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Artificial Intelligence in Railway Transport:
Taxonomy, Regulations and Applications
Nikola Bes̆inović , Lorenzo De Donato , Francesco Flammini , Senior Member, IEEE,
Rob M. P. Goverde , Member, IEEE, Zhiyuan Lin , Ronghui Liu, Stefano Marrone ,

Roberto Nardone , Tianli Tang , and Valeria Vittorini

Abstract— Artificial Intelligence (AI) is becoming pervasive in
most engineering domains, and railway transport is no exception.
However, due to the plethora of different new terms and meanings
associated with them, there is a risk that railway practitioners,
as several other categories, will get lost in those ambiguities and
fuzzy boundaries, and hence fail to catch the real opportunities
and potential of machine learning, artificial vision, and big data
analytics, just to name a few of the most promising approaches
connected to AI. The scope of this paper is to introduce the basic
concepts and possible applications of AI to railway academics
and practitioners. To that aim, this paper presents a structured
taxonomy to guide researchers and practitioners to understand
AI techniques, research fields, disciplines, and applications, both
in general terms and in close connection with railway appli-
cations such as autonomous driving, maintenance, and traffic
management. The important aspects of ethics and explainability
of AI in railways are also introduced. The connection between AI
concepts and railway subdomains has been supported by relevant
research addressing existing and planned applications in order
to provide some pointers to promising directions.

Index Terms— Artificial intelligence, railway transport,
machine learning, computer vision, traffic management, predic-
tive maintenance.
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I. INTRODUCTION

IT IS now widely accepted that Artificial Intelligence (AI)
is influencing almost every bit of our life. A survey from

Economic Intelligent Unit (conducted in late-2016) found that
44% of executives said delaying AI implementation will make
their business vulnerable to new, disruptive tech start-ups [1].
Railway is no exception. Although AI is still in its very infancy
for the railway sector, there is certain evidence showing
that its potential should not be underestimated. For instance,
Torsino et al. [2] listed several facets in railways where AI
can play an important role: customer service, optimisation of
complex railway systems, and improving safety and security
of urban rail networks. They concluded that “It is clear AI
systems can be powerful and can solve the critical challenges
that railways are facing today.” Gilbert et al. [3] stressed the
importance of AI for the future railway industry and believe
that AI will soon become a common tool used throughout
the rail industry. Several topics are discussed where AI is
supposed to act as a game-changer for the railway sector,
such as capacity management, life cycle cost, maintenance,
reducing error from both humans and computers, high-level
automation and auto-adaptive systems. In essence, many AI
experts and railway practitioners believe that the role of AI in
the railway sector will become more and more influential, and
a pivoting time where AI is used as a common tool will be
seen in the future.

In recent years, the term Artificial Intelligence has increas-
ingly become an integral part of daily life in the form of
smartphones, intelligent vocal assistants, etc. However, due
to its widespread use, the term AI is often improperly used
as a synonym of closely related concepts such as Machine
Learning, Deep Learning and Big Data. Thus, there tends
to be a lack of clear consensus on what AI represents and
thus much confusion and misunderstanding among researchers
and practitioners exist in both academic literature and public
communications [4], [5].

A taxonomy is a means of classifying entities according to
their natural relationships. It provides a common vocabulary to
discuss and share information about a specific topic. We find
examples of taxonomy papers in different fields including
supply chains [6], aviation [7] and manufacturing [8], and
in railways, on taxonomy for performance of railway oper-
ations [9], mechanical energy harvesting [10], development
of mass transit systems [11], and communication errors in
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maintenance [12]. Similarly, researchers focused commonly
on specific subdomains of AI and proposed taxonomies in
different fields. For example, a taxonomy has been defined
for 6G communication networks (addressing among others
ITS) [13], supervised regression learning for road traffic fore-
casting [14], supervised learning for intrusion detection sys-
tems in SCADA environments [15], evolutionary algorithms in
road transport [16], and in railways specifically, taxonomy on
machine learning and deep learning railway track predictive
maintenance [17], [18]. However, a holistic view on AI in
railways does still not exist. Also, a general AI taxonomy
suited to railway transport and transport in general is missing.
Our contention is that an important use of a taxonomy for
AI is to inform researchers and practitioners about which
methods are appropriate to assist with decision-making in
railway domains.

This paper aims to define AI, introduce taxonomy and make
necessary relations between AI and railway transport. The
goal of the paper is to bring together two domains and the
corresponding experts from AI and railways and define AI
for the railway domain. This would pave the way for a better
understanding of terminology and concepts of AI to railway
industry on one side, and introduce railway subdomains to AI
experts. This detailed taxonomy of AI is complemented by a
survey of AI used in railways. In addition, a focus is placed on
research niches that are still unexplored by the communities
in different railway subdomains. The open issues and research
directions for the implementation to railways endowed with
artificial intelligence are also discussed. In fact, we not only
give high-level future directions but also support it with some
existing research from similar (transport) domains, wherever
it is possible.

The remainder of the paper is organised as follows.
Section II presents the methodology for mapping railway
transport to AI. Section III gives a definition of AI from
the perspective of the railway transport domain. Section IV
introduces a taxonomy of AI. Next, Section V reports relevant
guidelines and regulations on AI, including ethics and explain-
ability, and identifies their particular importance for railways.
Section VI gives the mapping results of AI approaches applied
to railway problems (VI-A), and presents the existing chal-
lenges for future AI applications in railways for specific
subdomains (VI-B and VI-C). In particular, VI-B highlights
the new problems that are more tangible and could be tackled
by extending approaches from similar domains, and VI-C
highlights the more challenging (out-of-the-box/greenfield)
research directions, i.e., research that has not been addressed
in comparable domains. Finally, Section VII brings final
concluding remarks.

II. METHODOLOGY

We aim to uncover the use of AI in railway systems with the
goal of highlighting already existing as well as potential appli-
cations. This section describes the applied methodology for
mapping these current usages and future opportunities of AI
in railways. The focus is on the railway transport subdomains
including 1) maintenance and inspection, 2) safety and secu-
rity, 3) autonomous driving and control, 4) transport planning

and management, 5) revenue management, 6) transport policy
and 7) passenger mobility. In addition, to identify promising
potential research, we also looked into related domains such
as other transport modes (e.g. road and air), supply chain and
manufacturing. To showcase a structured overview of these
current and potential research, we map railway subdomains to
different classes of AI, based on an AI taxonomy introduced
in Section IV.

For finding relevant papers, we searched journal and confer-
ence papers using the Scopus database. Also, we enriched the
search with successful real-world applications in professional
magazines and technical reports, for which the Google search
engine was used. Still, scientific papers form a great majority
of the reviewed documents. The keywords used were designed
as a combination of a term from AI context and a term from
railway domain context, also ‘railway’, or another domain,
is added where needed. For example, a string consisting of
‘expert systems’, ‘passenger mobility’ and ‘railway’ was used.
Sometimes, for a single AI or railway context, the keywords
may be separated in the search, e.g. ‘safety’ and ‘security’
were used separately. In addition, terms like ‘ethics’ and
‘explainability’ were considered as well.

For mapping, we build matrices showing the intersections
between railway and AI. For each cell, we define its current
state representing whether it is recognised in scientific research
and/or in practice. To do so, each cell receives certain (Y),
potential (P), or uncertain (U) based on the corresponding
match. Where appropriate, the relevant papers, i.e. from rail-
ways or other domains, are given to support the conclusion
of a cell. We determine whether an entry in the three tables
belongs to Y, P or U by the following rules:

Y: Applications of the exact match are found in acad-
emic journal/conference papers and/or successful real-
world applications are found in magazines/news or other
media.

