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Abstract

Effect handler orient programming (EHOP) is a re-
cently proposed programming paradigm that aims
to provide a high-level abstraction in code. Using
this paradigm, programmers are able to define oper-
ations as an effect, which are implemented by an ef-
fect handler. Functions can then use effects, allow-
ing the effect operations to be used in this function.
Depending on the effect handler that handles the
effect, an effect can have different functionality. In
this research, EHOP is compared to the traditional
functional programming paradigm on readability,
maintainability, modularity and performance for IO
intensive applications. The comparison is carried
out by two programming experiments that each ap-
ply one of the programming paradigms to create an
HTTP server. The comparison of these programs
show that EHOP improves the readability, main-
tainability and modularity but decreases the perfor-
mance in response time and memory. The conclu-
sion of this case study is therefore that EHOP af-
fects IO intensive applications in a negative manner
due to its performance overhead.

1 Introduction

Programming languages have been continuously evolving to
manage complexity and maintainability of code for program-
mers [1]. Chatley et al. [1] assign this as both the cause
and effect of increasing applications of programming to new
problems over the past decades. Consequently, new program-
ming paradigms should be explored to improve complexity
and maintainability management and to furthermore solve
new problems.

An example of managing complexity and maintainability
in a language is by the high-level abstraction of memory
management. Languages such as C allow a programmer to
allocate and free memory, often resulting in a good perfor-
mance. However, memory allocation, when not applied cor-
rectly, is known to introduce bugs and security vulnerabilities
[1]. Therefore, many languages such as Java and C# have a
build-in memory management system that removes the con-
cern for programmers having to manage their memory allo-
cation. Consequently, programmers do not have to concern
themselves with the irrelevant details of memory allocation
every time they write a program, making programming less
prone for introducing bugs or vulnerabilities and code less
complex in terms of readability.

A recently proposed programming paradigm that aims to
provide a high-level abstraction is effect handler oriented pro-
gramming (EHOP). Using EHOP, a programmer is able to de-
fine an operation with its own side-effects. This is similar to a
side-effect in the functional programming paradigm, where a
side-effect is an operation that often requires to mutate state,
values or interact with the outside world.

The operations or effects that a programmer defines in
EHOP are implemented orthogonal from application code by
effect handlers. An effect handler is an implementation of an
operation. The core concept of effect handlers is that they
can be changed or swapped without having to change the
application code that uses the related effects. According to
Hillerström [2], effect handlers can be implemented and used
together with other effect handlers. Combining these makes
effect handlers particularly useful. It allows for the use of
multiple effects at once, whilst maintaining orthogonality in
code implementation.

To illustrate how effects and effect handlers could be used,
the following example is provided. Assume that an applica-
tion requires logging, then for this application a Logging ef-
fect can be defined. The effect, or operation, can be a function
called log that takes a string as input and then outputs it. The
only concern of the programmer in the application code is
having this function available to its environment. The imple-
mentation details are hidden by an effect handler for this log
operation. As such, the effect handler can be implemented in
different ways without having to change the application code
or operation signature. A concrete example in Haskell using
the Polysemy [3] library can be found in Listing 1 and 2.

-- Effect

data Logging m a where

Log :: String -> Logging m ()

-- Polysemy function generating effect operations

makeSem ''Logging

-- Effect handlers

type LoggingHandler = Sem '[Logging, Embed IO] ()

-> Sem '[Embed IO] ()

runConsoleLogging :: LoggingHandler

runConsoleLogging = interpret $ embed . \case

Log s -> putStr s

runFileLogging :: LoggingHandler

runFileLogging = interpret $ embed . \case

Log s -> appendFile "log.txt" s

Listing 1: Example of defining a Logging effect and its respective
effect handlers. As can be seen in the type signature of the handlers,
each handler consumes the Logging effect from the effect row by
evaluating its operation.

