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Preface
Imagine yourself cycling home at night over a secluded bicycle path. Suddenly a gust of wind pushes
you off the road and you lose control over the bicycle. After a harsh fall on the concrete you try to get
up, notice that your knee is severely bruised and that your phone is broken; there is no one to help
you. Luckily your bike is equipped with ALARM: the Accident Localisation And Recognition Method.
The bike has already noticed that it has been in an accident and send your emergency contacts an
alert with your last known location; help is on its way.

My MSc project is aimed to develop a method that can be used to implement a reliable accident
detection system in bicycles connected to the internet. This project is undertaken at the request of
Royal Gazelle, a Dutch bicycle manufacturer which supplements some e­bikes with an Internet of
Things (IoT)­module. This module is currently used for theft detection, but the same hardware can
also be used for accident detection and geolocation.

I chose an experimental approach for which I collected artificial accident and actual normal cycling
data because I believe one should not settle for models when developing a practical solution. Due to
safety concerns, I was not able to collect accident data with riders, so the bicycle needed to be
pushed into different objects to simulate accidents. Observing normal cycling was of course allowed,
so a lot of normal cycling test runs are made. This not only resulted in an extensive database to train
the classification algorithms on, but it was also fun to do.

I would like to thank my supervisors for their guidance during this project. I would also like to thank
everyone involved in this project at Royal Gazelle for the insight into the practical implementation of
such a system. Lastly, I would like to thank everyone who helped me collect data for both normal
cycling and the simulated accidents.

Joris Kuiper
Delft, June 2021
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Abstract
Bicycles connected to the internet present an opportunity for integrated accident detection and
geolocation. Such a system can reduce the time it takes for help to arrive by automatically alerting
predefined contacts with the location of the accident. I developed a systematic method for the
practical implementation of bicycle accident detection in connected bicycles and present the
performance of a prototype system. The method uses accelerometer and gyroscopic measurements
as well as localization and velocity estimations. Supplementing existing research, a bicycle accident
detection system is validated on normal cycling, edge cases, and three types of single bicycle
accidents with constraints set by a bicycle manufacturer. Edge cases are movements of a bicycle that
occur during regular usage, but can not be described by normal cycling.

This method uses a data­driven approach. For the prototype system, the input signals are collected
during 71 different simulated accidents and 54 hours of normal cycling and edge cases. A three­layer
detection algorithm determines if an accident has occurred and sends the last known location to a set
of predefined contacts. Multiple combinations of thresholds and classification algorithms are
compared. This resulted in a prototype system with a K­Nearest Neighbours classifier which detects
75% of accidents. Normal cycling and edge cases are correctly detected 99.997% of the time. From
all warnings send, 85.7% are true accidents.

The prototype system proves that the proposed method can be used to integrate reliable accident
detection in connected bicycles. Bicycles with such a system automatically inform emergency
contacts with a message containing the location of the accident, in a time where every second counts.
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Nomenclature
This section only summarises abbreviations and symbols that are frequently used in this report.

Abbreviations

Abbreviation Definition

IMU Inertial Measurement Unit

GPS Global Positioning System

PCA Principal Component Analysis

IoT Internet of Things

GNSS Global Navigation Satellite System

SVM Support Vector Machine

KNN K­Nearest Neighbours

DT Decision Tree

NB Naïve Bayes

Symbols

Symbol Definition Unit
v Velocity [m/s]

ẍ Acceleration in lateral direction [m/s2]

ÿ Acceleration in vertical direction [m/s2]

z̈ Acceleration in longitudinal direction [m/s2]

atot Total Acceleration =
√
ẍ2 + ÿ2 + z̈2 [m/s2]

θ Roll angle [° ]

ϕ Pitch angle [° ]

θ̇ Angular velocity about the longitudinal (z) axis [rad/s]

ψ̇ Angular velocity about the vertical (y) axis [rad/s]

ϕ̇ Angular velocity about the lateral (x) axis [rad/s]

ω Total angular velocity =

√
θ̈2 + ψ̈2 + ϕ̈2 [rad/s]

v
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Coordinate Definitions

Figure 1: Rear frame fixed coordinate system of an IMU sensor mounted to the seat post of a bicycle.



1
Introduction

E­bikes are gaining popularity and while they are not necessarily more dangerous than conventional
bicycles, they provide the ability for relatively vulnerable people to cycle more [43, 15, 42]. This
increases the number of cyclist injuries as the users are exposed to more dangerous scenarios [33].
Of the cyclists involved in an accident without another road user, 63% are alone during the accident
[28] and only 36% are able to ride home [7]. An integrated bicycle accident detection system can
decrease the time between injury and treatment.
E­bikes that are connected to the internet can be supplemented with new features like accident
detection with a firmware update, utilizing the existing digital infrastructure. An accident detection
system automatically recognizes accidents and can send the location to emergency contacts.

There are already several products available that offer accident detection and post­crash emergency
assistance. For example, the eCall system, which is mandatory for all new passenger cars in the EU
from 31 March 2018 [29]. This system is triggered either manually or by the airbags and sets up a
voice connection with the nearest emergency centre. Such a ’mayday’ system aims to reduce the
time needed for emergency services to get to the location of the crash; they do not prevent crashes.

There are also already products available that offer bicycle crash detection. These include sensors on
helmets, offered by Specialized (ANGi), ICE (ICEdot), and Abus (Quin). Two e­bike companies offer
an integrated crash detection system with sensors in the bicycles: Cowboy (2 and 3) and Angell.
Garmin (Edge) makes bicycle computers with crash detection capabilities. This system is known to
be oversensitive. Mountainbike United (TILT) developed a crash detection system with a sensor
module that can be mounted to the front axis. There are also several apps available that provide
bicycle accident detection services. All these systems have the same shortcomings: (1) they all
require the rider to have a working and connected smartphone, (2) do not mention any performance
metrics, and (3) do not handle all accident types.
These systems generally start a timer when an accident is detected. The user can stop the timer
when no assistance is required. A message is sent to predefined contacts with the location of the
accident when the user is not capable of stopping the timer.

1.1. Types of accidents
This study categorizes accidents into four types: collisions, skids, falls, and crashes. The first three
types are single bicycle accidents, where no contact is made between the cyclist and another active
road user, these account for approximately 60% of all cyclists admitted to Dutch hospitals [31]. Each
of these accidents has distinctive kinematics which is why they all need to be considered for a proper
accident detection. Existing bicycle accident detection research often does not consider edge cases in
addition to normal cycling. Normal cycling is done on the road and also includes standing still. Edge
cases are movements of the bicycle that happen during regular usage which does not comply with
normal cycling. Examples of edge cases are: placing the bike in storage, cycling up or down curbs,
lifting the bike, pushing the bike up or down stairs, etc. A robust accident detection should not give a

1



1.1. Types of accidents 2

warning during these edge cases.

1.1.1. Collisions
A collision is defined as an accident where the bicycle or rider collides with a stationary object. This
also includes ’dooring’, where a car door suddenly opens just before the cyclist in its path, since the
car is in this case a stationary object. Typical objects are: tree roots, curbs, bollards, and parked
vehicles [28, 13, 31]. Collisions are described by the ICD­10 V17 external cause code (bicycle
accident with a fixed object) and account for 2.3% of the annual bicycle fatalities in the Netherlands
[32]. ICD­10 is a code for the list of international statistical classification of diseases and related
health problems from the World Health Organisation. Despite the relatively low fatality rate, collisions
account for approximately 18.3% of all bicycle accidents [31].

Existing research on collision detection generally uses accelerometer and gyroscope measurements.
A self­organizing map (SOM) based two­phase detection algorithm can be used to detect collisions
and road hazards for motorcycles [36]. This can be applied to bicycles because crash types and
patterns of fault are similar for both two­wheelers [19]. The first phase distinguishes between smooth
and irregular riding, and the second phase classifies these irregularities in hazards and non­critical
scenarios. A second option is placing thresholds on the total measured acceleration atot and total
angular velocity ω as defined in section . However, placing a threshold only on atot is not sufficient [9],
but this is only validated on two collisions and four falls. A the third option is to add a piezo sensor at
the front of the vehicle to detect deformations of the frame during a collision and place a threshold on
the output of this sensor [4].

1.1.2. Skids
A skid is defined as an accident where the bicyclist loses control due to loss of friction between the
tire and road. Typical examples include a lateral tire movement during turning on a slippery road or
loss of traction on gravel. Of all cyclists admitted to Dutch hospitals, 23% attributed the road surface
as a major contributor to their single bicycle accident [28]. The occurrence of the skid accident type is
approximately 12.2% of all bicycle accidents [31]. All single bicycle accidents without collision are
described by the ICD­10 V18 external cause code and account for 18% of all bicycle fatalities.
However, this also includes falls as described in section 1.1.3.

Skids can be detected by placing a threshold on the filtered total acceleration atot and total angular
velocity ω, measured by an inertial measurement unit (IMU), again placing a threshold only on atot is
not sufficient, which is shown for motorcycles [6]. This is validated on real accidents with a stunt
driver and edge cases, which include extreme braking, zigzags, accelerating, and fall­like maneuvers.
The total measured acceleration during a skid first decreases due to gravity during free fall, which is
why a threshold on the minimum value can also be possible [6, 23].
Another option is using a multivariate cumulative sum (MCUSUM) algorithm to provide an accident
trigger. A cumulative sum algorithm assumes that observations follow a normal distribution (mean µ0,
standard deviation σ0), which can be learned from normal driving. The MCUSUM also takes the
correlation between different types of measurements into account, like the correlation between atot
and ω, thus uses the covariance matrix. This method proved to be effective for airbag deployment in
motorcycles [2].

1.1.3. Falls
A fall is defined as an accident due to an unstable state of the bicycle and the driver. A bicycle without
a rider is inherently stable when it has a sufficiently high velocity [12, 24, 26]. This type of accident
includes low­speed mounting and dismounting accidents, which account for 10.7% of all single
bicycle accidents [28]. These mounting mistakes happen significantly more often on e­bikes than on
conventional bicycles [10, 33]. The drivers’ behaviour can also attribute to an unstable state, for
example by excessive braking or abrupt steering. Another example of a fall is attributed to general
forces on the frame or steering assembly of the bicycle, like a gust of wind from a passing vehicle.
Falls account for approximately 19.8% of all bicycle accidents [31].
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Falls can be detected using a sensor mounted on a cycling helmet, which measures total
acceleration, lean, and tilt [11]. Another option is by placing a magnetic, angular rate, and gravity
(MARG) sensor on the steering assembly [39]. This measures four signals: acceleration, angular
velocity, angle, and magnetic field. Data is gathered during normal cycling and simulated accidents
where the bicycle is pushed and let go. There are 24 features gathered during these trials: the
average and standard deviation in the x,y, z­direction of the four signals. These features are first
normalized. This is a lot, thus principal component analysis (PCA) is used to reduce the
dimensionality to 6 components while keeping the majority of variance in the data. A support vector
machine (SVM) with a Gaussian kernel function is used to classify between cycling and falls. Adding
roll rate can improve hazard detection for motorcycles by also identifying falls [36].

Significantly more research is done on fall detection for activities of daily living (ADL), some of these
principles can be translated for the bicycle case. A waist­mounted accelerometer is the most popular
sensor position since this is closest to the centre­of­mass of a person [8]. This would translate to a
sensor positioned on the top bar or seat post of the bicycle. Including posture/lean angle decreases
the number of false positives (wrong warning) of ADL fall detection, since a fall can be confirmed by a
period of lying [8]. However, this makes the system less sensitive as this would not be the case for all
falls. A typical fall pattern of the measured acceleration consist of a decrease during the fall, followed
by an increase during impact [23].