P: Similar applications of the match are found in acad-
emic journal/conference papers and/or real-world appli-
cations. For instance, an application of AI in another
sector other than rail but the principles are possibly
transferable.

U: No explicit literature/report/applications can be found
by the databases, even from other related domains.
In addition, we use our own judgement based on the
expertise and experience of the authors.

In essence, the cells marked Y represent existing AI research
in railways. Instead, the cells with P and U represent future
research directions that are worth considering for more
detailed investigations, some of which could be possibly
transferred with more ease from related domains (Ps) than
others (Us). The results of this mapping are presented in
Section VI.

III. A DEFINITION OF ARTIFICIAL INTELLIGENCE

In order to highlight the potential of AI in railways, it is
essential to provide a comprehensive definition of what AI
actually represents and justify why future intelligent railways
are expected to be different compared to traditional railway
automation systems, including automatic train protection and
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legacy driverless systems. A basic definition associates AI to
any machines acting in a way that seems intelligent [19] or
exhibiting characteristics that are typical of human reason-
ing. In other words, according to this general definition, the
research on AI aims at creating intelligent agents that think
and act like humans. The main limitation of such a definition
is the lack of a universally accepted definition of ‘intelligence’.
Conceptually speaking, intelligence refers to the ability of an
agent (e.g. a human being) to learn, understand, reason, plan
and solve problems. These aspects are very hard to quantify,
describe and measure in a quantitative way. Therefore, in the
context of the AI domain, one of the most common definitions
of intelligence is based on the ability of an agent to pass ‘the
imitation game’, also known as Turing test [20]: a machine
is deemed intelligent if it is indistinguishable from a human
during an interaction with an impartial observer.

Over the years, more structured and detailed definitions have
been introduced, e.g. [19], [21]–[23]. Interestingly, they are
very similar in some aspects (e.g. the ability to learn from
experience or to take autonomous decisions) while tend to
differ when it comes to defining in which ‘shape’ AI can be
deployed (e.g. robot, software program, electronic computer,
etc.). These existing definitions were trying to capture the
broad nature of AI and its potential coverage of various
domains and areas. By doing so, for certain domains, such
definitions may be too abstract and they could be difficult
to grasp and thus would not be widely accepted. Therefore,
these aspects of such general definitions tend to reduce its
uptake leading to no common agreement on what AI actually
represents.

To address this challenge, we need a definition of AI which
is suitable to support next-generation railway transport and
traffic engineering. To this aim, we need to stress some aspects
that are crucial when considering AI application in the railway
domain: 1) Being able to learn from experience and adapt to
the environment (e.g., energy optimised driving and obstacle
detection through artificial vision and other sensors adapting to
changing environmental conditions and learning from driver’s
behaviour and past reactions); 2) Take autonomous decisions
in uncertain scenarios by interacting with other intelligent
entities (e.g., cooperative driving, including virtual coupling,
through train-to-train communication); 3) Accomplish tasks
that would require critical intelligence if done by a human
(e.g., reputation-based multi-source information fusion for
safety/security decision making); 4) Exclude trivial automation
that does not take account uncertainties and/or unexpected
scenarios (e.g., non-defensive and non-robust railway automa-
tion approaches that do not support holistic fault-tolerance,
resilience, and self-diagnostics/self-healing); and 5) Suitable
to hardware, software, or hybrid implementation at multiple
edge, fog and cloud computing levels (e.g., digital twins imple-
menting machine learning models for data-driven predictive
maintenance by monitoring a large number of similar railway
infrastructure and rolling stock).

One possible definition accounting for those aspects is the
following: AI is the discipline gathering all the aspects that
allow an entity to determine how to perform a task and/or
take a decision based on the experience matured by observing

samples and/or by interacting with an environment, possibly
competing against or cooperating with other entities. The term
aspects refers to algorithms, theoretical formulations and com-
putational technologies (both hardware and software) directly
or indirectly designed to make an entity accomplish a task that
would require intelligence if accomplished by a human. The
term entity refers to both purely software, purely hardware
and any hybrid variants of the two (e.g. a software, or a robot,
or a virtual agent). The phrase experience matured is explicitly
intended to include both the concepts of learning (i.e. gain new
knowledge from some example) and of data-driven inference
(i.e. inferring consequences from some priors).

All the factors we stressed above are essential to charac-
terise AI in railways since they allow us to exclude from
the class of future intelligent railways all the widespread
approaches using a coded (i.e., programmed by someone)
automatism. An example of this is current driverless trains,
which implement Automatic Train Operation (ATO) together
with Automatic Train Protection (ATP) to safely perform
a series of well defined actions, according to some pre-
defined rules and schedule [24]. According to the provided
AI definition, those driverless trains cannot be considered as
intelligent systems because they do not have the capacity to
take autonomous decisions in the presence of uncertainties or
unexpected scenarios, learn from experience, adapt to changes
in the environment such as obstacles on the track, etc. Instead,
the provided AI definition includes all algorithms designed
to perform data-driven problem-solving and decision-making
which are expected to have a huge potential and impact in
future railways.

In addition, AI-supported railways can benefit from other
smart domains such as smart cities [25] and smart trans-
port/ITS [26], [27]. For example, real-time predictions of
customer demand and other traffic modes conditions could
provide services more efficiently, timely and sustainably. Also,
it will allow better interaction with other public transport
modes involving on-demand shared systems (e.g., shared taxis,
flexible car sharing, shared bikes) for better door-to-door
journeys. Simultaneously, smart cities and ITS can be powered
by railway AI applications. For example, smarter railways will
help to understand holistic traffic and city conditions in normal
statuses as well as during emergency situations (disruptions,
accidents, adverse weather). For example, it could provide
information about incidents on a railway network in order to
increase the responsiveness of a smart city transport system.
Also, it will increase mobility and city dynamic flows of future
interconnected smart cities and lead to seamless connections
and faster journeys.

When focusing on AI as a discipline, we need to define
a set of means, techniques, applications, etc., interconnected
with each other, in order to define AI as a whole. Therefore,
Section IV provides an AI taxonomy including the main
components and their interrelations.

In addition, certain research areas that are related to AI
tend to be mixed with AI and/or introduced as equal. Some
examples are digital twins, big data, and augmented reality.
Digital Twins represents a set of tools, means and procedures
born with Computer-Aided Design (CAD) systems with the
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Fig. 1. Artificial intelligence taxonomy class diagram.

aim of realising the digital version of an entity under analy-
sis. Augmented Reality (AR)1 is a sector that is living a
growing interest for both entertainment (e.g. video games)
and professional (e.g. remote medicine) applications. Big Data
represents a discipline associated with the collection, manipu-
lation and analysis of huge, varied, valued and heterogeneous
(typically non-structured) amounts of data.

IV. AI TAXONOMY

Having introduced our definition for AI in the railway
domain, also taking into account essential requirements of
future intelligent railways, this section defines an AI taxonomy
with the aim of framing the complexity of AI terminology.
The taxonomy is represented by a UML class diagram, which
allows for a more formal and effective representation [28].

The proposed taxonomy consists of three main concepts:
• AI Technique, representing methods, algorithms and

approaches enabling systems to perform tasks commonly
associated with intelligent behaviour, e.g. machine learn-
ing, evolutionary computing;

• AI Research Field, representing research areas that rely
on AI techniques and would not exist without them,
e.g. expert systems, data mining, pattern recognition;

• AI Application, representing cross-domain applications
that leverage AI to improve performance and usability,
e.g. computer vision, speech recognition, planning and
scheduling.

The class diagram is depicted in Figure 1, where classes
represent concepts of our taxonomy. Example of classes,
according to the definitions given above, are Artificial Intelli-
gence, AI Research Field, AI Technique and AI Application.

1The considerations made also stand for virtual and mixed reality.

