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Abstract
Machine learning algorithms show promise in assisting clinical decision-making; however, only a few have been 
successfully implemented in practice. To bridge this gap, it is essential to analyse the clinicians’ perspective on 
the compatibility of Artificial Intelligence-based clinical decision support systems (AI-CDSSs) with their clinical 
tasks. We therefore conducted a literature review of 21 empirical qualitative studies that examined the interaction 
between health professionals and AI-CDSSs. We synthesised the research through the lens of the Task-Technology 
Fit (TTF) model, analysing task, technology and individual characteristics of AI-CDSS applications, to identify design 
elements that are (mis)aligned with clinicians’ needs. Three key findings emerged from our analysis. First, clinicians 
often expressed scepticism about the clinical judgements of AI-CDSSs, particularly questioning the system’s ability 
to compete with clinical expertise in the absence of contextual information. Users valued AI primarily for specific 
strengths, such as identifying trends in patient trajectories, consolidating large datasets and pattern recognition, 
and comparing similar patient cases, but were hesitant to rely on it for clinical decisions. Second, actionability 
emerged as a desired characteristic of AI-CDSSs. For instance, clinicians particularly appreciated features of AI-CDSSs 
that enabled them to explore how different clinical actions might influence outcomes, as well as Explainable AI 
for identifying modifiable variables that impacted prediction scores, allowing them to take informed action. Third, 
we identified various ways AI-CDSSs could be used in clinical practice, including for patient prioritisation, patient 
monitoring, care acceleration, risk communication and workflow efficiency. In essence, AI-CDSSs functioned either 
as an alert system, preventing oversights, or as a tool for more informed decision making. Our analysis challenges 
the assumption that AI-CDSSs add little value when clinicians disregard its predictions, as it frequently prompts 
them to critically reassess their judgments through additional testing, consultation with colleagues, and other 
actions. Overall, our findings underscore the importance of an in-depth understanding of how AI-CDSSs are used 
in clinical practice. To optimise for effectiveness, the design of AI-CDSSs should prioritise supporting clinicians’ 
cognitive processes and information needs. This approach ensures that we move beyond the hype, focusing on the 
responsible integration of AI-CDSSs, and ultimately enhancing patient care.

Keywords  Artificial intelligence, Clinical Decision Support System, Task-Technology Fit, Human-AI collaboration, AI 
adoption, Attitude of health personnel
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Introduction
Artificial intelligence (AI) in healthcare has the poten-
tial to transform the way healthcare professionals make 
diagnoses, therapeutic and prognostic recommenda-
tions [1, 2]. By leveraging multi-source data and machine 
learning, AI-based clinical decision support systems (AI-
CDSSs) personalise patient care and can improve health-
care services, thereby reducing healthcare costs [3]. As 
healthcare organisations modernise their digital infra-
structure, the increasing availability of healthcare data 
is expected to accelerate the development of AI-CDSSs, 
fundamentally reshaping healthcare delivery [4].

Despite the significant promise of AI-CDSSs in health-
care, empirical evidence of its clinical effectiveness 
remains limited. For example, two systematic reviews 
of randomised controlled trials (RCTs) have concluded 
that the impact of AI-CDSSs on clinical outcomes has 
often been modest [5, 6]. These findings suggest that the 
development of an accurate AI tool alone is insufficient 
to achieve value in real-world settings. Implementation 
science has already emphasised the need for a compre-
hensive systems perspective that considers multiple 
dimensions - such as acceptability, feasibility, and fidelity 
- which collectively determine an intervention’s impact 
[7].

Recent research [8] revealed that RCTs on AI-CDSSs 
still tend to adopt a narrow focus, leaving various dimen-
sions described by Proctor et al. [7] unaddressed. One 
such underexplored implementation outcome is ‘appro-
priateness’, which refers to the compatibility of AI-CDSSs 
with clinical tasks and whether clinicians found the tools 
useful [8]. Since AI-CDSSs are, by definition, designed as 
support tools, their performance and clinical value are 
intrinsically tied to clinician interactions and perceived 
functionality.

This paper aims to synthesise qualitative research that 
describes the clinician’s perspective when interacting 
with AI-CDSSs. To this end, the Task-Technology-Fit 
(TTF) model is applied [9]. Previous literature reviews 
have explored clinicians’ perspectives on AI-CDSSs from 
various angles. For instance, Lambert et al. [10] investi-
gated clinician acceptance using the Unified Theory of 
Acceptance and Use of Technology (UTAUT). Other 
reviews from clinician perspective have taken broad 
approaches covering effectiveness, outcomes, and costs 
(e.g., [11]) or concentrated primarily on technological 
aspects without considering task-related factors (e.g., [12, 
13]). Wang et al. [14] provided a comprehensive clinician-
centered review synthesising user needs and adoption 
challenges and design implications, though without spe-
cifically addressing the interplay between task demands, 
system capabilities, and user characteristics.

By adopting a TTF perspective, this literature review 
addresses a niche by offering a unique design-centric 

approach to enhance the integration and adoption of AI-
CDSSs in clinical practice. For our study, we distinguish 
AI-based CDSSs from conventional CDSSs by defining 
AI as machine learning approaches that enhance their 
task performance through exposure to additional data 
[15]. We align with Berente et al. [16]’s perspective that 
AI represents a sociotechnical “moving frontier” with 
evolving boundaries. Following prior work in clinical pre-
diction modelling [17], we exclude conventional statisti-
cal methods such as logistic regression, from machine 
learning approaches. This scope allows us to focus on the 
transparency and usability challenges associated specifi-
cally with AI-based CDSSs. Moreover, we restricted the 
review to AI-CDSSs that analyse tabular data, excluding 
imaging- and Natural Language Processing-based CDSS 
whose fundamentally different technological mecha-
nisms and data representations would compromise syn-
thesis in our TTF analysis.

As the first step in this process, the background section 
of this paper will provide an overview of the TTF model, 
outlining its core concepts and relevance to this study. 
Results retrieved from the included articles will be then 
categorised under the model’s core concepts, with impli-
cations explored in the discussion section.

Theoretical model Task-Technology-Fit
A Task-Technology Fit, as defined by its conceptual 
architects Goodhue and Thompson [9], is ‘the degree to 
which a technology assists an individual in performing his 
or her portfolio of tasks’ (p. 216). According to the TTF 
model, this fit depends on the alignment of (1) task speci-
ficities, (2) characteristics of the individual, and (3) tech-
nological features. TTF therefore stresses that we should 
not assess the performance of a technology without con-
sidering its context of use [9]. In their paper, Goodhue 
and Thompson [9] situated the TTF within the broader 
framework of the Technology-to-Performance chain 
model, which includes additional precursors to utilisa-
tion. By placing performance impact as the end outcome 
and not utilisation, the authors emphasise responsible 
use of technology. A singular focus on increasing tech-
nology utilisation could undermine performance [9]. 
This issue is particularly relevant in the context of AI-
CDSSs, where overreliance - accepting false negative or 
false positive predictions - becomes problematic. While 
literature indicates that AI-CDSSs are being underused 
[5, 18], overreliance on AI-CDSS advice may lead to the 
acceptance of inaccurate results [19]. False positive and 
false negative recommendations can misguide clinicians, 
resulting in significantly lower performance [19]. There-
fore, TTF has a preference over other task technology fit 
models, such as the Ammenwerth, Iller and Mahler [20] 
‘Fit between Individuals, Task, and Technology ‘ (FITT) 
model, which has not been theoretically placed within a 
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broader context as the TTF is in the Technology-to-Per-
formance chain model.