Currently, there are a few languages that include built-in
support for effect and effect handlers. Two of these being
Koka [4] and Frank [5], which both have a native support for
defining effects and effect-handlers. These languages, how-
ever, are limited in terms of functionality other than being
able to make use of EHOP. Such functionalities include paral-
lel processing and asynchronous IO operations. Furthermore,
there is support for EHOP in other languages by the use of li-



program :: Sem '[Logging, Embed IO] ()

program = do

log "Hello "

log "World!"

main :: IO ()

main = program -- [Logging, Embed IO]

& runConsoleLogging -- [Embed IO]

& runM -- []

main' :: IO ()

main' = program -- [Logging, Embed IO]

& runFileLogging -- [Embed IO]

& runM -- []

Listing 2: Example of using a Logging effect in application code.
The effects are handled by effect handle functions defined in Listing
1.

braries. An example is Haskell [6], a popular functional pro-
gramming language, that can apply EHOP by using a library
named Polysemy.

The general question that this paper will try to answer is
how the use of effect handler oriented programming affects
the modularity, readability, maintainability and performance
of code in input-output intensive applications when compared
to traditional1 implementations. Answering this question will
reveal how usable and useful EHOP is in this particular ap-
plication. Providing a positive result would mean that EHOP
could help developers reduce complexity in code. Conse-
quently, it could improve software development and possibly
be embedded in more programming languages. Alternatively,
a negative result could indicate the limitations of EHOP as a
paradigm such as its applicability and usefulness. The re-
search question can furthermore be divided into individual
sub-questions, that can together answer the general question.

For a qualitative analysis of the general question, this paper
will try to answer the following individual questions:

1. Does using EHOP improve the readability of code com-
pared to the traditional approach of programming?

2. Does using EHOP improve the modularity of code com-
pared to the traditional approach of programming?

3. Does using EHOP improve the maintainability of code
compared to the traditional approach of programming?

For a quantitative analysis of the general question, this pa-
per will try to answer the following individual questions:

1. Does using EHOP improve response time compared to a
traditional implementation?

2. Does using EHOP increase the memory usage compared
to a traditional implementation?

1Traditional in a way of not applying EHOP.

The contributions of this paper are:

• an example of how EHOP can be used in a HTTP server
implementation.

• an exploration of applicability of effect handlers in IO
intensive applications.

• a qualitative comparison between EHOP and the tradi-
tional functional programming paradigm.

• a quantitative comparison between EHOP and the tradi-
tional functional programming paradigm.

Finally, this paper follows a structure of the chronological
order in which this research is carried out. Starting with Sec-
tion 2, the methodology of this case study will be explained
by defining the type of experiments, evaluation and compar-
ison methods. Furthermore, the experimental work will be
described in Section 3. In Section 4, the results of the exper-
iments will be shown and compared. Following is Section 5,
where the results, limitations, future work and reproducibility
of this research will be discussed. Lastly, the conclusions will
be discussed in Section 6.

2 Methodology

To answer the aforementioned questions, two programming
experiments are performed, evaluated and compared.

2.1 Defining the experiments

The experiments are aimed to be carried out in an identical
way except for the programming paradigm that is used. Both
experiments involve programming a simple HTTP server li-
brary from scratch, i.e. implementing the HTTP protocol on
top of a TCP socket and supplying an interface to setup re-
quest handlers that handle HTTP requests when running the
HTTP server.

They are performed using Haskell [6] as their program-
ming language. Although Koka [4] and Frank [5] provide
built-in support for effects and effect-handlers, they are not
considered to be usable in their current state for this case
study. Koka, for instance, is limited in its IO operations
since it cannot process a stream of data asynchronously.
There are functionalities that allow for asynchronicity and
multi-threading, however they are still in experimental phase.
Moreover, Frank is a fairly recent language that is not any-
where near Koka in its functionality. Hence, it is not suitable
for this case study as of now, but might be in the future. Con-
sequently, Haskell [6] is the better choice to carry out this
case study. Since Haskell does not have effects and effect-
handlers built-in like Koka does, the experiment with EHOP
makes use of the Polysemy [3] library. This library allows for
effects and effect-handlers to be defined and used in Haskell.

2.2 Evaluation of the experiments

After the execution of the experiments, the resulting pro-
grams are qualitatively compared and individually evaluated



on performance. The comparison includes a qualitative anal-
ysis of readability, maintainability and modularity. These
metrics can be complex to measure since they are often sub-
jective and can be defined differently depending on the pro-
grammer. It should be noted that there are metrics that try
to provide objective measures for these qualitative metrics.
However, for this research they are considered to be too time
consuming or not applicable for the EHOP paradigm. A de-
scription of these metrics and limitations can be found under
Limitations in the Discussion.

