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ABSTRACT
Contrary to traditional transit services, supply in ridesourcing systems
emerges from individual labour decisions of gig workers. The effect of
decentralisation in supply on the evolution of on-demand transit services
is largely unknown. To this end, we propose a dynamic model comprising
of the subsequent supply-side processes: (i) initial exposure to informa-
tion about the platform, (ii) a long-term registration decision, and (iii) daily
participation decisions, subject to day-to-day learning based on within-
day matching outcomes. We construct a series of experiments to study
the effect of supply market properties and pricing strategies. We find that
labour supply in ridesourcing may be non-linear and undergo several tran-
sitions, inducing significant variations in income levels and level of service
over time. Our results provide indications that the ridesourcingmarketmay
benefit from a cap in supply and regulation of the commission fee.
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1. Introduction

In many service industries the role of businesses is shifting from service provision to facilitating the
exchange of services, typically through the creation of virtual two-sided marketplaces. When suppli-
ers in a two-sidedmarket are individual contractors rather thanbusinesses, themarket is considered to
be part of the gig economy. In contrast to traditional fixed labour contracts offering long-term security
to all parties involved, labour in the gig economy is organised through more flexible arrangements.
Not only does this allow service providers to respond more adequately to changes in demand than
operators with more traditional forms of labour, it also means that they may be exempted from pay-
ing employee benefits (Prassl and Risak 2015). Unfortunately, recent protests demonstrate that the
value gigworkers derive from the flexibility to set their ownworking schedules (Hall and Krueger 2018;
Keith Chen et al. 2019) may not outweigh the loss of financial security associated with flexible labour
agreements. While the social desirability of these new forms of labour agreements is disputed, the gig
economy has gained ground across many industries.

Transportation is a predominant example with platform businesses in food delivery (Just Eat Take-
away, Uber Eats, DoorDash), package delivery (Amazon Flex) and passenger services (Uber, Lyft, DiDi).
Service providers in the third category are commonly referred to as ridesourcing providers or Trans-
port Network Companies (TNCs). Typically, ridesourcing businesses reward drivers based on satisfied
demand rather than based on time spent working for the platform. Hence, in contrast to traditional
transit operators with employed drivers, they do not bear the cost of excess labour available through
their platform. This is beneficial especially in times of rapidly declining travel demand, such as during
the COVID-19 pandemic.
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The question remains whether a decentralisation of supply is truly a win-win for service provider,
suppliers and consumers in the ride-hailing market. Early evidence suggests that in addition to
losing access to social provisions related to employment, ridesourcing driversmay receive inadequate
financial compensation for supplied labour. In Chicago for example, strong competition between sup-
pliers has led to average driver earnings below the local minimum wage (Henao and Marshall 2019).
Besides suppressing driver earnings, oversupply contributes to road congestion by inducing reposi-
tioning by idle drivers waiting to be matched (Beojone and Geroliminis 2021). Travellers on the other
hand may benefit from an oversupplied market through low waiting times and few denied requests.

Sustained supply of labour to a platform with low payouts suggests that the tragedy of the com-
monsmay apply to the ridesourcingmarket. It occurswhenexcessiveparticipation leads to adepletion
of the total value derived from participation on the platform. A potential reason why drivers may con-
tinue to participate under these conditions is that they have limited alternative opportunities in the
labour market. Oversupply in the ridesourcing market may also be explained by large temporal varia-
tions in labour opportunity costs underlying the value of flexible work (Keith Chen et al. 2019; Ashkrof
et al. 2020). When a potential driver is not involved in alternative activities – such as employment or
education – on a particular day, (s)he may be tempted to work for the platform even when expected
earnings are low. In other words, varying opportunity costs caused by activity schedules may disturb
the balancing loop of competition in labour supply.

In contrast, ridesourcingplatformsmay struggle to attract enough suppliers to themarketwhen the
labourmarket is strong, especiallywhenemployment yields high social security benefits. This hampers
travellers’ chances to find a (quick and cheap) ride. When ride requests have to be rejected or when
travellers stop making requests altogether, the service provider is confronted with lost revenue. This
may ultimately result in the termination of the service. Farrell and Greig (2017) have observed that the
growth of on-demand service platforms in many cities is indeed limited by the availability of workers
rather than customers.

In order to comprehend the societal implications of ridesourcing, we thus need to understand how
the decentralisation of supply affects the fleet size of a ride-hailing service. Considering the bottom-up
nature of ridesourcing supply, its analysis requires investigating system-level effects of factors influ-
encing individual driver’s labour decisions. This includes not only strategical decisions by the platform,
but also labour market properties and driver characteristics. In this study, we focus on structural sup-
ply deficits / surpluses that may exist in the ridesourcing market. Hence, we study labour supply only
at the extensive margin as opposed to highly temporal imbalances in supply and demand which may
follow fromhourly variations in opportunity costs and/or travel demand, i.e. wewill capture howmany
drivers work on a day, but not how long they work on that day.

1.1. Ridesourcing system dynamics

The emergence of ridesourcing has not gone unnoticed in the scientific community. In a review of
ridesourcing literature, Wang and Yang (2019) have identified four major research problems related
to the impact of emerging ridesourcing services. These topics include the effect of ridesourcing on
other modes of transportation (Qian and Ukkusuri 2017; Zhu et al. 2020; Ke, Yang, and Zheng 2020; Yu
et al. 2020; Ke et al. 2021), its broader societal and environmental impacts (Rayle et al. 2016; Clewlow
and Mishra 2017; Yu et al. 2017; Jin et al. 2018), competition between service providers (Zha, Yin, and
Yang 2016; Zhou et al. 2020), and the effectiveness of regulations in the ridesourcingmarket (Zha, Yin,
and Du 2018a; Zha, Yin, and Xu 2018b; Li et al. 2019; Yu et al. 2020). A key factor when identifying
the societal impacts of ridesourcing is the pricing strategy adopted by the service provider. Hence,
many studies revolve around the optimisation of ridesourcing pricing strategies, including the speci-
fication of ride fares and driver wages (Banerjee, Johari, and Riquelme 2015; Taylor 2018; Zha, Yin, and
Du 2018a; Zha, Yin, and Xu 2018b; Bai et al. 2019; Sun et al. 2019; Bimpikis, Candogan, and Saban 2019;
Nourinejad and Ramezani 2020; Dong et al. 2021).

A common feature of previously mentioned works is that the ridesourcing market is represented
using a static steady-statemodel. While allowing insightful analyses into ridesourcing equilibria, there
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are two downsides to this approach. First, static models are incapable of explaining system evolution
towards proposed equilibria. Second, these models fail to capture key dynamic processes that are
inherent to ridesourcing provision. Arguably, the equilibria sketched in previous studies may not be
realised in practice. In the following, we distinguish several complex day-to-day processes underlying
the emergence of decentralised ridesourcing supply.

First, labour supply decisions are affected by a driver’s participation history. Because there is no
guaranteed participation reward and drivers lack proper means of communicating with other drivers
(Robinson 2017), drivers’ own experiences form an important source of information in the partic-
ipation decision. Given that ridesourcing earnings are highly sensitive to system variables such as
travel demand and other drivers’ labour decisions (Bokányi and Hannák 2020), there may be large
day-to-day variations in the average participation reward. Moreover, due to path-dependent spatial
relations between successive matchings of drivers and travel requests, ridesourcing earnings may be
distributed unevenly among participating drivers. To illustrate, a driver who is assigned to deliver a
passenger in a low demand area may struggle to find a subsequent ride. ’Unlucky’ individuals with
below average earnings may decide to leave the platform before learning that the system aver-
age earnings were higher than their personal earnings. Hence, the unpredictability of ridesourcing
earnings can affect the amount of labour available for platform operations.

Second, participation may require making financial investments or entering into contracts. Even
though entry barriers for ridesourcing are typically lower than those for conventional taxis (Hall and
Krueger 2018), empirical findings still show an increase in vehicle ownership in the population associ-
ated with the launch of a ridesourcing service (Gong, Greenwood, and Song 2017). This demonstrates
that ridesourcing drivers do not necessarily drive for the platform with a vehicle they already owned.
In addition, a taxi license or appropriate driver insurance may need to be obtained to enter the rides-
ourcing market (Baron 2018). Hence, participation decisions are preceded by a registration decision
in which required investments are traded off against anticipated future revenues from participation.
The discrepancy in costs between registration (with entry costs) and participation (when entry costs
are sunk) implies that studies neglecting registration choice may either overestimate or underes-
timate the ridesourcing fleet size. This depends on whether the drop in the number of registered
drivers outweighs more frequent participation by registered drivers to compensate for the capital
costs associated with platform registration (Hall and Krueger 2018).

Basedona theoryof innovationdiffusion (Rogers 2010), there are twomore stepsprecedingdrivers’
platform participation choice: (1) becoming aware of its existence and (2) being persuaded to gather
more information about its utility. Variations in attitudes, preferences and social network may explain
why individual agents may undergo these stages at different moments in time. The rate at which
potential drivers may start considering registration is relevant because a very rapid increase in sup-
ply may lead to sharply decreasing participation earnings. A slow diffusion on the other hand may
lead to a prolonged situation with long waiting times and therefore dissatisfied travellers.

