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Task-Technology Fit of Artificial Intelligence-
based clinical decision support systems:
a review of qualitative studies

Cathleen S. Parsons', Anneke Zuiderwijk!, Nic A. Orchard’, Jacobien H. F. Oosterhoff'? and Mark de Reuver'

Abstract

Machine learning algorithms show promise in assisting clinical decision-making; however, only a few have been
successfully implemented in practice. To bridge this gap, it is essential to analyse the clinicians’ perspective on

the compatibility of Artificial Intelligence-based clinical decision support systems (Al-CDSSs) with their clinical
tasks. We therefore conducted a literature review of 21 empirical qualitative studies that examined the interaction
between health professionals and Al-CDSSs. We synthesised the research through the lens of the Task-Technology
Fit (TTF) model, analysing task, technology and individual characteristics of AI-CDSS applications, to identify design
elements that are (mis)aligned with clinicians' needs. Three key findings emerged from our analysis. First, clinicians
often expressed scepticism about the clinical judgements of AI-CDSSs, particularly questioning the system's ability
to compete with clinical expertise in the absence of contextual information. Users valued Al primarily for specific
strengths, such as identifying trends in patient trajectories, consolidating large datasets and pattern recognition,
and comparing similar patient cases, but were hesitant to rely on it for clinical decisions. Second, actionability
emerged as a desired characteristic of AI-CDSSs. For instance, clinicians particularly appreciated features of AI-CDSSs
that enabled them to explore how different clinical actions might influence outcomes, as well as Explainable Al
for identifying modifiable variables that impacted prediction scores, allowing them to take informed action. Third,
we identified various ways Al-CDSSs could be used in clinical practice, including for patient prioritisation, patient
monitoring, care acceleration, risk communication and workflow efficiency. In essence, Al-CDSSs functioned either
as an alert system, preventing oversights, or as a tool for more informed decision making. Our analysis challenges
the assumption that AI-CDSSs add little value when clinicians disregard its predictions, as it frequently prompts
them to critically reassess their judgments through additional testing, consultation with colleagues, and other
actions. Overall, our findings underscore the importance of an in-depth understanding of how AI-CDSSs are used
in clinical practice. To optimise for effectiveness, the design of Al-CDSSs should prioritise supporting clinicians’
cognitive processes and information needs. This approach ensures that we move beyond the hype, focusing on the
responsible integration of Al-CDSSs, and ultimately enhancing patient care.

Keywords Artificial intelligence, Clinical Decision Support System, Task-Technology Fit, Human-Al collaboration, Al
adoption, Attitude of health personnel
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Introduction

Artificial intelligence (AI) in healthcare has the poten-
tial to transform the way healthcare professionals make
diagnoses, therapeutic and prognostic recommenda-
tions [1, 2]. By leveraging multi-source data and machine
learning, Al-based clinical decision support systems (Al-
CDSSs) personalise patient care and can improve health-
care services, thereby reducing healthcare costs [3]. As
healthcare organisations modernise their digital infra-
structure, the increasing availability of healthcare data
is expected to accelerate the development of AI-CDSSs,
fundamentally reshaping healthcare delivery [4].

Despite the significant promise of AI-CDSSs in health-
care, empirical evidence of its clinical effectiveness
remains limited. For example, two systematic reviews
of randomised controlled trials (RCTs) have concluded
that the impact of AI-CDSSs on clinical outcomes has
often been modest [5, 6]. These findings suggest that the
development of an accurate Al tool alone is insufficient
to achieve value in real-world settings. Implementation
science has already emphasised the need for a compre-
hensive systems perspective that considers multiple
dimensions - such as acceptability, feasibility, and fidelity
- which collectively determine an intervention’s impact
[7].

Recent research [8] revealed that RCTs on AI-CDSSs
still tend to adopt a narrow focus, leaving various dimen-
sions described by Proctor et al. [7] unaddressed. One
such underexplored implementation outcome is ‘appro-
priateness, which refers to the compatibility of AI-CDSSs
with clinical tasks and whether clinicians found the tools
useful [8]. Since AI-CDSSs are, by definition, designed as
support tools, their performance and clinical value are
intrinsically tied to clinician interactions and perceived
functionality.

This paper aims to synthesise qualitative research that
describes the clinician’s perspective when interacting
with AI-CDSSs. To this end, the Task-Technology-Fit
(TTF) model is applied [9]. Previous literature reviews
have explored clinicians’ perspectives on AI-CDSSs from
various angles. For instance, Lambert et al. [10] investi-
gated clinician acceptance using the Unified Theory of
Acceptance and Use of Technology (UTAUT). Other
reviews from clinician perspective have taken broad
approaches covering effectiveness, outcomes, and costs
(e.g., [11]) or concentrated primarily on technological
aspects without considering task-related factors (e.g., [12,
13]). Wang et al. [14] provided a comprehensive clinician-
centered review synthesising user needs and adoption
challenges and design implications, though without spe-
cifically addressing the interplay between task demands,
system capabilities, and user characteristics.

By adopting a TTF perspective, this literature review
addresses a niche by offering a unique design-centric
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approach to enhance the integration and adoption of AI-
CDSSs in clinical practice. For our study, we distinguish
Al-based CDSSs from conventional CDSSs by defining
Al as machine learning approaches that enhance their
task performance through exposure to additional data
[15]. We align with Berente et al. [16]’s perspective that
AI represents a sociotechnical “moving frontier” with
evolving boundaries. Following prior work in clinical pre-
diction modelling [17], we exclude conventional statisti-
cal methods such as logistic regression, from machine
learning approaches. This scope allows us to focus on the
transparency and usability challenges associated specifi-
cally with Al-based CDSSs. Moreover, we restricted the
review to AI-CDSSs that analyse tabular data, excluding
imaging- and Natural Language Processing-based CDSS
whose fundamentally different technological mecha-
nisms and data representations would compromise syn-
thesis in our TTF analysis.

As the first step in this process, the background section
of this paper will provide an overview of the TTF model,
outlining its core concepts and relevance to this study.
Results retrieved from the included articles will be then
categorised under the model’s core concepts, with impli-
cations explored in the discussion section.

Theoretical model Task-Technology-Fit

A Task-Technology Fit, as defined by its conceptual
architects Goodhue and Thompson [9], is ‘the degree to
which a technology assists an individual in performing his
or her portfolio of tasks’ (p. 216). According to the TTF
model, this fit depends on the alignment of (1) task speci-
ficities, (2) characteristics of the individual, and (3) tech-
nological features. TTF therefore stresses that we should
not assess the performance of a technology without con-
sidering its context of use [9]. In their paper, Goodhue
and Thompson [9] situated the TTF within the broader
framework of the Technology-to-Performance chain
model, which includes additional precursors to utilisa-
tion. By placing performance impact as the end outcome
and not utilisation, the authors emphasise responsible
use of technology. A singular focus on increasing tech-
nology utilisation could undermine performance [9].
This issue is particularly relevant in the context of AI-
CDSSs, where overreliance - accepting false negative or
false positive predictions - becomes problematic. While
literature indicates that AI-CDSSs are being underused
[5, 18], overreliance on AI-CDSS advice may lead to the
acceptance of inaccurate results [19]. False positive and
false negative recommendations can misguide clinicians,
resulting in significantly lower performance [19]. There-
fore, TTF has a preference over other task technology fit
models, such as the Ammenwerth, Iller and Mahler [20]
‘Fit between Individuals, Task, and Technology * (FITT)
model, which has not been theoretically placed within a
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broader context as the TTF is in the Technology-to-Per-
formance chain model.

