW precondi-
tioner, we apply the GDSW preconditioner recursively to the coarse problem [20, 21].
A similar approach is also used in other multilevel domain decomposition meth-
ods [35, 30, 4, 33, 29, 32, 31] and, of course, in multigrid methods [16]. Due to
the algebraicity of GDSW coarse spaces, a multilevel extension of the GDSW pre-
conditioner may seem relatively straightforward; however, in this paper, we will only
investigate the three-level version since it is sufficient for the range of scalability con-
sidered here.

For the additional level in the three-level extension, we need to define an addi-
tional decomposition of our computational domain \Omega . In particular, we decompose \Omega 
into nonoverlapping subregions \Omega i0 of diameter Hc, where each subregion is a union
of nonoverlapping subdomains. In order to obtain an overlapping decomposition into
overlapping subregions \Omega \prime 

i0, we add j layers of subdomains to each subregion, as we
do with finite elements on the subdomain level; we denote the subregion overlap by
\Delta = jH; see Figure 1 for a graphical representation using a structured geometric de-
compositions into subdomains and subregions. Note that the parallel computational
results presented in this paper in section 6 use a geometric decomposition into nonover-
lapping subdomains. Alternatively, as investigated computationally in [17, 22], a fully
algebraic decomposition can be used to determine the nonoverlapping domain decom-
position.

As we will discuss in subsection 5.1, in both cases, the decomposition into subre-
gions is then performed in the same way, based on the decomposition into nonover-
lapping subdomains.

With the aforementioned subregions and restriction operators Ri0 from the coarse
space on the second level V0 to the subspaces Vi0 on the overlapping subregions \Omega \prime 

i0,
we define the three-level GDSW preconditioner [20, 21]:

(3.1) M - 1
GDSW - 3L = \Phi 

\Bigl( 
\Phi 0K

 - 1
00 \Phi T

0\underbrace{}  \underbrace{}  
third level

+
\sum N0

i=1
RT

i0K
 - 1
i0 Ri0

\underbrace{}  \underbrace{}  
second level

\Bigr) 
\Phi T +

\sum N

j=1
RT

j K
 - 1
j Rj

\underbrace{}  \underbrace{}  
first level

,
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Fig. 1. Structured decomposition of a two-dimensional computational domain \Omega into nonover-
lapping subdomains \Omega i (left), corresponding to the first level of our preconditioner. Coarse grid with
vertices \vargamma i and edges \xi i (middle). On the coarse grid, the vertices \vargamma i and edges \xi i correspond the
finite element nodes on the first level. Structured decomposition into nonoverlapping subregions \Omega i0

(right) corresponding to the coarse level of our preconditioner.

which, as previously mentioned, arises from replacing K - 1
0 in (2.1) by another GDSW

or RGDSW preconditioner. Therefore, the first level and the matrices \Phi are defined
as in the two-level method; cf. (2.1). Moreover, the Ki0 = Ri0K0R

T
i0 are the local

matrices on the subregions, and K00 = \Phi T
0 K0\Phi 0 is the coarse matrix corresponding

to the coarse space on the third level V00, which is spanned by the coarse basis
functions \Phi 0. The coarse basis functions are constructed as described in section 2 for
the two-level case, however, on the subregion level.

4. Model problem. FROSch is applied in the DFG SPP 2256 as a solver in
nonlinear thermo-chemo-mechanics [27], where it is important that the preconditioner
can be applied in an algebraic way.

Here, we explore the scalability limits of our three-level preconditioner and its
implementation in FROSch, as described in the previous section 5, using the linear
elasticity benchmark model problem: find u \in (H1(\Omega ))3 such that

(4.1)
div u = f in \Omega ,

u = 0 on \partial \Omega D,

on \Omega := [0, 1]3 using a homogenous Dirichlet boundary condition on \partial \Omega D := \partial \Omega .
The Trilinos package Galeri is used to assemble the stiffness matrix. The imple-

mentation in the Galeri package is based on trilinear finite elements and a structured
decomposition of the computational domain \Omega . Instead of specifying a right-hand-
side function f , we use the generic discrete right-hand-side vector (1, . . . , 1)T for the
resulting linear equation system.

5. Implementation. In this section, we will describe the extension of the
FROSch [19, 18] framework to three-level (R)GDSW preconditioners. FROSch is
part of the Trilinos [2] software library and is built on top of the Xpetra package [36],
which is a lightweight interface to both Trilinos linear algebra frameworks Epetra
and Tpetra. Moreover, FROSch can be easily called through the unified Stratimikos
solver interface of Trilinos. The goals of the three-level extension of FROSch are to
provide both a flexible software design, which is compatible with the majority of the
use cases of FROSch preconditioners, and an efficient parallel implementation, which
scales to a large number of MPI ranks.
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The object-oriented design of the FROSch based on Trilinos facilitates the re-
cursive construction and application of the preconditioners to the coarse problem. In
order to allow for a variety of solvers for the coarse and subdomain problems, FROSch
uses an object-oriented interface to different solver classes, e.g., the Amesos2 package
for direct linear solvers. Any solver interface in FROSch is derived from the abstract
class FROSch::Solver, which, at construction time, only requires the system matrix
and a parameter list, which defines the selected solver and its settings, as input. In
the standard two-level method, the solver for the coarse problem is a sparse direct
linear solver (e.g., PardisoMKL). As described in section 3, the three-level extension
is obtained by simply applying the (R)GDSW preconditioner recursively to the coarse
problem. Therefore, the solver for the coarse problem is chosen as an FROSch pre-
conditioner in the parameter list. As described in [19, 18, 17] in detail, the FROSch
preconditioners can, in principle, be constructed in a fully algebraic, black box way.
However, the performance of the preconditioner can benefit from additional informa-
tion. Therefore, in addition to certain a priori defined parameters, such as the width
of the overlap and the sparse direct linear solver for the arising subproblems, we will
include additional information for the construction of the next coarser level. These
parameters are listed in Table 1.

First of all, a pointer to the Xpetra::Map describing the nonoverlapping domain
decomposition on the next higher (subregion) level is stored in the parameter list;
we denote this map as Repeated Map. It will then be used to identify the interface
components on subregion level; cf. [19, 18, 17]. In subsection 5.1, we describe the
procedure to build the Repeated Map from the nonoverlapping domain decomposition
on subdomain level. In order to identify interface components and degrees of freedom
(DOFs), FROSch generally orders the DOFs in a consistent way; cf. subsection 5.2.
The respective ordering is passed from one to the next coarser level by providing
an array of Xpetra::Map objects through the parameter list, where each map stores
the indices for one DOF for each interface component (DOF Maps). Additionally, we
provide a local-to-global mapping for the interface components via the Node Map;
this is because the interface components on the coarse levels correspond to the finite
element nodes on the first level; cf. Figure 1. Note that both the Repeated Map

and the Node Map could, in principle, be computed from the DOF Maps; however, we
still decided to directly pass them to the next coarser level through the parameter
list. The dimension of the nullspace specifies the number of DOFs on each interface

Table 1
Parameter passed to the parameter list of the recursive application of FROSch.

