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Attitude controlis an essential flight capability. Whereas flying robots commonly rely
onaccelerometers' for estimating attitude, flying insects lack an unambiguous sense
of gravity?®. Despite the established role of several sense organs in attitude
stabilization®?, the dependence of flying insects on an internal gravity direction
estimate remains unclear. Here we show how attitude can be extracted from optic flow
when combined with amotion model that relates attitude to acceleration direction.
Although there are conditions such as hover in which the attitude is unobservable, we
prove that the ensuing control systemis still stable, continuously moving into and out
of'these conditions. Flying robot experiments confirm thataccommodating
unobservability in this manner leads to stable, but slightly oscillatory, attitude control.
Moreover, experiments with a bio-inspired flapping-wing robot show that residual,
high-frequency attitude oscillations from flapping motion improve observability. The
presented approach holds a promise for robotics, with accelerometer-less autopilots

paving the road for insect-scale autonomous flying robots®. Finally, it forms a
hypothesis oninsect attitude estimation and control, with the potential to provide

further insight into known biological phenomena

>’8 and to generate new predictions

such asreduced head and body attitude variance at higher flight speeds®.

Inthe fight against gravity, it is crucial for flying robots and animals to
control their attitude, thus determining the direction of forces such as
thrust and lift. Flying robots can be designed to have a passively stable
attitude, meaning that they do not need to actively control their atti-
tude to stay upright. Examplesinclude fixed-wing drones'® and tailed
flapping-wing robots". However, passive stability comes at a cost, asiit
requires aminimal velocity and leads to reduced agility. Indeed, agile
flyers such as flying insects™, quad rotors® and tailless flapping-wing
robots®™ are inherently attitude-unstable and rely on active attitude
control. To this end, unstable flying robots commonly feature accel-
erometers®, as filtering acceleration measurements over time allows
to retrieve the gravity direction®.

Itis still unclear whether and how flying insects estimate their atti-
tude**'*?, Although insects have many different sensory modalities, no
specificgravity sensor such asanaccelerometer has beenfound. Sensory
cuesthat carryinformationon the gravity direction whenwalking (such
aslegloads™"),are notvalid whenairborne. A flyingbody is often subject
to accelerations larger than gravity in other directions, especially dur-
ing manoeuvring®. Moreover, organs with gyroscopic function such as
the halteres in dipterans’ can aid stabilization by providing information
on body rotation rates, but they carry no information on the absolute
attitude angle itself. Depending on the insect species, rotation rates
may also be sensed with antennal flagella?, wing strains?, ocelliZ*?** or by
separating the rotational and translational components of optic flow?.
Inprinciple, one canintegrate rotation rates starting fromaknowninitial
attitude?, but the estimated attitude will then drift over time.

A few bio-inspired control approaches have forwarded the inter-
esting possibility that insects may bypass estimating attitude
altogether”*%_ 1t has been demonstrated that pendulum-like
flapping-wing robots can be stabilized around hover purely by coun-
tering rotation rates?*. A full control system can also use optic flow for
controlling flight speed”. However, the system’s control performance
will depend on setting the rotation rates such that the available thrust
and lift forces reach the desired directions quickly enough. Because
the right sign and magnitude for rate commands depend on the atti-
tude angle, these approaches will also benefit from taking attitude
into account.

Combining optic flow and amotion model

Here, we explore whether the attitude angle canbe retrieved when com-
bining optic flow with amotion model. Motion models are commonly
used for state estimation in flying robots, but almost always incorpo-
rate measurements from an inertial measurement unit, containing
gyros, magnetometers and accelerometers, to retrieve attitude?®*. A
few studies have attempted to estimate attitude angles with just optic
flow and motion models before®* 33, However, the results from these
studies are inconclusive. First it was shown that attitude angles could
not be determined in this manner for fixed-wing drones. Follow-up
studies demonstrated that attitude deviations from the forwards flight
equilibrium point are observable®**, but already so when observing
the drone’s rotation rates alone. Indeed, the simulation experiments
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Fig.1| Theoretical analysis proves that attitude can be estimated with
opticflow and a thrust-vectoring motion model but that the presence of
unobservablestates leads toslight attitude oscillations. a, [llustration of
our approach tostudying optic-flow-based flight attitude control. Grey arrows
represent theinfluence of insights and inspiration, and black arrows represent
modelling and the generation of hypotheses. Llfh isthe Lie derivative of the
optic flow observation equation. The honeybee imageis reprinted with the
permission of iStock.com/Antagain. b, Thrust-vectoring motion model of an
unstable flying system, thatis, robotorinsect, and an axis system used for a2D
constant-height model, with body velocities vy, wg, roll attitude angle ¢ and
rate p, distance along the principal axis, Z, toaworld point for which optic flow
ismeasured and inertial velocity y;and altitude Z. ¢, lllustration showing that
the proposed approachtoattitude estimationleads to a continuous transition
betweenobservable and unobservable states, leadingtoslightattitude
oscillations of the system. d, The degree (deg.) of observability (equation (35),
Supplementary Information) ina part of the state space for a constant-height

show growing errors on the pitch angle®, indicating that the model
may be largely relying onintegrating rotation rates.

We follow a bio-robotics approach (Fig. 1a) to studying optic-
flow-based attitude estimation and control. First, we prove theoretically
that attitude angles can be estimated when combining optic flow meas-
urements with a generic, thrust-vectoring motion model of unstable
flyers. This type of model relates body attitude, that is, pitch and roll
angles, to acceleration direction. It applies to rotorcraft such as quad
rotors®, butalso to insects***and tailless flapping-wing robots®** when
averaging forces over the flapping cycle. Mathematically describing
the sensory inputs and the motion model enables a formal analysis of
the state’s ‘observability’. The state of the two-dimensional (2D) model
inFig.1bisavector with the roll angle, velocities and height, whereas
its sensory input comes from a single optic flow sensor similar to an
elementary motion detector”, directed downwards from the body. The
stateis observableifit can be uniquely determined by tracking motor
actions and sensor observations over time.

We investigate the thrust-vectoring model for various levels of
complexity, starting from a basic constant-height model without drag
(Theoretical analysis and Supplementary Information). Non-linear
observability analysis shows that the state, including the attitude angle,
islocally, weakly observable®. This means that at asingle time instant,
changes in the observation and corresponding time derivatives can
be uniquely linked to changes in the state. A further mathematical
and numerical analysis indicates that the model even possesses the
stronger property of local observability, indicating that the state itself
can be determined instantaneously.