Furthermore, in their meta-analysis of research that 
has applied TTF, Cane and McCarthy [21] concluded 
that, compared to the Technology Adoption models, 
TTF is particularly well-suited for generating design-ori-
ented recommendations, as it explores the preconditions 
for perceived usefulness. For instance, one study [22] 
has used the TTF model for designing a mobile clinical 
support decision tool. A TTF analysis can thus provide 
valuable insights for the implementation outcome ‘appro-
priateness’1, which is currently less explored compared 
to ‘acceptability’2 [8]. The TTF has been applied in many 
IT domains, including education, health care and busi-
ness fields [23, 24]. TTF of health technologies specifi-
cally has been assessed quantitatively (e.g. [18, 25–27]), 
qualitatively [28] or with mixed method (e.g. [22, 29, 30]). 
Studies on subject related topics, such as task-technol-
ogy fit of an mHealth app [28] or clinical decision sup-
port systems [18, 22], have already demonstrated the 
usefulness of this model for gathering relevant insights. 
Of particular relevance is a survey of 247 clinicians con-
ducted by Zheng et al. [18]. Their findings confirmed that 
the task-technology fit of CDSSs, through its effects on 
performance expectations and reduced perceived risk, 
positively influence clinicians’ intention to use CDSSs. 
Although personal characteristics were not considered, 
technological characteristics had a substantially stronger 
influence on TTF than task characteristics [18].

In this review, all core concepts of TTF model are 
examined. Goodhue, who conceptualised the TTF, stated 
that user evaluations are the preferred method for deter-
mining task-technology fit [31]. Accordingly, we framed 
the following research questions from the perspective of 
clinicians interacting with AI-CDSSs:

1.	 Technology characteristics (section “Technology 
characteristics: limitations and needs”): Which 
specific features or functionalities of AI-CDSSs do 
clinicians perceive as increasing or decreasing their fit 
with clinical tasks?

2.	 Task characteristics (section “Task characteristics: 
opportunities and challenges”): Which clinical task 
characteristics create opportunities or challenges for 
the perceived TTF of AI-CDSSs?

3.	 Individual clinician characteristics (section 
“Individual characteristics: competencies and 
cognitive frameworks”): How do differences among 

1  Defined by [8] as ‘The perceived fit, relevance, or compatibility of the AI 
for a given clinical setting, user, or consumer, and/or the perceived fit of the 
AI to address a specific clinical problem’.
2  Defined by [8] as ‘how agreeable, palatable, or satisfactory an AI interven-
tion is perceived’.

clinicians affect their perception of the TTF of 
AI-CDSSs?

4.	 Perceived Task-Technology-Fit (section “Perceived 
Task-Technology-Fit”): In what way do clinicians 
integrate AI-CDSS into their clinical decision making?

Using the TTF model, the synthesis of qualitative data 
in this study focuses on the perceived usefulness of AI-
CDSS features and functionalities in relation to clinical 
tasks and highlights any misalignments that may explain 
the low uptake in clinical practice.

Methods
Scope
The goal of the literature search was to identify all stud-
ies that have qualitatively and empirically assessed the 
interaction between the clinical user and an AI-CDSS. 
Because of our assumption that the reasoning processes 
and needs of clinicians significantly differ per type of AI, 
we focused on AI-CDSSs using tabular data instead of 
those based on imaging or text data via computer vision 
or natural language processing. Originally, we intended 
to include only studies that evaluated AI-CDSSs that had 
been implemented in clinical practice; however, due to a 
scarcity of such studies, we included all types of qualita-
tive empirical research with AI-CDSSs.

Databases search
Our search strategy, in collaboration with a librarian, 
included a combination of multidisciplinary and special-
ized databases: Web of Science (core collection) (multi-
disciplinary), Dimensions (multidisciplinary), PubMed 
(life sciences and biomedical), IEEE Xplore (computer 
science). ArXiv preprints were included in Dimensions 
search queries to capture recent developments. Data-
bases were searched up to 9th of July 2024, with no date 
restrictions applied.

Three domains of keywords were combined using 
‘AND’; within these domains, terms were linked with ‘OR’. 
The first domain encompassed terms related to machine 
learning (ML), the second to decision support tools, and 
the third to both qualitative and empirical studies. To 
exclude studies on AI- CDSS for imaging data, ‘NOT’ 
was added to filter out references related to radiology. For 
searches in non-medical databases, a fifth domain speci-
fying the health domain was included. Detailed descrip-
tion of search terms can be found in Supplementary 
Material 1.

Eligibility criteria
The inclusion criteria were defined as follows: an empiri-
cal study design, the use of a clinical decision support 
tool based on AI, and qualitative evaluation of either 
implemented or simulated AI-CDSS. Exclusion criteria 
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were specified as: non-ML prediction model (e.g., logistic 
regression), AI-CDSS primarily consisting of computer 
vision or natural language processing algorithms, mental 
healthcare AI-CDSS, quantitative research design, lack 
of full text, conference abstracts, book chapters and lan-
guages other than English or Dutch.

Titles and abstracts were independently screened by 
two reviewers (CSP and NAO) using Rayyan software 
[32]. To refine and calibrate their screening methods, 
a pilot screening of 10 articles was conducted. Full-text 
articles were then assessed for eligibility by the first 
author (CSP).

Data extraction
The following data were extracted from the included 
studies: first author, year of publication, country, title, 
AI-CDSS’s outcome, participants included, implementa-
tion phase and qualitative results (including supplemen-
tary material for quotes). The implementation phases 
were categorised as: ‘Mock AI’ (not yet based on real 
data), ‘Test AI’ (based on data but with vignette-based 
evaluation) and ‘Implemented AI’ (deployed in clini-
cal practice). Qualitative results were analysed using 
the qualitative analysis software Atlas.TI (version 24). A 
descriptive overview of the extracted information from 
each included study is available in Supplementary Mate-
rial 2.