Parameter Description Section

Repeated Map Xpetra::Map for the nonoverlapping domain decomposi-
tion; interface degrees of freedom are shared by the adja-
cent subdomains---thus the name Repeated Map.

subsection 5.1

DofsPerNode Number of degrees of freedom on each coarse node; equal
to the dimension of the nullspace.

subsection 5.3.

Dofs Maps Array of Xpetra::Map objects describing the distribution
of the DOFs: one map corresponding to each DOF per
node.
The Repeated Map can be assembled from the Dofs Maps.

subsection 5.2

Node Map Xpetra::Map corresponding to the nodes/interface compo-
nents.

section 5

Null space Xpetra::MultiVector containing a basis of the nullspace
on current level as columns.

subsection 5.3
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component of the coarse level. In subsection 5.3, we will describe how a basis for
the nullspace on the next coarser level can be constructed algebraically based on the
nullspace on the current level; it is then also stored in the parameter list as a pointer
to an Xpetra::MultiVector.

In summary, the following steps have to be performed for the recursive application
of the preconditioner.

\bullet Partitioning of a coarse matrix to obtain the corresponding domain decom-
position on the respective level.

\bullet Definition of a consistent DOF ordering across the levels.
\bullet Lifting of the nullspace from one level to the next coarser level.
\bullet Establishing the communication patterns between two levels.

Based on these steps, we are able to construct FROSch preconditioners in a recursive
way, obtaining three-level (R)GDSW preconditioners. These steps will be discussed
in detail in the following subsections. Note that these steps will be performed alge-
braically only using the information provided by the previous level.

5.1. Partitioning the coarse problem. Recursive application of the FROSch
preconditioner requires a nonoverlapping decomposition into subregions, which is em-
ployed to construct the overlapping subregions as well as the interface components
(faces, edges, and vertices) on the subregion level; see section 3. As also mentioned
in section 3, the nonoverlapping subregions are chosen as the union of nonoverlapping
subdomains. Hence, in order to partition the coarse problem, we make use of the
structure of the domain decomposition on the first level.

As described in [18], the nonoverlapping domain decomposition is given in form of
a repeated Epetra or Tpetra map object, which defines the parallel distribution of the
DOFs. Each subdomain is associated with a single MPI rank such that the Repeated
Map defines the nonoverlapping subdomains. However, several OpenMP threads may
be used for each subdomain. Note that for a nonoverlapping domain decomposition,
the DOFs on the interface are shared by the adjacent subdomains, which also allows
us to identify the interface components; cf. [19, 18] for a more detailed discussion
of the identification of the interface components. Either this map object is provided
as an input by the user or, as discussed in [18, 17], an algebraic reconstruction of
the map can be performed in FROSch. If necessary, the reconstruction is performed
in a preprocessing step before the first and second levels of the (R)GDSW FROSch
preconditioner are constructed. As we will explain, the partitioning procedure on the
subregion level is fully algebraic, and therefore the Repeated Map on the subregion
level can always be constructed explicitly.

In order to partition the coarse problem, we first construct the dual graph of
the domain decomposition into nonoverlapping subdomains as an Xpetra::CrsGraph

object. This is performed based on the interface components, which are always avail-
able since they have previously been identified in the construction of the second level
based on the Repeated Map. The dual graph contains the adjacency relations of the
nonoverlapping subdomains, and we define two subdomains to be adjacent if they
share an edge (in 2D) or a face (in 3D), respectively; see Figure 2 for a graphical
representation in 2D. After storing all interface components as well as the index set
of all subdomains which share an interface component, we can first assemble the dual
graph without any additional communication. However, each MPI rank only holds
the row of the corresponding subdomain, and therefore, the graph is distributed over
all processes.
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Ω0 Ω1 Ω2

Ω3 Ω4 Ω5

Ω6 Ω7 Ω8

\left[ 
             

\times \times \times 
\times \times \times \times 

\times \times \times 
\times \times \times \times 

\times \times \times \times \times 
\times \times \times \times 

\times \times \times 
\times \times \times \times 

\times \times \times 

\right] 
             

Fig. 2. Two-dimensional structured domain decomposition into 9 subdomains (left) and the
corresponding dual graph (right). Adjacency relations are given through the edges in 2D or through
the faces in 3D, respectively.

1 typedef Zoltan2 :: XpetraCrsGraphAdapter !`Xpetra ::CrsGraph !`LO,GO ,NO

?`?` inputAdapter;

2
3 Teuchos ::RCP !`inputAdapter ?` adaptedGraph =

4 Teuchos ::rcp(new inputAdapter(dualgraph ,0,0));

5
6 Teuchos ::RCP !`Zoltan2 :: PartitioningProblem !`inputAdapter ?`?`problem;

7
8 problem = Teuchos ::RCP !`Zoltan2 :: PartitioningProblem !`inputAdapter

?`?`(new Zoltan2 :: PartitioningProblem !`inputAdapter ?`(

adaptedGraph.getRawPtr (),ZoltanParameterList.get(),

TeuchosComm));

9
10 problem -?`solve();

11
12 adaptedGraph -?`applyPartitioningSolution (*dualGraph ,

repartionedGraph ,problem -?`getSolution ());

Fig. 3. Redistribution of the dual graph using Trilinos package Zoltan2 [37]. The
inputAdapter provides access for Zoltan2 to the Xpetra::CrsGraph objects such as the dualGraph,
which corresponds to the dual graph to be partitioned as described in subsection 5.1.
Zoltan2::PartitioningProblem sets up the model and the solution object. The call solve() runs the
partitioning algorithm chosen by the user through the parameter list. Here, the MPI communicator
is stored in the TeuchosComm object.

Since there is a one-to-one relation of MPI ranks and subdomains or subregions,
respectively, in FROSch, we next communicate the complete dual graph to a subset of
MPI ranks, where each rank corresponds to a subregion. These MPI ranks are com-
bined as an MPI subcommunicator, which is called CoarseSolveComm in FROSch.
The communication from all MPI ranks to CoarseSolveComm is performed using an
Xpetra::Export object. Then, we perform an unstructured partitioning of the dual
graph using the Trilinos package Zoltan2 [37]; cf. Figure 3. Zoltan2 provides an in-
terface to several external mesh partitioning tools, such as ParMETIS and Scotch,
but also to the partitioning algorithms from the previous Zoltan package. The parti-
tion of the dual graph then results in the domain decomposition into nonoverlapping
subregions.

Based on this partition, we have to repartition the coarse matrix K0 and build
a Repeated Map on the subregion level such that we can construct an (R)GDSW
preconditioner for the coarse matrix.
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Therefore, we store, in an additional Xpetra::CrsGraph object, the information
which interface component on the subdomain level (second level) belongs to which
subdomain; this information corresponds to the element list of a triangulation.

Hence, this object contains the information to construct a mapping of the DOFs
of V0 (= rows of K0) to the subdomains. We also make use of the fact that the DOFs
corresponding to the faces, edges, and vertices are always ordered in a consistent way;
cf. subsection 5.2 and Figure 6. Now, in order to determine which DOFs correspond
to the subregions, we communicate this graph object to the CoarseSolveComm as
well. Finally, using this data, we can construct the Repeated Map on the subregion
level, which contains all necessary data about the structure of nonoverlapping domain
decomposition on subregion level. Moreover, this Repeated Map can also be employed
to construct a corresponding uniquely distributed map for the distribution of the
coarse matrix.