Among the concepts, different kinds of relationships can
exist. Black rhombi identify compositions, that are whole/part
relationships, where, if a composite is deleted, all other parts
associated with it are deleted. An example is the composition
between Artificial Intelligence and AI Technique, with the
aim of stressing the fact that, without AI, the latter cannot
exist. Full arrows with solid lines represent inheritances,
which model concepts with a generalization hierarchy. For
example, there is an inheritance of PROLOG from Logic
Programming, to indicate that the former inherits all the
properties (including connections to the other elements) from
the latter, adding to them its own characteristics. Dotted
lines represent dependencies (weak relationships), while solid
lines indicate associations (strong relationships), where the
navigation direction is represented by the arrow itself. For
example, the use dependency between AI Research Field and
AI Technique indicates that the former may use the latter
to accomplish its goals. Similarly, the relies on association
between AI Application and Artificial Intelligence indicates
that the former is strongly depended on the latter. In both
cases, numbers at the sides of a line represent the cardinality
of the relationship. For example, 0..* on the left side of the
relies on association indicates that there may be (or not) AI
Applications relying on AI, i.e. taking advantage of any AI
Research Field or AI Technique. For example, according to
such definition, a mathematical rail traffic optimisation model
(e.g., one coming from Operations Research) on its own, may
be considered as not “intelligent”. Instead, it would become
“intelligent” when combined with an AI technique.

It is worth highlighting that we primarily focus on potential
railway applications, based on the definition we provided in
the previous section. Moreover, as AI is constantly evolving
and possibly new concepts would need to be added as they
emerge, the proposed taxonomy is flexible and intended to

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2022 at 08:44:32 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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accommodate newly rising concepts. The following of this
section detail the main classes of our AI taxonomy. A more
extensive description of the AI classes is given in [29].

A. AI Techniques

Defining artificial intelligence is usually about making a
machine able to do something that would require intelligence
if done by humans. In AI Technique we gather all the means,
algorithms and disciplines that allow an artificial entity to
perform such intelligent tasks. There are three main sub-
classes. First, Evolutionary Computing focuses on the algo-
rithms and techniques inspired by biological evolution such
as e.g. evolutionary algorithms, swarm intelligence. Second,
Logic Programming represents a set of programming par-
adigms based of first-order logic to infer new knowledge
starting from some priors such as PROLOG. Third, Machine
Learning represents an integrated concept that satisfies the
following rationale: Machine Learning can perform a given
task by means of a specific ML Algorithm trained by using a
specific Learning Paradigm, in a particular Learning Scenario,
and considering a fixed Training Modality. Hence, the class
Task defines the goal that the user wants to obtain such
as classification, regression, and clustering. ML Algorithm
represents the sequence of operations used to train a specific
model such as support vector machines, tree-based, Bayesian,
and artificial neural networks. Learning Paradigm refers to
the strategy used to guide the algorithm during the learning
process such as supervised, unsupervised, and reinforcement
learning. Learning Scenario describes the distinctive charac-
teristics of the task under analysis such as multi-task, single-
task, and one shot. Lastly, Training Modality indicates how
the training phase is implemented as the transfer of knowledge
from another task/domain (transfer learning), and the training
from scratch.

B. AI Research Fields

The term AI Research Field refers to domains, disciplines
or research areas born with or under the AI umbrella, and
that can not exists without it. In particular, the term refers to
those fields in which the use of AI is not a matter of perfor-
mance or effectiveness, but the core of the field itself. Some
notable examples, represented as UML classes, are: Expert
Systems, the branch of AI focusing on software intended to
emulate the decision process made by experts in some fields
(e.g. physician for medical imaging); Data Mining (DM), the
set of procedure intended to mine information from raw data;
Pattern Recognition, the discipline studying how to recognise,
detect and discriminate samples by leveraging patterns in data;
Adversarial Search, the study of environments where agents
act in an environment populated with other adversaries. DM is
an essential step of the knowledge discovery from data process
and aims at extracting information from data (potentially
voluminous and heterogeneous datasets [30]) by leveraging
intelligent methods [31] (i.e. ML). In our taxonomy, we kept
DM detached from ML as DM focuses more on “discovering”
and “extracting” knowledge from data, while ML focuses on
“learning” from data to perform actions.

C. AI Applications

In the proposed class diagram (Figure 1), AI Application is
connected to AI by means of a one-way association, meaning
that the former uses the latter (and not the other way round).
Within this class we gather all the domains, research areas,
topics, etc., that are not strictly bounded to AI. Nonetheless,
they are increasingly relying on AI, to the point of starting
to be (wrongly) considered feasible only with AI. The set
of AI applications is extremely wide. Among all, some of
the common ones are Scheduling and Planning, the set of
tools leveraging AI for arranging activities and operations,
Operations Research, and in particular its sub-fields leveraging
AI to improve optimisation procedures, Natural Language
Processing and Speech Recognition, the ability of a system to
understand and produce non structured texts or voices, Image
processing and Computer Vision, including image acquisition,
processing, inferring, etc., by means of an AI algorithm,
Robotics, the set of algorithms designed to govern a robot.

V. GUIDELINES AND REGULATIONS

Ethics and explainability in AI represent two of the topics
that raise more concerns to EU citizens. For this reason,
existing guidelines on these topics need to be addressed and
discussed with reference to the seven railway subdomains
introduced in Section III.

According to the guidelines introduced by the AI High-
Level Expert Group [32], trustworthy AI must be lawful,
meaning that it must respect all applicable laws, norms, and
regulations; ethical, meaning that it should respect ethical
principles and values; robust, from both the technical perspec-
tive and taking into account its social environment. Moreover,
in order to be deemed trustworthy, AI systems should follow
the human-centric approach, meaning that the final decisions
shall be left to people, the command and responsibility chain
should be reconstructable, AI applications should be fail-safe
and it shall benefit human beings, including future generations.

Due to the advancement of technology, results obtained
in safety-critical systems, like railways, are not easily
interpretable [33]. New initiatives towards Explainable AI
(XAI) [34] are rising and becoming ever important. XAI refers
to methods and techniques to make outputs understandable
by humans. XAI deals with three particular and different
concepts: Interpretability (also called Transparency) is the
characteristic of a model to be at a level that makes sense for
a human observer, so enabling interventions aimed at taking
impartial decisions and improve robustness; Explainability is
the characteristic of a model to take actions and procedures
for clarifying its behaviour; Comprehensibility is the char-
acteristic of a model to represent its learned knowledge in a
human-understandable fashion.

It is clear that transport and railways are generally relevant
sectors to consider ethical and explainability aspects. However,
not all the applications pose risks of such significance to justify
legislative intervention. It is thus necessary to focus attention
on the specific application by evaluating its potential risks
and impacts on human beings, wellness, and the environment.
In general, with respect to the railway subdomains, we could
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say that in most of them AI could have mostly a minor/medium
impact on the wellness of human beings and the environment,
and major only in some subdomains. A minor impact can
be expected in all the subdomains except for those directly
affecting the safety of people, which are safety and security,
and autonomous driving and control [35]. For instance, an AI
application aiming at reducing the replacement of consumable
components (e.g. rails, switches, rolling stock) does not require
a significant legislative intervention, even if it could offer ben-
efits to special waste disposal and to environmental pollution.
At a medium level, also ethical concerns arise from applying
AI to staff scheduling such as drivers, crew, and maintenance
workers. In an ideal AI-based staff schedule, the efficiency
of an operational plan and the rights of staff well-being such
as having appropriate breaks and working patterns should be
well balanced. Similarly, we can imagine several applications
of AI in all these subdomains with a minor/medium impact on
the wellness of human beings and the environment, but where
ethical concerns from the application of AI subsist.