Furthermore, in their meta-analysis of research that
has applied TTF, Cane and McCarthy [21] concluded
that, compared to the Technology Adoption models,
TTEF is particularly well-suited for generating design-ori-
ented recommendations, as it explores the preconditions
for perceived usefulness. For instance, one study [22]
has used the TTF model for designing a mobile clinical
support decision tool. A TTF analysis can thus provide
valuable insights for the implementation outcome ‘appro-
priateness’!, which is currently less explored compared
to ‘acceptability”® [8]. The TTF has been applied in many
IT domains, including education, health care and busi-
ness fields [23, 24]. TTF of health technologies specifi-
cally has been assessed quantitatively (e.g. [18, 25-27]),
qualitatively [28] or with mixed method (e.g. [22, 29, 30]).
Studies on subject related topics, such as task-technol-
ogy fit of an mHealth app [28] or clinical decision sup-
port systems [18, 22], have already demonstrated the
usefulness of this model for gathering relevant insights.
Of particular relevance is a survey of 247 clinicians con-
ducted by Zheng et al. [18]. Their findings confirmed that
the task-technology fit of CDSSs, through its effects on
performance expectations and reduced perceived risk,
positively influence clinicians’ intention to use CDSSs.
Although personal characteristics were not considered,
technological characteristics had a substantially stronger
influence on TTF than task characteristics [18].

In this review, all core concepts of TTF model are
examined. Goodhue, who conceptualised the TTF, stated
that user evaluations are the preferred method for deter-
mining task-technology fit [31]. Accordingly, we framed
the following research questions from the perspective of
clinicians interacting with AI-CDSSs:

1. Technology characteristics (section “Technology
characteristics: limitations and needs”): Which
specific features or functionalities of AI-CDSSs do
clinicians perceive as increasing or decreasing their fit
with clinical tasks?

2. Task characteristics (section “Task characteristics:
opportunities and challenges”): Which clinical task
characteristics create opportunities or challenges for
the perceived TTF of AI-CDSSs?

3. Individual clinician characteristics (section
“Individual characteristics: competencies and
cognitive frameworks”): How do differences among

! Defined by [8] as “The perceived fit, relevance, or compatibility of the Al
for a given clinical setting, user, or consumer, and/or the perceived fit of the
Al to address a specific clinical problem’

2 Defined by [8] as ‘how agreeable, palatable, or satisfactory an Al interven-
tion is perceived.
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clinicians affect their perception of the TTF of
AI-CDSSs?

4. Perceived Task-Technology-Fit (section “Perceived
Task-Technology-Fit”): In what way do clinicians
integrate AI-CDSS into their clinical decision making?

Using the TTF model, the synthesis of qualitative data
in this study focuses on the perceived usefulness of AI-
CDSS features and functionalities in relation to clinical
tasks and highlights any misalignments that may explain
the low uptake in clinical practice.

Methods

Scope

The goal of the literature search was to identify all stud-
ies that have qualitatively and empirically assessed the
interaction between the clinical user and an AI-CDSS.
Because of our assumption that the reasoning processes
and needs of clinicians significantly differ per type of Al,
we focused on AI-CDSSs using tabular data instead of
those based on imaging or text data via computer vision
or natural language processing. Originally, we intended
to include only studies that evaluated AI-CDSSs that had
been implemented in clinical practice; however, due to a
scarcity of such studies, we included all types of qualita-
tive empirical research with AI-CDSSs.

Databases search

Our search strategy, in collaboration with a librarian,
included a combination of multidisciplinary and special-
ized databases: Web of Science (core collection) (multi-
disciplinary), Dimensions (multidisciplinary), PubMed
(life sciences and biomedical), IEEE Xplore (computer
science). ArXiv preprints were included in Dimensions
search queries to capture recent developments. Data-
bases were searched up to 9th of July 2024, with no date
restrictions applied.

Three domains of keywords were combined using
‘AND’; within these domains, terms were linked with ‘OR’
The first domain encompassed terms related to machine
learning (ML), the second to decision support tools, and
the third to both qualitative and empirical studies. To
exclude studies on Al- CDSS for imaging data, ‘NOT’
was added to filter out references related to radiology. For
searches in non-medical databases, a fifth domain speci-
fying the health domain was included. Detailed descrip-
tion of search terms can be found in Supplementary
Material 1.

Eligibility criteria

The inclusion criteria were defined as follows: an empiri-
cal study design, the use of a clinical decision support
tool based on Al, and qualitative evaluation of either
implemented or simulated AI-CDSS. Exclusion criteria
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were specified as: non-ML prediction model (e.g., logistic
regression), AI-CDSS primarily consisting of computer
vision or natural language processing algorithms, mental
healthcare AI-CDSS, quantitative research design, lack
of full text, conference abstracts, book chapters and lan-
guages other than English or Dutch.

Titles and abstracts were independently screened by
two reviewers (CSP and NAO) using Rayyan software
[32]. To refine and calibrate their screening methods,
a pilot screening of 10 articles was conducted. Full-text
articles were then assessed for eligibility by the first
author (CSP).

Data extraction

The following data were extracted from the included
studies: first author, year of publication, country, title,
AI-CDSS’s outcome, participants included, implementa-
tion phase and qualitative results (including supplemen-
tary material for quotes). The implementation phases
were categorised as: ‘Mock AI' (not yet based on real
data), ‘Test A’ (based on data but with vignette-based
evaluation) and ‘Implemented AI’ (deployed in clini-
cal practice). Qualitative results were analysed using
the qualitative analysis software Atlas.TI (version 24). A
descriptive overview of the extracted information from
each included study is available in Supplementary Mate-
rial 2.

Data analysis

First, we familiarised ourselves with the extracted data
and applied a priori coding using the core components of
the TTF model as organising categories: technology char-
acteristics, task characteristics, individual characteristics,
and perceived task-technology fit. Within these cat-
egories, the first author (CSP) conducted inductive cod-
ing of the qualitative findings to derive subthemes (e.g.
‘personal_AI literacy’ or ‘technology_customisation’).
We followed the six-phase approach described by Braun
& Clarke [33, 34], which offers a flexible yet systematic
framework for identifying and integrating patterns across
heterogeneous qualitative studies. We used a single-coder
analysis approach to ensure analytic depth and coherence
in the iterative coding process. This approach aligns with
the reflexive thematic analysis (RTA) premise that “mean-
ing and knowledge are understood as situated and con-
textual, and researcher subjectivity is conceptualised as
a resource for knowledge production” [35, pp. 334—335].
We therefore make explicit that the first author’s multi-
disciplinary background in medicine and in data science
in population health management inevitably shaped cod-
ing and interpretation. The analysis involved develop-
ing three substantially revised versions of the analytical
narrative. Each version refined our interpretation of how
task, technology, and individual characteristics interact
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to shape the use of AI-CDSSs, progressing from broad,
general themes to a more coherent, coding-level narra-
tive. The final coding scheme is presented in Supplemen-
tary Material 1.