However, the observability depends on the values of the state vari-
ables and controlinputs. Toillustrate this, Fig. 1d,e shows the degree
of observability (equation (35), Supplementary Information) for two
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model without rate measurements, with the remaining variablessettoy,=0,
Z,=landmoment M=0.The colour range goes from unobservable (dark blue)
to higher degrees of observability (yellow), whichimplies a faster convergence
ofastateestimation filter. The state isunobservable if the systemis upright

(¢ =0) ornotrotating (p = 0). Astate space trajectory is shown of a controller
withas desired state ¢*=0 (blacksolidlinein the plot’s centre and in the inset).
e, Thesamegraph for aconstant-height system with rate measurements. The
stateisnow only unobservablein the case of zerorate. f, Control performance
for the constant-height system without rate measurements. The figure shows
the mean absolute (abs.) error|w, - w;lfor the simulated systemover N=10runs
(fromgreentored). Ameanabsolute error>0.05means that the controller is
notabletotrack the reference. The yaxis represents the optic flow sensing
frequency (OF freq.), and the x axis represents different noise settings for the
optic flow measurement oy and actuation noise on the generated moment gy,
separately. g, Thesame graph as fbut for a constant-height system with rate
measurements.

variants of a constant-height model, inwhich a higher degree implies
that changes in the state can be observed more easily. The model in
Fig. 1d estimates rotational accelerations generated by its motor
actions, whereas the modelin Fig. 1e also measures the rotationrate.
The latter model’s degree of observability is higher throughout the
state space, but both models have an unobservable state when the
roll rate p = 0° per s. At first, this seems to represent a considerable
problem as a zero rate will occur frequently, that is, whenever the
controller reaches its target attitude angle or optic flow setpoint. In
engineering, having unobservable states at the core of the control
systemwould be regarded as unacceptable and remedied by adding
extra sensors.

By contrast, we propose that nature may have accommodated the
unobservability of attitude in certain states. For the basic constant-
height model, we provide a proof (Supplementary Information) of the
control system’s stability, including the unobservable conditions. It
consists of two parts: (1) when the state is observable the controller is
able to achieve its control objective, which will lead to zero rate, that
is,aconditioninwhichthe stateis unobservable. (2) When the state is
unobservable, noise and disturbances will lead to aconditionin which
the state is observable again. For example, a direct effect is caused by
actuation noise inthe moment generation that makes the modelrotate,
inducing observability. Another example is an indirect effect caused
by sensor noise, which will lead to a wrong attitude estimate. Because
the wrong estimate will be off-target, the controller will command a
‘corrective’ action that results in a non-zero rate and thus an observ-
able state. Consequently, the system will continuously move into and
outof unobservable states, leading to slightly oscillatory motions. This
isillustrated in Fig. 1c and the oscillations are evident from the ellipti-
cal blackline trajectoriesin (¢, p)-space shown on Fig.1d,e.
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Fig.2| The theoretical findings are confirmed by robotic experimentsin
which fully autonomous flight is demonstrated based on optic flow and
gyromeasurements. a, Quad rotor robot used in the experiments.

b, Optic-flow-based (thick line) and accelerometer-based (thin line) estimated
rollangles over time during a hover-experimentinwhich the droneflies first
with theaccelerometer-based estimate (light grey shading, ‘ACC-based
attitude’) and then with the optic-flow-based estimate (dark grey shading,
‘OF-based attitude’). ¢, Optic-flow-based (thick line) and accelerometer-based
(thinline) estimated pitch angles over time. d, Optic-flow-based (thick line)
and motion-tracking-based (thin line) estimated lateral velocity v,over time.

Closed-loop simulation experiments with varying noise levels con-
firm that the unobservable states do not hamper successful attitude
or optic flow control. Figure 1f,g shows the control performance for
the model without and with rate measurements. In general, the per-
formance benefits from fast vision measurements, as performance
increases with an increasing vision update frequency. Moreover, the
control performance is worse for the model without rate measure-
ments in which increasing actuation noise forms a problem. These
simulationresults show that rotation rate measurements are not strictly
necessary for attitude estimation and control, but doimprove control
performance.

b ] ACC-based attitude

OF-based attitude

e, Optic-flow-based (thick line) and motion-tracking-based (thin line)
estimated longitudinal velocity v, over time.f, Optic-flow-based (thick line) and
motion-tracking-based (thinline) height Z over time. g, Comparison of
sampled probability distributions of the pitch angle 6 while flying with an
accelerometer-based estimate (light grey, foreground) and an optic-flow-
based estimate (dark grey, background), datafrom N=10flights, 5,471samples.
h, Thedrone flying overamovingslope. i, The drone flying over athree-
dimensionally structured environment.j, Disturbance-rejection experiment
inwhichtherollis perturbed by 10°.

The mathematical and numerical analysis of increasingly com-
plexmodels shows that their state is also locally, weakly observable.
The complexities introduced include a varying height model with
drag and wind, imperfect thrust prediction, a sloped surface and
finally flightin generic three-dimensionally structured environments
(Supplementary Information). Attitude is observable with the help
of a thrust-vectoring model as it links attitude to accelerations and
acceleration changes that are captured by optic flow and its time
derivatives. However, the state is always unobservable in a perfect
hover condition, thatis, when the attitude is constant and optic flow
is cancelled out.
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Fig.3|Experiments with abio-inspired flying robot show thatresidual
oscillations from flapping-wing motionimprove observability.

a, Flapping-wing robot experiment, featuring a50 cmwingspan ‘flapper
drone’ (designbased onref.™) carrying the light-weight, high-frequency
artificial compound eye CurvACE*. A constant-height model was implemented
thatonly used lateral ventral flow (no divergence). b, The CurvACE determined
opticflowat200 Hzinfour separate downwards facing regionsinits field of
view. Eachtimeinstance it used one step of the Lucas-Kanade optic flow
algorithmto determine the flow in the xand y directions at these four locations.
During the experiments, the lateral optic flow was determined by averaging the
flowinthexdirection over the four areas. ¢, Estimated roll angles over time