Nevertheless, this paper will try to objectively identify the
differences in these qualitative metrics between the experi-
ments. It will do so by providing examples and arguments
to why one approach is better over the other. Aiding these
examples and arguments are the principles for API design de-
scribed by Bloch [7]. As Bloch mentions, API design is very
similar to programming applications. Hence, they can be ap-
plied to the qualitative analysis of the experiments. The most
important principles applicable to this analysis that are:

• ”API should do one thing and do it well” [7, p.13]

• ”API should be as small as possible but no smaller” [7,
p.14]

• ”Implementation should not impact the API” [7, p.15]

Moreover, the performance of each experiment is measured
by the response time of requests and the overall memory us-
age of the application. To measure the response time of the
HTTP server, 100 POST requests are sent with an equal size
in payload. The server will have an endpoint registered that
reverses the data of the incoming request and sends it back.
This procedure is done 20 times per benchmark, with 5 differ-
ent benchmarks that differ in payload size. For each bench-
mark, the total time of performing 100 sequential requests
is measured and divided by 100 to get the average response
time per request. Furthermore, it should be noted that each
server will make use of buffering, to limit the traffic of the
TCP socket. It is set to 512 bytes to ensure that the response
time of the requests is not too short to measure.

Finally, the overall memory usage of each application is
measured. This is achieved by running the executables with
Runtime System options2 (RTS). For each executable they are
run by using the ”+RTS -h” option, which produces a .hp file
that can be converted into a graph. The results of this analysis
includes the total memory allocation in bytes over the time the
program has run. This procedure is executed 5 times, whilst a
100 benchmarks that each send a 100 POST requests with 100
bytes, are run each time. These POST requests are, like the
response time measurement, send to an endpoint that reverses
the payload contents.

2.3 Comparing the experiments

Combining the previously mentioned metrics, the experi-
ments are compared with the qualitative results of the indi-

2https://ghc.gitlab.haskell.org/ghc/doc/users guide/
runtime control.html

vidual evaluations. Additionally, the quantitative metrics are
compared to see if there is an overhead in performance when
using EHOP.

3 Applying EHOP in IO intensive applications

The goal of applying EHOP in IO intensive applications is
to reduce complexity and allow for better readability, main-
tainability and modularity. However, in order to apply EHOP
there needs to be an idea of where and how it can be applied
in an HTTP server.

First, HTTP servers deal with communication that is car-
ried out over the TCP network layer. TCP is a protocol that
allows for reliable bidirectional communication by sending
packets. Whenever a client sends a message over TCP, this
message can be split up in packets and received sequentially.
Therefore, in order to parse a complete HTTP request that
might have been split up into separate packets, they need to
be buffered. A useful effect to achieve this buffering is the
State effect. The State effect can be used to store data about
the state of parsing, the bytes that were received and a con-
struction of the HTTP request. With this state, intermediate
parsing can be done while still missing data and the data can
be easily stored and fetched when needed.

Second, servers often require monitoring to see the status
of the server or requests. This is often done by logging, either
to file or to the console. Such behaviour can be expressed
by a Logging effect where console or file logging can be im-
plemented by different effect handlers and swapped out by
changing the handler.

Third, in order for a server to process requests, request
handlers are needed. Usually these consist of functions that
take a request and produce a response. The server then routes
the right handler for a HTTP method and path combination.
These handlers must be stored and accessed during run time.
For these operations, a key-value store could be used, which
is a special type of State effect. In this store, handlers of the
type Request → Response can be stored and used by the
server.

Finally, an important functionality of HTTP servers is be-
ing able to serve static content. This content can be content
such as HTML, CSS or JavaScript files. Since these files are
stored on disk they need to be read through an IO operation in
order to serve a client with its content. However, in a testing
environment it might be desirable to not interact with the ma-
chine the tests are running on. Therefore, this reading of files
can be handled as an effect and two different effect handlers
can be defined for production and development. In produc-
tion, the FileReading effect can interact with the filesystem
of the server, whilst in development the effect can return a
constant string value.

