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Source deghosting of coarsely sampled common-receiver data using a
convolutional neural network

Jan-Willem Vrolijk1 and Gerrit Blacquière1

ABSTRACT

It is well known that source deghosting can best be ap-
plied to common-receiver gathers, whereas receiver deghost-
ing can best be applied to common-shot records. The source-
ghost wavefield observed in the common-shot domain
contains the imprint of the subsurface, which complicates
source deghosting in the common-shot domain, in particular
when the subsurface is complex. Unfortunately, the alterna-
tive, that is, the common-receiver domain, is often coarsely
sampled, which complicates source deghosting in this do-
main as well. To solve the latter issue, we have trained a
convolutional neural network to apply source deghosting
in this domain. We subsample all shot records with and with-
out the receiver-ghost wavefield to obtain the training data.
Due to reciprocity, these training data are a representative
data set for source deghosting in the coarse common-
receiver domain. We validate the machine-learning approach
on simulated data and on field data. The machine-learning
approach gives a significant uplift to the simulated data com-
pared to conventional source deghosting. The field-data re-
sults confirm that the proposed machine-learning approach
can remove the source-ghost wavefield from the coarsely
sampled common-receiver gathers.

INTRODUCTION

In marine seismic acquisition, sources are towed under the sea
surface. Due to the large impedance contrast between water and air,
the sea surface reflection coefficient is very close to −1 (more pre-
cisely, −0.99956). Therefore, at the sea surface, the upgoing part of
the source wavefield becomes a downgoing wavefield, the so-called
source-ghost wavefield. The same mechanism is responsible for the

receiver-ghost wavefield, which is the sea surface reflection of the
total upgoing wavefield. The source- and receiver-ghost wavefields
cause notches in the wavenumber-frequency domain. The presence
of these spectral notches, due to destructive interference, limits the
usable bandwidth and interpretability of marine seismic data. This is
the main reason it is desired to remove the source- and the receiver-
ghost wavefield. These processes are called source and receiver de-
ghosting. Note that multilevel and multicomponent acquisition sys-
tems (Tenghamn et al., 2007; Day et al., 2013) measure additional
information to fill in the notches due to the receiver-ghost wave-
field. To fill in notches due to the source-ghost wavefield, multilevel
sources have been proposed as well (Hopperstad et al., 2008; Parkes
and Hegna, 2011; Caporal et al., 2018).
In this paper, we focus on conventional pressure-only data acquired

with a streamer and with an air-gun array acting as a single source.
In this case, most receiver deghosting methods require common-shot
records that are densely sampled in the inline direction. A full-3D
wavefield receiver deghosting method requires densely sampled
receivers in the inline and crossline directions. It is quite common
that there are acquisition gaps on the source side as well as at the
receiver side in marine seismic acquisition due to economic reasons,
obstructions such as islands and oil rigs, unfavorable bathymetry, and
environmental regulations. In practice, the acquisition gaps at the
source side are often larger than at the receiver side. Large gaps in the
source acquisition limit the applicability of source-deghosting meth-
ods that are best suited for densely sampled common-receiver data.
There are methodologies such as carpet shooting (Walker et al.,

2014) that provide dense source sampling, but, in this paper, we
focus on the effects and the implications of coarse source sampling
on source deghosting. At the receiver side, multicomponent data
can assist in overcoming the sampling requirement by integrating
the receiver interpolation with up-down decomposition (Tang and
Campman, 2017). Sun and Verschuur (2017) propose a method for
pressure data at the detector side that implicitly handles sparse data.
Interpolation of seismic sources with large acquisition gaps is not
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straightforward, especially if the subsurface is complex. Nonlinear
effects complicate the source deghosting as well. Parkes and Hatton
(1986) describe the so-called “shot effect” that resulted in such non-
linear behavior. Ghost cavitation is another nonlinear effect that can
occur near the water-air interface (Landrø et al., 2011; Khodaban-
deloo and Landrø, 2018). Near-field hydrophone measurements can
be used to derive a far-field signature that includes the ghost effect
with its nonlinearities, which can be used to estimate the source-
deghosted data (Ziolkowski et al., 1986; Hampson, 2017; Kryvohuz
and Campman, 2017; Telling and Grion, 2019). Source deghosting
is often carried out in the common-shot domain to satisfy sampling
requirements. However, when observed in the common-shot do-
main, the source-ghost wavefield has traveled through the earth
with all of its complexity, which causes the removal of the source-
ghost wavefield in this domain to be far from straightforward (Blac-
quière and Sertlek, 2019).
We propose a machine-learning approach to remove the source-

ghost wavefield in the coarsely sampled common-receiver domain.
The architecture of the network that we use in this paper is based on
recently developed convolutional neural networks (CNN) in deep
learning for medical image recognition (Ronneberger et al., 2015;
Quan et al., 2016). These networks are applicable in the case of a
limited amount of training data and are known to be effective for
data that resemble the training data. Neural networks were intro-
duced in geophysics quite some time ago, for example, in seismic
inversion (Röth and Tarantola, 1994; Nath et al., 1999) and inter-
pretation (Glinsky et al., 2001). In more recent years, the develop-
ment of powerful graphics processing units has led to numerous
deep-learning algorithms in seismic processing (Mikhailiuk and
Faul, 2018; Sun and Demanet, 2018; Siahkoohi et al., 2019b), in-
terpretation (Huang et al., 2017; Ross and Cole, 2017; Shi et al.,
2018; Pham et al., 2019), and inversion (Lewis and Vigh, 2017;
Araya-Polo et al., 2018; Das et al., 2019).
In the first part of the paper, we describe the theoretical frame-

work of source deghosting carried out in the common-receiver do-
main and receiver deghosting carried out in the common-shot
domain. Then, we show the limitation of source deghosting carried
out in the coarsely sampled common-receiver domain. After that,
we demonstrate the limitations of a source-deghosting method car-
ried out in a densely sampled common-shot domain.
In the second part of this paper, we introduce a strategy to obtain

a suitable CNN-training data set. We assume that receivers are
densely sampled and sources are coarsely sampled. To ensure that
the shot records resemble the receiver gathers, we first need to re-
datum the receivers to the source level and replace the original
receiver-ghost wavefield with a receiver-ghost wavefield that cor-
responds to that same level, that is, the source level. After that,
we subsample the receivers to mimic the coarse sampling of the
sources. Now, we have input training data that consist of coarsely
sampled shot records including the source- and receiver-ghost
wavefields. We also prepare output training data that consist of
receiver-deghosted coarsely sampled shot records. After the train-
ing, we test the network for the purpose of source deghosting of
coarsely sampled receiver gathers. In the first machine learning ex-
ample, we train and apply the CNN to numerical data. This example
shows that we are able to train a network and obtain a significant
uplift of the source-deghosted data. In the second machine learning
example, we test the method on a field data set, acquired offshore
Australia.