Finally, a strong impact on ethics and a significant legislative
intervention would be required in the two subdomains cited
above. For example, the braking decision when approaching
an obstacle of automated driving systems is a typical target
application where the balance between the highest safety and
the passengers’ comfort is unstable. The questions that could
arise include: What is the right decision for an AI system, for
instance, applied in obstacle detection, to mitigate the effect
of false positives? And, what is the right decision for the
same system when an animal or a road vehicle is detected
on the track? These are just two of the possible questions
that arise when starting to think about the potentials of AI in
railways. For example, in road transport, [36] highlights key
ethical issues in the use of AI in automated driving; while [37]
discusses the dangers of the Moral Machine (MM) experiment
in Autonomous Vehicles, alerting against both its uses for
normative ends and the whole approach it is built upon to
address ethical issues. Further lessons on ethical issues of AI
can be learnt from other sectors, such as healthcare [38] and
robotics [39].

Looking at the explainability of AI, it shall be considered
when developing models and systems across the whole railway
transport, without distinction between the subdomains. So far,
XAI has not gained attention in railway transport, with an
exception of [40]. In [40], the problem of discerning different
reasons for the occurrence of train delays is studied. In par-
ticular, methods from XAI help to classify to which amount
the primary and secondary features contribute to a specific
prediction of the model. For other domains, a comprehensive
review of XAI in various business and industry sectors is given
in [41], where case studies are reported in recommendation
systems, sales, lending, and fraud detection. An article [42] on
Supply Chain Brain discusses the XAI issue in supply chains.
These can be used to build on and define an important aspect
of XAI for railways.

Overall, we could say that surely the subdomains of safety
and security and automated driving and control shall receive
greater and immediate attention from the legislative point
of view, while ethical concerns could arise also from AI

applications in all other subdomains as, for example, control
and staff scheduling. Finally, explainability aspects shall be
addressed in all subdomains.

VI. MAPPING AI TO RAILWAY APPLICATIONS: CURRENT

RESEARCH AND OPPORTUNITIES

We give three matrices showing the intersections between
railway subdomains and AI research fields, techniques, and
applications, respectively. Table I gives intersections with AI
research fields, Table II gives intersections with AI tech-
niques and Table III gives intersections with AI applications.
Section VI-A describes the existing AI research in railways,
marked Y in the tables. Section VI-B represent potential future
research, marked P. Finally, Section VI-C gives cells that
currently do not have recognised relevant research, marked
uncertain U, but which are worth considering for more detailed
investigations, and which could lead to more substantial
research advances for both railways and AI.

A. Existing Applications

We give existing applications of AI in railways per subdo-
main as defined in Tables I-III.

1) Maintenance and Inspection: Applications of AI in
railway maintenance and inspection have been developed
for addressing infrastructure (e.g. [47]) and rolling stock
(e.g. [103]). Reference [43] gives a survey on applications of
visual inspection based on image processing in the railway
industry and sets the future research directions of visual
inspection technology. [44] gives a review on the applica-
tion of various AI and expert systems for fault diagnosis
of high-speed railways, while [110] reports the pioneering
work in autonomous systems for condition monitoring of
railway infrastructure. In [47], the Dutch infrastructure man-
ager ProRail uses pattern recognition and image processing
technology to predict where and when a malfunction will
occur in switches. The switches are equipped with sensors that
transmit information about the power consumption, vibrations
and heat of the switches. By analysing the generated data,
the prediction can be realised before a disruption would
happen. Machine learning and Deep Learning approaches have
found great applicability for Defect Detection and Prediction
tasks [83]–[85].

In [103], a preventive maintenance (PM) scheduling prob-
lem for a rolling stock system is considered. The goal was to
determine the PM interval for components in a rolling stock
system. The total expected costs for the system life cycle and
system availability are used as optimisation criteria.

2) Safety and Security: Most of the AI (research fields)
have been recognised in the sub-domain of safety and security
including incident analysis and station security. Reference [52]
explores the employment of the decision tree (DT) method in
safety classification and the analysis of accidents at railway
stations to predict the traits of passengers affected by acci-
dents. In [56], Wayside Train Monitoring Systems (WTMS)
are introduced, which use pattern recognition for defect
detection in uncontrolled environments. The authors in [88]
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TABLE I

INTERSECTION BETWEEN RAILWAY SUBDOMAINS AND AI RESEARCH FIELDS

TABLE II

INTERSECTION BETWEEN RAILWAY SUBDOMAINS AND AI TECHNIQUES (ALL RESULTS FOR LOGIC PROGRAMMING
ARE “U”, AND THEREFORE NOT INCLUDED IN THE TABLE)

developed a prediction model for the railway disruption length
using Bayesian Networks.

Among the AI applications, in [105], Natural Language
Processing is used in determining accident causation by
exploiting text analysis approaches. Investigation reports of
railway accidents in the UK were reviewed and analysed,
to reveal the presence of entities which are informative of
causes and failures. The proposed method is able to assist
risk and incident analysis experts to study causal relationship
between causes and failures towards the overall safety in rail
industry.

In [109], computer vision techniques are used for various
types of security applications, including train stations. Accord-
ing to the authors, the challenge does not lie on acquiring
surveillance data from video cameras, but for identifying what
is valuable, what can be ignored, and what demands immediate
attention.

3) Autonomous Driving and Control: In autonomous
driving and control we recognised the use of evolutionary algo-
rithms and reinforcement learning for optimal train control.

Reference [89] proposed a method for energy optimisation
of the train movement applying control based on genetic
algorithms. The algorithm was tested based on a real sub-
way line in Milan. Reference [55] presents two train control
algorithms – an expert system and a reinforcement learning –
to operate the train similar to an experienced driver with real-
time data to reduce energy consumption whilst maintaining
comfort level and punctuality.

4) Traffic Planning and Management: Traffic planning
and management is another sub-domain where many AI
research fields have been extensively used tackling traffic
state prediction, timetabling and traffic rescheduling as well as
some more strategic planning decisions like equipment layout
using e.g. clustering, reinforcement learning and evolutionary
algorithms.

In the 70s, the first expert systems for real-time train
dispatching were developed [58]. In [59], expert systems
are used for intelligent train operations. In [60], a data ana-
lytics approach is designed for train timetable performance
measures, where automatic train supervision data is used.
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TABLE III

INTERSECTION BETWEEN RAILWAY SUBDOMAINS AND AI APPLICATIONS

To analyse train delay patterns, [61] applies data clustering
techniques and [120] uses regressions and random forest tech-
niques. Finally, [62] gives a comprehensive survey on the use
of data-driven approaches for train dispatching management.

In [93], a scalable reinforcement learning algorithm is
proposed for scheduling railway lines. The goal is to define
track allocations and arrival/departure times for all trains of
a line, provided with their initial positions, priority, dwell
times, and running times, while minimising the total priority-
weighted delay. Reference [63] solves the problem of optimis-
ing dispatching and rerouting in the Swiss railway network by
deep reinforcement learning and pattern recognition, where
the recorded data is variable over time and only contains a
few valuable events. To overcome the deficiency of the lack
of valuable data, they use the high computational power of
modern GPUs to simulate millions of physically plausible
scenarios. Artificial data are then used to train their algorithm.
Similarly, reinforcement learning has been used for train
scheduling [94] and shunting in yards [95].