Robotic experiments

Experiments with a free-flying, fully autonomous quad rotor (Fig. 2)
confirm the theoretical findings. The drone observes both the
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during one of the experiments, estimated by acomplementary filter that uses
theaccelerometers (thinline) and by afilter thatis based on optic flow and gyro
measurements (thick line). Thereis noground truth z oryy, as the
motion-tracking system needed to be switched off asitsinfrared lights
influenced the CurvACE sensor.d, Roll rate over time. e, Average optic flow
over time (in pixels per second). f, Simulation results for a constant-height
model, in which we compare the default case (dark blue) with casesin which

we actively add sinusoidal oscillations of different frequencies to theroll rate
(1Hz, mediumblue, 10 Hz, light blue line). The observability degreeincreases
substantially due to the higher rotationrates.

longitudinal and lateral ventral optic flow, capturing the ratio of the
horizontal velocities and the height, and the optic flow divergence,
representing the ratio of the vertical velocity and the height (Quad
rotor experiments). Its objective is to hover, eliminating ventral flow



by estimating and controlling the roll and pitch attitude angles and
divergence by means of thrust control. When flying with a traditional
complementary filter based on gyros and accelerometers’, the drone
hoversstill (g,=0.96, 05=0.55, Fig. 2g). Switching to the proposed
attitude estimation scheme using optic flow and gyros, indeed leads
to slight oscillations, as is evident from the attitude angles and veloc-
ities over time in Fig. 2b-f and the wider angle histogram in Fig. 2g
(0,=1.24,09= 0.84, significantly different from accelerometer-based
flight with P< 0.001, two-sided bootstrap method*). Furthermore,
the height is most difficult to estimate (Fig. 2f and Extended Data
Fig.1d). We note, however, that neither the estimated velocity nor the
heightis used by the drone’s control loops. Instead, the drone directly
uses optic flow measurements. Ingeneral, the attitude estimationand
control of the robot is very robust, despite the assumptions of a con-
stantheightand flat ground. This is shown by more experiments with
slopes or three-dimensional (3D) structures under the drone and with
angle disturbances (Fig. 2h-jand Supplementary Videos 1-8). Similar
results have been obtained with a varying height model (Supplemen-
tary Information and Extended Data Fig. 6). The robustness is partly
duetothedrone processing optic flow over the entire flow field (Quad
rotor experiments).

Tobetter approximate natural flyers, we also performed experiments
with a bio-inspired flapping-wing robot (Flapping-wing robot experi-
ments, Fig.3a). Therobotis equipped with anartificial compound eye
called CurvACE*° (Fig.3b). It features a wide field of view 0f 180° x 60°
witha coarse visual resolution of 40 x 15 pixels. We determine optic flow
infour regions at a high temporal resolution of 200 Hz, close to the
flicker fusion frequency of honeybee vision*'. We initially thought that
the residual flapping-wing motion on the compound eye would hamper
state estimation (see therates and optic flowin Fig. 3d,e). However, the
optic-flow-based attitude estimates correspond well to those of the
complementary filter using accelerometers (Fig. 3¢). We subsequently
realized that the residual flapping motion did notimpair butimproved
attitude observability. Figure 3f shows that oscillations are beneficial
to observability, with higher frequencies shortening the time duration
oflow observability. This finding suggests that flying insects or robots
could benefit fromresidual flapping-wing oscillations or even actively
induce rotation rates to enhance the degree of observability—in the
spirit of active vision***,

Discussion

Our findings have implications for robotics. First, tiny, insect-sized
flying robots such as the Robobee®** are extremely resource-limited.
For such robots, even small MEMs-based sensors form a burden. We
have demonstrated that accelerometers are not necessary to success-
fully control attitude. Second, most autopilots for flying robots only
incorporate lateral ventral flow into their state estimation. We have
shown that optic flow divergence canimprove redundancy, even allow-
ing to fly completely autonomously without any height sensors or
accelerometers. Third, accommodating unobservability is a strategy
with broaderimplications than optic flow control alone. Forinstance,
wireless-ranging-based relative localizationin drone swarms* leads to
important unobservable conditions such as during formation flight.
The current study suggests investigating the option of a minimalistic
system accommodating this unobservability instead of a heavier, more
power-hungry system with more sensors.

The presented approach also forms a hypothesis oninsect attitude
estimation, potentially explaining various phenomena observed in
flying insects. First, it explains which role optic flow may play in atti-
tude estimation and control. Optic flow was shown to be essential to
hoverflies for stabilizing their flight when falling®'. The hoverflies’
behaviour was best explained by amodel thatincorporated attitude
angles', but it was unclear how such angles were estimated without
aclear visual horizon in the environment. We have shown that this is

possible if the insect possesses a motion model, relating attitude to
acceleration direction. This raises the question of how plausible it is
forinsectsto have amotion model, with which we intend any means to
use predicted effects of actions for perception and control. Inref. *it s
argued thatinsects possess such ‘forwards models’ and that they serve
goals such as reducing action latency* and differentiating between
external disturbances and expected feedback*®. Our study highlights
another potential purpose of forwards models, that is, to make states
suchasattitude observable. Theimplementation of suchamodelin the
brain canbeimplicit, forexample, reminiscent of how visual receptive
fields of lobula plate tangential cells seem to be tuned to an insect’s
motion model®. Second, the results reported in Fig. 2 may explain
the (im)precision of flight for different species and conditions. For
instance, honeybees canstill fly, but less precisely, when their ocelli are
covered with opaque paint®. Moreover, the results in Fig. 3 indicate a
potential usefulness for flapping-induced, high-frequency thorax and
head oscillations of blowflies’.

Verifying the hypothesis may be challenging, as it concerns brain
processes thatare hard to monitor during flight. One potential avenue
istoexploitthe prediction that the degree of observability changes over
thestate space, whichinturnwill affect the insect’s attitude variation.
Forexample, closed-loop simulation experiments with a head-and-body
model (Supplementary Information) show that observability increases
and attitude variationinbothbody and head decreases for higher flight
speeds. As a preliminary analysis we investigated the biological data
from honeybee experiments by Portelli et al.’. The data only allow us
toretrieve the body pitch angle, whichindeed has a lower variance
for higher speeds (Supplementary Information and Extended Data
Figs.2 and 9). However, other phenomena also influence this trend.
Forexample, parasitic drag will be larger at higher flight speeds, stabi-
lizing attitude. In the same time, aerodynamic insect models** ¢ also
predictincreasing pitchinstability at higher flight speeds, destabilizing
attitude. More simulation experiments, piecing apart parasitic drag
from observability effects, suggest that only observability affects the
trend of the head attitude (Supplementary Information). Future bio-
logical studies that track not only body but also head attitude or that
manipulate sensory inputs could give further insight into this matter.