THE GHOST MODEL

As mentioned, the reflectivity at the sea surface is very close to
−1. Therefore, at the source level zsðx; yÞ, the total downgoing
wavefield is the combination of the direct source wavefield and its
reflection at the sea surface. The latter is the so-called source-ghost
wavefield. Similarly, at the receiver level zdðx; yÞ, the combination
of the direct upgoing and reflected downgoing wavefield is mea-
sured. The latter is the so-called receiver-ghost wavefield. There
are various methods to include the shape and dynamics of a rough
sea surface (King and Poole, 2015; Grion et al., 2016; Vrolijk and
Blacquière, 2020). However, in this paper, we neglect the shape and
dynamics of the sea surface and assume that the sea surface is well
represented by a horizontal sea surface z0. We formulate a mono-
chromatic seismic data set P, including the receiver- and source-
ghost wavefields, according to the matrix notation introduced by
Berkhout (1985) as

Pðzd; zsÞ ¼ DðzdÞGðzd; zdÞXðzd; zsÞGðzs; zsÞSðzsÞ; (1)

where S describes the locations and spectral properties of the
sources, X is the transfer function of the subsurface below the
source and receiver level, D describes the locations and spectral
properties of the receivers, and G is the source or the receiver ghost
matrix. The source ghost matrix at the source side is given by

Gðzs; zsÞ ¼ I −Wðzs; z0ÞWðz0; zsÞ; (2)

where Wðz0; zsÞ describes forward propagation from the source
level up to the sea surface,Wðzs; z0Þ describes forward propagation
from the sea surface down to the source level, and the minus sign
represents the strong sea surface reflectivity of −1. The receiver
ghost matrix is similar to the source ghost matrix, with propagation
matrices corresponding to the receiver level zd. In the case of a flat
sea surface and a horizontal receiver level zd or a horizontal source
level zs, we can replace the matrix multiplication in the space-fre-
quency domain by a simple multiplication in the wavenumber-fre-
quency domain with the ghost operator:

~Gðkx;ωÞ ¼ 1 − e−2jkzΔz; (3)

where kz is the vertical component of the wave vector. In the case of
ideal spatial receiver sampling, that is, sampling according to the
Nyquist criterion and unit receivers, the detector matrix becomes
a unity matrix, that is, DðzdÞ ¼ I, and the right side of equation 1
becomes the following matrix product:

Gðzd; zdÞXðzd; zsÞGðzs; zsÞSðzsÞ: (4)

A shot record representation of this matrix product is given by col-
umn vector

Gðzd; zdÞXðzd; zsÞGðzs; zsÞ~SðzsÞ: (5)

Applying the inverse ofGðzd; zdÞ to expression 5 gives the receiver-
deghosted shot record

Xðzd; zsÞGðzs; zsÞ~SðzsÞ: (6)

In practice, it is not straightforward to obtain the source-deghosted
shot record from this expression because it must be multiplied from
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the left by the matrix product: Xðzd; zsÞ½Gðzs; zsÞ�−1½Xðzd; zsÞ�−1.
For the special case of a laterally invariant subsurface, the symmetric
Toeplitz matrices X and G commute, that is, Xðzd; zsÞGðzs; zsÞ~SðzsÞ
¼ Gðzs; zsÞXðzd; zsÞ~SðzsÞ, which simplifies shot record source de-
ghosting. We will see this later in an example given in Figure 2.
In the case of ideal spatial source sampling, with unit sources,

meaning that SðzsÞ ¼ I, the right side of equation 1 becomes

DðzdÞGðzd; zdÞXðzd; zsÞGðzs; zsÞ: (7)

A receiver gather is represented by

~D†ðzdÞGðzd; zdÞXðzd; zsÞGðzs; zsÞ; (8)

where the dagger symbol † indicates a row vector. Now, applying
the inverse of Gðzs; zsÞ to the above gives a source-deghosted
receiver gather, which is given by

~D†ðzdÞGðzd; zdÞXðzd; zsÞ: (9)

Again, it is not straightforward to obtain the receiver-deghosted
receiver gather from expression 9. We transpose expression 9 to
obtain

Xðzd; zsÞTGðzd; zdÞ~DðzdÞ; (10)

using Gðzd; zdÞ ¼ Gðzd; zdÞT because of reciprocity, where super-
script T indicates the transposed of a matrix. Now, the similarity
with expression 6 is evident.

Above, we have formulated source deghosting carried out in the
common-receiver domain (expressions 5 and 6) and receiver de-
ghosting carried out in the common-shot domain (expressions 8
and 9). In the following section, numerical examples demonstrate
that for a laterally invariant subsurface, source deghosting carried
out in the common-shot domain is similar to source deghosting car-
ried out in the common-receiver domain. However, for a complex
subsurface, source deghosting carried out in the common-receiver
domain is preferable to source deghosting carried out in the
common-shot domain.

THE EFFECT OF A COMPLEX SUBSURFACE
IN THE COMMON-SHOT DOMAIN

We first generated ghost-free 2D seismic data with a finite-differ-
ence scheme using the laterally invariant velocity model from Fig-
ure 1a. After that, we only added the source ghost using equation 3.
For now, we did not model the receiver ghost because we first put all
emphasis on the source ghost. Sources as well as receivers were
located at a depth of 15 m with spatial sampling of 5 m. Figure 2a
and 2b, respectively, shows a receiver gather and a shot record. As
expected, they are identical. In Figure 2c and 2d, we show the cor-
responding representations in the wavenumber-frequency domain.
The spectra have a clear first-order angle-dependent notch, which is

a)

b)

Figure 1. Velocity models used for acoustic finite-difference model-
ing. (a) Velocity model of a laterally invariant subsurface. (b) Velocity
model of a complex subsurface (Marmousi model including a water
layer on top).

a) b)

c) d)

Figure 2. Data including the source-ghost wavefield in various do-
mains for a laterally invariant model and a source depth of 15 m.
(a) A receiver gather including the source ghost. (b) A shot record
including the source ghost. (c) The wavenumber-frequency spec-
trum of the receiver gather including the source ghost. (d) The
wavenumber-frequency spectrum of the shot record including the
source ghost.
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at 50 Hz for vertical wavefield propagation. This frequency can be
easily computed from the water velocity c and the source depth zs,
being 1500 m/s and 15 m, respectively, via fnotch ¼ 0.5c∕zs. The
amplitude roll-off toward 0 Hz is the effect of the zeroth-order
notch.
In the next example, we generated a similar data set, but now

using the Marmousi subsurface model shown in Figure 1b rather
than the laterally invariant subsurface model of Figure 1a. We show
a receiver gather in Figure 3a and a shot record in Figure 3b. Unlike
in the previous example, they are not identical. The difference in
Figure 3c shows that the source-ghost wavefield, once observed in
the common-shot domain, is affected by the complex subsurface.
The first-order notch is clearly visible in the wavenumber frequency
spectrum of a common-receiver gather (see Figure 3d). However,
the first-order notch is blurred in the wavenumber frequency spec-
trum of a shot record (see Figure 3e).
Vrolijk and Blacquière (2020) give a detailed description of

a deghosting algorithm based on sparse inversion as well as its
adaptive variant. In Figure 4a, we show the result of applying the
nonadaptive source deghosting variant to the receiver gather of
Figure 3a. The difference with the original ghost-free data (see
Figure 4b) is quantified by the signal-to-noise ratio (S/N) as
follows:

S∕N ¼ 10 log

�X
x

X
t

j→ p0j2
j→ p0 − h→ p0ij2

�
; (11)

with ~p0 being the modeled ghost-free data and h→ p0i the de-
ghosted result in the space-time domain. The overall S/N in this

example is equal to 39.8 dB. A selected area with a time range of
2.2–2.6 s and an offset range of −2250 to −1250 m has an S/N of
39.8 dB, and another selected area with a time range of 1.52–1.92 s
and offset range of 1000–2000 m has an S/N of 41.0 dB. The de-
ghosting algorithm promotes sparsity in the space-time domain,
which stabilizes the inversion. Therefore, no obvious deghosting
artifacts are present in the data domain (see Figure 4a and 4b) and
notches in the wavenumber-frequency domain are filled with the
correct amplitudes (see Figure 4c and 4d).
We have demonstrated that the source-ghost wavefield, once

observed in the common-shot domain, is affected by the complex
subsurface. Consequently, this will have an effect on the quality of
source deghosting in the common-shot domain, which we demon-
strate in Figure 5. To obtain the result in Figure 5a, we applied the
adaptive source-deghosting variant to the shot record of Figure 3b.
This deghosting algorithm can adapt the depth of each source as a
function of time. In this way, it can handle the source ghost ob-
served in the common-shot domain, that is, after being affected
by the complex earth, to some extent. The difference in Figure 5b
shows that there are some weak ringing artifacts and amplitude
losses. The corresponding wavenumber-frequency spectra of Fig-
ure 5a and 5b are shown in Figure 5c and 5d. The overall and se-
lected S/Ns in Figure 5b are equal to, respectively, 9.0, 0.6, and
15.1 dB. These numbers are significantly lower than the S/Ns that
we obtained in the common-receiver domain (Figure 4b). Hence,
this example illustrates that it is essential that source deghosting
is carried out in the common-receiver domain to obtain an optimal
source-deghosted result.

THE EFFECT OF COARSELY
SAMPLED DATA

We have demonstrated that source deghosting
should be carried out in the common-receiver
domain in the case of a complex subsurface to
obtain optimum results. However, in practice,
this domain is often coarsely sampled. This com-
plicates source deghosting because this would
cause aliasing artifacts. In Figure 6a, we show
a coarsely sampled receiver gather from the Mar-
mousi model with large spatial source sampling
of 75 m. In practice, such a coarse source sam-
pling often occurs in the crossline direction. The
result is that the data are aliased, which leads to
the well-known wrap-around effects in the wave-
number-frequency domain (see Figure 6d). Espe-
cially, the high frequencies are affected by the
coarse sampling. Our sparse inversion deghost-
ing method can handle coarsely sampled receiver
gathers to some extent. The result is given in Fig-
ure 6b and 6e, respectively, the space-time and
wavenumber-frequency domains. In Figure 6c
and 6e, we show the difference with respect to
the ghost-free data. The aliasing artifacts have a
detrimental effect on the overall S∕N, which is as
low as −5.4 dB. The selected areas are affected as
well (see Figure 6c). Thus, in case of coarsely
sampled sources, we have to deal with the
following dilemma. In the common-receiver do-
main, the quality of source deghosting is limited

a) b) c)

d) e) f)

Figure 3. Data including the source-ghost wavefield in various domains for the Marmousi
model and a source depth of 15 m. (a) A receiver gather including the source ghost. (b) A
shot record including the source ghost. (c) The difference between (a and b). (d) The
wavenumber-frequency spectrum of the receiver gather including the source ghost.
(e) The wavenumber-frequency spectrum of the shot record including the source ghost.
(f) The difference between (d and e).
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by coarse source sampling, whereas in the common-shot domain the
quality of source deghosting is limited by the complex subsurface.
In the following section, we propose a machine-learning approach
to handle this dilemma.

CNN SOURCE DEGHOSTING OF COARSELY
SAMPLED COMMON-RECEIVER DATA

We have demonstrated that a coarse sampling in the common-
receiver domain causes artifacts in the results of source deghosting. To
overcome this issue, we propose to train a CNN with supervised learn-
ing to apply source deghosting to coarsely sampled receiver gathers.We
start with the seismic data given by the following matrix product:

DδðzdÞGðzd; zdÞXðzd; zsÞGðzs; zsÞSΔðzsÞ; (12)

where subscript Δ indicates a coarse sampling (here, for the sources),
with spatial interval Δx, whereas subscript δ indicates a dense sam-
pling (here for the receivers), with spatial interval δx. The relation
between the two is given by Δx ¼ nδx, where n is a positive integer.
The input training data consist of coarsely sampled shot records

including the source-ghost wavefield as well as the receiver-ghost
wavefield, whereas the output training data consist of receiver-
deghosted coarsely sampled shot records. We apply the following
processing steps to generate the training data. At first, we apply
receiver deghosting to matrix product 12. After that, we redatum

the receivers to the level of the sources (see Figure 7a and 7b) using
wavefield propagation on the pressure data, such that it becomes

DδðzsÞXðzs; zsÞGðzs; zsÞSΔðzsÞ: (13)

In seismic acquisition, receivers are usually located below the
source(s), and forward wavefield propagation must be carried out
to obtain expression 13. In case receivers are located above the
source, backward wavefield propagation must be carried out. Wave-
field propagation is described by, for example, Wapenaar and Berk-
hout (1989) from a flat receiver level and by Sun et al. (2018) from
an arbitrary receiver level. In this paper, we only use a forward
propagation step in the field data example because in the other ex-
amples the sources and receivers are located on the same level. For-
ward propagation can be carried out accurately when receivers are
sampled according to the Nyquist criterion. We then numerically
add the receiver-ghost wavefield to obtain

DδðzsÞGðzs; zsÞXðzs; zsÞGðzs; zsÞSΔðzsÞ; (14)

where the receiver-ghost wavefield is now related to the level of the
sources. This step ensures that the shot records of matrix product 14,
being our training data, are similar to the receiver gathers of matrix
product 14, except that their spatial sampling is different. In the next
step, we subsample the receivers of matrix products 13 and 14 such
that the spatial receiver sampling becomes identical to the coarse
source sampling (see Figure 7c). Given that n is the upsampling

a) b)

c) d)

Figure 4. The source-deghosting result based on sparse inversion
of the data shown in Figure 3a. (a) Common-receiver gather after
source deghosting. (b) The difference between (a) and the modeled
ghost-free receiver gather. (c) The wavenumber-frequency spectrum
of (a). (d) The wavenumber-frequency spectrum of (b).