To gain a better understanding of equilibria in ridesourcing systems, we need dynamicmodels that
can account for the previously mentioned processes in drivers’ labour supply decisions. To the best of
our knowledge, applicationsof day-to-day learningmodels for ridesourcing systemshavebeen limited
to only a few studies.

One of these has represented ridesourcing evolutionwith learning behaviour by drivers. Djavadian
and Chow (2017) proposed a stochastic day-to-day approachwith an integratedwithin-day operating
policy, in which travellers choose ridesourcing if it maximises their expected consumer surplus, antic-
ipating travel time based on experience. Drivers supply labour when their learned perceived income
exceeds a deterministic income threshold, implying that variables other than expected income that
play a role in drivers’ labour supply decisions are neglected. The model proposed by Djavadian and
Chow (2017) also does not account for the stages preceding participation, such as the registration
process. The method is applied only to a minimal case study representing access to and egress from a
single railway station, with supply levels limited to 20 drivers or lower.
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Cachon, Daniels, and Lobel (2017) and Yu et al. (2020) propose a semi-dynamic model consisting
of a registration phase and a participation phase. Both phases are strictly separated in time, which
means that the model cannot capture interactions between participation decisions of existing drivers
and the registrationdecisionsof potential drivers. Donget al. (2021) apply a similarmethodologywhen
studying ridesourcing service providers opting for a dual-sourcing strategy. Drivers in their study first
decide whether they take up an employment offer by the provider, giving upwork schedule flexibility
in return for reduced income uncertainty. In the second phase, those that rejected the offer decide
on platform participation. Drivers are only offered employment once, i.e. there is no feedback loop
between participation and employment. The aforementioned studies apply macroscopic models to
represent thewithin-daymatchingprocess, neglecting complexdisaggregate spatio-temporalwithin-
day relations between supply, demand and service provider that influence drivers’ labour supply
decisions.

1.2. Study contributions

We represent the long-term evolution of ridesourcing supply by explicitly considering complex inter-
actions between within-day ride-hailing operations, registration barriers and day-to-day variations in
opportunity costs. We do so by proposing a day-to-day learning model with a decentralised labour
supply, explicitly distinguishing between two dimensions: registration and participation. For plat-
form registration, we develop a probabilistic agent-based model that accounts for registration costs,
opportunity costs and anticipated income levels. We propose a macroscopic model based on an epi-
demiological process to represent diffusion of information between registered and non-registered
drivers, concerning the awareness of and satisfaction with the ridesourcing platform. For the daily
participation decision, we establish a probabilistic agent-based choice model that acknowledges that
drivers’ daily participationdecision is notmerely basedon the expected incomeonagivendayderived
from accumulated day-to-day experience, but which also depends on unobserved factors such as
variations in opportunity costs.

We integrate our day-to-day model into MaaSSim, an agent-based discrete event simulator of
mobility-on-demand operations (Kucharski and Cats 2020). The agent-based nature of this model
allowsus to capture heterogeneity in ridesourcing earnings following fromdisaggregate and spatially-
dependent interactions between demand, supply and platform dynamics in ridesourcing operations,
which may affect the emergent ridesourcing fleet.

Themodel is applied toa case study representinga realistic urbannetwork,withup to1000vehicles,
to allow for the examination of emergent properties in a decentralised ridesourcing supply market.
More specifically, we construct an experiment to find the extent to which labour supply in the market
is dependent on the availability and cost of labour in the market. This allows us to answer whether
ridesourcing provision risks attaining undesired levels of supply, i.e. over- or under-supplied. In addi-
tion, our experiment includes an investigation of the commission rate charged by the platform, in
order to explore the implications of profit maximisation in a decentralised market, for both drivers
and travellers. Other variables that we study are platform registration barriers and variability in drivers’
daily opportunity costs, in order to understand how they characterise supply in ridesourcing provi-
sion. Finally, we employ an exhaustive search for establishing the optimal ridesourcing fleet size for
travellers, drivers and service provider, which we compare to the equilibrium participation volume in
decentralised ridesourcing provision.

2. Methodology

We develop an agent-based day-to-day model with driver agents potentially willing to work for the
platform. These agents are at any givenmoment in time in one of three states: uninformed, interested
or registered. Uninformed driver agents are potential drivers currently unaware of the existence of the
service. Interested drivers are those that have been informed about the existence of the platform and
now monitor the average participation reward. They make an occasional registration decision. Once
drivers are registered, they make a daily participation choice, based on the expected income that is
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Figure 1. Conceptual framework of the proposed dynamic ridesourcing model, including references to subsections in which a
particular submodel is explained.

learned from previous driving experiences. This is simulated by integrating our day-to-day model,
comprising of information diffusion, registration and participation, with a within-day ride-hailing
model (Figure 1). Thismodel simulates within-day interactions between driver agents, traveller agents
and the platform agent.

In this section, we describe the five sub models constituting our approach. We also provide more
information about the implementation of the model.

2.1. Information diffusion

Rogers (1995) argues that the diffusion of information about an innovation is a social process. Indi-
viduals seek information from peers to guide the adoption decision, especially from those that have
previously adopted the innovation. Information spreading via word-of-mouth is considered to be, to
some extent, similar to virus transmission in a network. Hence, many information diffusion models
are based on compartment models from epidemics (Zhang et al. 2016). In these models, the pop-
ulation is divided into different classes depending on their current stage of the disease, typically
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distinguishing susceptible, infectious and recovered agents, although many other compartments are
possible (Pastor-Satorras et al. 2015). One of the main benefits of representing information diffusion
with epidemic compartment models is that they do not require the specification of the underlying
(social) network, which is typically hard to observe in word-of-mouth communication.

We assume that an SI model with susceptible (i.e. uninformed) and infectious (i.e. informed) agents
suffices. Consider a pool of N potentially interested drivers, of which I(t − 1) are informed (i.e. inter-
ested or registered) at the start of day t−1. If we assume that all uninformed drivers are equally likely
to be informed on a given day, then we can formulate the probability for an uninformed driver to be
informed at the start of the next day as:

pinform(t) = βinf · I(t − 1)
N

(1)

inwhichβinf represents the average information transmission rate, ormore specifically, the probability
that information is transmitted in a contact between an informed an uninformed agent multiplied by
the average daily number of contacts of agents.

2.2. Platform registration

Before informed driver agents can participate, they need to trade off registration costs and participa-
tion benefits. In contrast to the approach of Cachon, Daniels, and Lobel (2017) – one of the few works
to represent the registration process in ridesourcing supply – we assume that informed drivers base
their registration decision on the average expected income of already registered drivers, rather than
on a probability distribution of incomes presented to drivers in advance. Since registration represents
a relatively long-term labour decision, wemodel the decision to be occasional rather than daily. More
specifically, we assume that on any given day drivers have a probability γ of making a registration
decision.

Drivers register with the platform when the expected earnings from participating exceed the total
costs related to participation and registration. Participation cost includes the opportunity cost of the
time spent working as well as a potential disutility associated with the driving activity. From hereon,
participation costwill be referred to as the reservationwage, a termused in labour economics todefine
the minimum income level for which drivers are willing to accept specific work (Franz 1980). Registra-
tion costs, on the other hand, correspond to capital expenses which are independent of participation,
such as investment in a vehicle and insurance. We formalise drivers’ registration choice with a binary
random utility model, in which the registration utility of an informed driver agent d is determined by
the net income that drivers expect to collectwith participation on the platform,which is defined as the

average expected income of already registered drivers Iexpt minus a constant penalty Cd to represent
capital registration costs. The alternative utility – to remain unregistered – is determined by the reser-
vation wage to represent the time cost of participation on the platform. We apply a logit model with
parameter βreg, and an error term εreg to account for unknown dynamics in registration choice. The
particular utilities and the resulting probability of registration for a driver d on day t are, respectively,
formulated as:

Uregist
dt = βreg · (Iexpt − Cd) + εreg (2)

Uunregist
dt = βreg · Wd + εreg (3)

pregist(d, t) = γ · exp(Uregist
dt )

exp(Uregist
dt ) + exp(Uunregist

dt )
(4)

2.3. Labour participation

In the following, we introduce the specification of registered drivers’ participation choice, including
how drivers anticipate future income based on personal experience.
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2.3.1. Participation choice
Similar to other studies representing ridesourcing supply (Banerjee, Johari, and Riquelme 2015; Djava-
dian and Chow 2017; Taylor 2018; Bai et al. 2019), we model participation based on drivers’ expected
income and reservationwage.We assume a positive relation between income and labour supply, thus
following the neoclassical theory of labour supply (Chen and Sheldon 2016; Angrist, Caldwell, and
Hall 2017; Xu et al. 2020). Notwithstanding, there are likely to be other factors in play driving partici-
pation choice, such as planned activities for the particular day, which are typically difficult to observe.
Therefore, in the determination of the utility to participation or to remain idle, next to the reserva-
tion wage Wd and expected income Iexpdt , we include an error term εptp. We apply a logit model with
parameter βptp and error term εptp to represent the degree of randomness in the participation choice
model, which indicates the significance of non-observed factors influencing the participation choice.
The utility and correspondingprobability of participating for a driverd onday t are specified as follows:

Uparticipate
dt = βptp · Iexpdt + εptp (5)

Uidle
dt = βptp · Wd + εptp (6)

pparticipate(d, t) = exp(Uparticipate
dt )

exp(Uparticipate
dt ) + exp(Uidle

dt )
(7)

2.3.2. Ride-hailing operations
The financial reward for participation is modelled with the within-day simulation model of the MaaS-
Sim simulator (Kucharski and Cats 2020). It allows to capture complex spatiotemporal within-day
interactions in ridesourcing between three types of agents: travellers, (participating) drivers and the
platform. The following assumptions are made about the operational strategies of these agents.

