

SIMULATION OF MULTIPHASE FLOW USING NON-NEWTONIAN FLUIDS AND SAND

SEGREGATION IN OPENFOAM

Peter Dobbe

July 2021

DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Mechanical, Maritime and Materials Engineering

Department of Marine and Transport Technology

Section Offshore and Dredging Engineering

SIMULATION OF MULTIPHASE FLOW USING NON-NEWTONIAN FLUIDS AND SAND

SEGREGATION IN OPENFOAM

By Peter Dobbe

In partial fulfilment of the requirements for the degree of Master of Science Offshore and Dredging

engineering at the Delft University of technology.

Student number: 4186273
Graduation committee: Prof. dr. ir. C. van Rhee

 Dr. ir. G.H. Keetels
 Dr. ir. A.M. Talmon

i

Acknowledgements

This report is the final conclusion to my master’s studies. It wraps up the Master Offshore and

Dredging Engineering with a specialization in Dredging Engineering, Trenching & Deepsea Mining at

the faculty of Mechanical, Maritime and Materials Engineering (3mE) at Delft University of

Technology.

A big thanks is owed to the graduation committee for their supervision and support throughout this

research. Their feedback and ideas were of great help in our valuable discussions throughout this

project. A big thank you especially goes out to Cees van Rhee, chairman of the committee and daily

supervisor, for this opportunity, his continuous encouragement and his time investment in guiding

me.

Additionally, I am grateful for my wife, family, friends, and colleagues for their help, moral support,

and moral compass. During the entirety of my study, your encouragement is exactly what I needed.

Peter Dobbe

Delft, July 2021

ii

Abstract
In the field of mining and dredging engineering, oftentimes slurries are involved in transport.

Understanding the behaviour of these slurries in a flow is important as the energy and water

consumption need to be determined. The slurries have an interesting rheology due to the presence

of clay. The rheological parameters cause the flow to be non-Newtonian. Further, the presence of

coarse solids (sand particles) in these slurries also influences the rheological parameters. Through

Computational Fluid Dynamics (CFD) simulations, these aspects can be predicted.

Previous work in non-Newtonian CFD with coarse solids made use of a free surface flow through a

rigid-lid approach (van Rhee, 2017). A shortcoming of this is that the flow needs to be uniform and

the flowdepth needs to be known beforehand. In the mining and dredging fields, this is not the case

and a different approach is required.

This report will focus on multiphase CFD simulations. One of the fluids will be a non-Newtonian

model including sand particles, and the other fluid will just be air. The sand particles will be subjected

to transport, segregation, and settling behaviour.

OpenFOAM is the weapon of choice, but as it stands it does not have a solver that’s capable of

including sand particles. The interFoam solver is chosen as a starting point and it’s code is adjusted.

A Bingham Plastic transport model is implemented, including sand particles. A sand transport

equation is also implemented.

Using the adjusted interFoam solver, two sets of simulations are ran. A first set of simulations is

performed using a 2D mesh for an open channel. The first simulation utilizes a Bingham Plastic fluid

without any sand particles included. The resulting velocity profile is compared to the analytical

solution and is found to agree well. The second open channel simulation includes sand particles. The

results show a sand bed forming as well as the sand concentration to be roughly constant throughout

the plug flow. This is compared to experimental work and concluded effects is captured well from a

qualitative perspective.

The second set of simulations is performed using a 3D mesh for a pipe section. These results were

not as satisfying as the results for the 2D open channel. Unfortunately, all 3D pipe simulations either

showed the pipe to fully fill up with the Bingham Plastic fluid, or the solver crashed at some point.

Many attempts have been made at this, and no conclusive reason has been pointed out as the cause

for this.

It’s recommended to continue research in this direction with the main focus being the simulation

stability.

1

Contents
Acknowledgements ..i

Abstract ... ii

1. Introduction ... 4

1.1. Problem domain .. 4

1.2. Objective and problem definition ... 4

1.3. The approach of the research ... 4

1.4. Thesis structure ... 5

Part 1: Analysis and Literature Research ... 6

2. Literature & theory .. 7

2.1. Rheology .. 7

2.1.1. Rheological models ... 7
2.1.2. Apparent viscosity .. 8
2.1.3. Dynamic and kinematic viscosity .. 9

2.2. Sand influence on viscosity and yield stress.. 9

2.3. Sand particles settling ... 10

2.3.1. Newtonian carrier fluid .. 10
2.3.2. Hindered settling .. 11
2.3.3. Non-Newtonian carrier fluid... 11

2.4. Open channel flow .. 12

2.4.1. Froude number ... 12
2.4.2. Reynolds number.. 13
2.4.3. Fully developed, steady, uniform flow ... 13

3. Survey on previous research ... 16

3.1. Spelay (2007) ... 16

3.1.1. Concentration profile measurements .. 17
3.1.2. Velocity profile measurements .. 18
3.1.3. Frictional loss measurements ... 19
3.1.4. Different inlet ... 19

3.2. Hansen (2016) ... 20

3.2.1. Regularization of the flow curve... 21
3.3. Van Rhee (2017) .. 21

3.3.1. 2D open-channel .. 22
3.3.2. 3D open pipe .. 23

4. Summary .. 26

Part 2: Implementation and simulations ... 27

5. OpenFOAM & implementation .. 28

5.1. Intro to Computational Fluid Dynamics .. 28

5.2. Introduction to OpenFOAM .. 28

5.3. Challenge with OpenFOAM ... 29

5.4. Solver requirements .. 29

5.5. interFoam .. 30

5.5.1. Governing equations .. 30
5.5.2. Volume of Fluid method in multiphase flow .. 31
5.5.3. Pressure momentum coupling ... 31
5.5.4. Discretization / differential schemes .. 32
5.5.5. Matrix solvers ... 33
5.5.6. MULES correction on 𝛼... 33
5.5.7. Courant-Friedrichs-Lewy condition .. 33

2

5.6. Code adjustments ... 34

5.6.1. Solver adjustments ... 34
5.6.2. More solver adjustments: sand particle influence on mixture density 35
5.6.3. Non-Newtonian material model ... 36

6. Simulation and validation .. 40

6.1. Simulation 1 .. 40

6.1.1. Geometry .. 40
6.1.2. Boundary conditions ... 41
6.1.3. Driving force ... 42
6.1.4. Material properties and solver parameters ... 42
6.1.5. Result .. 43
6.1.6. Validation ... 44
6.1.7. Conclusions ... 45

6.2. Simulation 2 .. 45

6.2.1. Geometry .. 46
6.2.2. Boundary conditions ... 46
6.2.3. Driving force ... 46
6.2.4. Material properties and solver parameters ... 46
6.2.5. Result .. 47
6.2.6. Conclusions ... 50

6.3. Simulation 3 .. 50

6.3.1. Case set up ... 50
6.3.2. Solver settings .. 51
6.3.3. Results .. 51
6.3.4. Conclusions ... 55

6.4. Simulation 4 .. 55

6.4.1. Geometry .. 55
6.4.2. Boundary conditions and driving force .. 57
6.4.3. Material properties and solver parameters ... 58
6.4.4. Results .. 58
6.4.5. Conclusions ... 63

6.5. Simulation 5 .. 64

6.5.1. Geometry .. 64
6.5.2. Boundary conditions and driving force .. 66
6.5.3. Material properties and solver parameters ... 66
6.5.4. Results .. 67
6.5.5. Conclusions ... 71
6.5.6. Next steps ... 71

6.6. Simulation 6 .. 72

6.6.1. Geometry .. 72
6.6.2. Boundary conditions and driving force .. 72
6.6.3. Material properties and solver parameters ... 72
6.6.4. Results .. 73
6.6.5. Conclusions ... 75

6.7. Simulation 7 .. 75

6.7.1. Geometry .. 76
6.7.2. Boundary conditions ... 78
6.7.3. Driving force ... 78
6.7.4. Material properties and solver parameters ... 78
6.7.5. Results .. 79
6.7.6. Removing underdetermined cells .. 79
6.7.7. Fixed material model .. 80

3

6.7.8. Fix underdetermined cells .. 80
6.7.9. Conclusions ... 83

7. Conclusions & recommendations .. 84

7.1. Conclusions ... 84

7.2. Recommendations based on this research ... 84

7.2.1. Allow for slip ... 84
7.2.2. Simulation stability ... 85
7.2.3. Underdetermined cells and grid coarseness .. 85
7.2.4. Pipe inclination ... 85

7.3. Recommendations for future work in non-Newtonian CFD ... 86

7.3.1. Time dependent fluid ... 86
7.3.2. Different geometries .. 86
7.3.3. Beach slope prediction ... 86
7.3.4. Uniform particle size vs size distribution .. 87

List of Figures .. 88

List of Tables ... 91

Bibliography .. 92

Appendices .. 94

Appendix A. Source code – van Rhee (2017) .. 94

A.1. CVRinterFoam.C .. 94

A.2. CSandEqn.H ... 95

A.3. createFields.H .. 96

Appendix B. Source code - solver ... 100

B.1. interFoamPeter.C .. 100

B.2. CSandEqn.H ... 101

B.3. CSandEqn.H – alternative for simulation 3 ... 102

B.4. createFields.H .. 103

Appendix C. Source code - viscosity models ... 106

C.1. Talmon.H ... 106

C.2. Talmon.C ... 107

C.3. CVRNewtonian.H ... 110

C.4. CVRNewtonian.C ... 112

Appendix D. Simulation case files ... 114

D.1. Simulation 1 .. 114

D.2. Simulation 2 and 3 ... 124

D.3. Simulation 4 .. 134

D.4. Simulation 5 .. 146

D.5. Simulation 6 .. 158

D.6. Simulation 7 .. 168

Appendix E. Tips ... 180

4

1. Introduction

1.1. Problem domain
In mining engineering, waste materials left over after separation processes are often referred to as

mine tailings. The tailing is a fluid generally consisting of water, mud and sand. These mixtures are

deposited into large basins bounded by dams. The behaviour and properties of these mixtures

determines the process of deposition.

In dredging engineering similar fluid mixtures are used in land reclamation. It is essential that the

fractions remain mixed while they are deposited. Segregation of the particles could be decremental

to the bearing capacity of the land.

In both engineering fields the commonality is that these slurries have a high solids content. These

solids in turn influence the rheology and flow behaviour. Due to the presence of clay, the rheological

parameters cause the flow to become non-Newtonian. Further, the sand particles present in the

mixture also influence the rheological properties.

Any fluid generates shear stresses when flowing or deforming. This shear stress in turn has its effects

on the settling of suspended particles like sand. Segregation of these particles leads to an

inhomogeneous concentration of solids in the mixture. This in turn leads to inhomogeneous

rheological properties which affects the flow field parameters (Hanssen, 2016), (Slatter, 2011).

Different analytical, numerical and empirical models have been developed to predict non-Newtonian

flow behaviour and particle segregation (Spelay, 2007), (van Rhee, 2017).

Simulating slurry flows in these two engineering fields, with these behaviours, would require

software that takes into account all the factors. The work performed by (van Rhee, 2017) pertained

to the adaptation of Computational Fluid Dynamics (CFD) package OpenFOAM to simulate the

settling of particles under shear and the influence on the rheological properties. One of the

recommendations put forward in this work was to add a free mixture surface to simulate settling

behaviour in open pipes and open channel flows. This thesis intends to follow this recommendation

and that recommendation can be considered the starting point of this thesis.

Having that adaptation to OpenFOAM in place would allow for simulations with the combination of

non-Newtonian behaviour, the influence of suspended and segregating sand particles on the

rheology, and a free mixture surface.

1.2. Objective and problem definition
The objective of this thesis is to continue the work on the development of OpenFOAM. The research

problem can be defined as follows: “How to incorporate non-Newtonian properties and sand particle

segregation in combination with a free mixture surface using OpenFOAM?”.

1.3. The approach of the research
This thesis contains of two parts. Firstly, a literature study was been performed to have a high level

understanding on the problem domain and related questions, this is Part 1: Analysis and Literature

Research. This includes research into non-Newtonian models, particle segregation models and flow

theory as those are factors at play in the problem domain.

5

Secondly, Part 2: Implementation and simulations goes into the implementation and simulation in

OpenFOAM. Firstly, an adaptation to Open FOAM will be implemented, after which this adaptation of

the code is used in various simulations. The results of these simulations will be compared against

(empirical) results found in literature.

1.4. Thesis structure
The structure of this report lines up with the approach as described in section 1.3.

Within Part 1, chapter 2 explores the factors and theory at play in the problem domain and chapter 3

gives an overview of previous research in the area. This includes non-Newtonian models and particle

segregation models.

In Part 2, chapter 5 presents the adjustments made to OpenFOAM. This includes customization of a

solver, using custom viscosity models, and sand settling models. Next, simulations are performed and

validated against existing experimental work in chapter 6. Finally, chapter 7 concludes this report by

presenting conclusions and recommendations for future work.

6

Part 1: Analysis and Literature
Research
As a starting point, this part provides a general overview of the fundamental theory of slurry

transport and tailings. The factors and theory at play in the problem domain are explored. Further,

experimental research in this field will be reviewed.

7

2. Literature & theory

2.1. Rheology
Rheology is a field of study that examines deformation and stresses of fluids under flowing

conditions. In order to accurately predict the flowing behaviour it is essential to understand the

relation between these factors. The relation between shear stress and shear rate can be shown in

rheogram. The gradient of this relation is what’s called the viscosity, and is a measure of the

stickiness of the fluid. For example, honey is quite sticky and has a high viscosity whereas water has a

low viscosity and is quite runny.

2.1.1. Rheological models

For all fluids, a mathematical function or rheological model can be defined. A distinction can be made

between Newtonian fluids and non-Newtonian fluids. For Newtonian fluids, this model is defined as

follows:

 𝜏 = 𝜇𝛾̇ (2.1)

Where 𝜏 = shear stress, 𝜇 = dynamic viscosity and 𝛾̇ = shear rate. This Newtonian model has a

constant 𝜇 and thus its rheogram is simply a sloped straight line from through the origin.

Non-Newtonian rheological models however often have three physical differences. These are: yield

stress, nonlinearity between stress and shear, and time-dependency.

2.1.1.1. Yield stress

If a material has a yield stress it means it will not flow or irreversibly deform as long as the stress

remains under a certain threshold. For stresses that stay below the yield-stress, the material behaves

elastically. This also means it will recover all applied strain once the stress is removed (Van De Ree,

2015), (Boger, Scales, & Sofra, 2006). For forces that exceed the yield stress, the fluid will show

viscous behaviour.

The Bingham rheological model is the model that fits this behaviour. It has a yield stress followed by

a linear relation between shear rate and viscosity. This relation is given following Equation (2.2). The

elastic behaviour can be described following Equation (2.3).

 𝜏 = 𝜏𝑦 + 𝜇𝐵𝛾̇ (2.2)

 𝜏 < 𝜏𝑦 → 𝛾̇ = 0 (2.3)

Where 𝜏𝑦 = the yield stress, and 𝜇𝐵 = the plastic viscosity.

2.1.1.2. Nonlinearity

Another way a non-Newtonian material can deviate from Newtonian behaviour is if a material shows

a nonlinear relation between shear rate and stress. A model often used to describe this relation is the

Herschel Bulkley model. This is presented as follows:

 𝜏 = 𝜏𝑦 + 𝐾𝛾̇
𝑛 (2.4)

𝐾 is often referred to as the consistency index and 𝑛 is the flow index. Different kinds of behaviour

may occur depending on the value for 𝑛. If 0 ≤ 𝑛 < 1, the fluid behaves in a pseudoplastic or shear

8

thinning manner. This means the fluid gets thinner (viscosity decreases) as the shear rate increases.

Alternatively, if 𝑛 > 1, the fluid behaves in a dilatant or thickening manner (viscosity increases) as

the shear rate increases.

This nonlinear behaviour can also occur in materials that don’t have a yield stress. We then end up

with the Ostwald-De Waele power law model, described mathematically as follows:

 𝜏 = 𝜇𝛾̇𝑛 (2.5)

Then, once again, depending on the value for 𝑛, different kinds of behaviour (pseudoplastic or

dilatant) may occur.

2.1.1.3. Time-dependency

Then lastly, there’s also the class of materials that show time-dependent behaviour. An example

could be that under a constant shear rate, the viscosity changes over time. An increasing viscosity

under shear is called thixotropic behaviour, whereas a decreasing viscosity under shear is called

rheopectic behaviour. This is also where the terms remoulded and unremoulded come into play. The

remoulded state is relevant for flowing fluids, whereas unremoulded is relevant for depositions of

the fluids in basins and reclamation areas.

2.1.2. Apparent viscosity

One should note that the plastic viscosity (Bingham), and consistency index (Herschel) are not the

true viscosity. This viscosity is the tangent on the rheogram. However, for materials with a yield

stress, or materials that show thinning or thickening behaviour, a different viscosity can also be

defined. This is called the apparent viscosity and it is defined as the slope of a line from the origin to

a certain shear stress on the flow curve in the rheogram. Equation (2.6) shows this relation.

 𝜇𝑎 =
𝜏

𝛾̇

(2.6)

9

Figure 2.1: Rheograms for shear stress (a) and apparent viscosity (b) showing different fluid types (Newtonian and Bingham
included). 𝜏𝑦 (and 𝜏𝐵 for Bingham) represents the yield stress, 𝛾̇ is the strain rate, and 𝜂𝑎 is the apparent viscosity 𝜇𝑎as

shown in Equation (2.6). Source: (Talmon, 2016)

2.1.3. Dynamic and kinematic viscosity

Besides a definition for viscosity, we can also define viscosity relative to the density. This is called the

kinematic viscosity. In OpenFOAM, solvers and material models all calculate using a kinematic

viscosity. So, all inputs that we define should be relative to the density. The kinematic viscosity is

defined as follows:

 𝜈 =
𝜇

𝜌

(2.7)

2.2. Sand influence on viscosity and yield stress
Due to the presence of sand, the behaviour of the mixture changes in two ways: 1) it increases

internal friction, and 2) it introduces non-cohesive particles (Talmon, Hanssen, Winterwerp, Sitoni, &

van Rhee, 2016). The influence of the presence of the particles on both the plastic viscosity and yield

stress are defined as follows:

 𝜇𝑝 = 𝜇𝑝,𝑐𝑓𝑒
𝛽𝜆 (2.8)

 𝜏𝑦 = 𝜏𝑦,𝑐𝑓𝑒
𝛽𝜆 (2.9)

Where 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓 are rheological parameters of the carrier fluid alone, without particles (hence

the cf subscript). 𝛽 is a constant, which has been set at a value of 0.27 in (van Rhee, 2017) and

(Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016).

It should be noted that we define a slightly different nomenclature for the parameters 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓

than in (van Rhee, 2017). The definition of the parameters is not different, though. 𝜇𝑝,𝑐 and 𝜏𝑦,𝑝 in

(van Rhee, 2017) is the same as 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓 in this report, respectively.

10

Further, the linear concentration 𝜆 is defined:

𝜆 =

1

(
𝑐𝑚𝑎𝑥
𝑐𝑠

)

1
3
− 1

(2.10)

In which 𝑐𝑚𝑎𝑥 is a maximum sand concentration. In (van Rhee, 2017) and (Talmon, Hanssen,

Winterwerp, Sitoni, & van Rhee, 2016) set to 0.6.

2.3. Sand particles settling
As sand particles have a positive submerged weight in water, we expect them to settle towards the

bottom. We should therefore review the theory on the particle settling velocity. This is relevant here

because as particles settle, they create a non-uniform (non-homogeneous) field of the particle

density. In turn this will also lead to non-uniform rheological parameters of the fluid mixture. We

need that to be able to compute the viscosity as was shown in section 2.2.

2.3.1. Newtonian carrier fluid

In Newtonian fluids, the Stokes formula describes the forces on submerged particles. It is derived

from the force balance on a particle between the (submerged) weight and the upward force the fluid

exerts on the particle. Equation (2.11) shows this relation.

 1

6
𝜋𝑑3 (𝜌𝑠 − 𝜌𝑐𝑓)𝑔 =

1

8
𝐶𝐷𝜋𝑑

2𝑤0
2𝜌𝑐𝑓

(2.11)

The left hand side represents the force due to gravity on the submerged weight. And the right hand

side represents the drag force on a sphere moving through a fluid. 𝑑 is the diameter of the particle,

𝜌𝑠 and 𝜌𝑐𝑓 are the densities of the settling particles and fluid respectively, 𝑔 is the gravitational

acceleration, 𝐶𝐷 is a drag coefficient, and 𝑤0 is the settling velocity. If we rewrite for 𝑤0 we arrive at

equation (2.12).

𝑤0 = √
4

3

(𝜌𝑠 − 𝜌𝑐𝑓)

𝜌𝑐𝑓

𝑔𝑑

𝐶𝐷

(2.12)

The drag coefficient depends on the regime of the flow and is a function of the particle Reynolds

number:

𝑅𝑒𝑝 =

𝜌𝑐𝑓𝑤0𝑑

𝜇𝑐𝑓

(2.13)

Where 𝜇𝑐𝑓 is the viscosity of the surrounding (carrier) fluid.

Now, for the laminar flow regime, the relation between the drag coefficient 𝐶𝐷 and particle Reynolds

number 𝑅𝑒𝑝 is defined as follows:

𝐶𝐷 =

24

𝑅𝑒𝑝

(2.14)

Both equation (2.13) and equation (2.14) can be substituted into equation (2.12). This will yield

equation (2.15) which gives a definition for the resulting settling velocity on the particle, 𝑤𝑠,0.