Data analysis
First, we familiarised ourselves with the extracted data 
and applied a priori coding using the core components of 
the TTF model as organising categories: technology char-
acteristics, task characteristics, individual characteristics, 
and perceived task-technology fit. Within these cat-
egories, the first author (CSP) conducted inductive cod-
ing of the qualitative findings to derive subthemes (e.g. 
‘personal_AI literacy’ or ‘technology_customisation’). 
We followed the six-phase approach described by Braun 
& Clarke [33, 34], which offers a flexible yet systematic 
framework for identifying and integrating patterns across 
heterogeneous qualitative studies. We used a single-coder 
analysis approach to ensure analytic depth and coherence 
in the iterative coding process. This approach aligns with 
the reflexive thematic analysis (RTA) premise that “mean-
ing and knowledge are understood as situated and con-
textual, and researcher subjectivity is conceptualised as 
a resource for knowledge production” [35, pp. 334–335]. 
We therefore make explicit that the first author’s multi-
disciplinary background in medicine and in data science 
in population health management inevitably shaped cod-
ing and interpretation. The analysis involved develop-
ing three substantially revised versions of the analytical 
narrative. Each version refined our interpretation of how 
task, technology, and individual characteristics interact 

to shape the use of AI-CDSSs, progressing from broad, 
general themes to a more coherent, coding-level narra-
tive. The final coding scheme is presented in Supplemen-
tary Material 1.

The following section presents the results of this the-
matic analysis. Due to the heterogeneity of case studies 
and for readability, clinicians’ perspectives are synthe-
sised without isolating them by level of evidence (e.g., 
evaluation of implemented, experimental, or hypothetical 
AI-CDSS features) or differentiating between direct quo-
tations and authors’ interpretations.

Results
Overview of included articles
A total of 7297 studies were identified and 4855 unique 
studies remained after duplicate removal. After the title/
abstract screening, 72 studies were deemed potentially 
relevant. Of these, 21 met the inclusion criteria (Fig. 1).

Table  1 provides an overview of the 21 case stud-
ies where clinicians interacted with AI-CDSSs. Nearly 
all included studies were published after the year 2020 
(n = 20), and most were studies conducted in the USA 
(n = 11). The maturity phase of AI-CDSSs was predomi-
nately in test AI (n = 12), followed by implemented AI 
(n = 8), and lastly Mock AI (n = 2).

 

Analysis of Task-Technology-Fit of AI-CDSSs
The section first presents the technology-related charac-
teristics that enhance or constrain TTF (4.2.1), followed 
by an exploration of how task characteristics (4.2.2) and 
individual characteristics (4.2.3) affect TTF. We then 
examine how clinicians integrate AI-CDSS into their 
decision-making processes (4.2.4) and conclude with a 
visual summary of the overall results (4.2.5).

Technology characteristics: limitations and needs
Despite the variety of AI-CDSS predictions, spanning 
from delirium to sepsis, clinicians have encountered sim-
ilar limitations when applying these tools in clinical prac-
tice. In multiple case studies, clinicians questioned the 
usefulness of percentages as outputs, a standard practice 
in data science (#7, #10, #19, #20, #21). Beyond their role 
in prioritising urgency between patients, precise percent-
ages often posed interpretive challenges for clinicians 
when assessing individual patient risk scores:

So I’m not really sure what its goal is, but I can tell 
you that most of us ignore it (the sepsis risk score) 
because it has not proved helpful to what we do 
next. (Emergency Room physician, #21)

Therefore, in one case study, risk predictions expressed as 
percentages were replaced shortly after implementation 
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with a three-tier visual risk categorisation (#7). This 
approach was considered more actionable, helping cli-
nicians to identify patients near the thresholds between 
risk groups and in need of extra care.

Multiple clinicians highlighted the need for AI recom-
mendations to be directly applicable to their tasks (#2, 
#3, #5, #10, #16, #20, #21). Case studies (#4, #9, #17, #20, 
#21) involving AI-CDSS that provided specific task rec-
ommendations - such as drug doses, IV fluid, lab tests, 
red blood cell transfusion - elicited generally positive 
responses from clinicians, particularly in comments 
about perceived usefulness and the degree to which the 
systems were integrated into decision-making, compared 
to other case studies. However, overly granular percent-
age differences (#20) or impractical recommendations, 
such as excessively small doses (#17), diminished clinical 
relevance:

I’ve never ordered such a small dose of fluids… To 
me, that’s like sprinkling water on her. (Attending 
physician Intensive Care Unit, #17)

Furthermore, AI-CDSSs that were overly directive in 
their recommendations created unease among clinicians. 
This was highlighted in a case study where one clinician 
remarked, “seems like the system was designed to replace 
doctors” which limited the system’s use in clinical prac-
tice (#18).

To enhance task relevance, clinicians often expressed a 
desire to understand the most influential variables driv-
ing prediction scores (#2, #3, #6, #8, #9, #10, #13, #14, 
#15, #16, #17, #18, #21). They consistently highlighted 
that explainable AI (XAI) is primarily valuable when it 
offers insights into variables they can directly influence 
in their clinical practice. In contrast, they found less 
value in XAI outputs that focused on, for instance, reac-
tive physiological variables that have minimal impact on 
treatment (#2), uncontrollable factors such as age (#11), 
incomparable patient cases (#3), or medically unrealistic 

Fig. 1  Flowchart of study inclusion and exclusion. Abbreviations: n = number, LLM = large language model, AI = artificial intelligence
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Table 1  Characteristics of included studies (n = 21)
# 
ID

Ref First author 
(Year)

Country AI-CDSS outcome Maturity of 
AI-CDSS

Study 
participants

#1 [36] Abdulaal 
(2021)

UK Probability of death during the current hospital admission for COVID-19 
patient

Test AI 31 physicians

#2 [37] Abraham 
(2023)

USA Perioperative risk predictions for acute kidney injury, delirium, pneumo-
nia, deep vein thrombosis, and pulmonary embolism

Test AI 17 clinicians

#3 [38] Anjara (2023) Spain Stratification lung oncology patients based on post-treatment compli-
cation risks, predicting chances of patient’s relapse

Test AI 10 oncologists

#4 [39] Choudhury 
(2022)

USA AI–based blood utilisation calculator (BUC) for red blood cell transfusion Implemented
(> 1 year)

10 clinicians

#5 [40] Fritz (2024) USA Probability postoperative death, acute kidney injury, respiratory failure, 
and myocardial infarction.

Mock AI 25 
anaesthesiologists

#6 [41] Henry (2022) USA Risk alert sepsis Implemented
(> 6 months)

20 clinicians

#7 [42] Jauk (2021) Austria Delirium risk stratification tool Implemented
(> 7 months)

15 clinicians

#8 [43] Jin (2020) China Diagnosis risk and treatment outcome analysis (estimation of the most 
influential treatment)

Test AI 7 physicians (1 
based in USA)

#9 [44] Liu (2023) USA Vancomycin dosing Test AI 13 critical care 
pharmacists

#10 [45] Matthiesen 
(2021)

Denmark Predicting ventricular tachycardia and ventricular fibrillation (VT/VF) 
within 30 days

Test AI 7 
electrophysiologists

#11 [46] Naiseh 
(2023)

UK Classifying chemotherapy prescriptions as confirmed or rejected + five 
types of XAI

Mock AI 16 clinicians 
(physicians and 
pharmacists)

#12 [47] Panigutti 
(2022)

Online Binary prediction of acute
myocardial infarction

Test AI 28 health care pro-
fessionals (includ-
ing 25 clinicians)

#13 [48] Payne (2024) USA Early Warning Score Sepsis Test AI 12 clinicians
#14 [49] Samhammer 