As we have observed in [25], the choice of the partitioning algorithms can signif-
icantly influence the performance of the three-level (R)GDSW preconditioner. From
our previous observations for structured meshes and domain decompositions [25], we
preferred the parallel hypergraph (PHG) partitioner from Zoltan.

Here, we consider an unstructured, adaptive finite element discretization for a
linear elasticity problem provided by the deal.II software library [1, 3]. The problem
is defined on a square [ - 1, 1]2 in 2D or on a cube [ - 1, 1]3 in 3D. A constant volume
force in the x-direction is applied in two circles or spheres centered at (0.5, 0) and
( - 0.5, 0) in 2D or at (0.5, 0, 0) and ( - 0.5, 0, 0) in 3D; see [1].

Here, the decomposition into subdomains is performed through the parallel dis-
tributed triangulation of the deal.II software library using p4est [8]. Hence, the num-
bering of the subdomains follows p4est's space-filling curve. We consider the grid
obtained after one refinement cycle resulting in 15 986 DOFs in 2D and 44 751 DOFs
in 3D. For these computation, we neglected the rotations from the nullspace. In Fig-
ure 4, the finite element triangulation and decomposition into 64 subdomains for the
two-dimensional case are visualized. In Figure 5, decompositions into subregions are
visualized for the different methods.

In Table 2, we report the iteration counts and dimensions of the coarse matrices
K00 for a weak scalability study with varying numbers of subregions. For the rather
small configurations investigated, the numbers of iterations are very similar.

We see that the Block method shows good results, even slightly better than our
preferred method PHG. We believe that this is a result of the favorable subdomain

Fig. 4. Grid for the linear elasticity benchmark problem in deal.II after one refinement/coars-
ening cycle (left) and the corresponding decomposition into 64 subdomains (right); each distinct
color corresponds to one subdomain.
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Fig. 5. Decomposition of 64 subdomains of Figure 4 into 4 and 16 subregions using the PHG,
blockwise (Block), and ParMETIS approach. ParMETIS (P) uses partitioning from scratch, and
ParMETIS (R) uses repartitioning. For 16 subregions we obtained the same partitioning using Block
and ParMETIS (R).

Table 2
Number of PCG iterations (iter) and dimension of the coarsest problem (dim(K00)) for the

three-level extension with different number of subregions and partitioning methods for the deal.II
benchmark problem. We have \delta = 1 and \Delta = 1. In each row, the best results for the three-level
GDSW and the RGDSW preconditioner are marked in bold.

Three-level GDSW preconditioner Three-level RGDSW preconditioner
ParMETIS ParMETIS

PHG Block (P) (R) PHG Block (P) (R)

2D;
64
subd.
unstruct.

\# subr. dim(K0) = 806 dim(K0) = 240

4
iter 54 53 52 52 52 52 54 52

dim(K00) 16 12 16 14 2 2 2 4

15
iter 60 59 60 56 64 62 67 67

dim(K00) 122 118 286 148 36 38 88 58

16
iter 57 58 63 58 66 61 67 61

dim(K00) 152 148 214 148 48 54 70 54

3D;
125
subd.
unstruct.

\# subr. dim(K0) = 5547 dim(K0) = 753

4
iter 29 29 29 29 29 30 30 30

dim(K00) 57 42 45 45 3 3 3 3

16
iter 33 33 33 33 33 33 33 33

dim(K00) 804 504 735 720 102 60 84 81

25
iter 36 32 36 35 33 32 37 37

dim(K00) 1302 576 1614 1077 90 51 213 135

32
iter 38 37 37 37 39 38 39 39

dim(K00) 1 677 1281 1 702 1 389 216 165 243 135

numbering provided by p4est's space-filling curve approach. As a result, the Block
method performs better than ParMETIS (P), and ParMETIS (R) is not able to im-
prove the partitioning provided by the Block method significantly (or at all).

We can conclude that for the special case of a partitioning based on space-filling
curves, e.g., using the p4est library, the linear partitioning by Block is a suitable
choice, even slightly better than PHG. However, as a default, since we do not use
p4est throughout the rest of the paper, we continue to use PHG.

5.2. Defining a consistent ordering across levels. On each of the levels of
the preconditioner, we deal with nodes and corresponding DOFs. Whereas, on the
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Fig. 6. Illustration of the DOF ordering on the coarse level for a two-dimensional linear
elasticity model problem with 16 subdomains. Each mesh shows the DOFs corresponding to one of
the three rigid body modes.

first level, the nodes just correspond to the finite element nodes, on all coarser levels
they correspond to the interface components. The DOFs belonging to an interface
component arise from the restriction of the nullspace to the interface components;
see also subsection 5.3. In the construction of a coarse level, FROSch mostly works
with the index sets of the nodes/interface components instead of the DOFs. Depend-
ing on the number of DOFs per node, this may save both computational work and
communication time.

We will describe this for the GDSW case, where we have face, edge, and vertex
interface components. The RGDSW case is then handled analogously. In order to
allow for a consistent mapping between nodes and DOFs, FROSch uses a consistent
ordering of the DOFs. In particular, FROSch first constructs individual local-to-
global mappings for the vertices, edges, and faces; the mappings are, again, stored
as Xpetra::Map objects. Then, the local-to-global mapping of all DOFs is assembled
from the individual maps by appending them in a certain way. In particular, if we
have k DOFs per interface component, the global map is assembled by appending
the vertex map k times, followed by k edge maps and k face maps. The resulting
index ordering is illustrated in Figure 6 for a two-dimensional linear elasticity model
problem with 16 subdomains. Here, the nullspace is three-dimensional, corresponding
to two translations and one linearized rotation, and therefore, we generally have three
DOFs per node on each coarse level. Of course, the restriction of the nullspace to
certain interface components may result in linear dependencies. As discussed in sub-
section 5.5, we deal with these linear dependencies in a way which does not remove
any DOFs from our ordering.

5.3. Lifting the nullspace to the next coarser level. The construction of
the coarse basis functions is based on the nullspace of the global Neumann matrix;
see section 2. The nullspace can be provided as an input to FROSch. For our model
problem (4.1), the nullspace is spanned by the (linearized) rigid body modes. In 3D,
the space is spanned by three translations

(5.1) r1 :=

\left[ 
 
1
0
0

\right] 
 , r2 :=

\left[ 
 
0
1
0

\right] 
 , r3 :=

\left[ 
 
0
0
1

\right] 
 

and three linearized rotations

(5.2) r4 :=

\left[ 
 

x2  - \^x2

 - (x1  - \^x1)
0

\right] 
 , r5 :=

\left[ 
 
 - (x3  - \^x3)

0
x1  - \^x1

\right] 
 , r6 :=

\left[ 
 

0
x3  - \^x3

 - (x2  - \^x2)

\right] 
 ,
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where \^x is the origin of the rotation. To build the FROSch preconditioner recursively
for the next coarser level, we need to build a basis of the nullspace of the current
level. In particular, as is well known in multilevel methods, it is crucial for numerical
scalability of the preconditioner that the coarse level can represent the nullspace; see,
e.g., [34].