11

𝑤𝑠,0 =

1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓

(2.15)

2.3.2. Hindered settling

The derivation shown in section 2.3.1 only holds for a low concentration of particles submerged in a

fluid. To be more exact, the derived equations only hold for a single particle. Then, one might ask,

what particles in higher concentrations? When many particles settle in the same area, those will

hinder each other. The physical processes at play here have already been listed by (Winterwerp &

van Kesteren, 2004):

1. Return flow and wake formation. A settling particle generates a return flow and wake.

Particles in the wake will be subject to increased settling velocities. Particles caught in the

return flow will see a lower settling velocity.

2. Dynamic or flow effects causing velocity gradients

3. Particle-particle collisions causing additional stresses

4. Particle-particle interaction through electrical charge

5. Einstein effect causing an increase in apparent viscosity due to an increased strain rate

6. Buoyancy effect due to increased density of the mixture

7. Cloud formation. Particles in the wake of another particle will settle faster and catch up, thus

forming a (settling) cloud of particles.

According to (Van De Ree, 2015) the main contributions for hindered settling come from 1, 5, 6 for

Newtonian fluids. According to (Talmon, van Kesteren, Sittoni, & Hedblom, 2013), for non-Newtonian

fluids or mixtures, processes 2 and 5 are important (also mentioned by (Van De Ree, 2015)).

(Dankers & Winterwerp, 2007) provides formulations for the buoyancy effect and return flow effect

factors in terms of the particle concentration 𝑐𝑠, shown by equations (2.16) and (2.17) respectively.

(van Es, 2017) also refers to the same formulations.

 (1 − 𝑐𝑠) (2.16)

(1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

(2.17)

The hindered settling effects for buoyancy and return flow can be applied to the unhindered settling

velocity 𝑤𝑠,0 (equation (2.15)). This gives equation (2.18).

𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

𝑤𝑠,0
(2.18)

2.3.3. Non-Newtonian carrier fluid

In a static (not flowing) non-Newtonian fluid that has a yield stress, particles will not settle as long as

the gravitational force (corrected for buoyancy) is lower than the force induced by the yield stress.

The force balance on a single particle is defined as follows:

𝑎𝑓𝑜𝑟𝑚

1

6
𝜋(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑

3 > 𝜏𝑦𝛽𝑓𝑜𝑟𝑚𝜋𝑑
2

(2.19)

12

Here, the left hand side of the equation symbolizes the force on the submerged particle and the right

hand side symbolizes the upward force caused by the yield stress. 𝑎𝑓𝑜𝑟𝑚 and 𝛽𝑓𝑜𝑟𝑚 are parameters

that describe the shape of a particle. According to (Chhabra, 2007) for static situations (no flow, thus

also no shear), this reduces to the following criterion for settling:

 𝜏𝑦 ≤ 𝑎𝑐𝑟(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑 (2.20)

Where 𝑎𝑐𝑟 is an empirical parameter ranging from 0.048 to 0.2 (van Es, 2017) and (Chhabra, 2007).

However, in a non-static situation (flowing and shearing fluid), the force balance is different. The

particles are co-rotating with the shearing of the fluid. (Talmon & Huisman, 2005) goes into the

details of this co-rotation and presents equation (2.21):

𝑤𝑠,0 = 𝑎

1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓

(2.21)

Where 𝑎 is an empirical parameter. (Winterwerp & van Kesteren, 2004) has stated that for spherical

particles, 𝑎 = 1. Equation (2.21) looks to be quite similar to equation (2.15) except for this empirical

parameter 𝑎.

Equation (2.21) can easily be substituted into equation (2.18) following (van Es, 2017). This yields

equation (2.22).

𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

𝑎
1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓

(2.22)

This once again only holds if the shear stress is bigger than the yield stress. Otherwise, shear settling

will not occur. This is summarized in this requirement:

 𝐼𝑓 𝜏 < 𝜏𝑦, 𝑡ℎ𝑒𝑛 𝑤𝑠 = 0 (2.23)

2.4. Open channel flow
Tailings deposits flowing over a beach are often modelled as open channel flows. It’s main

characteristics: gravity-based driving force on an angled channel. Further, these channel flows have a

free water surface as opposed to closed channel or pipe flow.

2.4.1. Froude number

The Froude number can be used to quantify whether the flow is sub-critical or super-critical. The is a

dimensionless parameter and for open channel flows this number is commonly calculated (Spelay,

2007). The definition of the Froude number shown in equation (2.24).

 𝐹𝑟 =
𝑢

√𝑔𝐿

(2.24)

Where 𝐹𝑟 is the Froude number, 𝑢 is a characteristic flow velocity like the average velocity in a

channel. 𝐿 is a characteristic length scale like flowdepth or hydraulic radius.

13

The flow is considered sub-critical if the Froude number is lower than 1. If it is higher than 1, it is

considered super-critical, if it is equal to 1 it is critical. A hydraulic jump might occur whenever a flow

switches over from sub- to super-critical.

It should be noted that (2.24) is the Froude number for Newtonian fluids. The application of the

Froude number for non-Newtonian fluids remains uncertain (Spelay, 2007).

2.4.2. Reynolds number

The flow regime can be turbulent or laminar depending on the Reynolds number. If a flow is laminar,

the streamlines in the flow are parallel to each other. For Newtonian fluids, the Reynolds number is

defined as follows:

𝑅𝑒 =

𝜌𝑢𝐿

𝜇

(2.25)

Where 𝜌 is the density, 𝑢 is the flow velocity, 𝐿 is a characteristic length and 𝜇 is the kinematic

viscosity.

For non-Newtonian fluids, the Reynolds number is more ambiguous (Haldenwang, Slatter, &

Chhabra, 2010), (Van De Ree, 2015). Most definitions in literature are based on the friction factor

(Van De Ree, 2015). The dimensionless shear stress is expressed using the fanning friction factor:

 𝑓 =
𝜏𝑏
1
2
𝜌𝑣2

(2.26)

For Newtonian flow, in the laminar flow regime, the friction factor-Reynolds number is defined as

follows:

𝑓 =

16

𝑅𝑒

(2.27)

Then, equations (2.26) and (2.27) can be combined; this gives us the definition for the non-

Newtonian Reynolds number 𝑅𝑒𝑛𝑁:

𝑅𝑒𝑛𝑁 =

8𝜌𝑣2

𝜏𝑏

(2.28)

Where 𝜏𝑏 is the bed or bottom shear stress.

2.4.3. Fully developed, steady, uniform flow

The open-channel flow from this point forward is considered fully developed, steady and uniform.

Realistically, the characteristics of non-Newtonian tailings lead to laminar flow behaviour (Van De

Ree, 2015). When looking at tailings beach flows, there are end-effects in the transition from channel

to sheet flow. Basically, we are (only) looking at a flow down an inclined plane. The theory in this

section only looks at the fully developed, steady and uniform flow behaviour. Furthermore, an

infinite width allows us to disregard edge effects.

2.4.3.1. Bingham Plastic

Bingham Plastic fluids have a yield stress. We know that the calculation of the shear stress in a

Bingham Plastic is calculated according to equation (2.2). Further, we know that for a shear stress

14

𝜏 < 𝜏𝑦, the fluid will not shear. The velocity profile of a non-Newtonian fluid with non-zero yield

stress will show plug flow behaviour near the free surface. This plug represents an unsheared layer.

This section will show the associated formulas.

The shear stress distribution of a fluid in an open-channel flow is defined as follows:

 𝜏 = 𝜌𝑔𝑦𝑠𝑖𝑛𝜃 (2.29)

Where 𝜃 is the slope of the channel, 𝜌 is the density of the fluid, and 𝑦 is the coordinate along the

flowdepth.

This leads to the calculation of the bed shear stress 𝜏𝑏 by substituting flowdepth ℎ0 for 𝑦 following

equation (2.30).

 𝜏𝑏 = 𝜌𝑔ℎ0𝑠𝑖𝑛𝜃 (2.30)

The plug height ℎ𝑝 is constructed following from 𝜏 = 𝜏𝑦 at 𝑦 = ℎ𝑝:

 𝜏𝑦 = 𝜌𝑔ℎ𝑝 𝑠𝑖𝑛 𝜃 (2.31)

This can be reduced by combining equations (2.30) and (2.31), effectively creating a function of

channel depth, yield stress and bed shear stress:

 ℎ𝑝 =
𝜏𝑦

𝜏𝑏
ℎ0

(2.32)

The height of the plug shearing layer between the and the inclined plane (ℎ𝑠) can be defined as:

 ℎ𝑠 = ℎ0 − ℎ𝑝 = ℎ0 −
𝜏𝑦

𝜏𝑏
ℎ

(2.33)

2.4.3.2. Velocity profile

An interesting flow feature to look at for flow down an inclined plane is the velocity profile along the

flowdepth. An analytical solution for the velocities at different depths has been derived by (De Kee,

Chhabra, Powley, & Roy, 1990). This solution holds for a flow with a free water surface and a no-slip

condition on the bottom.

A more simplified version of the same solution has been given by (Haldenwang, Kotzé, & Chhabra,

2012).

Adjusting the nomenclature to align with earlier mentioned variables, we end up with equation

(2.34) for the velocity 𝑉𝑥,𝑠ℎ𝑒𝑎𝑟 in the shearing layer (ℎ𝑝 ≤ 𝑦 ≤ ℎ0):

𝑉𝑥,𝑠ℎ𝑒𝑎𝑟 = (
𝑛

𝑛 + 1
)(

𝐾

𝜌𝑔𝑠𝑖𝑛𝜃
)(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛

(

1 − (

𝜏
𝜏𝑦
− 1

𝜏𝑏
𝜏𝑦
− 1

)

𝑛+1
𝑛

)

(2.34)

And the velocity 𝑉𝑥,𝑝𝑙𝑢𝑔 of the plug (0 ≤ 𝑦 ≤ ℎ𝑝):

15

𝑉𝑥,𝑝𝑙𝑢𝑔 =

𝑛𝐾

(𝑛 + 1)𝜌𝑔𝑠𝑖𝑛𝜃
(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛

(2.35)

It should be noted that equations (2.34) and (2.35) include cases for power-law fluids (𝜏𝑦 = 0, 0 ≤

𝑛 ≤ 1 𝑜𝑟 𝑛 > 1), Bingham Plastic fluids (𝑛 = 1,𝐾 = 𝜇𝐵 , 𝜏𝑦 ≠ 0), and Newtonian fluids (𝑛 = 1, 𝜏𝑦 =

0).

The equation for the average velocity 𝑉𝑥,𝑎𝑣𝑔 has been given by (Haldenwang, Kotzé, & Chhabra,

2012):

𝑉𝑥,𝑎𝑣𝑔 =

𝑛𝐾

(2𝑛 + 1)𝜌𝑔𝑠𝑖𝑛𝜃
(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛
(1 + (

𝑛

𝑛 + 1
)
𝜏𝑦

𝜏𝑏
)

(2.36)

And a more simplified version by (Van De Ree, 2015) applicable to Bingham Plastic fluids specifically,

provided the flowdepth ℎ0 is known:

𝑉𝑥,𝑎𝑣𝑔 = (

1

3
𝜏𝑏 −

1

2
𝜏𝑦 +

1

6

𝜏𝑦
2

𝜏𝑏
2)
ℎ0
𝜇𝐵

(2.37)

16

3. Survey on previous research
This chapter will give an overview of relevant previous research in the field of tailings and slurry flow.

Experimental research has been done with regards to velocity profile development and

concentration profiles of sand-mud mixtures. More recent research focusses on numerical modelling

and simulation of these flows.

Reviewing this previous research will allow for comparison of the performed simulations in

OpenFOAM. In light of that, the results found by others could serve as a basis for validation.

3.1. Spelay (2007)
(Spelay, 2007) performed experiments with sand-mud mixtures in a half open pipe. The pipe had a

diameter 𝐷 = 156.7mm. The mixtures used were four different Bingham Plastics with properties

quite typical for the mine tailing or oil sands industry. With the experimental setup used, the flow

rate and flume angle were varied. At 14.8m from the flume inlet a traversing gamma ray

densitometer was placed to measure the sand concentration in the mixture at that location.

Further, the flume was fitted with two depth gauges located 7.5 and 13.3 m from the flume inlet.

These were used to measure the flowdepth of the slurry. The depth gauges are described as “height

measurement” points 1 and 2 in Figure 3.1.

Figure 3.1: Saskatchewan Research Council’s 156.7 mm flume circuit used in the experimental program (Spelay, 2007)

One class of mixtures used in the experiment was identified as thickened tailings slurries. This is a

sand, clay & water mixture and the composition was 15.4:15.1:69.5 (sand:clay:water v/v). This

resulted in a bulk density 𝜌𝑚𝑖𝑥 = 1510 kg/m3, calculated according to equation (3.1). Due to the high

clay fraction, these slurries had quite high yield stress between 30 and 50 Pa. Due to this high yield

stress, the thickened tailings mixture flowed in the laminar regime. The carrier fluid alone, without

the sand particles added, had a yield stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s and

density 𝜌𝑐𝑓 = 1303 kg/m3. The density of the sand particles was 𝜌𝑠 = 2650 kg/m3.

 𝜌𝑚𝑖𝑥 = 0.154 𝜌𝑠 + (1 − 0.154)𝜌𝑐𝑓 (3.1)

(Spelay, 2007) performed multiple measurements regarding the flow in the flume circuit. These

measurements included a concentration profile measurement and velocity profile measurements.

Section 3.1.1 and 3.1.2 present these.

17

3.1.1. Concentration profile measurements

Concentration profile measurements have been obtained. For the thickened tailings slurry

mentioned in section 3.1, Table 3.1 lists the measurement data on the sand and solids concentration.

𝒚/𝑫 𝑪𝒔𝒐𝒍𝒊𝒅𝒔 (v/v) 𝑪𝒔𝒂𝒏𝒅 (v/v)

0.95 - - - - - - - -

0.90 - - - - - - - -

0.85 - - - - - - - -

0.80 - - - - - - - -

0.75 - - - - - - - -

0.70 - - - - - - - -

0.65 - - - 0.247 - - - 0.083

0.60 - - 0.277 0.263 - - 0.120 0.104

0.55 - 0.272 0.280 0.262 - 0.114 0.124 0.101

0.50 0.272 0.270 0.280 0.261 0.114 0.112 0.124 0.101

0.45 0.275 0.267 0.287 0.253 0.117 0.108 0.132 0.091

0.40 0.276 0.273 0.287 0.252 0.119 0.115 0.132 0.089

0.35 0.273 0.276 0.285 0.256 0.115 0.118 0.129 0.094

0.30 0.270 0.263 0.281 0.250 0.111 0.103 0.125 0.087

0.25 0.272 0.267 0.281 0.253 0.114 0.108 0.125 0.091

0.20 0.258 0.252 0.271 0.252 0.097 0.089 0.112 0.090

0.15 0.256 0.255 0.267 0.255 0.095 0.093 0.108 0.093

0.10 0.277 0.296 0.316 0.284 0.120 0.143 0.168 0.129

0.05 0.332 0.360 0.400 0.333 0.187 0.221 0.270 0.189

𝒉 (m) 0.0861 0.0968 0.1039 0.1077 0.0861 0.0968 0.1039 0.1077

𝜽 (°) 5.4 4.5 4 4.5 5.4 4.5 4 4.5

𝑸 (L/s) 5 5 5 2.5 5 5 5 2.5
Table 3.1: Solids and sand concentration (𝐶𝑠𝑜𝑙𝑖𝑑𝑠 and 𝐶𝑠𝑎𝑛𝑑 respectively) profile measurements for a model thickened
tailings slurry in the 156.7 mm flume; 𝜌𝑚𝑖𝑥 = 1510 kg/m3. ℎ represents the flowdepth at the measurement point, 𝜃 the
inclination of the flume and 𝑄 the inlet flow rate, Table D.24 in (Spelay, 2007).

The values for Csand in Table 3.1 that are presented in bold and italics have been plotted against the

non-dimensional 𝑦/𝐷 in Figure 3.2. This shows a profile of the sand concentration along the depth of

the flow. It can be seen that near the bottom, close to the pipe wall, a bed with a higher sand

concentration forms. Just above that, there is a zone with a dip in the sand concentration.

18

Figure 3.2: Sand concentration measurement profile 𝐶𝑠𝑎𝑛𝑑 against non-dimensional 𝑦/𝐷 for 𝜃 = 4.5° and 𝑄 = 5 L/s

3.1.2. Velocity profile measurements

(Spelay, 2007) also performed velocity profile measurements. Local velocities were measured at

different points in the flume using a XY traversing pitot-static tube. Figure 3.3 shows the positions of

these measurement points. Table 3.2 shows both the exactly (non-dimensional) locations of the

measurement points as well as the results of these velocity measurements for the thickened tailings

slurry mentioned in in section 3.1.

Figure 3.3: Flume two-dimensional mixture velocity profile measurement positions in the 156.7mm flume (corresponding to
Table 3.2 in this report and Table D.32 in (Spelay, 2007). Gravity works in negative y-direction. Source: Figure D.1 in (Spelay,
2007).

Point x/R y/R v/V v/V v/V v/V

1 0.11 0.89 1.75 2.37 2.37 2.41

2 0.12 0.54 1.80 2.29 2.24 2.94

3 0.34 0.66 1.71 2.35 2.19 2.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

y/
D

Csand

19

4 0.46 0.88 1.72 2.41 2.27 2.96

5 0.11 0.19 0.82 1.70 1.40 1.96

6 0.31 0.25 0.89 1.76 1.53 2.27

7 0.50 0.35 1.00 1.71 1.67 2.04

8 0.65 0.50 0.98 1.84 1.77 1.51

9 0.75 0.69 1.17 1.78 1.80 0.59

10 0.81 0.89 1.11 1.87 1.85 1.21

11 0.11 1.11 -- 2.33 2.38 2.95

12 -- -- -- -- -- --

13 0.34 1.34 -- -- -- 2.11

14 0.46 1.12 -- 2.30 2.37 3.09

15 -- -- -- -- -- --

16 -- -- -- -- -- --

17 -- -- -- -- -- --

18 -- -- -- -- -- --

19 0.75 1.31 -- -- 1.87 1.54

20 0.81 1.11 -- 2.02 1.92 2.39

𝑸 (L/s) 5 5 5 2.5

𝜽 (°) 5.4 4.5 4 4.5

𝒉 (m) 0.0873 0.0970 0.1048 0.1077

𝑽 (m/s) 0.46 0.40 0.36 0.18
Table 3.2: Mixture velocity profile measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥 = 1510
kg/m3. Table D.32 in (Spelay, 2007)

3.1.3. Frictional loss measurements

Frictional loss measurements were also performed. This data also includes measurements for

flowdepths h1 and h2, at different locations in the flume. These were performed using Vernier caliper

gages, located 7.5m (location 1) and 13.3m (location 2) from the flume inlet. These measurements

can later be used to compare to.

𝑸 (m3/s) 𝑻 (°C) 𝜽 (°) 𝒉𝟏 (m) 𝒉𝟐 (m) 𝑽 (m/s) 𝝉𝒘 (Pa) 𝑹𝒆𝒁𝒉𝒂𝒏𝒈 𝒇

0.00497 21.6 4.00 0.0909 0.0993 0.41 41.0 55 0.3275

0.00498 22.4 4.50 0.0849 0.0931 0.44 44.7 48 0.3027

0.00510 26.6 5.41 0.0805 0.0834 0.50 54.6 59 0.2892

0.00253 25.0 4.50 0.0998 0.1054 0.19 49.7 8 1.8379
Table 3.3: Frictional loss measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥 = 1510 kg/m3.
Table D.17 in (Spelay, 2007)

3.1.4. Different inlet

(Spelay, 2007) tested with two different inlet conditions. These were only tested in the sand-water

tests and not in the tests with the thickened tailings. With the original inlet condition, the mixture

was transferred from the feed line to the flume through a flexible rubber hose which was orientated

parallel (in-line) to the flume. With this setup there is a serious risk of blocking the channel system

due to sand being deposited at the inlet of the flume.

A new inlet condition was created so that the slurry was transferred from the feed line to the flume

through a flexible rubber hose which was orientated perpendicular to the flume. The purpose of

these modifications was to prevent this sand deposition close to inlet. However, these experiments

were not performed using the thickened tailings.

20

3.2. Hansen (2016)
In the work by (Hanssen, 2016), non-Newtonian settling slurries have been implemented in Delft3D,

a numerical modelling package developed by Deltares. This work goes into the very specifics of the

1DV numerical model Delft3D-Slurry.

Three rheological models were used that were based on the shear stress 𝜏 as follows:

 𝜏 = 𝜏𝑦 + 𝜇𝛾̇
𝑛 (3.2)

The different models differ in the formulation of yield stress 𝜏𝑦, viscosity 𝜇 and flow index 𝑛. The

definitions of these three models were following Winterwerp & Kranenburg, Jacobs & Van Kesteren,

and Thomas.

On first look, these definitions don’t match earlier theory encountered in section 2.2. However, upon

further inspection, also in (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016), it is found that

the models are in fact matching with the earlier theory. The difference comes from the definition of

the yield stress and viscosity of the carrier fluid. In equation (2.8) and (2.9) this is encapsulated into 1

parameter for both, 𝜇𝑝 and 𝜏𝑦.

(Hanssen, 2016) and (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) show the more

fundamental origin of these parameters. They include for instance: water content 𝑊, plasticity index

𝑃𝐼, and empirical parameters 𝐾𝑦, 𝐵𝑦, 𝐾𝜇, 𝐵𝜇, 𝛽. For completeness, the rheological models are shown

below.