Machine Learning vs Thresholds
Another principle that can be learned from ADL fall detection is the difference in the performance of
different fall detection algorithms and classifiers. All prior research uses threshold triggers or machine
learning classifiers trained on labeled data. A threshold is a value that needs to be exceeded to
provide a trigger. Machine learning classifiers generally perform better than thresholds and they
provide a general classification model, which thresholds do not [3]. Further improvement is suggested
by combining machine learning (e.g. for impact detection) with thresholds (e.g. for post­impact
confirmation) in a state machine [1, 3].
Machine learning algorithms can work with multiple signals, for example, acceleration and angular
velocity in three directions. Calculating multiple features (mean, median, standard deviation, etc.)
increases the dimensionality of the data which slows the computation down. A solution is to apply
principal component analysis (PCA). This method maps the data on the principal components of the
initial covariance matrix to reduce the dimensionality while keeping most of the variance. PCA can
safely be applied for ADL fall detection without losing much performance as long as most of the
variance in the data is kept [21].

1.1.4. Crashes
A crash is an accident involving contact with another active road user, these account for
approximately 40% of all bicycle accidents [31]. This excludes evasive manoeuvres. These road
users are typically cars, vans, or trucks, but they can also be other cyclists or pedestrians. Motorized
vehicles account for approximately 64% of all collision partners in bicycle accidents [34, 13]. Cyclists
are more often hit at the left side than the right, which is the other way around for left­side driving
countries [41, 34, 5]. Frontal car crashes on the side of the cyclist are the most common [5, 30]. Even
though multi­vehicle crashes occur less than single­bicycle accidents, they account for 72.5% of
fatalities in bicycle accidents [32]. Crashes with a low occurrence, but particular high severity include
frontal car, bicycle rear contact, and blind­spot impacts [20, 14].
Another type of crash is caused by contact with another cyclist or pedestrian. These include a crash
where the handlebars of two bicycles lock when the cyclists drive too close to each other. Of all
bicyclists admitted to Dutch hospitals, 2% and 13% were the result of a crash with a pedestrian and
another cyclist respectively [13]. Little is known about specific bicycle crash detection as this is more
dangerous to recreate than single bicycle accidents. However one might argue that when a system
can detect falls, skids, or collisions, it should also be able to detect more severe crashes.

The occurrence of the described accident types can be summarized in figure 1.1. The presented
values are estimations, based on literature as described above. The other/unknown category includes
accidents due to bicycle malfunction and stunting. Many accidents occur due to a combination of
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these categories, which is why the division has been made based on the initial cause.

Occurrence of four types of bicycle accidents

Collisions 

 18.3%

Skids 

 12.2%

Falls 

 19.8%
Other or unknown 

 10.7%

Crash car 

 20%

Crash bicycle/moped 

 17%

Crash pedestrian 2%

Figure 1.1: Pie chard with estimations for the occurrence of the described accident types.

1.2. Connected bicycles of Royal Gazelle
Royal Gazelle is a Dutch bicycle manufacturer that supplements some of its e­bikes with ’connected’
technology. This translates to an Internet of Things (IoT)­module in the frame which can send
information about the state and location of the bicycle over the internet to a central server or via
Bluetooth to the users’ smartphone [27]. The data collection rate from the receiving server is currently
limited to 2 seconds. These modules support GPS, Glonass, and Galileo for location tracking and
also have an IMU sensor [16]. This system is currently used for theft detection, but there is a demand
to expand this with an accident detection feature [37, 27].
Currently, the following metrics are sent by the module: front and rear light status, power assist level,
charging status, battery voltage, state of charge, Global System for Mobile Communication (GSM)
signal strength, speed of bike, odometer, remaining range of bike, battery sock of the module, battery
voltage of module, battery temperature of the module, average GPS horizontal dilution of precision
(hdop), GPS hdop, GPS latitude, GPS longitude [16]. The IoT­module has an IMU which is currently
only used to ”wake up” the software. It is possible to add IMU signals to the data package. The
location and orientation of this module are dependent on the bicycle model. Thus each bicycle model
will need to supply the location and orientation of the module to the accident detection computation,
which uses a bicycle­oriented reference frame, as in figure 1.

1.3. Objective
The aim of this study is to develop a method for the practical implementation of bicycle accident
detection and geolocation for connected bicycles which I call ALARM: Accident Localisation And
Recognition Method. A demonstration prototype is made as a validation and a minimum viable
product is proposed for bicycle manufacturers.

The hypothesis for this research is as follows:

With a comprehensive data set of normal cycling, edge cases, and multiple types of
simulated accidents a machine learning based algorithm can be created that utilizes the
IoT technology of connected bicycles and can detect at least 80% of single bicycle
accidents.
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Such a system should comply with the following requirements and constraints:

• The system provides no false positives. This means that no warnings are sent when no
accident has occurred since this would be problematic for the user and the emergency contacts.
Such a requirement is a trade­off between false warnings and missed accidents, thus it is
expected that some low severity accidents will be missed.

• The system has a minimum sample time of 3 seconds. This is based on the minimum sample
time of the Royal Gazelle’s cloud server.

• The input to the accident detection system is provided only by sensors in the IoT­module
of Royal Gazelle. These are an IMU, wheel speed sensor, and GPS/GNSS receiver. The IMU
provides gyroscopic and accelerometer signals relative to the orthogonal body­fixed axis.

• The system automatically sends a message with the location of the accident within 30
seconds to a predefined set of contacts. The current e­bikes are not yet able to set up a
voice connection like the e­call system. However, they can send their location over the internet.
The user can set a predefined set of ICE (In Case of Emergency) contacts which will receive
a message with instructions and the location of the accident. This message is sent within 30
seconds after the accident has occurred to provide quick assistance.

The accident detection method is described in chapter 2. First the data collection is explained in section
2.2. This is followed by a description of the input for the accident detection algorithm in section 2.3 and
explanation of the algorithm in section 2.4. Different classifiers can be substituted in the algorithm,
the threshold and machine learning based classifiers are explained in section 2.5 and 2.6 respectively.
Section 3.1 shows the performance differences of the algorithm for these different classifiers, from this
the best performing classifier is found. This is followed by the resulting performance of the whole system
in section 3.1. Then the minimum viable product and a prototype system are explained in chapter 4.
This is followed by a discussion on the interpretation of the results, the shortcomings of the system,
and a list of proposed improvements in chapter 5. Finally, the conclusions can be found in chapter 6.



2
Methods

2.1. Approach
There are three types of approaches possible for the development of an accident classification
algorithm: mathematical, simulation, and data­driven [6]. The first describes the interactions between
the bicycle, the rider, and the environment with a mathematical model. This is very challenging since
an accident often has multiple influencing and unknown factors. A simulation­based approach relates
simulator data to real live data, this is possible with a physics engine like MADYMO [40, 30].
However, just like a mathematical approach, a simulation approach would make several assumptions
that could leave out relevant dynamics during an accident as there are often multiple influencing
factors at play. It is also very challenging to make realistic simulations of complex motions like
accidents. This is why ALARM uses a data­driven approach, where cycling behaviour is described
with data collected during normal cycling, which includes edge­cases, while accident data is collected
in simulated real­world accidents as explained in section 2.2.

The approach consists of multiple iterations to get to the end result. These iterations have an
increasing algorithm complexity and data­set size. Some preliminary experiments consisted of IMU
data collected during 2 hours of normal cycling and 7 falls. This confirmed the typical fall pattern as
described in section 1.1.3 and that only a threshold on the acceleration atot would not be sufficient.

2.2. Data Collection
Representative IoT­module data is collected using smartphones that are rigidly mounted on the
bicycles, as shown in figure 2.2. These smartphones log time series of acceleration and angular
velocity from the IMU sensor in three directions as well as GNSS/GPS signals. The MATLAB Mobile
app is used to log the data. The IMU data is sampled at approximately 100Hz and GPS at 1Hz.
Preliminary experiments are carried out to determine the performance of these smartphone sensors.
The preliminary experiments consist of 7 falls at various velocities and 2 hours of normal cycling. The
resulting measurements of the acceleration and angular velocity showed a clear distinction between
cycling and falling. The typical fall pattern: a decrease of measured acceleration followed by an
increase, is also visible in the data. No detectable drift can be seen in the data. Thus the performance
of this setup is deemed sufficient. Since this research is not aimed at finding the exact accelerations
during cycling but instead focuses on the differences between cycling and accidents, no extensive
calibration is needed.
The acceleration and angular velocity signals are truncated at 10−6 m/s2 and 10−6 rad/s respectively.
The GPS signals are truncated at 10−5 ° for longitude and latitude at 10−3 m/s for speed. The data is
collected with Lenovo K6 and Nokia 3.4 smartphones. The first also has a magnetometer from which
the data is also stored, but no GPS receiver. The second does not have a magnetometer.

A quarter of the normal cycling data and 80% of accident test runs are used to train machine learning
classifiers, which will be explained in section 2.6. Another quarter of normal cycling and the remaining
20% of accidents are used to compare the performance of the classifiers. These classifiers can be

6
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substituted in layer 1 of the accident detection algorithm, which will be explained in section 2.4. The
remaining 50% of normal cycling data is used to set thresholds to detect movement, standing still,
and lying down. These thresholds are part of layer 0 and layer 2 of the algorithm (section 2.4). These
runs all have at least 90% GPS coverage. This part of the normal cycling data set also has 6 test runs
that contain both cycling and accidents, which are used to validate the whole system. This data
distribution is visualized in figure 2.1 and the properties of each individual test run can be found in
appendix B.

Figure 2.1: Data distribution of test runs. Left: the normal cycling runs are randomly distributed in 25% training and 25%
validation for the classifiers. The remaining 50% also includes some accidents which are used to validate the system. Right:

the accident test runs are randomly distributed in 80% training and 20% validation.

Figure 2.2: Smartphone rigidly mounted at the back of the seat post.

2.2.1. Normal Cycling and Edge Cases
A total of 54 hours of normal cycling is collected by 7 riders in 59 test runs for training and validation
purposes. These test runs range from long rides on smooth cycling paths to short trips in a city centre on
stone roads and over bridges around South Holland and Utrecht. All participants were given instructions
(Appendix A) to turn on the measurements before unlocking their bike and turn off the measurements
after locking the bike. This was to make sure that any edge­cases that could occur while storing the



2.2. Data Collection 8

bike were also captured. The participants were also asked to drive roughly sometimes, like driving
over bumps and curbs, as long as this is within the traffic regulations to find out if the system falsely
detects accidents during any realistic usage of the bicycle. The following edge cases are included in
the normal cycling data set:

• Cycling up and down curbs.
• Cycling in a circle on a steep road.
• Cycling in the road verge.
• Cycling on dirt roads.
• Dinking, cycling with someone on the bicycle rack.
• Swerving.
• Placing bicycle in and out of storage.
• Store bicycle on a double bicycle rack.
• Harsh braking and accelerating.
• Evasive manoeuvres.
• Slowly lying bicycle on the ground.
• Push bicycle up or down stairs.
• Lift bicycle up or down stairs.
• Lift bicycle up or down ledges.
• lay bicycle on the ground.
• Push bicycle forward.
• Move bicycle in an elevator.
• Lean bicycle against walls and railings.

A visualisation of the gathered data during an example test run can be found in figure 2.3. This figure
shows the measured accelerations, angular velocities, and GPS coordinates during the run. On the
lower right corner, 10 features of the total acceleration and angular velocity are shown. This test run
includes normal cycling and the edge cases: swerving, placing bicycle out of storage, harsh braking and
accelerating, and lifting the bicycle down some stairs. The GPS signal during this test run is accurate.
Another test run is visualized in appendix C.1, this run includes cycling in the city centre which does
not include GPS data, because a phone without a GPS receiver was used for this test run.