Driver agents’ labour supply decisions are limited to the extensivemargin, i.e. they will work during
all hours considered by the within-day model. Drivers will accept all ride requests assigned to them
in this time frame. Unassigned drivers do not reposition, instead they remain idle at their drop-off
location until assigned to a new request. Driver agents are faced with per-kilometre operating costs δ.

Each day, a traveller agent makes an identical trip for which it requests a ride on the platform. If the
time to receive an offer exceeds a threshold θ , the traveller will revoke its ride request. If an offer is
received within the tolerance threshold, it will be accepted. Ride offers cannot be cancelled at a later
stage.

The platform agent offers private rides on a road networkwith static travel times. It assigns requests
to drivers whenever two constraints are met: (1) there are unassigned requests on the platform, and
(2) there are idle drivers. It allocates the request-driver pair with the least amount of travel time from
the driver’s location to the request location. For each transaction, the ridesourcing platform charges
a commission rate π . Ride fares on the platform are comprised of a base fare fbase and per-kilometre
fare fkm.

We now specify Qreq as the (virtual) queue of unassigned requests on the platform and Qdriver as
the (virtual) queue of idle drivers. ttiu corresponds to the travel time from the location of an idle driver
i ∈ Qdriver to the pick-up location of an unassigned request u ∈ Qreq. Thematching function to find the
request-driver pair (u∗, i∗) with the least intermediate travel time is then formulated as follows:

(u∗, i∗) = argmin
u∈Qreq,i∈Qdriver

ttiu (8)

The earnings of ridesourcing drivers followdirectly from ride fares paid by travellers. If the daily pool of
travel requests is denoted as R, and the direct distance from request location to destination is denoted
as sr , the payout POr to a driver for serving a single request r ∈ R is defined as:

POr = (fbase + fkm · sr) · (1 − π) (9)
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The total payout POdt to a driver on a specific day is the sum of the payouts POr from requests served
by this specific driver on a particular day t. Defining ardt as a binary assignment variable indicating
whether driver d picks up request r on day t, we can formulate drivers’ daily payout as:

POdt =
∑
r∈R

POr · ardt (10)

The net experienced income of a participating driver Iactdt can now be formulated as:

Iactdt = POdt − OCdt (11)

where, in consideration of deadheading distanceDHdt ,OCdt represents a driver’s operational costs on
day t:

OCdt =
(∑

r∈R
sr · ardt + DHdt

)
· δ (12)

2.3.3. Learning
As stated before, participation choice depends on the earnings that are expected on a particular day.
Given that the typical ridesourcing driver has limited connections to other drivers (Robinson 2017),
anticipated earnings are predominantly based on individual experiences. Considering memory decay
(Ebbinghaus 2013) and dynamics in ridesourcing system variables, we cannot assume that drivers
weigh all experiences equally. In the absence of empirical evidence for the specification of the learn-
ing function in ridesourcing labour supply, we rely on findings from learning in another travel-related
context. Bogers, Bierlaire, and Hoogendoorn (2007) demonstrate that conditional on sufficient experi-
ence, learning in route choice can be described using a Markov formulation. In this study, we propose
a two-phase learningmodel for driver’s perceived income to differentiate learning behaviour by expe-
rienced and inexperienced drivers.When the number of days of participation experience Edt exceeds a
threshold ω, learning is described with a Markov formulation similar to Bogers, Bierlaire, and Hoogen-
doorn (2007). However, when Edt is below ω, drivers compute the unweighted average past income
as a proxy for their expected income, to prevent oversensitive and abrupt reactions to the first few
experiences. With the actual experienced income on the previous day specified as Iactd,t−1, we define the

expected income Iexpdt of driver d for day t as:

Iexpdt = (1 − κ) · Iexpd,t−1 + κ · Iactd,t−1 (13)

in which κ represents the weight attributed to the last experience as opposed to all previous experi-
ences, which is formulated as:

κ =

⎧⎪⎨
⎪⎩
0 wd,t−1 = 0

1/(Edt + 1) 0 < Edt · wd,t−1 < ω

1/ω otherwise

(14)

in whichwd,t−1 is a binary variable to indicate whether a driver participated on a past day t − 1 and Edt
defines the number of days during which the driver has so far gained a participation experience:

Edt =
∑

i∈{1,...,t−1}
wdi (15)

2.4. Implementation

In this subsection, we describe the definitions for convergence and the number of replications in the
experiment.
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2.4.1. Simulation framework
We implement our day-to-day driver model in MaaSSim, an open-source agent-based discrete event
simulator of mobility-on-demand operations, programmed in Python (Kucharski and Cats 2020). Both
supply and demand are representedmicroscopically. For supply this pertains to the explicit represen-
tation of single vehicles and their movements in time and space, while for demand this pertains to
exact trip request time and destinations defined at the graph node level. Travel times in the network
are precomputed and stored in a skimmatrix.

2.4.2. Convergence
A key property of ridesourcing systems is that the size of the fleet may fluctuate on a day-to-day basis.
Due to a random component in participation choice, these variations even occur when the system is
otherwise in a steady state. To determine whether a ridesourcing system has achieved a steady state,
we therefore need to examine other indicators. We argue that a combined analysis of two indicators
suffices to establish the convergence of the system. First, there should be few new entrants in the
market, i.e. the number of agents with the ability to participate is relatively stable. Second, the degree
of learning among registered drivers needs to be minimal, i.e. their expected reward of participation
is relatively stable. Together, those criteria imply that the expected fleet size shows limited variations
from day to day. The number of drivers that actually decide to participate may still fluctuate due to
stochasticity in the participation decision.

We formalise the convergence criteriaby checkingwhether relativeday-to-day changes in thenum-
ber of registered drivers Gt and the expected income of registered drivers Iexpdt exceed a convergence
parameterϕ. The supply evolutionprocess has sufficiently convergedwhenϕ, which is set to approach
0, has not been exceeded on k consecutive days:

Gt−j − Gt−j−1

Nt−j−1
≤ ϕ, ∀j ∈ {0, 1, . . . , k − 2, k − 1} (16)

|Iexpd,t−j − Iexpd,t−j−1|
Iexpd,t−j−1

≤ ϕ ∀d ∈ Gt , ∀j ∈ {0, 1, . . . , k − 2, k − 1} (17)

2.4.3. Replications
Due to stochastic components in information diffusion, platform registration and participation, we
need to replicate the experiment for statistical significance. We determine the number of required
iterationsR(m)basedonanumberof initial replicationsm, with a formula commonlyused in stochastic
traffic simulations (Burghout 2004):

R(m) =
(
S(m) · tm−1, 1−α

2

X(m) · εrepl

)2

(18)

where X(m) and S(m) are, respectively, the estimated mean and standard deviation of the mean
expected income in the population in equilibrium from a sample of m runs, εrepl is the allowable
percentage error of estimate X(m) of the actual mean, and α is the level of significance.

3. Experimental design

A series of experiments is constructed for investigating the significance of supply market conditions,
platform pricing and service entry barriers in ridesourcing provision. In this section, we introduce the
experimental design.

3.1. Set-up

We apply the proposed approach to the city of Amsterdam, currently hosting ridesourcing ser-
vice UberX. It is estimated that in 2019, a total of 8 million taxi or ridesourcing rides took place in
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Amsterdam, served by 5,000–7,000 drivers (Gemeente Amsterdam 2019). On an average day, this
amounts to approximately 20,000 hailed rides. Considering that it is not likely that all people in Ams-
terdam potentially interested in driving for a ridesourcing platform actually served at least a single
ridesourcing ride in 2019, we assume that the total ridesourcing supply pool in Amsterdam consists of
10,000 drivers.

Demand is sampled once from a database of rides longer than 2.5 kilometres, generated by the
activity-based model Albatross for the Netherlands (Arentze and Timmermans 2004). It is assumed
that travellers are willing to wait five minutes to be matched after requesting their ride, i.e. patience
threshold θ is set to 5. Participating drivers do not make within-day work shift decisions. A single day
in the simulation consists of eight hours, corresponding to a typical working day. We simplify the per-
formance of the underlying road network with a universal (constant) traffic speed of 36 km/h on all
network links. Ride fares in the experiment are equal to the standard tariffs charged to travellers by
Uber in Amsterdam (Uber Technologies Inc 2020a), i.e. a base fare of e1.40 and an additional e1.21
per kilometre. Unlike Uber’s pricing model, there is no minimum ride tariff. In the reference scenario
that is used throughout the experiment, the commission rate π is set to Uber’s 25% (Uber Technolo-
gies Inc 2020b). As it has beendemonstrated that the reservationwageofUber driversmight behigher
or lower than theminimumwage in a given labourmarket (Keith Chen et al. 2019), we set the reserva-
tion wageWd in the experiment toe80, which is close to the minimum daily wage in the Netherlands
(Government of the Netherlands 2020).