Equations (3.3) and (3.4) show the first model following Winterwerp and Kranenburg. It should be

noted that for this model, the flow index 𝑛: 0 < 𝑛 ≤ 1.

𝜏𝑦 = 𝐴𝑦 (
𝜙𝑐𝑙

1 − 𝜙𝑠𝑎𝑠𝑖
)

2
3−𝑛𝑓

𝑒𝛽𝜆,

(3.3)

 𝜇 = [𝜇𝑤 + 𝐴𝜇 (
𝜙𝑐𝑙

1 − 𝜙𝑠𝑎𝑠𝑖
)

2(𝑎+1)
3

[
1

𝛾̇
]

(𝑎+1)(3−𝑛𝑓)
3

] 𝑒𝛽𝜆

(3.4)

Equations (3.5) and (3.6) show the second model following (Jacobs, Le hir, Van Kesteren, & Cann,

2011). This follows a Bingham model, so flow index 𝑛 = 1.

𝜏𝑦 = 𝐾𝑦 (

𝑊

𝑃𝐼
)
𝐵𝑦

𝑒𝛽𝜆
(3.5)

𝜇 = 𝜇𝑤 [1 + 𝐾𝜇 (

𝑊

𝑃𝐼
)
𝐵𝜇

] 𝑒𝛽𝜆
(3.6)

Equation (3.7) and (3.8) show the third model following (Thomas, 1999). This also follows a Bingham

model, so flow index 𝑛 = 1.

𝜏𝑦 = 𝐶𝑦 (

𝜙𝑓𝑖𝑛𝑒𝑠

𝜙𝑤𝑎𝑡𝑒𝑟 + 𝜙𝑓𝑖𝑛𝑒𝑠
)

𝑝

[1 −
𝜙𝑠𝑎

𝑘𝑦𝑖𝑒𝑙𝑑𝜙𝑠𝑎,𝑚𝑎𝑥
]

−2.5

(3.7)

21

𝜇 = 𝑒

𝐷
𝜙𝑓𝑖𝑛𝑒𝑠
𝜙𝑤𝑎𝑡𝑒𝑟 [1 −

𝜙𝑠𝑎
𝐾𝑣𝑖𝑠𝑐𝜙𝑠𝑎,𝑚𝑎𝑥

]

−2.5

(3.8)

It can be noted that the first 2 models (equations (3.3), (3.4), (3.5), and (3.6)) contain the term 𝑒𝛽𝜆, in

which 𝛽 is an empirical value set to 0.27. The linear concentration 𝜆 is defined as in equation (2.10).

The other terms in these equations can be collapsed into 2 carrier fluid parameters 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓, as

has been done by (van Rhee, 2017). This can be useful if the carrier fluid parameters are known.

(Hanssen, 2016) concluded Delft3D’s 1DV model is capable of capturing the rheological and sand

settling processes for laminar slurry mixtures. They fall in line with the theoretical predictions.

Further, plug-flow behaviour and sand bed formation was reproduced. Further, flow velocity was

reversely proportional to sand bed concentration, also as expected.

3.2.1. Regularization of the flow curve

For materials that have a yield stress 𝜏𝑦 calculating the apparent viscosity is a challenge at low shear

rates. The apparent viscosity is very high for low shear rates 𝛾̇. Following equation (2.6), the apparent

viscosity will become impossible for a shear rate equal to 0. This occurs if shear stresses are smaller

than the yield stress. This happens in the plug zone of the flow.

(Hanssen, 2016) has made a modification has been made following (Papanastasiou, 1987). The

proposed model for this is an exponential regularization like so:

 𝜏 = 𝜏𝑦(1 − 𝑒
−𝑚𝛾̇) + 𝜇𝛾̇ (3.9)

The same formulation was also found in (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016),

and it is stated that equation (3.9) creates a finite viscosity at low shear rates. The constant 𝑚 should

be chosen in such a way that the numerical solution approaches the analytical solution. In (Talmon,

Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) it is stated that this holds for high values of 𝑚. A

value of 𝑚 = 5000 has been chosen.

For a sensitivity analysis on this parameter I turn to (Hanssen, 2016). It is shown that parameter 𝑚

has significant influence on the steepness of the flow curve for low shear rates as well as the velocity

profile of flowing fluids with a yield stress. From a comparison with the analytical solution it is shown

that 𝑚 = 5000 is required to minimize numerical mutation.

3.3. Van Rhee (2017)
(van Rhee, 2017) investigated OpenFOAM’s capability to simulate non-Newtonian fluids and coarse

solid mixture flow. An adaptation of the already existing icoFoam application has been created. Non-

Newtonian models were already available in icoFoam, but the influence of coarse particles on the

rheology hadn’t been implemented before.

The influence of the particles on the plastic viscosity and yield stress has been implemented

following to (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016). Equations (2.8), (2.9) and

(2.10) were followed. It should be noted here that the source code showed regularization as shown

in equation (3.9) has been incorporated too. The simulation case files showed that the regularization

parameter 𝑚 has been set to 50. The source code can be seen in Appendix A.

22

Further, the settling velocity of the particles have also been implemented following (Talmon,

Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) which can be seen in equation (2.15).

Lastly, a transport equation for the sand fraction has been implemented using the drift flux

approach. This will ensure that the particles can 1) settle with reference to the carrier fluid and 2) get

dragged along with the carrier fluid as the mixture flows through the domain. Equations (3.10) and

(3.11) show this for a given control volume:

 𝜕𝑐𝑠
𝜕𝑡
+ 𝛻. (𝑈𝑠𝑐𝑠) = 0

(3.10)

 𝑈𝑠 = 𝑈 +𝑤𝑠 (3.11)

Here, 𝑐𝑠 is the sand fraction, 𝑈𝑠 is the sand particle velocity, 𝑤𝑠 is the settling velocity and ∇ is the

divergence operator.

In the work by (van Rhee, 2017), only the buoyancy effect (equation (2.16)) has been implemented

following equation (3.12).

 𝑤𝑠 = (1 − 𝑐𝑠)𝑤𝑠,0 (3.12)

Where 𝑤𝑠,0 is the unhindered settling velocity, 𝑤𝑠 is the hindered settling velocity and (1 − 𝑐𝑠)

represents the hindered settling effect in due to buoyancy.

The source code files accompanying (van Rhee, 2017) also showed traces of code following equation

(2.22), having both the buoyancy and return flow effects implemented. However, these lines of code

had been commented out, so I don’t believe this has actually been used. Appendix A.2 shows this

code being commented out.

(van Rhee, 2017) concluded the implementation still showed quite okay agreement between

numerical computations and experimental findings in (Spelay, 2007). One should note that in the

paper, on equation 7, a power 2 operator on the particle diameter (𝑑2) is missing, though this has

been implemented correctly.

(van Rhee, 2017) validated the implementation in 2 parts. Part 1 was performed using 2D open-

channel (section 3.3.1), and part 2 was performed using a 3D open pipe (section 3.3.2).

3.3.1. 2D open-channel

The first part of the validation was a comparison against the analytic solution of a 2D open-channel

flow with a fixed flowdepth. In a sense this could be considered a 2D closed-channel flow with a top

lid that allows for full slip. It should be noted here that no sand particles are added to the simulation

just yet.

A simulation using a Bingham Plastic viscosity model has been performed. The analytical solution was

formulated using the pressure gradient taken from the numerical solution.

The following parameters were applied: flowdepth ℎ0 = 0.1 m, average velocity 𝑢̅ = 0.4 m/s, yield

stress 𝜏𝑦 = 10 Pa, plastic viscosity 𝜇𝑝 = 0.0214 Pa.s, channel length 𝐿 = 20 m. The velocity in x

direction 𝑈𝑥 has been extracted at 𝑥 = 15m from the inlet zone. Figure 3.4 shows these velocity as

calculated by the simulation and the velocity following the analytical solution.

23

Figure 3.4: Velocity 𝑈𝑥 for both the numerical and analytical solution for the 2D channel flow at x=15. Source: (van Rhee,
2017)

3.3.2. 3D open pipe

The second part of the validation was a comparison against experiments performed by (Spelay, 2007)

in a 3D open pipe flow with a fixed flowdepth. In a sense this could be considered a 3D half round

closed-pipe flow with a top lid that allows for full slip.

The flowdepth was chosen in such a way that it matched with the flowdepth found in the

experiments from (Spelay, 2007). A simulation using a Bingham Plastic viscosity model has been

performed. The sand concentration profile has been compared to the profile found in the

experiments.

The following parameters were applied: flowdepth ℎ0 = 0.0968 m, inlet discharge 𝑄 = 5 L/s, yield

stress of the carrier fluid 𝜏𝑦,𝑐𝑓 = 47.3 Pa, plastic viscosity of the carrier fluid 𝜇𝑝,𝑐𝑓 = 0.0214 Pa.s,

inflow concentration of sand 𝑐𝑠 = 0.12, sand particle diameter 𝑑 = 188 micron, pipe length 𝐿 = 15 m,

pipe diameter 𝐷 = 0.1567 m.

Figure 3.5 shows the extracted sand concentration 𝑐𝑠 and flow velocity in the z-direction along the

length of the pipe 𝑈𝑧 at 𝑧 = 15 m from the inlet zone. The sand concentration has been compared to

the sand concentration as found by (Spelay, 2007). Figure 3.6 and Figure 3.7, respectively, show the

sand concentration along the vertical symmetry plane after 300 seconds of simulation and at the xy-

plane at 𝑧 = 15 m.

24

Figure 3.5: Velocity profile and sand concentration at 𝑧 = 15 m at different times from the start of the simulation. Sand
concentration has been compared to results found by (Spelay, 2007). Source: (van Rhee, 2017)

Figure 3.6: Sand concentration along vertical symmetry plane in 3D pipe. Source: (van Rhee, 2017)

Figure 3.7: Sand concentration at 𝑧 = 15 m from the inlet zone. Source: (van Rhee, 2017)

Sand settles at the bottom of the pipe and this forms a sand bed. (van Rhee, 2017) concludes the

concentration profile of the sand is similar to the experiments, noting that the dip in sand

concentration just above the bed in the shearing layer is found to be smaller in the simulations; the

25

experiments showed a larger dip in sand concentration in the shearing layer. The final conclusion is

that icoFoam is capable to capture solids settling processes. However, to truly mimic open pipe and

open channel flows, a free mixture surface is required.

26

4. Summary
In Part 1 of this study, an overview of relevant theory and literature has been presented. We have

seen different rheological models and implementation techniques in CFD packages OpenFOAM and

Delft3D.

Different aspects have been compiled: the foundational modelling of rheological models (section

2.1), the influence (suspended) particles have (section 2.2), and particle settling behaviour (section

2.3). Further, specifically for open channel flow with a non-Newtonian fluid, an analytical solution for

the velocity profile (section 2.4.3.2)and equations for the shear stress distribution (section 2.4.3.1)

have been presented.

(Hanssen, 2016) has shown how for low strain rates the apparent viscosity can’t be calculated. This

poses a problem in the plug flow region when dealing with non-Newtonian fluids. A solution for this

has been presented following (Papanastasiou, 1987) in section 3.2.1.

(Spelay, 2007) has performed experiments with a mixture of non-Newtonian fluid and solids in a half

open pipe. Measurements for sand concentration profiles as well as velocity profiles are performed.

(van Rhee, 2017) used these measurements for validation of the adaptation of icoFoam.

(van Rhee, 2017) has implemented capability to simulate non-Newtonian fluids with coarse solids

mixture flow. This has done by adapting the icoFoam solver in OpenFOAM. Simulations have been

performed with a Bingham Plastic fluid model excluding and including solids. The relevant theory for

the influence of the solids on the viscosity and yield stress of the mixture have been presented in

section 2.2 (van Rhee, 2017) concludes icoFoam is capable to capture solids settling processes.

However, to truly mimic open pipe and open channel flows, a free mixture surface is required. The

results themselves can be interesting for comparison for the work presented in this study.

27

Part 2: Implementation and
simulations
Following up on the literature study that has been performed in Part 1 of this report, Part 2 zooms in

on the practical side of things. The goal is to be able to run simulations in OpenFOAM using a non-

Newtonian fluid with sand transport, segregation, and settling. To be able to do this, first an analysis

of OpenFOAM is performed, then the adaptation is implemented, and finally simulations are ran and

compared to previously presented results.

28

5. OpenFOAM & implementation
This chapter will give an introduction to OpenFOAM, the weapon of choice for this research. Further,

this chapter will show what adjustments have been made to fulfil the requirements set by the

research objective.

5.1. Intro to Computational Fluid Dynamics
For simple flow problems, explicit analytical solutions have been formulated. But for more complex

problems, more complex geometries, more complex fluid behaviours, these don’t exist. That’s where

computational fluid dynamics (CFD) comes into play.

CFD software is used for approximating Partial Differential Equations (PDEs) numerically in for

example flow problems. These equations come from the Navier-Stokes equations, and the equations

for mass and energy conservation. Space is discretized to small control volumes, and time is

discretized into small timesteps. Using that principle the flow can be numerically approximated. For

each of the control volumes the equations can be solved. Calculations are performed of the

interaction of the fluid with the boundary conditions that are set.

5.2. Introduction to OpenFOAM
OpenFOAM is a library written in C++. It is a library build of many different components:

applications, utilities and tools. For this research, OpenFOAM 5.0 (foundation variant) is used (Build:

5.x-68e8507efb72). FOAM is a shorthand for Field Operations and Manipulation. It can be used for

flow problems, finite element problems and financial computations. Figure 5.1 graphically shows the

structure of the components.

Figure 5.1: Overview of OpenFOAM components. Source: cfd.direct

Each simulation case in OpenFOAM gets its own folder in which a certain structure must be adhered

to. 3 main folders are required: 0, constant, and system. The 0 folder contains separate files for

each of the values one is interested in, for example: pressure, velocity, volume fraction, etc. These

have to be initialized with an initial value on the internal domain. Further, the boundary conditions

have to prescribed as well. Constant values, both in space and time, are to be put in the constant

folder. Examples are: the mesh geometry, viscosity, external force fields like gravity, and possibly

turbulence model settings. The system folder contains all information pertaining to the discretization

options, solver options like the time step and maximum courant number, differential schemes,

residual control, and algorithm choice. This folder structure is shown graphically in Figure 5.2.

29

Figure 5.2: Case folder structure. Source: cfd.direct

5.3. Challenge with OpenFOAM
OpenFOAM doesn’t have a graphical user interface like some other CFD software packages have.

Also, some parts of OpenFOAM’s code aren’t as well-documented as one might hope. At best, the

documentation is spread out over multiple places: coding guides, user manuals, in the source code,

or online forums.

This is a challenge for when a simulation fails for some reason. If proper documentation is lacking,

figuring out why something fails easily results in a trial and error process. With that I mean that

simulation case files must be configured, the simulation must be ran, and then visual inspection can

commence using postprocessing tools like ParaView. If anything fails during that process, it’s back to

square one.

5.4. Solver requirements
To satisfy the research objective, it’s important to understand what existing solvers are capable of.

OpenFOAM consists of a number readily-available solvers; but not all requirements are currently

built into OpenFOAM’s solvers. A starting point can be chosen in such a way that most requirements

are already fulfilled, or such that development efforts are minimized. A capability matrix of existing

solvers can be found on openfoam.com1.

The requirements needed to simulate tailing slurries can be formulated as follows: gravitational

forces have to be taken into account; a free mixture surface should be trackable; non-Newtonian

viscosity models are to be used; particle segregation and transport model are to be supported, and

the influence of particles on the viscosity should be taken into account.

Luckily, the source code as used by (van Rhee, 2017) has been made available to me and this should

save time in the development phase. Also, to follow along the recommendations put forward by (van

1 https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-
solvers.html#sec-applications-solvers-capability-matrix

https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-solvers.html#sec-applications-solvers-capability-matrix
https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-solvers.html#sec-applications-solvers-capability-matrix

30

Rhee, 2017), OpenFOAM’s interFoam seems the logical choice. It is a solver for 2 incompressible

fluids using the VOF method. It will allow for the tracking of an interface, which is needed to allow for

a true free mixture surface. According to OpenFOAM’s capability matrix, interFoam is the only multi-

phase solver. It should be noted that many solvers are still missing from this matrix. To take an

example, multiphaseEulerFoam is missing. That solver also includes compressible fluids and heat

transfer, both of which are unnecessary for our research.

As it stands, interFoam offers support for non-Newtonian models (e.g.: Power Law, Herschel-

Bulkley), but none include the influence of sand particles, so this is a part that will need to be

implemented. Further, it doesn’t have additional transports equations for sand. To allow for sand

settling, segregation, and transport, an additional transport equation will have to be added.

5.5. interFoam
interFoam is an incompressible, 2 phase solver in OpenFOAM with VOF method. Like the VOF

method described in section 5.5.2, interFoam utilizes VOF averaging for properties like density,

viscosity and velocity. So, only one momentum equation is solved.

5.5.1. Governing equations

The fundamental governing equations are the Navier Stokes equations for an incompressible, viscous

fluid. From this, the momentum equation is shown in equation (5.1):

 𝜕𝑈

𝜕𝑡
+ 𝛻. (𝑈𝑈) − 𝛻.

𝜇

𝜌
𝛻𝑈 − 𝑔 −

𝐹𝑠
𝜌
= −

1

𝜌
𝛻𝑝

(5.1)

Where 𝑈 is the flow velocity, 𝑡 is time, 𝑝 is the pressure, 𝜇 is the viscosity, 𝑔 is the acceleration due

to gravity, 𝜌 is the density of the fluid and 𝐹𝑠 is the surface tension, which is not considered an

important aspect for this research.

The continuity equation in the differential form states:

 𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑈) = 0

(5.2)

If incompressible flow may be assumed, which interFoam does, this reduces to:

 𝛻. 𝑈 = 0 (5.3)

The density for the 2 phases, 𝜌, is defined through the VOF method:

 𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼) (5.4)

Further, the equation for the volume fraction 𝛼 has to be solved:

 𝜕𝛼

𝜕𝑡
+ 𝛻 ∙ (𝛼𝑈) + 𝛻 ∙ (𝒖𝒄𝛼(1 − 𝛼) = 0

(5.5)

Where 𝒖𝒄 is the artificial normal compression velocity of the interface. This is done in interFoam to

prevent interface dispersion (Afshar, 2010).

31

5.5.2. Volume of Fluid method in multiphase flow

One of the fundamentals of multiphase flow is the interface capturing. This essentially comes down

to calculating where the interface between the different phases lies. If interface capturing methods

are omitted entirely, numerical diffusion will occur, and non-physical results are bound to arise

(Peeters, 2016).

A well-known example of an interface capturing method is the Volume of Fluid (VOF) method. This is

a method in which each of the control volumes (CV) in the grid get assigned a volume fraction 𝛼. The

following condition is set:

 0 ≤ 𝛼 ≤ 1 (5.6)

In this, the values 𝛼 = 1 and 𝛼 = 0 correspond to the CV only containing 1 single phase. If 𝛼 takes a

value lower than 1 and higher than 0, the CV is partially filled with both fluids, and the interface

between the fluids lies within that CV.

This holds for two fluid systems, but also for multiple (𝑛) fluid systems. In that case, a fluid fraction is

defined for all fluids. Equation (5.7) shows the fluid fraction for the m-th fluid for each CV:

 0 ≤ 𝑎𝑚 ≤ 1 (5.7)

And the sum of all 𝑛 fractions in each CV should be equal to one:

∑ 𝛼𝑚 = 1

𝑛

𝑚=1

(5.8)

Using the volume fractions, for each CV, the physical properties are calculated as a weighted

averages. In a system with 2 fluids, typically only 1 fluid fraction (𝛼) is defined. For example, the

density 𝜌 and viscosity 𝜇 are then averaged for each CV following equations (5.9) and (5.10):

 𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼) (5.9)

 𝜇 = 𝜇1𝛼 + 𝜇2(1 − 𝛼) (5.10)

The spatial derivative of the value for 𝛼 can be used to compute the orientation of the interface if

that’s needed. An example of this is the Least Squares Volume of Fluid Interface Reconstruction

Algorithm (LVIRA). We will not go into that here, (Peeters, 2016) explains a lot more about it.

5.5.3. Pressure momentum coupling

The equation for momentum contains a term for pressure; however, there is no equation for

pressure. So when solving the momentum and continuity equations, a guessed value for pressure is

initially used. Using the guessed value for pressure, a velocity can be computed but it will most likely

not satisfy the continuity equation. This is called the pressure momentum coupling and multiple

pressure correction methods have been developed.

Some examples of methods are: PISO, SIMPLE and PIMPLE (PISO-SIMPLE). The difference between

these three lies in the correction equations and the number of correctors, and whether they are

inner or outer correctors. (Peeters, 2016) noted SIMPLE has been designed with steady-state flow

problems in mind (Patankar, 1980). The nature of the flow problems in this thesis are transient start-

32

up behaviour and bed formation are both time dependent. OpenFOAM has multiple solvers

(including interFoam) which can operate all three methods.

The PISO algorithm uses multiple prediction and correction steps to solve the pressure momentum

coupling. (Issa, 1986) developed this method and explains the inner workings. In OpenFOAM, the

settings to drive the PISO algorithm are nCorrectors and additionally settings for non-orthogonal

correction can also be set. nCorrectors is set to 2 throughout this thesis.

We are not planning on using the PIMPLE algorithm, the solver operates the PIMPLE method in PISO

mode by not applying any field or equation relaxation.

5.5.4. Discretization / differential schemes

Each of the governing equations should be discretized. For spatial discretization this should be

following the mesh or grid definition. In OpenFOAM, this is controlled by user-defined differential

schemes. These schemes describe and instruct how interpolation should be performed. This is for

instance needed when calculating a cell face flux based on a value that’s stored on cell centres.