Since most traffic planning and management problems are
NP-hard, evolutionary algorithms are often used to get near-
optimal solutions within reasonable time. In [92], an alter-
native mathematical model to tackle the timetabling problem
is proposed and a Genetic Algorithm is used for solving the
model in order to rapidly obtain near-optimal solutions. Com-
putational experiments were conducted based on a German
railway network. Reference [91] presents a heuristic model
based on the concept of Fixed Path + Genetic Algorithm. The
Fixed Path model assumes that the path of the trains is fixed for
preparing the train schedule. The GA is used for selecting for
each train the minimum-time path to arrive at the destination.
Combined, they give a schedule minimising the travel time
of each train while maximising capacity of the network. This
paper also shows that rail traffic can be improved regarding
the increase of timetable stability and maximizing capacity
subject to safety constraints. More strategically, [87] combined
a genetic algorithm, particle swarm optimisation algorithm,
and Kalman filtering for determining the best locations of
balises in order to minimise speed error of railway vehicles.

5) Passenger Mobility: Passenger mobility has received not
as much research attention as in other subdomains, mostly
for predicting passenger flows in railway and metro networks.
Reference [77] also uses data mining to forecast railway
passenger flows. A combination of methods such as data
warehousing, data mining and neural networks are used.
In particular, the result was applied to the Ticket Selling and
Reserving System of Chinese Railways. In [101], artificial
neural networks are used for forecasting passenger flows
on metro lines. Artificial Neural Networks are trained by
using simulated data from a dynamic loading of the line.
The proposed method was tested on Line 1 of the Naples
metro system in Italy. Computational experiments show that
the proposed approach is able to forecast the flows on metro
sections with satisfactory precision. Reference [102] proposes
a deep learning based architecture for metro passenger flow
prediction. This architecture is highly flexible and extendable,
suitable for the integration and modelling of external environ-
mental factors, temporal dependencies, spatial characteristics,
and metro operational properties in short-term metro passenger
flow prediction. It achieves a high prediction accuracy due
to the ease of integrating multi-source data as evidenced by
computational experiments. Differently, [119] used NLP to
evaluate passenger satisfaction with the system operations
by analysing the information extracted from the tweets from
customers.

B. Potential Applications: Promising Research Directions

We identify some examples of potential applications of AI
in railways as defined in Tables I-III. These are formed based
on existing ones in similar (transport) domains.

1) Data Mining for Maintenance and Autonomous Driving:
One of the essential challenges to be tackled is using
automated data processing and analysis techniques for effi-
cient exploration/understanding of new knowledge, from the
huge amount of complex data structures. Approaches from
e.g. manufacturing [45] could be translated to railway main-
tenance as well. Next to that, it becomes important to protect
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infrastructure condition monitoring data between maintenance
operating companies. For example, to address it, [46] created
an organisational architecture that integrates data produced
in factories on their activities of reactive, predictive and
preventive maintenance. The main idea would be to develop
a decentralised predictive maintenance system based on data
mining concepts. In addition, fast real-time/online data mining
are prerequisite for online learning and autonomous driving.
Therefore advanced collecting, combining and processing data
from different sources (i.e. sensors, cameras) is a must to pro-
vide accurate information to the AI-based control system [56].

2) Evolutionary Computing for Maintenance and Defect
Detection: Methods for finding an optimal set of parameters
i.e. feature selection methods, would provide benefits to defect
detection in railway maintenance such as signal fault, track
inspection, and so on. Feature selection techniques are used
to maximise discrimination: the selection method could use
a genetic algorithm to optimise various parameters of the
system. For example, [82] proposed a model for texture
segmentation in wood manufacturing using Gabor filters to
the analysis of texture and defect regions found on wooden
boards. Also, possible applications are seen for using GA
for preventive maintenance [80], [81]. These would lead to
providing to focus on the most important characteristics while
disregarding the others, and thus lead to smaller required
datasets and hopefully simpler and more efficient AI models.

3) Autonomous Systems for Maintenance: Unmanned aerial
vehicles like drones can be used for efficient and regular
inspection of railway resources, including rail tracks, catenary
and power system. For example, [107] presented using UAVs
for plant inspection. In general, use of automated systems
in maintenance tasks tends to provide additional support in
automating operations leading to increased efficiency, produc-
tivity and safety [106].

4) Computer Vision for Automated Driving: Computer
vision based on deep learning could become extremely useful
for complex tasks of object detection (e.g. an obstacle on
tracks) and semantic segmentation (e.g. distinguish between
signals, signs, rails, and road crossings). Recently, the image
recognition methods using deep learning proved to be far
superior to the methods used prior to the appearance of deep
learning in general object recognition competitions [113].

5) Machine Learning for Autonomous Driving: The con-
cepts of ML for automated car driving are likely to be
transferred from road to railways once the techniques in car
driving are mature enough, e.g. [121]–[123]. ML may play a
key role in this area but this is not as simple as out-of-the
box deployment of strategies and models developed in related
fields. Weston [128] argues that a system-centric approach not
only allows us to meet the necessary requirements for real
world deployment but also affords the machine learning com-
munity new opportunities for developing the next generation
of intelligent algorithms.

6) Adversarial Search for Maintenance Scheduling: In
maintenance scheduling, facility managers and staff must
deal with many daily maintenance requests despite various
limitations, such as limited budgets and staff, which can
cause delays in responding to some maintenance requests.

Maintenance work is scheduled according to various priorities.
For example, in [50] facility managers considered the impact
of each problem in terms of system failure and safety, and pro-
posed a framework to incorporate the interplay between energy
efficiency and occupant satisfaction. This can be extended to
the railway context in order to optimise maintenance planning
and reduce impacts on traffic operations.

7) Adversarial Search for Security: For security applica-
tions in railway stations and terminals, new approaches com-
bining traditional security risk management methodologies
with agent-based modelling and Monte Carlo simulation can
be used for risk assessment, and risk mitigation. Similar
applications for airports security [54] may represent a promis-
ing basis. In addition, there might be potential to extend
this approach to important station shunting yards, depots,
signalling and control centres. Lastly, applying this method
to on-board trains will also further improve the security of
passengers.

8) Operations Research for Traffic Planning and Man-
agement: Most typical traffic management problems can be
modelled as combinatorial optimisation problems, which are
traditionally solved by classical optimisation approaches such
as branch-and-bound or heuristic-based methods. Recently,
there have been considerable advances in solving combina-
torial optimisation problems by mathematical programming
and machine learning [114]. This implies that as there is
great potential in solving railway planning and scheduling
problems using AI given the fast-growing research interests
in the theoretical optimisation community.

9) NLP for Railway Transport: NLP has a significant poten-
tial in railways to process unstructured or semi-structured doc-
uments/records, such as maintenance and disruption reports,
social networks. As such, it can find applications in subdo-
mains such as maintenance, traffic planning and management
and transport policy. Maintenance records can be successfully
processed by NLP to determine the most critical components,
which can further lead to determining optimised maintenance
strategies [104]. For example, [105] used NLP to detect dupli-
cate defect reports at Sony Ericsson Mobile Communications.
For railway traffic management, NLP could be investigated for
design, implementation and usage of ontologies and natural
language in order to bridge the gap between a “machine read-
able representation of data” and a “user friendly presentation
of data” [115]. The adoption of ontologies could enable the
management of Centralized Traffic Control (CTC) logic and
the improvement of the user interface through the exploitation
of natural language queries. Also, it could create automatically
a human readable description of the ontology structure and of
its instances that can describe “informally” the structure of
the railway CTC and its rules, without losing any coherence
and information. For transport policy, the potential of applying
big data and text mining technologies from social media
could support policy makers in transport analysis and policy
making, including NLP as a powerful tool for text mining and
analysis [118]. The article is about generic transport policy
making, and there is no reason that railways, as an important
sector of transport, would be excluded from this potential
direction.
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10) AI for Revenue Management: Future revenue
management systems for railway transport can use
AI for ticket pricing, seat and discount allocation, and
overbooking [116], defining competitive pricing of offered
services between multiple operators [68], and developing
adaptive RM systems that could automatically learn by
directly interacting with customers [98], [117]. Revenue
management systems for railway transport share certain
features with other RM systems while having their own
uniqueness. As the applications of AI in RM systems in
other areas becomes mature such as airline [97], there is a
possibility that they can be transferred to the railway sector,
since the differences between the RM systems in different
fields should not be significant enough to challenge such a
transferring process.