Experimental work

The HTTP network layer can be build on the TCP network
layer. Consequently, a TCP socket is used in both the exper-

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/runtime_control.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/runtime_control.html


iments in this research. Each experiment starts with the Net-
work library that provides such a socket. The boilerplate code
that each experiment starts with is identical and only needs a
function with type Socket → IO a. Therefore, this function
is the difference in implementation and is compared between
both experiments.

For each experiment, the functionality of each HTTP
server is the same and similar in implementation other than
its paradigm. Such functionalities include:

• buffering of incoming request data that is sent by packets
of X bytes

• parsing the incoming data as an HTTP request

• registering request handlers for GET and POST requests

• setting a file source to serve static content

• logging of incoming requests

Data types, parsers and basic functions are reused in both ex-
periments to keep their implementation similar for compari-
son whilst using different paradigms. The code to these ex-
periments is stored on a GitHub repository3.

4 Results

The results in this research are the comparison of the pre-
viously mentioned experiments that were carried out. These
experiments have been compared both qualitatively and quan-
titatively.

4.1 Qualitative analysis

The experiments in this research are compared and analyzed
by readability, maintainability and modularity. The following
subsections each individually describe the positive and nega-
tive aspects that EHOP brings based on its metric.

Readability

An example in which EHOP improves the readability of code
in the HTTP server experiment is State. In the traditional
functional programming paradigm, state is threaded through
functions. However, using a State effect, the state operations
are available to any function that uses the same State effect
without having to thread it with explicit bind or do notations.
A simplified example from the EHOP experiment showcasing
this can be found in Listing 3.

Another aspect on which EHOP improves readability is the
explanation of functionality. Functions that use effects have
their effect incorporated in their type signature. From this,
a programmer can argue more about its functionality based
on its effects. For instance, from a function that uses the IO
effect, a programmer can deduce that it most likely interacts
with the environment. Accordingly, in Listing 3 a developer
could deduce that the program might log and manage state. In

3https://github.com/sstreef/research-project

f :: Sem '[Logging, State (Maybe String)] ()

f = do

Logging.log (...)

(maybeString :: Maybe String) <- State.get

...

Listing 3: Example of a benefit of using EHOP. Two different effects
can be used in a single do notation. In a non EHOP approach, state
operations would not be able to be sequenced with an IO operation
like this. This example has been simplified by omitting unnecessary
variables and operations by replacing them by dots.

the traditional paradigm, a programmer has to check the func-
tion, and possibly its implementation and declaration, inside a
function as its type is not explicit unless annotated. However,
this type signature can become more complicated when the
number of effects increases, making it harder to understand
what functionalities are embedded into the program. Never-
theless, for an HTTP server application this is not the case, as
it uses a limited amount of effects. Therefore, in these experi-
ments EHOP adds more value to understanding functionality,
which follows one principle of Bloch, ”Functionality should
be easy to explain” [7, p. 13]. A similar argumentation can
be given for the part where effects are ran by effect handlers.
They give a good indication on which effects are present, but
can increase complexity as the number of effects increase. An
example presenting this can be found in Listing 4.

resolve :: HTTPRequest -> IO HTTPResponse

resolve req = (do

raiseRequestHandlingEffect serverSetup

chain req [resolveRequest, resolveFileRequest])

& runRequestHandling

& evalState Nothing

& runKVStorePurely Map.empty

& runFileReadingIO

& runConsoleLogger

& runM

>>= snd

Listing 4: Example of effect handlers indicating the functionality in
a program, taken from the EHOP experiment. From these particular
effect handlers it can be deduced that it might log, read files and
manage state without having to look at the functions in the program.
Consequently, it improves the accessibility and readability of the
code.