For time discretization, the Euler implicit temporal scheme (first order accurate) is used. Equation

(5.11) shows the Euler scheme for scalar 𝜙.

 𝜕𝜙

𝜕𝑡
=
𝜙 − 𝜙0

∆𝑡

(5.11)

Where 𝜙 is the scalar at the current time step and 𝜙0 is the value of the same scalar at the previous

time step.

The spatial discretization schemes used to interpolate values from cell-centres to their respective

faces must also be defined. (Jasak, 1996) shows a Central Differencing scheme in equation (5.12).

This interpolation assumes linear variation of value 𝜙 between nodes P and N.

Figure 5.3: Cell centre to face interpolation for nodes P and N. Source: (Jasak, 1996)

 𝜙𝑓 = 𝑓𝑥𝜙𝑃 + (1 − 𝑓𝑥)𝜙𝑁 (5.12)

Where 𝜙𝑃 and 𝜙𝑁 are the values of scalar 𝜙 at node P and node N respectively, 𝑓𝑥 represents the

ratio of the distances 𝑓𝑁 and 𝑃𝑁:

33

𝑓𝑥 =

𝑓𝑁

𝑃𝑁

(5.13)

In OpenFOAM, this interpolation method can be used by setting Gauss linear in the fvSchemes

dictionary.

(Jasak, 1996) also shows a scheme for Upwind Differencing. This is given following equation (5.14).

𝜙𝑓 = {

𝜙𝑓 = 𝜙𝑃 𝑓𝑜𝑟 𝐹 ≥ 0

𝜙𝑓 = 𝜙𝑁 𝑓𝑜𝑟 𝐹 < 0

(5.14)

In which the value for 𝜙𝑓 is determined by the direction of the flow.

For the divergence terms, a combination of Gauss linear, Gauss linearUpwind, and Gauss

vanLeer is used. Again, each of the schemes used for the simulations performed later are shown in

Appendix D.

Non-orthogonality in the mesh is handled in the corrected scheme for the Laplacian schemes only;

they are computed using Gauss linear corrected; the snGradScheme is also set to corrected.

5.5.5. Matrix solvers

The equations that are solved are reduced to the linear algebraic problem in equation (5.15).

 𝐴𝑥 = 𝑏 (5.15)

The algorithms used to solve these are a combination of smoothSolver, GAMG, and PCGGAMG. Each of

these solvers has different methods for solving the equations. Each has settings for residual control

and (relative) tolerances. For all simulations we’ve ran, these settings are also included in Appendix

D.

5.5.6. MULES correction on 𝛼

For the volume fraction 𝛼, additional corrections can be made. For each timestep, a number of sub-

cycles can be performed to calculate 𝛼. This can be put in place to increase stability when the solver

is operating at larger Courant numbers, (Peeters, 2016), (Damián, 2013). This sub-cycling is provided

by the MULES algorithm. Further, this method has been put in place to maintain boundedness of the

phase fraction 𝛼. That is then independent of the underlying numerical schemes and it is mesh

independent. This in turn leads to a more free choice in schemes for, for example, convection

(divSchemes)2. Following the advice in the same reference, the discretization schemes are chosen.

Two parameters to drive MULES have to be defined: nAlphaCorr and nAlphaSubcycles. These are

set to 1 and 5 respectively. Further, there’s an nLimiterIter which is set to 3.

5.5.7. Courant-Friedrichs-Lewy condition

The Courant Friedrichs Lewy (CFL) limit is a stability criterion that needs to be satisfied. It’s a measure

of stability for simulations of flows based on a maximum time step ∆𝑡, (Courant, Friedrichs, & Lewy,

2 https://www.openfoam.com/documentation/tutorial-guide/tutorialse8.php#dx14-75004

https://www.openfoam.com/documentation/tutorial-guide/tutorialse8.php#dx14-75004

34

1928), (Peeters, 2016). Equation (5.16) presents the formulation for the well-known (dimensionless)

Courant number 𝐶𝑜 in 3 spatial dimensions.

𝐶𝑜 = ∆𝑡∑

𝑢𝑖
∆𝑥𝑖

3

𝑖=1
≤ 𝐶𝑜𝑚𝑎𝑥

(5.16)

Where 𝑢𝑖 represents the velocity in direction 𝑖, and ∆𝑥𝑖 is the cell size in the same direction. A typical

maximum value used is 𝐶𝑜𝑚𝑎𝑥 = 1. For explicit solvers, this is a hard limit (Peeters, 2016).

The criterion can also be used in the reverse manner, where the (next) timestep is computed from

the maximum (user specified) value for the Courant number, 𝐶𝑜𝑚𝑎𝑥. The interFoam solver can

compute the timesteps from the CFL limit dynamically. This criterion is defined as follows:

∆𝑡𝑚𝑎𝑥 ≤ 𝑚𝑖𝑛 {∆𝑡𝑢,𝑚𝑎𝑥,
𝐶𝑜𝑚𝑎𝑥

∑
𝑢𝑖
∆𝑥𝑖

3
𝑖=1

}

(5.17)

Where ∆𝑡𝑚𝑎𝑥 is the maximum timestep based on the CFL limit, and ∆𝑡𝑢,𝑚𝑎𝑥 is the maximum user

defined timestep.

5.6. Code adjustments
The interFoam solver will need to be adjusted such that it cope with a mixture of a non-Newtonian

fluid and sand particles. We will need to implement equations for the sand transport and settling.

Section 5.6.1 and 5.6.2 show the changes that are performed on the solver, and section 5.6.3 will

present the changes needed to allow for non-Newtonian materials.

5.6.1. Solver adjustments

First up is the solver code for interFoam itself. This section describes the adjustments made to allow

for sand transport and segregation in the interFoam solver.

5.6.1.1. Sand transport

The adjustments required to add the sand transport equation to the solver is highlighted in this

section. The actual source code for the solver can be found in Appendix B. Large parts of the code

were provided by Cees van Rhee as these were also used in his work (van Rhee, 2017).

The sand transport equation has been implemented following the drift flux method as described by

(van Rhee, 2017). Equations (3.10) and (3.11) show that. In code, this looks as follows:

 Us = U + wsvol;

 surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();

 fvScalarMatrix csandEqn

 (

 fvm::ddt(csand)

 + fvm::div(phised, csand)

);

 csandEqn.solve();

U represents the velocity field of the fluid mixture. Us symbolizes the velocity field of the sand

particles and wsvol is the settling velocity of the sand parties.

35

phised symbolizes the flux of the sand particles between the cells of the mesh. It is a

surfaceScalarfield because the flux is a scalar. The “surface“ part of that means that it’s stored

on the surface of the cells in the mesh.

The velocity field U and Us are stored at the centre of each cell (vol keyword in volVectorField),

but the flux between cells is the value on the faces. So to get the flux of the sand, we need to

interpolate to the cell faces. The fvc::interpolate() method returns the interpolated velocity on

the cell faces.

mesh.Sf() gives back the cell face area vectors. & is the operator for the scalar product. So the scalar

product of the interpolated velocity on the cell faces and the cell face vectors gives the flux.

Further, following equation (3.10) is calculated and solved on lines 5-10 of the above code.

As far as the transport equation goes, that’s all that’s needed.

5.6.1.2. Settling velocity

In the code that calculates the transport of sand (section 5.6.1.1), the settling velocity of sand is used.

The (hindered) settling velocity is implemented following equation (3.12) and includes the buoyancy

effect and equation (2.15) that gives the unhindered settling velocity. In code, this looks as follows.

Table 5.1 presents how the nomenclature of equation (3.12) and (2.15) translates into the code

below.

 dimensionedScalar one("one", dimless, 1.0);

 dimensionedScalar factor("factor", dimless, 1.0/18.0);

 volScalarField muws_mixture = mixture.muws();

 wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture));

 wsvol *= (one - csand);

Code variable in above code Variable in equation (3.12) and (2.15)
mixture.muws() 𝜇𝑐𝑓

rhos 𝜌𝑠

rho 𝜌𝑐𝑓

g 𝑔

sqr(Diam) 𝑑2
csand 𝑐𝑠
wsvol 𝑤𝑠

Table 5.1: Code and equation variable mapping for settling velocity

mixture.muws() returns the viscosity of the mixture without the influence of sand particles

𝜇𝑐𝑓; section 5.6.3 elaborates more on this.

5.6.2. More solver adjustments: sand particle influence on mixture density

So far, the influence of the presence of sand particles is not taken into account in the calculation of

the total mixture density.

Simulation 1, 2, 3 and 4 have been performed without this influence: the density of the sand is not

taken into account in the calculation of the mixture density. As has been concluded in simulation 4,

this is exactly the suspected cause of the pipe filling up completely instead of partially.

36

Simulation 5 will therefore take the density of the sand particles into account when calculating the

mixture density. This will then be used to override the density value for later use in the momentum

equation. The other adjustment required is that the settling velocity of the sand particles, following

equation (2.15), is calculated based on the density of the carrier fluid (without the sand particles).

As can be seen in section 5.6.1.2, the initial implementation of the settling velocity equation would

not be sufficient; it used a variable called rho which now represents the density of the entire mixture

including particles. Instead, we should define a new variable for the density of the carrier fluid only.

We call this rho_cf.

The following adjustment has been made in the code for the sand transport file. On line 3 we can see

the calculation for the density of the carrier fluid only, line 4 shows this is being used to calculate

settling velocity, and line 5 and 6 show the new mixture density is being calculated.

 // Calculate carrier fluid density rho_cf for later use in calculating sand

 particle settling velocity

 rho_cf = alpha1*rho1 + alpha2*rho2;

 … // code omitted here for ease of reading

 wsvol = factor * (((rhos-rho_cf)*sqr(Diam)*g) / (muws_mixture));

 … // code omitted here for ease of reading

 // Calculate rho_ws (density with sand particles included)

 rho_ws = (1 - csand)*rho_cf + csand*rhos;

 // Overwrite the value for rho with the newly calculated rho_ws

 rho = rho_ws

5.6.3. Non-Newtonian material model

In C++, abstract classes (sometimes also called interfaces) can be used to dictate each concrete

inheriting class must have some (overriding) implementation of the virtual functions in the abstract

class.

The abstract viscosityModel class provided by OpenFOAM has a virtual function that should return

the apparent (kinematic) viscosity. This dictates that every descendant of this class must have a

function that returns the apparent viscosity. This is the apparent (kinematic) viscosity as described in

section 2.1.2 / equation (2.6).

5.6.3.1. Bingham Plastic

To be able to calculate the settling velocity based on the viscosity of only the carrier fluid (sand

particles omitted), we’ve extended the abstract viscosityModel class to also have a virtual function

that returns the field for viscosity without sand particles, nuws().

 //- Return the laminar viscosity

 virtual tmp<volScalarField> nu() const = 0;

 //- Return the viscosity for settling velocity

 virtual tmp<volScalarField> nuws() const = 0;

This function now must have the name calcNuws() and it returns a volScalarField object. This is

the apparent kinematic viscosity without the influence of the sand particles (𝜈𝑎). “ws” here

represents “without sand”.

37

It follows equation (2.2), (2.6), (2.7) and (3.9). Combining these equations yields equation (5.18) for

the apparent kinematic viscosity 𝜈𝑎 without the influence of sand particles.

𝜈𝑎 =

𝜏𝑦,𝜌(1 − 𝑒
−𝑚𝛾̇) + 𝜇𝑏,𝜌𝛾̇

𝛾̇

(5.18)

Where 𝜏𝑦,𝜌 is the yield strength of the fluid divided by the density of the carrier fluid, 𝜇𝑏,𝜌 is the

plastic viscosity divided by the density of the carrier fluid.

In code, this is implemented as follows. A mechanism is implemented to prevent dividing by 0, which

could happen with mixture that have a non-zero yield stress, in the plug of the flow. This is done

capping the strain rate at VSMALL, a very small value in OpenFOAM. Its value is 1e-300.

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcNuws() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 tmp<volScalarField> sr(strainRate());

 return

 (

 min(

 numax_,

 nu0_ + (tau0_*(one-exp(-coef_*sr())))

 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL)))

)

);

 }

The name Talmon is chosen for the class, because (van Rhee, 2017) used the same name. It’s based

on (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016), I believe.

The class also has a function called calcNu() to calculate the apparent kinematic viscosity including

the influence of sand 𝜈𝑎,𝑠 following equation (2.2), (2.6), (2.7), (2.8), (2.9), and (3.9) yielding:

𝜈𝑎,𝑠 =

𝜏𝑦,𝜌(1 − 𝑒
−𝑚𝛾̇)𝑒𝛽𝜆 + 𝜇𝑏,𝜌𝑒

𝛽𝜆𝛾̇

𝛾̇

(5.19)

In code, this is implemented as follows:

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcNu() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 dimensionedScalar one3("onethird", dimless, 1.0/3.0);

 dimensionedScalar klein("klein", dimless, 1e-5);

 tmp<volScalarField> sr(strainRate());

 volScalarField labda_= one / (pow(cmax_/(alpha_+klein),one3)-one);

 Info<< " Max waarde van alpha_ in calcNu" << max(alpha_) << endl;

 Info<< " Min waarde van alpha_ " << min(alpha_) << endl;

 Info<< " Berekening van labda " << max(labda_) << endl;

 return(

 min(_,

 nu0_*exp(alpha0_*labda_) +

 (tau0_*exp(alpha0_*labda_) * (one-exp(-coef_*sr()))) /

 (max(sr(),dimensionedScalar("VSMALL", dimless/dimTime, VSMALL)))

));

 }

5.6.3.2. Capped exponents and 𝜆

It was quickly found that the exponents 𝑒𝛽𝜆 runs to infinity for 𝑐𝑠 close to 𝑐𝑚𝑎𝑥. For varying values of

𝑐𝑠 (csand) the value of 𝜆 (labda) can be plotted, this is shown in Figure 5.4. The value for 𝑐𝑚𝑎𝑥 in this

plot is set at 0.6.

38

Figure 5.4: Linear sand concentration 𝜆 (labda, on the y-axis) for varying 𝑐𝑠 (csand, on the x-axis), 𝑐𝑚𝑎𝑥 = 0.6

We see that for 𝑐𝑠 values really close to 𝑐𝑚𝑎𝑥 (0.6 in Figure 5.4), 𝜆 becomes really large; for 𝑐𝑠 =

𝑐𝑚𝑎𝑥, 𝜆 tends to infinity. This is a problem as soon as it is multiplied by 𝛽 and the exponent 𝑒𝛽𝜆 is

computed. Therefore, an adaptation to this has been proposed to make sure this exponent stays

below a very large value in OpenFOAM. This large value is called ROOTVGREAT, and it’s value is 1e150.

 𝑚𝑎𝑥 (𝑒𝛽𝜆, 𝑅𝑂𝑂𝑇𝑉𝐺𝑅𝐸𝐴𝑇) (5.20)

Further, the value for 𝜆 is also capped to a maximum. Recall equation (2.10), the suggested

adaptation looks like this:

𝜆 = 𝑚𝑖𝑛

(

 1

(
𝑐𝑚𝑎𝑥

𝑐𝑠 + 10
−5)

1
3
− 1

, 𝜆𝑚𝑎𝑥

)

(5.21)

In which 𝜆𝑚𝑎𝑥 is the maximum theoretical value at which the exponent 𝑒𝛽𝜆 should not exceed the

literal maximum value in OpenFOAM (std::numeric_limits<double>::max()). This is calculated as

follows:

 𝜆𝑚𝑎𝑥 = 𝑙𝑜𝑔 (
𝑚𝑎𝑥𝑂𝑝𝑒𝑛𝐹𝑂𝐴𝑀

𝛽
)

(5.22)

Similarly, this maximizing of these values has also been added before the division by the strain rate 𝛾̇

happens; the strain rate is capped so it’s always larger than a minimum small value, VSMALL: 1e-150.

This last part was already part of the implementation as described in section 5.6.3.1.

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcNu() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 tmp<volScalarField> sr(strainRate());

 volScalarField labda_= calcLabda();

39

 volScalarField capped_exponent = min(exp(alpha0_*labda_), dimensionedScalar ("ROOTVGREAT", dimless,

ROOTVGREAT));

 return

 (

 min(

 numax_,

 nu0_*capped_exponent + (tau0_*capped_exponent*(one-exp(-coef_*sr())))

 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL)))

)

);

 }

Following equation (5.21), the function calcLabda() is implemented as follows:

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcLabda() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 dimensionedScalar one3("onethird", dimless, 1.0/3.0);

 dimensionedScalar klein("klein", dimless, 1e-5);

 volScalarField labda_return = (one / (pow(cmax_/(alpha_+klein),one3)-one));

 return min(labda_return,maxlabda);

 }

Following equation (5.22), the function for 𝜆𝑚𝑎𝑥 (maxlabda) is calculated once as follows in the

constructor function of the Talmon object. It’s placed inside the constructor function since it’s only

required to calculate this once.

 maxlabda("maxlabda", dimless, log(std::numeric_limits<double>::max())

 /alpha0_.value()),

A couple of calls to the Info function (for logging purposes) have been omitted from the above, but

are shown in Appendix C.1.

40

6. Simulation and validation
A number of simulations have been executed using different grids, boundary conditions and material

properties. Each of the subsections in this chapter goes into detail about what has been done exactly.

All of the simulation case input files (geometry definitions, material properties, boundary conditions,

and solver settings) can be found in Appendix D.

6.1. Simulation 1
First up is a rather simple simulation using the Bingham Plastic rheological model. The goal of this

simulation is to recreate a simulation case comparable to the work by (van Rhee, 2017). We do this

so we can compare results. Validation is done against the analytical solution for the velocity of flow

down an inclined plane as presented in section 2.4.3.2.

So the goal of this simulation is to see whether the adapted interFoam solver is capable of recreating

a 2D open channel flow using a Bingham Plastic fluid model. Most parameters are set to the same

values as used by (van Rhee, 2017). For this first simulation we will not add any sand particles to the

simulation.

6.1.1. Geometry

The geometry is rather simple: a 2D rectangular (open) channel with length 𝐿 = 21m (x-direction),

height ℎ = 0.3m (y-direction), width 𝑏 = 0.1m (z-direction). Two blocks have been defined, block 1 is

there to facilitate inflow in the positive y-direction, and block 2 through which the fluid will flow and

eventually exit the simulation domain.

Block 1 has dimensions 1m x 0.3m x 0.1m. It is divided into 120 x 80 x 1 cells with a simpleGrading 3,

5, 1. Block 2 has dimensions 20m x 0.3m x 0.1m. It is divided also into 120 x 80 x 1 cells with a

simpleGrading 3, 5, 1. This grading will make the cells gradually smaller in the defined direction to

allow for more details to be captured. The mesh is generated using standard the blockMesh utility3

offered by OpenFOAM. Figure 6.1 and Figure 6.2 show the mesh as it’s generated using these

parameters.

Figure 6.1: Geometry and mesh for simulation 1. Block 1 on the left hand side, block 2 on the right hand side. Note: x-axis
scaled by factor 0.05

3 https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-
generation-with-the-blockmesh-utility

41

Figure 6.2: Detail of block 1, the inlet zone, for simulation 1. Note: x-axis scaled by factor 0.05

5 patches are defined on the grid. The inlet patch is defined in block 1, on the bottom. The outlet

is the entire right hand side edge on block 2. The atmosphere is the entire top edge. On the left hand

side edge of block 1 a wall is defined (leftwall). And the bottom patch is the bottom edge on block

2. Both front and back faces are empty. As such there are two non-empty solution directions: x and y.

The z-direction is empty.

6.1.2. Boundary conditions

On each of the 5 patches, for each of the variables we’ve defined boundary condition types and

values. These are shown in Table 6.1. For csand, Us, and wsvol the inlet boundary condition need to

be set such that no sand enters the domains. Omitted from this table are the boundary conditions for

Us and wsvol. They are just set such that no sand enters the domain and for completeness these files

are shown in appendix D.1.

 alpha.water U p_rgh csand

inlet fixedValue
uniform 1

flowRateInletVelocity
constant 0.004

fixedFluxPressure fixedValue
uniform 0

leftwall zeroGradient noSlip fixedFluxPressure zeroGradient
outlet zeroGradient inletOutlet

value: uniform (0 0 0)
fixedFluxPressure zeroGradient

bottom zeroGradient noSlip fixedFluxPressure zeroGradient
atmosphere inletOutlet

inletValue 0
pressureInletOutletVelocity
value: uniform (0 0 0)

totalPressure
reference p0:
uniform 0

zeroGradient

Table 6.1: Boundary condition types used in simulation 1

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 4 l/s enters the domain in the positive

y-direction (upwards) at 𝑡 = 0 sec. For reference, the inlet velocity as used by (van Rhee, 2017) 𝑈 =

0.4m/s. The inlet area for our grid is 𝐴 = 0.1 x 0.1 (width x height of the inlet). 𝑄 = 𝑈𝐴, thus 𝑄 = 4

l/s.

42

6.1.3. Driving force

The only driving force for the flow will be a gravitational force. This is defined using a vector 𝑔

(magnitude and direction). A file for this is present in the constant directory. Since we are interested

in flow along an inclined slope, and actually angling the mesh (in blockMesh) can become somewhat

indecipherable, it is easier to put the gravitational force vector under an angle and keep the mesh

simpler. Components 𝑔𝑥 and 𝑔𝑦 are defined using vector decomposition using angle 𝜃. The z-

direction is empty, so 𝑔𝑧 is just 0. Table 6.2 shows the angle used and the decomposition.