Figure 2.3: Visualisation of the collected data during a test run from Delft to Scheveningen which includes normal cycling and
various edge cases. This data contains acceleration and angular velocity in three directions and the total values. From these
total acceleration and angular velocity signals, 10 features are shown in the lower right corner. The GPS coordinates are

shown on the map in the upper right corner.
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2.2.2. Simulated Accidents
Simulated accidents are conducted to gather accident data for training and validation purposes. These
accidents consisted of pushing the bike at different velocities into different objects, to the ground, or
pulling it with a rope. The velocities are approximated using the wheel speed sensor from the bicycle.
These test runs are conducted on grass to protect the bike unless otherwise stated. The test runs at
high speed (22 km/h) are done at least twice. The simulated accidents are:

Falls
The bicycle is pushed and let go at the following velocities: 0, 5, 12, 22, 22 km/h, which resulted in test
runs: F1,F2,F3,F4,F5 respectively.

Falls: Push
The bicycle is pushed forwards and then the frame is pushed at the side at the following velocities:
0, 5, 12, 22, 22 km/h, which resulted in test runs: P1,P2,P3,P4,P5 respectively. For example, P4 is
shown in figure 2.4 and appendix C.3.

Collision: Curb (90°)
The bicycle is pushed into a curbstone perpendicular to the movement of the bike and let go at the
following velocities: 5, 12, 22, 22, 22 km/h, which resulted in test runs: C1,C2,C3,C4,C5 respectively.

Collision: Curb (45°)
The bicycle is pushed into a curbstone laid 45° to the movement of the bike and let go at the following
velocities: 5, 12, 22, 22 km/h, which resulted in test runs: S1,S2,S3,S4 respectively. For example, S4
is shown in figure 2.5 and appendix C.4.

Collision: Curb (15°)
The bicycle is pushed into a curb laid 15° to the movement of the bike and let go at the following
velocities: 5, 12, 22, 22 km/h, which resulted in test runs: G1,G2,G3,G4 respectively.

Collision: Wall (90°)
The bicycle is pushed into a wall perpendicular to the movement of the bike and let go at the following
velocities: 5, 12, 22, 22 km/h, which resulted in test runs: W1,W2,W3,W4 respectively. For example,
W3 is shown in figure 2.6 and appendix C.5.

Collision: Wall (45°)
The bicycle is pushed into a wall laid 45° to the movement of the bike and let go at the following
velocities: 5, 12, 22, 22 km/h, which resulted in test runs: H1,H2,H3,H4 respectively. For example, H4
is shown in figure 2.7 and appendix C.6.

Falls: Pull Steer
The bicycle is pushed forwards and let go while a rope attached to the steering assembly pulls the
bike to the right at the following velocities: 5, 12, 22, 22 km/h, which resulted in test runs: T1,T2,T3,T4
respectively.

Skids: Pull Frame
The bicycle is pushed forwards and let go while a rope attached to the bottom of the frame pulls the
bike to the right at the following velocities: 5, 12, 22, 22 km/h, which resulted in test runs: Q1,Q2,Q3,Q4
respectively. For example, Q4 is shown in figure 2.8 and appendix C.7.

Skids and falls: Slippery Surface
Some of the test runs are also conducted on a snowy surface to simulate skids. The following runs are
conducted on snow:

• Falls: at 0, 12, 20, 20 km/h, resulted in test runs D1,D2,D3,D4 respectively.
• Push Falls: at 5, 12, 20, 20 km/h, resulted in test runs D5,D6,D7,D8 respectively.
• Push Falls: at 5, 12, 20, 20 km/h, resulted in test runs D9,D10,D11,D12 respectively, these runs
are conducted on a snowy road, not on grass. For example, D10 is shown in figure 2.9 and C.8.
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• Roll: at 5, 12, 20 km/h, resulted in test runs D13,D14,D15 respectively. During these test runs,
the bicycle is pushed in two directions at the bicycle rack to create a roll motion.

Figure 2.4: Push fall (P4), a simulated fall where the bicycle is pushed forward and then to the side at 22 km/h. See also
appendix C.3.

Figure 2.5: Collision into a curb (S4), a simulated collision where the bicycle is pushed into a curb at 45° at 22 km/h. See also
appendix C.4.

Figure 2.6: Collision into a wall (W3), a simulated collision where the bicycle is pushed into a wall at 90° at 22 km/h. See also
appendix C.5.
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Figure 2.7: Collision into a wall (H4), a simulated collision where the bicycle is pushed into a wall at 45° at 22 km/h. See also
appendix C.6.

Figure 2.8: Skid (Q4), a simulated skid where the bicycle is pushed and let go at 22 km/h. When the bicycle is let go, the
bottom of the frame is pulled to the right with a rope. See also appendix C.7.

Figure 2.9: Skid­Fall (D10), a simulated skid where the bicycle is pushed forward and then to the side at 20 km/h on a snowy
road. See also appendix C.8.

2.2.3. Time shifts
An accident usually takes less than 3 seconds. During this time, high peak accelerations and angular
velocities can be measured. The system is constrained to have a minimum sample time of 3 seconds.
To maximize the difference between an accident and a non­accident sample, it is vital to capture the
whole accident in a single sample. However, there is no way to guarantee this since the data is temporal
and only non­overlapping samples are used. The start time of the accident is manually determined so
that the following 3 seconds contain the maximal variation in the data. This is the optimal case since
such a sample captures most elements of the accident, shown on the left in figure 2.10. However, as
explained, this is not always the case, shown as an example on the right in figure 2.10. That is why
the algorithm is also trained on accident samples with a shifted start time of ­1 second and ­2 seconds,
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to make sure that these sub­optimal cases are also captured. The time shift which cuts the accident
exactly in half is the least optimal since this would result in two samples that each capture only half of
the accident.

Figure 2.10: A visualisation of the IMU data from a typical fall (P4) with two possible time shifts. On the left the optimal case
and on the right a sub­optimal one. The fall happens within the optimal region.

2.3. Sample Description and Feature Calculation
Figure 2.11 shows the different steps that are undertaken to go from the (raw) IMU and GPS signals
to the features of a sample. These features are used in the accident detection algorithm, which will be
explained in section 2.4. From the GPS signal, only longitude, latitude, and speed are used. The IMU
data consists of 6 signals: x,y,z, and total for both acceleration and angular velocity. The test runs are
first divided into accident or normal cycling. All normal cycling time series signals are sectioned into
three­second samples si. The start time of the accident test runs is manually labeled and time shifts are
applied to this start time to get the three­second accident samples. For each 3­second sample of each
signal, 12 features are computed. This results in 96 features per sample. These features are based on
previous research [39, 23, 1, 25] and can be calculated for each signal x consisting of n values using
equations 2.1­2.12:

Figure 2.11: Data­flow from data collection to feature calculation. The boxes represent axis and the labelled arrows represent
data.

Maximum
max(x) = max(x1, x2, ..., xn) (2.1)

Minimum
min(x) = min(x1, x2, ..., xn) (2.2)

Average

avg(x) = x̄ =
1

n

n∑
i=1

xi (2.3)



2.4. Accident Detection Algorithm 13

Median
med(x) = xn

2
(2.4)

Standard deviation

std(x) =

√∑n
i=1(xi − x̄)2

n− 1
(2.5)

Root mean square

rms(x) =

√∑n
i=1 x

2
i

n
(2.6)

Mean absolute deviation
mad(x) =

∑n
i=1 |xi − x̄|

n
(2.7)

Interquartile range
iqr(x) = xn∗0.75 − xn∗0.25 (2.8)

Skewness
ske(x) =

1
n

∑n
i=1(xi − x̄)3

std(x)3
(2.9)

Kurtosis

kur(x) =
1
n

∑n
i+1(xi − x̄)4

[ 1n
∑n

i+1(xi − x̄)2]2
− 3 (2.10)

Total average power

pwr(x) =

∑n
i+1 x

2
i

2n+ 1
(2.11)

Energy

eng(x) =

n∑
i+1

x2i (2.12)

2.4. Accident Detection Algorithm
The features of the three second samples are used in in the accident detection system. This system
uses a 3 layer algorithm to determine whether an accident has occurred based on the IMU and GPS
input data. This combines the robustness of machine learning with the logic of thresholds in a state
machine [1, 3]. The algorithm is depicted as a flowchart in figure 2.12. The algorithm is started when
the bicycle is turned on. Layer 0 uses the first three second sample to detect if the bicycle is moving,
for which either GPS speed or range of total acceleration needs to exceed the corresponding threshold.
Layer 1 is run when cycling is detected and uses the next sample. This layer classifies between cycling
and an accident, for example where at least one of three thresholds needs to be exceeded to classify an
accident. When an accident is detected, layer 2 is looped three times to confirm the accident, using a
counter parameter C. A new three second sample is used each time and at least one of three thresholds
need to be exceeded to confirm an accident and send an e­mail with the location. When layer 1 returns
cycling or layer 2 is run three times, the algorithm moves back to layer 0.
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Figure 2.12: Flowchart of the 3 layer algorithm with an example threshold based classifier. The rectangles are state
descriptions. A yellow parallelogram indicates input or output and a purple parallelogram indicates a parameter action. A

diamond indicates an if­statement which can either be true (yes) or false (no).

Layer 0 checks whether the bicycle is moving on the previous sample si−1. This is to prevent any
false accident warnings, for example when the bicycle falls over when it is parked. To check whether
the bicycle is moving, the GPS­based speed and the range of total acceleration atot are used. The
latter is added since GPS is not always reliable and the sensors measure vibrations when the bicycle
is moving. Either one of them should exceed the corresponding threshold to indicate cycling.
Layer 1 is a classifier which distinguishes accidents from normal cycling on sample si. Two threshold
based classifiers and multiple machine learning based classifiers can be substituted in this layer.
These threshold classifiers are explained in section 2.5 and the machine learning classifiers are
explained in section 2.6.
Layer 2 is used to confirm whether an accident has occurred on sample si+1, si+2, and si+3. This is
because an accident is probably followed by a period of lying down. However, this should not
necessarily be during the next sample, which is why this layer is looped three times. In every loop, the
lean angle θ, GPS speed, and range of atot are used. This lean angle is approximated by measuring
the acceleration in lateral direction ẍ, which should measure 1g when lying perfectly flat. Thus an
accident is confirmed when ẍ has exceeded its threshold. The GPS­based speed and range of atot
are added because a bicycle should not necessarily be laying flat to confirm an accident. They are
used the same way as in layer 0, but should now be lower than their corresponding thresholds to
confirm an accident.