Contrary to EHOP adding visibility over functionality of
code, it can also be hidden. For instance, some effects might
require effects, such as state, in their implementation. How-
ever they are not interesting to the user of the main effect.
Moreover, the ability to interface them could introduce com-
plexity or opportunity for errors by manipulating them. Pol-
ysemy [3] allows programmers to raise effects on a program,
i.e. add new effects dynamically to a program. This is useful
for hiding the internal effects of an effect for a programmer

https://github.com/sstreef/research-project


by only having the main effect in the program signature. Its
internal effects can then be raised dynamically before they
need to be ran by effect handlers when running the main ef-
fect. This ensures that the programmer cannot use or manip-
ulate the internal effects. Listing 5 shows the signature of
such a raising function from the experiment. Before raising,
the program can only interface the RequestHandling op-
erations and after raising, the internal effects can be ran for
the RequestHandling effect to be ran. Being able to hide
the effects is a concrete example of ”Implementation Should
Not Impact API” [7, p.15] where implementation details are
hidden.

raise :: Sem (RequestHandling : r) a

-> Sem (RequestHandling

: HTTPStaticFilePathState

: HTTPHandlerStore : FileReading

: Logging : Embed IO : r) a

Listing 5: A function signature taken from the EHOP experiment
where the function raises effects on a program to hide the imple-
mentation details of the RequestHandling effect. Reducing com-
plexity for the user of the program and removing the opportunity of
introducing errors by not being able to use the internal effects.

Maintainability

An advantage of using EHOP is the ease in which the im-
plementation of an effect can be swapped with little effort.
For testing this means that a module or function that uses
a particular effect can be tested in a more controlled envi-
ronment by swapping certain effect handlers for more pre-
dictable or simple handlers. An example from the EHOP ex-
periment that shows this is the FileReading effect. In the ap-
plication code this effect is run by the runFileReadingIO
handler, which reads a file from disk. This handler has
an IO side-effect that is unpredictable since it depends on
the file system, which can differ from machine to machine.
Therefore, it would be more desirable to use an effect han-
dler that does has predictable behaviour. In this experiment
this is achieved by using a different effect handler, called
runFileReadConstant, which returns a fixed string and
does not do any IO operations. The same procedure for en-
suring that effects have predictable behaviour can be applied
to the Logging effect in this experiment. Rather than hav-
ing an effect handler that logs using an IO operation, such
as runConsoleLogger or runFileLogger, it could just dis-
card its content and do nothing. Nevertheless, a traditional
paradigm could similarly achieve this by creating functions
similar to effect operations and changing their implementa-
tions or by using monads to encapsulate different behaviours.
However, EHOP allows for a much more simple and easier to
use approach. Using effect handlers, the effects of a function
can be lifted dynamically based on its context. For instance,
having different effect behaviour in a production or develop-
ment environment without having to change the application
code that uses the effect.

A second improvement that EHOP provides is adding new
operations to existing effects will not break the application
code structurally. Consequently, this means that as long as the
operations signatures stay the same and the operations are not
removed in an effect, the effect will remain compatible with
code that use previous versions of the effect. This allows ef-
fects to be backwards compatible with older code, even when
adding new operations or changing the implementation of op-
erations.

Modularity

From the experiments, multiple cases were discovered on
which effects and effect handlers improve the modularity in
code. First, using effect handlers a programmer can define
an effect and use this effect in its program without having an
effect handler ready to run it. As long as the program does
not require evaluating the effect, it is a valid program. This
allows for code to be written independently of the implemen-
tation of effects. Second, effects and effect handlers that are
already defined can be easily extended with extra operations.
Adding new effect operations does not impact the application
code that is already using an effect as mentioned in the previ-
ous Subsection.

4.2 Quantitative analysis

The performance of the http servers produced by the two
experiments were measured by means of response time and
memory characteristics. The measurements were performed
on a single machine of which the specifications can be found
in Table 1.

Operating system Windows 10
Processor Intel Core i7-8750H
RAM Samsung M471A2K43CB1-CTD
System type 64-bit

Table 1: The hardware and operating system specifications of the
machine running the quantitative analysis.

In Figure 2 the average response time of each HTTP server
handling POST requests with different amounts of data can be
seen. The results in this figure were produced by the method
described in the Methodology Section. All the data from the
response time benchmarks can be found in Appendix A.1.
The results show that the response time of the HTTP server
using effect handlers is overall slightly slower whilst process-
ing POST requests with different payload size.