The main difficulty in the construction concerns the rotations, as their compu-
tation requires geometric information. We would, however, like to avoid the use of
geometric information on the coarser levels. Instead, we will make use of the fact
that the basis of the nullspace of the coarse matrix can be given explicitly. We will
use Theorem 5.1 and show that its assumptions are generally satisfied for (R)GDSW
coarse spaces. Here, we use that the columns of the matrix \Phi in the (R)GDSW pre-
conditioner are linear independent, i.e., a basis of the coarse space. Furthermore, by
construction, the coarse basis functions form a partition of the nullspace; this follows
because they are restrictions of the nullspace to the interface components which are
extended in an energy minimizing way to the interior.

For our linear elastic model problem (4.1), the global Neumann matrix KN and
and the coarse matrix K0 = \Phi TK\Phi are symmetric positive semidefinite.

Theorem 5.1. Let KN be the global symmetric positive semidefinite Neumann
matrix, and let the columns z1, . . . , zk of Z span its k-dimensional nullspace. Fur-
thermore, let

\Phi =
\bigl( 
\varphi 1
1 \cdot \cdot \cdot \varphi 1

n1
\cdot \cdot \cdot \varphi k

1 \cdot \cdot \cdot \varphi k
nk

\bigr) 

have linear independent columns, where the \varphi j
i are the basis functions of the coarse

space V0, and let

(5.3) zj =

nj\sum 

i=1

\varphi j
i , j = 1, . . . , k.

Then, the vectors z10 , . . . , z
k
0 \in \BbbR m form a basis of the nullspace Z0 of the symmetric

positive semidefinite coarse matrix K0 = \Phi TKN\Phi \in \BbbR m\times m, where m = kn and
n :=

\sum j
k=1 nk. The vectors are of the form

(5.4)

(zj0)i =

\biggl\{ 
1 if

\sum j - 1
k=1 nk < i \leq \sum j

k=1 nk,
0 else

or, equivalently, zj0 = (0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
jth block (length nj)

0 \cdot \cdot \cdot 0)T .

Proof. First, let 0 \not = v \in \BbbR m. Then, v is in the nullspace of K0 \not = 0 if and only if

0 = vTK0v = vT\Phi TKN\Phi v.

Since the columns of \Phi are linear independent, we have 0 \not = \Phi v =: w and wTKNw = 0,
which is the case if and only if w is in the nullspace of KN . This means that

w =

k\sum 

j=1

cjz
j .

D
ow

nl
oa

de
d 

12
/1

7/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 Alexander Heinlein, Oliver Rheinbach, and Friederike Rover

PARALLEL SCALABILITY OF THREE-LEVEL FROSch S185

Now, assuming (5.4), we have

nj\sum 

i=1

\varphi j
i =

\bigl( 
\varphi 1
1 \cdot \cdot \cdot \varphi 1

n1
\cdot \cdot \cdot \varphi k

1 \cdot \cdot \cdot \varphi k
nk

\bigr) 
zj0 = \Phi zj0,

and thus,

w =

k\sum 

j=1

cjz
j (5.3)

=

k\sum 

j=1

cj

nj\sum 

i=1

\varphi j
i =

k\sum 

j=1

cj\Phi zj0 = \Phi 

k\sum 

j=1

cjz
j
0.

In total, we have

\Phi v = w = \Phi 

k\sum 

j=1

cjz
j
0

which, since the columns of \Phi are linear independent, is equivalent to

v =

k\sum 

j=1

cjz
j
0,

i.e., any vector v in the nullspace of K0 can be written as a linear combination of the
vectors zj0, j = 1, . . . , k, containing only blocks of zeros and ones, as given in (5.4).

In order to apply (5.1) to our (R)GDSW coarse spaces, we have to check whether
the assumptions are satisfied.

Lemma 5.2. For the (R)GDSW-type coarse spaces, we have that the columns of
\Phi are linear independent and, after possibly reordering the columns, they satisfy (5.3).

Proof. The coarse basis functions of the (R)GDSW coarse spaces are obtained
by computing the energy minimizing extension of the interface functions \Phi \Gamma . The
columns of \Phi \Gamma are the restrictions of the nullspace Z to the interface \Gamma . Hence, after
reordering the columns, we have \Phi \Gamma =

\bigl( 
\phi 1
1 \cdot \cdot \cdot \phi 1

n1
\cdot \cdot \cdot \phi k

1 \cdot \cdot \cdot \phi k
nk

\bigr) 
, and

(5.5) zj | \Gamma =

nj\sum 

i=1

\phi j
i , j = 1, . . . , k.

The energy minimizing extension \scrH (zj | \Gamma ) of zj | \Gamma into the interior is the function
which coincides with zj | \Gamma on the interface \Gamma and has minimum energy. This is just
the function zj itself because zj is in the nullspace and therefore has the minimum
energy of 0. Therefore,

zj = \scrH (zj | \Gamma ) =
nj\sum 

i=1

\scrH (\phi j
i ), j = 1, . . . , k.

By construction, the basis functions \varphi j
i , that is, the columns of \Phi , are the energy

minimizing extension of the \phi j
i , and hence,

zj =

nj\sum 

i=1

\varphi j
i , j = 1, . . . , k.

Finally, combining (5.1) and (5.2), we obtain the following Corollary 5.3.
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Corollary 5.3. A basis of the nullspace of the (R)GDSW coarse matrix is given
by (5.4). This implies that no explicit geometric information is needed on the third
level, i.e., also the rotations can be interpolated by vectors using ones and zeros.

Following Corollary 5.3 we build the nullspace for the coarse level explicitly. This
construction can also be used for a multilevel extension to the FROSch framework.

Note that in the global matrix approach [6, 5] in algebraic multigrid for elasticity
the Global Matrix (GM) variant 1 also does not need to interpolate rotations after
the first level. BoomerAMG has scaled to 262 144 cores for three-dimensional linear
elasticity using the global matrix approach [5].

5.4. Establishing the communication pattern between levels. As de-
scribed in subsection 5.1, the coarse problem is distributed over a subset of MPI ranks
on the subcommunicator CoarseSolveComm . We have to redistribute the coarse ma-
trix in the construction and iteration vectors in the Krylov iteration correspondingly.
We have observed that, if the difference in size of the communicators is large, the
redistribution, which is performed using Xpetra::Export, can be expensive; see, for
example, the discussion in [19]. It is likely that this is due to the current implementa-
tion of the communication pattern of the import and export functions in Epetra and
Tpetra; as can also be seen in Figure 7, the communication essentially corresponds
to MPI Send and MPI Irecv calls. In order to speed up this communication, it is split
into several steps. According to the number of steps to gather (and scatter) the matrix
and vectors, which we denote as Gathering Steps, we recursively set the number of
processes in each step, where we start with all MPI processes:

numProcsGatheringStep = int ( numProcsGatheringStep/ gather ingFactor ) ;

Here, gatheringFactor is the reduction factor for the number of processes. It is com-
puted as

s i z e = MpiComm −>g e tS i z e ( ) ;
gather ingFactor = pow( s i z e /numProcsCoarse , 1/ Gather ingSteps ) .