The 3 layer algorithm is depicted as a flowchart in figure 2.12 and as pseudo­code in algorithm 2. An
example threshold based classifier is shown in algorithm 1.
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Algorithm 1: Example Threshold based Classifier
Result: class.
set C1,C2,C3;
if mad lateral acceleration is lager than C1 OR mad total angular velocity is larger than C2 OR
std lateral acceleration is larger than C3 then
return accident;

else
return cycling;

end

Algorithm 2: Three Layer Accident Detection
Result: Send a warning with longitude and latitude when an accident is confirmed.
set T1,T2,T3,T4,T5;
init classifier;
while bike is tuned on do

input new features;
if speed is larger than T1 OR range of accelerations is larger than T2 then

% cycling is detected;
input new features;
call classifier returning class;
if class is accident then

% accident is detected;
set loop is 1;
while loop is less than 4 do

input update features;
compute absolute lean angle;
if absolute lean is lager than T3 OR speed is smaller than T4 OR range of
accelerations is smaller than T5 then
% accident is confirmed;
output warning with longitude and latitude;

end
add one to loop;

end
end

end
end

2.4.1. Performance Metrics
The performance of any system can be represented in many ways. Standard performance metrics for
binary classification algorithms are a Receiver Operating Characteristics (ROC) curve, average
accuracy, precision, recall, and specificity. The most relevant performance metrics for the accident
detection system are precision, sensitivity, and specificity because these combined provide intuitive
information about the output of the algorithm (accident or normal cycling). Using only one
performance metric is not sufficient to depict the performance of the system. To get the best
indication of the performance all three metrics should be discussed. These are all based on the
values in the confusion matrix, where a positive result indicates a detected accident, as shown in
table 2.1. Each row represents samples from the true class, which is the type of test run the sample is
from (accident or normal cycling). Each column represents samples from the predicted class, which is
the resulting output from the algorithm.
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Confusion matrix True class
Accident Cycling

Predicted class Accident TP FP
Cycling FN TN

Table 2.1: Confusion matrix. TP = true positives: accident detected as accident, FP = false positives: cycling detected as
accident, FN = false negatives: accident detected as cycling, TN = true negatives: cycling detected as cycling.

Precision
Precision is a measure that tells what proportion of confirmed accidents is a true accident, which is
calculated using equation 2.13. This should be 100% when the user does not want to alarm the
predefined contacts when no accident has occurred (no false warnings). However, the use of
precision as a performance metric introduces a problem when increasing the amount of accident data
while developing the algorithm. Adding more accidents to the data set while developing the algorithm
would be logical since accidents are so rare that any new accident gives more insight. An increase of
accident samples will increase the number of true positives, while the false positives stay roughly the
same, which will result in higher precision. This is undesirable as the amount of data should not
correlate with the performance of the system while developing. Another problem with (only) using
precision is that when a system manages to only capture 1 accident, and it is correct, it will be 100%
precise, but this is not useful.

Precision =
TP

TP + FP
(2.13)

Sensitivity or Recall
Sensitivity is a measure for the proportion of accident samples that are classified as an accident. This
is calculated with equation 2.14. When no missed accidents are desired, sensitivity should be 100%.
Sensitivity is not about classifying correctly, but more about capturing all accidents. So a problem
with (only) using sensitivity is that when a system classifies everything as an accident, it will have a
sensitivity of 100%, but this is not useful.

Sensitivity =
TP

TP + FN
(2.14)

Specificity
Specificity is a measure for the proportion of normal cycling samples that are predicted as normal
cycling, as calculated using equation 2.15. This is the exact opposite of sensitivity. When it is desired
that normal cycling is always detected as normal cycling, thus there are no false warnings, the specificity
will be 100%. So a problem with (only) using specificity is that when a system classifies everything as
normal cycling it will have a specificity of 100%, but this is not useful.

Specificity =
TN

TN + FP
(2.15)

2.5. Threshold Based Classifiers
Many accident detection systems use thresholds to classify between falling and cycling/ADL [8, 11,
17, 1, 38, 9]. A threshold is a value that a signal has to exceed to be classified into a different
category. An evaluation of the gathered data shows that the acceleration and angular velocity
produce high peaks during an accident. However, placing a threshold on these raw signals is not
sufficient for accident detection, since normal cycling and edge cases can also produce these high
peaks. Multiple combinations of thresholds can form a classifier that can be substituted in layer 1 of
the algorithm. These classifiers place thresholds on the features of a sample, which can be calculated
using equation 2.1 to 2.12. The features used in these classifiers can be determined as follows:

1. Approximately 2 hours of normal cycling data and 39 simulated accidents (not on snow) data is
collected as described in section 2.2. The start time of the accidents is labeled for each accident
test run.

2. Edge case data is collected on a steep road, while swerving, cycling over curbs, and placing the
bicycle in storage.
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3. The normal cycling and edge case data is cut into three­second samples. The accident samples
were determined using the start time. The features are calculated for each sample. The features
from the accidents are compared with features from normal cycling and edge cases. Thresholds
are manually placed by the features with a clear boundary between cycling and accidents. This
resulted in a list of 14 potential thresholds. The distribution of samples for each feature and the
list of thresholds can be found in appendix E.

4. Apply a ­2 second time shift to the start time of the accident samples and calculate the resulting
features. None of these features show a clear boundary between cycling and accidents. However,
almost all samples have at least one feature that passes a threshold, as shown in figure 2.13. The
table in appendix E.1 shows which thresholds are passed for each accident. This shows that a
fully threshold based classifier can not detect accidents C1 and T2 with a least­optimal time shift.
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Figure 2.13: The number of accident samples with a least­optimal time shift that passes a certain amount of thresholds.
Normal Cycling and edge cases do not pass any thresholds.

5. From table E.1, it can be concluded that the combination with the least amount of thresholds
able to detect most accidents is: maximum total angular velocity max(ω) with minimum angular
velocity in longitudinal direction min(θ̇). This combination is only not able to detect accidents
C1 and T2 with the least optimal time shift. However, using minimum and maximum values of a
signal might be problematic, since these could be outliers that are not representative of the data.
The next combination with the least amount of thresholds able to detect most accidents is: mean
absolute deviation of acceleration in lateral direction mad(ẍ), mean absolute deviation of total
angular velocity mad(ω), and standard deviation of acceleration in lateral direction std(ẍ). This
combination of thresholds is not able to detect accidents F2,C1,C2,S1,W1,W2,H1, and T2.
The first combination is called classifier T1 and the second is called classifier T2. The latter is
shown as an example in algorithm 1.

The values for the thresholds of T1 and T2 found using the method explained above are:

• Maximum total angular velocity max(ω) > 3.75rad/s.
• Minimum angular velocity in longitudinal direction min(θ̇) < −2.1rad/s.
• Mean absolute deviation of acceleration in lateral direction mad(ẍ) > 4m/s2.
• Mean absolute deviation of total angular velocity mad(ω̈) > 0.65rad/s.
• Standard deviation of acceleration in lateral direction std(ẍ) > 4m/s2.
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2.6. Machine Learning Classifiers
To try to increase the robustness of the system, multiple machine learning based classifiers are
substituted in layer 1 of the algorithm. These classifiers are trained on 25% of all normal cycling data
and 80% of the accident data as shown in figure 2.1. Validation is done on 25% of all normal cycling
data and the remaining 20% of accidents which are distributed randomly. The accident data for
training purposes consists of only one sample per accident since this generally takes less than 3
seconds. As explained in section 2.2.3, three time shifts are applied to the accident training data set.
Only 25% of the cycling data is used to decrease the computational complexity of the training phase.
This is possible since there is much more normal cycling data available than accident data.
Figure 2.14 shows the follow up data­flow from feature calculation to evaluation of the system, this
figure adds to the figure shown in section 2.3. First the features of a single sample are normalized
between 0 and 1, and reduced in dimension using PCA, which will be explained in section 2.6.1. The
test runs and corresponding (reduced) samples are divided according to figure 2.1. One part is used
to train the classifiers, one to validate them and one part is used evaluate the whole system. This last
validation is done using the best performing classifier.

Figure 2.14: Data­flow from data collection to system evaluation. The boxes represent axis and the labelled arrows represent
data. The yellow parts are used to form the final results.

Cost Parameter
To train the machine learning classifiers, approximately 32000 cycling samples and 126 accident
samples are used. A cost parameter is used to compensate for this imbalance in the data. This
parameter places a higher penalty on misclassifying accidents as cycling and a lower penalty is on
misclassifying cycling as an accident. A simple machine learning algorithm would not work well
without a cost parameter on unbalanced data. The performances of the classifiers are compared for
cost parameters with a value of 20,50, and 100. The following classifiers are compared and
discussed: Support Vector Machines (SVM), K­Nearest Neighbours (KNN), Naive Bayes (NB), and
Decision Trees (DT).
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2.6.1. Principal Component Analysis
As described in section 2.4, one sample consists of 96 features. To decrease the computational
complexity, while keeping most of the variance, the dimensionality is reduced with Principal
Component Analysis (PCA). This is also beneficial for lowering the data costs when classification is
done on an external server.
The training test runs are cut into three second samples. For each sample, the 96 features are
calculated as explained in section 2.4. The training data set is a feature matrix of Tm×n where n = 96
is the number of features and m is the number of samples. This training data set is first mapped
between 0 and 1 resulting in a normalized feature matrix Am×n. The covarience matrix C of Am×n is
computed. From this covarience matrix the eigenvectors vi and corresponding eigenvalues λi are
calculated. These eigenvalues are sorted in descending order (λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λn) and the
corresponding eigenvectors are placed in matrix w in this order. The training data projected on the
PCA subspace Pm×k is the projection of matrix A on the k largest eigenvectors of w.
Figure 2.15 shows the projection on the two largest eigenvalues (principal components). One
C­shaped point cloud mainly contains cycling and edge cases. One oval point cloud mainly contains
falls, collisions, and skids. A good classifier should have the decision boundary in between these two
point clouds. The explained variance of each eigenvector can be calculated by dividing the
corresponding eigenvalue by the sum of eigenvalues. To prevent over­fitting while keeping useful
dimensions, the PCA is set to keep at least 85% of the variance for which k = 6 eigenvalues need to
be used as shown in figure 2.16.
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Figure 2.15: Projection of feature samples on the two largest principal components PCA1 and PCA2. These samples resulted
from test runs of normal cycling, 3 types of accidents, and edge cases.
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training data set.
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2.6.2. Support Vector Machine
A Support Vector Machine (SVM) is often used as an accident classifier [39, 18, 21, 3]. Three
different SVMs are trained on the projected samples Pm×k, each using a different kernel function.
Support vector classifiers focus on the edges of the two point clouds (cycling and accidents), a
threshold is placed between these. SVMs have a bias/variance trade­off where some
misclassification is allowed to make them less sensitive to outliers. This results in ’soft margins’,
where some outliers are purposely misclassified to get overall better performance. A support vector
classifier results from cross­validating multiple soft margin classifiers. The support vectors are
samples that lie within the soft margin. Since these samples are 6 dimensional, the support vector
classifier results in a hyperplane.
The data is not linearly separable, which means that no straight line or flat plane can be drawn which
divides the cycling and accident samples. Support Vector Machines transform the data from a
relatively low dimension (6 in this case) to a higher dimension. A support vector classifier is found that
separates the higher dimensional data into two classes. SVMs use kernel functions to find these
support vector classifiers. For this research, three types of kernel functions are tested:

• Polynomial Kernel increases the dimension by changing the degree of the polynomial that
maps the data, it then computes the relationships between each pair of samples, those
relationships are used to find a classifier.

• Gaussian or Radial Basis Function Kernel finds classifiers in infinite dimensions using Taylor
series. This kernel behaves like a weighted nearest neighbours function, thus the closest values
to a new sample have a lot of influence on its classification.

• Linear Kernel assumes that the data is linearly separable and divides accidents from cycling
with a hyperplane.