Furthermore, the results of the total memory used by each
application of the experiments can be found in Figure 2. The
results were created according to the method describe in the
Methodology Section. All the data from the total memory us-
age benchmarks can be found in Appendix A.2. The results
indicate that over the 5 benchmarks that were run, EHOP
always has a memory overhead compared to the traditional
paradigm.



Figure 1: The response time of a POST request where the sent data
is sent back reversed. Each result is respective to a different pay-
load size and is based on the average of 20 runs where 100 requests
were sent each run. This figure shows that using EHOP on average
adds a small overhead to the response time compared to a traditional
paradigm.

Figure 2: The total memory usage for running 10000 POST requests
where the sent data is sent back reversed. Ran 5 times with a pay-
load of 100 bytes for each request. The figure shows that EHOP
has a memory overhead compared to the traditional paradigm which
therefore outperforms EHOP with memory usage.

5 Discussion

The results of comparing both experiments show that EHOP
provides improvement on multiple areas.

First, the readability is overall increased when compared to
using a traditional paradigm. EHOP allows for easier recog-
nition of what a function does by looking at the effects or
effect handlers applied. Moreover, effects allow for less lines
of code when using state since effects can be combined in
a function. Furthermore, it can hide implementation details
of effects by dynamically raising the effects that an effect re-
quires. This reduces complexity within the function by hiding
unnecessary effects.

Second, the results of the experiments showed that effects
make code more maintainable. Effect handlers allow for a
simple separation of production and development functional-
ity by being able to run effect handlers conditionally and dy-
namically. Consequently, it allows for testing functions with
effects using different effect handler implementations than
production code. Moreover, using effects introduces back-

wards compatibility in code. Operations can be added and
implementations can be changed without breaking applica-
tion code structurally.

Third, EHOP can make improve the modularity of code
by using an effect as a bridge between application code and
effect handlers. A developer is able to define an effect and
write type correct application code without an effect handler
implementation. Moreover, effects can be extended without
breaking unchanged application code.

Finally, the quantitative results show that EHOP adds an
overhead on both the response time and memory usage. This
could be due to Polysemy being a library and therefore not
being as optimized as native alternatives for EHOP. However,
this would have to be verified by performing these experi-
ments in a language such as Koka.

The results of the performance indicate that EHOP might
not be useful for IO intensive applications. Since IO intensive
applications are performance driven, especially HTTP servers
where any overhead in response time is extremely noticeable
and undesirable. Qualitative improvements such as readabil-
ity, maintainability and modularity might therefore not out
way the costs in performance.

5.1 Limitations

This case study focuses on the effect of EHOP on IO inten-
sive applications and only performs experiments on program-
ming an HTTP server. Consequently, it is possible that it did
not capture all cases for IO intensive applications in which
EHOP might be useful. Moreover, all experiments were car-
ried out in Haskell, which does not have built-in support for
effects and effect handlers. Therefore, the quantitative results
might show an overhead in performance. Furthermore, the
experiments were carried out by a single subject on a single
machine. This might show a bias in programming based on
the experience of the developer. Additionally, the machine
that ran the quantitative results could show bias by physical
constraints and its operating system. Finally, as mentioned in
the Methodology Section, this research took a less objective
and numerical approach of qualitatively analyzing code. As
a result of the limited time in which this research was car-
ried out, metrics that try to objectively analyze code were not
used. Metrics such as the Halstead metrics [8] for readability
would take up too much time as it requires counting variables
and methods by hand since there are no tools for this avail-
able for Haskell. Furthermore, the Cyclomatic Complexity,
coupling and cohesion of code was considered, however they
were deemed to be not usable with the Polysemy library or
applicable in the time frame given for this research.

5.2 Future work

Future improvements and extensions could be carried out to
improve the validity and quality of the results. From the
aforementioned limitations multiple future work could be car-
ried out. First, this case study could be performed with a



different application for its experiments. This could, for in-
stance, include serial communication or implementing lower
network protocols such as UDP and TCP. Second, the exper-
iments could be carried out in a different programming lan-
guage that has built-in support for EHOP, for example Koka.
However, it should be noted that as of writing this paper, Koka
is limited in its IO capabilities. Third, the qualitative analy-
sis of both experiments could be performed, by using more
objective metrics. Such metrics include the Halstead metrics
[8], Cylomatic Complexity and coupling cohesion. This way
the conclusion of the results could be more objectively based.
Finally, the quantitative evaluation of experiments could be
reproduced more often and on different machines to take an
average and come to a more trustworthy result.