The following section presents the results of this the-
matic analysis. Due to the heterogeneity of case studies
and for readability, clinicians’ perspectives are synthe-
sised without isolating them by level of evidence (e.g.,
evaluation of implemented, experimental, or hypothetical
AI-CDSS features) or differentiating between direct quo-
tations and authors’ interpretations.

Results
Overview of included articles
A total of 7297 studies were identified and 4855 unique
studies remained after duplicate removal. After the title/
abstract screening, 72 studies were deemed potentially
relevant. Of these, 21 met the inclusion criteria (Fig. 1).
Table 1 provides an overview of the 21 case stud-
ies where clinicians interacted with AI-CDSSs. Nearly
all included studies were published after the year 2020
(n=20), and most were studies conducted in the USA
(n=11). The maturity phase of AI-CDSSs was predomi-
nately in test Al (n=12), followed by implemented Al
(n=8), and lastly Mock AI (n=2).

Analysis of Task-Technology-Fit of AI-CDSSs

The section first presents the technology-related charac-
teristics that enhance or constrain TTF (4.2.1), followed
by an exploration of how task characteristics (4.2.2) and
individual characteristics (4.2.3) affect TTF. We then
examine how clinicians integrate AI-CDSS into their
decision-making processes (4.2.4) and conclude with a
visual summary of the overall results (4.2.5).

Technology characteristics: limitations and needs

Despite the variety of AI-CDSS predictions, spanning
from delirium to sepsis, clinicians have encountered sim-
ilar limitations when applying these tools in clinical prac-
tice. In multiple case studies, clinicians questioned the
usefulness of percentages as outputs, a standard practice
in data science (#7, #10, #19, #20, #21). Beyond their role
in prioritising urgency between patients, precise percent-
ages often posed interpretive challenges for clinicians
when assessing individual patient risk scores:

So I'm not really sure what its goal is, but I can tell
you that most of us ignore it (the sepsis risk score)
because it has not proved helpful to what we do
next. (Emergency Room physician, #21)

Therefore, in one case study, risk predictions expressed as
percentages were replaced shortly after implementation
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’ Identification of studies via databases and registers

)
Records identified from
H databases (n=7297) Records removed before
i Dimensions (n=3342) screening:
g IEEE Xplore (n=1508) _ Duplicate records
; Web of Science (n=1295) removed (n=2442)
g Pubmed (n=1152)
—
o l
Abstracts screened
(n=4855) ——| Abstracts excluded (n =4734)
-]
£
.§ - - Articles excluded (n=51):
Article full-text screening -No full (English) text available (n=2)
(n=71) ) _— -LLM or image-based Al (n=12)
+ backward snowballing (n=1) -Absence of qualitative research
data (n=12)
-Absence of user interaction (n=24)
-Duplicate study (earlier version
excluded) (n=1)
——
3 Articles included in review
§ (n=21)
£

Fig. 1 Flowchart of study inclusion and exclusion. Abbreviations: n=number, LLM=large language model, Al=artificial intelligence

with a three-tier visual risk categorisation (#7). This
approach was considered more actionable, helping cli-
nicians to identify patients near the thresholds between
risk groups and in need of extra care.

Multiple clinicians highlighted the need for Al recom-
mendations to be directly applicable to their tasks (#2,
#3, #5, #10, #16, #20, #21). Case studies (#4, #9, #17, #20,
#21) involving AI-CDSS that provided specific task rec-
ommendations - such as drug doses, IV fluid, lab tests,
red blood cell transfusion - elicited generally positive
responses from clinicians, particularly in comments
about perceived usefulness and the degree to which the
systems were integrated into decision-making, compared
to other case studies. However, overly granular percent-
age differences (#20) or impractical recommendations,
such as excessively small doses (#17), diminished clinical
relevance:

I've never ordered such a small dose of fluids... To
me, that’s like sprinkling water on her. (Attending
physician Intensive Care Unit, #17)

Furthermore, AI-CDSSs that were overly directive in
their recommendations created unease among clinicians.
This was highlighted in a case study where one clinician
remarked, “seems like the system was designed to replace
doctors” which limited the system’s use in clinical prac-
tice (#18).

To enhance task relevance, clinicians often expressed a
desire to understand the most influential variables driv-
ing prediction scores (#2, #3, #6, #8, #9, #10, #13, #14,
#15, #16, #17, #18, #21). They consistently highlighted
that explainable AI (XAI) is primarily valuable when it
offers insights into variables they can directly influence
in their clinical practice. In contrast, they found less
value in XAI outputs that focused on, for instance, reac-
tive physiological variables that have minimal impact on
treatment (#2), uncontrollable factors such as age (#11),
incomparable patient cases (#3), or medically unrealistic
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Table 1 Characteristics of included studies (n = 21)
#  Ref Firstauthor Country  AI-CDSS outcome Maturity of  Study
ID (Year) AI-CDSS participants
#1  [36] Abdulaal UK Probability of death during the current hospital admission for COVID-19  Test Al 31 physicians
(2021) patient
#2  [371 Abraham USA Perioperative risk predictions for acute kidney injury, delirium, pneumo-  Test Al 17 clinicians
(2023) nia, deep vein thrombosis, and pulmonary embolism
#3  [38] Anjara (2023) Spain Stratification lung oncology patients based on post-treatment compli- ~ Test Al 10 oncologists
cation risks, predicting chances of patient’s relapse
#4  [39] Choudhury  USA Al-based blood utilisation calculator (BUC) for red blood cell transfusion Implemented 10 clinicians
(2022) (>1 year)
#5 [40] Fritz(2024)  USA Probability postoperative death, acute kidney injury, respiratory failure, ~ Mock Al 25
and myocardial infarction. anaesthesiologists
#6  [41] Henry (2022) USA Risk alert sepsis Implemented 20 clinicians
(>6 months)
#7  [42] Jauk (2021)  Austria Delirium risk stratification tool Implemented 15 clinicians
(>7 months)
#8  [43] Jin(2020) China Diagnosis risk and treatment outcome analysis (estimation of the most ~ Test Al 7 physicians (1
influential treatment) based in USA)
#9  [44] Liu (2023) USA Vancomycin dosing Test Al 13 critical care
pharmacists
#10 [45] Matthiesen  Denmark Predicting ventricular tachycardia and ventricular fibrillation (VT/VF) Test Al 7
(2021) within 30 days electrophysiologists
#11 [46] Naiseh UK Classifying chemotherapy prescriptions as confirmed or rejected +five ~ Mock Al 16 clinicians
(2023) types of XAl (physicians and
pharmacists)
#12 [47] Panigutti Online Binary prediction of acute Test Al 28 health care pro-
(2022) myocardial infarction fessionals (includ-
ing 25 clinicians)
#13 [48] Payne (2024) USA Early Warning Score Sepsis Test Al 12 clinicians
#14 [49] Samhammer Germany  Risk prediction of infection and graft loss in the next 90 days. Test Al 14 nephrologists
(2022)
#15 [50] Sandhu USA Sepsis risk within the subsequent 4 hours Implemented 15 Emergency De-
(2020) (>4 months)  partment clinicians
#16 [51] Schwartz USA Risk of in-hospital deterioration Implemented 17 clinicians
(2022) (>3 months)
#17 [52] Sivaraman USA Recommendation of an action state of 5 Test Al 24 Intensive Care
(2023) possible levels of Intravenous fluids and 5 vasopressor dosages Unit clinicians
#18 [53] Wang (2021) China Recommendation of most likely diagnoses Implemented 22 clinicians
(>6 months)  (incl. 4 traditional
Chinese medicine
professionals)
#19 [54] Yang (2019) USA Supporting the decision to implant ventricular assist device (VAD) by Test Al* 17 clinicians
visualizing the patient outcome predictions, including life expectancy,
estimated time until right heart failure, and likely
cause of death
#20 [55] Yoon (2024) Singapore  Diabetes medication prescribing recommendation and diabetes com-  Implemented 13 clinicians
plication risk prediction (>4 weeks)
#21 [56] Zhang USA Previous Al-CDSS: alert for sepsis New AI-CDSS: patient's currentand ~ Previous Al- 6 clinicians
(2024) in the next 4 hours sepsis risk score, including prediction uncertainty, CDSS: Imple-
and actionable suggestions to reduce such uncertainty mented New
AI-CDSS:
Test Al