The number of processes is reduced until the predefined size of CoarseSolveComm is
reached; see also Figure 8. This results in a number of Gathering Steps, where, in
each step, the rows are distributed evenly. First, an Xpetra::Map and an Xpetra::

Export object for each step is constructed, and then the communication can be per-
formed in both ways using either the doExport function or the doImport function;




• •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• •







• •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• •







• •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• •




rank 0

rank 1

rank 2

rank 3

doExport

MPI_Send &
MPI_Irecv

doExport

MPI_Send &
MPI_Irecv

doExport

MPI_Send &
MPI_Irecv

Gathering Step 1 Gathering Step 2

Fig. 7. Schematic representation of two Gathering Steps applied to a parallel distributed matrix
for the case of four MPI ranks: First, the matrix is distributed over four ranks (blue, red, yellow,
and purple). Then, by using doExport we reduce the number of ranks by a factor of two in each
step. After two Gathering Steps, the complete matrix has been communicated to rank 0 (blue).
Internally, performing doExport corresponds to calls of MPI Send and MPI Irecv on the sending and
receiving ranks, respectively.
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Comm

·1/gatheringFactor
⊂ Comm

·1/gatheringFactor
...

·1/gatheringFactor
⊂ Comm

CoarseSolveComm

Gathering

Steps

Fig. 8. Reducing the number of MPI ranks from the global communicator Comm (e.g.,
MPI COMM WORLD) to CoarseSolveComm . All intermediate steps are performed on subsets of the orig-
inal communicator without creating intermediate subcommunicators. In the last step, which is not
part of the Gathering Steps, no communication is necessary since the data is already available on
the MPI ranks of CoarseSolveComm .

1 RCP !`SerialQRDenseSolver !`LO,SC ?` ?` qRSolver(new

SerialQRDenseSolver !`LO ,SC ?`());

2 qRSolver -?`setMatrix(PhiTPhi);

3 qRSolver -?`factor ();

4 qRSolver -?`formQ();

5 qRSolver -?`formR();

Fig. 9. Forming the QR-factorization using Teuchos::SerialQRDenseSolver.

in Figure 7, we show a schematic representation of two Gathering Steps applied to
a matrix.

5.5. Detecting linear dependencies. As discussed in subsection 5.3, for our
three-dimensional linear elasticity model problem (4.1), the nullspace is spanned by
three translation and three linearized rotations. However, if the construction of the
coarse space is performed as described in section 2, the columns of the matrix \Phi may
be linear dependent. For example, the restriction of the nullspace to a vertex yields
only a three-dimensional space.

In order to make sure that the coarse matrices K0 and, for the three-level method,
K00 are invertible, we remove the linear dependent column vectors from \Phi . This is per-
formed before building the coarse matrix from the Galerkin product. In our implemen-
tation, we perform a QR-factorization of \Phi T\Phi using the Teuchos::SerialQRDense

Solver, which is written on top of BLAS and LAPACK; see Figure 9 for the respec-
tive code snippet. We use \Phi T\Phi instead of K0 = \Phi TA\Phi to reduce computation cost;
as a consequence, we save one parallel sparse matrix-matrix multiplication.

If a diagonal entry of the matrix R is smaller than a threshold, the vector is
considered linear dependent. We then replace the vector in \Phi by a null vector, i.e.,
a vector containing only zero entries. This yields zero rows and columns in K0 for
the linear dependent vectors. In order make K0 invertible, we replace those rows
and columns by the suitable unit vectors. As a result, the size of the coarse matrix
is always equal to the number of interface components times the dimension of the
nullspace. Hence, we always maintain the DOF ordering described in subsection 5.2.

6. Parallel results. In this section, we focus on the weak parallel scalability of
the three-level extension of the FROSch framework. We perform tests on the ALCF
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Fig. 10. The three RGDSW coarse basis functions of type Option 1 for linear elasticity cor-
responding to the node in the middle for a structured domain decomposition in 2D: translation in
x direction (left), translation in y direction (middle), and linearized rotation (right). The plot only
shows the four subdomains where the functions are nonzero.

supercomputer Theta and compare to previous results reported for the SuperMUC-
NG supercomputer in [22]. The Intel Compiler 19.1.0.166 with Cray PE version 2.6.5
is used. The local subdomain and subregion problems and the coarse problem on the
third level are solved using PardisoMKL [7] using one or several OpenMP threads.
We use the PCG method as the Krylov iteration method, employing PseudoBlockCG
from the Trilinos package Belos; in our case, PseudoBlockCG reduces to standard
CG. We use a relative stopping criterion \| rk\| /\| r0\| < 10 - 6, where r0 is the initial
residual and rk the residual after the kth iteration step. To determine the interface,
we use a map based on the structured decomposition into nonoverlapping subdomains
on the first level (Geometric Map).

We always use the (algebraic) RGDSW coarse space denoted as Option 1 in [13,
23]. Given a basis of the nullspace, the respective basis functions can be construc-
ted algebraically; cf. Figure 10 for a visualization of the corresponding coarse basis
functions for the two-dimensional case.

We first present new computational results for FROSch obtained on the ALCF
Theta supercomputer (Intel Xeon Phi 7230 64C 1.3GHz, Aries interconnect; 64 cores
per node), which is currently ranked 39th in the TOP500 list. As we observe unex-
pected performance problems on Theta in the pure MPI setup for large numbers of
cores, for comparison, we also discuss results obtained earlier [22] on the SuperMUC-
NG supercomputer (Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path; 48 cores per
node) of the Leibniz Supercomputing Centre (LRZ) in Garching, Germany, which is
currently ranked 15th in the TOP500 list. For our comparison, we will revisit fine
time timers on SuperMUC-NG not considered in [22].

In the following subsections, we will discuss timers on different levels of detail. We
denote the total time to solution, including the finite element assembly of the problem,
by Total Time, the time to build the FROSch preconditioner by Setup Time, and the
time to perform the Krylov iteration by Krylov Time. The sum of the Setup Time
and the Krylov Time is the Solver Time; see also Figure 11.

The Setup Time consists of two phases. The first phase is the initialization
(Init. Time) of the preconditioner. For the first two levels of the preconditioner, this
phase deals with the part of the setup which depends on the structure of system matrix
K but is independent of the values of the matrix entries. Most importantly, it contains
the computation of the overlapping subdomains, the identification of the interface
components, and the computation of interface values of the coarse basis functions,
\Phi \Gamma . Moreover, for setting up the third level, it also includes the computation of
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Total

Assembly Solver

Setup Krylov

Init. Comp.

• PardisoMKL

• Comm. K0

• Fact.

• Forw./Backw.
Subst.

• . . .

• Forw./Backw.
Subst.

• . . .

Fig. 11. Illustration of the coarse and fine grained timers used in the different tables. The
above positioned timer includes the ones below. The PardisoMKL Time is partly included in the
Comp.Time and the KrylovTime. For a detailed description see subsection 6.1.

the dual graph, the partitioning of the coarse problem, and the computation of the
Repeated Map. All remaining parts of the setup of the third level are only performed
after the computation of the coarse matrix itself, which is part of the second phase,
the compute phase (Comp.Time). It includes the initialization phase on subregion
level as well as, on each level, the computation and factorization of the overlapping
matrices, the computation of the energy minimizing extensions, and the computation
and communication of the coarse matrix to the coarse communicator. Here, we will
specifically report the time for communicating the matrix K0 (Comm.K0 Time).