𝒈 (m/s2) 9.81

𝜽 (°) 2.86

𝒈𝒙 (m/s2) 0.4898

𝒈𝒚 (m/s2) -9.80

𝒈𝒛 (m/s2) 0
Table 6.2: Gravitational force vector decomposition for simulation 1

6.1.4. Material properties and solver parameters

The material properties in OpenFOAM are put into the tranportProperties dictionary. A 2 phase

flow is simulated, so 2 materials are defined.

The first material is air. It’s just a Newtonian model with 𝜈 = 1.48e-5 and density 𝜌 has been set to 1

kg/m3. Throughout this entire research these same value have been used.

For the second material, a Bingham Plastic viscosity model has been chosen. The yield stress 𝜏𝑦 has

been set at 10 Pa and plastic viscosity 𝜇𝑝 at 0.2 Pa.s. These values are set to the same as was used in

the 2D channel flow without sand particles in (van Rhee, 2017).

For the interFoam solver, those input parameters first need to be divided by density 𝜌 before being

set in the tranportProperties dictionary. Table 6.3 shows these.

transportModel Talmon

rho [kg/m3] 1249

coef m [-] 50

cmax [-] 0.6

alpha0 [-] 0.27

tau0 [m2/s2] 0.008006

nu0 [m2/s] 0.00016012

numax [m2/s] 1000e-2
Table 6.3: Material properties in the tranportProperties dictionary for simulation 1

It should be noted here that (van Rhee, 2017) used different transport parameters. In the icoFoam

solver, density is not relevant or taken into account.

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes

dictionary we can configure the matrix solvers and set the discretization schemes, respectively.

Again, also these files can be found in appendix D.1.

The simulation in this section used the implementation as described in section 5.6.3.2.

43

6.1.5. Result

The simulation is ran until 𝑡 = 2000s. Then, using ParaView, we can extract multiple plots. The

resulting volume fraction 𝛼 can be graphically shown across the domain. Figure 6.3 shows that at 𝑡 =

2000s.

Figure 6.3: Volume fraction alpha.water at t = 2000 for simulation 1. Note: x-axis scaled by factor 0.05

At 𝑥 = 19.5m, the volume fraction alpha.water profile and horizontal flow velocity (Ux) profile have

been captured. This is shown in Figure 6.4.

Figure 6.4: Volume fraction alpha.water at x = 19.5m for simulation 1

44

Figure 6.5: Horizontal flow velocity Ux profile at x = 19.5m for simulation 1

The flowdepth ℎ0 seems to stabilize at 0.044m. Both a plug zone and shearing layer can be seen. In

the plug the velocity is constant. In the shearing layer, the velocity is reduced layer by layer until it

reaches zero velocity at the no-slip bottom of the domain.

In Figure 6.4 we can also see that the velocity along the top of the domain tends to 0 m/s. This is not

what we would have expected, because we were trying to simulate a box without any lid on the top.

It should have just been an open top with slipping flow. In hindsight, this seems to have been an

issue with the boundary condition on that patch. Looking into the documentation, it’s not evident

what went wrong here. We did not specify anything for the tangentialVelocity keyword, which

should have result in allowing slipping tangential flow on that patch. It’s apparent that it didn’t. This

was only noticed after all simulations have been executed. Otherwise, we would have found a

solution for this sooner.

6.1.6. Validation

The results of the simulation have been compared against the previously found analytical solution for

the velocity. Figure 6.6 shows the results of the numerical simulation data for horizontal velocity

𝑈𝑥,𝑠𝑖𝑚, the analytical velocity profile 𝑈𝑥, which has been constructed following equations (2.34) and

(2.35), shear stress 𝜏 has been constructed following (2.29) and the yield stress 𝜏𝑦 is shown at 10 Pa.

45

Figure 6.6: Velocity profile from analytical solution and simulation 1 results at x=15m,

We see that at the depth where the shear stress and yield stress intersect, the plug flow zone ends.

The velocity that’s calculated in the simulation matches quite closely with the analytical solution.

If we compare with earlier results from (van Rhee, 2017), we do see a deviation. Remember Figure

3.4 where we saw that the plug velocity is found to be roughly 0.45 m/s, much lower than the plug

velocity found in the simulation: 1.18 m/s. Simultaneously, we can also see that continuity is upheld,

because simultaneously the flowdepth ℎ0 found in the simulation is 0.044m, whereas this was fixed

at 0.1m for (van Rhee, 2017). The shape of the velocity profiles shows the characteristics of the flow

are the same: plug flow on top of a shearing layer and no slip at the bed.

6.1.7. Conclusions

The results found match the analytical solution for the velocity profile of a Bingham Plastic well. The

velocity in the plug seems to be overestimated a little bit by the simulation. From the looks of it, this

is a rather small difference and is not deemed significant.

6.2. Simulation 2
The goal of this next simulation is to see whether we can add a sand fraction to the Bingham Plastic

and evaluate its flow properties. Next, we should see that sand is settling towards the bottom of the

domain. Further, I expect to see a lower sand concentration in the shearing layer than in the plug

zone. The plug zone is where the yield stress is preventing shear and also preventing settling of the

sand particles.

Sand settling and transport has been implemented following the code described in section 5.6.1.

To get a feel for the order of magnitude of the bed sand concentration and sand concentration

profile along the flowdepth, results are compared to findings by (van Rhee, 2017) and (Spelay, 2007).

46

6.2.1. Geometry

The geometry of the simulation domain is the same as used in simulation 1, details are noted down

in section 6.1.1.

6.2.2. Boundary conditions

Table 6.4 shows the boundary condition types as used in simulation 2. The conditions for

alpha.water, U, and p_rgh were all kept the same as in simulation 1. Hence these are excluded from

the table. Appendix D.2 shows the full simulation case files.

There are two notable differences compared to simulation 1: csand at the inlet is now set to uniform

0.12. So we are now actually adding sand particles. This 0.12 is chosen because (van Rhee, 2017)

used the same value in the pipe flow simulation.

And the second difference is the Us inlet flowRateInletVelocity is set to constant 0.004 so that it will

get the same inlet velocity as the carrier fluid does. The inflowRate for U was kept the same, 4 l/s.

Further, in simulation 1, the csand boundary condition on the atmosphere was set to zeroGradient.

In simulation 2 it was found that when the csand is non-zero, this results in crashes. Hence, this has

been changed to an inletOutlet condition. This indeed alleviates these crashes.

 csand Us wsvol

inlet fixedValue
uniform 1

flowRateInletVelocity
constant 0.004

fixedValue
value: uniform (0 0 0)

leftwall zeroGadient noSlip zeroGradient
outlet zeroGradient inletOutlet

value: uniform (0 0 0)
zeroGradient

bottom zeroGradient noSlip fixedValue
value: uniform (0 0 0)

atmosphere inletOulet
inletValue 0

pressureInletOutletVelocity
value: uniform (0 0 0)

fixedValue
value: uniform (0 0 0)

Table 6.4: Boundary condition types used in simulation 2

6.2.3. Driving force

The only driving force for the flow will be a gravitational force. Again, the gravitational force vector is

angled to allow for this. The same angle of 2.86° is used as in simulation 1.

6.2.4. Material properties and solver parameters

Again, this simulation utilizes two phases so there are two sets of material properties. The first

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).

For the second phase, a Bingham Plastic viscosity model has been chosen. Yield stress 𝜏𝑦 = 47.3 Pa

and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. These material properties are set to the same as the 3D half-

pipe flow in (van Rhee, 2017).

Again, for the interFoam solver, those material parameters first need to be divided by density 𝜌

before being set in the tranportProperties dictionary. Table 6.5 shows the parameters as used in

the tranportProperties dictionary.

47

transportModel Talmon

rho [kg/m3] 1249

coef m [-] 50

cmax [-] 0.6

alpha0 [-] 0.27

tau0 [m2/s2] 0.037870

nu0 [m2/s] 1.71337e-5

numax [m2/s] 1000e-2
Table 6.5: Material properties in the tranportProperties dictionary for simulation 2

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes

dictionary we can configure the matrix solvers and set the discretization schemes, respectively.

Again, also these files can be found in appendix D.2.

The simulation in this section used the implementation as described in section 5.6.3.2.

6.2.5. Result

The volume fraction alpha.water can be graphically shown across the domain. Figure 6.7 and Figure

6.8 show this at 𝑡 = 600s and 𝑡 = 1200s, respectively. A red colour represents the Bingham fluid

(alpha.water=1), and blue is air (alpha.water=0). On the interface between the two fluids, values

between 0 and 1 for alpha.water are shown in a beige/orange color.

Figure 6.7: Volume fraction alpha.water for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05

Figure 6.8: Volume fraction alpha.water for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05

Similarly, the sand concentration csand can be visualized. Figure 6.9 and Figure 6.10 show this at 𝑡 =

600s and 𝑡 = 1200s, respectively.

48

Figure 6.9: Sand fraction csand for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05

Figure 6.10: Sand fraction csand for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05

Additionally, the profile along the flow depth for csand is extracted from the domain along the line 𝑥

= 15m. This is shown in Figure 6.11. It can be seen that a sand bed is forming on the bottom. Further,

in the shearing layer, the sand concentration is slightly lower than in the plug zone above it. Also

noticeable is the lower sand concentration at the bottom vs the sand concentration directly 1 node

above it (at 𝑦 = 0.00303m). There’s a notable drop seen, or in other words, directly at the bottom of

the domain (at 𝑦 = 0m) the sand concentration is noticeably higher. To this point I don’t know what

causes this. This dip can also be seen more prominently in Figure 6.12.

49

Figure 6.11: Sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m

As a reference, the results found in (Spelay, 2007) have also been plotted in Figure 6.12. It can be

seen that the shear zone sand concentration dip is slightly smaller compared to what (Spelay, 2007)

saw. (van Rhee, 2017) noted similar results.

Figure 6.12: Data from (Spelay, 2007) and sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m

The velocity profile has also been extracted at x = 15m; this is shown in Figure 6.13. It can be seen

that at the bottom of the channel stagnation occurs. This is the sand bed that has come to a halt due

to increasing viscosity in the bed as well as the no-slip boundary condition on the bottom.

50

Figure 6.13: Velocity profile at x = 15m for simulation 2 at t = 600s and t = 1200s

In Figure 6.13 we can see that the velocity along the top of the domain tends to 0 m/s. Similar to our

results in simulation 1 (section 6.1.5), this is not what we would have expected, because we were

trying to simulate a box without any lid on the top. We again suspect this is due to the missing

tangentialVelocity keyword on the boundary condition for velocity U on the atmosphere patch.

This was only noticed after all simulations have been executed. Otherwise, we would have found a

solution for this sooner.

6.2.6. Conclusions

Since (Spelay, 2007) performed experiments in a half open pipe, and this simulation was performed

on a 2D open channel geometry, we cannot conclude whether the differences in the sand

concentration profile is significant or whether it is even a problem. The same deduction can be made

of comparing our results to (van Rhee, 2017). Those simulations with sand particles in the mixture

have been performed in a half-pipe, not a 2D channel.

What can be concluded is that the principles of sand particles settling and a sand bed forming in a

non-Newtonian fluid flow are captured using the adapted interFoam solver.

6.3. Simulation 3
In this simulation, I’d like to use a different hindered settling velocity model. We do this to see if this

will get us even better agreement with the results found by (Spelay, 2007).

6.3.1. Case set up

The geometry of the simulation domain is the same as used in simulation 1 and 2, details are noted

down in section 6.1.1. The boundary conditions of this simulation are the same as used in simulation

2 (see section 6.2.2). The only driving force for the flow will be a gravitational force. Again, the

gravitational force vector is angled to allow for this. The same angle of 2.86° is used as in simulation 1

51

and 2. We also use the exact same Bingham Plastic viscosity model and parameters as in simulation 2

(see section 6.2.4).

The simulation in this section used the implementation as described in section 5.6.3.2.

6.3.2. Solver settings

The only difference for this specific simulation is the following. We changed the implementation for

the settling velocity to now also include the return flow effect for hindered settling following

equation (2.18). This equation is repeated here for ease of reading:

𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2
1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓

(6.1)

The implementation of this equation is rather simple, in the CSandEqn.H file.

 wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture));

 wsvol *= (one - csand) * sqr(one - (csand/cmax));

The full CSandEqn.H file can be found in appendix B.3 and the remainder of the case files (matrix

solvers, discretization schemes, etc) can be found in appendix D.2.

6.3.3. Results

The volume fraction alpha.water can be graphically shown across the domain. Figure 6.14 and

Figure 6.15 show this at 𝑡 = 600s and 𝑡 = 1200s, respectively. A red colour represents the Bingham

fluid (alpha.water=1), and blue is air (alpha.water=0). On the interface between the two fluids,

values between 0 and 1 for alpha.water are shown in a beige/orange color.

Figure 6.14: Volume fraction alpha.water for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05

52

Figure 6.15: Volume fraction alpha.water for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05

Similarly, the sand concentration csand can be visualized. Figure 6.16 and Figure 6.17 show this at 𝑡 =

600s and 𝑡 = 1200s, respectively.

Figure 6.16: Sand fraction csand for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05

Figure 6.17: Sand fraction csand for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05

Additionally, the profile along the flow depth for csand is extracted from the domain along the line 𝑥

= 15m. This is shown in Figure 6.18. Like in simulation 2, it can be seen that a sand bed is forming on

the bottom. In the plug of the flow, the sand concentration is more or less constant. In simulation 2 it

was noted that the sand concentration 1 node (𝑦 = 0.00303m) above the bottom was lower than the

sand concentration at the bottom (𝑦 = 0m). This can only also seen Figure 6.18 for 𝑡 = 1200s, but not

at 𝑡 = 600s.

53

Figure 6.18: Sand fraction csand for simulation 3 at t = 600s and t = 1200s at x = 15m

As a reference, the results found in (Spelay, 2007) and the earlier results from simulation 2 have also

been plotted in Figure 6.19. It can be seen that the shear zone sand concentration dip for simulation

3 is smaller than we’ve seen in simulation 2. With that, it’s also smaller compared to what (Spelay,

2007) saw. (van Rhee, 2017) noted similar results. What we can quite clearly see is that the sand bed

that has formed in simulation 2 is a lot higher than the sand bed in simulation 3.

Figure 6.19: Data from (Spelay, 2007) and sand fraction csand for simulation 2 and simulation 3 at t = 1200s at x = 15m

The velocity profile has also been extracted at 𝑥 = 15m; this is shown in Figure 6.20. In Figure 6.21 we

can see the velocity profile of simulation 2 and simulation 3, both at 𝑡 = 600s and 𝑡 = 1200s.

54

Figure 6.20: Velocity profile at x = 15m for simulation 3 at t = 600s and t = 1200s

Figure 6.21: Velocity profile at x = 15m for simulation 2 and simulation 3 at t = 600s and t = 1200s

Similar to simulation 2, in simulation 3 it can also be seen that at the bottom of the channel

stagnation occurs. This is the sand bed that has come to a halt due to increasing viscosity in the bed

as well as the no-slip boundary condition on the bottom.

Similar to the results in simulation 1 and 2, we can see that the velocity along the top of the domain

tends to 0 m/s. This is not what we would have expected, because we were trying to simulate a box

55

without any lid on the top. We again suspect this is due to the missing tangentialVelocity keyword

on the boundary condition for velocity U on the atmosphere patch. This was only noticed after all

simulations have been executed. Otherwise, we would have found a solution for this sooner.

6.3.4. Conclusions

Simulation 3 has shown very similar results as simulation 2. The biggest difference that can be seen is

the sand bed being less thick. This was to be expected because of our choice to implement an

additional hindered settling effect on the sand. Our earlier conclusion that the principles of sand

particles settling and a sand bed forming in a non-Newtonian fluid flow are captured using the

adapted interFoam solver is still upheld.

6.4. Simulation 4
The goal of this next simulation is to recreate the experiment as it was performed by (Spelay, 2007).

This means a non-Newtonian flow through a 3D pipe including sand particle transport and shear

settling.

(Spelay, 2007) reported sand concentration profiles and water depths for his experiments. At least

those two should be in good agreement with the results from this experiment. Additionally, the

velocity profile should obviously have the typical Bingham Plastic profile.

6.4.1. Geometry

The geometry and mesh is more complex than it was in simulations 1 and 2: a 3D pipe section is

used. It has length L = 17m (z-direction), and diameter D = 0.1567m. Similarly to the mesh in

simulations 1 and 2, the pipe has an inlet zone and a run-off section. The inlet zone has length 2m

and the run-off section is 15m in length.

The inlet zone facilitates inflow from the bottom of the pipe upwards in positive y-direction. It should

be noted that due to the pipe’s curvature, the actual inflow is perpendicular to each of the cells on

the inlet patch. The inflow is therefore directed towards the centre of the pipe.

Figure 6.22 and Figure 6.23 show the geometry of the pipe. Please note that the z-axis has been

scaled by a factor 0.05. On the left hand side we can see a red patch. This is the patch named

leftWall. The blue patch on the bottom side of the pipe is the inlet patch. The orange patch is the

pipeWall. And on the right hand side, the grey patch is the outlet of the pipe.

Figure 6.22: Overview of geometry for simulation 4, focus on leftWall. Note: z-axis scaled by factor 0.05

56

Figure 6.23: Overview of geometry for simulation 4, focus on outlet. Note: z-axis scaled by factor 0.05

Figure 6.24 shows how the mesh of the pipe has been defined. This mesh is uniform along the length

of the pipe (in the z-direction). From the pipe centre outward, simpleGrading 3,1,1 has been

applied.

Figure 6.24: Geometry and mesh for simulation 4

It should be noted that the mesh is not entirely symmetrical. We have defined the bottom-half up to

the line 𝑦 = 0.0805m. Figure 6.25 has been generated with the command paraFoam -block

command and visually shows how the blocks have been defined.

The actual midline, if it were a symmetrical mesh would have been at 𝑦 = 0.07835m. This has been

done to also facilitate a case where the inflow would be from the left wall of the inlet zone, and not

the bottom patch. In preparation for this case, an inlet flowdepth of ℎ0 = 0.0805m was created. The

effects this asymmetry has on the (results of the) simulation is not further examined.

57

Figure 6.25: Blocks defined in mesh for simulation 4. Each colour represents a block

6.4.2. Boundary conditions and driving force

 alpha.water csand p_rgh U and Us wsvol

inlet fixedValue
uniform 1

fixedValue
(see Table
6.7)

fixedFluxPressure flowRateInletVelocity
constant 0.005

fixedValue
uniform (0
0 0)

leftWall zeroGradient fixedFluxPressure noSlip
outlet inletOutlet

inletValue uniform 0
prghTotalPressure
reference p0:
uniform 0

pressureInletOutletVel
ocity
value: uniform (0 0 0)

zeroGradie
nt

pipeWall zeroGradient noSlip
Table 6.6: Boundary condition types used in simulation 4

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the

inlet patch at 𝑡 = 0s. Further, the only driving force for the flow will be a gravitational force. Since we

are to recreate the experiments performed by (Spelay, 2007), the same degree inclination will be

used. The same vector decomposition is applied as in for the previous cases (see section 6.1.2). The

only difference is the angle 𝜃 and the fact that the vector is now decomposed in the yz-plane (Table

6.8). The value for csand at the inlet was set to 0.12 for simulation 4b and 4c, and 0 for simulation 4a

(Table 6.7). The inlet flow rate for Us has been set to the same value as for U so that the sand will get

the same inlet velocity as the fluid itself does.

 Simulation 4a Simulation 4b Simulation 4c

csand at inlet 0 0.12 0.12
Table 6.7: Sand fraction csand at the inlet patch

𝒈 (m/s2) 9.81

𝜽 (°) 5.4

𝒈𝒙 (m/s2) 0

𝒈𝒚 (m/s2) -9.76646

𝒈𝒛 (m/s2) 0.92320
Table 6.8: Gravitational vector decomposition for simulation 4

58

6.4.3. Material properties and solver parameters

Again, this simulation utilizes two phases so there are two sets of material properties. The first

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).

For the second phase, a Bingham Plastic viscosity model has been chosen. Yield stress 𝜏𝑦 = 47.3 Pa

and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two parameters are first divided

by density 𝜌 and then put into the tranportProperties dictionary. Table 6.9 shows these.

After simulation 4b had been completed, a third simulation was run (4c). Taking a head-start on the

results of simulation 4b, this was done in an attempt to see if the pipe will not fill up completely if we

use a higher density for our fluid. In simulations 4b and 4c the only difference is the chosen density

for 𝜌𝑐𝑓. Simulation 4b used the density of just the carrier fluid (1303 kg/m3) and simulation 4c used

the density of the mixture (carrier fluid + sand particles: 1510 kg/m3).

In our simulation, this new density is still assumed to be constant and not influenced by the sand

concentration field. In reality, the sand particles will influence this density locally.

It should be noted that the changes on the settling velocity calculations as described in section 5.6.2

have not been applied at this point. This will probably result in an underestimation of the settling

velocity as it now just uses an artificially higher fluid density.

 Simulation 4a Simulation 4b Simulation 4c

transportModel Talmon Talmon Talmon

rho [kg/m3] 1303 1303 1510

coef m [-] 50 50 50

cmax [-] 0.6 0.6 0.6

alpha0 [-] 0.27 0.27 0.27

tau0 [m2/s2] 0.0363008 0.0363008 0.0313245

nu0 [m2/s] 1.64236e-5 1.64236e-5 1.4172185e-5

numax [m2/s] 1000e-2 1000e-2 1000e-2
Table 6.9: Material properties in the tranportProperties dictionary for simulation 4

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes

dictionary we can configure the matrix solvers and set the discretization schemes, respectively.