We set the information transmission rate βinf to 0.2 so that after around 50 iterations all potential
drivers are likely to be informed. Choice model parameters βreg and βptp are set to 0.2 and 0.1 respec-
tively, representing that unobserved factors are likely to play a larger role in short-term participation,
when drivers have more information about the specification of these variables, compared to registra-
tion. With γ set to 0.2, we expect 20% of informed drivers to make a registration decision on a given
day. The learning threshold ω is set to 5 days, implying that after five experiences the weight of each
new experience in the determination of the expected income has dropped to 0.2, and remains equal
afterwards. Convergence parameters ϕ and k are set to 0.01 and 10, respectively.

With each driver assigned a probability of 10/N to be registered at the start of the simulation, we
expect an initial registration volume of 10 drivers. Their initial expected income Iexp0 is set to the sumof
reservation wageWd (e80 in the reference scenarios) and the daily share of registration costs Cd (e20
in the reference scenarios). All other driver agents start in the uninformed state.

We empirically establish that the computational load of a single day in the simulation scales directly
with the number of requests and vehicles in the system, implying that if we represent the real-world
population with a 10% sample for supply and demand, similar to other studies applying agent-based
models in the transportation field (Kaddoura 2015; Bischoff and Maciejewski 2016), we can reduce
the total computational load of our experiment by 90%. Given that we perform a scenario analy-
sis in which each scenario requires multiple replications of our day-to-day simulation approach, we
can benefit greatly from the efficiency gain offered by sampling. However, we need evidence that
sampling has a limited effect on our simulation results, especially given that ridesourcing may ben-
efit from economies of scale (Zha, Yin, and Yang 2016). Therefore, we compare the resulting system
performance indicators for a 10% sample of demand and supply to the indicators when we do not
apply sampling. Based on three replications for each scenario, we observe that a less efficient match-
ing algorithm in the scenario with sampled supply and demand may lead to a slightly higher average
waiting time for travellers, indicating that simulation based on a 10% sample might lead to slightly
overestimated travel times. Remarkably, other performance indicators of the service do not seem to
beaffectedby sampling. Theexpected income inequilibrium, for example, differs by less than1%.Only
in the early driver adoption stage, with limited supply, we note a discrepancy in the average income of
drivers, which is quickly overcome once supply increases. Our analysis demonstrates that registration
and participation volumes scale directly from a 10% sample to supply and demand levels representing
the full population, which indicates that in this case a 10% sample of supply (N = 1000) and demand
(M = 2000) is sufficiently large to represent ridesourcing dynamics for the whole city.
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When deciding howmany replications of the experiment are needed, we allow a relative error εrepl
of 0.01, based on statistical significance α of 0.01.

3.2. Scenario design

3.2.1. Supplymarket
In this part of the experiment, we investigate the extent to which the volume of the pool of potential
driversN is a decisive factor for ridesourcing supply in equilibrium. Compared to the reference scenario
(DP1000 in Table 1), which assumes a relatively large pool of potential drivers compared to current
supply in the network, in alternative scenarios (DP200–DP800) we test values for N that are smaller, i.e.
between 200 and 800 drivers with intervals of 200.

Another supply market condition that is expected to affect emergent ridesourcing supply is the
reservation wage, which may be high or low depending for example on the ease of access to alterna-
tive sources of income (Baron 2018; Keith Chen et al. 2019). First, we examine six alternative scenarios
inwhich the reservationwage is considered to be homogeneous across the population of drivers.With
these scenarios, labelled RW50–RW110 in Table 1, we cover the range of reservation wages from e50
to e110. Then, we consider three additional scenarios with heterogeneity in reservation wageWd , to
represent that the opportunity cost of ridesourcing participation may vary across the population due
to uneven opportunities in the labour market. We represent the heterogeneity in Wd with a normal
distribution in which the mean is equal to the homogeneous reservation wage value from the refer-
ence scenario (e80). In scenarios HR0–HR30, we test the effect of reservation wage heterogeneity on

Table 1. Scenario design.

Label N (–) Wd (e) (−) π (-) Cd (e)

DP200 200 80 0.2 0.25 20
DP400 400 80 0.2 0.25 20
DP600 600 80 0.2 0.25 20
DP800 800 80 0.2 0.25 20
DP1000∗ 1000 80 0.2 0.25 20
RW50 1000 50 0.2 0.25 20
RW60 1000 60 0.2 0.25 20
RW70 1000 70 0.2 0.25 20
RW80∗ 1000 80 0.2 0.25 20
RW90 1000 90 0.2 0.25 20
RW100 1000 100 0.2 0.25 20
RW110 1000 110 0.2 0.25 20
HR0∗ 1000 N (80,0) 0.2 0.25 20
HR10 1000 N (80,10) 0.2 0.25 20
HR20 1000 N (80,20) 0.2 0.25 20
HR30 1000 N (80,30) 0.2 0.25 20
IV005 1000 80 0.05 0.25 20
IV010 1000 80 0.1 0.25 20
IV020∗ 1000 80 0.2 0.25 20
IV050 1000 80 0.5 0.25 20
IV100 1000 80 1.0 0.25 20
CF5 1000 80 0.2 0.05 20
CF15 1000 80 0.2 0.15 20
CF25∗ 1000 80 0.2 0.25 20
CF35 1000 80 0.2 0.35 20
CF45 1000 80 0.2 0.45 20
CF55 1000 80 0.2 0.55 20
RC0 1000 80 0.2 0.25 0
RC10 1000 80 0.2 0.25 10
RC20∗ 1000 80 0.2 0.25 20
RC30 1000 80 0.2 0.25 30
RC40 1000 80 0.2 0.25 40

∗Reference scenario
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ridesourcing supply with four values for the standard deviation of the reservation wage distribution:
e0 (i.e. homogeneous reservation wage), e10, e20 and e30.

Since participation in our approach is modelled with a probabilistic participation choicemodel, we
can also investigate how opportunistic behaviour in labour supply affects ridesourcing supply levels.
We do this by varying the participation logit model parameter βptp, representing the relative weight
that drivers assign to income as opposed to other, in ourmodel unobserved, variables. Lacking empir-
ical evidence for the value of βptp, in scenarios IV005–IV100 we test a relatively large range of values:
from 0.05 to 1.0.

3.2.2. Platform pricing
The main instrument that ridesourcing platforms hold to steer supply is their pricing strategy, includ-
ing the ride fare structure and the commission rate, i.e. the proportion of each transaction retained by
the platform. We investigate the implications of price settings in the ridesourcing market for drivers
and travellers, accounting for the dynamics related to supply, by analysing a series of scenarios cover-
ing a relatively large range of commission rates π : from a limited 5% tomore than half of the ride fare,
55%, with intervals of 10%. The scenarios are included in Table 1 as scenarios CF5–CF55.

3.2.3. Entry barriers
Ridesourcing uptake – and potentially excessive competition – on the supply side may partially be
accredited to low entry barriers (Rayle et al. 2016). On the other hand, a lack of capital participation
costs may also lead to less frequent participation (Hall and Krueger 2018). Hence, we investigate the
effect of financial entry barriers, such as a taxi license, on emergent ridesourcing supply. We examine
five scenarios for which we vary the registration cost parameter Cd , which represents costs that are
sunk in participation but not in registration. We consider two extreme scenarios, one in which capital
costs are absent, and one in which capital costs add up to half the reservation wage (e40). In the three
intermediate scenarios, the relativepenalty for registration amounts eithere10,e20ore30. In Table 1,
the scenarios are labelled RC0–RC40.

3.3. User equilibrium optimality

Unlike transportation services in which drivers are employed by the service provider, supply in rides-
ourcing is a decentralised process centred around the labour decisions of individual drivers. So far,
we have considered how to test the effect of labourmarket characteristics, platform policies and entry
barriers on ridesourcing supply, but not yet how theemerginguser equilibria compare to supply if con-
trolledby a central serviceprovider or organisations representing the interests of travellers anddrivers.
Specifically, we investigate the optimality of decentralised ridesourcing supply from three different
perspectives:

• Service provider (platform): Aims to maximise the profit from collecting a fee from each transaction
between travellers and drivers

• Traveller union: Representing the interests of travellers, it aims tominimise travel times and rejected
requests. We formalise this objective with a value of time ofe8/h, which was found to be the aver-
age value for travellers in the Netherlands (Rijkswaterstaat 2020), and assigning a penalty ofe8 for
each rejected request.

• Driver union: Representing the interests of the driver community, it aims to maximise total driver
surplus in the system. The surplus for an individual driver is defined as the difference between its
actual earnings Iactdt and reservation wageWd (Keith Chen et al. 2019).

We search for the optimal fleet size for the three different parties by performing a brute-force
search, testing their respective objective functions for a single day assuming various participation
volumes. We test values around the user equilibrium in the base scenario: from 20 to 300 participating
drivers in steps of 20, i.e.m = [20, 40, . . . , 280, 300].
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4. Results

We analyse the results of our experiments focusing on the evolution process of ridesourcing and
specifically the role of the supplymarket and pricing policy. Table 2 contains the comprehensive list of
KPIs on day 200 of our iterative simulation, when all replication runs have converged to an equilibrium.