Finally, one can wonder what role the proposed mechanism plays
in the context of insects’ many more sensory cues. On the one hand,
adding more sensors willimprove the observability. On the other hand,
unlesssuch further sensory cues directly encode for the gravity direc-
tion, flight conditions such as a pure hover will remain unobservable.
Hence, the main findings on unobservability and the ensuing attitude
variations stay relevant when taking into account extra senses. Because
animals generally rely onredundant information sources, even larger
animals such as birds could use optic flow and motion model informa-
tion to support their attitude estimation®®.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-022-05182-2.

1. Mahony, R., Hamel, T. & Pflimlin, J.-M. Nonlinear complementary filters on the special
orthogonal group. IEEE Trans. Automat. Contr. 53,1203-1218 (2008).

2. Bender, J. A. & Frye, M. A. Invertebrate solutions for sensing gravity. Curr. Biol. 19,
R186-R190 (2009).

3. Taylor, G.K. & Krapp, H. G. in Advanced Insect Physics (eds Casas, J. & Simpson, S. J.)
231-316 (Elsevier, 2007).

4.  Schuppe, H. & Hengstenberg, R. Optical properties of the ocelli of Calliphora
erythrocephala and their role in the dorsal light response. J. Comp. Physiol. A173,
143-149 (1993).

5. Goulard, R., Vercher, J.-L. & Viollet, S. To crash or not to crash: how do hoverflies cope
with free-fall situations and weightlessness? J. Exp. Biol. 219, 2497-2503 (2016).

Nature | Vol 610 | 20 October 2022 | 489


https://doi.org/10.1038/s41586-022-05182-2

Article

6.

7.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically
inspired, insect-scale robot. Science 340, 603-607 (2013).

Hateren, J. H. V. & Schilstra, C. Blowfly flight and optic flow. Il. Head movements during
flight. J. Exp. Biol. 202, 1491-1500 (1999).

KASTBERGER, G. The ocelli control the flight course in honeybees. Physiol. Entomol. 15,
337-346 (1990).

Portelli, G., Ruffier, F., Roubieu, F. L. & Franceschini, N. Honeybees’ speed depends on
dorsal as well as lateral, ventral and frontal optic flows. PLoS ONE 6, €19486 (2011).
Mohamed, A., Massey, K., Watkins, S. & Clothier, R. The attitude control of fixed-wing
MAVS in turbulent environments. Prog. Aerosp. Sci. 66, 37-48 (2014).

De Croon, G., Pergin, M., Remes, B., Ruijsink, R. & De Wagter, C. The DelFly 10 (Springer,
2016).

Liang, B. & Sun, M. Nonlinear flight dynamics and stability of hovering model insects. J. R.
Soc. Interface 10, 20130269 (2013).

Mahony, R., Kumar, V. & Corke, P. Multirotor aerial vehicles: modeling, estimation, and
control of quadrotor. IEEE Robot. Autom. Mag. 19, 20-32 (2012).

Karasek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W. & de Croon, G. C. H. E. A tailless
aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science
361, 1089-1094 (2018).

Martin, P. Accelerometers on quadrotors: what do they really measure? J. AerospacelLab
8,1-10 (2014).

Goulard, R., Vercher, J.-L. & Viollet, S. Modeling visual-based pitch, lift and speed control
strategies in hoverflies. PLoS Comput. Biol. 14, €1005894 (2018).

Expert, F. & Ruffier, F. Flying over uneven moving terrain based on optic-flow cues without
any need for reference frames or accelerometers. Bioinspir. Biomim. 10, 26003 (2015).
Mendes, C. S., Rajendren, S. V., Bartos, |., Marka, S. & Mann, R. S. Kinematic responses to
changes in walking orientation and gravitational load in Drosophila melanogaster. PLoS
ONE 9, €109204 (2014).

Kress, D. & Egelhaaf, M. Head and body stabilization in blowflies walking on differently
structured substrates. J. Exp. Biol. 215, 1523-1532 (2012).

Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by
executing rapid visually directed banked turns. Science 344, 172-177 (2014).

Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. Antennal mechanosensors mediate
flight control in moths. Science 315, 863-866 (2007).

Eberle, A. L., Dickerson, B. H., Reinhall, P. G. & Daniel, T. L. A new twist on gyroscopic
sensing: body rotations lead to torsion in flapping, flexing insect wings. J. R. Soc.
Interface 12, 20141088 (2015).

Gremillion, G., Humbert, J. S. & Krapp, H. G. Bio-inspired modeling and implementation of
the ocelli visual system of flying insects. Biol. Cybern. 108, 735-746 (2014).

Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y. & Wood, R. J. Controlling free flight of a
robotic fly using an onboard vision sensor inspired by insect ocelli. J. R. Soc. Interface 11,
20140281 (2014).

Koenderink, J. J. & van Doorn, A. J. Facts on optic flow. Biol. Cybern. 56, 247-254 (1987).
Zhang, L., Shi, Z. & Zhong, Y. Attitude estimation and control of a 3-DOF lab helicopter
only based on optical flow. Adv. Robot. 30, 505-518 (2016).

Dickson, W. B., Straw, A. D. & Dickinson, M. H. Integrative model of Drosophila flight. AIAA
J. 46, 2150-2164 (2008).

Kendoul, F., Fantoni, I. & Nonami, K. Optic flow-based vision system for autonomous 3D
localization and control of small aerial vehicles. Rob. Auton. Syst. 57, 591-602 (2009).
Bloesch, M. et al. Fusion of optical flow and inertial measurements for robust egomotion
estimation. In Proc. IEEE IROS 3102-3107 (IEEE, 2014).

Gurfil, P. & Rotstein, H. Partial aircraft state estimation from visual motion using the
subspace constraints approach. J. Guid. Control Dyn. 24,1016-1028 (2001).

Webb, T., Prazenica, R., Kurdila, A. & Lind, R. Vision-based state estimation for uninhabited
aerial vehicles. In Proc. AIAA GNC Conference 5869 (AIAA, 2005).

490 | Nature | Vol 610 | 20 October 2022

32. Webb, T. P, Prazenica, R. J., Kurdila, A. J. & Lind, R. Vision-based state estimation for
autonomous micro air vehicles. J. Guid. Control Dyn. 30, 816-826 (2007).

33. Webb, T. P. Vision-based State Estimation for Uninhabited Aerial Vehicles Using the
Coplanarity Constraint.PhD thesis, Univ. of Florida (2007).