Again, these case input files can be found in the appendix: D.3.

The simulation in this section used the implementation as described in section 5.6.3.2.

6.4.4. Results

This section will go into presenting the results of simulation 4.

6.4.4.1. Figure creation

For a good understanding, it’s important to explain how the figures in the next section have been

created. These figures are created using a slice vertically at the midplane of the pipe. In ParaView,

this is done using a Clip with Clip Type “Plane”. The origin of the plane is at (0,0,0) and the normal is

directed following (1,0,0). This means we are now looking inside the mixture at the vertical midplane

of the pipe.

59

A second clip is also applied (on top of the first clip) to make the mixture interface visible. In

ParaView, this can be done by applying a Clip with Clip Type “Scalar”. We configure it to use

alpha.water as the scalar, and we set the threshold value to 0.5. This will clip it right on the mixture

interface and show us where our Bingham fluid is.

Further, the result is coloured by the velocity in z-direction, Uz. In semi-transparent grey, we can see

the pipe wall, which is also cordoned off by the axes.

Figure 6.26 though Figure 6.41 show this for a different time for simulations 4a, 4b and 4c.

6.4.4.2. Results simulation 4a

For simulation 4a, we stopped seeing significant shifts in the water depth after about 100s. At 141s,

we stopped the simulation and moved on to the next simulation, with sand: simulation 4b.

Figure 6.26: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.27: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.28: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 141s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

6.4.4.3. Results simulation 4b

For simulation 4b, we stopped seeing any shifts in the flow between 250s and 500s. We stopped the

simulation at 825s as we saw the pipe was fully filled up and this didn’t seem to restore.

60

Initially, what we can see is that the fluid flows towards the outlet of the pipe. But as time

progresses, we can see that the pipe starts to fill more and more. All the while, the velocity at outlet

patch seems to influence the flow field in the pipe. This is an unexpected result as the outlet of the

pipe should have been configured such that it allows free outflow (zeroGradient).

Due to the sand being included, the mixture is now a lot more viscous compared to simulation 4a. It

seems to be simply so viscous that the resistance against flowing is too high. Especially if we compare

it to the results found in simulation 4a, where the pipe did not seem to fill up.

Figure 6.29: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.30: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.31: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 150s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

61

Figure 6.32: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 200s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.33: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 250s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.34: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 500s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.35: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 825s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

6.4.4.4. Results simulation 4c

Simulation 4c has been stopped at 427s, when we noticed that the pipe fully filled up in this

simulation too.

62

Figure 6.36: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.37: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.38: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 150s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.39: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 200s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

63

Figure 6.40: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 250s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.41: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 427s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

At 𝑡 = 250sec, the pipe hasn’t been filled to the top just yet. But the flowdepth is still quite deep. We

also see the velocity at outlet patch influences the flow field in the pipe. This is an unexpected result

as the outlet of the pipe should have been configured such that it allows free outflow (zeroGradient).

When comparing to the results of simulation 4b, we do see that it now takes longer for the entire

pipe to fill up. This was to be expected as the density of our fluid was set at a higher value.

The sand concentration field csand is shown in Figure 6.42.

Figure 6.42 csand for simulation 4c at t = 250s. Note: z-axis scaled by factor 0.05

We can see that the sand particles are all throughout the mixture. At the bottom of the pipe, a bed

begins to form.

6.4.5. Conclusions

In section 6.4 we have simulated with a non-Newtonian flow through a 3D pipe including sand

particle transport and settling. The results have shown that in those simulations the pipe tends to

completely fill up with the mixture. The force driving the flow in these simulations has only been the

gravity exerted on the fluid due to the angle on the pipe. (Spelay, 2007) did not note the pipe would

fill up to the top in his experiments. In that sense our results differ.

64

The sand particles in the simulations up to thus far have not had any influence on the density of the

mixture. Thus the density, and by proxy the driving force, can be assumed to have been

underestimated when comparing to the experiments. It’s not unthinkable that this lack of driving

force on the flow is the cause of the pipe fully filling up. After all, in reality, the presence of sand

particles is influencing the viscosity of the mixture, and therefore limiting the flow, but the effect the

sand particles have on the driving force is not taken into account in the simulation.

6.5. Simulation 5
As was concluded in simulation 4, it’s not unthinkable the lack of driving force is causing our pipe to

be completely filled with the injected mixture. It’s been concluded that due to the sand particles are

not being taken into account in the mixture density, this leads to an underestimation of the density

and driving force, which results in the pipe fully filling up.

The goal of simulation 5 is to see if the added weight of the sand particles can be taken into account

to prevent the behaviour we saw in simulation 4. In other words: will increasing the driving force

prevent that tendency of the pipe to fully fill up?

Many attempts have been made at this. Overall, a lot of the simulations have crashed, many of the

causes remain unknown. The lack of debugging tooling in OpenFOAM contribute to this very strongly.

Many other simulations still showed the pipe completely filling up with the mixture as was also found

in Simulation 4. Besides simulation 5a, 5b, and 5c, many more attempts have been made. Not all

have been (fully) logged in favour of brevity.

Nonetheless, this section gives an overview of the setup of some simulations that have been

performed.

6.5.1. Geometry

The geometry used is quite similar to the geometry of the pipe in simulation 4: a 3D pipe section is

used. For simulation 4, it has a length 𝐿 = 15m (z-direction), and diameter 𝐷 = 0.1567m. So, as far as

the length and diameter are concerned, this is the same as in simulation 4.

At 𝑧 = 0 an inlet section has been created. This inlet is parallel to the xy-plane to facilitate inflow in z-

direction. Only a section of the diameter of the pipe has been set as the inlet patch. The top edge of

this inlet patch is situated at 𝑦 = 0.0805.

Figure 6.43 and Figure 6.44 show the geometry of the pipe. On the left hand side we can see the inlet

patch coloured in dark-blue. The red patch is the pipeWall. The light-blue patch is also a wall

boundary, named leftWall. And on the right hand side, the orange patch is the outlet of the pipe.

65

Figure 6.43: Overview of geometry for simulation 5, focus on leftWall and inlet. Note: z-axis scaled by factor 0.05

Figure 6.44: Overview of geometry for simulation 5, focus on outlet. Note: z-axis scaled by factor 0.05

Figure 6.45 shows how the mesh of the pipe has been defined. This mesh is uniform along the length

of the pipe (in the z-direction) and is divided into 40 cells. From the pipe centre outward,

simpleGrading 3,1,1 has been applied. This is the same as the grid used in simulation 4. Same as in

simulation 4, the mesh is not entirely symmetrical along the midline. More information on that can

be found in section 6.4.1.

Figure 6.45: Mesh profile in xy-plane for simulation 5. Inlet shown in darkblue and leftWall in lightblue shown on the left and
outlet shown in orange on the right

66

6.5.2. Boundary conditions and driving force

 alpha.water csand p_rgh U Us wsvol

inlet fixedValue
uniform 1

codedFixedValue
(ramp)

fixedFluxPress
ure

flowRateInletVelocity
constant 0.005

fixedValue
uniform (0
0 0)

leftWall zeroGradient noSlip

outlet inletOutlet
(inletValue uniform 0)

prghPressure
reference p:
uniform 0

pressureInletOutletVelo
city

zeroGradie
nt

pipeWall zeroGradient noSlip
Table 6.10: Boundary condition types used in simulation 5

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5l/s enters the domain at 𝑡 = 0s. Again,

the only driving force for the flow is the gravitational force. The inclination angle of the pipe has been

varied throughout the simulations. The same vector decomposition method is applied as was used in

the previous simulations. The value for csand at the inlet is ramped up over time, instead of being

stepped at 𝑡 = 0. From 𝑡 = 0 to 𝑡 = 100s it linearly ramps up from 0 to 0.154. Table 6.11 shows these

input parameters.

 Simulation 5a Simulation 5b Simulation 5c

𝑸 [l/s] 5 5 5

csand at inlet [-] 0 - 0.154 (linear
ramp from 𝑡 = 0
to 𝑡 = 100s)

0 - 0.154 (linear ramp
from 𝑡 = 0 to 𝑡 = 100s)

0 - 0.154 (linear ramp
from 𝑡 = 0 to 𝑡 = 100s)

𝜽 [°] 5.4 6.4 7.4

𝒈 [m/s2] 9.81 9.81 9.81

𝒈𝒙 [m/s2] 0 0 0

𝒈𝒚 [m/s2] -9.76646 -9.74886 -9.72829

𝒈𝒛 [m/s2] 0.92320 1.09351 1.26348
Table 6.11: Inlet flow rate, sand fraction csand at the inlet and gravitational vector decomposition for simulation 5

6.5.3. Material properties and solver parameters

Again, this simulation utilizes two phases so there are two sets of material properties. The first

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).

Similar to simulation 4, for the second phase, a Bingham Plastic model has been chosen. Again, yield

stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two

parameters are first divided by density 𝜌𝑐𝑓. Table 6.12 shows these.

 Simulation 5a, 5b and 5c

transportModel Talmon

𝝆𝒄𝒇 [kg/m3] 1303

coef m [-] 50

cmax [-] 0.6

alpha0 [-] 0.27

tau0 [m2/s2] 0.036301

nu0 [m2/s] 1.64236e-5

numax [m2/s] 1000e-2
Table 6.12: Material properties in the tranportProperties dictionary for simulation 5

67

It should be noted at this point that the effective density of the mixture (carried fluid + density of

sand particles) is calculated and used in the momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥

instead of the density 𝜌𝑐𝑓. This is done following equation (6.2).

 𝜌 = 𝑐𝑠𝑎𝑛𝑑 ∗ 𝜌𝑠 + (1 − 𝑐𝑠𝑎𝑛𝑑) ∗ 𝜌𝑐𝑓 (6.2)

At the inlet, when a fraction of 0.154 for sand particles csand is injected, the density of the combined

mixture is 1510 kg/m3.

The simulation in this section used the implementation as described in section 5.6.3.2.

The full simulation case input files can be found in appendix D.4.

6.5.4. Results

Figure 6.46 through Figure 6.59 show the results for simulation 5. These figures have been created in

the same manner as for simulation 4. This is explained in section 6.4.4.1 and not repeated here.

6.5.4.1. Results simulation 5a

For simulation 5a, we let the simulation run all the way until 𝑡 = 600s. We then see the pipe fully

filled up with the mixture. We also see the velocity at outlet patch influences the flow field in the

pipe. This was also noted in simulation 4.

Figure 6.46: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.47: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

68

Figure 6.48: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 123s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.49: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 150s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.50: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 220s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.51: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 600s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

6.5.4.2. Results simulation 5b

To see if we can actually simulate a pipe that’s not filling up, we tilt the gravitational force to a

greater angle and try it again. This did not seem to help. In simulation 5b, the pipe still fills up all the

way to the top. We let it run to 221s and that’s when the solver crashed.

69

Figure 6.52: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.53: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.54: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 123s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.55: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 150s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

70

Figure 6.56: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 220s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

6.5.4.3. Results simulation 5c

To see if the pipe would not fill up if we increase the angle even further. Now, the solver crashes

after 123s.

Figure 6.57: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 50s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.58: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 100s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.59: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 123s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

71

Simulation 5c crashed at t = 123s. We were not able to find the reason why at this point in time

6.5.5. Conclusions

In simulation 5, we have simulated a non-Newtonian flow through a 3D pipe including sand particle

transport and settling. The presence of sand particles in these simulations were taken into account in

the density of the mixture. The force driving the flow is now also including the sand particles. Still,

our pipe fully fills up (simulation 5a and 5b). Further, simulation 5b and 5c both crashed.

6.5.6. Next steps

At this point in time, we started experimenting more. All resulting simulations have either crashed or

the solver’s timestep became very small. To provide insight into what was tried, we tried:

- Turning on the momentumPredictor in PIMPLE

- Ramping the inlet velocity of the mixture (besides only ramping the sand particle

concentration)

- Using a dynamically adjustable timestep

- Using prghTotalPressure instead of prghPressure on the outlet

- Using PIMPLE with 250 outerCorrectors (nOuterCorrectors)

- Relaxing the pressure and velocity fields

- Rearranging the calculation of csand with the pimple pressure corrector loop

- Removing the capped exponents calculation (section 5.6.3.2)

- Reducing tolerances on solvers

- Using different matrix solvers

At this point, there are multiple things not going as expected. Either the pipe fills up with the

mixture, or the simulation crashes, or the solver’s timestep becomes very small. We don’t

understand what’s causing the velocity to increase right before the outlet of the pipe. And we also

don’t understand what is causing these crashes. The lack of debugging tools in OpenFOAM is also

preventing us from diving into the actual issue and pinpointing what’s wrong.

Cees van Rhee brought forward two ideas:

1. Use the leftWall patch of simulation 5 and use it to pump in air. The idea here is to see if this

alleviates the trouble we’ve been seeing with all the pipe simulations. The simulations we ran

with a 2D open channel (simulation 1 and 2) did not crash. One of the differences is that that

mesh allowed for an atmosphere to be applied, besides having an outlet section. The pipe

we’ve been simulating with was a pipe section with only an inlet and an outlet. As a result,

either the pipe inlet or outlet were chosen as atmosphere and reference pressure.

Simulation 6 goes into this idea.

2. We can also change our mesh such that it resembles simulation 1 and 2 a little closer. If we

do this, we will need to make sure we can apply an atmosphere and reference pressure in

the vertical direction on top of our pipe. A half pipe would allow for this. To prevent spill-

over if the fluid reaches too high flowdepths, we can extrude the walls of the pipe upwards.

So, we’d basically be using a half-pipe mesh where the pipe is extruded vertically upwards

creating a rectangular block on top. This would then be very similar simulation 1 and 2,

except it’s a 3D instead of 2D simulation and the bottom is round instead of flat. Simulation 7

goes into this idea.

72

6.6. Simulation 6
Cees van Rhee brought forward an idea to use the leftWall patch of simulation 5 and use it to pump

in air. The idea here is to see if this alleviates the trouble we’ve been seeing with all the pipe

simulations. The simulations we ran with a 2D open channel (simulation 1 and 2) did not crash. One

of the differences is that that mesh allowed for an atmosphere to be applied, besides having an

outlet section. The pipe we’ve been simulating with was a pipe section with only an inlet and an

outlet. As a result, either the pipe inlet or outlet were chosen as atmosphere and reference pressure.

In simulation 6, we try to pump in additional air just above the fluid inlet. We now basically get 2

inlets, 1 inlet for the Bingham Plastic and sand mixture, and 1 inlet for the air.

6.6.1. Geometry

The geometry and mesh of the simulation domain is the identical to that of simulation 5, details are

noted down in section 6.4.1.

6.6.2. Boundary conditions and driving force

 alpha.water csand p_rgh U Us wsvol

inlet fixedValue
uniform 1

fixedValue
uniform 0

fixedFluxPressure flowRateInletVelocity
constant 0.005

fixedValue
uniform
(0 0 0)

leftWall fixedValue
uniform 0

prghTotalPressure
reference p0:
uniform

flowRateInletVelocity
constant 0.005

fixedValue
uniform
(0 0 0)

outlet zeroGradient fixedFluxPressure zeroGradient

pipeWall zeroGradient fixedFluxPressure noSlip
Table 6.13: Boundary condition types used in simulation 6

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the

inlet patch at 𝑡 = 0s. The only driving force for the flow will be a gravitational force. The value for

csand at the inlet was set to 0. This is done to make this simulation a little easier. This allows us to

see if the simulation runs without crashing before we add sand into the equation.

The only driving force for the flow will be a gravitational force. Table 6.14 shows the angle of

inclination and the vector decomposition.

𝒈 (m/s2) 9.81

𝜽 (°) 5.4

𝒈𝒙 (m/s2) 0

𝒈𝒚 (m/s2) -9.76646

𝒈𝒛 (m/s2) 0.92320
Table 6.14: Gravitational vector decomposition for simulation 6

6.6.3. Material properties and solver parameters

Again, this simulation utilizes two phases so there are two sets of material properties. The first

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).

The second phase is the Bingham Plastic viscosity model that has been used before as well. Again,

yield stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two

parameters are first divided by density 𝜌𝑐𝑓. Table 6.15 shows all material parameters used.

73

It should be noted at this point that the effective density of the mixture (carried fluid + density of

sand particles) is calculated and used in the momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥

instead of the density 𝜌𝑐𝑓. At the inlet, when a fraction of 0.154 for sand particles csand is injected,

the density of the combined mixture is 1510 kg/m3.

 Simulation 6

transportModel Talmon

𝝆𝒄𝒇 [kg/m3] 1303

coef m [-] 50

cmax [-] 0.6

alpha0 [-] 0.27

tau0 [m2/s2] 0.036301

nu0 [m2/s] 1.64236e-5

numax [m2/s] 1000e-2
Table 6.15: Material properties in the tranportProperties dictionary for simulation 6

The simulation in this section used the implementation as described in section 5.6.3.2.

The full simulation case input files can be found in appendix D.5.

6.6.4. Results

Figure 6.60 through Figure 6.65 show the results for simulation 6. These figures have been created in

the same manner as for simulation 4 and 5. This is explained in section 6.4.4.1 and not repeated

here.

We can see that the flow starts out as expected. However, between 16 and 17 seconds, the solver

starts running into very high values for the Courant number. We can see this in figure Figure 6.66. We

can also see in Figure 6.64 (t = 17s) that the velocities have suddenly increased in some places when

comparing to the velocities at 16s (Figure 6.63). After 𝑡 = 17.475s, the simulation crashes completely.

Figure 6.60: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 5s. In semi-transparent grey we can
see the pipe wall. Note: z-axis scaled by factor 0.05

74

Figure 6.61: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 10s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.62: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 15s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.63: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 16s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.64 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

75

Figure 6.65 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17.3s. In semi-transparent grey we
can see the pipe wall. Note: z-axis scaled by factor 0.05

Figure 6.66: graph showing the solver runs into high courant numbers in simulation 6. Only the last 1000 iterations are
shown. At around iteration 780 we can see the courant number increase. Iteration index is shown on the x-axis. The left y-
axis shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum
courant number

6.6.5. Conclusions

We’ve seen the simulation run into huge courant numbers after a while and the results are no longer

physical.

Applying a dynamic timestep would not have solved this, as in that case the solver would just keep

reducing the timestep it takes until it meets the CFL criterion. I suspect it would have never (within

reason) recovered from this.

It’s still not understood what actually causes this to happen. At this point, I’d rather move over to

give the second idea (section 6.5.6) a shot.

6.7. Simulation 7
The previously simulations failing leads us to believe that the problem might be an incompatibility of

boundary conditions. The pipe geometry used in simulations 4 and 5 was a fully enclosed pipe

76

section. It could be that the conditions for atmospheric pressure and inflow/outflow are just not

equipped to be placed on either the outlet or inlet of the pipe section.

Therefore, we devise a new grid for a new simulation. Much like the 2D open channel case, the grid

used in this simulation will just have a flat lid. The grid of the pipe used in simulations 4 and 5 is

extruded upwards to essentially create a half-pipe with a rectangular block on top of it. This will

allow us to set an atmospheric boundary conditions from the top of the grid, like has been done in

simulation 1 and 2

6.7.1. Geometry

The geometry is a little more complex than for previous simulations. This time, we have 2 blocks.

Block 1 is a half-pipe with the height equal set to the radius of the pipe. Block 2 is a rectangular block

and is placed on top of the half-pipe.

The total domain has a length 𝐿 = 15m (z-direction) and the half-pipe diameter 𝐷 = 0.1567m. The

rectangular block has a height equal to the radius of the pipe. Thus, the total height is of the domain

is equal to the pipe diameter. The inlet is placed at 𝑧 = 0 in the xy-plane (normal in z-direction).

Figure 6.67 shows an overview of the geometry focussed on the inlet end of the pipe. In dark-blue we

see the inlet patch, in light-blue a wall patch called leftWall, orange resembles the pipeWall and the

red patch shows the atmosphere patch. In Figure 6.68 we can see the outlet side of the pipe, and in

beige colour we see the outlet patch.

Figure 6.67: Overview of geometry for simulation 7, focus on inlet side of pipe. Note: z-axis scaled by factor 0.05

77

Figure 6.68: Overview of geometry for simulation 7, focus on outlet side of pipe. Note: z-axis scaled by factor 0.05

The mesh profile is uniform along the length of the pipe (z-direction) and in the z-direction it’s been

divided in 40 cells. This is shown in Figure 6.70. Grading has been applied in the xy-plane from the

centre outward to the pipe wall at simpleGrading 3, 1, 1. This can be seen in Figure 6.69.

Figure 6.69: Mesh profile in xy-plane for simulation 7. Focus on inlet side of pipe on the left, and on the right hand side focus
on the outlet side

Figure 6.70: Overview of grid along z-axis for simulation 7 discretized into 40 cells along z-axis. Note: z-axis scaled by factor
0.05

78

6.7.2. Boundary conditions

The following boundary condition types have been defined.

 alpha.water csand p_rgh U Us wsvol

inlet fixedValue
uniform 1

fixedValu
e
uniform
0.154

fixedFluxPressure flowRateInletVelocity
constant 0.005

fixedValue
uniform (0 0
0)

leftWall zeroGradient

fixedFluxPressure noSlip noSlip zeroGradien
t

outlet zeroGradient fixedFluxPressure inletOutlet
inletValue: (0 0 0)

zeroGradien
t

pipeWall zeroGradient fixedFluxPressure noSlip noSlip noSlip
atmophere inletOutlet

(inletValue uniform 0)
prghPressure
reference p:
uniform 0

pressureInletOutletVeloc
ity
value: uniform (0 0 0)

fixedValue
uniform (0 0
0)

Table 6.16: Boundary condition types in simulation 7

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the

inlet patch at 𝑡 = 0s. The inlet flow rate for Us has been set to the same so that it will get the same

inlet velocity as the fluid itself does. The value for csand at the inlet was set to 0.154.