5.3 Ethics & reproduction

The experiments, evaluation and processing of results in this
research have been carried out by a single entity, namely the
author. No other subjects were involved in this research and
therefore nobody other than the author could be negatively
impacted by the results of this study.

Moreover, the results of this case study come from the ex-
ecution of two experiments that involved programming. The
resulting code of each experiment can be found in a GitHub
repository4 and is publicly accessible for reference and repro-
duction. The quantitative analysis was performed on a sin-
gle machine, however performed multiple times. It should be
noted that the quantitative results may differ based on the sys-
tem that runs the programs. It is inevitable that these memory
and time measurements are susceptible to the conditions of
the machine that runs it. Nonetheless, multiple runs of quan-
titative analysis showed similar behaviour as can be seen in
Appendix A, where all quantitative results that were gather
are available.

6 Conclusion

This research aimed to answer how EHOP affects the mod-
ularity, readability, maintainability and performance of code
in IO intensive applications when compared to a traditional
approach. The results were formed by analyzing the quali-
tative and quantitative properties of two functionally identi-
cal HTTP servers. Each created using a different paradigm,
namely the EHOP and traditional paradigm.

The qualitative analysis of both programs showed the effect
of EHOP on the readability, maintainability and modularity
of the code. These results indicated that EHOP improves the
code on each of these. First, the readability of code increases
by making use of effects and effect handlers. Effect signa-
tures in functions allow a developer to deduce the possible
functionality from the effects that it uses. Moreover, effects
decrease the lines of code used when using monads such as
state, by being able to combine and use effects in a single
function. Second, EHOP can improve the maintainability of

4https://github.com/sstreef/research-project

code by being able to dynamically change effect behaviour
with effect handlers. This allows for more simple and easy
testing of functions that use effects. Moreover, using effects
introduces backwards compatibility in code since operations
can be added and implementations can be changed without
breaking existing application code. Third, the modularity of
code can improved by introducing effects. Application code
can be written type correctly with only an effect defined, al-
lowing the effect handler to be independently added later on
in development. Additionally, effects can be extended with
operations without influencing application code, making it an
independent and more modular improvement.

Furthermore, the quantitative analysis of the program ex-
posed the overhead in memory and response time of the
EHOP HTTP server. Both performed worse than the tradi-
tional paradigm by adding an overhead in response time and
memory.

Concluding, EHOP can qualitatively improve code in as-
pects such as readability, maintainability and modularity,
however it has an overhead in run-time and memory perfor-
mance. For IO intensive applications, performance is con-
sidered to be very important which EHOP seems to only de-
grade. Therefore, according to the result of this particular
case study, the effect that EHOP has on IO intensive appli-
cations is considered to be more negative. However, more
IO intensive applications should be analyzed to support, as
well as being programmed in different languages that have a
built-in support for EHOP to support this result.

https://github.com/sstreef/research-project


A Quantitative results

A.1 Response time benchmarks

The following tables contain all data collected from running
POST requests on both applications that were developed in
the two experiments. Each row in a table represents a sin-
gle benchmark that ran 100 POST requests against an HTTP
server. Each table contains 20 benchmarks and is different in
the amount of data that was sent per POST request.

100 KB payload
Total time (s) Average time (s)

EHOP Traditional EHOP Traditional
32,751 30,115 0,328 0,301
34,887 29,220 0,349 0,292
34,733 29,196 0,347 0,292
34,739 28,989 0,347 0,290
33,479 29,057 0,335 0,291
33,690 29,641 0,337 0,296
33,891 29,692 0,339 0,297
33,061 29,906 0,331 0,299
34,059 29,545 0,341 0,295
35,008 29,524 0,350 0,295
35,294 29,864 0,353 0,299
35,615 29,990 0,356 0,300
35,110 29,251 0,351 0,293
35,430 29,054 0,354 0,291
36,956 29,792 0,370 0,298
34,635 29,114 0,346 0,291
34,045 33,186 0,340 0,332
34,967 39,599 0,350 0,396
34,970 31,594 0,350 0,316
33,788 32,164 0,338 0,322