11) AI for Transport Policy: Using AI for policy making is
rather at its early stages of development, but certain promis-
ing applications of expert systems, optimisation techniques,
adversarial search and data mining could be envisioned [124].
Policy planning can often be modelled as a combinatorial
problem [99], and using an AI-based techniques could provide
the best planning actions. Also, game-theoretic approaches
combined with ML or EC could be used for negotiating and/or
auctions when competing for certain activities, where each
participant is typically seeking to maximise his/her utility
[73], [125]. In railways, these can be used for bidding of
multiple operators to award a concession for traffic services or
maintenance works. Alternatively, it can be used to describe
the dynamic interactions between the government, public
transport company, and travellers when deciding to open a
new line or a station [74]. Expert systems like the ones
in public transport for deciding on preferable technologies
could be useful for rails as well, for e.g. developing mobility
management strategies [69], [70]. By having the increased
availability of smart cards and vehicle movement data also
comes to the new need for applications of more advanced
mining methods to learn patterns and preferences required
for policy management, and also for improving mobility and
transport planning [71].

12) Evolutionary Computing for Passenger Mobility: Trans-
port predictions including passenger and freight demand, are
expected to become be increasingly important as the system
is likely to get more dynamic and data-driven. To do achieve
that, apart from ML techniques, genetic algorithms could be
considered as well. For example, [100] presented a forecasting
tool for predicting airline passenger demand using GA, and
demonstrated its more accurate, reliable, and greater predictive
capabilities as compared to the traditional statistical models.

C. Uncertain Applications: Challenging Research Directions

The topics marked with Uncertain (U) in Tables I-III rep-
resent more adventurous, i.e. challenging to reach, research
opportunities in the future that seem to be not recognised yet
by the research community and practitioners at the moment.
We recognise that some of the current U intersections could
provide promising research directions at the crossings of, for
example, traffic management & computer vision/speech recog-
nition, autonomous driving and logic programming, security

and operations research, transport policy and machine learning.
In particular, we determine the following directions:

1) Trustworthy AI for automated driving and safety.
Developing regulations and standardised certification
processes are required to precisely quantify the trustwor-
thiness of an AI-based system, and thus its safety and
dependable characteristics to be able providing e.g. safe
autonomous train operation, which is of utmost impor-
tance for system performance. Therefore, it is advised to
exploit Explainable AI (XAI) approaches to make these
future systems more understandable.

2) Computer vision for passenger mobility. Computer
vision can provide advanced motion tracking both at
stations and onboard including passenger crowd charac-
terization and emotion recognition to monitor passenger
satisfaction, including driverless vehicles, and provide
personalised trip advisors and experience, among others
to visually impaired persons.

3) Computer vision for Traffic planning and manage-
ment. Visual support tools could be used to help dis-
patchers with more user friendly interfaces and provide
the right information and at the right time.

4) Logic programming for human-based decision mak-
ing. logic programming could be used to develop
decision support tools based on experienced practi-
tioners, e.g. planners, dispatchers, and maintenance
workers.

5) Operations research for safety and policy. Oper-
ations research-based models can be used to tackle
new (cyber-) security challenges. Also, during pan-
demics, such as Covid-19, distancing between pas-
sengers, i.e. seat allocation, could be optimised using
OR-based models in order to increase the passenger
health safety on board. In addition, the increased aware-
ness of AI usability among strategical decision/policy
makers can be expected, and new applications could
arise in transport policy.

Finally, some of the Us tend to be trivial for lack of appli-
cations (as no connections can be defined) such as revenue
management & pattern recognition, or autonomous systems
and robotics & revenue management and transport policy.
Thus, today, it is rather difficult to envision possible related
applications in the future. However, further developments
of AI and railway technologies could indeed generate new
potential uses of AI in these subdomains as well.

VII. CONCLUSION

This paper defined a taxonomy for AI in railways. It gives
a comprehensive definition of AI that is relevant and highly
useful for railway academics and practitioners. To address the
complex world of AI and bring it towards railways, we classify
AI into three main classes: research fields, techniques and
applications, and explain their main characteristics. Further,
differently from earlier research, this paper covers railway sys-
tems holistically including maintenance, safety and security,
autonomous driving, transport planning, revenue management,
transport policy and passenger mobility. As such it makes a
first step in recognising AI in the railway domain.
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We mapped the current railway research to the AI tax-
onomy and recognised that maintenance has generated the
most AI-related research, where pattern recognition, machine
learning, computer vision and image processing are the
most frequently used AI areas in research fields, techniques
and applications respectively. Other rail subdomains received
attentions from almost none to medially found papers. Notably,
safety and security share similar AI categories to those found
in maintenance and inspection, possibly because many safety
and security problems inherently link with maintenance and
inspection. The use of AI in Autonomous driving & control
and traffic planning and management has been more popu-
lar than it used to be. In particular, the latter has got all
Ys in AI research fields. We also notice that operations
research, a powerful traditional tool in railway operations,
heavily intersects with planning and management. Revenue
management, Transport policy and Passenger mobility are the
least populated subdomains in terms of Ys, which could mean
either there is great potential in applying AI to some of them,
or some are simply not appropriate areas for introducing AI at
the moment. It is also worth remarking that logic programming
has never been used in any rail subdomains. Finally, ethics in
AI and explainable AI still remain to gain attraction in all
railway subdomains.

In addition, we determined some promising research direc-
tions. First, some relevant AI applications exist in other
domains, similar to railways, however, such problems have not
been addressed in railways yet, such as AI-based advanced
autonomous driving, and safety and security applications.
Second, we also determined topics that have no AI research in
rail nor in other related domains. Some examples are revenue
management and transport policy. This makes them even
more suitable for more fundamental contributions to railway
research in future. Third, AI-powered railway can, on one
side benefit from other smart domains such as smart cities
and ITS, and on the other support them towards increasing
their “smartness“ through machine learning and other AI
techniques, which would lead to future data-driven and flexible
transport systems. Overall, we recognise that AI research is
at its dawn in the railway domain and we expect a growing
interest in existing problems using new techniques as well as
finding new problems to be solved by new AI techniques. This
all together makes the railway domain a fruitful future playing
field for new AI advances.

ACKNOWLEDGMENT

The JU receives support from the European Union’s Hori-
zon 2020 Research and Innovation Program and the Shift2Rail
JU members other than the Union.

REFERENCES

[1] Artificial Intelligence in the Real World: The Business Case Takes
Shape, The Economist Intelligence Unit, London, U.K., 2016.

[2] M. Trosino, J. Cunningham, and A. Shaw, “Automated track inspection
vehicle and method,” U.S. Patent 6 356 299, Mar. 16, 2002.

[3] X. Gibert, V. M. Patel, and R. Chellappa, “Deep multitask learning for
railway track inspection,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 1, pp. 153–164, Jan. 2017.

[4] J. McCarthy, “What is artificial intelligence?” Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Tech. Rep., 1998.

[5] A. Agrawal, J. Gans, and A. Goldfarb, What to Expect From Artificial
Intelligence. Cambridge, MA, USA: MIT Sloan Management Review,
2017.

[6] C. Chandra and A. Tumanyan, “Supply chain system taxonomy:
A framework and methodology,” Hum. Syst. Manage., vol. 24, no. 4,
pp. 245–258, Nov. 2005.

[7] S. Wilke and A. Majumdar, “Critical factors underlying airport surface
accidents and incidents: A holistic taxonomy,” J. Airport Manage.,
vol. 6, no. 2, pp. 170–190, 2012.