Overview of included studies. Abbreviations: Al-CDSS = Artificial Intelligence-based Clinical Decision Support Systems, USA=United states of America, UK=United
Kingdom. *Operational but not yet data-driven (simulated)
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counterfactual explanations (#11). Understanding the
relationships between these modifiable variables and risk
predictions enables clinicians to take actionable steps in
patient care:

[The current prototype is] still kind of missing... the
action item, right? What should the blood pressure
be to decrease risk, right? Or if this patient is already
mechanically ventilated, what should the CO2 be to
decrease risk? (Anaesthetist, #2)

Moreover, some clinicians stressed the need for underly-
ing variables that drive predictions to have causal rela-
tionships rather than mere statistical associations to
derive clinically meaningful interpretations (#11, #14,
#19). Although clinicians expressed high standards for
explainability, its complete absence was viewed unfavour-
ably in the one case study that lacked any form of XAIL
In this example (#9), clinicians demonstrated low adher-
ence to vancomycin dosing recommendations, despite
the actionable nature and well-received purpose of the
AI-CDSS. This was attributed to the “black box” nature of
the recommendations (#9).

A second limitation frequently mentioned in inter-
views, was AI-CDSSs lack of access to key information
clinicians rely on, such as free-text notes (#14), bedside
observations and patient interactions (#6, #14, #17, #18),
and contextual factors such as insurance policies (#18).
One participant in #17’s study highlighted this gap:

At the bedside, I would acquire one or two pieces of
reliable, better-quality data than the algorithm has
available. And then I would use that to make my
decision [...] It’s not fair to ask an algorithm to make
a prediction as reliable as that, because it doesn’t
have access to that. (Attending physician Intensive
Care Unit, #17)

Additional concerns included poor data documentation
quality (#8, #13), adjustment of medical device settings
(#10), evolving medical knowledge and practices (#1, #8,
#11), and delays or unavailability of critical data (#16,
#21). This affects task usability, especially in instances
where healthcare professionals fail to document informa-
tion correctly:

There are many times vital signs are documented
incorrectly, such as a temperature of 20... Al is going
to tell me there’s a problem. That's where the human
component comes in... It appears Al spits out num-
bers saying ‘Go deal with it! That's when I don’t
really trust the system. I still have to go and look at
it, which defeats the purpose of the system. (Rapid
Response Team clinician, #13)
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Despite these limitations, AI-CDSSs were acknowledged
for its unique capabilities in supporting clinicians in their
clinical practice. Clinicians valued how AI-CDSSs helped
to process the large volume of parameters and data (#6,
#14, #16, #19) and facilitated access to data sources that
clinicians often lack time to review, such as nursing notes
(#16):

[N]ot that it takes over my work, but that it helps me
to record everything [...] because I am no longer able
to record all the data that is collected. It is difficult
for me to look through a laboratory with 35 param-
eters and to look at every value and somehow not
miss anything. And that helps me to somehow make
a correct assessment or to point things out to myself
(Junior physician, #14)

A second strength often mentioned, was AI-CDSS’s abil-
ity to detect subtle changes in patterns and trends that
clinicians have difficulty noticing (#5, #13, #16, #20),
which could help to provide timely care:

Maybe the algorithm’s better at like kind of like
nudging us to just like readdress some things that
maybe are changing minutely day to day, so we may
miss if we're if we're not, like, really aware of the
trend. (Physician, #16)

Clinicians particularly valued visualisations that dis-
played timelines of patient trajectories, improving pre-
diction comprehension (#13, #20, #21). However, early
predictions occasionally created friction, as clinicians
tended to reject AI-CDSSs in the absence of clinical vali-
dation, particularly when concerned about potential iat-
rogenic harm (#6, #15, #16). Due to this friction, one case
study adjusted the timing of alerts to align with real-time
clinical assessments (#6). #17 noted how a 4-hour pre-
dictive window induced clinical hesitation and delayed
decision-making in high-stakes cases, and thus poten-
tially diminishing the system’s prognostic utility. Similar
observations were made by a nurse whose role was to
alert Emergency Department physicians to patient risk
based on the Sepsis Watch tool (#15):

1 think a big part of people not understanding [Sep-
sis Watch], including the ED [emergency depart-
ment] doc, is if vitals are stable. We're not gonna
treat because they look stable. I know but we're try-
ing to catch it before it’s unstable. And that’s the big-
gest piece people don’t get...fact that it’s predictive
like, hammering that in will help people see...we're
trying to prevent the decline. (Rapid Response Team
nurse, #15)
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Thirdly, AI-CDSSs provide clinicians with valuable tools
to explore the impact of different clinical actions. Access
to similar historical cases to compare treatment and diag-
nosis strategies was generally well-received (#8, #11, #14,
#17, #18):

Seeing the different outcomes to those decisions in
a similar case, I think is...the most convincing to
change your clinical decision making (Attending
physician Intensive Care Unit, #17)

However, clinicians also raised concerns that such com-
parisons might lead users to mimic less experienced cli-
nicians and their errors in clinical management (#17).
Additionally, another interviewee noted that the concept
of similarity between patients is not straightforward,
and clinicians need to consider how it is exactly defined
before application (#11).