A visualisation of SVMs with different kernel functions with the training data set projected on the two
largest eigenvalues is shown in figure 2.17. This figure shows the resulting decision boundaries using
the three different kernels and highlights the corresponding support vectors. This figure also shows
that the Gaussian and polynomial kernels have a better fit than the linear one since these more closely
follow the contour of the oval accident point cloud. The soft margin size and scaling of the kernel
functions are automatically found using the automatic hyperparameter optimization of MATLAB that
minimizes five­fold cross­validation.
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Figure 2.17: The decision boundary of three different SVMs using a Gaussian, polynomial or linear kernel fitted to the
projected normalized samples of cycling, accidents, and edge cases on the two largest principal components PCA1 and PCA2.
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2.6.3. K­Nearest Neighbours
A K­Nearest Neighbours (KNN) is a more intuitive classifier. This algorithm clusters the training data
into cycling and accident clusters. A new sample will be allocated to the cluster it is the closest to.
This is determined by looking at the K nearest samples for which different distance metrics can be
used. Low values for K make the classifier sensitive to outliers while large values for K smooth over
small clusters.
The number of neighbours K and distance metric are found using the automatic hyperparameter
optimization of MATLAB that minimizes five­fold cross­validation. A KNN classifier is fitted on both
Tm×n and on the projected samples Pm×k, where k = 6 is the number of components.

2.6.4. Naive Bayes
A Naive Bayes (NB) classifier uses the probability of a certain value of a feature to determine if it is
cycling or an accident. A Gaussian distribution is made for each feature in both classes. For a new
sample: the initial guess of the probability of a sample being normal cycling is way larger than being
an accident, these are the prior probabilities. The prior probability of normal cycling is multiplied with
the likelihood of each feature given that it is normal cycling, based on these Gaussian distributions.
The same is done with an initial guess of the sample being an accident. The class with the highest
score determines the classification. To reduce the complexity of the distributions, the NB classifiers are
trained on the normalized dataAm×n and on the projected data Pm×k. The optimal distribution type and
distribution smoothing parameter ’width’ are automatically found using the automatic hyperparameter
optimization of MATLAB that minimizes five­fold cross­validation.

2.6.5. Decision Tree
A Decision tree consists of a root node, nodes, and leaves. Each node has a threshold and makes a
decision based on whether this threshold is passed or not. The leaf that resulted from a series of
decisions determines the classification. A Decision tree is made in the following manner. Each feature
is sorted from low to high. The value between every two adjacent samples (average) is calculated for
each feature. The total Gini impurity for each of these averages is calculated with equation 2.17 and
the lowest one determines the node. This process is repeated for the remaining samples of the most
impure branch. To prevent overfitting the tree is pruned to a maximum of 7 nodes.

s = total number of samples in a node.
b = total number of samples in a branch.
a = number of accident samples in a branch.
c = number of cycling samples in a branch.
The Gini impurity I of a branch can be calculated using formula 2.16.

I = 1− P (accident)2 − P (cycling)2 = 1− (
a

b
)2 − (

c

b
)2 (2.16)

The total Gini impurity Itot is the weighted average of Gini impurities of the two branches that result
from a node, this can be calculated with equation 2.17. The weight of a branch is: weight = (n/s).

Itot =
b

s
∗ I1 +

b

s
∗ I2 (2.17)



3
Results

3.1. Performance of different classifiers in layer 1
The performance comparison of the different classifiers in layer 1 is done with data from separate
accident test runs and normal cycling. The machine learning classifiers are trained on 80% of
accidents and 25% of normal cycling data. To find the best classifier for layer 1, the remaining 20% of
accidents and another 25% of normal cycling data are used for validation. A total of 83 different
classifiers are trained and validated. These include the two threshold­based classifiers T1 and T2, the
three types of SVM classifiers, two DT classifiers, two KNN classifiers, and two NB classifiers. All
machine learning classifiers are trained on projected training data in 6,12, and 2 dimensions using
PCA with the three cost parameters: 20,50, and 100. The DT, KNN, and NB classifiers are also
trained on the non­reduced data with all 96 dimensions and the three cost parameters.
The performances of the three­layer algorithm with all these different classifiers substituted in layer 1
can be found in appendix F and the most promising results are visualized in figure 3.1. These are the
most promising since they have the overall highest performance metrics. Figure 3.1 shows us that the
specificity is generally high and above 99.5%. The sensitivity is also generally high and above 75%.
The precision and sensitivity can only have a limited set of values since the comparison is done using
only 11 accident test runs, which means that there can not be more than 11 false negatives or true
positives.
Figure 3.1 also shows us that the system performs better with the T1 classifier than with the T2
classifier substituted in layer 1. The three SVM classifiers result in comparable sensitivity and
specificity, but the Gaussian one has significantly higher precision. The decision tree classifiers result
in comparable performance to T2. There is no significant difference in the performance of a decision
tree using all 96 dimensions compared to using the reduced data using PCA. The KNN and NB
classifiers perform better when using reduced data.
The best performing classifier in layer 1 is the one that results in the highest performance metrics.
However, there is no classifier with the highest precision, sensitivity, and specificity. Thus best
performing classifier is chosen to be the one that results in the highest precision and specificity, since
these values include the false positive count. This is a KNN classifier that works with data projected
on 6 principal components and is trained with a cost parameter of 20. This classifier uses 5
neighbours and a Minkowski distance metric. This classifier is used in the final accident detection
system.
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Figure 3.1: Performance comparison of the three­layer algorithm with 11 different classifiers in layer 1. The machine learning
classifiers are trained on accidents with time shifts (0,­1, and ­2 sec.), 6 PCA components, and a cost parameter of 20. The DT,
KNN, and NB classifiers are also trained and validated on all 96 dimensions. Separate cycling and accident test runs are used

for validation. Be aware of the different scale for specificity.

3.2. Performance of the system
The performance of the whole system is validated on the remaining 50% of normal cycling test runs.
Some of these runs also contain a simulated accident during the test drive. A total of 8 accidents
are simulated during these runs. These test runs all have at least 90% GPS coverage. The system
correctly identified the location of 6 accidents, 2 accidents are missed, and 1 known standstill fall is
correctly dismissed. Only 1 false warning is provided during an edge case at the end of a test run.
Layer 1 passed 4 false accidents which are correctly dismissed by layer 2. This results in the confusion
matrix in table 3.1 from which the following performance metrics can be determined:

• Precision: 85.7%
• Sensitivity: 75%
• Specificity: 99.997%

Confusion matrix Samples from test runs
Accident Cycling and edge cases

Warning send with location Yes 6 1
No 2 33313

Table 3.1: Confusion matrix of the accident detection and localisation system, validated on normal cycling test runs of which
some include an accident.

An explanatory test run includes a standstill fall, walking the bike, placing the bike in a double bicycle
storage, cycling, a simulated fall (comparable to F2), pulling the bicycle up, and placing it in storage.
The data of this run is visualized in appendix C.2. The three layers of the algorithm are visualized in
figure 3.2. This shows the measured accelerations during this test drive and the conclusions of each
of the three layers. These conclusions are depicted as ”yes” or ”no” for each 3­second sample.
The ’cycling detected’ graph in figure 3.2 shows the conclusions of layer 0. This shows that cycling is
detected during cycling and while walking the bike. This layer also detects cycling while picking the
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bicycle up, since this also results in vibrations in the frame. The standstill fall (at 0.7 ·105 ms) is correctly
discarded since the previous sample was not cycling. Placing the bicycle in and out of the upper layer
of a double bicycle storage (at 1.4 ·105 ms and 1.7 ·105 ms) is measured as cycling due to the sufficiently
large vibrations. Cycling and waiting to cross the road are detected correctly.
The ’accident detected’ and ’accident confirmed’ graphs in figure 3.2 show the conclusions of layers 1
and 2. The accident (at 3.4 ·105 ms) is correctly detected. The following three samples correctly confirm
the accident since the bicycle was lying on its side during this time. GPS was available with sufficient
accuracy during the whole test run and the location of the accident is correctly displayed by the red dot
in figure 3.3.
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Figure 3.2: Results of the three layer algorithm on a test drive which includes cycling and falling. A green dot in the ’Cycling
Detected’ graph indicates that GPS is available for that sample.
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3.3. Sample Time
The system uses a sample time of 3 seconds since this is the current minimum sample time of the
connected bicycle­server interaction of Royal Gazelle. The best performing classifier (KNN) is also
trained and validated on samples with a sample time of 1,2,4, and 5 seconds. Again three time shifts
are applied in the training phase, such that one is optimal, one least­optimal, and one in between
these. The effects of sample time are displayed in figure 3.4. This shows that increasing the sample
time generally increases the amount of missed accidents, but decreases the number of false warnings.
Increasing the sample time from 4 to 5 seconds results in more false warnings and missed accidents.
The difference in the number of false positives for a sample time of 3 seconds between figure 3.4 and
3.1 is due to the randomness of the training/validation test run distribution.
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4
Practical Implementation

The current system of Royal Gazelle is capable of processing a data package containing information
on the bicycle state every 3 seconds [27]. This package already contains wheel speed, longitude, and
latitude. The first can be used in layers 0 and 1 as an indication of speed. The constraints from the
system of Royal Gazelle shaped the development of ALARM. Two types of systems are proposed: the
minimum viable product and a demonstration prototype.

4.1. Minimum Viable Product
The minimum viable product is a proposal for Royal Gazelle to add accident detection to their bicycles
with the least amount of changes to the current setup. A briefing document to inform manufacturers
how to implement such a system can be found in appendix D. This system uses the T2 threshold­based
classifier to reduce complexity and data transmission costs, while not being sensitive to outliers.
A schematic of the whole system for the minimum viable product is shown in figure 4.1. The IoT­module
in the bicycle receives GPS and IMU data for 3 seconds. The required features for T2 are calculated to
form a sample and added to the excising data package. In addition to these features, the GPS speed
and average acceleration in lateral direction need to be added to indicate movement and laying down
respectively for layer 2. The package is sent over the GSM network to the server of Royal Gazelle.
The server receives this package and runs the algorithm as proposed in section 2.4. If an accident is
confirmed, an e­mail or SMS with the last known location is automatically sent to predefined contacts.

Figure 4.1: Schematic of the minimum viable product. This system utilizes the existing IoT­module and server capabilities from
Royal Gazelle. The IoT module stores the IMU and GPS data and calculates the features for 3 seconds to form a sample. this
sample is added to the existing outgoing data package which is received by a central server. This server runs the accident
detection algorithm with the samples as input. If an accident is detected an SMS or e­mail is sent with the location of the

accident.
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4.2. Demonstration Prototype
A prototype system is developed for demonstration purposes. This system is schematically shown in
figure 4.2 and consists of the following elements:
A smartphone rigidly mounted to the saddle pole, as shown in figure 2.2, collects and transmits IMU and
GPS data in a comma­separated values (csv)­format using the User Datagram Protocol (UDP). This
protocol uses a checksum as integrity verification but has no delivery guarantee since it only transmits.
There are no retransmission delays, which makes it suitable for real­time applications such as this
demonstration system. The transmitted data consists of accelerometer and gyroscope measurements
at 100Hz and GPS measurements at 100Hz. These GPS measurements also include speed.
This data is transmitted to a laptop via a router in a local area network. The laptop runs a program that
collects and temporarily stores the data every 3 seconds. The features are calculated and applied to
the tree layer algorithm described in section 2.4 with the best performing classifier substituted in layer
1. The lean angle is based on the orientation values included in the IMU data.
When an accident is confirmed, an e­mail is automatically sent with the last known location of the
smartphone using longitude and latitude from the GPS signal. This e­mail contains a link to google
maps which displays this location.

Figure 4.2: Schematic of the demonstration system which uses a smartphone mounted to the bicycle to collect and send GPS
and IMU data. This data is sent over a local area network to a laptop. The laptop collects the data for 3 seconds and calculates
the features form a sample. These samples are the input for the classification algorithm, which runs on the same laptop. An

e­mail is sent with the GPS coordinates if an accident is confirmed.