[8] N. Grant, T. Cadden, R. McIvor, and P. Humphreys, “A taxonomy
of manufacturing strategies in manufacturing companies in Ireland,”
J. Manuf. Technol. Manage., vol. 24, no. 4, pp. 488–510, Apr. 2013.

[9] M. Kyriakidis, A. Majumdar, G. Grote, and W. Y. Ochieng, “Develop-
ment and assessment of taxonomy for performance-shaping factors for
railway operations,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2289,
no. 1, pp. 145–153, Jan. 2012.

[10] P. Lopez Diez, I. Gabilondo, E. Alarcon, and F. Moll, “Mechanical
energy harvesting taxonomy for industrial environments: Application
to the railway industry,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 7,
pp. 2696–2706, Jul. 2020.

[11] S. Tang and H. K. Lo, “Taxonomy of public private partnership on
mass railway transit development—A benchmark with Hong Kong
experience,” Transp. Syst., Eng. Manage., pp. 665–674, Dec. 2007.
[Online]. Available: https://repository.ust.hk/ir/Record/1783.1-39558

[12] W. H. Gibson, E. Megaw, M. S. Young, and E. Lowe, “A taxonomy
of human communication errors and application to railway track
maintenance,” Cognition, Technol. Work, vol. 8, no. 1, p. 57, 2006.

[13] K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar,
“A taxonomy of AI techniques for 6G communication networks,”
Comput. Commun., vol. 161, pp. 279–303, Sep. 2020.

[14] J. S. Angarita-Zapata, A. D. Masegosa, and I. Triguero, “A taxonomy
of traffic forecasting regression problems from a supervised learning
perspective,” IEEE Access, vol. 7, pp. 68185–68205, 2019.

[15] J. Suaboot et al., “A taxonomy of supervised learning for IDSs in
SCADA environments,” ACM Comput. Surv., vol. 53, no. 2, pp. 1–37,
Jul. 2020.

[16] J. Del Ser, E. Osaba, J. J. Sanchez-Medina, and I. Fister, “Bioinspired
computational intelligence and transportation systems: A long road
ahead,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 2, pp. 466–495,
Mar. 2019.

[17] J. Xie, J. Huang, C. Zeng, S.-H. Jiang, and N. Podlich, “Systematic
literature review on data-driven models for predictive maintenance of
railway track: Implications in geotechnical engineering,” Geoscience,
vol. 10, no. 11, pp. 1–24, 2020.

[18] M. Chenariyan Nakhaee, D. Hiemstra, M. Stoelinga, and M. Van
Noort, “The recent applications of machine learning in rail track
maintenance: A survey,” in Reliability, Safety, and Security of Railway
Systems. Modelling, Analysis, Verification, and Certification, S. Collart-
Dutilleul, T. Lecomte, and A. Romanovsky, Eds. Cham, Switzerland:
Springer, 2019, pp. 91–105.

[19] A. Przegalinska. (2019). State of the Art and Future of Artificial
Intelligence. [Online]. Available: https://ec.europa.eu/digital-single-
market/en/news/ethics-guidelines-trustworthy-ai

[20] A. M. Turing, “Computing machinery and intelligence,” in Parsing
Turing Test. Dordrecht, The Netherlands: Springer, 2009, pp. 23–65.

[21] Communication From the Commission to the European Parliament, the
European Council, the Council, the European Economic and Social
Committee and the Committee of the Regions, European Commission,
Brussels, Belgium, 2018.

[22] A. Annoni et al., “Artificial intelligence: A European perspec-
tive,” Joint Res. Centre, Seville, Spain, 2018. [Online]. Available:
https://repository.ust.hk/ir/Record/1783.1-39558

[23] B. Copeland. (2019) Artificial Intelligence. [Online]. Available:
https://www.britannica.com/technology/artificial-intelligence

[24] C. Di Meo, M. Di Vaio, F. Flammini, R. Nardone, S. Santini, and
V. Vittorini, “ERTMS/ETCS virtual coupling: Proof of concept and
numerical analysis,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 6,
pp. 2545–2556, Jun. 2020.

[25] K. Kuru and D. Ansell, “Tcitysmartf: A comprehensive systematic
framework for transforming cities into smart cities,” IEEE Access,
vol. 8, pp. 18615–18644, 2020.

[26] B. Jan., H. Farman, M. Khan, M. Talha, and I. U. Din, “Design-
ing a smart transportation system: An Internet of Things and big
data approach,” IEEE Wireless Commun., vol. 26, no. 4, pp. 73–79,
Aug. 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2022 at 08:44:32 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[27] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review
of machine learning and IoT in smart transportation,” Future Internet,
vol. 11, no. 4, p. 94, Apr. 2019.

[28] C. Larman, Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Interative Development. London,
U.K.: Pearson, 2012.

[29] RAILS Project. (2020). Deliverable 1.1 Definition of a Refer-
ence Taxonomy of AI in Railways. [Online]. Available: https://rails-
project.eu/wp-content/uploads/sites/73/2020/08/RAILS_D11_v25.pdf

[30] S. K. Pal and P. Mitra, Pattern Recognition Algorithms for Data Mining.
Boca Raton, FL, USA: CRC Press, 2004.

[31] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[32] Ethics Guidelines for Trustworthy AI, HLEG, EU, Brussels, Belgium,
2019. [Online]. Available: https://op.europa.eu/en/publication-detail/-
/publication/d3988569-0434-11ea-8c1f-01aa75ed71a1

[33] R. Hamon, H. Junklewitz, and I. Sanchez, Robustness and Explainabil-
ity of Artificial Intelligence. Luxembourg, U.K.: Office of the European
Union, 2020.

[34] A. Barredo Arrieta et al., “Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AI,” Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.

[35] M. Niestadt, A. Debyser, D. Scordamaglia, and M. Pape, “Artificial
intelligence in transport: Current and future developments,
opportunities and challenges,” Eur. Parliamentary Res. Service, Eur.
Parliament, Brussels, Belgium, Tech. Rep., 2019. [Online]. Available:
https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/635609/
EPRS_BRI(2019)635609_EN.pdf

[36] B. W. Smith, The Oxford Handbook of Ethics of AI. Oxford, U.K.:
Oxford Univ. Press, 2020.

[37] H. Etienne, “When AI ethics Goes astray: A case study of
autonomous vehicles,” Social Sci. Comput. Rev., vol. 2020, Feb. 2020,
Art. no. 089443932090650.

[38] J. Morley et al., “The ethics of AI in health care: A mapping review,”
Social Sci. Med., vol. 260, Sep. 2020, Art. no. 113172.

[39] A. Winfield, “Ethical standards in robotics and AI,” Nature Electron.,
vol. 2, no. 2, pp. 46–48, Feb. 2019.

[40] D. Rößler, J. Reisch, F. Hauck, and N. Kliewer, “Discerning primary
and secondary delays in railway networks using explainable AI,”
Transp. Res. Proc., vol. 52, pp. 171–178, 2021.

[41] K. Gade, S. C. Geyik, K. Kenthapadi, V. Mithal, and A. Taly, “Explain-
able AI in industry,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 3203–3204.

[42] N. Duckworth, “AI in supply chain: Six barriers to seeing results,”
Supply Chain Brain, 2019. [Online]. Available: https://www.
supplychainbrain.com/blogs/1-think-tank/post/30051-six-barriers-
to-getting-results-with-ai-in-supply-chain-management

[43] S. Liu, Q. Wang, and Y. Luo, “A review of applications of visual
inspection technology based on image processing in the railway indus-
try,” Transp. Saf. Environ., vol. 1, no. 3, pp. 185–204, Dec. 2019.