4.1. Phases in ridesourcing provision

In this subsection, we examine the evolution of ridesourcing supply and the implications for suppliers
specifically for one of the reference scenarios, RW80 (Figure 2(a,b)). In accordance with the specifica-
tion of the information diffusion process, all 1,000 driver agents are eventually informed about the
existence of the service. In equilibrium, considering multiple simulation iterations, after 200 days on
average less than half of those agents (420) are registered, of which on a typical day approximately a
third participate (145 drivers). We identify five phases in the evolution process:

(1) Day 0–10: Due to a lack of information, few driver agents have registered, meaning participa-
tion is low as well. Participating drivers profit from a lack of competition and can make a high
profit.

(2) Day 10–20: Information transmission speeds up. Informed drivers are likely to register as they
observe a high average income. Participation increases rapidly, leading to a collapse in the
experienced income. Drivers start to learn that their anticipated incomemay not be feasible.

Table 2. KPIs in equilibrium for all scenarios.

Label
Informed
drivers

Regist-
ered
drivers

Partici-
pating
drivers

Expected
income,
mean (e)

Expected
income, std.

among
drivers (e)

Experienced
income,
mean (e)

Experienced
income, std.

among
drivers (e)

Satisfied
requests

(%)

Average
waiting
time (s)

Daily
platform
profit
(e)

Convergence
criterion
satisfied
(day)

DP200 200 198 125 85.96 10.49 89.36 19.93 100.0 162.8 5217 47.0
DP400 400 301 136 77.56 10.62 82.25 20.75 100.0 153.6 5217 58.8
DP600 600 350 140 75.04 10.57 80.38 21.15 100.0 151.1 5217 68.2
DP800 800 377 142 73.79 10.77 79.48 20.85 100.0 150.5 5217 61.3
DP1000 1000 425 145 71.83 10.29 77.58 21.47 100.0 148.8 5217 64.8
RW50 1000 572 228 45.11 11.38 51.19 21.27 100.0 127.0 5351 58.1
RW60 1000 504 192 54.17 11.33 60.63 22.49 100.0 137.7 5351 68.5
RW70 1000 454 167 63.34 11.21 69.41 22.02 100.0 145.5 5351 62.0
RW80 1000 422 147 72.42 11.03 78.36 21.51 100.0 153.5 5351 64.2
RW90 1000 396 133 81.53 10.81 86.49 21.92 100.0 164.2 5351 74.2
RW100 1000 368 118 90.98 10.21 96.56 20.89 100.0 185.3 5351 75.8
RW110 1000 339 106 100.33 9.76 105.14 17.58 99.7 227.9 5334 71.0
HR0 1000 398 143 71.56 13.62 78.98 23.22 100.0 152.8 5230 70.0
HR10 1000 382 149 67.46 14.23 75.76 24.07 100.0 149.2 5230 55.4
HR20 1000 393 168 60.95 14.01 67.51 24.12 100.0 138.0 5230 52.4
HR30 1000 410 188 55.43 14.49 60.56 22.90 100.0 130.5 5230 53.6
IV005 1000 401 158 70.36 10.67 72.51 22.33 100.0 150.0 5312 56.5
IV010 1000 415 148 72.86 10.32 77.48 20.77 100.0 155.8 5312 60.3
IV020 1000 432 137 74.15 10.30 83.11 20.94 100.0 161.3 5312 65.5
IV050 1000 482 125 75.86 10.63 90.79 21.00 100.0 173.8 5312 68.5
IV100 1000 538 120 77.67 10.51 93.86 20.70 100.0 176.9 5312 91.7
CF5 1000 472 181 73.23 16.91 85.61 30.94 100.0 129.2 1042 56.4
CF15 1000 441 163 72.95 13.11 82.15 25.47 100.0 137.5 3125 62.4
CF25 1000 400 144 72.85 10.24 77.94 20.29 100.0 148.0 5195 72.6
CF35 1000 356 120 72.25 7.61 75.25 14.24 100.0 166.1 7265 73.4
CF45 1000 240 70 70.70 3.88 72.04 8.26 86.7 363.3 7962 77.0
CF55 1000 52 11 67.03 2.08 67.29 4.14 16.9 194.1 1751 18.4
RC0 1000 885 168 62.52 10.73 69.30 22.75 100.0 143.4 5394 68.3
RC10 1000 632 157 66.57 10.95 74.35 21.72 100.0 148.6 5388 63.0
RC20 1000 429 149 72.12 11.19 78.13 20.49 100.0 152.9 5384 68.7
RC30 1000 287 138 78.87 11.08 84.04 20.53 100.0 158.0 5384 60.0
RC40 1000 205 128 85.84 11.24 89.75 19.09 100.0 164.1 5383 55.7
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Figure 2. (a) The evolution of the number of registered, informed and participating drivers, (b) the evolution of the average
expected and experienced income, and (c) the distribution of expected income for participating drivers versus registered drivers
in equilibrium.

(3) Day 20–50: Information diffusion continues. Drivers further downscale their income expectation
based on new participation experiences. As a result of the drop in expected income, the aver-
age driver participates less frequently. The number of registered drivers still increases, albeit at a
slower pace than before. As a consequence, the total participation volume increases marginally,
leading to a further decrease in the experienced income level.

(4) Day 50–100: All drivers are now informed. Registration continues at a decreasing pace, yet partic-
ipation increases only marginally since individual drivers participate less frequently, as a result of
the continuing decrease in the average expected income.

(5) Day 100–200: Equilibrium is reached. Registrations and the decrease in experienced and expected
income are now limited. Participation remains constant over time.

There are two aspects in Figure 2(b) worth highlighting. First, the average expected income of
drivers converges to a value below the average experienced income. Figure 2(c) provides an expla-
nation for the discrepancy in expected and experienced income: drivers with a low expected income
are relatively unlikely to participate compared to drivers with a higher expected income, and conse-
quently less likely to ‘update’ their expected income based on a new (likely more positive) driving
experience. Convergence is reached when the average experienced income is equal to the average
expected income of participating drivers, which is higher than the average expected income of all –
also non-participating – drivers. Second, the presented evolutionprocess demonstrates that, whenwe
assume that variables other than expected incomeplay a role in participation choice, the average daily
income of participating drivers on the platform may converge to a value below the reservation wage
(Figure 2(b)). This can be attributed to unobserved variables in participation, like scheduled activities
for a givenday,which cause a significant groupof drivers towork evenwhen their experienced income
is below the reservation wage (Figure 2(c)). In fact, more than half of the drivers that participate on a
given day in the equilibrium expect to earn less than their reservation wage. This finding emphasises
that the main value of a ridesourcing service may be found in the flexibility it offers, as suggested also
by Keith Chen et al. (2019), rather than in providing a satisfactory level of income over a longer period
of time.

4.2. Supplymarket conditions

In this subsection, we present the effect of the size of the driver pool, the reservation wage and
unobserved variables in participation on dynamic ridesourcing provision. The information diffusion
process is not affected in scenarios, except for those with an alternative size of the driver pool (see
Equation (1)).
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4.2.1. Driver pool
When the pool of drivers is limited to 200 (scenarioDP200 in Table 1), we find that an equilibrium state
is reached around day 50 (Table 2). In this state, nearly all potential drivers have registered (Figure 3(e))
and the participation frequency is fairly stable at a high level (Figure 3(f)). When the pool of potential
drivers is larger, there are still unregistered drivers left around this time in the simulation, of whom a
part decides to sign up in a later phase. This explains why the transition process takes longer in our
experiment when the pool of potential drivers is large.

For 200 potential drivers, we find an equilibrium average expected income for registered drivers
that exceeds their reservation wage by nearly 10%. In all other scenarios, representing supplymarkets
of 400 potential drivers or more, the average drivers fails to match the reservation wage, falling short
by 5–10% (Figure 3(a)). It is striking that there seems tobe little difference in service performancewhen
a supply market consists of 1000 drivers as opposed to 400 drivers. In both cases, after approximately
25 iterations supply is sufficient to saturate the market and serve all requests in the system (Figure
3(b)), without a significant difference in the average waiting time for travellers (Figure 3(c)). Figure
3(d) shows that the similarity in travellers’ level of service follows directly from the daily participation
volume,which is approximately equal in both scenarios. Apparently, 600 additional potential drivers in
the supply market only yield around 125 more registrations around the 200th day (Figure 3(e)), while
those that are registered also participate less frequently when the potential supply market is large
(Figure 3(f)), on average 34% versus 46% of the days.

The finding that ridesourcing supply converges to an invariant participation volume for different
sizes of the labour supply market, as long as the total supply volume is relatively high compared to
demand, demonstrates the existence of a balancing effect in ridesourcing supply. In such a market,
the frequency of participation compensates for the size of the pool of registered drivers, whichmeans
that negative consequences related to oversupply have an inherent upper bound. Notwithstanding,
in this upper bound, expected incomemay be below the reservation wage. Only when the size of the
supplymarket is limited to a value close to the invariant participation volumewhen the supplymarket
is sufficiently large, we find expected income to exceed the reservation wage. This resonates with the
introduction of supply caps, implemented for example inNewYork City, in raising ridesourcingdrivers’
average income. The results also show that travellers may not suffer much from a supply cap, at least
as long as the cap is set to a sensible level.