The demonstration consists of the bicycle standing still, cycling on grass for 30 seconds, a stop­and­
go, jumping off the bicycle, and pushing it to the ground (P2). An e­mail is automatically sent after the
accident which contains a set of instructions and a link to google maps which displays the location of
the accident.



5
Discussion

5.1. Performance
The best performing set of parameters for the accident detection contains a fitted KNN classifier on 6
PCA components and a cost parameter of 20. This means that the classifier considers misclassifying
accidents as 20 times worse than misclassifying cycling to compensate for the unbalanced data
during the training phase. The highest precision and specificity define the best performance in this
case, since these metrics include the false positive count. Higher sensitivity is possible with different
classifiers.

• Precision: From all warnings send, 85.7% are true accidents. This means that 14.3% of the
warnings are false. This corresponds to one in seven. However, it should be noted that the only
false warning was while storing the bicycle.
I used separate accident and cycling test runs to compare the performance of the different
classifiers, this resulted in a precision of 76.9%. This is significantly higher than for the T1 and
T2 classifiers that have a precision of 62.5% and 27.0% respectively. This is because the
thresholds are determined using only 1 hour of normal cycling and limited edge cases,
increasing this data­set would result in more precise thresholds. Higher thresholds will increase
the precision. The main advantage of these classifiers is that developers can easily and
intuitively tweak these values.

• Sensitivity: The system detects 75% of all accidents during the test drives with accidents. This
value does not differ much for other classifiers in layer 1. This is because I only used a limited
set of accident runs for validation which are all significantly different from normal cycling. These
accident samples also include different time shifts from the same accident.

• Specificity: Of all 3­second normal cycling samples, the algorithm classifies 99.997% correctly.
This means that a false warning is send approximately every 33314 ∗ 3 = 99.942 seconds ≈ 28
hours of cycling. Although it should be noted that the only resulting false warning resulted during
an edge case of storing the bicycle. I compared the performance of the different classifiers in layer
1 on separate accident test runs and normal cycling which resulted in a specificity of 99.98%. An
explanation for this difference is that these normal cycling test runs contained more edge cases
which are more similar to accidents than normal cycling. The values for specificity are generally
above 99% because I validated the algorithm on a lot of cycling samples which are all relatively
similar. Still, I included a lot of cycling trips to capture as many edge cases and outliers as
possible.

As stated before, the accident samples are manually labeled. These tags are the start time of the
accident, used to capture as much of the accident as possible in a single sample. However, the
algorithm receives consecutive samples, so the amount a single sample captures of an accident is
dependent on the start time. The classifiers are trained on accident samples with a shifted start time

28



5.2. Shortcomings 29

of ­1 and ­2 seconds to make them more generic. These shifted accident samples are of course from
the same Ntraining = round(54 ∗ 80%) = 43 accidents, but these are still included because training on
multiple time shifts makes the algorithm more sensitive. I validated the algorithms on the whole
accident test runs, thus not on any cut accident samples. If the algorithm confirms an accident, it is
considered a true positive.

5.2. Shortcomings
One major shortcoming in the accident test runs is the lack of crashes in the test runs. These
accidents are more difficult to recreate due to safety concerns for the ones pushing the bicycle. Of all
the accident types, crashes account for the minority of bicycle accidents that lead to admission in
Dutch hospitals, but they account for a majority of fatal accidents. One might argue that if the system
can detect the other less severe accidents, it would also be able to detect crashes. However, this
should be validated. Also, the crash partner might be able to provide help after the accident, therefore
automated accident detection and localisation would be less necessary for crashes.

It was not possible to recreate accidents with a rider. One can expect different kinematics when a
person is sitting on the bike during an accident. To stabilize a bicycle, the rider will steer into the
direction of a fall [22, 35], this active stabilisation is of course not possible on a bicycle without a rider.
It is assumed during this research that pushing the bicycle against objects and to the ground is
sufficient to collect accident data. However, this assumption is not confirmed. To collect more realistic
accident data, one could use a stunt driver protected by padding [6] or conduct a large observational
study to include accidents in real traffic scenarios.

5.3. Improvements
An accident generally lasts less than 3 seconds. Thus increasing the sample time leads to accident
samples that include more cycling and post­accident data. This means that accident samples have
more similarities with cycling samples, which will result in fewer warnings since this would make it
more difficult to distinguish accidents from cycling. Fewer warnings lead to an increase of false
negatives and a decrease of false positives. Thus increasing the sample time decreases both
sensitivity and precision. Fewer accidents will be missed by the system when using a sample time of
1 second, however, this does increase the number of false warnings. One way to make the system
more sensitive is to use overlapping samples, since this would increase the chance that the accident
spans a whole sample.

The test setup only uses an IMU and GPS receiver for input signals. However, most e­bikes also
have a hall effect wheel speed sensor. This can provide better speed indication in layers 0 and 2. The
current system registers frame vibrations with an IMU during cycling and uses a threshold on the total
acceleration as an indication of movement next to GPS because GPS is not always available.
However, this introduces the following problem: When a bicycle falls during standstill, the fall could
span two samples, which could provide a false warning. The first sample captures the start of the fall,
which produces enough accelerations to pass the threshold. The second sample captures the end of
the fall, which includes the ground contact. The second sample could be enough for the classifier to
detect an accident. Such an accident would provide a confirmation in the second layer since the
bicycle lies flat afterward. This problem would mitigate when substituting this threshold on
acceleration with wheel speed measurements as an indication of speed.
Next to adding a wheel speed sensor, one could improve the system by applying the following:

• Adding a countdown and a button to prevent false warnings. When the algorithm confirms an
accident, the bicycle could give a warning with a countdown, for example on the dashboard. The
system only sends a message when the rider is unable to stop the countdown by pressing a
button. The current e­bikes from Royal Gazelle cannot currently provide such a countdown, but
the IoT­module can communicate with the user’s smartphone via Bluetooth. An app could give a
countdown as an extra confirmation in a third layer.
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• Increase the computational resources of the IoT module. This would make it possible to run the
classification algorithm on the IoT­module itself. When this is improved, the algorithm should only
send a trigger with the location of the accident when needed, which decreases data plan costs
and increases the privacy of the cyclist. This would increase privacy since the bicycle would only
share its location in case of an emergency. The minimum viable product uses a threshold­based
classifier due to computational restraints, this comes at the cost of lower precision and specificity
than using the KNN classifier. A Bluetooth connection between the users’ smartphone and the
bicycle also provides a way to do the computations on the phone.

• Setting the sensitivity by shifting the decision boundary or increasing the thresholds. In this case,
the rider could specify its driving style. For example, the system could be more sensitive for
elderly riders who ride relatively slow over smooth cycling paths to capture more accidents. A
younger cyclist who does not mind riding over a few bumps or curbs could set a low sensitivity
to decrease the number of false warnings. The consumer could perhaps do this in an app, but it
can also be set when acquiring the bicycle.

The first two would require the user’s smartphone to be in working condition at the scene of the
accident for such a system to work. A smartphone can be forgotten or break during an accident,
which makes such a system less reliable. Another argument against using smartphones for the
accident detection system is that the main demographic of Royal Gazelle is relatively old and does
not always bring a smartphone with them [27, 37].

5.4. Implication of Research
Bicycle manufactures can apply ALARM to develop an integrated accident detection algorithm.
These guidelines provide support for the development of a system that decreases the time between
an accident and the arrival of help. This would provide the user a safe feeling and guarantee that
emergency contacts are informed when needed. An accident detection system would have different
effects on the following main consumer groups as described by Royal Gazelle [37]:

• Conscious traditionalist: cycles on more expensive low entry bicycles in rural areas. These
consumers cycle on quiet back­roads where help is not always nearby. They are generally older
which results in them having a higher risk of having an accident [43, 10, 33, 42]. This is the
main consumer group of Royal Gazelle for which the main selling point would be a sense of
independence and safety.

• Pragmatic explorer: cycles for environmental purposes and physical health. These consumers
cycle a lot which exposes them to more dangerous scenarios which could result in accidents.
Thus accident detection can provide a safer feeling for this consumer group.

• Functional every­men: cycles daily on a reliable bicycle but does not want to paymuch. Accident
detection might not be the best fit for this consumer group.

• Ambitious adventurer: cycles as a commute, is relatively young and urban. These consumers
value technical gadgets and are early adopters. Thus accident detection utilizing smartphones
as explained above could be a solution for this group.

• Prestigious quality seeker: cycles on expensive bicycles to radiate success. These consumers
want the newest gadgets and features, which include accident detection.



6
Conclusion

I developed a method for the practical implementation of bicycle accident detection and geolocation
in connected bicycles. Based on a comprehensive data set of cycling data and simulated accidents,
it can be concluded that this method can effectively be applied by bicycle manufacturers to develop
a machine learning based algorithm that utilizes the current technologies of connected bicycles. This
method has a sample time of 3 seconds, and only uses an IMU and GPS/GNSS receiver as input
to be compliant with existing hardware on connected bicycles. The resulting three­layer KNN­based
algorithm distinguishes accidents from normal cycling and edge cases. This algorithm detects 75% of
the accidents and detects normal bicycle usage correctly 99.997% of the time. From all warnings send,
85.7% are true accidents. A prototype system uses this algorithm and automatically sends the location
of the bicycle to predefined contacts within 3 to 9 seconds after an accident. This prototype system
uses a smartphone mounted to the bicycle frame that streams IMU and GPS data using UDP over a
local network to a laptop as a substitute for the current IoT infrastructure.
While the simulated accidents limit the inclusiveness of the results, the data­driven approach provides
a way to include edge cases next to normal cycling for training and validation purposes. False warnings
are inevitable when including edge cases, which makes the performance metrics more realistic. Future
research should focus on gathering data from real accidents to validate the performance of the system
on falls, collisions, skids, and crashes. Supplementing to previous research, this method is developed
and validated using a large data set containing regular bicycle usage, edge cases, and three types of
single bicycle accidents with constraints set by a bicycle manufacturer.
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A
Protocol for the observational study of

normal cycling and edge cases
This is a document with instructions that all participants were given for the observational study. In this
study, the participants are asked to log IMU and GPS data during their daily cycling trips.
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Observation protocol  
 

Thank you for helping me with this observational study.  

Setup  
This study consists of a smartphone which measures and logs 

IMU (acceleration and gyroscopic) and GPS data connected to 

a bike.  You will be asked to turn on these measurements 

every time you go for a bike ride.  

Protocol  

Once:  
Mount the phone mount rigidly to the saddle pole so that the 

phone’s screen is facing backwards and the phone is in an 

upright position. You could use the clamp spacers to make the 

assembly rigid (I’ve used one C-shaped spacer to make the 

clamp fixed).  

Set up the MATLAB app:  
Open the MATLAB app and log in with your TU Delft MATLAB licenced account. In the app, go to 

Sensors (using the menu in the upper left corner). Set to:  

- Stream to: Log  

- Sample rate: 100Hz  

- More:  

o Sensor Access: ON  

o Acquire Data in Background: ON   

o Set Auto Upload to WiFi  

- Turn ON Sensor toggles: 

o Acceleration  

o Angular velocity  

o Position   

- Leave the screen on!  

The app should automatically upload the data once it is connected to your home Wi-Fi network. Thus 

make sure the phone can be connected to your home network. However, just to be extra sure you 

upload the files using the FILES app. Go to: Files > Internal storage > Documents > MATLAB > 

SensorLogs and select the runs you want to back-up. Click make Back-up on Google Drive.    

Every time you go for a bike ride 
First mount the phone to the bike and turn on the measurements on the MATLAB app (Start) before 

unlocking your bike. Make sure no button is pressed. Cycle normally like you usually do. Don’t be 

hesitant to drive over bumps, make sharp turns, brake or accelerate harshly etc. but keep it safe! 