34. Taylor, G.K. & Thomas, A. L. R. Dynamic flight stability in the desert locust Schistocerca
gregaria. J. Exp. Biol. 206, 2803-2829 (2003).

35. Sun, M. & Xiong, Y. Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208,
447-459 (2005).

36. Faruque, I. & Humbert, J. S. Dipteran insect flight dynamics. Part 1 Longitudinal motion
about hover. J. Theor. Biol. 264, 538-552 (2010).

37. Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49-70 (2010).

38. Hermann, R. & Krener, A. Nonlinear controllability and observability. IEEE Trans. Automat.
Contr. 22, 728-740 (1977).

39. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

40. Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA
110, 9267-9272 (2013).

41.  Srinivasan, M. V. & Lehrer, M. Temporal acuity of honeybee vision: behavioural studies
using moving stimuli. J. Comp. Physiol. A 155, 297-312 (1984).

42. Aloimonos, J., Weiss, |. & Bandyopadhyay, A. Active vision. Int. J. Comput. Vis. 1, 333-356
(1988).

43. Sanket, N. J., Singh, C. D., Ganguly, K., Fermiiller, C. & Aloimonos, Y. Gapflyt: Active vision
based minimalist structure-less gap detection for quadrotor flight. IEEE Robot. Autom.
Lett. 3, 2799-2806 (2018).

44. Fuller, S.B., Sands, A., Haggerty, A., Karpelson, M. & Wood, R. J. Estimating attitude and
wind velocity using biomimetic sensors on a microrobotic bee. In Proc. IEEE ICRA
1374-1380 (IEEE, 2013).

45. vander Helm, S., Coppola, M., McGuire, K. N. & de Croon, G. C. H. E. On-board
range-based relative localization for micro air vehicles in indoor leader-follower flight.
Auton. Robots 44, 415-441(2020).

46. Webb, B. Neural mechanisms for prediction: do insects have forward models? Trends
Neurosci. 27, 278-282 (2004).

47.  Mischiati, M. et al. Internal models direct dragonfly interception steering. Nature 517,
333-338(2015).

48. Poulet, J. F. A. & Hedwig, B. A corollary discharge maintains auditory sensitivity during
sound production. Nature 418, 872-876 (2002).

49. Krapp, H. G., Taylor, G. K. & Humbert, J. S. in Frontiers in sensing (eds Barth, F. G. et al.)
Ch. 7 (Springer, 2012).

50. Barlow, J. S. Inertial navigation as a basis for animal navigation. J. Theor. Biol. 6, 76-117
(1964).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

BY 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022


http://creativecommons.org/licenses/by/4.0/

Methods

Theoretical analysis

The theoretical analysis of the observability of the state, including
attitude, relies on both a motion model and a model of the sensory
inputs. In this section, we first explain the model for the elementary
case of a quad rotor flying at a constant height above a flat ground
surface. The model captures the main characteristics necessary for
attitude estimation with optic flow, while leading to mathematical
formulas of limited complexity and hence improved comprehensibility.
Subsequently, we discuss more general models of motion and more
generic environments. The mathematical derivations and formulas
involvedinthe non-linear observability analysis and stability proof for
the constant-height model are detailed in the Supplementary Informa-
tion for brevity.

Constant-height model
Observability analysis. Without loss of generalization with respect
toathrust-vectoring model, we will consider aquad rotor drone’s mo-
tion in the 2D plane. Please see the axis definitions in Extended Data
Fig.3a.Inour analysis, we focus on the roll angle ¢ (and roll rate p), but
the findings are equally valid for the pitch angle 6 (and pitchrate g).In
practice, estimating pitchinstead of roll may require different param-
etersfor dragand moment of inertiain the case of anasymmetric body.
Asaresult, the stability properties of these axes may be different, but
this does not fundamentally affect the analysis. The velocity in the in-
ertial zaxis willbe denoted withw,and thatin the inertial y axis withv,.
In Extended Data Fig. 3a, w, is not shown as it is zero. For velocities in
body axes, we will use wg, vg, for thebody zand y axes, respectively.

The observation model represents the optic flowin the direction of
the camera’s principal axis. For our derivations, we use a pinhole cam-
eramodel. We are interested in the time derivative of the feature’s loca-
tion in the camera’s field of view, which at the principal axis image
coordinate, (x,y) = (0,0), is given by>:

v cos?(p)v
o=t pe O, "

wherew) is the ventrallateral flow. Equation (1) is valid for the interval
@ € (-90°,90°), where the parentheses denote the exclusion of the
interval borders. The right-hand side of equation (1) is based on geo-
metric relations visible in Extended Data Fig. 3a that would change if
the roll angle were outside this interval.

The state is defined as a vector x =[v,, ¢, Z], and the control input
(motoraction)istherollrate, thatis, u = p. Thisleads to the state update
equation, with grepresenting the gravitational acceleration:

Ut [gtan(g)
fx,u)=|9 |= p ()
7, 0

Equations (1) and (2) form the basis for the non-linear observability
analysis, of which the details can be found in the Supplementary Infor-
mation. The analysis shows that the systemis locally, weakly observable
in most of the state space. Weak observability implies that given the
sensory input and its time derivatives, changes in the state can be
uniquelyidentified. Local stands for localin time, that is, the estimation
can be done at a single time instant. The main condition in which the
state is unobservable (not weakly, locally observable), is when the roll
rateis zero, p = 0. This condition corresponds to flying with a constant
roll angle, in which the acceleration is not changing, that is, there is no
‘jerk’. We also analyse the stronger property of local observability for
this model. The theoretical and numerical analysis indicate thatin most
of the state space the systemislocally observable, that is, that the sensory
input and its time derivatives suffice for directly determining the state.

The two main conditions for which the stateis locally unobservable are
p=0and @ =0,thatis, when thereis either no jerk or no acceleration.

Control system stability. At first sight, the unobservable condition of
p =0may seem problematicbecause anattitude controller thatreaches
the desired attitude will set the rate to zero. Hence, if the control system
is successful, it will lead to unobservability of the system. In the Sup-
plementary Information, we provide a stability proof for the
constant-height model, which takes conditionsinto accountin which
the state is unobservable. The first part of the proof shows that when
the state is observable, the control will be able to reach a desired atti-
tude angle ¢*. If this angle is reached, the controller will command
p=0,whichleads to unobservability of the system. The second part of
the proof shows that sensor noise, actuation noise or external distur-
bances will always make the system observable again.