Beyond analysing historical cases, adjustable predic-
tions were seen as another valuable approach to support
clinical decision-making (#3, #8, #17, #19, #21). #8’s case
study demonstrated that the ‘treatment outcome analy-
sis’ feature, where the impact of different treatments
was compared, was highly valued by clinician users,
while #21’s case study showed strong clinician interest in
understanding the predictive impact of different labora-
tory tests. Clinicians expressed additional preferences
for customisation, including control over variables used
in score predictions (#14), the ability to define similar-
ity metrics (#11), and flexibility in specifying features for
counterfactual analyses (#11). Furthermore, clinicians
emphasised the importance of being able to adjust the
prediction score thresholds to align with local workflows,
prioritisation rules, individual clinician treatment strate-
gies and patient populations (#4, #10, #17, #21).

If you set them too low, you'll get way more alerts
than might be clinically present. And you'll likely
get fatigued and potentially [ignore alerts]. If you set
them too high, you make it unlikely that any of these
would ever be prevented, because you're apt to just...
have them develop. (Anaesthetist, #2)

In conclusion, clinicians identified actionable risk scores,
actionable XAlI, scenario cross-analysis, trend detection,
and customisation as desirable AI-CDSS features for
clinical practice. However, limitations such as restricted
access to key information, concerns about data qual-
ity and reliability, and the timing of recommendations
reduced the applicability of AI-CDSSs in clinical practice.

Task characteristics: opportunities and challenges
Clinicians identified several application areas where
AI-CDSSs could provide valuable assistance to clinical
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practice: care acceleration and patient prioritisation,
operational efficiency, risk communication and by adding
objectivity to decision-making processes.

Most often, clinicians expressed interest in or had
experience using AI-CDSSs to identify opportunities
for early intervention and care acceleration to improve
patient outcomes (#1, #2, #3, #6, #7, #10, #13, #14, #15,
#16, #21). Examples included were more rapid transfer to
ICU (#1, #13, #15), earlier treatment for delirium patients
(#7) and more intensive interventions for ventricular
tachycardia and ventricular fibrillation (#10). Further-
more, AI-CDSSs were considered valuable for patient
prioritisation, where risk scores could guide clinicians’
attention allocation, particularly in time and resource
constrained settings (#2, #6, #10, #13).

The EW'S triggers my mind to investigate a chart and
see what'’s going on and identifies patients to focus
on, evaluate first, and decide if I need to intervene.
(Rapid Response Team clinician, #13)

Regarding operational efficiency and workload reduction,
an AI-CDSS demonstrates multiple benefits: it acceler-
ates clinical processes through rapid decision-making
(#6, #7, #8, #10, #13, #14, #16, #21), performs calculations
and personalises treatments doses (#4, #17) and helps
alleviate cognitive burden in an environment where clini-
cians feel “bombarded with clinical information” (#6).

In a fourth application area, AI-CDSSs facilitate risk
communication between different healthcare profes-
sionals, thereby helping to co-ordinate care (#1, #2, #19).
When used in discussions with patients and their fami-
lies (#1, #2, #20), effective risk communication improves
treatment adherence (#20) and helps intervene on con-
tributing factors to risk estimations preoperatively (#2).
Additionally, two case studies noted how AI-CDSSs
strengthen the position of nursing staff by providing evi-
dence-based support for their clinical judgments, such as
their recommendations for extended hospitalisation or
medical procedures (#12, #19):

The doctors in our acute medical department are
very keen to discharge patients home; leaving nurses
in a difficult predicament when we don’t agree with
their decision making. A tool such as this, could help
nurses to justify their reasons for keeping a patient
in hospital or to use cardiac monitoring vs. not mon-
itoring. (Nurse, #12)

As an overall tool, AI-CDSSs have the potential to
enhance clinical decision-making by introducing objec-
tive analysis. In #17’s study, the participants who con-
sistently incorporated Al recommendations were those
who emphasised the objectivity of data. This objectivity
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proves particularly valuable in several scenarios: when
handling controversial cases with conflicting opinions
(#14), during emotionally charged decisions and conver-
sations (#13, #14, #19), and in complementing clinicians’
intuitive assessments such as “gestalt” and “gut feelings”
(#5, #13). Thus, AI-CDSSs help to mitigate any human
error (#13), reduce subjectivity (#13, #14, #19), maintain
attention despite fatigue (#8, #16) and distractions (#20),
while limiting effects of potential personal bias towards
patients and recency bias in clinical judgment (#10, #19).

I feel like I have that kind of gestalt if someone’s going
to be okay, but it’s nice to see the numbers. It's really
nice to see the numbers. (Attending anaesthetist, #5)

When I really like this patient, really want to help
him or her, it sometimes helps to get a more factual
view. (Unspecified clinician, #19)

Despite these potentials, a major concern of numerical
outputs is the limited ability to fully account for patient
complexity, diversity, and individuality, particularly in
cases of multimorbidity (#8, #9, #12, #13, #14, #16, #17,
#18, #19).

I think if you continue to call it “VAD projections”
65%, people are going to poke holes at it. They are
gonna try to prove you wrong. This [Decision Sup-
port Tool projection] is just what the historical out-
comes were. But this guy is different, this guy has his
own things that make him special. (Cardiologist,
#19)

Clinicians therefore emphasised the need for AI-CDSS
integration within electronic health records (EHRs) to
access relevant clinical data and contextual information
(#1, #2, #5, #9, #13, #15).

However, clinicians identified a fundamental limitation
of the system’s applicability to clinical practice: its inabil-
ity to perceive patients holistically and qualitatively, as
they do through ‘clinical gestalt’ (#12, #13, #14, #16, #17)
and familiarity with individual patients’ trajectories (#9,
#16, #17). As one clinician noted:

I think its actually, you also have to know the
patient. That means that for me, everything starts
from the moment the patient enters through the
door, right? And there you can already get quite a
lot of information, that is, about character, about
stature, about the general condition, what you hear
and see and so on. That’s the first impression. Then of
course comes the factual (Senior physician, #14)
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The need for such qualitative patient assessments was
highlighted in one study, where synthetic patient case
presentations were met with "long, awkward silence"
from interviewees (#19). Nonetheless, clinicians also
pointed out that in those situations where they were
unfamiliar with patients or unable to communicate, such
as during night shifts, AI-CDSSs could be very support-
ive (#7, #10, #16).

Finally, clinical routines limit the potential of Al-
CDSSs: clinicians have insufficient time to fully utilise
AI-CDSS features ( #2, #6, #8, #11, #15, #18), data entry
needed for AI-CDSS did not align with workflow during
patient care (#1, #18), impracticality with medicine dose
availability (#9) and (false) alerts were considered too dis-
ruptive to clinical tasks (#13, #15, #21).

1 just don’t know how many people are going to have
time and desire [to read this secondary display], and
how useful is that going to be for clinicians when
they’re trying to [take] care of the patient (Certified
registered nurse anaesthetist, #2)

Clinicians therefore suggested a flexible, adaptive inter-
face with a data display tailored to their needs to prevent
information overload in time-constrained environments
(#2, #4, #5, #13).