When you park your bike, first lock it before turning off the measurements and removing the phone.   

You could leave the standard file name as is, but feel free to give your ride a characteristic name if 

you encounter something weird, especially if you were in an accident or fell over!  



The goal of this study  
This observational study is aimed to verify the accident detection algorithms and classifiers I’ve 

developed. Normal cycling should result in a true negative (no accident) when your test run is 

provided to the algorithm. By having multiple people doing measurements, I not only gather more 

data, but also more diverse as everyone handles their bike differently. For example, I also have to get 

my bike from storage every time I use it, the algorithm should not detect an accident when I do this. 

That is why I want you to feel free to experiment yourself a bit, do drive up curbs and over bumps as 

long as it is safe and within the traffic regulations. Also: I’m interested in these ‘edge cases’ which 

occur when storing your bike for example. That is why it is more useful to gather multiple short trips 

than one long one, but the more data the better!  

 

If you have any questions regarding this study, feel free to contact me at:  
J.g.kuiper@student.tudelft.nl  

Or: xx-xxxxxxxx (also on whatsapp)  
Or on the element chat.  



B
Test Runs

B.1. Cycling
This table shows the properties of all cycling test runs that are conducted during the project. These
runs also contain edge cases that naturally occur when using a bicycle. The properties are:

• Name of the test run.
• Position of the phone on the bicycle. Left indicates that the measurements during this test run are
done by a smartphone mounted to the left side of the top bar of the bicycle. Saddle indicates that
the measurements during this test run are done by a smartphone mounted to the saddle pole as
shown in figure 2.2.

• Frequency of the IMU measurements.
• Phone brand and model. Measurements are done by either a Lenovo K6 or Nokia 3.4. The
first also has a magnetometer, from which the values are also logged and the latter has a GPS
receiver.

• IMU measurements. Indicate whether the accelerations and angular velocities during these test
runs are logged.

• Magnetometer measurements. Indicate whether themagnetometer values are logged. These are
measurements of the magnetic field in three directions in µT and orientation values in degrees.
Orientation consists of the azimuth (angle between the y­axis and the north pole), pitch and roll
of the phone when lying flat.

• GPS indication. Indicates whether the GPS measurements are usable. Some test runs have
partial GPS coverage.

• Time of the rest run in milliseconds. The length of some individual test runs is known. Test runs
’Damesfiets’ to ’GB6’ have a combined length of 9.6 ∗ 107ms.

• Usage of test run. This explains for what the test run is being used. With:

– PE = preliminary experiments
– VC = validation classifiers
– TC = training classifiers
– VS = validation system

• Confirmed accidents. Shows how many accident are confirmed by the accident detection system
during this test run.

• Notes. Shows some characteristics of the test run. Normal cycling in this case also includes edge
cases that naturally occur when using a bicycle.
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B.2. Accidents
This table shows the properties of all accident test runs that are conducted during the project. These
runs consist of pushing the bicycle into different objects as explained in section 2.2.2. The properties
are

• Name of the test run.
• Velocity of the bicycle when let go.
• Ground surface that the accident simulation is conducted on.
• Object where the bicycle is pushed into. These can also be forces on the bicycle withoud an
object, for example: pushing the bicycle to the side or rotating the frame around the z­axis after
letting the bicycle go.

• Position of the phone on the bicycle. Saddle indicates that the measurements during this test run
are done by a smartphone mounted to the saddle pole as shown in figure 2.2.

• Frequency of the IMU measurements.
• Phone brand and model. Measurements are done by either a Lenovo K6 or Nokia 3.4. The
first also has a magnetometer, from which the values are also logged and the latter has a GPS
receiver.

• IMU measurements. Indicate whether the accelerations and angular velocities during these test
runs are logged.

• Magnetometer measurements. Indicate whether themagnetometer values are logged. These are
measurements of the magnetic field in three directions in µT and orientation values in degrees.
Orientation consists of the azimuth (angle between the y­axis and the north pole), pitch and roll
of the phone when lying flat.

• GPS indication. Indicates whether the GPS measurements are usable.
• Filmed indication. Some test runs have been filmed to be reproduced.
• Usage of test run. This explains for what the test run is being used. With:

– PE = preliminary experiments
– VC = validation classifiers
– TC = training classifiers
– VS = validation system
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C
Visualisation of various test runs

The following figures show a visualisation of some explanatory test runs. The figures show the
accelerations and angular velocities during the run in three directions and the total values. From
these signals, 10 features are calculated and shown in the lower right corner. The signals resulting
from the magnetometer are shown in the upper right corner, these are not used in the accident
detection algorithm but are logged in case this data­set will be used for other research. The test run
’cyclingfall’ does not have magnetometer values, but does have GPS data which is shown in a map in
the upper right corner.
It can be seen that the total acceleration produces high peaks during normal cycling in the ’centrum’
test run. The peaks in the total acceleration during the accidents have comparable values. Thus it
can already be concluded that a threshold on this signal would not be sufficient for an accident
detection algorithm. The angular velocities during the accidents are significantly higher than during
normal cycling.
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Figure C.1: Visualisation of a test run in the centre of Delft which includes normal cycling and various edge cases.
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Figure C.2: Visualisation of a test run which includes a test run which includes an accident.
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Figure C.3: Visualisation of an accident test run P4.
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Figure C.4: Visualisation of an accident test run S4.
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Figure C.5: Visualisation of an accident test run W3.
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Figure C.6: Visualisation of an accident test run H4.
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Figure C.7: Visualisation of an accident test run Q4.
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Figure C.8: Visualisation of an accident test run D10.



D
Briefing Document for Minimum Viable

Product
A briefing document is written to inform bicycle manufacturers like Royal Gazelle on how to implement
an accident detection system into existing ’connected’ bicycles. This document is as follows:
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Brief: Implementing a Minimum Viable 
Accident Detection on Connected E-bikes  
The purpose of this brief is to provide manufacturers of connected e-bikes with an update regarding 

implementing the new integrated accident detection system.  

Current status  
The prototype system is trained and validated using an external sensor setup mounted under the 

saddle of the bicycle. Data is collected during 71 artificial accidents and 54 hours of normal cycling. 

This setup streams the IMU based accelerations and angular velocity as well as GNSS/GPS based 

longitude, latitude and velocity using UDP. A laptop reads this data stream and runs a classification 

algorithm every 3 seconds. Once an accident is detected, an e-mail is send with the location of the 

bicycle.  

 

Figure 1 Minimum viable accident detection system 

A minimum viable accident detection system would consist of: (1) An IoT module capable of sampling 

acceleration an angular velocity with 100Hz and GPS location with 1Hz, calculating simple features of 

3 second samples and send these over the cloud with a GSM connection. (2) A server that receives 

these features and runs a classification algorithm. (3) A E-mail or SMS service to send the last known 

location to predefined contacts.  

In the minimum viable product, the features of the IMU data will be calculated on the IoT module. 

These features will be added to the existing outgoing data stream which is send every 3 seconds to a 

server. This server receives this data stream and runs the accident detection algorithm.  

Key minimum requirements  

Data collection in embedded system   

o IMU data should be measured with a frequency of 100 Hz and minimum resolution of 0.0001 

m/s2 and 0.0001 rad/s.  

o GPS data should be measured with a frequency of 1Hz and minimum resolution of 0.0001 

deg. and 0.01 m/s.  

o The wheel speed should be measured with a frequency of 100Hz and a minimum resolution 

of 0.1 m/s .  

  



Feature extraction in embedded system (approximately 1800 FLOPs) 

This need to store 1315 floating numbers for the calculation, for a 32-bit system this will be 5.26KB.  
o Features of the IMU and GPS data should be calculated for a sample time of 3 sec.  

o Mean absolute deviation of acceleration in lateral direction (alat). 
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o Mean absolute deviation of total angular velocity (Rtot).  
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o Standard deviation acceleration in lateral direction (alat).  
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o Mean lean angle with 0 is upright.  

o Compute the mean longitude, latitude and speed of the 3 GNSS/GPS measurements.  

o Calculate the mean velocity from wheel speed.   

Data classification in the cloud  
o Use the proposed 3 layer algorithm as shown in the flow diagram and tune thresholds 

starting with:   

T1 = 1.38 m/s  T2 = 60o T3 = 1.5 m/s  C1 = 4.25 m/s2 C2 = 0.65 rad/s C3 = 6 m/s2 

 



Algorithm  

An example threshold based classifier works as follows:  
FUNCTION classifier INPUT features   

IF mad lateral acceleration is larger than C1 OR mad total angular velocity is larger than C2  
    OR std lateral acceleration is larger than C3  

RETURN accident  
ELSE  

RETURN cycling  
ENDIF  

ENDFUNCTION  

This threshold based classifier uses three features which characterize the IMU signals. When one of 
these features exceeds a certain threshold, the classifier will tag that 3 sec. sample as an accident. 
When they are all below their respective thresholds, the sample is classified as normal cycling.   
 
The accident detection algorithm uses this classifier and works as follows:  

SET T1,T2,T3,C1,C2,C3  
INIT classifier  
WHILE bike is turned on  

INPUT new features  
IF wheel speed is larger than T3 THEN 
 % Cycling is detected  
 INPUT update features 
 CALL classifier RETURNING class  
 IF class is accident THEN 
  % Accident is detected  
  SET loop is 1  

WHILE loop is less than 4 do 
INPUT update features  
COMPUTE absolute lean angle  
IF absolute lean is larger than T2 OR wheel speed is smaller than T3  
    OR GPS speed is smaller than T1 THEN  
 % Accident is confirmed  
 OUTPUT warning with longitude and latitude  
ENDIF  
ADD one to loop  

   ENDWHILE 
 ENDIF  
ENDIF   

ENDWHILE  

Layer 0 checks whether the bicycle is moving, this way an accident will for example not be detected 

when the bicycle fell over during standstill.  

Layer 1 contains the classifier which returns either accident or cycling as a class.  

Layer 2 will filter out any false positives that might occur during any harsh riding manoeuvres, which 

are directly followed by further cycling. This layer is looped three times. The bicycle must be laying 

on its side, or have a low velocity within 9 seconds for an accident to be confirmed. The GNSS/GPS 

velocity is also included since the wheel can still be turning after an accident when the bicycle is lying 

flat.  

  



The performance of a prototype system with this classifier is validated on 11 simulated accident test 

runs and 11 hours of normal and harsh cycling, including edge cases which resulted in:    

27% Precision  

90.9% Sensitivity  

99.85% Specificity  

 

Recommendations  
The precision and sensitivity can be tuned with the thresholds. Increasing these will result in less 

false warnings, but more missed accidents.  

Add more features to the classifier. A really useful pair is: maximum total angular velocity and the 

minimum angular velocity in longitudinal direction. However, you should not exclusively rely on 

these, since these values could be outliers. The use of angular velocity features makes the system 

independent of sensor placement.  

Add a countdown and a button to the system. This countdown will start when an accident is 

confirmed by the algorithm. The emergency contacts will be informed when the user is not able to 

stop the countdown by pressing the button.  

Confusion matrix  
Of the system  

Sample from test runs  

Accident Cycling 

Accident 
detected  

Yes TP = 10 FP = 27 

No FN = 1 TN = 18143 



E
Thresholds

The threshold classifiers are developed using the method explained in section 2.5. This method
compares the features of accident samples with features of cycling samples, which are all displayed
in E.3. These figures show that 16 features have a clear distinction between cycling and accidents,
these are listed in E.1. Then the effectiveness of these thresholds is determined using accident
samples with a ­2 seconds time shift. This means that the accident time series is cut in such a way
that the sample which contains the accident only covers half of the accident. The effectiveness of the
thresholds is summarized in E.2.