(2022)
Germany Risk prediction of infection and graft loss in the next 90 days. Test AI 14 nephrologists

#15 [50] Sandhu 
(2020)

USA Sepsis risk within the subsequent 4 hours Implemented
(> 4 months)

15 Emergency De-
partment clinicians

#16 [51] Schwartz 
(2022)

USA Risk of in-hospital deterioration Implemented
(> 3 months)

17 clinicians

#17 [52] Sivaraman 
(2023)

USA Recommendation of an action state of 5
possible levels of Intravenous fluids and 5 vasopressor dosages

Test AI 24 Intensive Care 
Unit clinicians

#18 [53] Wang (2021) China Recommendation of most likely diagnoses Implemented
(> 6 months)

22 clinicians 
(incl. 4 traditional 
Chinese medicine 
professionals)

#19 [54] Yang (2019) USA Supporting the decision to implant ventricular assist device (VAD) by
visualizing the patient outcome predictions, including life expectancy, 
estimated time until right heart failure, and likely
cause of death

Test AI* 17 clinicians

#20 [55] Yoon (2024) Singapore Diabetes medication prescribing recommendation and diabetes com-
plication risk prediction

Implemented
(> 4 weeks)

13 clinicians

#21 [56] Zhang 
(2024)

USA Previous AI-CDSS: alert for sepsis New AI-CDSS: patient’s current and 
in the next 4 hours sepsis risk score, including prediction uncertainty, 
and actionable suggestions to reduce such uncertainty

Previous AI-
CDSS: Imple-
mented New 
AI-CDSS: 
Test AI

6 clinicians

Overview of included studies. Abbreviations: AI-CDSS = Artificial Intelligence-based Clinical Decision Support Systems, USA = United states of America, UK = United 
Kingdom. *Operational but not yet data-driven (simulated)
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counterfactual explanations (#11). Understanding the 
relationships between these modifiable variables and risk 
predictions enables clinicians to take actionable steps in 
patient care:

[The current prototype is] still kind of missing… the 
action item, right? What should the blood pressure 
be to decrease risk, right? Or if this patient is already 
mechanically ventilated, what should the CO2 be to 
decrease risk? (Anaesthetist, #2)

Moreover, some clinicians stressed the need for underly-
ing variables that drive predictions to have causal rela-
tionships rather than mere statistical associations to 
derive clinically meaningful interpretations (#11, #14, 
#19). Although clinicians expressed high standards for 
explainability, its complete absence was viewed unfavour-
ably in the one case study that lacked any form of XAI. 
In this example (#9), clinicians demonstrated low adher-
ence to vancomycin dosing recommendations, despite 
the actionable nature and well-received purpose of the 
AI-CDSS. This was attributed to the “black box” nature of 
the recommendations (#9).

A second limitation frequently mentioned in inter-
views, was AI-CDSSs lack of access to key information 
clinicians rely on, such as free-text notes (#14), bedside 
observations and patient interactions (#6, #14, #17, #18), 
and contextual factors such as insurance policies (#18). 
One participant in #17’s study highlighted this gap:

At the bedside, I would acquire one or two pieces of 
reliable, better-quality data than the algorithm has 
available. And then I would use that to make my 
decision […] It’s not fair to ask an algorithm to make 
a prediction as reliable as that, because it doesn’t 
have access to that. (Attending physician Intensive 
Care Unit, #17)

Additional concerns included poor data documentation 
quality (#8, #13), adjustment of medical device settings 
(#10), evolving medical knowledge and practices (#1, #8, 
#11), and delays or unavailability of critical data (#16, 
#21). This affects task usability, especially in instances 
where healthcare professionals fail to document informa-
tion correctly:

There are many times vital signs are documented 
incorrectly, such as a temperature of 20… AI is going 
to tell me there’s a problem. That’s where the human 
component comes in… It appears AI spits out num-
bers saying ‘Go deal with it.’ That’s when I don’t 
really trust the system. I still have to go and look at 
it, which defeats the purpose of the system. (Rapid 
Response Team clinician, #13)

Despite these limitations, AI-CDSSs were acknowledged 
for its unique capabilities in supporting clinicians in their 
clinical practice. Clinicians valued how AI-CDSSs helped 
to process the large volume of parameters and data (#6, 
#14, #16, #19) and facilitated access to data sources that 
clinicians often lack time to review, such as nursing notes 
(#16):

[N]ot that it takes over my work, but that it helps me 
to record everything […] because I am no longer able 
to record all the data that is collected. It is difficult 
for me to look through a laboratory with 35 param-
eters and to look at every value and somehow not 
miss anything. And that helps me to somehow make 
a correct assessment or to point things out to myself 
(Junior physician, #14)

A second strength often mentioned, was AI-CDSS’s abil-
ity to detect subtle changes in patterns and trends that 
clinicians have difficulty noticing (#5, #13, #16, #20), 
which could help to provide timely care:

Maybe the algorithm’s better at like kind of like 
nudging us to just like readdress some things that 
maybe are changing minutely day to day, so we may 
miss if we’re if we’re not, like, really aware of the 
trend. (Physician, #16)

Clinicians particularly valued visualisations that dis-
played timelines of patient trajectories, improving pre-
diction comprehension (#13, #20, #21). However, early 
predictions occasionally created friction, as clinicians 
tended to reject AI-CDSSs in the absence of clinical vali-
dation, particularly when concerned about potential iat-
rogenic harm (#6, #15, #16). Due to this friction, one case 
study adjusted the timing of alerts to align with real-time 
clinical assessments (#6). #17 noted how a 4-hour pre-
dictive window induced clinical hesitation and delayed 
decision-making in high-stakes cases, and thus poten-
tially diminishing the system’s prognostic utility. Similar 
observations were made by a nurse whose role was to 
alert Emergency Department physicians to patient risk 
based on the Sepsis Watch tool (#15):

I think a big part of people not understanding [Sep-
sis Watch], including the ED [emergency depart-
ment] doc, is if vitals are stable. We’re not gonna 
treat because they look stable. I know but we’re try-
ing to catch it before it’s unstable. And that’s the big-
gest piece people don’t get…fact that it’s predictive 
like, hammering that in will help people see…we’re 
trying to prevent the decline. (Rapid Response Team 
nurse, #15)
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Thirdly, AI-CDSSs provide clinicians with valuable tools 
to explore the impact of different clinical actions. Access 
to similar historical cases to compare treatment and diag-
nosis strategies was generally well-received (#8, #11, #14, 
#17, #18):

Seeing the different outcomes to those decisions in 
a similar case, I think is…the most convincing to 
change your clinical decision making (Attending 
physician Intensive Care Unit, #17)

However, clinicians also raised concerns that such com-
parisons might lead users to mimic less experienced cli-
nicians and their errors in clinical management (#17). 
Additionally, another interviewee noted that the concept 
of similarity between patients is not straightforward, 
and clinicians need to consider how it is exactly defined 
before application (#11).