a) b)

c) d)

Figure 5. The adaptive source-deghosting result of Figure 3b.
(a) Shot record after source deghosting. (b) The difference between
(a) and the modeled ghost-free shot record. (c) The wavenumber-
frequency spectrum of (a). (d) The wavenumber-frequency spec-
trum of (b).
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rate between the source and the receiver sam-
pling, the index k of the first detector can have
values ranging from 1 to n. This means that n
different subsampled data sets can be made of
each shot record. Only if the source and receiver
locations coincide is the data set reciprocal (see
k ¼ 1 in Figure 7c). The n subsampled data sets,
being the input training data, are obtained from
matrix product 14 and can be formulated as

½X train�k ¼ ½DΔðzsÞ�kGðzs; zsÞXðzs; zsÞ
×Gðzs; zsÞSΔðzsÞ; for k¼ 1;2; : : : ; n:

(15)

To obtain the output training data, we subsample
the receivers of matrix product 13 such that

½Ytrain�k ¼ ½DΔðzsÞ�kXðzs; zsÞ
×Gðzs; zsÞSΔðzsÞ; for k ¼ 1; 2; : : : ; n:

(16)

The CNN handles each shot record combination
from equation 15 with the receiver ghost and 16
without the receiver ghost as an individual train-
ing pair. Once the network has been trained, we
apply the network to remove the source-ghost

wavefield from the transpose of matrix product 15, which is given by

½X �k ¼ SΔðzsÞTGðzs; zsÞXðzs; zsÞGðzs; zsÞ½DΔðzsÞ�Tk ;
for k ¼ 1; 2; : : : ; n: (17)

Notice the similarity with equation 15. Therefore, we can now use
the CNN to carry out the source deghosting, which results in

½Y�k ¼ SΔðzsÞTXðzs; zsÞGðzs; zsÞ½DΔðzsÞ�Tk ;
for k ¼ 1; 2; : : : ; n: (18)

Undoing the transposition and using Dδ ¼
P

n
k¼1 DΔ, we obtain

DδðzsÞGðzs; zsÞXðzs; zsÞSΔðzsÞ; (19)

which, after conventional receiver deghosting carried out on the
well-sampled shot records, becomes

DδðzsÞXðzs; zsÞSΔðzsÞ: (20)

If desired, this can be redatumed to DδðzdÞXðzd; zsÞSΔðzsÞ, which
represents the fully deghosted version of equation 1. In this section
we have described an approach that allows us to train a network
from the same data distribution that the network will ultimately
be applied to, which will contribute to the reliability of the network.

CNN ARCHITECTURE

The CNN architecture used in this paper is based on the work of
Ronneberger et al. (2015) and Quan et al. (2016) on convolutional
encoder-decoder networks. These networks have been applied

a) b) c)

d) e) f)

Figure 6. (a) Modeled, coarsely sampled, ghost-free common-receiver gather.
(b) Common-receiver gather after deghosting. (c) The difference between (a and b).
(d) The wavenumber-frequency spectrum of (a). (e) The wavenumber-frequency spec-
trum of (b). (f) The wavenumber-frequency spectrum of (c).

a)

b)

c)

Figure 7. The preprocessing steps to obtain the training data. The
four raypaths in (a and b) are, respectively, the direct event, the source
ghost, the receiver ghost, and the source-receiver ghost. (a) The
coarsely sampled sources at source level zs and densely sampled
receivers at receiver level zd. (b) The original receiver ghost is re-
placed with a receiver ghost that corresponds to receivers at the depth
level of the sources (zd ¼ zs). (c) A densely sampled shot record is
subsampled for n ¼ 6.
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successfully in the medical field with a limited amount of training
data and in terms of the amount of data that resembles our case. The
network consists of four encoding layers and four decoding layers
connected by a bridge (see Figure 8). Each encoding layer consists
of a convolutional layer, a batch normalization layer, an activation
layer, and a max pooling layer. The max pooling layer downsamples
the data with a factor of two in the time and space dimensions. Each
decoding layer consists of a transposed convolutional layer, a batch
normalization layer, and an activation layer. The transposed convo-
lutional layer upsamples the data and makes sure that the number of
filters is equal to its connected encoding layer. The encoding layers
are connected with a summation to a corresponding decoding layer,
which makes the network fully residual. The components of the
bridge are similar to those of the encoding layer, but without a
max pooling layer. The number of filters gradu-
ally increases toward the bridge block and then
gradually decreases toward the predicted output.
The activation layer consists of a rectified linear
unit (ReLU) function. We used the stochastic
gradient descent to minimize the L2-misfit be-
tween the training input and the training output.
In addition, we modified the size of the kernel to
handle the seismic data properly.

CNN SOURCE DEGHOSTING:
NUMERICAL EXAMPLE

To obtain the training data, we first modeled
ghost-free seismic data for the Marmousi velocity
model shown in Figure 1b using a fixed spread
configuration. In total, we modeled 1200 sources
and 1200 receivers on a grid of δx ¼ 5 m, which
allowed us to add both ghost wavefields as ex-
plained earlier. The ghost wavefields correspond
to sources and receivers located at zs ¼ zd ¼
15 m under the sea surface. Then, we applied
source subsampling with a factor n ¼ 15, from
δx ¼ 5 m to Δx ¼ 75 m to obtain 80 modeled
shot records. Because we put the sources and
receivers on the same level, redatuming is unnec-
essary and we created a situation as illustrated in
Figure 7b. After that, we subsample the receivers
of these 80modeled shot records with a factor n ¼
15 for each index k to obtain the input training
data (see Figure 7c). To obtain the output training
data, we applied receiver deghosting before the
receiver subsampling stage. In total, we used
1200 training pairs, which is equal to 80 shot re-
cords times n. We created an additional 300 pairs
from the dense data excluding the 80 shot records
used for training to validate the network and to
determine the number of filters, number of layers,
and the learning rate. We show the performance
on the training and validation data in Table 1.
These results indicate that the performance of
the network is quite robust with respect to changes
in the learning rate and the size of the network.
Only the results obtained with a smaller amount
of filters significantly reduced the performance
of the network. The results that we show in the

data and frequency domain are obtained using a CNN with four en-
coding layers, four decoding layers, and a learning rate of 0.01. The
number of filters increases from 64 to 1024 at the bridge block, after
which the filter size recursively decreases to 64.
In Figure 9a, we show a subsampled receiver-deghosted shot rec-

ord with a lateral source position of 2925 m. After training (100
epochs), the differences between the CNN receiver-deghosted shot
record and its corresponding training output have an overall S/N of
29.2 dB and S/Ns of, respectively, 29.8 and 24.8 dB for the selected
areas (see Figure 9c).
In Figure 9b, we show a subsampled validation record with a

lateral source position of 4325 m. The differences in the selected
areas with the modeled source-ghost-free receiver gathers in Fig-
ure 9d have S/Ns of 18.4 and 22.2 dB and an overall S/N of

Figure 8. The architecture of the CNN, showing the encoder-decoder structure and the
residual connections between each encoding and decoding block.