We will also discuss the time spent on the sparse direct solver, Pardiso MKL (Par-
disoMKL Time). This is split into the factorization (Fact. Time) and forward/back-
ward substitution (Forw./Backw. Subst. Time). There are three different occurrences
of direct solvers: the solution of the local problems on the overlapping subdomains/-
subregions, the computation of the energy minimizing extensions on subdomain and
subregion level, and the solution of the coarse problem K00. All matrix factoriza-
tions are computed within the compute phase. Moreover, most forward/backward
substitutions are performed during the Krylov iteration. The only exception is the
computation of the interior values of the coarse basis functions \Phi I by energy mini-
mizing extensions, which is necessary for the computation of the coarse matrices and
therefore fully contained within the compute phase.

For more details on the implementation of the different operations, see [19, 18]
and section 5, and for a graphical illustration of the correlations of the timers, see
Figure 11.

6.1. Results for pure MPI on Theta. For our first scaling tests, we use 64
MPI ranks on each Intel Knights Landing (KNL) node with 64 cores. Our model
problem (4.1) is applied such that each process owns 153 nodes. For the subdomain
overlap, we use an algebraic overlap of one layer of elements. On the subregion level,
we instead use zero layers of subdomains of overlap starting from the nonoverlapping
domain decomposition, i.e., only the interface \Gamma is shared by different processor cores.
The decomposition into subregions is performed using the PHG partitioning algorithm
from Zoltan, resulting in an unstructured decomposition; cf. subsection 5.1. However,
the number of subregions is chosen such that each subregion consists of approximately
8 subdomains.

In Table 3, we present the weak scalability results using 64 ranks per node on
Theta. Good numerical scalability, in terms of Krylov iterations, is obtained: the base-
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line for the iteration counts of three-level GDSW methods is typically larger compared
to the two-level method due to the inexact coarse solve. Moreover, a slight increase in
the number of iterations for larger number of subdomains is expected since for unstruc-
tured decompositions the asymptotic behavior is typically reached later. Indeed, for
larger numbers of subdomains (>100 000), the iteration counts are almost constant.

With respect to the parallel scalability, already for 175 616 cores, the Total Time
has increased to 291 seconds; see Table 3. A computation with more than 200 000
cores exceeded the walltime and is not reported here. This parallel scalability prob-
lem is unexpected, since good scalability of of the three-level GDSW preconditioner
implementation has been achieved previously [20, 21].

The problem seems to be in the construction of the preconditioner: For 110 512
cores, the Setup Time takes almost 80\% of the computing time (see Table 3 and
Figure 12), which is clearly not acceptable.

To determine the cause of the scalability problems, we consider more fine grained
timings, presented in Table 4. In Table 4, we see that the main issue is the commu-
nication of the coarse matrix by the gathering procedure (Comm. K0 Time). Note
that once this coarse communication pattern is established in the setup as described
in subsection 5.4, in every Krylov iteration the corresponding Gathering Steps have
to be performed for the iteration vectors. Therefore, since the coarse communication
occurs in every iteration, also the Krylov Time suffers from the same problem as the
setup, which is visible in Table 3, where the Krylov Time increases to 370.39s. We
have observed problems with this operation earlier; however, on other supercomput-

Table 3
Weak parallel scalability results on Theta with 64 MPI rank on each node with 64 cores. By Iter

we denote the number of Krylov iterations. The computation using 512 nodes failed for unknown
reasons and could not be repeated. The scalability problem is marked in bold. The sum of the
SetupTime and the KrylovTime is the SolverTime; see also Figure 11.

\#Nodes \#Cores \#Subd. \#Subr. \kappa (M - 1K) Iter Total Solver Setup Krylov
Time Time Time Time

64 MPI ranks per Theta node
27 1 728 1 728 4 66.94 69 23.85 s 19.61 s 12.60 s 7.11 s

125 8 000 8 000 16 87.56 80 28.71 s 24.27 s 16.87 s 7.40 s
216 13 824 13 824 27 87.10 83 35.88 s 31.02 s 21.84 s 9.18 s
512 32 768 32 768 64

1 728 110 512 110 512 216 101.28 93 94.83 s 86.07 s 73.88 s 12.19 s
2 744 175 616 175 616 343 97.29 93 291.21 s 283.58 s 116.01 s 167.57 s
3 049 195 512 195 512 381 97.50 92 553.35 s 545.66 s 175.27 s 370.39 s

Fig. 12. Weak parallel scalability with 64 MPI ranks per node. By Solver Time we denote
the sum of Setup Time and Krylov Time, which is the total time of the FROSch preconditioner;
see Table 3 for the data. The grey background indicates the loss of scalability.

D
ow

nl
oa

de
d 

12
/1

7/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 Alexander Heinlein, Oliver Rheinbach, and Friederike Rover

PARALLEL SCALABILITY OF THREE-LEVEL FROSch S191

Table 4
Detailed subtimers for the Setup Time on Theta for 64 MPI ranks; see Table 3. The scalability

problem is marked in bold. Comm.K0 Time and Fact. Time are part of the Comp.Time; the sum
of Init. Time and Comp.Time is the SetupTime; also see Figure 11.

\#Nodes \#Cores \#Subd. \#Subr. Size Size Init. Comp. Comm. K0 Fact.
K0 K00 Time Time Time Time

64 MPI ranks per Theta node
27 1 728 1 728 4 7 986 6 2.01 s 10.59 s 0.61 s 4.51 s

125 8 000 8 000 16 41 154 156 2.18 s 14.69 s 2.15 s 4.93 s
216 13 824 13 824 27 73 002 360 2.61 s 19.22 s 4.64 s 7.79 s
512 32 768 32 768 64

1728 110 512 110 512 216 622 938 5106 9.06 s 64.83 s 40.74 s 10.32 s
2 744 175 616 175 616 343 998 250 8 622 9.05 s 106.96 s 77.47 s 10.66 s
3 049 195 512 195 512 381 1 111 158 9 852 10.56 s 164.70 s 132.58 s 12.01 s

Table 5
Results for different numbers of Gathering Steps for the case of 13 824 cores using 64 MPI

ranks on each node. Increasing the number of steps does not improve the timings.

\# Gathering Total Comm. K0 Krylov
Steps Time Time Time

3 35.88 s 4.64 s 9.18 s
4 38.90 s 6.21 s 8.66 s
5 42.01 s 7.34 s 10.51 s

Table 6
Weak parallel scalability results on Theta with 32 MPI rank on each node with 64 cores. By

Iter we denote the number of Krylov iterations. The scalability problem is marked in bold.

\#Nodes \#Cores \#Subd. \#Subr. \kappa (M - 1K) Iter Total Solver Setup Krylov
Time Time Time Time

32 MPI ranks per Theta node
54 3456 1728 4 66.94 69 19.52 s 16.98 s 12.06 s 4.92 s

250 16000 8000 16 87.56 80 25.24 s 22.64 s 16.10 s 6.54 s
432 27648 13824 27 87.10 83 31.28 s 28.34 s 21.52 s 6.82 s

1024 65536 32768 64 83.18 82 49.80 s 46.23 s 33.95 s 12.28 s
3456 221184 110512 216 101.28 93 86.62 s 79.24 s 69.81 s 9.43 s

Table 7
Detailed subtimers for the Setup Time on Theta for 32 MPI ranks per node.