E.1. Useful thresholds
The list of useful thresholds for 3 second samples is:

1. Average acceleration in vertical direction.
2. Energy of acceleration in lateral direction.
3. Energy of angular velocity in longitudinal direction.
4. Interquartile range of acceleration in lateral direction.
5. Maximum acceleration in lateral direction.
6. Maximum total angular velocity.
7. Mean absolute deviation of acceleration in lateral direction.
8. Mean absolute deviation of total angular velocity.
9. Median acceleration in vertical direction.
10. Minimum angular velocity in longitudinal direction.
11. Total average power of acceleration in lateral direction.
12. Total average power of angular velocity in longitudinal direction.
13. Root mean square of acceleration in lateral direction.
14. Root mean square of angular velocity in longitudinal direction.
15. Standard deviation of acceleration in lateral direction.
16. Standard deviation of total angular velocity.
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E.2. Threshold effectiveness
Table E.1 shows which threshold is passed for each accident. The samples of these accidents are
subjected to a ­2 second time shift. This is used to determine the effectiveness of a single threshold.
A 1 means that this accident is detectable when using this threshold and 0 means that it is not. Table
E.1 shows that collision C1 and skid T2 can not be detected with any thresholds for this time shift. The
effectiveness of a single threshold can be determined by the amount of 1’s in the corresponding column.
For example: threshold 1 can only detect P1 and P3, where threshold 14 can detect most accidents.
This table can be used to find combinations of thresholds that together can detect the most accidents,
which resulted in classifier T1 and T2.

Threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14
fall F1 0 0 0 0 1 0 1 0 1 0 1 0 0 1
fall F2 0 0 0 0 1 0 0 0 1 0 0 0 0 0
fall F3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
fall F4 0 1 1 1 0 1 1 1 1 1 1 1 1 1
fall F5 0 1 1 1 1 1 1 1 1 1 1 1 1 1
fall P1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
fall P2 0 1 1 1 1 0 1 0 1 1 1 1 1 1
fall P3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fall P4 0 0 0 0 1 1 0 0 1 0 0 0 0 0
fall P5 0 1 1 1 1 1 1 0 0 1 1 1 1 1
collision C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
collision C2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
collision C3 0 1 1 1 1 1 1 1 0 1 1 1 1 1
collision C4 0 0 0 1 1 1 1 1 0 0 0 0 1 1
collision C5 0 1 1 1 1 1 1 1 1 1 1 1 1 1
collision S1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
collision S2 0 0 0 0 1 0 1 1 0 0 0 0 0 1
collision S3 0 1 0 1 1 1 1 1 1 1 0 1 1 1
collision S4 0 1 1 1 1 1 1 1 1 1 1 1 1 1
collision G1 0 1 1 0 1 0 1 0 1 1 1 1 1 1
collision G2 0 0 1 1 1 0 1 0 1 0 1 0 1 1
collision G3 0 1 1 1 1 1 1 0 1 1 1 1 1 1
collision G4 0 1 1 1 1 1 1 1 1 1 1 1 1 1
collision W1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
collision W2 0 0 0 0 0 0 0 0 1 0 0 0 0 0
collision W3 0 1 1 1 1 1 1 0 1 1 1 1 1 1
collision W4 0 1 1 1 1 1 1 1 1 1 1 1 1 1
collision H1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
collision H2 0 0 0 1 1 0 0 0 1 0 0 0 1 0
collision H3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
collision H3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
skid T1 0 0 1 0 1 0 1 0 1 0 1 0 1 1
skid T2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
skid T3 0 0 1 0 1 1 1 0 0 0 1 0 0 1
skid T4 0 1 1 1 1 1 1 1 0 1 1 1 1 1
skid Q1 0 1 1 1 1 0 1 0 1 1 1 1 1 1
skid Q2 0 1 1 1 1 1 1 0 1 1 1 1 1 1
skid Q3 0 1 1 1 1 1 1 1 1 1 1 1 1 1
skid Q4 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Table E.1: The thresholds that are passed by each accident. A passed threshold is indicated with a 1.
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E.3. Sample distribution for each feature
The following figures show the distribution of samples for all features. The features with a clear
distinction between accidents and normal cycling are used to find thresholds for the minimum viable
product.

Figure E.1: Maximum of accident and cycling features for 8 signals.
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Figure E.2: Minimum of accident and cycling features for 8 signals.
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Figure E.3: Average of accident and cycling features for 8 signals.



E.3. Sample distribution for each feature 64

Figure E.4: Median of accident and cycling features for 8 signals.
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Figure E.5: Standard deviation of accident and cycling features for 8 signals.
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Figure E.6: Root mean square of accident and cycling features for 8 signals.
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Figure E.7: Mean absolute deviation of accident and cycling features for 8 signals.
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Figure E.8: Interquartile range of accident and cycling features for 8 signals.
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Figure E.9: Skewness of accident and cycling features for 8 signals.
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Figure E.10: Kurtosis of accident and cycling features for 8 signals.
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Figure E.11: Power of accident and cycling features for 8 signals.
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Figure E.12: Energy of accident and cycling features for 8 signals.



F
Performance of all validated algorithms

A total of 81 different machine learning classifiers are trained on 80% of the accident data and 25% of
the cycling data. These are trained on 6,12, and 2 dimensional training data that resulted from the PCA.
Three amounts of cost parameters are tried: 20,50, and 100. To find out which classifier performs the
best, they are all (including T1 and T2) substituted in layer 1 of the algorithm. The performance of the
individual algorithms is compared using 20% of accident data and 25% of normal cycling. The resulting
performance metrics and values of the confusion matrices can be found in the following tables. The
algorithm performs the best with a KNN classifier that works with 6 dimensional data and is trained
using a cost parameter of 20.

               

PCA Components: 6
Cost function: [0,1;20,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 10 11 10 9 11
FP 6 27 6 12 15 21 27 9 3 30 15
FN 1 1 0 0 0 1 1 0 1 2 0
TN 18164 18143 18164 18158 18155 18149 18143 18161 18167 18140 18155
Precision: 0,625 0,27 0,647 0,478 0,423 0,323 0,27 0,55 0,769 0,231 0,423
Sensitivity: 0,909 0,909 1 1 1 0,909 0,909 1 0,909 0,818 1
Specificity: 1 0,999 1 0,999 0,999 0,999 0,999 1 1 0,998 0,999

73



74

PCA Components: 6
Cost function: [0,1;50,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 11 11 10 11 11
FP 6 27 21 30 27 36 66 37 12 141 23
FN 1 1 0 0 0 1 0 0 1 0 0
TN 18164 18143 18149 18140 18143 18134 18104 18133 18158 18029 18147
Precision: 0,625 0,27 0,344 0,268 0,289 0,217 0,143 0,229 0,455 0,072 0,324
Sensitivity: 0,909 0,909 1 1 1 0,909 1 1 0,909 1 1
Specificity: 1 0,999 0,999 0,998 0,999 0,998 0,996 0,998 0,999 0,992 0,999

PCA Components: 6
Cost function: [0,1;100,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 11 10 10 11 11
FP 6 27 42 30 38 12 32 15 6 141 129
FN 1 1 0 0 0 1 0 1 1 0 0
TN 18168 18147 18132 18144 18136 18162 18142 18159 18168 18033 18045
Precision: 0,625 0,27 0,208 0,268 0,224 0,455 0,256 0,4 0,625 0,072 0,079
Sensitivity: 0,909 0,909 1 1 1 0,909 1 0,909 0,909 1 1
Specificity: 1 0,999 0,998 0,998 0,998 0,999 0,998 0,999 1 0,992 0,993

PCA Components: 2
Cost function: [0,1;20,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 10 11 11 11 11
FP 6 27 15 15 9 21 9 6 12 141 43
FN 1 1 0 0 0 1 1 0 0 0 0
TN 18167 18146 18158 18158 18164 18152 18164 18167 18161 18032 18130
Precision: 0,625 0,27 0,423 0,423 0,55 0,323 0,526 0,647 0,478 0,072 0,204
Sensitivity: 0,909 0,909 1 1 1 0,909 0,909 1 1 1 1
Specificity: 1 0,999 0,999 0,999 1 0,999 1 1 0,999 0,992 0,998

PCA Components: 2
Cost function: [0,1;50,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 11 11 11 11 11
FP 6 27 6 24 21 36 35 22 12 141 46
FN 1 1 0 0 0 1 0 0 0 0 0
TN 18167 18146 18167 18149 18152 18137 18138 18151 18161 18032 18127
Precision: 0,625 0,27 0,647 0,314 0,344 0,217 0,239 0,333 0,478 0,072 0,193
Sensitivity: 0,909 0,909 1 1 1 0,909 1 1 1 1 1
Specificity: 1 0,999 1 0,999 0,999 0,998 0,998 0,999 0,999 0,992 0,997

PCA Components: 2
Cost function: [0,1;100,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 11 11 11 11 11
FP 6 27 25 27 15 12 32 46 15 141 55
FN 1 1 0 0 0 1 0 0 0 0 0
TN 18167 18146 18148 18146 18158 18161 18141 18127 18158 18032 18118
Precision: 0,625 0,27 0,306 0,289 0,423 0,455 0,256 0,193 0,423 0,072 0,167
Sensitivity: 0,909 0,909 1 1 1 0,909 1 1 1 1 1
Specificity: 1 0,999 0,999 0,999 0,999 0,999 0,998 0,997 0,999 0,992 0,997
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PCA Components: 12
Cost function: [0,1;20,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 10 10 10 10 11 11 11 9 10
FP 6 27 41 52 44 21 85 22 57 27 52
FN 1 1 1 1 1 1 0 0 0 2 1
TN 18166 18145 18131 18120 18128 18151 18087 18150 18115 18145 18120
Precision: 0,625 0,27 0,196 0,161 0,185 0,323 0,115 0,333 0,162 0,25 0,161
Sensitivity: 0,909 0,909 0,909 0,909 0,909 0,909 1 1 1 0,818 0,909
Specificity: 1 0,999 0,998 0,997 0,998 0,999 0,995 0,999 0,997 0,999 0,997

PCA Components: 12
Cost function: [0,1;50,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 10 10 10 11 11 11 9 10
FP 6 27 111 83 83 36 85 16 167 31 109
FN 1 1 0 1 1 1 0 0 0 2 1
TN 18171 18150 18066 18094 18094 18141 18092 18161 18010 18146 18068
Precision: 0,625 0,27 0,09 0,108 0,108 0,217 0,115 0,407 0,062 0,225 0,084
Sensitivity: 0,909 0,909 1 0,909 0,909 0,909 1 1 1 0,818 0,909
Specificity: 1 0,999 0,994 0,995 0,995 0,998 0,995 0,999 0,991 0,998 0,994

PCA Components: 12
Cost function: [0,1;100,0]
Classifier: T1 T2 SVMG SVML SVMP DT DTPCA KNN KNNPCA NB NBPCA
TP 10 10 11 11 11 10 11 10 11 11 10
FP 6 27 153 143 156 12 196 12 189 141 129
FN 1 1 0 0 0 1 0 1 0 0 1
TN 18172 18151 18025 18035 18022 18166 17982 18166 17989 18037 18049
Precision: 0,625 0,27 0,067 0,071 0,066 0,455 0,053 0,455 0,055 0,072 0,072
Sensitivity: 0,909 0,909 1 1 1 0,909 1 0,909 1 1 0,909
Specificity: 1 0,999 0,992 0,992 0,991 0,999 0,989 0,999 0,99 0,992 0,993
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