Table 1. The sensibility of the overall CNN performance of the training data,
validation data, and application data with respect to the number of layers, the
learning rate, and the filter numbers.

Network performance (dB)

Network parameters

Training
data

(1200 pairs)

Validation
data

(300 pairs)

Application
data

(1200 pairs)

Encoding layers = 4 27.4 23.3 22.6
Decoding layers = 4

Learning rate = 0.01

Filter numbers = 64, 128, 256, 512, and 1024

Encoding layers = 4 27.0 23.2 22.5
Decoding layers = 4

Learning rate = 0.001

Filter numbers = 64, 128, 256, 512, and 1024

Encoding layers = 4 21.6 20.9 20.5
Decoding layers = 4

Learning rate = 0.01

Filter numbers = 16, 32, 64, 128, and 256

Encoding layers = 3 26.7 23.2 22.5
Decoding layers = 3

Learning rate = 0.01

Filter numbers = 64, 128, 256, 512, and 1024
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22.2 dB. We applied the CNN to remove the source-ghost wavefield
from the original 1200 coarsely sampled receiver gathers as well.
We show examples in Figures 10 and 11 for receiver gathers with
lateral receiver locations of 2890 and 4750 m, respectively. Note
that the receiver ghost is still present. The differences in Figures 10c
and 11c have S/Ns between 16.0 and 29.1 dB. The wavenumber-
frequency spectra show that there is only a small amount of residual
energy around the notch frequency of 50 Hz related to vertical
propagation (see Figures 10f and 11f). The CNN result gives a sig-
nificant uplift compared to the source-deghosted result of Figure 6b.
Note that the overall performance on the application data is com-
parable to the overall performance on the validation data (see
Table 1).
In Figure 12a, we show a shot record corresponding to Fig-

ures 10b and 11b. Next, we applied receiver deghosting based on
sparse inversion to the well-sampled source-deghosted shot records,
leading to fully deghosted records. An example of a shot record
before and after receiver deghosting can be found in Figure 12a
and 12b. The corresponding wavenumber-frequency spectra are
shown in Figure 12d and 12e. The difference with the modeled
ghost-free shot gather is shown in Figure 12c and 12f. The selected
areas in Figure 12c have S/Ns of 20.3 and 26.6 dB and an overall
S/N of 20.6 dB. Again, the results of the CNN have a higher S/N
than the conventional deghosting result shown in Figure 7a. This is
due to the latter method being carried out in the “wrong” domain,
which limits its quality, while the CNN does not suffer from this issue.

CNN source deghosting: Field data example

We applied the machine-learning approach for applying source
deghosting to coarsely sampled receiver gathers taken from a field
data set, acquired offshore Australia. For this example, we took a
subset of 110 shot records with a spatial source sampling of Δx ¼
75 m and a spatial receiver sampling of δx ¼ 6.25 m, meaning that
n ¼ 12 in this example. The source depth was 5 m, and the depth of

a) b)

c) d)

Figure 9. The results of the CNN for one input training shot record
and one validation shot record. (a) Training shot record (lateral
source location: 2925 m) after CNN receiver deghosting. (b) Vali-
dation shot record with source (lateral source location: 4325 m) after
CNN receiver deghosting. (c) The difference between (a) and the
corresponding output training shot record. (d) The difference be-
tween (b) and the corresponding output validation shot record.

a) b) c)

d) e) f)

Figure 10. The CNN result for a coarsely sampled
receiver gather with a lateral receiver location at
2890 m. (a) Receiver gather including the source
as well as the receiver ghost. (b) Receiver gather
after CNN source deghosting. (c) The difference
between (b) and the modeled source-ghost-free
receiver gather. (d-f) The wavenumber-frequency
spectra of (a-c).
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the slanted cable ranged from 8 to 60 m. A single shot record is
shown in Figure 13a, and its wavenumber-frequency spectrum is
shown in Figure 14a. Due to the slant of the cable, which leads to
notch diversity, there is no clear receiver-ghost notch in the wave-
number-frequency spectrum. Figures 13b and 14b show the result
after receiver deghosting. The arrows in Figure 13a and 13b indicate
that the slanted ghost effect is removed accurately. In addition, the
receivers have been redatumed to the source level of 5 m. We then
numerically added the corresponding receiver-ghost wavefield (see

Figure 13c). As expected, now a clear first-order receiver-ghost
notch becomes visible in the spectrum at approximately 150 Hz
for vertical propagation (see Figure 14c). To create the training data
for the CNN, we subsampled the shot records with and without the
redatumed receiver-ghost wavefield by the factor of n ¼ 12. The
number of layers, the number of filters, and the learning rate remain
the same as in the numerical example discussed previously. Only
the size of the kernels was adjusted to the size of the subsampled
shot records from the field data. Once the network was trained (after

a) b) c)

d) e) f)

Figure 11. The CNN result for a coarsely sampled
receiver gather with a lateral receiver location at
4750 m. (a) Receiver gather including the source
as well as the receiver ghost. (b) Receiver gather
after CNN source deghosting. (c) The difference
between (b) and the modeled source-ghost-free
receiver gather. (d-f) The wavenumber-frequency
spectra of (a-c).

a) b) c)

d) e) f)

Figure 12. Receiver deghosting after source de-
ghosting. (a) Input: shot record after CNN source
deghosting carried out in the common-receiver
domain. (b) Output: shot record of (a) after
receiver deghosting using sparse inversion carried
out in the common-shot domain. (c) The differ-
ence between (b) and the modeled ghost-free shot
record. (d-f) The wavenumber-frequency spectra
of (a-c).
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200 epochs) with the subsampled shot records, we applied the CNN
to remove the source ghost from the coarsely sampled receiver
gathers.
We then carried out receiver deghosting using sparse inversion in

the densely sampled common-shot domain. A shot record from the
now fully deghosted result is shown in Figure 13d. The reflections
have the high-resolution appearance that characterizes ghost-free
wide-band data, without any obvious deghosting artifacts. The cor-
responding wavenumber-frequency domain representation is shown
in Figure 14d. As expected, we see that the amplitudes around the
zeroth- and first-order source-ghost notches, at 0 and 150 Hz, re-
spectively, have been boosted, whereas in between these notches the
amplitudes have been reduced. Thus, the shot-record and its wave-
number-frequency spectrum indicate that the source ghost and the
receiver ghost have been removed successfully.
A conventional technique to obtain the source-deghosted result is

to apply trace-by-trace sparse deghosting with a 1D ghost model.
We compare results obtained with trace-by-trace sparse source de-
ghosting with results obtained with CNN source deghosting for a
shallow near-offset section in the common-shot domain with a mini-
mum offset of 175 m (Figure 15a and 15b). The trace-by-trace
sparse source deghosting-result has some deghosting artifacts,
which are most visible near the water-bottom reflection. These ar-
tifacts might be related to the relatively weak angle-dependency of
the ghost. They are not present in the CNN source-deghosting re-
sult. As an additional quality control, we compare the correspond-

ing stacked frequency spectra of Figure 15a and 15b in Figure 16.
We also show the frequency spectrum before source deghosting.
Figure 16 shows that the observed artifacts after trace-by-trace
source deghosting are the result of overamplified amplitudes in the
notch area, which confirms that these artifacts are the result of ne-
glecting the angle dependency of the ghost.