6.7.3. Driving force

The only driving force for the flow will be a gravitational force. As with previous simulations, actually

angling the mesh through blockMesh can result in an indecipherable mesh, it is easier to put the

gravitational force vector under an angle and keep the mesh simpler. Components 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧 are

defined using vector decomposition using angle 𝜃. Table 6.17 shows the angle used and the

decomposition.

𝒈 (m/s2) 9.81

𝜽 (°) 5.4

𝒈𝒙 (m/s2) 0

𝒈𝒚 (m/s2) -9.76646

𝒈𝒛 (m/s2) 0.92320
Table 6.17: Gravitational force vector decomposition for simulation 7

6.7.4. Material properties and solver parameters

Again, this simulation utilizes two phases so there are two sets of material properties. The first

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).

For the second phase, a Bingham Plastic viscosity model has been chosen. The yield stress of the

carrier fluid 𝜏𝑦,𝑐𝑓 has been set to 47.3 Pa and plastic viscosity of the carrier fluid 𝜇𝑝,𝑐𝑓 at 0.0214 Pa.s.

In the implementation in interFoam, those input parameters need to first divided by density 𝜌

before being set. Table 6.18 shows the parameters as used in the tranportProperties dictionary.

79

 Simulation 7

transportModel Talmon

rho [kg/m3] 1303

coef m [-] 50

cmax [-] 0.6

alpha0 [-] 0.27

tau0 [m2/s2] 0.036301

nu0 [m2/s] 1.64236e-5

numax [m2/s] 1000e-2
Table 6.18: Material properties in the tranportProperties dictionary for simulation 7

It should be noted at this point that the effective density of the mixture is calculated and used in the

momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥 instead of the density 𝜌𝑐𝑓. This is done

following equation (6.2). At the inlet, a fraction of 0.154 for sand particles csand is injected. This

means the density of the combined mixture is 1510 kg/m3 following equation (3.1).

The full simulation case files are to be found in appendix D.6.

6.7.5. Results

The result of simulation 7 is not satisfactory. It was seen that the timesteps become very small. This

is shown in Figure 6.71. We will dive into why we think this happens in section 6.7.6.

Figure 6.71: Graph showing small timesteps for simulation 7a.

6.7.6. Removing underdetermined cells

When we run a checkMesh command on our blockMesh, we actually see that the mesh is evaluated

OK. However, it’s been discovered that we can also run a more elaborate check following the

checkMesh -allTopology -allGeometry command. When we run this, we actually see 1 of the

checks fail. The below section shows a part of the result of the more elaborate check. We can see

that it’s found 28 cells that are underdetermined.

 ...

 Cell determinant (wellposedness) : minimum: 0.00050217519 average: 0.019025868

 ***Cells with small determinant (< 0.001) found, number of cells: 28

80

 <<Writing 28 under-determined cells to set underdeterminedCells

...

We can try to make these cells more determined, or we can remove them from our grid. As a first try,

I’ve removed the cells from my grid. OpenFOAM has some built-in tools that allows us to remove

these cells.

The snippet of code below removes all underdeterminedCells from a grid. When we run the

simulation, it runs well, and doesn’t suffer from running into very small timesteps.

 foamJob -s checkMesh -allTopology -allGeometry

 foamJob -s setSet -constant

 cellSet temp new cellToCell underdeterminedCells any

 cellSet temp invert

 cellSet temp subset

 foamJob -s subsetMesh temp

After only a few timesteps, it still crashes, but the logs show us it crashes right when it tries to

calculate the viscosity in our material model. I know why this is and it’s already been solved before.

This was solved in section 5.6.3.2 before.

6.7.7. Fixed material model

We’ve enabled the piece of code that’s been described in section 5.6.3.2 and re-ran the simulation.

What we can now see is that the fluid mixture just seems to leak out of our domain. This happens

near our inlet and it’s quite likely this is happening because we blatantly removed some cells from

our domain. Figure 6.72 shows the velocity in y-direction at 𝑡 ≅ 14.6s. We can see that some cells

have been removed from the domain, and at that point in the grid we also see higher velocities.

Figure 6.72: Vertical velocity Uy in simulation 7 after roughly 14.6s, focus on inlet zone. Note: z-axis is scaled by factor 0.05.

6.7.8. Fix underdetermined cells

It’s obvious that our attempt at removing the underdetermined cells did not help. To overcome the

trouble, we can also change our grid so that no cells are underdetermined cell to begin with. First,

let’s plot these cells so we can see where they are located in the grid. We need to know this in order

to figure out how to change our grid.

81

The regular checkMesh command offered by OpenFOAM doesn’t report cell underdetermined-ness.

We need to call checkMesh with additional parameters. We can do so as follows, and this will save

any problematic cells in Sets. These Sets can be plotted in ParaView.

 checkMesh -allGeometry -allTopology

This command resulted in the following result:

 ...

 Cell determinant (wellposedness) : minimum: 0.00050217519 average: 0.019025868

 ***Cells with small determinant (< 0.001) found, number of cells: 28

 <<Writing 28 under-determined cells to set underdeterminedCells

 ...

In Figure 6.73, we can see the 28 underdetermined cells being highlighted in grey colour with a blue

wireframe outline. These cells are located at the top corners of the pipe profile and close to the

bottom edge of the pipe.

Figure 6.73: grid overview showing underdetermined cells in grey with blue wireframe. General pipe shape outline is shown
in semi-transparency. Note: z-axis is scaled by factor 0.05.

The fact that these underdetermined cells are located on the outer edges of the pipe tells me the

grading of the cell mesh is resulting in this underdetermined-ness. The cell grading has made cells

closer to the pipe wall thinner compared to the centre of the pipe. We could reduce this grading

effect, or we can increase the amount of cells we use to discretize our grid along the z-axis, both will

result in a lower aspect ratio on the cells. Having a lower aspect ratio will increase the determinant

on each cell.

To make sure no detail near the wall of the pipe is lost, it’s better to decrease the general cell-size in

the z-direction. In previous instances, our grid was discretized into 40 cells along the z-axis. In this

instance, we have discretized it in 60 cells. The pipe grid profile in the xy-plane has remained

unchanged. Figure 6.74 shows the old grid, and Figure 6.75 shows our new grid. With this new grid,

the elaborate checkMesh -allGeometry -allTopology shows all checks are OK.

82

Figure 6.74: overview of grid along z-axis, discretized into 40 cells along z-axis. Highlighted in red are the underdetermined.
cells. Note: z-axis is scaled by factor 0.05.

Figure 6.75: overview of grid along z-axis, discretized into 60 cells along z-axis. Note: z-axis is scaled by factor 0.05.

When running the simulation with this new grid, it unfortunately still doesn’t perform as expected.

After a few iterations, the timestep again becomes very small and the simulation doesn’t progress

anymore. Figure 6.76 shows this. A reason why this happens has not been found thus far.

Interestingly enough, the maximum courant number exceeds the maximum courant number after

just a few iterations. An explanation for this has not been found.

Figure 6.76: graph showing the solver continues to take smaller time steps as iterations progress (x-axis). The left y-axis
shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum courant
number

83

6.7.9. Conclusions

After looking at the results of the initial simulation 7, we thought the underdetermined cells in our

grid were causing small timesteps. As it turns out, that didn’t matter much for the outcome. After

changing our grid to get rid of the underdetermined cells, the result was the same. In both cases, the

simulation started taking too small timesteps and stopped progressing.

84

7. Conclusions & recommendations
This chapter will present the conclusions based on the findings of this study. Further, it intends to

pose recommendations towards further research based on educated guesses of what might have

gone wrong in our research, and topics that might be an interesting exploration in the field in

general.

7.1. Conclusions
Thus far, this work has not proved it possible to compare the simulation results to actual

experimental work as most simulations crashed or showed unphysical results. The simulations ran

with the pipe geometry have all failed in that sense.

However, not all is lost, for the earlier simulations (1, 2, and 3) we could actually compare the

qualitative effects of sand particles settling and a general sand density profile over the flowdepth.

These profiles seemed to match pretty well with experimental work performed by (Spelay, 2007). So

it seems fair to say the adaptation of interFoam has been successful and the solver is capable of

simulating settling processes of solid particles in a non-Newtonian free mixture surface flow.

7.2. Recommendations based on this research
The recommendations in this section are mostly aimed at findings a solution to overcome the trouble

found in simulation 5, 6 and 7. In those specific simulations, the density of the sand particle field is

taken into account for the density of the mixture and thus as a driving force for the fluid flow. As we

have seen, each of the attempts has failed and not yielded a usable result. Unfortunately, the scope

and time constraint of this research was not sufficient enough to find a solution.

7.2.1. Allow for slip

In our 2D open channel simulations (simulation 1, 2, and 3) we found that the velocity tends to 0

along the top edge of the domain. Along that edge, we wanted to have a slipping boundary. On this

boundary we had used a pressureInletOutletVelocity we believed allows for slipping in the

tangential direction.

The documentation4 and the source code5 are not definitive or explicit, but the

pressureInletOutletVelocity boundary condition type seems to set the tangentialVelocity to

be (0 0 0) in the constructor, if the keyword tangentialVelocity is omitted. In the configuration for

both simulations, this keyword was indeed not added. It should be noted here that the

documentation also makes mention of a value keyword, whereas this is not associated with this

boundary condition as found in the source code.

While researching the source code, a boundary condition called

pressureInletOutletParSlipVelocity was also encountered. According to the description, this

type of condition always applies a slip condition tangentially. This seems to be the better option.

4 https://www.openfoam.com/documentation/guides/latest/doc/guide-bcs-outlet-pressure-inlet-outlet.html
5 https://github.com/OpenFOAM/OpenFOAM-
5.x/blob/master/src/finiteVolume/fields/fvPatchFields/derived/pressureInletOutletVelocity/pressureInletOutle
tVelocityFvPatchVectorField.H

85

7.2.2. Simulation stability

It would be wise to investigate simulation stability. As we have seen, many of the simulations have

been concluded with an unsatisfactory result. The simulations have crashed many times. A reason for

this has not been found. The recommendation is to investigate further why this is happening. A first

attempt could be to run the simulation without sand added to the mixture, and in a second step add

sand to the mixture again. If this is the only factor that’s changed, then this should tell us something

about the influence sand has on the stability of the algorithm.

When we were doing simulations without the sand particle density field in the mixture density,

stability was not as much of an issue as it was in later simulations. In each of the timesteps, the

density of the mixture is altered in preparation for the remaining calculations. It could be that the

placement of the density alteration could influence the stability. If this is the case, then it could be

that the density alteration has an effect on things like (cell-face) fluxes, surface tension calculations,

and in a more general sense the momentum balance equations.

Further, it is imaginable the boundary conditions applied to the sand field could also be having an

influence on the stability of the simulation.

It's also recommended to run the same (or similar) simulations simply using a (now available) newer

version of OpenFOAM. This work was performed using OpenFOAM 5.0 (foundation), and since the

start of this work, versions 6 through 10 have been released. It’s possible that newer versions of

OpenFOAM contain updates that solve (some of the noted) simulation stability issues.

Between different simulation sets in this work, we switch from a 2D rectangular open channel to a

3D pipe. The simulations using a 2D rectangular open channel in this work did not show stability

issues, while the 3D pipe did. Looking at it from a complexity perspective, our last recommendation

regarding the simulation stability issues is to simulate a 3D rectangular open channel. A simulation

with such a geometry can be used to learn if the stability issues find their origin in the switch from a

2D geometry to a 3D geometry, or if that’s related to the round 3D pipe geometry.

7.2.3. Underdetermined cells and grid coarseness

In our last simulation, simulation 7, it’s been discovered that the grid we’ve initially configured

contained underdetermined cells. An alternative, slightly finer mesh has been proposed and used for

a re-try. For completeness, it would be recommended to check the grids used in simulation 1 through

6 to see if those grids had any underdetermined cells.

In hindsight, the grid used for the simulations with the pipe (4-7) was a lot coarser than the grid used

in simulation 1 and 2. Looking back on the simulation performed by (van Rhee, 2017), the half-pipe

grid was a lot finer meshed. The grids used in this research could be revised to be finer meshed in an

attempt to see if that will help with simulation progression and to see if that would have an influence

on the pipe filling up as seen in simulation 4 and 5.

7.2.4. Pipe inclination

Taking a step back, it was never conclusively discovered why in simulation 4 the entire pipe filled up

with the mixture. We’ve tried setting the pipe inclination angle to a higher value, but this resulted in

crashing simulation. The experimental work performed by (Spelay, 2007) has shown the pipe doesn’t

fill up at all, so somewhere the simulation must be showing unphysical results.

86

Based on the yield stress and for a given geometry, it is possible to calculate a theoretical critical

angle for yield stress flow. The force balance should result in a minimum inclination.

7.3. Recommendations for future work in non-Newtonian CFD
This next section intends to describe recommendations for future work in non-Newtonian CFD. The

recommendations are based on findings in this research and relate to different types of material

models, different geometries, and a different way to model the sand particles in the mixture.

7.3.1. Time dependent fluid

Section 2.1.1 showed there are different classes of non-Newtonian rheological fluid models. One

class that has not been investigated is fluids that show time-dependent behaviour. These can either

be thixotropic (thickening over time) or rheopectic (thinning over time). It’s not unthinkable that in

basins and reclamation areas, fluids come to a standstill at some point in time or position in the

basin. At this point, the fluid stops shearing and this could influence the viscosity (unremoulded) and

it’s tendency to start flowing again under a certain force.

As seen in the simulations performed in this work, a plug zone forms. Besides a potential standstill of

the fluid in a basin, in this plug zone the fluid also stops shearing.

In future work it could be interesting to implement a time dependent viscosity model to simulate this

behaviour. Obviously, it’s crucial to find a worthy verification case in search of a proper

implementation.

7.3.2. Different geometries

The simulation that have been performed in this research pertained to two shapes: a 2D sloped

channel and a 3D straight pipe section. Rather simple geometries have been chosen to better

facilitate comparing results to empirical results.

However, in the field of dredging engineering, pipe geometries are not necessarily just straight

forward. The pipes could have many twists, turns and bends. It could be interesting to see if a

simulation with a twisty pipe shows realistic results in terms of, for example, sand bed build up in

those bends.

Similarly, it can also be interesting to simulate river sand bed sedimentation with comparable

material models as used in this research. In that case a choice could be made to just simulate a

water-sand mixture, so the whole non-Newtonian aspect of the carrier fluid would be omitted.

Although for this type of problem, a 3-phase simulation would potentially allow for more realistic

simulation. The 3 phases could be air, water, and sand+mud. The only reason air would be

incorporated in such a simulation would be to allow for a free water surface. It could be debated

whether that’s really an interesting to look at in a first simulation for sand sedimentation research in

rivers.

7.3.3. Beach slope prediction

As the problem domain is focused on waste materials (tailings) in mining engineering, it’s interesting

to run a full-fledged, full-scale simulation on a basin-like domain. These basins are bounded by dams

and are considered quite large. Parallelly, it’s just as interesting for the dredging engineering field to

run a full-scale simulation.

87

In this research, the behaviour of the fluids was simulated in either a rectangular (2D) domain or a

circular pipe-section (3D). It’s interesting to see how the implementation would hold up in a problem

domain that’s a little wider than that; a little closer to the scope of the problems out in the field that

is. This would entail building a simulation domain that’s equal (or close to) some real life scenarios.

Doing research in this direction could help find answers on questions like:

- how does the beach slope develop over time? Knowing this helps in predicting requirements

for additional or raising embankment.

- how much sand is deposited anywhere throughout the domain? (inhomogeneous

concentration and bed height)

- how strong or stiff is the deposited bed?

On top of the above, the simulation could also be used to investigate mud lobe forming and

channelization at the mixture’s surface.

7.3.4. Uniform particle size vs size distribution

To be able to use these simulations as a prediction method for real life scenarios, the simulation

should preferably be executed using parameters that are the same, or as close as can be to the real

thing.

In this research, a uniform sand particle size was used to model the sand particles that are part of the

fluid mixture. In reality, it’s much more likely that the sand particle size in the considered fluid is non-

uniform. Each of the particles has its own (hindered) settling velocity and the differently sized

particles have different influences on the (local) viscosity of the fluid. This can influence the

rheological conditions of the fluid and in term can influence most (if not all) other parameters of the

flow. Further, in reality this size distribution can also vary across the domain considered, leading to

an additional layer of complexity in the analysis.

In potential future research, this implementation could be done using a multiphase approach. The

implementation could allow for 2 (or 𝑛 for that matter) phases of sand. Each phase would represent

a different subset of particle sizes in the sand particle distribution. Each of these phases would have

to get their own settling velocity.

Combining the phases to compute a total sand fraction allows for calculating influence on the local

viscosity. Section 2.2 shows there to be no relation between particle size and the influence on the

viscosity, though at this point I’m unaware of the conditions for which that holds true.

In turn, the effect on the density of the mixture could be calculated by combining the sand phases

using a fraction method. After all, the current implementation already combines the (total) sand

density into the mixture density. Researching an adapted model for the hindered settling would be

advisable.

88

List of Figures
Figure 2.1: Rheograms for shear stress (a) and apparent viscosity (b) showing different fluid types (Newtonian and Bingham

included). 𝜏𝑦 (and 𝜏𝐵 for Bingham) represents the yield stress, 𝛾 is the strain rate, and 𝜂𝑎 is the apparent viscosity 𝜇𝑎as

shown in Equation (2.6). Source: (Talmon, 2016) .. 9
Figure 3.1: Saskatchewan Research Council’s 156.7 mm flume circuit used in the experimental program (Spelay, 2007) 16
Figure 3.2: Sand concentration measurement profile 𝐶𝑠𝑎𝑛𝑑 against non-dimensional 𝑦/𝐷 for 𝜃 = 4.5° and 𝑄 = 5 L/s 18
Figure 3.3: Flume two-dimensional mixture velocity profile measurement positions in the 156.7mm flume (corresponding to

Table 3.2 in this report and Table D.32 in (Spelay, 2007). Gravity works in negative y-direction. Source: Figure D.1 in (Spelay,

2007). ... 18
Figure 3.4: Velocity 𝑈𝑥 for both the numerical and analytical solution for the 2D channel flow at x=15. Source: (van Rhee,

2017) .. 23
Figure 3.5: Velocity profile and sand concentration at 𝑧 = 15 m at different times from the start of the simulation. Sand

concentration has been compared to results found by (Spelay, 2007). Source: (van Rhee, 2017) .. 24
Figure 3.6: Sand concentration along vertical symmetry plane in 3D pipe. Source: (van Rhee, 2017) 24
Figure 3.7: Sand concentration at 𝑧 = 15 m from the inlet zone. Source: (van Rhee, 2017) .. 24
Figure 5.1: Overview of OpenFOAM components. Source: cfd.direct.. 28
Figure 5.2: Case folder structure. Source: cfd.direct .. 29
Figure 5.3: Cell centre to face interpolation for nodes P and N. Source: (Jasak, 1996) .. 32
Figure 5.4: Linear sand concentration 𝜆 (labda, on the y-axis) for varying 𝑐𝑠 (csand, on the x-axis), 𝑐𝑚𝑎𝑥 = 0.6 38
Figure 6.1: Geometry and mesh for simulation 1. Block 1 on the left hand side, block 2 on the right hand side. Note: x-axis

scaled by factor 0.05 .. 40
Figure 6.2: Detail of block 1, the inlet zone, for simulation 1. Note: x-axis scaled by factor 0.05 .. 41
Figure 6.3: Volume fraction alpha.water at t = 2000 for simulation 1. Note: x-axis scaled by factor 0.05 43
Figure 6.4: Volume fraction alpha.water at x = 19.5m for simulation 1 .. 43
Figure 6.5: Horizontal flow velocity Ux profile at x = 19.5m for simulation 1 .. 44
Figure 6.6: Velocity profile from analytical solution and simulation 1 results at x=15m, ... 45
Figure 6.7: Volume fraction alpha.water for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05 47
Figure 6.8: Volume fraction alpha.water for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05 47
Figure 6.9: Sand fraction csand for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05 ... 48
Figure 6.10: Sand fraction csand for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05 48
Figure 6.11: Sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m .. 49
Figure 6.12: Data from (Spelay, 2007) and sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m 49
Figure 6.13: Velocity profile at x = 15m for simulation 2 at t = 600s and t = 1200s.. 50
Figure 6.14: Volume fraction alpha.water for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05 51
Figure 6.15: Volume fraction alpha.water for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05 52
Figure 6.16: Sand fraction csand for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05 ... 52
Figure 6.17: Sand fraction csand for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05 52
Figure 6.18: Sand fraction csand for simulation 3 at t = 600s and t = 1200s at x = 15m .. 53
Figure 6.19: Data from (Spelay, 2007) and sand fraction csand for simulation 2 and simulation 3 at t = 1200s at x = 15m . 53
Figure 6.20: Velocity profile at x = 15m for simulation 3 at t = 600s and t = 1200s.. 54
Figure 6.21: Velocity profile at x = 15m for simulation 2 and simulation 3 at t = 600s and t = 1200s 54
Figure 6.22: Overview of geometry for simulation 4, focus on leftWall. Note: z-axis scaled by factor 0.05 55
Figure 6.23: Overview of geometry for simulation 4, focus on outlet. Note: z-axis scaled by factor 0.05 56
Figure 6.24: Geometry and mesh for simulation 4 ... 56
Figure 6.25: Blocks defined in mesh for simulation 4. Each colour represents a block .. 57
Figure 6.26: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 59
Figure 6.27: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 59
Figure 6.28: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 141s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 59
Figure 6.29: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 60

89

Figure 6.30: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 60
Figure 6.31: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 150s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 60
Figure 6.32: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 200s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 61
Figure 6.33: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 250s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 61
Figure 6.34: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 500s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 61
Figure 6.35: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 825s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 61
Figure 6.36: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 62
Figure 6.37: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 62
Figure 6.38: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 150s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 62
Figure 6.39: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 200s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 62
Figure 6.40: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 250s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 63
Figure 6.41: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 427s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 63
Figure 6.42 csand for simulation 4c at t = 250s. Note: z-axis scaled by factor 0.05 ... 63
Figure 6.43: Overview of geometry for simulation 5, focus on leftWall and inlet. Note: z-axis scaled by factor 0.05 65
Figure 6.44: Overview of geometry for simulation 5, focus on outlet. Note: z-axis scaled by factor 0.05 65
Figure 6.45: Mesh profile in xy-plane for simulation 5. Inlet shown in darkblue and leftWall in lightblue shown on the left

and outlet shown in orange on the right .. 65
Figure 6.46: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 67
Figure 6.47: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 67
Figure 6.48: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 123s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 68
Figure 6.49: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 150s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 68
Figure 6.50: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 220s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 68
Figure 6.51: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 600s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 68
Figure 6.52: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 69
Figure 6.53: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 69
Figure 6.54: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 123s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 69
Figure 6.55: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 150s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 69
Figure 6.56: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 220s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 70
Figure 6.57: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 50s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 70
Figure 6.58: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 100s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 70

90

Figure 6.59: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 123s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 70
Figure 6.60: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 5s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 73
Figure 6.61: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 10s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 74
Figure 6.62: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 15s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 74
Figure 6.63: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 16s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 74
Figure 6.64 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 74
Figure 6.65 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17.3s. In semi-transparent grey we

can see the pipe wall. Note: z-axis scaled by factor 0.05 ... 75
Figure 6.66: graph showing the solver runs into high courant numbers in simulation 6. Only the last 1000 iterations are

shown. At around iteration 780 we can see the courant number increase. Iteration index is shown on the x-axis. The left y-

axis shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum

courant number ... 75
Figure 6.67: Overview of geometry for simulation 7, focus on inlet side of pipe. Note: z-axis scaled by factor 0.05 76
Figure 6.68: Overview of geometry for simulation 7, focus on outlet side of pipe. Note: z-axis scaled by factor 0.05 77
Figure 6.69: Mesh profile in xy-plane for simulation 7. Focus on inlet side of pipe on the left, and on the right hand side

focus on the outlet side .. 77
Figure 6.70: Overview of grid along z-axis for simulation 7 discretized into 40 cells along z-axis. Note: z-axis scaled by factor

0.05 .. 77
Figure 6.71: Graph showing small timesteps for simulation 7a. .. 79
Figure 6.72: Vertical velocity Uy in simulation 7 after roughly 14.6s, focus on inlet zone. Note: z-axis is scaled by factor 0.05.