In summary, AI-CDSSs offer several opportunities to
improve patient care, including assisting clinicians in
prioritising patients, monitoring, accelerating care, com-
municating and improving task efficiency. However, its
potential is limited by challenges, particularly concerning
integration into clinical workflows and the complexity
and specificity of individual patients.

Individual characteristics: competencies and cognitive
frameworks

The case study researchers documented individual dif-
ferences between clinicians in how AI-CDSS recommen-
dations were perceived, attributing them to Al literacy,
clinical expertise levels, and experiential anchoring. With
AI-CDSSs being recently introduced to healthcare, some
clinicians struggled with Al literacy, particularly regard-
ing XAI (#3, #4, #5, #6, #11, #13, #14, #15, #16, #19). As a
result, the potential value of AI-CDSS recommendations
was often limited by this lack of accurate interpretation
(#3, #15, #18, #19).

Clinicians prevalently believed that usage of AI-CDSSs
would be most beneficial for junior clinicians (#8, #10,
#12, #15, #16, #18, #20) or non-specialists (#15, #20).
At times, clinicians expressed such high confidence in
their own judgement that they completely disregarded
AI-CDSS outcomes (#4, #9, #17, #20). Both #11 and #17
observed a tendency toward confirmation bias, varying in
degree across individuals.
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Clinicians’ evaluations of AI recommendations are
influenced by previous patient encounters, a phenom-
enon known as “recency bias” (#1, #2), with a particular
tendency to be biased toward recent cases (#19, #10). Cli-
nicians showed greater appreciation for AI recommenda-
tions in patient cases where they had limited experience
(#16, #18). Furthermore, clinicians’ customary practices
may conflict with Al recommendations, as clinicians
often prefer their own patient management approach (#9,
#17, #20).

Lastly, in interviews, clinicians emphasised the promi-
nent role of intuition in patient care, particularly when
they were familiar with the patient (#6, #14, #16):

I feel like a lot of times we just kind of know when
somebody is, like, not doing well, especially when we
have the same patients often like day to day. (Nurse,
#16)

Two studies highlighted how senior clinicians’ reliance
on intuition in clinical decision-making sets them apart
from junior clinicians (#4, #14). This intuition, developed
through experience, plays a critical role in making patient
management decisions, leading to differences between
senior and junior clinicians in how AI-CDSS is used
(#14).

In conclusion, the value AI-CDSSs provide can vary
among clinicians. Case studies have documented differ-
ences in Al literacy, levels of expertise and the resulting
need for data-driven assistance, susceptibility to confir-
mation bias, and lastly, personal experiences with specific
patient populations and clinical practices.

Perceived Task-Technology-Fit

Clinical interactions with AI-CDSSs varied widely, and
this diversity is inherently linked to the nature of the Al-
CDSS outcomes; concrete treatment suggestions tend to
support a more prominent role for AI-CDSSs in deci-
sion-making than general risk scores. Nevertheless, most
studies, most notably the research conducted by #17,
have documented differences in usage of the same AI-
CDSS tool. #14’s analysis of algorithmic decision making
highlighted a key distinction between using AI-CDSS as
a starting point to guide clinical decisions and using it as
a feedback tool to validate decisions.

AI-CDSSs most commonly influenced decision-making
indirectly by affecting clinicians’ confidence in a Bayes-
ian-like manner, either reinforcing existing assessments
or encouraging reconsideration based on its recommen-
dations (#1, #2, #6, #7, #9, #10, #13, #14, #16, #17, #18,
#20, #21). A few illustrative quotes:
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Well, it hasn’t changed my current decision, but the
basis is much better, and I can easily see that it has
helped me. (Electrophysiologist, #10)

So I think that is also a good process that, if you
make a deviating recommendation now or come to
a deviating result, that you just once again go on the
way to look: Did I miss something? And I think that
exactly is part of it. (Senior physician, #14)

I am ambivalent about this one. Her [blood pres-
sure] is slightly low. Her heart rate is actually coming
down, fluid balance is positive... I think it’s fine. We
can do what the AI recommends. (Attending physi-
cian Intensive Care Unit, #17)

In a few cases, clinicians completely disregarded Al-
CDSS outputs, offering the following reasons: significant
deviations from their own clinical assessments (#1, #4,
#13, #14, #16), recommendations perceived as illogical
(#5, #14, #17), suggestions that were unconventional or
outside standard practice (#17, #20), and recognition that
the system’s scores failed to account for critical contex-
tual factors (#9, #13, #16, #18). In other instances, while
disagreement with AI-CDSS recommendations did not
directly influence clinical decisions, it prompted vari-
ous follow-up action, such as consulting colleagues (#4,
#13, #16, #17), ordering tests (#15), performing physi-
cal examination (#17), examining patient health records
(#16, #20), or increasing patient monitoring (#15). These
initiatives, not the AI-CDSS output itself, contributed to
their decision-making process, as illustrated by the fol-
lowing quotes:

1 think it’s just, as I said before, an additional point
that, as I said earlier, in this relatively quick and
intuitive process, throws a moment of thought in
between, even more when you might be in danger of
overlooking something. But I think the decision-mak-
ing process itself is relatively little influenced by that
(Junior physician, #14)

So, the tool helps to reinforce my decision-making.
The color-coded recommendations provide a clear
visual indication, prompting me to address any
discrepancies that may arise between the tool’s sug-
gestions and my own clinical plan. In this case, I
delve into additional clinical histories that the tool
does not have access to and elucidate the rationale
behind my decisions. This process enhances my con-
fidence and guides better decision-making during
the clinical visit, which can improve the quality of
patient care. (Consultant (senior physician), #20)
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Task characteristics

Opportunities:

- Patient prioritisation
- Patient monitoring

- Care acceleration

- Personalised dosing
- Communication

- Efficiency
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Challenges:
- Workflow
- Patientindividuality/gestalt

Personal
characteristics

- Al Literacy

- Level of expertise

- Experience patient
population
Customary practices

Technology N
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Task-Technology Fit

1) Informed decision-making

Reveals patterns and other data-
driven insights

characteristics
Needs:

- Actionable risk score

- Actionable XAl

- Scenario Cross-Analysis
- Trend detection

- Customisation

Limitations:

- No access to key information

- Quality and reliability data
input

- Timing recommendations

2) Error-prevention feedback

Helps mitigate cognitive biases and
prevent oversights

Fig. 2 Task-Technology Fit Framework for AI-CDSSs based on analyses of 21 case studies

In general, two different types of TTF could be observed.
First, AI-CDSSs were highly valued for its function as a
feedback system, monitoring patient status and alerting
to clinical findings to prevent oversights (#2, #6, #9, #13,
#14, #16, #20) and signalling potential errors in patient
care (#13, #18). Secondly, AI-CDSSs demonstrated value
by making more informed decision, for instance by pro-
viding alternative viewpoints (#19), consolidating clinical
data for clinicians (#1, #10) or uncovering new patterns in
data (#2). This expectation led to some clinicians express-
ing frustration when AI-CDSS features failed to provide
any new informative insights (#4, #10, #11, #13, #15, #21).