DISCUSSION

This paper demonstrated the capabilities of a machine-learning
approach for removing the source-ghost wavefield from coarsely
sampled data. It is a first step toward a fully 3D source wavefield
deghosting method that is suitable for coarsely sampled data. Other

b)a)

d)c)

Figure 13. (a) Shot record including the source-ghost effect as well
as the slanted-cable receiver ghost effect. (b) Redatumed shot record
including the source-ghost effect. (c) Redatumed shot record includ-
ing the source-ghost effect as well as the modeled receiver ghost
effect. (d) The shot record after CNN source deghosting and con-
ventional receiver deghosting.

a) b)

c) d)

Figure 14. (a) The wavenumber-frequency spectrum of Figure 13a.
(b) The wavenumber-frequency spectrum of Figure 13b. (c) The
wavenumber-frequency spectrum of Figure 13c. (d) The wavenum-
ber-frequency spectrum of Figure 13d.

a) b)

Figure 15. (a) A near-offset section after sparse receiver deghosting
and trace-by-trace sparse source deghosting. (b) A near-offset sec-
tion sparse receiver deghosting and CNN source deghosting.
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seismic processing methods such as source redatuming, which are
limited by coarsely sampled data, might benefit from a comparative
strategy. One of the challenges in 3D would be the different azimuth
distribution between the redatumed and subsampled shot gathers
and the aliased receiver gathers. In principle, the method can handle
irregular geometries by adjusting the subsampling or, if necessary,
interpolating the training data to the required irregular sampling
geometry. Another challenge is to account for variations between
the source and receiver ghost wavefield due to rough sea surface
effects. A rough sea surface causes asymmetry between the source
ghost and the receiver ghost throughout a survey. The source ghost
is almost instantaneous; therefore, it is accurately described by an
effective static sea surface model. However, the receiver ghost could
only be handled by a dynamic sea surface model. In such a case, the
receiver ghost must first be removed using a method that can handle
a dynamic rough sea surface (King and Poole, 2015; Grion et al.,
2016; Vrolijk and Blacquière, 2020). Subsequently, an effective
static sea surface model could be included during the modeling
of the receiver-ghost wavefield on the source depth. It is also known
that, for example, ghost cavitation causes asymmetry between the
source side and the receiver side. The field-data results indicated
that the CNN might be able to deal with the nonlinear source effects
because no obvious deghosting artifacts effects were present. In-
cluding the exact source effects, azimuthal differences, and rough
sea surface effects in the training data could be challenging, and
further research is required. In addition, comparing our proposed
method with existing deep learning interpolation schemes (Garg
et al., 2019; Siahkoohi et al., 2019a; Wang et al., 2020) followed
by, for example, a sparse source-deghosting method could also pro-
vide more insight into its capabilities.
It is expected that the method can be easily adapted to be suitable

for application to coarsely sampled common-shot gathers acquired
with ocean-bottom nodes. After source deghosting and redatuming
of the sources to the ocean bottom, the training of the CNN can be
carried out on subsampled common-receiver gathers with and with-
out a modeled source-ghost wavefield. Then, the CNN could be
applied to coarsely sampled common-shot gathers to remove the
receiver-ghost wavefield.

CONCLUSION

We have successfully applied a CNN to remove the source-ghost
wavefield from coarsely sampled receiver gathers. The key is that
we used the symmetry that exists between source deghosting in the
common-receiver domain and receiver deghosting in the common-

shot domain. Because receiver deghosting in the well-sampled
common-shot domain is relatively easy, we proposed a strategy
to train the CNN with subsampled shot records before and after
receiver deghosting. Because of the symmetry, this case mimics
the situation of coarsely sampled receiver gathers before and after
source deghosting. Tests on numerical as well as field data show
that our approach can accurately remove the source-ghost wavefield
from coarsely sampled receiver gathers. These results are better than
those obtained from adaptive source deghosting in the well-sampled
common-shot domain.

ACKNOWLEDGMENTS

We acknowledge the sponsors of the Delphi Research Consor-
tium for their support and, in particular, CGG for providing the field
data set.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are confidential and cannot be
released.

REFERENCES

Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-learning
tomography: The Leading Edge, 37, 58–66, doi: 10.1190/tle37010058.1.

Berkhout, A. J., 1985, Seismic migration, Part A: Theoretical aspects, 3rd
ed.: Elsevier.

Blacquière, G., and H. Ö. Sertlek, 2019, Modeling and assessing the effects
of the sea surface, from being flat to being rough and dynamic: Geophys-
ics, 84, no. 2, T13–T27, doi: 10.1190/geo2018-0294.1.

Caporal, M., G. Blacquière, and M. Davydenko, 2018, Broadband imaging
via direct inversion of blended dispersed source array data: Geophysical
Prospecting, 66, 942–953, doi: 10.1111/1365-2478.12584.

Das, V., A. Pollack, U. Wollner, and T. Mukerji, 2019, Convolutional neural
network for seismic impedance inversion: Geophysics, 84, no. 6, R869–
R880, doi: 10.1190/geo2018-0838.1.

Day, A., T. Klüver, W. Söllner, H. Tabti, and D. Carlson, 2013, Wavefield-
separation methods for dual-sensor towed-streamer data: Geophysics, 78,
no. 2, WA55–WA70, doi: 10.1190/geo2012-0302.1.

Garg, A., A. Vos, N. Bortych, D. Gupta, and D. Verschuur, 2019, Spatial
aliasing removal using deep learning super-resolution: First Break, 37,
87–92.

Glinsky, M. E., G. A. Clark, P. K. Z. Cheng, K. R. S. Devi, J. H. Robinson,
and G. E. Ford, 2001, Automatic event picking in prestack migrated gath-
ers using a probabilistic neural network: Geophysics, 66, 1488–1496, doi:
10.1190/1.1487094.

Grion, S., R. Telling, and S. Holland, 2016, Rough sea estimation for phase-
shift deghosting: 86th Annual International Meeting, SEG, Expanded
Abstracts, 5129–5133, doi: 10.1190/segam2016-13688475.1.

Hampson, G., 2017, Notional ghosts: 87th Annual International Meeting,
SEG, Expanded Abstracts, 111–115, doi: 10.1190/segam2017-17634121
.1.