Figure 3. The effect of the size of the driver pool on the evolution of (a) the expected income of registered drivers as ratio of
their reservation wage, (b) the share of requests that are satisfied, (c) the average waiting time for pick-up for travellers, (d) daily
participation volumes, (e) the total number of registered drivers, and (f ) the share of registered drivers that participate.
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Figure 4. The effect of (homogeneous) reservation wage on the evolution of (a) the expected income of registered drivers as ratio
of their reservation wage, (b) the share of requests that are satisfied, (c) the average waiting time for pick-up for travellers, (d) daily
participation volumes, (e) the total number of registered drivers, and (f ) the share of registered drivers that participate.

4.2.2. Homogeneous reservation wage
Based on our experiments, the reservation wage of potential drivers has a minor effect on the dura-
tion of the transition process. The equilibrium condition is reachedmarginally more quickly when the
reservationwage of drivers is low (Table 2). Thismay be caused bymore registrations in an early phase
of the evolution (Figure 4(e)) due to lower labour opportunity costs. While there are still new registra-
tions in a later phase, the relative increase in the size of the pool of registered drivers is low compared
to scenarios with higher reservation wages.

Remarkably, we find that in equilibrium the ratio between expected income and reservation wage
is constant for various reservationwages (Figure 4(a)), slightly under 1. It means that as the reservation
wage in amarket increases, the expected income in equilibrium increases proportionally. The effect of
reservation wage on the level of service for travellers seems to be limited. Even in scenario RW110, in
which labour costs are least favourable for supply, i.e. the reservation wage equals 110 euros, supply
is sufficient to serve all requests (Figure 4(b)), albeit travellers are confronted with longer travel times
than in scenarios with a lower cost of labour (Figure 4(c)). The additional waiting time is, however,
limited to a maximum of two minutes and thereby fairly limited. The differences in waiting time stem
from participation volumes that vary between 100 and 230 for different specifications of the reser-
vation wage (Figure 4(d)). Lower participation when labour supply is costly results both from fewer
registrations (Figure 4(e)) and less frequent participation among those registered (Figure 4(f)).

The results imply that a weak labour market, associated with low reservation wages, leads to
reduced income levels for suppliers in the ridesourcing market, because new suppliers are attracted
to themarket as a result of a lack of alternative employment, creating competition for pick-ups. Rides-
ourcing providers on the other hand can potentially profit from the inflow of supply in times of
economic recession by means of reduced waiting time for travellers, which may attract new demand,
or alternatively, by giving them the opportunity to increase the commission rate without sacrificing
the level of service for travellers.

4.2.3. Heterogeneous reservation wage
It can be expected that the minimum income that drivers want to collect with ridesourcing par-
ticipation is not equal for all drivers, for example because some drivers have better access to
alternative employment than others. To capture reservation wage heterogeneity, one of the set of
scenarios included in our experiment is directed at investigating ridesourcing supply for different
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Figure 5. The effect of heterogeneity in reservationwage on (a) the evolution of the average expected income of registered drivers
as ratio of their reservation wage, (b) the evolution of the total number of registered drivers, (c) the evolution of daily participation
volumes, (d) the probability density function of reservation wage for registered drivers, (e) the evolution of average experienced
income of participating drivers as ratio of their reservation wage and (f ) the evolution of the average waiting time for pick-up for
travellers.

reservationwage distributions, with the samemeanμ as the reference scenario but different standard
deviations σ .

Figure 5(a) shows that when there is a lot of variation in drivers’ reservation wage (scenario HR30),
the expected income of registered drivers in equilibrium is relatively low. Yet, a high value for σ does
not seemto lead toa slower registrationprocess (Figure5(b)). In fact, participationappears tobehigher
with strongheterogeneity in the reservationwage (Figure 5(c)). Figure 5(d) demonstrates that in such a
scenario, a relatively high share of registered drivers has a low reservationwage,meaning that they are
relatively like to supply labour on a given day, even when they expect a low income. It explains also
why registration (Figure 5(b)) peaks early in a scenario with high σ : drivers with a reservation wage
below the mean benefit significantly from registration and are thus relatively likely to register. Due
to the quick influx of drivers and the fact that drivers that are still unregistered have a relatively high
reservation wage, registrations then slow down quickly. High participation volumes in scenarios with
strong heterogeneity result in a low average income for drivers in the system (Figure 5(e)) and slightly
lower waiting times for travellers (Figure 5(f)).

The results imply that with a high degree of inequality in the labour market, ridesourcing markets
may be flooded with drivers with limited labour opportunities elsewhere. Due to their weak position
in the labour market, they are willing to work for ridesourcing platforms even when wages are low,
providing competition for other participating drivers. Our experiment demonstrates that high partic-
ipation may only yield limited benefits in terms of the average waiting time for travellers, while the
income for drivers may be significantly lower than in scenarios with lower participation. We conclude
that especially in labour markets characterised by large inequalities supply caps may be necessary to
guarantee a socially desired minimum income for ridesourcing drivers.

4.2.4. Unobserved variables in participation
Choice parameter βptp represents the value drivers attach to income as opposed to other variables in
participation decisions. A low βptp indicates that drivers supply labour to the platform more oppor-
tunistically, potentially working one day but not the next even when the income they anticipate is
the same. Our results show that while βptp has a limited effect on the average expected income of
drivers registered with a platform (Figure 6(a)), there is a clear difference in the average actual income
generated by participating drivers (Figure 6(b)). The reason for this discrepancy is that in the scenario
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Figure 6. The effect of the valuation of income in participation choice on (a) the evolution of the average expected income of
registered drivers as ratio of their reservationwage, (b) the evolution of average experienced income of participating drivers as ratio
of their reservationwage, (c) the evolution of daily participation volumes, (d) the probability density function of expected income (as
ratio of their reservationwage) for registered drivers, (e) the evolution of the total number of registered drivers and (f ) the evolution
of the average waiting time for pick-up for travellers.

with the highest value for βptp (scenario IV100), despite a slightly higher average expected income, on
average approximately 40 fewer drivers actually decide to participate compared to the scenario with
lowest βptp (Figure 6(c)). Figure 6(d) provides an explanation for this phenomenon. With expected
income as the dominant variable for participation when βptp is high, a driver that expects to make an
income just below their reservationwage is relatively unlikely to participate, and consequently, also to
update its income expectation based on new, potentially more positive, experiences. In this scenario,
drivers confrontedwith a negative driving experience are therefore less likely to participate thereafter
compared to scenarioswith a lower value of βptp, resulting in a large group of ’dissatisfied’ drivers with
an income just below the reservation wage, but ultimately also in a (relatively small) group of drivers
profiting from the lack of competition when it comes to serving rides. Participating drivers in this sce-
nario earn on average approximately 15%more than their reservation wage, compared to 10% less in
the scenario with a βptp of 0.05. The average waiting time for travellers is, however, also highest in this
scenario (Figure 6(f)).

Due to slightly higher expected earnings when income is the dominant factor in the participation
decision, more unregistered drivers decide to sign up in later phases of the transition process (Figure
6(e)) compared to scenarios in which βptp is low. Hence, the equilibriummarket state is achievedmore
quickly when drivers attribute more value to variables other than income.

To summarise, if we assume that income is not the sole explanatory variable for participation, in
line with what is suggested by early research on labour supply of ridesourcing drivers (Keith Chen
et al. 2019), the average income for participating drivers in a ridesourcing system is likely to turn out
relatively low, since every day a portion of drivers is willing to participate for a wage below their reser-
vation wage, increasing competition for supply in the system. This implies that, in such a scenario, the
ridesourcing service may be valuable for drivers wishing to supply labour flexibly, utilising the service
for example only on days without planned activities or other work, but less so for drivers using the
platform as a replacement for a full-time job.

4.3. Platform policies

We observe that a lower commission allows for higher earnings in early transition phases (Figure 7(a)),
which convinces more potential drivers to register in this time frame (Figure 7(e)). After increased
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Figure 7. The effect of platform commission rate on the evolution of (a) expected incomeof registered drivers as ratio of their reser-
vation wage, (b) the share of requests that are satisfied, (c) the average waiting time for pick-up for travellers, (d) daily participation
volumes, (e) the total number of registered drivers, and (f ) daily platform profit.

supply-side competition has brought earnings down, the number of new registrations slows down
in all scenarios. In scenarios in which initially many drivers register, the relative increase in the size of
the pool of registered drivers is lower than in scenarios in which fewer drivers registered. This means
that thesemarkets end up in an equilibrium state more quickly. This trend applies however only up to
a certain point. When commissions are increased further, corresponding to a commission rate of 55%
in the experiment, hardly any drivers will register at all. In that case, themarket equilibrium is achieved
very quickly.

Interestingly, we find that the expected income of drivers in equilibrium is hardly affected by the
commission fee that is charged by the platform (Figure 7(a)). A commission rate of 55% (scenario CF55)
yields an expected driver incomewhich is notmore than 10% lower thanwhen the commission rate is
set to only 5%. Ridesourcing users, on the other hand, can strongly be affected by the platform com-
mission rate. The additional inconvenience is fairly limited when the commission rate is set to 35% as
opposed to 5%, inducing an average additional waiting time of less than oneminute. However, with a
commission rate of 45%or 55%, a part of the requests needs to be rejected and thewaiting time of the
remaining travellers is significantly longer (Figure 7(b,c). In fact, when the commission rate is 55%, only
20% of requests can be satisfied in equilibrium. Figure 7(d,e) demonstrate that supply adjusts itself to
the commission rate that is in effect, which provides an explanation for why income levels are largely
unaffected, while the level of service for an average ride strongly deteriorates. In this particular exper-
iment, a commission rate of 45% appeared to be the optimal strategy for the ridesourcing provider,
generating approximately 8,000 euros per day in equilibrium (Figure 7(f)).