The sum of Init. Time and Comp.Time is the Setup Time; Comm.K0 Time and Fact. Time are
part of the Comp.Time. The scalability problem is marked in bold.

\#Nodes \#Cores \#Subd. \#Subr. Size Size Init. Comp. Comm. K0 Fact.
K0 K00 Time Time Time Time

32 MPI ranks per Theta node
54. 3 456 1 728 4 7 986 6 1.55 s 10.44 s 0.62 s 4.47 s
250 16 000 8 000 16 41 154 156 2.09 s 14.36 s 2.11 s 4.86 s
432 27 648 13 824 27 73 002 360 2.42 s 19.45 s 5.12 s 5.09 s

1024 65 536 32 768 64 97 200 300 3.21 s 30.83 s 14.01 s 5.42 s
3456 221 184 110 512 216 622 938 5106 8.45 s 61.05 s 38.25 s 7.35 s

ers, increasing the number of hierarchical Gathering Steps (see subsection 5.4) has
solved this problem. Here, this is not successful; see Table 5.

Assuming that the problem may be caused by MPI congestion, we have also
considered a setup using only 32 MPI ranks per node with 64 cores, i.e., half of the
cores are idle in this setup. The results in Table 6 and Table 7 are, however, not very
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different from results with 64 MPI ranks per node in Table 3 and Table 4: we see a
steep increase in the Setup Time which is almost identical to the case with 64 MPI
ranks per node. In all cases, this increase results from the Comm.K0 Time.

For comparison, we now consider the scalability of this operation on SuperMUC-
NG, where we use 48 MPI ranks per node.

6.2. SuperMUC-NG using 48 MPI ranks per node. We have performed
computations on the SuperMUC-NG supercomputer [22], where the FROSch pre-
conditioner showed a significantly better weak parallel scalability than achieved in
subsection 6.1. For comparison, we here report the results for a subset of the com-
putations from [22], using the Geometric Map on the first level, which is consistent
with the setup used here for Theta. We revisit the fine grained timers, which were
not reported in [22], to perform a comparison with the results on Theta.

Let us first briefly discuss the results obtained on SuperMUC-NG. In Table 8,
we report the Solver Time, which is the sum of the Setup Time and the Krylov
Time. On SuperMUC-NG, we choose the problem size such that each process owns
203 nodes and one layer of the subdomains for the subregion overlap \Delta . Otherwise
the setup corresponds the one used for Theta. Despite the larger problem size, the
computation on SuperMUC-NG is faster than on Theta, e.g., we have 40.8s for 85 184
cores on SuperMUC-NG for the Solver Time which compares to 86.07s for 110 512
cores on Theta. This is partly a result of the faster processor cores of SuperMUC-NG
(Xeon Platinum 8174 24C 3.1GHz), which have a significantly better floating point
performance compared to Theta's low energy cores (Intel Xeon Phi 7230 64C 1.3GHz).
For completeness, we report results for the two-level and the three-level methods in
Table 8. We see that, compared to the two-level method, a higher number of iterations
is reported for the three-level method; the three-level method is, however, faster than
the two-level method if 27 000 or more subdomains are used.

The other main contribution to the faster Solver Time is the Comm.K0 Time. In
particular, we see that on SuperMUC-NG the communication for the coarse operator,
which also uses 3 Gathering Steps, is at the order of one second for all runs; see
Table 10 and Figure 13. This is in striking contrast to the results on Theta, where the
communication concerning the coarse operator clearly dominates the Solver Time for
a large number of cores. On Theta, already for 32 768 MPI ranks, the Comm.K0 Time
is 14.01 seconds; see Table 7. For 110 512 MPI ranks, it is 38.25s in Table 7 and 40.74s
in Table 3. For larger number of ranks, the coarse communication time on Theta is
prohibitive for pure MPI with our current implementation.

We have discussed our coarse communication pattern and our measurements
with ALCF (Theta) and LRZ (SuperMUC-NG). Theta uses a three-level dragonfly

Table 8
Weak scalability results for the Solver Time obtained on SuperMUC-NG; subset of the data in

[22, Table 1].

Two-level Three-level
\#Nodes \#Cores \#Subr. \kappa (M - 1K) Iter Solver \kappa (M - 1K) Iter Solver

= \# Subd. Time Time
48 MPI ranks per SuperMUC-NG node

21 1 000 4 51.45 57 15.11 s 90.46 72 16.99 s
288 13 824 27 53.61 61 38.40 s 116.19 90 24.89 s
563 27 000 64 53.77 62 87.28 s 122.18 95 30.87 s
819 39 304 125 53.82 62 153.88 s 128.39 98 35.12 s

1 334 64 000 216 - - - 135.58 98 37.29 s
1 775 85 184 275 - - - 108.49 99 40.80 s
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Fig. 13. Weak parallel scalability for the Solver Time, Krylov Time, and Setup Time (right)
obtained on SuperMUC-NG; see Table 8 for the data. Time to communicate the coarse matrix
(Comm. K0) and time for the factorization (Fact.) (right); see Table 10 for the data.

Fig. 14. MPI-trace of the communication of the coarse matrix to the coarse communicator
for 36 cores. We apply 4 processes on the coarse communicator. The test was performed on the
high performance computing cluster of the Technische Universit\"at Bergakademie Freiberg using the
Vampir tracing tool [15].

interconnect, where on the first level 4 nodes are connected to a single Aries router.
The second level is a full mesh connecting the 96 routers. The 96 routers, correspond-
ing to two racks, form a single group. On the global level, each group of 384 nodes is
connected by active optical links to each other group; however, the bandwidth of the
global links between groups is limited. It is plausible that our coarse communication
pattern, which is not adapted to the network architecture, is problematic for Theta's
dragonfly Aries interconnect and can result in global link congestion.

Our communication pattern, which basically consists of many-to-few communica-
tion using MPI Send/MPI Irecv (see Figure 14) for an example) may result in worst
case traffic, i.e., many nodes of one group may send data to a single node of a different
group; see also adversarial traffic patterns for dragonfly interconnects [14]. It is also
known that Theta's dragonfly latency across groups, especially under interconnect
noise, due to the sharing of the interconnect across several running jobs, can be worse
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than expected on Theta [10]. On the other hand SuperMUC-NG's superior fat tree
interconnect seems to handle our coarse communication well.

To address the problem on dragonfly-type interconnects, the coarse communica-
tion pattern would need to be adapted to the network architecture: the Gathering

Steps should first aggregate the data within groups and then aggregate the data of
the different groups.

We will also consider reimplementing the coarse communication using different
MPI primitives.

6.3. Hybrid parallelization with MPI and OpenMP. As an alternative
to pure MPI, we also consider hybrid MPI/OpenMP parallelization. Here, we can
benefit from the shared memory parallelization in the Tpetra linear algebra through
Kokkos [9] as well as in the PardisoMKL sparse direct solver.