0 20 40 60 80 100 120 140 160 180 200 220
Frequency (Hz)

0

0.5

1

1.5

2

A
m

pl
itu

de

10 6

Before source deghosting
After trace-by-trace source deghosting
After CNN source deghosting

Figure 16. The stacked frequency spectra corresponding to Figure 15a and 15b and before receiver deghosting.

Source deghosting V195

D
ow

nl
oa

de
d 

12
/0

2/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

18
6.

1

http://dx.doi.org/10.1190/tle37010058.1
http://dx.doi.org/10.1190/tle37010058.1
http://dx.doi.org/10.1190/tle37010058.1
http://dx.doi.org/10.1190/geo2018-0294.1
http://dx.doi.org/10.1190/geo2018-0294.1
http://dx.doi.org/10.1190/geo2018-0294.1
http://dx.doi.org/10.1111/1365-2478.12584
http://dx.doi.org/10.1111/1365-2478.12584
http://dx.doi.org/10.1111/1365-2478.12584
http://dx.doi.org/10.1190/geo2018-0838.1
http://dx.doi.org/10.1190/geo2018-0838.1
http://dx.doi.org/10.1190/geo2018-0838.1
http://dx.doi.org/10.1190/geo2012-0302.1
http://dx.doi.org/10.1190/geo2012-0302.1
http://dx.doi.org/10.1190/geo2012-0302.1
http://dx.doi.org/10.1190/1.1487094
http://dx.doi.org/10.1190/1.1487094
http://dx.doi.org/10.1190/1.1487094
http://dx.doi.org/10.1190/segam2016-13688475.1
http://dx.doi.org/10.1190/segam2016-13688475.1
http://dx.doi.org/10.1190/segam2016-13688475.1
http://dx.doi.org/10.1190/segam2017-17634121.1
http://dx.doi.org/10.1190/segam2017-17634121.1
http://dx.doi.org/10.1190/segam2017-17634121.1


Hopperstad, J.-F., R. Laws, and E. Kragh, 2008, Where is the center of a
multi-depth marine source array? 78th Annual International Meeting,
SEG, Expanded Abstracts, 40–44, doi: 10.1190/1.3054834.

Huang, L., X. Dong, and T. E. Clee, 2017, A scalable deep learning platform
for identifying geologic features from seismic attributes: The Leading
Edge, 36, 249–256, doi: 10.1190/tle36030249.1.

Khodabandeloo, B., and M. Landrø, 2018, Acoustically induced cavity
cloud generated by air-gun arrays — Comparing video recordings and
acoustic data to modeling: Journal of Acoustical Society of America,
143, 3383, doi: 10.1121/1.5040490.

King, S., and G. Poole, 2015, Hydrophone-only receiver deghosting using a
variable sea surface datum: 85th Annual International Meeting, SEG, Ex-
panded Abstracts, 4610–4614, doi: 10.1190/segam2015-5891123.1.

Kryvohuz, M., and X. Campman, 2017, Source-side up-down wavefield
separation using dual NFHs: 79th Annual International Conference and
Exhibition, EAGE, Extended Abstracts, 111–115, doi: 10.3997/2214-
4609.201700843.

Landrø, M., L. Amundsen, and D. Barker, 2011, High-frequency signals from
air-gun arrays: Geophysics, 76, no. 4, Q19–Q27, doi: 10.1190/1.3590215.

Lewis, W., and D. Vigh, 2017, Deep learning prior models from seismic im-
ages for full-waveform inversion: 87th Annual International Meeting, SEG,
Expanded Abstracts, 1512–1517, doi: 10.1190/segam2017-17627643.1.

Mikhailiuk, A., and A. Faul, 2018, Deep learning applied to seismic data
interpolation: 80th Annual International Conference and Exhibition,
EAGE, Extended Abstracts, 1–5, doi: 10.3997/2214-4609.201800918.

Nath, S. K., S. Chakraborty, S. K. Singh, and N. Ganguly, 1999, Velocity
inversion in cross-hole seismic tomography by counter-propagation neu-
ral network, genetic algorithm and evolutionary programming techniques:
Geophysical Journal International, 138, 108–124, doi: 10.1046/j.1365-
246x.1999.00835.x.

Parkes, G., and S. Hegna, 2011, A marine seismic acquisition system that
provides a full ‘ghost-free’ solution: 81st Annual International Meeting,
SEG, Expanded Abstracts, 37–41, doi: 10.1190/1.3627998.

Parkes, G. E., and L. Hatton, 1986, The marine seismic source: Seismology
and exploration geophysics: Reidel.

Pham, N., S. Fomel, and D. Dunlap, 2019, Automatic channel detection us-
ing deep learning: Interpretation, 7, no. 3, SE43–SE50, doi: 10.1190/INT-
2018-0202.1.

Quan, T. M., D. G. C. Hildebrand, and W.-K. Jeong, 2016, Fusionnet: A
deep fully residual convolutional neural network for image segmentation
in connectomics: arXiv preprints, arXiv:1612.05360.

Ronneberger, O., P. Fischer, and T. Brox, 2015, U-Net: Convolutional net-
works for biomedical image segmentation: Medical Image Computing
and Computer-Assisted Intervention, 234–241.

Ross, C. P., and D. M. Cole, 2017, A comparison of popular neural network
facies-classification schemes: The Leading Edge, 36, 340–349, doi: 10
.1190/tle36040340.1.

Röth, G., and A. Tarantola, 1994, Neural networks and inversion of seismic
data: Journal of Geophysical Research: Solid Earth, 99, 6753–6768, doi:
10.1029/93JB01563.

Shi, Y., X. Wu, and S. Fomel, 2018, Automatic salt-body classification using
deep-convolutional neural network: 88th Annual International Meeting,

SEG, Expanded Abstracts, 1971–1975, doi: 10.1190/segam2018-
2997304.1.

Siahkoohi, A., R. Kumar, and F. J. Herrmann, 2019a, Deep-learning based
ocean bottom seismic wavefield recovery: 89th Annual International Meet-
ing, SEG, Expanded Abstracts, 2232–2237, doi: 10.1190/segam2019-
3216632.1.

Siahkoohi, A., D. J. Verschuur, and F. J. Herrmann, 2019b, Surface-related
multiple elimination with deep learning: 89th Annual International Meet-
ing, SEG, Expanded Abstracts, 4629–4634, doi: 10.1190/segam2019-
3216723.1.

Sun, H., and L. Demanet, 2018, Low-frequency extrapolation with deep
learning: 88th Annual International Meeting, SEG, Expanded Abstracts,
2011–2015, doi: 10.1190/segam2018-2997928.1.

Sun, Y., and D. Verschuur, 2017, 3D receiver deghosting for seismic-
streamer data using L1 inversion in an extended Radon space: 87th An-
nual International Meeting, SEG, Expanded Abstracts, 4940–4944, doi:
10.1190/segam2017-17335240.1.