Simulation setup. The proofis supported by evidence from simulation
experiments (Supplementary Information and Extended Data Figs. 7
and 8). Here we explain the simulation setup, as simulations with dif-
ferent models also follow the same scheme (for example, the simulation
resultsin Fig.1and Extended DataFig.2). The simulation uses the mo-
tion model in equation (2) for the evolution of the ground-truth state
over time. It also features a simulated ‘robot’ that receives optic flow
observations according to equatjon (1), but delayed and with additive
Gaussian noise: @, (t+ At) = —% +p(t) + u(t+ At) ,with At as
thedelayand u - (0, g,, ) the noise, where the tilde (-) means "distrib-
uted as". These observations are inputinto an extended Kalman filter
(EKF)*?, which uses equation (2) for predictions and linearization of
equation (1) around the current estimated state X as the observation
equation. The simulated robot has a proportional, integral ‘outer loop’
controller for reaching a desired optic flow value w}. The output of this
controlleris adesired roll angle, ¢*. An ‘inner loop’ proportional inte-
gral controller then sets the rate command p(t)on the basis of the error
intheroll angle, that s, the difference between the desired and esti-
mated roll angle (¢* — @). Whereas the EKF uses this commanded roll
rate for its predictions, it is used in the simulator after being delayed
and perturbed by Gaussian noise. Thus, the p entered in equation (2)
is p(t+ At) = p(¢) + p(t+ Ar), with g - N(0, ).

Model extensions. The two central assumptions of the elementary
constant-height model may sound stronger than they actually are.
First, as we perform local observability analyses, the flat ground as-
sumption only needs to hold close to the world point now perceived
by the optic flow sensor (spatially local flatness). Moreover, although
the heightis assumed constant, itis part of the state that is estimated.
Hence, height changes will eventually be picked up by the state estima-
tion. Nonetheless, we also study extensions of the model bothin terms
of motion and structure of the environment. Below we briefly discuss
the various extensions, of which the details can be found in the Sup-
plementary Information.

First, in the analysis above, p is a control input that is known to the
system. However, real-world systems such as drones and flying insects
do not control attitude rate directly. Instead, by varying rotor speeds
or wing flapping amplitudes, they generate moments. Modelling the
system as such makes the rate p a state that is to be estimated. The
rotation rate can be measured by means of gyros, which gives a very
high update frequency (typically > 500 Hz), as is done in our robotic
experiments (Flapping-wing robot experiments and Quad rotor exper-
iments). It can also be measured with other sensors. For example, it
can be extracted from the optic flow field*.. The disadvantage of this
isthattherates arethen determined atalower update frequency, lead-
ingtoslower, less accurate state estimates. Still, theoretically, measur-
ing p is not necessary because predicting the moments caused by
control inputs suffices, as shown in the Supplementary Information.
Thisis the motion model that was used for the simulation results from
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Fig.linthe main article. These simulation experiments follow the same
simulation scheme as explained for the rate-based constant-height
model explained above, except for the state update equations and
control being different. Specifically, in these simulations the motor
actions of the simulated robot do not consist of rotational rates, but
of moments. This leads to the following state update equation:
fx,u)=1Iv, @,p,Z]=Igtan(p), p, Mil, 0], where Mis the moment and
listhe moment ofinertia. Inthis case, the control input (motor action)
isthemoment, u =M, whichisalso delayed and perturbed by Gaussian
noise when performing simulations.

Second, the constant-height model has an obvious potential flaw:
canthe system keep the height constant enough whenit hasto be esti-
mated? In practice, this model works well because keeping a roughly
constant heightis possible through appropriate optic flow divergence
control. Still, in the Supplementary Information, we extend the model
above toavarying height model (including vertical body velocity), with
drag and wind (see Extended Data Fig. 3b for a graphicalillustration
of the model). Non-linear observability analysis shows that the state
of this varying height model, including the current wind velocity, is
locally, weakly observable. The state becomes unobservable when we
set the thrust to compensate for gravity, the velocities to match the
wind and the moment and rate to zero. This setting corresponds to a
condition of a pure hover in this model—without accelerations of jerk.

Although this extensive model is still locally, weakly observable,
state estimation performance will benefit from further measurements.
That is why we also study a varying height model including an extra
sensory input, that is, the optic flow divergence, which captures the
vertical body velocity relative to the distance to the ground ZB This
model whlchmcludesdragandathrustblasasstatevarlablesbutexcludes
wind, is described and studied in the Supplementary Information. It
is again locally, weakly observable and has been successfully imple-
mented onboard of aquad rotor for robotic experiments (Quad rotor
experiments and Extended Data Fig. 6).

Third, we analyse cases in which the ground is not flat. In the Sup-
plementary Information, we investigate what happens when the ground
surfaceis sloped, while still only observing optic flow at the principal
axis coordinate (Extended Data Fig. 3c). The state, including the slope
angle, turns out tobelocally, weakly observable even with this elemen-
tary optic flow measurement. Subsequently, in the Supplementary
Information we analyse the case of a generic environment with the
system having access to the entire optic flow field (Extended Data
Fig.3d).Itis well-known that fromthe entire optic flow field the system
can estimate a unit- vector for velocity v, with||v|| =1, the rotationrate
pandallinverse depths for all world points P,in view>. Finally, in the
Supplementary lnformatron itisshown that this suffices for retrieving
attitude, velocity and height with respect to a selected point P.

Fourth, inallabove cases, the eyeis rigidly fixed to the body, whereas
insects can move their head withrespect to their body to stabilize their
gaze. In the Supplementary Information we study a head-and-body
model, in which the body attitude influences the thrust direction and
the head attitude the looking direction (Extended Data Fig.10). Also this
more complex modelislocally, weakly observable. This modelis used
in simulation for the comparison with the biological data (Extended
DataFig.2).

Quad rotor experiments

The setup for the quad rotor experiments is shown in Extended Data
Fig. 4. We use a Parrot Bebop 2 drone for the experiments, replacing
its firmware autopilot with the open-source Paparazzi UAV software™*.
All sensory processing and control runs onboard the drone. Here we
discuss all processes shown in the figure.

Image processing. The image processing pipeline consists of: (1) fea-
ture detection with ACT-corner®, (2) optic flow determination with the
Lucas-Kanade algorithm® and (3) extraction of optic flow

measurements (wx, W), ® ). The first two represent the longitudinal
ventral flow w, = z— and lateral ventral flow o, zB Thelast oneis the
opticflow dlvergence W, = %8 These measurements areobtained from
the opticflow field with the methods fromref. ¥, inwhich the opticflow
is not derotated. The optic flow processing makes a robust fit of the
flow field, assuming that it is predominantly linear. Moreover, the cal-
culation of divergence w, is based on aseparate process that estimates
size changes in the image, making it insensitive to rotation rates.