Beyond analysing historical cases, adjustable predic-
tions were seen as another valuable approach to support 
clinical decision-making (#3, #8, #17, #19, #21). #8’s case 
study demonstrated that the ‘treatment outcome analy-
sis’ feature, where the impact of different treatments 
was compared, was highly valued by clinician users, 
while #21’s case study showed strong clinician interest in 
understanding the predictive impact of different labora-
tory tests. Clinicians expressed additional preferences 
for customisation, including control over variables used 
in score predictions (#14), the ability to define similar-
ity metrics (#11), and flexibility in specifying features for 
counterfactual analyses (#11). Furthermore, clinicians 
emphasised the importance of being able to adjust the 
prediction score thresholds to align with local workflows, 
prioritisation rules, individual clinician treatment strate-
gies and patient populations (#4, #10, #17, #21).

If you set them too low, you’ll get way more alerts 
than might be clinically present. And you’ll likely 
get fatigued and potentially [ignore alerts]. If you set 
them too high, you make it unlikely that any of these 
would ever be prevented, because you’re apt to just… 
have them develop. (Anaesthetist, #2)

In conclusion, clinicians identified actionable risk scores, 
actionable XAI, scenario cross-analysis, trend detection, 
and customisation as desirable AI-CDSS features for 
clinical practice. However, limitations such as restricted 
access to key information, concerns about data qual-
ity and reliability, and the timing of recommendations 
reduced the applicability of AI-CDSSs in clinical practice.

Task characteristics: opportunities and challenges
Clinicians identified several application areas where 
AI-CDSSs could provide valuable assistance to clinical 

practice: care acceleration and patient prioritisation, 
operational efficiency, risk communication and by adding 
objectivity to decision-making processes.

Most often, clinicians expressed interest in or had 
experience using AI-CDSSs to identify opportunities 
for early intervention and care acceleration to improve 
patient outcomes (#1, #2, #3, #6, #7, #10, #13, #14, #15, 
#16, #21). Examples included were more rapid transfer to 
ICU (#1, #13, #15), earlier treatment for delirium patients 
(#7) and more intensive interventions for ventricular 
tachycardia and ventricular fibrillation (#10). Further-
more, AI-CDSSs were considered valuable for patient 
prioritisation, where risk scores could guide clinicians’ 
attention allocation, particularly in time and resource 
constrained settings (#2, #6, #10, #13).

The EWS triggers my mind to investigate a chart and 
see what’s going on and identifies patients to focus 
on, evaluate first, and decide if I need to intervene. 
(Rapid Response Team clinician, #13)

Regarding operational efficiency and workload reduction, 
an AI-CDSS demonstrates multiple benefits: it acceler-
ates clinical processes through rapid decision-making 
(#6, #7, #8, #10, #13, #14, #16, #21), performs calculations 
and personalises treatments doses (#4, #17) and helps 
alleviate cognitive burden in an environment where clini-
cians feel “bombarded with clinical information” (#6).

In a fourth application area, AI-CDSSs facilitate risk 
communication between different healthcare profes-
sionals, thereby helping to co-ordinate care (#1, #2, #19). 
When used in discussions with patients and their fami-
lies (#1, #2, #20), effective risk communication improves 
treatment adherence (#20) and helps intervene on con-
tributing factors to risk estimations preoperatively (#2). 
Additionally, two case studies noted how AI-CDSSs 
strengthen the position of nursing staff by providing evi-
dence-based support for their clinical judgments, such as 
their recommendations for extended hospitalisation or 
medical procedures (#12, #19):

The doctors in our acute medical department are 
very keen to discharge patients home; leaving nurses 
in a difficult predicament when we don’t agree with 
their decision making. A tool such as this, could help 
nurses to justify their reasons for keeping a patient 
in hospital or to use cardiac monitoring vs. not mon-
itoring. (Nurse, #12)

As an overall tool, AI-CDSSs have the potential to 
enhance clinical decision-making by introducing objec-
tive analysis. In #17’s study, the participants who con-
sistently incorporated AI recommendations were those 
who emphasised the objectivity of data. This objectivity 
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proves particularly valuable in several scenarios: when 
handling controversial cases with conflicting opinions 
(#14), during emotionally charged decisions and conver-
sations (#13, #14, #19), and in complementing clinicians’ 
intuitive assessments such as “gestalt” and “gut feelings” 
(#5, #13). Thus, AI-CDSSs help to mitigate any human 
error (#13), reduce subjectivity (#13, #14, #19), maintain 
attention despite fatigue (#8, #16) and distractions (#20), 
while limiting effects of potential personal bias towards 
patients and recency bias in clinical judgment (#10, #19).

I feel like I have that kind of gestalt if someone’s going 
to be okay, but it’s nice to see the numbers. It’s really 
nice to see the numbers. (Attending anaesthetist, #5)
 
When I really like this patient, really want to help 
him or her, it sometimes helps to get a more factual 
view. (Unspecified clinician, #19)

Despite these potentials, a major concern of numerical 
outputs is the limited ability to fully account for patient 
complexity, diversity, and individuality, particularly in 
cases of multimorbidity (#8, #9, #12, #13, #14, #16, #17, 
#18, #19).

I think if you continue to call it “VAD projections” 
65%, people are going to poke holes at it. They are 
gonna try to prove you wrong. This [Decision Sup-
port Tool projection] is just what the historical out-
comes were. But this guy is different, this guy has his 
own things that make him special. (Cardiologist, 
#19)

Clinicians therefore emphasised the need for AI-CDSS 
integration within electronic health records (EHRs) to 
access relevant clinical data and contextual information 
(#1, #2, #5, #9, #13, #15).

However, clinicians identified a fundamental limitation 
of the system’s applicability to clinical practice: its inabil-
ity to perceive patients holistically and qualitatively, as 
they do through ‘clinical gestalt’ (#12, #13, #14, #16, #17) 
and familiarity with individual patients’ trajectories (#9, 
#16, #17). As one clinician noted:

I think it’s actually, you also have to know the 
patient. That means that for me, everything starts 
from the moment the patient enters through the 
door, right? And there you can already get quite a 
lot of information, that is, about character, about 
stature, about the general condition, what you hear 
and see and so on. That’s the first impression. Then of 
course comes the factual (Senior physician, #14)

The need for such qualitative patient assessments was 
highlighted in one study, where synthetic patient case 
presentations were met with "long, awkward silence" 
from interviewees (#19). Nonetheless, clinicians also 
pointed out that in those situations where they were 
unfamiliar with patients or unable to communicate, such 
as during night shifts, AI-CDSSs could be very support-
ive (#7, #10, #16).

Finally, clinical routines limit the potential of AI-
CDSSs: clinicians have insufficient time to fully utilise 
AI-CDSS features ( #2, #6, #8, #11, #15, #18), data entry 
needed for AI-CDSS did not align with workflow during 
patient care (#1, #18), impracticality with medicine dose 
availability (#9) and (false) alerts were considered too dis-
ruptive to clinical tasks (#13, #15, #21).

I just don’t know how many people are going to have 
time and desire [to read this secondary display], and 
how useful is that going to be for clinicians when 
they’re trying to [take] care of the patient (Certified 
registered nurse anaesthetist, #2)

Clinicians therefore suggested a flexible, adaptive inter-
face with a data display tailored to their needs to prevent 
information overload in time-constrained environments 
(#2, #4, #5, #13).