In order to find the most efficient use of OpenMP parallelization on the node,
we perform test runs on 216 nodes with 13 824 cores using pure MPI as well as 2, 4,
and 8 threads per MPI rank. For these tests, each process owns 203 finite element
nodes, which results in a total problem size of 41.472 \times 106. Hence, in these tests,
the same local problem size is used as on SuperMUC-NG in subsection 6.2. The
results are shown in Table 9. In all cases, we have 74 Krylov iterations. We see
that using 2 threads reduces the Total Time from 39.03s to 30.51s. Using 4 threads
results in 36.21s which is slower than when using 2 threads. Using 8 threads is the
fastest option in terms of Total Time (28.01 seconds); however, the advantage is minor
compared to using only 2 threads. The slight reduction in Total Time is achieved,
although PardisoMKL performs worse than when using a single thread. The (very
small) performance gain therefore must be a result of the underlying parallel linear
algebra kernels from Kokkos kernels used by Tpetra.

After these results, we now try to scale up a hybrid MPI/OpenMP setup, using
2 threads per MPI rank, to almost the complete Theta supercomputer.

Table 9
Results for the case of 13 824 cores (216 nodes) using 8 MPI processes on each node of the

Theta supercomputer. We have 1 728 subdomains and 4 subregions. Each process owns 203 nodes.
Different numbers of OpenMP threads are compared. Amesos2 uses PardisoMKL to factorize the
linear system.

\#OpenMP Total Forw./Backw. Fact. PardisoMKL
Threads Time Subst. Time Time Time

8 MPI ranks per Theta node
1 39.03 8.12 s 13.12 s 21.24 s
2 30.51 4.43 s 9.65 s 14.08 s
4 36.21 5.48 s 8.50 s 13.98 s
8 28.01 8.25 s 14.68 s 22.93 s

Table 10
Detailed subtimers for the Setup Time on SuperMUC-NG; see Table 8. Init. + Comp. =

Setup. We see that the Comm.K0 Time is at the order of a second for all runs on SuperMUC-NG.

\#Nodes \#Cores \#Subd. \#Subr. Size Size Init. Comp. Comm. K0 Fact.
K0 K00 Time Time Time Time

48 MPI ranks per SuperMUC-NG node
288 13 824 13 824 27 73 002 366 1.68 s 12.70 s 0.53 s 7.43 s
563 27 000 27 000 64 215 622 1 056 3.55 s 15.11 s 0.72 s 8.39 s
819 39 304 39 304 125 355 914 2 508 5.55 s 14.93 s 0.71 s 8.36 s

1 334 64 000 64 000 216 355 914 4 980 7.29 s 16.97 s 0.78 s 11.65 s
1 775 85 184 85 184 275 477 042 6 432 9.57 s 17.52 s 1.08 s 11.51 s
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6.4. Results for up to 220 000 cores for hybrid MPI/OpenMP. The setup
of these computations is identical to the one describe in subsection 6.1, i.e., we use
153 nodes for each process.

We are able to scale from 3 456 cores (54 nodes) to up to 221 184 cores (3 456
nodes), which is almost the complete Theta machine (4 392 nodes). The Total Time
increases from 16.96 s for 3 456 cores up to 78.96 s for 221 184 cores; see Table 11. As
for the other test cases the Setup Time on Theta is the most expensive part of our
computation once we go beyond 32 768 MPI ranks. While the initialization of our pre-
conditioner scales well, the Comp.Time again suffers from the coarse communication;
see Table 12 and Figure 15.

However, we see that, using a hybrid MPI/OpenMP setup, FROSch can make
use of almost the complete Theta supercomputer with an acceptable efficiency. The

Table 11
Weak scalability on Theta using hybrid MPI/OpenMP. Two OpenMP threads per rank. One

OpenMP thread per core. By Solver Time we denote the sum of Setup Time and Krylov Time,
which is the total time of the FROSch preconditioner; see Figure 16 for visualization.

\#Nodes \#Cores \#Subd. \#Subr. \kappa (M - 1K) Iter Total Solver Setup Krylov
Time Time Time Time

32 MPI ranks per Theta node, 2 OpenMP threads per rank
54 3 456 1 728 4 66.94 69 16.96 s 14.41 s 9.97 s 4.44 s

250 16 000 8 000 16 87.56 80 23.45 s 20.95 s 14.45 s 6.50 s
432 27 648 13 824 27 87.10 83 28.75 s 26.07 s 18.93 s 7.14 s

1 024 65 536 32 768 64 83.19 82 45.81 s 42.37 s 29.66 s 12.71 s
3 456 221 184 110 512 216 101.28 93 78.96 s 72.97 s 61.88 s 10.09 s

Table 12
More detailed timings on Theta. Two OpenMP threads per rank. One OpenMP thread per core.

Ini. + Comp. = Setup. We have marked in bold the (still remaining) scalability problem.

\#Nodes \#Cores \#Subd. \#Subr. Size Size Init. Comp. Comm. K0 Fact.
K0 K00 Time Time Time Time

32 MPI ranks per Theta node, 2 OpenMP threads per rank
54 3 456 1 728 4 7 986 6 1.63 s 8.34 s 0.51 s 3.37 s

250 16 000 8 000 16 41 154 156 2.37 s 12.08 s 2.23 s 3.74 s
432 27 648 13 824 27 73 002 360 2.45 s 16.48 s 5.09 s 3.94 s

1 024 65 536 32 768 64 97 200 300 3.14 s 26.52 s 13.36 s 4.14 s
3 456 221 184 110 512 216 622 938 5 106 8.24 s 53.65 s 35.41 s 5.75 s

Fig. 15. Time to initialize and to compute the FROSch preconditioner (left). Main time
consuming parts of the compute time (Comp. Time): time to communicate the coarse matrix to the
coarse solver (Comm.K0 Time), and the numerical factorization (Fact. Time) (right). See Table 12
for the data.
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Fig. 16. Weak parallel scalability on the Theta supercomputer with 32 MPI ranks per node and
two OpenMP threads per rank. By Solver Time we denote the sum of Setup Time and Krylov Time,
which is the total time of the FROSch preconditioner; see Table 11 for the data.

timings indicate that we may have to revisit the implementation of the coarse commu-
nication described in subsection 5.4, for instance, calling a different MPI communica-
tion pattern within the Tpetra import and export methods. Since the same operation
is at the order of one second on SuperMUC-NG, we plan to perform tests on other
hardware as well.

7. Conclusion. We have presented three-level overlapping Schwarz precondi-
tioners of the GDSW and RGDSW types for three-dimensional linear elasticity. Their
implementation in the FROSch software, which is part of Trilinos, uses the recursive
application of the preconditioner to the coarse problem. We have then shown that in
the recursive construction of the preconditioner the nullspace of the linear elastic op-
erator, including the rotations, can be interpolated without using additional, explicit
geometric information; moreover, as discussed in subsection 5.3, the same arguments
are also valid for arbitrary nullspaces.

Using pure MPI parallelization on the Theta supercomputer, i.e., 64 ranks per
node, revealed performance problems for FROSch for computations using about 100000
MPI ranks and more---presumably a result of MPI congestion, despite the hierarchical
communication pattern. Using hybrid MPI/OpenMP, the onset of the communica-
tion problem can be delayed. However, the weak parallel scalability of the hybrid
MPI/OpenMP parallel three-level FROSch solver using up to 220 000 cores of Theta
is still not perfect. The construction of the coarse operator has to be revisited to
improve the scalability on Theta further. Interestingly, this issue is not observed on
SuperMUC-NG, where very good parallel scalability is obtained.
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