Overview of findings
Figure 2 provides an overview of factors that were repeat-
edly mentioned in the 21 case studies, organised by task,
technology, and individual characteristics. The frame-
work also distinguishes two types of TTF in context of
AI-CDSSs: (1) tools for more informed decision-making,
and (2) feedback tools for error prevention. While some
factors are specific to one type (e.g., scenario cross-anal-
ysis), others are shared across both (e.g., customisation).
The figure shows the importance of a contextual under-
standing in AI-CDSS design. Effective design requires
consideration of the intended use and its constraints, and

recognising that user factors such as Al literacy and cus-
tomary practices can influence the fit.

Discussion

The aim of this review was to describe clinicians’ per-
spectives when interacting with an AI-CDSS for clinical
decision making. We synthesised the qualitative research
of published case studies through the lens of the Task-
Technology Fit model, highlighting design elements of
AI-CDSSs that are misaligned with clinicians’ tasks. In
addition, this approach allowed us to explore how Al-
CDSSs are used and integrated in clinical decision-mak-
ing processes.

Key findings - design implications

Our TTF analysis revealed that the current design of
AI-CDSSs is often not fully optimised for clinical tasks.
Although none of the included case studies approached
their interviews through a TTF lens, we found that cli-
nicians’ evaluations of AI-CDSS features tended to be
strongly linked to their relationship to clinical tasks. For
example, percentages as outcome were well received
in clinical practice when used for patient prioritisation
and care coordination communication but tended to
cause confusion when applied to individual patient cases
where the task relationship was less clear. Similarly, XAI's
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data-driven insights were valued primarily to mitigate
the risk of a particular event occurring, with several cli-
nicians praising its ability to provide actionable, data-
driven insights that enables effective clinical intervention,
and less so for understanding the Al system itself. This
finding is confirmed by a large multi-method co-design
study involving 112 clinicians and developers [57], which
identified that clinicians prioritise XAI relevant to the
clinical context over purely model-focused explainability.
Lastly, where clinicians reported not directly incorporat-
ing AI outputs into their decision making, they still val-
ued the system’s ability to raise awareness and encourage
reconsideration of their clinical judgement, helping to
prevent oversights in patient care.

Clinicians’ suggestions for technical adjustments like-
wise reflected a TTF perspective. Multiple times, they
recommended flexible options for customising inter-
face displays to avoid information overload in time-
constrained environments and to address the specific
information needs of individual clinicians. In another
example, to mitigate some limitations associated with
applying AI-CDSSs to their tasks, some clinicians empha-
sised the importance of integration with EHRs, allow-
ing access to relevant contextual clinical data for more
informed decision-making. A recurring theme regarding
the design elements was that clinicians want AI-CDSSs
to complement their own skills, such as identifying and
visualising trends, integrating large amounts of data, and
reducing task uncertainty by comparing treatment and
diagnosis strategies. These features could assist clinicians
in either identifying aspects prone to oversight or by sup-
porting more informed decision making.

Key findings - theoretical implications

The narrow scope of the TTF model for analysing the
use of a technology overlooks critical factors related to
utilisation, such as described in Technology Acceptance
Model (TAM) and Unified Theory of Acceptance and
Use of Technology (UTAUT). UTAUT, in particular, has
already been demonstrated to be applicable in the con-
text of clinical decision support systems [58], highlight-
ing the importance of incorporating dimensions such as
performance expectancy, effort expectancy, and social
influence in the analysis. Omitting these factors may lead
to an incomplete understanding of the clinicians’ inten-
tion to use AI-CDSSs. Already in the original TTF paper,
Goodhue and Thompson [9] extended the TTF model to
the Technology-to-Performance Chain to include pre-
cursor factors, such as beliefs and social norms, to deter-
mine the level of utilisation. Several previous studies have
demonstrated that the TTF perspective can be success-
fully integrated into other models such as TAM [59-62]
and UTAUT [63-65], to enable a more holistic analysis of
technology adoption.
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Specifically, trust is often mentioned in the literature
as one of the most important prerequisites for the use
of artificial intelligence in healthcare [66]. In most of the
studies included in this review, clinicians expressed a
desire for peer-reviewed articles from prospective clini-
cal trials validating the efficacy of an AI-CDSS or valued
endorsement from colleagues, reflecting the need for
social trust. Therefore, this TTF perspective represents
a single component within a larger analysis to bridge the
gap between development and clinic. Recently, Salimza-
deh et al. [67] emphasised the importance of explicitly
considering task characteristics when evaluating human-
Al decisions. In a non-health care setting, the researchers
found that two task-related factors - the level of com-
plexity and of uncertainty - independently of their level
of trust, significantly influence the extent to which users
resort to Al for decision-making, with the level of ‘appro-
priate reliance’ being negatively affected [67]. Thus, while
the concept of trust has been a popular subject in the
field of Al to explain utilisation, the importance of other
types of analysis such as the TTF should not be over-
looked. A study on autonomous buses even found that
Task—Technology Fit served as a partial pathway linking
trust to behavioural intention to use this type of AI-based
technology [65].

Unlike traditional static technologies, AI-CDSSs
undergo continuous monitoring and refinement. While
this continuous evolution might position TTF as both a
temporal assessment and highly situated and therefore
less relevant, this adaptive capability actually enhances
the importance of understanding task-technology align-
ment. As we describe in our results, some changes to
AI-CDSSs were made based on user feedback aimed at
achieving better TTF, such as implementing a three-tier
visual risk categorization for patient risk monitoring.
One of the included case studies (#21) radically rede-
signed an already implemented AI-CDSS system after
assessing clinical needs [56]. The new model acted as an
“early decision support tool” by predicting sepsis pro-
gression, visualising uncertainty, and suggesting addi-
tional tests to reduce it. Although not yet implemented,
participants considered this design far more useful than
the previous risk score, as it refined their hypotheses and
supported diagnostic decisions by directly addressing
their actual information needs during clinical practice.
These examples illustrate how, in adaptive Al systems,
TTF drives the optimisation process.

Implications for clinical practice

Frequently, clinicians were sceptical to what degree AI-
CDSSs can compete with the clinician’s expertise and
intuition, since these systems often fail to account for
factors reflecting patient individuality and lack impor-
tant clinical information that clinicians possess, such as
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bedside observations. This scepticism could be addressed
in two ways. First, education may help clinicians realise
that AI-CDSSs can still provide accurate predictions,
even without full contextual data. Higher levels of AI lit-
eracy are generally associated with a greater willingness
to adopt Al and can decrease other sources of scepticism
in clinical practice, such as fear of replacement [68]. Sec-
ond, AI-CDSS design should take into account its limita-
tions in the clinical context by focusing on areas where
it can truly add value with information provision. This
would require a greater emphasis on enabling better inte-
gration of clinicians’ expertise and AI-CDSS outputs, for
instance by designing AI-CDSS as an interactive tool. In
this role, AI-CDSSs could enhance exploration of differ-
ent clinical strategies and highlight leverage points for
intervention in patient trajectories, thereby broadening
the clinician’s perspective (‘umwelt’) and their decision-
making ability but not competing with it. Potentially, an
interactive design that allows customisation can help
safeguard clinicians’ autonomy, as a sense of agency is
a core element of autonomy [69]. In the context of XAl
customisation has been already linked to an increased
sense of agency [70]. However, Kostick-Quenet [71]
warns that option to customise clinical Al can lead to
tunnel vision and the overlooking of critical details, and
therefore advocates setting limits on the extent of such
customisation.