In summary, AI-CDSSs offer several opportunities to 
improve patient care, including assisting clinicians in 
prioritising patients, monitoring, accelerating care, com-
municating and improving task efficiency. However, its 
potential is limited by challenges, particularly concerning 
integration into clinical workflows and the complexity 
and specificity of individual patients.

Individual characteristics: competencies and cognitive 
frameworks
The case study researchers documented individual dif-
ferences between clinicians in how AI-CDSS recommen-
dations were perceived, attributing them to AI literacy, 
clinical expertise levels, and experiential anchoring. With 
AI-CDSSs being recently introduced to healthcare, some 
clinicians struggled with AI literacy, particularly regard-
ing XAI (#3, #4, #5, #6, #11, #13, #14, #15, #16, #19). As a 
result, the potential value of AI-CDSS recommendations 
was often limited by this lack of accurate interpretation 
(#3, #15, #18, #19).

Clinicians prevalently believed that usage of AI-CDSSs 
would be most beneficial for junior clinicians (#8, #10, 
#12, #15, #16, #18, #20) or non-specialists (#15, #20). 
At times, clinicians expressed such high confidence in 
their own judgement that they completely disregarded 
AI-CDSS outcomes (#4, #9, #17, #20). Both #11 and #17 
observed a tendency toward confirmation bias, varying in 
degree across individuals.
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Clinicians’ evaluations of AI recommendations are 
influenced by previous patient encounters, a phenom-
enon known as “recency bias” (#1, #2), with a particular 
tendency to be biased toward recent cases (#19, #10). Cli-
nicians showed greater appreciation for AI recommenda-
tions in patient cases where they had limited experience 
(#16, #18). Furthermore, clinicians’ customary practices 
may conflict with AI recommendations, as clinicians 
often prefer their own patient management approach (#9, 
#17, #20).

Lastly, in interviews, clinicians emphasised the promi-
nent role of intuition in patient care, particularly when 
they were familiar with the patient (#6, #14, #16):

I feel like a lot of times we just kind of know when 
somebody is, like, not doing well, especially when we 
have the same patients often like day to day. (Nurse, 
#16)

Two studies highlighted how senior clinicians’ reliance 
on intuition in clinical decision-making sets them apart 
from junior clinicians (#4, #14). This intuition, developed 
through experience, plays a critical role in making patient 
management decisions, leading to differences between 
senior and junior clinicians in how AI-CDSS is used 
(#14).

In conclusion, the value AI-CDSSs provide can vary 
among clinicians. Case studies have documented differ-
ences in AI literacy, levels of expertise and the resulting 
need for data-driven assistance, susceptibility to confir-
mation bias, and lastly, personal experiences with specific 
patient populations and clinical practices.

Perceived Task-Technology-Fit
Clinical interactions with AI-CDSSs varied widely, and 
this diversity is inherently linked to the nature of the AI-
CDSS outcomes; concrete treatment suggestions tend to 
support a more prominent role for AI-CDSSs in deci-
sion-making than general risk scores. Nevertheless, most 
studies, most notably the research conducted by #17, 
have documented differences in usage of the same AI-
CDSS tool. #14’s analysis of algorithmic decision making 
highlighted a key distinction between using AI-CDSS as 
a starting point to guide clinical decisions and using it as 
a feedback tool to validate decisions.

AI-CDSSs most commonly influenced decision-making 
indirectly by affecting clinicians’ confidence in a Bayes-
ian-like manner, either reinforcing existing assessments 
or encouraging reconsideration based on its recommen-
dations (#1, #2, #6, #7, #9, #10, #13, #14, #16, #17, #18, 
#20, #21). A few illustrative quotes:

Well, it hasn’t changed my current decision, but the 
basis is much better, and I can easily see that it has 
helped me. (Electrophysiologist, #10)
 
So I think that is also a good process that, if you 
make a deviating recommendation now or come to 
a deviating result, that you just once again go on the 
way to look: Did I miss something? And I think that 
exactly is part of it. (Senior physician, #14)
 
I am ambivalent about this one. Her [blood pres-
sure] is slightly low. Her heart rate is actually coming 
down, fluid balance is positive… I think it’s fine. We 
can do what the AI recommends. (Attending physi-
cian Intensive Care Unit, #17)

In a few cases, clinicians completely disregarded AI-
CDSS outputs, offering the following reasons: significant 
deviations from their own clinical assessments (#1, #4, 
#13, #14, #16), recommendations perceived as illogical 
(#5, #14, #17), suggestions that were unconventional or 
outside standard practice (#17, #20), and recognition that 
the system’s scores failed to account for critical contex-
tual factors (#9, #13, #16, #18). In other instances, while 
disagreement with AI-CDSS recommendations did not 
directly influence clinical decisions, it prompted vari-
ous follow-up action, such as consulting colleagues (#4, 
#13, #16, #17), ordering tests (#15), performing physi-
cal examination (#17), examining patient health records 
(#16, #20), or increasing patient monitoring (#15). These 
initiatives, not the AI-CDSS output itself, contributed to 
their decision-making process, as illustrated by the fol-
lowing quotes:

I think it’s just, as I said before, an additional point 
that, as I said earlier, in this relatively quick and 
intuitive process, throws a moment of thought in 
between, even more when you might be in danger of 
overlooking something. But I think the decision-mak-
ing process itself is relatively little influenced by that 
(Junior physician, #14)
 
So, the tool helps to reinforce my decision-making. 
The color-coded recommendations provide a clear 
visual indication, prompting me to address any 
discrepancies that may arise between the tool’s sug-
gestions and my own clinical plan. In this case, I 
delve into additional clinical histories that the tool 
does not have access to and elucidate the rationale 
behind my decisions. This process enhances my con-
fidence and guides better decision-making during 
the clinical visit, which can improve the quality of 
patient care. (Consultant (senior physician), #20)
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In general, two different types of TTF could be observed. 
First, AI-CDSSs were highly valued for its function as a 
feedback system, monitoring patient status and alerting 
to clinical findings to prevent oversights (#2, #6, #9, #13, 
#14, #16, #20) and signalling potential errors in patient 
care (#13, #18). Secondly, AI-CDSSs demonstrated value 
by making more informed decision, for instance by pro-
viding alternative viewpoints (#19), consolidating clinical 
data for clinicians (#1, #10) or uncovering new patterns in 
data (#2). This expectation led to some clinicians express-
ing frustration when AI-CDSS features failed to provide 
any new informative insights (#4, #10, #11, #13, #15, #21).

Overview of findings
Figure 2 provides an overview of factors that were repeat-
edly mentioned in the 21 case studies, organised by task, 
technology, and individual characteristics. The frame-
work also distinguishes two types of TTF in context of 
AI-CDSSs: (1) tools for more informed decision-making, 
and (2) feedback tools for error prevention. While some 
factors are specific to one type (e.g., scenario cross-anal-
ysis), others are shared across both (e.g., customisation).