Optic flow outer loop control. The drone has an optic flow outer loop
control, which uses separate proportional integral controllers for the
vertical and horizontal axes, as shown with a control diagram in Ex-
tended DataFig. 4b. The vertical axis uses a proportional integral con-
troller for the thrust based on the optic flow divergence error (w? - w),
in which during our experiments w% = 0, that is, we want the drone to
hover. Successful optic flow divergence control requires an appropri-
ate control gain, which in turn depends on the height*. Too high again
will lead to vertical oscillations, which can be detected by the drone
and in turn be used to find the right control gain®%. The control gains
forlateral control withw,, walso depend on height, and we scale them
linearly with respect to the vertical control gain. The outer loop lat-
eral and longitudinal control sets the desired attitude angles ¢*, 6,
which are executed by the inner loop attitude controller.

Inner loop attitude control. Inner loop attitude controlis performed
withincremental non-linear dynamic inversion (INDI)*. This inner loop
controller, illustrated in Extended Data Fig. 4c, uses the errors between
theestimated and desired states (¢* - @), (0" - 0).1t subsequently uses
proportional gains to set desired attitude rates and then rotational
accelerations. The INDI block that determines the correct moment
commands uy, to the motor mixing, relies on rotational accelerations
that are calculated by low-passing and differentiating gyro measure-
ments. For the exact details of INDI we refer the reader to ref. *°.

EKF/complementary filter. The attitude estimates used by the inner
loop control can either come from an EKF that uses the proposed ap-
proach and combines optic flow with gyro measurements, or from a
traditional complementary filter that fuses accelerometer and gyro
measurements. We can switch between these estimators for use by
the control, but always log both estimates for comparison purposes.
The EKF is instantiated by using the state and observation equations
in our models.

The EKF has parameters for the observation and actuation noise,
forming the diagonal entries in the matrices R and Q. Moreover, the
varying height model includes four parameters that map the four com-
manded rotor speeds linearly to the thrust value, thatis, T=p'r, where
pis a vector with the four parameters and r a vector with the com-
manded rotor speeds. Although these EKF parameters can be estimated
inasupervised manner from data, we obtained the best results by using
anevolutionary optimization algorithm, covariance matrix adaptation
evolutionary strategy (CMA-ES)®. Specifically, we performed seven
flights in which we made a high-frequency log of all onboard sensor
data. This allowed to run the EKF offline on the datasets. Then, CMA-ES
optimized the parameters of the EKF, with as cost function the sum of
squared errors of the estimates (comparing EKF estimates with the
logged ‘ground truth’ from the complementary filter for attitude and
motion-tracking system for height and velocities). Once optimized,
the parameters resulted in successful state estimation and did not have
tobeadapted anymore for any of the test flights presented in the arti-
cle’sresults.

The experiments presented in the main article and Fig. 2 are based
on the constant-height model with rotation rate inputs presented in
Theoretical analysis. Instead of predicting the rotation rates, gyro
measurements are used as astand-in for the controlinput to thefilter.
Moreover, the real robot always also uses the optic flow divergence as



an observation. The same model is used for roll and pitch, assuming
decoupled dynamics. We also performed experiments with a ‘varying
height model’, which only estimates the roll angle but does take into
account height changes, as explained in the Supplementary Informa-
tion (results in Extended Data Fig. 6). Finally, we use the ‘quaternion
complementary filter’ implemented in the open-source Paparazzi
autopilot® as the standard, accelerometer-based attitude estimation
algorithm.

Experimental setup: slope. There are several ways in which the robot
could takeinto accountasloped surface, for example, by means of an
improved vision or state estimation process (Supplementary Informa-
tion). However, we also perform an experiment in which we test on the
drone what happens if the slope is not taken explicitly into account.
Specifically, the drone uses the constant-height model for roll and pitch
(Theoretical analysis), which does not include the slope in the state,
and the vision processes described above, where the determination of
ventral flow and divergence also do not take slope into account. The
experimental setup and resulting state estimates are shown in Extend-
ed DataFig.1a. The screenstarts out atatilt of roughly 20°, but during
the experiment it is moved slowly up to an angle of roughly 40° (Ex-
tended DataFig.1a) and then down again. It turns out that the presence
of aslopeis not particularly problematic for state estimation, even if
itisignored by the vision processing and in the state estimation setup.
When moving up-slope (left in the picture), the optic flow should in-
crease quicker than expected and the angle should be estimated larger.
When moving down-slope, the optic flow increases slower than ex-
pected, which should lead to a smaller angle estimate. In the case of
commanded hover flight, these effects only lead to slightly increased
attitude variation (g, = 2.0°, gy = 1.54°), with the estimates still closely
resembling the accelerometer-based estimates (Extended Data Fig. 1a).
Moreover, during the experiment, the screen that forms the slope is
dragged away, whichrepresents adisturbance thatis successfully han-
dled by the drone; as it is commanded to keep the lateral ventral flow
zero, it moves along with the object. The experimentisincludedin the
Supplementary Videos 1-8.

3D structure. In the Supplementary Information, we show that the
proposed approachto attitude estimation does not rely on the ground
being a flat surface. We explain there that one can deal with irregular
environment structure by using a general vision method to separate
the environment’s 3D structure from the ego-motion. However, we
also perform an experiment to test whether the constant-height
model and the current vision processing are sufficiently robust to deal
with a certain amount of 3D structure, by having the drone fly above
several objects. The setup for this experiment and corresponding
results are shown in Extended Data Fig. 1b. The roll and velocity esti-
mates correspond well to the ground truth. The height seems under-
estimated, which here could be partly because the objectsin view are
actually closer to the drone than the ground. During the experiment,
the dronefirsthovers above these objects and thenalso getsnon-zero
outer loop optic flow commands (@) to translate left and right over
the 3D structure (as can be seen in the Supplementary Videos 1-8).
The attitudeis well estimated throughout the experiment. We expect
that the robustness of the current method stems from the fact that
flow fromthe entire field of view is integrated to determine the optic
flow observation.