[44] Y. Zang, W. Shangguan, B. Cai, H. Wang, and M. G. Pecht, “Methods
for fault diagnosis of high-speed railways: A review,” Proc. Inst. Mech.
Eng., O, J. Risk Rel., vol. 233, no. 5, pp. 908–922, Oct. 2019.

[45] B.-H. Li, B.-C. Hou, W.-T. Yu, X.-B. Lu, and C.-W. Yang, “Applica-
tions of artificial intelligence in intelligent manufacturing: A review,”
Frontiers Inf. Technol. Electron. Eng., vol. 18, no. 1, pp. 86–96, 2017.

[46] P. Bastos, R. Lopes, L. Pires, and T. Pedrosa, “Maintenance behaviour-
based prediction system using data mining,” in Proc. IEEE Int. Conf.
Ind. Eng. Eng. Manage., Dec. 2009, pp. 2487–2491.

[47] NOS. (2017). Prorail Kan Wisselstoringen Voorspellen. [Online].
Available: https://nos.nl/artikel/2176395-prorail-kan-wisselstoringen-
voorspellen.html

[48] SpoorPro. (2019) Experiment Zelfrijdende Passagierstrein Geslaagd.
[Online]. Available: https://www.spoorpro.nl/materieel/2019/03/15/
experiment-met-zelfrijdende-passagierstrein-geslaagd/

[49] G. Di Leo, R. Lengu, N. Mazzino, and A. Paolillo, “Pattern recognition
for defect detection in uncontrolled environment railway applications,”
in Image Analysis Processing, A. Petrosino, Ed. Berlin, Germany:
Springer, 2013, pp. 753–757.

[50] Y. Cao, T. Wang, and X. Song, “An energy-aware, agent-based
maintenance-scheduling framework to improve occupant satisfaction,”
Autom. Construct., vol. 60, pp. 49–57, Dec. 2015.

[51] M. Gul and E. Celik, “Fuzzy rule-based Fine–Kinney risk assessment
approach for rail transportation systems,” Hum. Ecol. Risk Assessment,
Int. J., vol. 24, no. 7, pp. 1786–1812, Oct. 2018.

[52] H. Alawad, S. Kaewunruen, and M. An, “Learning from accidents:
Machine learning for safety at railway stations,” IEEE Access, vol. 8,
pp. 633–648, 2020.

[53] S. Shalini and A. A. Narasimham, “A review on rail accidents
and predictions using data mining techniques,” Int. J. Res., vol. 4,
pp. 2094–2098, 2017.

[54] S. Janssen, A. Sharpanskykh, and R. Curran, “AbSRiM: An agent-
based security risk management approach for airport operations,” Risk
Anal., vol. 39, no. 7, pp. 1582–1596, Jul. 2019.

[55] J. Yin, S. Su, J. Xun, T. Tang, and R. Liu, “Data-driven approaches
for modeling train control models: Comparison and case studies,” ISA
Trans., vol. 98, pp. 349–363, Mar. 2020.

[56] M. O’Brien, K. Neubauer, J. Van Brummelen, and H. Najjaran,
“Analysis of driving data for autonomous vehicle applications,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Dec. 2017, pp. 3677–3682.

[57] H. Ye and R. Liu, “Nonlinear programming methods based on closed-
form expressions for optimal train control,” Transp. Res. C, Emerg.
Technol., vol. 82, pp. 102–123, Sep. 2017.

[58] H. Schaefer and S. Pferdmenges, “An expert system for real-time
train dispatching,” WIT Trans. Built Environ., vol. 7, pp. 27–34,
Dec. 1970.

[59] J. Yin, D. Chen, and L. Li, “Intelligent train operation algo-
rithms for subway by expert system and reinforcement learning,”
IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2561–2571,
Dec. 2014.

[60] F. Liu, R. Xu, W. Fan, and Z. Jiang, “Data analytics approach for
train timetable performance measures using automatic train supervision
data,” IET Intell. Transp. Syst., vol. 12, no. 7, pp. 568–577, Sep. 2018.

[61] F. Cerreto, B. F. Nielsen, O. A. Nielsen, and S. S. Harrod, “Application
of data clustering to railway delay pattern recognition,” J. Adv. Transp.,
vol. 2018, pp. 1–18, 2018.

[62] C. Wen et al., “Train dispatching management with data-driven
approaches: A comprehensive review and appraisal,” IEEE Access,
vol. 7, pp. 114547–114571, 2019.

[63] E. Nygren, A. Egli, D. Abels, L. Jöckel, and L. Rothen, “Reinforcement
learning for railway scheduling: Overcoming data sparseness through
simulations,” in Performance Computing. San Jose, CA, USA: GTC
Europe, 2017.

[64] V. Fragnelli and S. Sanguineti, “A game theoretic model for re-
optimizing a railway timetable,” Eur. Transp. Res. Rev., vol. 6, no. 2,
pp. 113–125, Jun. 2014.

[65] Z. Schwartz, T. Webb, and L. Koupriouchina, “Enhancing the accuracy
of revenue management system forecasts: The impact of machine
and human learning on the effectiveness of hotel occupancy forecast
combinations across multiple forecasting horizons,” Tourism Econ.,
vol. 27, no. 2, pp. 273–291, 2019.

[66] C. Bahadir and A. Karahoca, “Airline revenue management via data
mining,” Global J. Inf. Technol., Emerg. Technol., vol. 7, no. 3,
pp. 128–148, Dec. 2017.

[67] C. Cleophas, “Multi-agent modelling for revenue management,”
J. Revenue Pricing Manage., vol. 11, no. 2, pp. 240–242, Mar. 2012.

[68] K. Isler and H. Imhof, “A game theoretic model for airline revenue
management and competitive pricing,” J. Revenue Pricing Manage.,
vol. 7, no. 4, pp. 384–396, Dec. 2008.

[69] R. Mackett and M. Edwards, “An expert system to advise on urban
public transport technologies,” Comput., Environ. Urban Syst., vol. 20,
nos. 4–5, pp. 261–273, Jul. 1996.

[70] B. S. Salleh, R. A. O. K. Rahmat, and A. Ismail, “Expert system
on selection of mobility management strategies towards implementing
active transport,” Proc.-Social Behav. Sci., vol. 195, pp. 2896–2904,
Jul. 2015.

[71] T. F. Welch and A. Widita, “Big data in public transportation: A review
of sources and methods,” Transp. Rev., vol. 39, no. 6, pp. 795–818,
Nov. 2019.

[72] Y. Wang and Z. Zeng, Data-Driven Solutions to Transportation Prob-
lems. Amsterdam, The Netherlands: Elsevier, 2018.

[73] A. Roumboutsos and S. Kapros, “A game theory approach to urban
public transport integration policy,” Transp. Policy, vol. 15, no. 4,
pp. 209–215, Jul. 2008.

[74] W. Zhu, M. Chen, D. Wang, and D. Ma, “Policy-combination oriented
optimization for public transportation based on the game theory,” Math.
Problems Eng., vol. 2018, pp. 1–14, Jul. 2018.

[75] L. Weigang, C. J. P. Alves, and N. Omar, “An expert system for air
traffic flow management,” J. Adv. Transp., vol. 31, no. 3, pp. 343–361,
Jun. 1997.

[76] W. Xu, Y. Qin, and H. Huang, “A new method of railway passenger
flow forecasting based on spatio-temporal data mining,” in Proc. 7th
Int. Conf. Intell. Transp. Syst., 2004, pp. 402–405.

[77] D. Zheng, Y. Wang, P. Z. Tang, and Y. P. Wu, “Application of data
mining in the forecasting of railway passenger flow,” Adv. Mater. Res.,
vols. 834–836, pp. 958–961, Oct. 2013.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2022 at 08:44:32 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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