These findings demonstrate that, profit-wise, the collection of a higher share per request may
outweigh revenue loss fromnot being able to serve all incoming requests. This implies that profitmax-
imisation in ridesourcing provision may come at the expense of travellers, who are exposed to longer
waiting times and a higher probability of being rejected altogether. Interestingly, ridesourcing drivers
are hardly affected by strategical platform behaviour relating to the commission rate, since driver reg-
istration is slower when commission rates are high. At the same time, we observe that within a certain
range, platform profit can be vastly improved without significantly affecting riders in the system. Our
experiment shows that a non-optimal pricing strategy in terms of profit (in the experiment a commis-
sion rate of 35% as opposed to 45%), may result in near-optimal platform profit and driver income,
with a much improved level of service for travellers. Thus, it might be worthwhile for authorities to
consider regulating the commission rate while considering its consequences for service affordability.
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4.4. Entry barriers

The need for vehicle, insurance and medallion acquisition may prevent interested drivers from regis-
tering with a ridesourcing platform. In somemarkets, these factors are more prevalent than in others.
We mimic markets with different registration regimes by varying registration cost parameter Cd . We
find that when registration costs are high, indeed, significantly fewer drivers will register with a rides-
ourcing platform (Figure 8(a)). The markets corresponding to these scenarios more quickly reach a
state in which the number of new registrations is negligible in terms of its effect on the daily number
of participating drivers.

We observe that the marginal decrease in registration volume when Cd grows is especially large
when registration costs are limited. In a scenario without registration costs (scenario RC0), nearly 900
drivers register with the platform, compared to approximately 430 when registration costs add up to
e20 per day, and just over 200 when the daily registration penalty amounts toe40. The consequence
is that registration costs lead to reduced participation (Figure 8(b)) and ultimately to a higher average
experienced (Figure 8(c)) and expected (Figure 8(d)) income. Registration costs can thus be a crucial
factor for whether drivers, on average, end up earning above or below the reservationwage. However,
considering that registration costs need to be subtracted from the income of drivers, a scenario with
Cd equal to 40 still turns out to be least favourable for drivers, as demonstrated by Figure 8(e). In this
scenario drivers that participate earn back on average 75% of their total costs (including the cost of
participation and registration), compared to 88% when registration does not bear any costs and the
total costs are made up of the reservation wage (and operational costs). This, however, considers only
the income of participating drivers. It should not be forgotten that also registered drivers that do not
participate on a given day end up with a negative daily profit due to their capital registration costs. In
case they cannot easily discard their registration costs, for example by selling their car, it might still be
their best option to keepparticipating, evenwhen this results in anegativenet income.Due to reduced
supply, travellers may also be worse off when a ridesourcing service comes with high registration bar-
riers for drivers (Figure 8(d)), the extent to which likely dependent on context-specific variables. In our
particular experiment, travel times are hardly affected by registration costs.

The results imply that ridesourcing providers, drivers and travellers may also suffer from high
entry barriers for potential suppliers. Consequently, policies that aim at reducing the costs related to
registration may be beneficial, for example offering affordable vehicle insurance deals to drivers.

Figure 8. The effect of registration costs on the evolution of (a) the total number of registered drivers, (b) daily participation vol-
umes, (c) average experienced income of participating drivers as ratio of their reservation wage, (d) the average expected income
of registered drivers as ratio of their reservation wage, (e) average experienced income of participating drivers as ratio of the sum of
their reservation wage and daily share of registration costs and (f ) the average waiting time for pick-up for travellers.
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4.5. System optimum supply and user equilibrium solutions

In this section, we elaborate on the social optimality of a decentralised ridesourcing supply and dis-
cuss the implications for how regulation should be designed to safeguard the interests of different
stakeholders in the process. The user-equilibrium solution obtained from ourmodel is compared with
the system optimum supply-level that is obtained from a brute force search for the optimal fleet size.
Figure 9(a) shows theprofit of a ridesourcingplatform for different participation levels. Next to the typ-
ical ridesourcing scenario in which self-employed drivers get paid based on the rides they serve, we
consider an alternative scenario in which drivers, instead, earn a guaranteed hourly wage, while also
getting their operational costs reimbursed. Comparing platform profit in both scenarios, we observe
a major difference in the financial consequences of oversupply for the service provider. In the typical
ridesourcing scenario with fare-based payouts, oversupply does not induce additional costs, because
ridesourcing providers pay drivers based on served demand, not participation. In the event of abrupt
market contraction (e.g. pandemic crisis), for example, compared to service providers with employed
drivers, ridesourcing providers benefit from reduced driver payouts that will partially offset the lower
earnings from fares. Hence, a consequence of transaction-based driver payments is that, in contrast to
more traditional transit providers paying drivers based on the number of hours worked, ridesourcing
providers lack an incentive to curb their supply. In fact, as Figure 9(b) shows, they canbenefit fromover-
supply as it leads to lower travel times for travellers, and thus, potentially, increased demand. These
benefits are, however, relatively limited after supply reaches a specific point, which appears to be the
minimum supply for which (nearly) all requests can be served. More supply will result inmore efficient
matches between drivers and travellers, yet yielding aminor effect on the travel times for riders in the
system.

Figure 9(a) also shows that fare-based driver payments are not necessarily optimal for the service
provider. In the presented scenario, the service provider would actually be better off paying an hourly
wage to a relatively limitednumber of drivers, thereby earning the full share of ride fares, than allowing
self-employed drivers to collect these fares in return for a fee. It should be noted that this particular
example does not consider that employed drivers may be entitled to social benefits and that drivers
may not be willing to work for the minimumwage.

Figure 9. Optimality of supply in a system with fare-based driver payouts (assuming a platform commission rate of 25%) and a
system with wage-based driver payouts, for (a) the service provider, aiming at maximum profit, (b) the traveller union, minimising
costs from waiting and rejected requests, (c) the driver union, maximising driver earnings over the reservation wage, and (d) an
authority that evaluates the three previous objectives equally, maximising the summed net value.
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When taking the driver perspective, we find that the optimal fleet size in the fare-based scenario is
relatively low (Figure 9(c)), peaking between 40 and 100 participating drivers. If supply is even lower, a
lot of potential income is lost due to rejected requests, however, if it is higher, excessive competition
leads to incomes below the reservation wage, and consequently, dissatisfied drivers. For supply vol-
umes over 120 the total driver surplus is in fact negative. Yet, remarkably, in the reference scenarios
of our experiment with decentralised supply, we find average daily participation volumes of approxi-
mately 150 drivers in equilibrium. This demonstrates that in the ridesourcingmarket the notion of ’the
tragedy of the commons’ may apply, in which the self-interested labour decisions of individual drivers
lead to a suboptimal result for the whole group: excessive competition for rides and ultimately low
payouts.

If we consider a society in which the societal value of a single monetary unit is independent of the
party that it is assigned to, i.e. an extra profit of one euro for the platform or a single driver has the
same value as a travel cost saving of one euro for one traveller, we find that the optimal ridesourcing
fleet size for our particular experiment is 100 drivers, as illustrated by the total net value sketched in
Figure 9(d). Lower supply levels are undesired from the platform’s and travellers’ perspective, while
higher supply leads to a significantly deteriorated driver income with only a very limited benefit for
travellers. The social optimum in this case is thus considerably lower than the user equilibrium, which
depicts the potential value of supply caps in ridesourcing markets. Although ridesourcing providers
are typically reluctant to accept the implementation of supply caps, our analysis illustrates that their
negative effect on rider level of service and ultimately platform profit may be very limited, especially
in a saturatedmarket. In this particular case, a reduction of supply from 300 to 100 drivers only induces
a single minute of extra waiting time per request.

We note that the socially optimal fleet size for ridesourcing services is equal to that of a transit
service with employed drivers, because the objective function for the net total value ultimately con-
tains the same elements: revenue from fares, operational costs and labour participation costs. The only
difference is the distribution of those over different stakeholders. If a society indeed considers a sin-
gle monetary unit equally valuable to all stakeholders, it can thus be stated that only the fleet size
of an on-demand transit service matters from a societal perspective, not whether drivers are paid for
participating or based on the travel requests they satisfied.

4.6. Model sensitivity

4.6.1. Learning
Learning parameter ω indicates how drivers value recent experiences compared to preceding experi-
ences over time. A low value of ω corresponds to a situation in which drivers assign a relatively high
value to their recent experience (see Equation (14)), for example because they believe old experiences
are not representative for the present state of the system or because they cannot perfectly memorise
their income fromprevious days. In contrast, ifω goes to infinity, drivers’ expected income equals their
average experienced income. In this study, we assumed ω to be equal to 5, indicating that the weight
of new experiences decreases to 0.2 within 5 days, and stays constant thereafter. To establish to what
extent the results presented in this section are specific to the learningparameter,wehave repeated the
experiment for the reference scenarios, while varying the value of the learning parameter ω between
3 and 100.