The last notable finding was that clinicians frequently
stated that their clinical decisions were not based on the
AI-CDSS predictions. While the World Health Organiza-
tion guidance on Ethics & Governance of Artificial Intel-
ligence for Health [72] assumes that AI-CDSSs ‘added
little value’ when clinicians disregard Al results, a closer
analysis, such as that conducted by some of the studies
(e.g. #17) included in this review, reveals a different per-
spective. In cases where clinicians did not accept the Al
results, they often did report taking additional action -
such as ordering more tests or consulting colleagues - to
re-evaluate their clinical judgment. These actions repre-
sent a form of ‘decomposing’ their initial intuitive exper-
tise judgment, a process Dreyfus coined as deliberative
rationality [73]. According to Dreyfus [73]" the involved
intuitive skilled performer deliberates about his behavior
in a detached manner that can be called rational because
it involves decomposition. But it is his or her intuitive
understanding that is examined and decomposed, not the
problem itself." (p.56). Thus, AI-CDSSs can improve clin-
ical performance by prompting reflection on the clini-
cian’s own judgment, thereby safeguarding against tunnel
vision [73]. This reflective function was already illus-
trated in the result section by one clinician who noted
that an AI-CDSS prompted him to “elucidate the ratio-
nale behind my decisions” [55]. This alternative usage of
AI-CDSSs requires design and policy considerations to
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strategically position AI-CDSSs in such a way clinicians
can form their initial judgement based on intuition and
expertise, before being influenced by an AI-CDSS. It
simultaneously calls for a critical reflection on the extent
to which the potential of AI-CDSSs to improve clinician
performance is being fully realised, when it is solely used
for deliberative rationality. Given that a recent multicen-
tre study in colonoscopy revealed early indications of cli-
nician deskilling from ongoing exposure to Al guidance
[74], greater consideration in the use and design of Al
assistance appears necessary.

Limitations

The main limitation of our study in assessing the con-
text of any findings was the lack of original interview
transcripts and the reliance on the authors’ interpreta-
tions from the interview data of the included papers. For
example, the extent of clinician Al literacy is largely an
interpretation of the authors. While some papers con-
tained more original quotations of clinicians than others,
no distinction was made by us between authors’ inter-
pretations and direct quotations, as even the quotations
themselves were subject to author selection and potential
bias. In addition, differences in interview design and the
lack of original transcripts prevented reliable estimation
of the frequency of findings. Therefore, we conducted
this exploratory analysis with a focus on how technol-
ogy, task, and individual characteristics interrelate and
influence clinicians’ use of AI-CDSSs, without drawing
conclusions about specific features, such as whether per-
centages are an appropriate AI-CDSS output.

Another limitation for the TTF analysis is the diver-
sity of implementation stages of the included AI-CDSSs
and thus a varying degree of direct experience with AI-
CDSSs. Initially, we included only implemented Al-
CDSSs, but the limited number of eligible articles led us
to broaden our criteria to include AI-CDSS interactions
in simulated settings, which do not fully reflect clinical
practice. However, we continued to exclude studies based
solely on non-user clinician perspectives, as direct user
experience with algorithmic decision-making was consid-
ered essential for the TTF analysis. Our choice to include
user interaction with non-implemented AI-CDSSs may
have resulted in overstatement of some conclusions. We
sought to minimise this risk by explicitly indicating the
implementation phase for each case study in Table 1.
The limited number and heterogeneity of included stud-
ies also made it difficult to draw conclusions about how
Task-Technology Fit may vary across departments.

Our final limitation relates to the scope of our analy-
sis. We excluded AI-CDSS primarily consisting of com-
puter vision or natural language processing algorithms,
as their distinct technological features require a differ-
ent cognitive task perspective. While this choice allowed
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us to focus in depth on TTF of tabular systems, it also
narrowed the breadth of our analysis. Moreover, as dis-
cussed above, TTF does not account for other important
determinants of technology use, such as trust or fac-
tors from UTAUT and TAM. In addition, although we
included studies from different time phases of AI-CDSS
implementation, we lacked insight into how the clinician-
Al relationship evolves over time. Lastly, although shared
decision making is common practice, patients were not
included as users of AI-CDDS in these studies.

Therefore, there is a critical need for more qualita-
tive research examining how clinicians’ TTF influences
the use of AI-CDSSs. Such work could provide richer
insights into how department-specific workflows impact
TTF and how AI-CDSS use affects clinical reason-
ing, as the included case studies exposed already some
of the diverse ways AI-CDSSs can be used. Additional
TTF analyses should be conducted for image-based and
natural language processing AI-CDSS. Future research
on algorithmic decision-making should also integrate
patients’ perspectives. Finally, as AI-CDSSs have only
recently been introduced into clinical practice, their
long-term effects, such as potentially decreasing intu-
ition and hindering expertise development, should also
be examined. We recommend longitudinal field studies
that can specifically document the evolving clinician-Al
relationship over time.

Conclusion

AI-CDSSs have the potential to enhance clinical deci-
sion making, yet their success in clinical practice remains
limited. Our review of 21 qualitative case studies, anal-
ysed through the task-technology fit model, revealed that
the design of AI-CDSSs is often not fully optimised for
clinical practice. Clinicians commonly struggled with the
direct applicability of AI-CDSSs features to their clinical
tasks. Furthermore, since AI-CDSSs typically lack access
to relevant contextual knowledge held by clinicians, their
assessments were often questioned by clinicians for their
conclusiveness at the individual patient level. Clinicians
primarily valued AI-CDSSs for their ability to generate
unique data-driven insights, such as exploring the effects
of potential clinical interventions and receiving trend-
based information. Our analysis thus highlights design
implications that point to the complementary nature of
AI-CDSSs in supporting more informed clinical decision
making. We also found that AI-CDSSs are being inte-
grated into practice in various ways. Beyond diverse task-
specific applications such as patient prioritisation and
risk communication, clinicians incorporated the system
into their decision-making processes to varying degrees.
For some clinicians, it served as a tool for critical reflec-
tion, while for others, it was more directly integrated
into the decision-making process. Our findings therefore
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serve as a stepping stone for future case studies seeking
to systematically explore the interactions between clini-
cians and Al A deeper understanding of these types of
integration mechanisms can inform the design of Al-
CDSSs that are better aligned with clinical needs, sup-
porting clinicians in their decision-making challenges
and contributing to improved patient care.
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