Disturbance. A disturbance experiment was performed to test the
response of both the state estimation filter and optic flow control.
Specifically, to create a disturbance, we add a given number of de-
grees to the desired roll attitude ¢* that is determined by the outer
loop control. For clarity, the outer loop control is unaware of this
addition. As a consequence of this disturbance, which is 10° in our
experiments, the inner loop control will command a much larger

angle than desired by the outer loop control. The drone will acceler-
atesideways, leadingto alarger lateral ventral optic flow. The outer
loop proportional integral controller will attempt to eliminate the
flow, with the integral term eventually cancelling out the introduced
addition.

Several flights. The main paper shows results from ten subsequent
flights (Fig. 2g). For each flight, the drone takes off, hovers according
toits accelerometer-based attitude estimate, switches to using the
optic-flow-based attitude estimate and then lands again. Extended
Data Fig. 1d shows a picture of the experimental setup. Please note
that during the experiments the ground surface of the arena was not
changed to add visual texture. Furthermore, Extended Data Fig. 1d
contains theerror distributions for the different estimated states dur-
ing all ten flights, when the drone was using the estimated angles for
control. Here, theroll angle is compared to the accelerometer-based roll
estimate, which we consider as ground truth. The velocity and height
are compared to measurements by the motion-tracking system. It can
be seenthatboth the rollangle and velocity are estimated accurately.
The height error distribution is ‘strange’, showing that it is the most
difficult variable to estimate, and that around hover the height does
not always converge to the correct value. Also, other experiments have
shown the height estimates to be the least accurate.

Flapping-wing robot experiments

For the flapping-wing robot experiments, we used a commercially
available ‘flapper drone’. Its design is inspired by the ‘DelFly Nimble’
flapping-wing robot'. However, the flapper drone is more robust,
which facilitates experiments. It is also larger and heavier than the
DelFly Nimble, while staying light-weight compared to most quad
rotor drones (100 g). The flapping frequency of the flapper drone is
roughly 12 Hz. As explained in the main text, the flapper drone is
equipped with the CurvACE*°, a miniature artificial compound eye,
whichhasabroad field of view (180° x 60°) and a high update rate for
the optic flow measurements (200 Hz). Extended Data Fig. 5 shows
the experimental setup for the flapper drone, which uses the BitCraze
open-source autopilot software. We adapted the flapper drone hard-
ware to include the CurvACE, sending its outputs (four optic flow
vectors) to the BitCraze autopilot board. Extraction of @ is done by
averaging the four flow values in the y direction, and scaling it with a
constant factor to encode rad s™. We also modified the software to
runan EKF based on w,and gyro measurementsin parallel to the stand-
ard complementary filter, for estimating ¢. By contrast to the quad
rotor experiments, the outer loop control is performed by a human
pilot, providing desired attitude angles and thrust commands. A basic
PID controller serves as inner loop controller to reach the desired
attitude angles. Again, we can switch between the estimated angle
determined by the optic-flow-based EKF and by the accelerometer-
based complementary filter. One might be tempted to think that the
human pilot could be able to fly the flapper drone evenif the roll esti-
mates by the EKF are far off from the true roll angles. However, the
inner loop control operates at such a fast time scale that this is not
possible: good attitude estimates are necessary for successful flight.
The moment and thrust commands are mixed and resultin commands
tothe twoindependently moving wing pairs for executing the roll and
thrust commands. Pitch moments are controlled with a servo that
determines the dihedral angle, whereas yaw moments are controlled
with a servo that twists the wings slightly for thrust vectoring. For
details, we refer the reader to Karasek et al.™.

Data availability

All data necessary for performing and analysing the experiments
is publicly available: the flight data is available at https://doi.
org/10.4121/20183399.
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Code availability

The code to reproduce the theoretical and simulation results and
analyse robotic experiments is publicly accessible at https://doi.
0rg/10.4121/20183399. The code to perform flight experiments with
the open-source Paparazzi autopilot onthe Bebop 2 drone is available
at https://github.com/tudelft/paparazzi/releases/tag/v5.17.5_attitude_
flow. The code to perform flight experiments with the flapper drone
isavailable at https://github.com/tudelft/crazyflie-firmware/releases/
tag/v3.4.0_attitude_flow.
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above three-dimensional objects, with artificial plant leaves moving due to the
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attitude angles for different flight velocities in the simulation.
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Extended DataFig. 3 | Sketches of different quad rotor and environment floor.b, Varying height model of a quad rotor in the 2D plane. ¢, Constant
models. a, Axis definitions for a constant height quadrotor model.Bindicates height motion model of aquad rotor where the ground has slope angle a.
thebody frame, whereas/indicates the inertial frame. Thearrows forY and Z d, Varying height modelin the 2D plane for adrone flying over an uneven
pointinto the positive directions. The attitude angle ¢ represents the terrain. The drone uses one world point P, (red star) for state estimation.

quadrotor’srollangle, and ptherollrate. The shaded rectangle represents the
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whichthe drone performed thirteen subsequent flights for gathering state
estimation statistics. e, Estimation error distributions over the thirteen flights
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Extended DataFig.7|Simulation experiments to verify the stability
proof-1.a,Simulation without noise. Top row: The three states (true, solid line,
and estimated, dashed-dotted line) over time. The dotted line indicates zero.
Bottomrow, fromleft to right: The optic flow w, (solid line) and the reference
desired flow (dashed line), the rate (solid line) with a dotted line at zero, and the

observability degree over time. b, Simulation with sensor noise. Top row: The

threestates (true, solid line, and estimated, dashed-dotted line) over time. The
dottedlineindicates zero. Bottom row, fromleft toright: The optic flow w,,
(solid line) and the reference desired flow (dashed line), the rate (solid line)

withadottedlineatzero,and the observability degree over time.
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Extended DataFig. 8| Simulation experiments to verify the stability
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Extended DataFig. 9 |Histograms of honeybee pitchangles at different
velocities. a, The histograms of all data, i.e., with outliers, of the honeybee
body pitch angles for different velocity bins. Each subplot’s title mentions the

centre ofthe speed binand the variance of the pitch anglesin that bin.b, The
histograms of the datawithout outliers.
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Extended DataFig.10 | Model withindependently moving head and body.
a, Graphicalillustration of a“honeybee” simulation model, in which the head
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explanation, see Supplementary Information. b, Plot of the head (blue) and
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havealateral ventral flow of w, = 0.5. Solid lines are estimates, dashed lines
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d, Estimated and true height over time. e, Optic flow over time. f, Body and head
rate over time. The head makes much smaller corrections. g, Observability
degreeover time.
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