Sun, Y., D. J. Verschuur, and R. G. van Borselen, 2018, Acoustic propaga-
tion operators for pressure waves on an arbitrarily curved surface in a
homogeneous medium: Journal of Applied Geophysics, 150, 314–324,
doi: 10.1016/j.jappgeo.2017.11.007.

Tang, Z., and X. Campman, 2017, Joint up/down decomposition and
reconstruction using three-component streamers with or without ghost
model: The sampling theory: Geophysical Prospecting, 65, 956–980,
doi: 10.1111/1365-2478.12438.

Telling, R., and S. Grion, 2019, A perturbed ghost model for estimating air-
gun array signatures: The Leading Edge, 38, 692–696, doi: 10.1190/
tle38090692.1.

Tenghamn, R., S. Vaage, and C. Borresen, 2007, A dual-sensor towed
marine streamer: Its viable implementation and initial results: 77th Annual
International Meeting, SEG, Expanded Abstracts, 989–993, doi: 10.1190/
1.2792571.

Vrolijk, J. W., and G. Blacquière, 2020, Adaptive estimation of the upgoing
wavefield from a variable-depth recording in the case of a dynamic sea
surface: Geophysics, 85, no. 1, V45–V56, doi: 10.1190/geo2019-0035.1.

Walker, C. D. T., D. J. Monk, and D. B. Hays, 2014, Blended source— The
future of ocean bottom seismic acquisition: 76th Annual International
Conference and Exhibition, EAGE, Extended Abstracts, 1–5, doi: 10
.3997/2214-4609.20141470.

Wang, B., N. Zhang, W. Lu, J. Geng, and X. Huang, 2020, Intelligent miss-
ing shots reconstruction using the spatial reciprocity of Green’s function
based on deep learning: IEEE Transactions on Geoscience and Remote
Sensing, 58, 1587–1597, doi: 10.1109/TGRS.2019.2947085.

Wapenaar, C. P. A., and A. J. Berkhout, 1989, Elastic wave field extrapo-
lation: Redatuming of single- and multi-component seismic data: Elsevier.

Ziolkowski, A., G. Parkes, L. Hatton, and T. Haughland, 1986, The signature
of an air gun sarray: Computation from near-field measurements including
interactions: Geophysics, 47, 1413–1421, doi: 10.1190/1.1441289.

Biographies and photographs of the authors are not available.

V196 Vrolijk and Blacquière

D
ow

nl
oa

de
d 

12
/0

2/
21

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

18
6.

1

http://dx.doi.org/10.1190/1.3054834
http://dx.doi.org/10.1190/1.3054834
http://dx.doi.org/10.1190/1.3054834
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1121/1.5040490
http://dx.doi.org/10.1121/1.5040490
http://dx.doi.org/10.1121/1.5040490
http://dx.doi.org/10.1190/segam2015-5891123.1
http://dx.doi.org/10.1190/segam2015-5891123.1
http://dx.doi.org/10.1190/segam2015-5891123.1
http://dx.doi.org/10.3997/2214-4609.201700843
http://dx.doi.org/10.3997/2214-4609.201700843
http://dx.doi.org/10.3997/2214-4609.201700843
http://dx.doi.org/10.3997/2214-4609.201700843
http://dx.doi.org/10.1190/1.3590215
http://dx.doi.org/10.1190/1.3590215
http://dx.doi.org/10.1190/1.3590215
http://dx.doi.org/10.1190/segam2017-17627643.1
http://dx.doi.org/10.1190/segam2017-17627643.1
http://dx.doi.org/10.1190/segam2017-17627643.1
http://dx.doi.org/10.3997/2214-4609.201800918
http://dx.doi.org/10.3997/2214-4609.201800918
http://dx.doi.org/10.3997/2214-4609.201800918
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00835.x
http://dx.doi.org/10.1190/1.3627998
http://dx.doi.org/10.1190/1.3627998
http://dx.doi.org/10.1190/1.3627998
http://dx.doi.org/10.1190/INT-2018-0202.1
http://dx.doi.org/10.1190/INT-2018-0202.1
http://dx.doi.org/10.1190/INT-2018-0202.1
http://dx.doi.org/10.1190/INT-2018-0202.1
arXiv:1612.05360
arXiv:1612.05360
http://dx.doi.org/10.1190/tle36040340.1
http://dx.doi.org/10.1190/tle36040340.1
http://dx.doi.org/10.1190/tle36040340.1
http://dx.doi.org/10.1029/93JB01563
http://dx.doi.org/10.1029/93JB01563
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2019-3216632.1
http://dx.doi.org/10.1190/segam2019-3216632.1
http://dx.doi.org/10.1190/segam2019-3216632.1
http://dx.doi.org/10.1190/segam2019-3216632.1
http://dx.doi.org/10.1190/segam2019-3216723.1
http://dx.doi.org/10.1190/segam2019-3216723.1
http://dx.doi.org/10.1190/segam2019-3216723.1
http://dx.doi.org/10.1190/segam2019-3216723.1
http://dx.doi.org/10.1190/segam2018-2997928.1
http://dx.doi.org/10.1190/segam2018-2997928.1
http://dx.doi.org/10.1190/segam2018-2997928.1
http://dx.doi.org/10.1190/segam2017-17335240.1
http://dx.doi.org/10.1190/segam2017-17335240.1
http://dx.doi.org/10.1190/segam2017-17335240.1
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1016/j.jappgeo.2017.11.007
http://dx.doi.org/10.1111/1365-2478.12438
http://dx.doi.org/10.1111/1365-2478.12438
http://dx.doi.org/10.1111/1365-2478.12438
http://dx.doi.org/10.1190/tle38090692.1
http://dx.doi.org/10.1190/tle38090692.1
http://dx.doi.org/10.1190/tle38090692.1
http://dx.doi.org/10.1190/tle38090692.1
http://dx.doi.org/10.1190/1.2792571
http://dx.doi.org/10.1190/1.2792571
http://dx.doi.org/10.1190/1.2792571
http://dx.doi.org/10.1190/1.2792571
http://dx.doi.org/10.1190/geo2019-0035.1
http://dx.doi.org/10.1190/geo2019-0035.1
http://dx.doi.org/10.1190/geo2019-0035.1
http://dx.doi.org/10.3997/2214-4609.20141470
http://dx.doi.org/10.3997/2214-4609.20141470
http://dx.doi.org/10.3997/2214-4609.20141470
http://dx.doi.org/10.1109/TGRS.2019.2947085
http://dx.doi.org/10.1109/TGRS.2019.2947085
http://dx.doi.org/10.1109/TGRS.2019.2947085
http://dx.doi.org/10.1109/TGRS.2019.2947085
http://dx.doi.org/10.1190/1.1441289
http://dx.doi.org/10.1190/1.1441289
http://dx.doi.org/10.1190/1.1441289