75 KB payload
Total time (s) Average time (s)

EHOP Traditional EHOP Traditional
19,037 18,410 0,190 0,184
18,770 17,855 0,188 0,179
18,831 18,431 0,188 0,184
19,685 16,883 0,197 0,169
21,987 17,503 0,220 0,175
19,901 18,650 0,199 0,186
18,063 18,017 0,181 0,180
18,160 16,940 0,182 0,169
18,413 16,869 0,184 0,169
18,289 17,288 0,183 0,173
18,187 17,272 0,182 0,173
18,510 19,705 0,185 0,197
18,219 16,904 0,182 0,169
18,777 17,098 0,188 0,171
18,366 18,876 0,184 0,189
18,496 17,280 0,185 0,173
18,658 17,103 0,187 0,171
18,405 17,311 0,184 0,173
18,595 17,129 0,186 0,171
18,356 16,830 0,184 0,168

50 KB payload
Total time (s) Average time (s)

EHOP Traditional EHOP Traditional
9,389 8,450 0,094 0,084
8,996 8,297 0,090 0,083
9,474 8,168 0,095 0,082
9,338 8,182 0,093 0,082
9,518 8,459 0,095 0,085
9,489 8,203 0,095 0,082
9,100 8,242 0,091 0,082
9,304 8,548 0,093 0,085
8,632 8,209 0,086 0,082
9,456 8,353 0,095 0,084
9,581 8,981 0,096 0,090
9,021 8,171 0,090 0,082
9,292 8,309 0,093 0,083
8,811 8,375 0,088 0,084
8,692 8,146 0,087 0,081
9,836 8,238 0,098 0,082
9,117 8,030 0,091 0,080
9,681 8,281 0,097 0,083
9,435 8,322 0,094 0,083
9,754 8,242 0,098 0,082



25 KB payload
Total time (s) Average time (s)

EHOP Traditional EHOP Traditional
2,471 2,330 0,025 0,023
2,431 2,630 0,024 0,026
2,578 2,552 0,026 0,026
2,902 2,645 0,029 0,026
2,576 2,311 0,026 0,023
2,390 2,282 0,024 0,023
2,386 2,491 0,024 0,025
2,398 2,435 0,024 0,024
2,348 2,401 0,023 0,024
2,400 2,378 0,024 0,024
2,360 2,373 0,024 0,024
2,668 2,374 0,027 0,024
2,424 2,359 0,024 0,024
2,441 2,514 0,024 0,025
2,348 2,539 0,023 0,025
2,323 2,311 0,023 0,023
2,443 2,372 0,024 0,024
2,467 2,222 0,025 0,022
2,372 2,334 0,024 0,023
2,345 2,333 0,023 0,023

10 KB payload
Total time (s) Average time (s)

EHOP Traditional EHOP Traditional
0,429 0,435 0,004 0,004
0,399 0,402 0,004 0,004
0,390 0,346 0,004 0,003
0,386 0,401 0,004 0,004
0,388 0,395 0,004 0,004
0,481 0,420 0,005 0,004
0,427 0,374 0,004 0,004
0,399 0,382 0,004 0,004
0,416 0,417 0,004 0,004
0,401 0,337 0,004 0,003
0,399 0,366 0,004 0,004
0,374 0,366 0,004 0,004
0,372 0,389 0,004 0,004
0,404 0,364 0,004 0,004
0,398 0,355 0,004 0,004
0,392 0,371 0,004 0,004
0,390 0,400 0,004 0,004
0,420 0,384 0,004 0,004
0,381 0,417 0,004 0,004
0,407 0,383 0,004 0,004

A.2 Memory benchmarks

The following table contains all data collected from running
POST requests on both applications that were developed in
the two experiments. Each row in the table represents a sin-
gle benchmark that ran 100 POST requests 100 times. The
data collected is the amount of bytes that were allocated by
running the server and sending requests.

Total memory allocation (Bytes)
EHOP Traditional
54.293.642 48.657.341
52.476.075 45.563.386
56.597.580 48.186.481
54.555.494 48.490.021
54.485.438 48.095.525
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