We find thatω has a limited effect on ridesourcing provision. One of the notable differences is that,
although the mean expected income in equilibrium is unaffected by ω (Figure 10(a)), the distribution
of expected income over registered drivers differs (Figure 10(b)). This can be explained by the fact that
whenω is small, drivers aremore likely to ’overreact’ to a single negative experience, resulting in a pool
of ’unsatisfied’ drivers with expected income levels significantly below the reservation wage. These
drivers will not be tempted to participate again, limiting participation on the platform (Figure 10(c))
anddriving up the experienced income (Figure 10(d)) and ultimately the expected incomeof the other
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Figure 10. The effect of the rate of learning on (a) the evolution of the average expected income of registered drivers as ratio of
their reservation wage, (b) the probability density function of expected income (as ratio of their reservation wage) for registered
drivers, (c) the evolution of daily participation volumes, (d) the evolution of average experienced income of participating drivers as
ratio of their reservation wage, (e) the evolution of the average waiting time for pick-up for travellers and (f ) the evolution of the
total number of registered drivers.

registered drivers (Figure 10(b)). It also results in a minor difference in the average waiting time for
travellers (Figure 10(e)). Moreover, we establish that registration volumes slightly diverge in an early
stage of adoption (Figure 10(f)). The reason is that when ω is small, drivers more quickly observe that
earnings are dropping (Figure 10(d)), which they communicate to drivers that have not yet registered.
Nevertheless, the effect ofωwas found to be limited andwedo not expect amajor impact on themain
findings regarding dynamics in ridesourcing supply.

4.6.2. Information diffusion
This study considers that drivers need to become aware about the existence of a ridesourcing service
before they can supply labour to it. To this end, we introduce an information diffusion process with a
transmission rate βinf of 0.2. Lacking empirical evidence of the specification of the information diffu-
sion process, we need to test whether our findings also apply under different diffusion settings. We
test four alternative values for βinf , ranging between 0.05 and 1.0. We find that, given a value for βinf

that allows (nearly) all drivers to be informed at the end of the simulation (Figure 11(a)), the speci-
fication of the diffusion process has hardly any effect on labour supply in equilibrium. The different
scenarios for βinf converge to the same participation volume (Figure 11(b)), with a similar average
expected income (Figure 11(c)), average waiting time for travellers (Figure 11(d)) and service rate
(Figure 11(e)), which demonstrates the generalisability of the results, concerning the value of βinf .
Although the indicators are similar in equilibrium, we note clear differences in the adoption process.
When βinf is high, many drivers become aware about the service at the same time. In an early phase
of adoption (phase 1 as introduced in Section 4.1), when there are few drivers supplying labour to the
platform and income levels are high, this leads to a big registration peak (Figure 11(f)) and excessive
participation, with relatively low driver incomes and limited waiting times for travellers. In scenar-
ios with a lower information transmission rate we do not observe such a peak in participation, but
rather a steady increase towards the equilibrium value. As a consequence, in scenarios in which com-
munication about innovations takes place slowly, it takes longer before the level of service reaches a
satisfactory level, with the largemajority of rides accepted and a relatively lowaveragewaiting time for
travellers.
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Figure 11. The effect of the information transmission rate on the evolution of (a) the number of informed agents, (b) daily partic-
ipation volumes, (c) the average expected income of registered drivers as ratio of their reservation wage, (d) the average waiting
time for pick-up for travellers, (e) platform profit and (f ) the total number of registered drivers.

5. Conclusions

5.1. Study significance

This study is pioneering in analysing the dynamics of (decentralised) ridesourcing supply while
accounting for labour supply decisions considering both long-term platform registration and short-
term participation. Our platform registration submodel considers that registration requires informa-
tion about earnings, and that it comes with one-off registration costs like insurance and vehicle
acquisition, which are sunk in subsequent participation decisions. With a probabilistic participation
choice submodel, we account for unobserved variables in the decision to work on a given day, like
planned activities for this particular day. The model is applied to the case of Amsterdam in order to
investigate the effect of supply market properties, platform pricing and supply-side entry barriers on
theevolutionof ridesourcing supply. In addition,wecommenton theoptimality of decentralised rides-
ourcing supply from theperspectives of drivers, travellers and serviceprovider, basedonanexhaustive
search.

The results demonstrate that labour supply in ridesourcing may be non-linear and undergo sev-
eral transitions, hereby inducing significant variations in average income, profit and level of service. It
highlights the need for models capturing dynamic interactions in ridesourcing provision, such as the
one presented in this work.

5.2. Key findings

5.2.0.1. Fleet size. We find that in a decentralised system, as long as drivers earn a competitive
income and not yet all potential drivers are registered, new suppliers are attracted to the market at
a relatively high pace. For the base scenario of our experiment, this phenomenon results in an equilib-
riumparticipation volumeof 150drivers.With this level of supply, there is relatively strong competition
for pick-ups, resulting in payouts below drivers’ reservation wages. Instead, for the community of
(potential) ridesourcing drivers in our experiment, a fleet size of 40–100 drivers is considered to be
optimal. Such a solution implies that the fewer drivers participating will earn a significantly higher
income. The above findings demonstrate that the tragedy of the commons may apply in ridesourc-
ing provision, in which the self-centred labour decisions of individuals ultimately harm the common
interests of the group.
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Unlike traditional transit providerswith employeddrivers, ridesourcingproviders lack adirect finan-
cial incentive to curb supply. Our results demonstrate however that there may be an alternative
balancing loop in ridesourcing supply, i.e. profit-maximising service providers may be best off claim-
ing a relatively high rate on fares collected through their platforms, even when this means that fewer
drives will participate and, consequently, that a portion of the travel requests has to be rejected. In
our experiment, in equilibrium approximately 60 drivers participate when a platform opts for a profit-
maximising commission rate of 45%, compared to 180 drivers when the commission rate is 25%. This
results in a decline in the probability that a request can be matched from 100% to 85%, and in an
increase in the average waiting time from 2 to 6 minutes. Remarkably, average drivers earnings in the
experiment are hardly affected by the commission rate of the platform. The rationale here is that the
influx of new drivers on the platform is limited when the commission rate is high. This implies that
registration barriers may mitigate the tragedy of the commons in ridesourcing supply.

5.2.0.2. Labourmarket effect. The expected income is especially lowwhen the average reservation
wage is low. In this case, drivers are relatively quick to register, leading to a fierce competition and
ultimately a decreasing income for those already registered. Free-lanceworkers in themarket will thus
suffer from a shrinking economy in which other labour opportunities are scarce. The same applies to a
labourmarket with large inequalities, inwhich ridesourcing services are floodedwith drivers that have
limited opportunities in the market, and are willing to work even when earnings are low.

5.3. Policy implications

5.3.0.3. Supply regulation. Similarly to the results of the semi-dynamicmodel by Yu et al. (2020), our
findings provide support for the potential effectiveness of a supply cap, which has for example been
implemented in New York City. It may push earnings over the reservation wage without significantly
impeding travellers’ waiting times. At the same time, our results show that the value to which the cap
is set is crucial. For instance, in our experiment, supply caps above 400 drivers or more would yield
no effect on driver income. On the other hand, we find that when supply caps are too restrictive, they
may be detrimental to the level of service offered by the platform. This is in line with the results of the
queuing theoretic equilibrium model formulated by Li et al. (2019), demonstrating that a supply cap
can lead to reduced driver earnings when too many consumers leave the market. In any case, given
that capital registration costs jeopardise the income of drivers, transit authorities should avoid supply
caps that assign an additional cost to operation under the supply cap.

5.3.0.4. Pricing strategy. A profit-maximising platform will increase its commission rate up to the
point that so many drivers opt out that lost commission from rejected requests outweighs the higher
revenue on remaining requests. Our experiments demonstrate that at this point already a significant
portion of ride requests may need to be rejected. In addition, we find that such a profit-maximising
strategymay result in relatively longwaiting times for travellers. These results suggest that the pricing
strategy of a ridesourcing platformmay need to be regulated. Our results in fact demonstrate that this
may be highly beneficial from a societal standpoint, given that a near-optimal profit can be achieved
with a significantly lower commission rate, yielding a much improved level of service for travellers.
This confirms earlier findings based on an analytical economic model by Zha, Yin, and Yang (2016)
regarding the effectiveness of regulation of the commission in increasing the social welfare generated
by ridesourcing platforms.

5.4. Future research

In this study, we focus on supply evolution in order to understand its dynamics and describe emerg-
ing phenomena, which can be further embedded in models of co-evolution of supply and demand.
An interesting direction for future research is the extent to which outcomes of a monopolistic market
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are also applicable to markets in which service providers compete for supply and demand. For exam-
ple, future research may consider how supply evolution is affected by aggressive penetration pricing
strategies aimed at pushing other service providers out of the market. It may also be interesting to
analyse how external shocks to the market lead to swings in the transition process. Our model can be
extended to study supply evolution of ridesourcing services offering pooled rides, which will affect
the income of participating drivers. In essence, our approach with a day-to-day shell and a core cap-
turingwithin-day dynamics allows to analyse ridesourcing supply evolution under various operational
within-day strategies.

As a concluding remark, we stress the need for more empirical evidence on labour supply by rides-
ourcing drivers, as model input – based on cross-sectional data – and for validation of the results
– based on longitudinal data. Enhancing the empirical underpinning on labour supply behaviour
by (potential) ridesourcing drivers will support the specification of a simulation framework like the
one presented here and thereby allow to significantly improve our knowledge on ridesourcing
implications for drivers, travellers, platforms and society at large.
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