The figure shows the importance of a contextual under-
standing in AI-CDSS design. Effective design requires 
consideration of the intended use and its constraints, and 

recognising that user factors such as AI literacy and cus-
tomary practices can influence the fit.

Discussion
The aim of this review was to describe clinicians’ per-
spectives when interacting with an AI-CDSS for clinical 
decision making. We synthesised the qualitative research 
of published case studies through the lens of the Task-
Technology Fit model, highlighting design elements of 
AI-CDSSs that are misaligned with clinicians’ tasks. In 
addition, this approach allowed us to explore how AI-
CDSSs are used and integrated in clinical decision-mak-
ing processes.

Key findings – design implications
Our TTF analysis revealed that the current design of 
AI-CDSSs is often not fully optimised for clinical tasks. 
Although none of the included case studies approached 
their interviews through a TTF lens, we found that cli-
nicians’ evaluations of AI-CDSS features tended to be 
strongly linked to their relationship to clinical tasks. For 
example, percentages as outcome were well received 
in clinical practice when used for patient prioritisation 
and care coordination communication but tended to 
cause confusion when applied to individual patient cases 
where the task relationship was less clear. Similarly, XAI’s 

Fig. 2  Task-Technology Fit Framework for AI-CDSSs based on analyses of 21 case studies
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data-driven insights were valued primarily to mitigate 
the risk of a particular event occurring, with several cli-
nicians praising its ability to provide actionable, data-
driven insights that enables effective clinical intervention, 
and less so for understanding the AI system itself. This 
finding is confirmed by a large multi-method co-design 
study involving 112 clinicians and developers [57], which 
identified that clinicians prioritise XAI relevant to the 
clinical context over purely model-focused explainability. 
Lastly, where clinicians reported not directly incorporat-
ing AI outputs into their decision making, they still val-
ued the system’s ability to raise awareness and encourage 
reconsideration of their clinical judgement, helping to 
prevent oversights in patient care.

Clinicians’ suggestions for technical adjustments like-
wise reflected a TTF perspective. Multiple times, they 
recommended flexible options for customising inter-
face displays to avoid information overload in time-
constrained environments and to address the specific 
information needs of individual clinicians. In another 
example, to mitigate some limitations associated with 
applying AI-CDSSs to their tasks, some clinicians empha-
sised the importance of integration with EHRs, allow-
ing access to relevant contextual clinical data for more 
informed decision-making. A recurring theme regarding 
the design elements was that clinicians want AI-CDSSs 
to complement their own skills, such as identifying and 
visualising trends, integrating large amounts of data, and 
reducing task uncertainty by comparing treatment and 
diagnosis strategies. These features could assist clinicians 
in either identifying aspects prone to oversight or by sup-
porting more informed decision making.

Key findings – theoretical implications
The narrow scope of the TTF model for analysing the 
use of a technology overlooks critical factors related to 
utilisation, such as described in Technology Acceptance 
Model (TAM) and Unified Theory of Acceptance and 
Use of Technology (UTAUT). UTAUT, in particular, has 
already been demonstrated to be applicable in the con-
text of clinical decision support systems [58], highlight-
ing the importance of incorporating dimensions such as 
performance expectancy, effort expectancy, and social 
influence in the analysis. Omitting these factors may lead 
to an incomplete understanding of the clinicians’ inten-
tion to use AI-CDSSs. Already in the original TTF paper, 
Goodhue and Thompson [9] extended the TTF model to 
the Technology-to-Performance Chain to include pre-
cursor factors, such as beliefs and social norms, to deter-
mine the level of utilisation. Several previous studies have 
demonstrated that the TTF perspective can be success-
fully integrated into other models such as TAM [59–62] 
and UTAUT [63–65], to enable a more holistic analysis of 
technology adoption.

Specifically, trust is often mentioned in the literature 
as one of the most important prerequisites for the use 
of artificial intelligence in healthcare [66]. In most of the 
studies included in this review, clinicians expressed a 
desire for peer-reviewed articles from prospective clini-
cal trials validating the efficacy of an AI-CDSS or valued 
endorsement from colleagues, reflecting the need for 
social trust. Therefore, this TTF perspective represents 
a single component within a larger analysis to bridge the 
gap between development and clinic. Recently, Salimza-
deh et al. [67] emphasised the importance of explicitly 
considering task characteristics when evaluating human-
AI decisions. In a non-health care setting, the researchers 
found that two task-related factors - the level of com-
plexity and of uncertainty - independently of their level 
of trust, significantly influence the extent to which users 
resort to AI for decision-making, with the level of ‘appro-
priate reliance’ being negatively affected [67]. Thus, while 
the concept of trust has been a popular subject in the 
field of AI to explain utilisation, the importance of other 
types of analysis such as the TTF should not be over-
looked. A study on autonomous buses even found that 
Task–Technology Fit served as a partial pathway linking 
trust to behavioural intention to use this type of AI-based 
technology [65].

Unlike traditional static technologies, AI-CDSSs 
undergo continuous monitoring and refinement. While 
this continuous evolution might position TTF as both a 
temporal assessment and highly situated and therefore 
less relevant, this adaptive capability actually enhances 
the importance of understanding task-technology align-
ment. As we describe in our results, some changes to 
AI-CDSSs were made based on user feedback aimed at 
achieving better TTF, such as implementing a three-tier 
visual risk categorization for patient risk monitoring. 
One of the included case studies (#21) radically rede-
signed an already implemented AI-CDSS system after 
assessing clinical needs [56]. The new model acted as an 
“early decision support tool” by predicting sepsis pro-
gression, visualising uncertainty, and suggesting addi-
tional tests to reduce it. Although not yet implemented, 
participants considered this design far more useful than 
the previous risk score, as it refined their hypotheses and 
supported diagnostic decisions by directly addressing 
their actual information needs during clinical practice. 
These examples illustrate how, in adaptive AI systems, 
TTF drives the optimisation process.

Implications for clinical practice
Frequently, clinicians were sceptical to what degree AI-
CDSSs can compete with the clinician’s expertise and 
intuition, since these systems often fail to account for 
factors reflecting patient individuality and lack impor-
tant clinical information that clinicians possess, such as 
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bedside observations. This scepticism could be addressed 
in two ways. First, education may help clinicians realise 
that AI-CDSSs can still provide accurate predictions, 
even without full contextual data. Higher levels of AI lit-
eracy are generally associated with a greater willingness 
to adopt AI and can decrease other sources of scepticism 
in clinical practice, such as fear of replacement [68]. Sec-
ond, AI-CDSS design should take into account its limita-
tions in the clinical context by focusing on areas where 
it can truly add value with information provision. This 
would require a greater emphasis on enabling better inte-
gration of clinicians’ expertise and AI-CDSS outputs, for 
instance by designing AI-CDSS as an interactive tool. In 
this role, AI-CDSSs could enhance exploration of differ-
ent clinical strategies and highlight leverage points for 
intervention in patient trajectories, thereby broadening 
the clinician’s perspective (‘umwelt’) and their decision-
making ability but not competing with it. Potentially, an 
interactive design that allows customisation can help 
safeguard clinicians’ autonomy, as a sense of agency is 
a core element of autonomy [69]. In the context of XAI, 
customisation has been already linked to an increased 
sense of agency [70]. However, Kostick-Quenet [71] 
warns that option to customise clinical AI can lead to 
tunnel vision and the overlooking of critical details, and 
therefore advocates setting limits on the extent of such 
customisation.

The last notable finding was that clinicians frequently 
stated that their clinical decisions were not based on the 
AI-CDSS predictions. While the World Health Organiza-
tion guidance on Ethics & Governance of Artificial Intel-
ligence for Health [72] assumes that AI-CDSSs ‘added 
little value’ when clinicians disregard AI results, a closer 
analysis, such as that conducted by some of the studies 
(e.g. #17) included in this review, reveals a different per-
spective. In cases where clinicians did not accept the AI 
results, they often did report taking additional action - 
such as ordering more tests or consulting colleagues - to 
re-evaluate their clinical judgment. These actions repre-
sent a form of ‘decomposing’ their initial intuitive exper-
tise judgment, a process Dreyfus coined as deliberative 
rationality [73]. According to Dreyfus [73]" the involved 
intuitive skilled performer deliberates about his behavior 
in a detached manner that can be called rational because 
it involves decomposition. But it is his or her intuitive 
understanding that is examined and decomposed, not the 
problem itself." (p.56). Thus, AI-CDSSs can improve clin-
ical performance by prompting reflection on the clini-
cian’s own judgment, thereby safeguarding against tunnel 
vision [73]. This reflective function was already illus-
trated in the result section by one clinician who noted 
that an AI-CDSS prompted him to “elucidate the ratio-
nale behind my decisions” [55]. This alternative usage of 
AI-CDSSs requires design and policy considerations to 

strategically position AI-CDSSs in such a way clinicians 
can form their initial judgement based on intuition and 
expertise, before being influenced by an AI-CDSS. It 
simultaneously calls for a critical reflection on the extent 
to which the potential of AI-CDSSs to improve clinician 
performance is being fully realised, when it is solely used 
for deliberative rationality. Given that a recent multicen-
tre study in colonoscopy revealed early indications of cli-
nician deskilling from ongoing exposure to AI guidance 
[74], greater consideration in the use and design of AI 
assistance appears necessary.

Limitations
The main limitation of our study in assessing the con-
text of any findings was the lack of original interview 
transcripts and the reliance on the authors’ interpreta-
tions from the interview data of the included papers. For 
example, the extent of clinician AI literacy is largely an 
interpretation of the authors. While some papers con-
tained more original quotations of clinicians than others, 
no distinction was made by us between authors’ inter-
pretations and direct quotations, as even the quotations 
themselves were subject to author selection and potential 
bias. In addition, differences in interview design and the 
lack of original transcripts prevented reliable estimation 
of the frequency of findings. Therefore, we conducted 
this exploratory analysis with a focus on how technol-
ogy, task, and individual characteristics interrelate and 
influence clinicians’ use of AI-CDSSs, without drawing 
conclusions about specific features, such as whether per-
centages are an appropriate AI-CDSS output.

Another limitation for the TTF analysis is the diver-
sity of implementation stages of the included AI-CDSSs 
and thus a varying degree of direct experience with AI-
CDSSs. Initially, we included only implemented AI-
CDSSs, but the limited number of eligible articles led us 
to broaden our criteria to include AI-CDSS interactions 
in simulated settings, which do not fully reflect clinical 
practice. However, we continued to exclude studies based 
solely on non-user clinician perspectives, as direct user 
experience with algorithmic decision-making was consid-
ered essential for the TTF analysis. Our choice to include 
user interaction with non-implemented AI-CDSSs may 
have resulted in overstatement of some conclusions. We 
sought to minimise this risk by explicitly indicating the 
implementation phase for each case study in Table  1. 
The limited number and heterogeneity of included stud-
ies also made it difficult to draw conclusions about how 
Task-Technology Fit may vary across departments.

Our final limitation relates to the scope of our analy-
sis. We excluded AI-CDSS primarily consisting of com-
puter vision or natural language processing algorithms, 
as their distinct technological features require a differ-
ent cognitive task perspective. While this choice allowed 
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us to focus in depth on TTF of tabular systems, it also 
narrowed the breadth of our analysis. Moreover, as dis-
cussed above, TTF does not account for other important 
determinants of technology use, such as trust or fac-
tors from UTAUT and TAM. In addition, although we 
included studies from different time phases of AI-CDSS 
implementation, we lacked insight into how the clinician-
AI relationship evolves over time. Lastly, although shared 
decision making is common practice, patients were not 
included as users of AI-CDDS in these studies.

Therefore, there is a critical need for more qualita-
tive research examining how clinicians’ TTF influences 
the use of AI-CDSSs. Such work could provide richer 
insights into how department-specific workflows impact 
TTF and how AI-CDSS use affects clinical reason-
ing, as the included case studies exposed already some 
of the diverse ways AI-CDSSs can be used. Additional 
TTF analyses should be conducted for image-based and 
natural language processing AI-CDSS. Future research 
on algorithmic decision-making should also integrate 
patients’ perspectives. Finally, as AI-CDSSs have only 
recently been introduced into clinical practice, their 
long-term effects, such as potentially decreasing intu-
ition and hindering expertise development, should also 
be examined. We recommend longitudinal field studies 
that can specifically document the evolving clinician-AI 
relationship over time.

Conclusion
AI-CDSSs have the potential to enhance clinical deci-
sion making, yet their success in clinical practice remains 
limited. Our review of 21 qualitative case studies, anal-
ysed through the task-technology fit model, revealed that 
the design of AI-CDSSs is often not fully optimised for 
clinical practice. Clinicians commonly struggled with the 
direct applicability of AI-CDSSs features to their clinical 
tasks. Furthermore, since AI-CDSSs typically lack access 
to relevant contextual knowledge held by clinicians, their 
assessments were often questioned by clinicians for their 
conclusiveness at the individual patient level. Clinicians 
primarily valued AI-CDSSs for their ability to generate 
unique data-driven insights, such as exploring the effects 
of potential clinical interventions and receiving trend-
based information. Our analysis thus highlights design 
implications that point to the complementary nature of 
AI-CDSSs in supporting more informed clinical decision 
making. We also found that AI-CDSSs are being inte-
grated into practice in various ways. Beyond diverse task-
specific applications such as patient prioritisation and 
risk communication, clinicians incorporated the system 
into their decision-making processes to varying degrees. 
For some clinicians, it served as a tool for critical reflec-
tion, while for others, it was more directly integrated 
into the decision-making process. Our findings therefore 

serve as a stepping stone for future case studies seeking 
to systematically explore the interactions between clini-
cians and AI. A deeper understanding of these types of 
integration mechanisms can inform the design of AI-
CDSSs that are better aligned with clinical needs, sup-
porting clinicians in their decision-making challenges 
and contributing to improved patient care.
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