 ... 80
Figure 6.73: grid overview showing underdetermined cells in grey with blue wireframe. General pipe shape outline is shown

in semi-transparency. Note: z-axis is scaled by factor 0.05. ... 81
Figure 6.74: overview of grid along z-axis, discretized into 40 cells along z-axis. Highlighted in red are the underdetermined.

cells. Note: z-axis is scaled by factor 0.05... 82
Figure 6.75: overview of grid along z-axis, discretized into 60 cells along z-axis. Note: z-axis is scaled by factor 0.05. 82
Figure 6.76: graph showing the solver continues to take smaller time steps as iterations progress (x-axis). The left y-axis

shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum courant

number ... 82

91

List of Tables
Table 3.1: Solids and sand concentration (𝐶𝑠𝑜𝑙𝑖𝑑𝑠 and 𝐶𝑠𝑎𝑛𝑑 respectively) profile measurements for a model thickened

tailings slurry in the 156.7 mm flume; 𝜌𝑚𝑖𝑥 = 1510 kg/m3. ℎ represents the flowdepth at the measurement point, 𝜃 the

inclination of the flume and 𝑄 the inlet flow rate, Table D.24 in (Spelay, 2007). .. 17
Table 3.2: Mixture velocity profile measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥 = 1510

kg/m3. Table D.32 in (Spelay, 2007) ... 19
Table 3.3: Frictional loss measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥 = 1510 kg/m3.

Table D.17 in (Spelay, 2007) ... 19
Table 5.1: Code and equation variable mapping for settling velocity .. 35
Table 6.1: Boundary condition types used in simulation 1 ... 41
Table 6.2: Gravitational force vector decomposition for simulation 1 ... 42
Table 6.3: Material properties in the tranportProperties dictionary for simulation 1 ... 42
Table 6.4: Boundary condition types used in simulation 2 ... 46
Table 6.5: Material properties in the tranportProperties dictionary for simulation 2 ... 47
Table 6.6: Boundary condition types used in simulation 4 ... 57
Table 6.7: Sand fraction csand at the inlet patch... 57
Table 6.8: Gravitational vector decomposition for simulation 4 .. 57
Table 6.9: Material properties in the tranportProperties dictionary for simulation 4 ... 58
Table 6.10: Boundary condition types used in simulation 5 ... 66
Table 6.11: Inlet flow rate, sand fraction csand at the inlet and gravitational vector decomposition for simulation 5 66
Table 6.12: Material properties in the tranportProperties dictionary for simulation 5 ... 66
Table 6.13: Boundary condition types used in simulation 6 ... 72
Table 6.14: Gravitational vector decomposition for simulation 6 .. 72
Table 6.15: Material properties in the tranportProperties dictionary for simulation 6 ... 73
Table 6.16: Boundary condition types in simulation 7 ... 78
Table 6.17: Gravitational force vector decomposition for simulation 7 ... 78
Table 6.18: Material properties in the tranportProperties dictionary for simulation 7 ... 79

92

Bibliography
Afshar, M. A. (2010). Numerical Wave Generation In OpenFOAM®. Chalmers tekniska högskola.

Boger, D. V., Scales, P. J., & Sofra, F. (2006). Rheological concepts. Perth, Australia: Australian Centre

for Geomechanics.

Chhabra, R. P. (2007). Bubbles, Drops, and Particles in non-Newtonian Fluids (2nd ed.). CRC Press.

Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der

mathematischen Physik. Mathematische Annalen, 32-74.

doi:https://doi.org/10.1007/BF01448839

Damián, S. M. (2013). An Extended Mixture Model for the Simultaneous Treatment of Short and Long

Scale Interfaces. PhD thesis, UNIVERSIDAD NACIONAL DEL LITORAL.

doi:http://dx.doi.org/10.13140/RG.2.1.3182.8320

Dankers, P. J., & Winterwerp, J. C. (2007). Hindered settling of mud flocs: Theory and validation.

Continental Shelf Research, 27(14), 1893-1907. doi:https://doi.org/10.1016/j.csr.2007.03.005

De Kee, D., Chhabra, R. P., Powley, M. B., & Roy, S. (1990). Flow of viscoplastic fluids on an inclined

plane: evaluation of yield stress. Chemical Engineering Communications, 96, 1, 229-239.

doi:https://doi.org/10.1080/00986449008911493

Haldenwang, R., Kotzé, R., & Chhabra, R. (2012). Determining the Viscous Behavior of Non-

Newtonian Fluids in a Flume Using a Laminar Sheet Flow Model and Ultrasonic Velocity

Profiling (UVP) System. Journal of the Brazilian Society of Mechanical Sciences and

Engineering Vol 34, 3. doi:http://dx.doi.org/10.1590/S1678-58782012000300008

Haldenwang, R., Slatter, P. T., & Chhabra, R. P. (2010). An experimental study of non-Newtonian fluid

flow in rectangular flumes in laminar, transition and turbulent flow regimes. Jounal of the

south african institution of civil engineering, 52, 11-19. Retrieved from

http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-

20192010000100002&lng=en&tlng=en

Hanssen, J. L. (2016). Towards improving predictions of non-Newtonian settling slurries with Delft3D.

Delft: Delft University of Technology.

Issa, R. I. (1986, January). Solution of the implicitly discretised fluid flow equations by operator-

splitting. Journal of Computational Physics, 40-65. doi:https://doi.org/10.1016/0021-

9991(86)90099-9

Jacobs, W., Le hir, P., Van Kesteren, W., & Cann, P. (2011, July 15). Erosion threshold of sand–mud

mixtures. Continental Shelf Research, 31(10), S14-S25.

doi:https://doi.org/10.1016/j.csr.2010.05.012

Jasak, H. (1996). Error Analysis and Estimation for the Finite Volume Method with Applications to

Fluid Flows. Department of Mechanical Engineering Imperial College of Science, Technology

and Medicine. Retrieved from

93

https://www.researchgate.net/publication/230605842_Error_Analysis_and_Estimation_for_

the_Finite_Volume_Method_With_Applications_to_Fluid_Flows

Papanastasiou, T. C. (1987). Flows of Materials with Yield. Journal of Rheology 31, 385.

doi:https://doi.org/10.1122/1.549926

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. CRC Press.

doi:https://doi.org/10.1201/9781482234213

Peeters, P. T. (2016). CFD of multiphase pipe flow: a comparison of solvers. Delft: Delft University of

Technology.

Slatter, P. (2011). The Engineering Hydrodynamics of Viscoplastic Suspensions. Particulate Science

and Technology`, 139-150. doi:https://doi.org/10.1080/02726351.2010.527429

Spelay, R. B. (2007). Solids transport in laminar, open channel flow of non-Newtonian slurries. PhD

Thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Talmon, A. M. (2016). OE4625 Lecture notes - Segregating non-Newtonian slurries. Delft: Delft

University of Technology.

Talmon, A. M., & Huisman, M. (2005). Fall Velocity of particles in shear flow of drilling fluids.

Tunnelling and Underground Space Technology, 20, 193-201.

doi:https://doi.org/10.1016/j.tust.2004.07.001

Talmon, A. M., Hanssen, J. L., Winterwerp, J. C., Sitoni, L., & van Rhee, C. (2016). Implementation of

Tailings Rheology in a Predictive Open-Channel Beaching Model. PASTE 2016, 19th

International Seminar on Paste and Thickened Tailings.

Talmon, A. M., van Kesteren, W. G., Sittoni, L., & Hedblom, E. P. (2013). Shear Cell Tests For

Quantification Of Tailings Storage Facilities. The Canadian Journal Of Chemical Engineering,

362-373. doi:https://dx.doi.org/10.1002/cjce.21856

Thomas, A. D. (1999). The influence of coarse particles on the rheology of fine particle slurries.

Proceedings of Rheology in the Mineral Industry II, 113–123.

Van De Ree, T. (2015). Deposition of high density tailings on beaches. Delft: Delft University of

Technology.

van Es, H. E. (2017). Development of a numerical model for dynamic depositioning of non-Newtonian

slurries. Delft: Delft University of Technology.

van Rhee, C. (2017). Simulation of the settling of solids in a non-Newtonian fluid. 18th International

Conference on Transport and sedimentation of solid particles, (pp. 265-270). Prague, Czech

Republic.

Winterwerp, J. C., & van Kesteren, W. G. (2004). Introduction to the physics of cohesive sediment in

the marine environment. Elsevier.

94

Appendices
Appendix A. Source code – van Rhee (2017)

A.1. CVRinterFoam.C
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 Application

 CVRinterFoam

 Description

 Solver for 2 incompressible, isothermal immiscible fluids using a VOF

 (volume of fluid) phase-fraction based interface capturing approach.

 The momentum and other fluid properties are of the "mixture" and a single

 momentum equation is solved.

 Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

 For a two-fluid approach see twoPhaseEulerFoam.

 ---/

 #include "fvCFD.H"

 #include "CMULES.H"

 #include "EulerDdtScheme.H"

 #include "localEulerDdtScheme.H"

 #include "CrankNicolsonDdtScheme.H"

 #include "subCycle.H"

 #include "immiscibleIncompressibleTwoPhaseMixture.H"

 #include "turbulentTransportModel.H"

 #include "pimpleControl.H"

 #include "fvOptions.H"

 #include "CorrectPhi.H"

 #include "fvcSmooth.H"

 // * //

 int main(int argc, char *argv[])

 {

 #include "postProcess.H"

 #include "setRootCase.H"

 #include "createTime.H"

 #include "createMesh.H"

 #include "createControl.H"

 #include "createTimeControls.H"

 #include "createRDeltaT.H"

 #include "initContinuityErrs.H"

 #include "createFields.H"

 #include "createFvOptions.H"

 #include "correctPhi2.H"

 turbulence->validate();

 if (!LTS)

 {

 #include "readTimeControls.H"

 #include "CourantNo.H"

 #include "setInitialDeltaT.H"

 }

95

 // * //

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.run())

 {

 #include "readTimeControls.H"

 if (LTS)

 {

 #include "setRDeltaT.H"

 }

 else

 {

 #include "CourantNo.H"

 #include "alphaCourantNo.H"

 #include "setDeltaT.H"

 }

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 // --- Pressure-velocity PIMPLE corrector loop
 while (pimple.loop())
 {
 #include "alphaControls.H"
 #include "alphaEqnSubCycle.H"

 mixture.correct();

 #include "UEqn.H"

 // --- Pressure corrector loop
 while (pimple.correct())
 {
 #include "pEqn.H"
 }

 if (pimple.turbCorr())
 {
 turbulence->correct();
 }
 #include "csandEqn.H"
 }

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << " ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

 Info<< "End\n" << endl;

 return 0;
 }

 // *** //

A.2. CSandEqn.H
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 Application

 CVRnonNewtonianIcoFoam

96

 AlphaEqn.C -file met transport equation for alpha

 Description

 Transient solver for incompressible, laminar flow of non-Newtonian fluids.

 ---/

 Info << " Calculation Sand transport " << endl;

 dimensionedScalar zero("zero", dimless, 0);

 dimensionedScalar one("one", dimless, 1.0);

 dimensionedScalar factor("factor", dimless, 1.0/18.0);

 // Info<< "rhoc = " << rhoc << endl;

 // volVectorField wsvol(U*zero);

 // volScalarField alpham(alpha);

 // alpham+=cfine;

 // Info<< "max alpham = " << max(alpham) << endl;

 wsvol = factor * (rhos-rho)*sqr(Diam) / (mixture.muws())*gz;

 wsvol *= (one -csand);

 // ws1 = Wsettle.ws();

 // if (Method=="TalmonHuisman")

 // {

 // wsvol*=(one -alpham)* sqr(one - alpha/cmax); // hindered settling

 // Info<< "Method settling velocity = " << Method << endl;

 // }

 // else // volgens Spilay

 // {

 // wsvol*=(one -alpha);

 // }

 // Driftflux ten opzichte van bulk velocity

 Us = U + wsvol;

 // volScalarField visco(fluid.nu());

 // surfaceScalarField viscface = fvc::interpolate(visco);

 // surfaceVectorField ws = factor * (rhos-

rhow)*g*sqr(Diam) / (viscface*rhow)*eenheidsvector;

 // Us = fvc::interpolate(U);

 // Us+=ws;

 // Info<< "min abs(viscface) = " << min(viscface) << endl;

 // Info<< "min abs(ws) = " << min(ws.component(1)) << endl;

 // Info<< "max abs(wsvol) = " << max(mag(wsvol)) << endl;

 // Info<< "max max Us .y = " << max(Us.component(1)) << endl;

 //= fvc::interpolate(U)+ws;

 surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();

 // surfaceScalarField phised = fvc::flux(Us1);

 fvScalarMatrix csandEqn

 (

 fvm::ddt(csand)

 + fvm::div(phised, csand)

);

 csandEqn.solve();

 // *** //

A.3. createFields.H
 IOdictionary transportProperties

 (

 IOobject

 (

 "transportProperties",

 runTime.constant(),

 mesh,

 IOobject::MUST_READ,

 IOobject::NO_WRITE

)

97

);

 dictionary& subDict = transportProperties.subDict("TalmonCoeffs");

 dimensionedScalar cmax

 (

 subDict.lookup("cmax")

);

 // subDict = transportProperties.subDict("SettlingVelocityMethod");

 // word Method

 // (

 // subDict.lookup("Method")

 //);

 // Info<< "Selecting " << Method << " as settling velocity method\n" << endl;

 dimensionedScalar Diam

 (

 transportProperties.lookup("Diam")

);

 dimensionedScalar rhow

 (

 transportProperties.lookup("rhow")

);

 dimensionedScalar rhos

 (

 transportProperties.lookup("rhos")

);

 Info<< "Reading field p_rgh\n" << endl;

 volScalarField p_rgh

 (

 IOobject

 (

 "p_rgh",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 Info<< "Reading field U\n" << endl;

 volVectorField U

 (

 IOobject

 (

 "U",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 Info<< "Reading field Us\n" << endl;

 volVectorField Us

 (

 IOobject

 (

 "Us",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 volVectorField wsvol

 (

 IOobject

 (

 "wsvol",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

98

 volScalarField csand

 (
 IOobject
 (
 "csand",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

 #include "createPhi.H"

 Info<< "Reading transportProperties\n" << endl;
 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

 volScalarField& alpha1(mixture.alpha1());
 volScalarField& alpha2(mixture.alpha2());

 const dimensionedScalar& rho1 = mixture.rho1();
 const dimensionedScalar& rho2 = mixture.rho2();

 // Need to store rho for ddt(rho, U)
 volScalarField rho
 (
 IOobject
 (
 "rho",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT
),
 alpha1*rho1 + alpha2*rho2
);
 rho.oldTime();

 // Mass flux
 surfaceScalarField rhoPhi
 (
 IOobject
 (
 "rhoPhi",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 fvc::interpolate(rho)*phi
);

 // Construct incompressible turbulence model
 autoPtr<incompressible::turbulenceModel> turbulence
 (
 incompressible::turbulenceModel::New(U, phi, mixture)
);

 #include "readGravitationalAcceleration.H"
 #include "readhRef.H"
 #include "gh.H"

 volScalarField p
 (
 IOobject
 (
 "p",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 p_rgh + rho*gh
);

 label pRefCell = 0;
 scalar pRefValue = 0.0;
 setRefCell
 (
 p,
 p_rgh,
 pimple.dict(),
 pRefCell,
 pRefValue
);

99

 if (p_rgh.needReference())
 {
 p += dimensionedScalar
 (
 "p",
 p.dimensions(),
 pRefValue - getRefCellValue(p, pRefCell)
);
 p_rgh = p - rho*gh;
 }

 mesh.setFluxRequired(p_rgh.name());
 mesh.setFluxRequired(alpha1.name());

 dimensionedVector gz("gz", dimLength/sqr(dimTime), vector(0, -9.81,0));

 // MULES flux from previous time-step
 surfaceScalarField alphaPhi
 (
 IOobject
 (
 "alphaPhi",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT,
 IOobject::AUTO_WRITE
),
 phi*fvc::interpolate(alpha1)
);

 // MULES Correction
 tmp<surfaceScalarField> talphaPhiCorr0;
 #include "createMRF.H"

100

Appendix B. Source code - solver

B.1. interFoamPeter.C
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 Application

 interFoam

 Description

 Solver for 2 incompressible, isothermal immiscible fluids using a VOF

 (volume of fluid) phase-fraction based interface capturing approach.

 The momentum and other fluid properties are of the "mixture" and a single

 momentum equation is solved.

 Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

 For a two-fluid approach see twoPhaseEulerFoam.

 Author: Cees van Rhee & Peter Dobbe

 ---/

 #include "fvCFD.H"

 #include "CMULES.H"

 #include "EulerDdtScheme.H"

 #include "localEulerDdtScheme.H"

 #include "CrankNicolsonDdtScheme.H"

 #include "subCycle.H"

 #include "immiscibleIncompressibleTwoPhaseMixture.H"

 #include "turbulentTransportModel.H"

 #include "pimpleControl.H"

 #include "fvOptions.H"

 #include "CorrectPhi.H"

 #include "fvcSmooth.H"

 // * //

 int main(int argc, char *argv[])

 {

 #include "postProcess.H"

 #include "setRootCase.H"

 #include "createTime.H"

 #include "createMesh.H"

 #include "createControl.H"

 #include "createTimeControls.H"

 #include "initContinuityErrs.H"

 #include "createFields.H"

 #include "createAlphaFluxes.H"

 #include "createFvOptions.H"

 #include "correctPhi2.H" // to prevent capital sensitive issues

 turbulence->validate();

 if (!LTS)

 {

 #include "readTimeControls.H"

 #include "CourantNo.H"

 #include "setInitialDeltaT.H"

 }

 // * //

101

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.run())

 {

 Info << "running readTimeControls.H" <<endl;

 #include "readTimeControls.H"

 if (LTS)

 {

 #include "setRDeltaT.H"

 }

 else

 {

 #include "CourantNo.H"

 #include "alphaCourantNo.H"

 #include "setDeltaT.H"

 }

 runTime++;
 Info<< "Time = " << runTime.timeName() << nl << endl;

 // --- Pressure-velocity PIMPLE corrector loop
 while (pimple.loop())
 {
 #include "alphaControls.H"

 #include "alphaEqnSubCycle.H"

 mixture.correct();
 #include "UEqn.H"

 // --- Pressure corrector loop
 while (pimple.correct())
 {
 Info << "Running pimple.correct()" << endl;
 #include "pEqn.H"
 }

 if (pimple.turbCorr())
 {
 Info << "Running turbulence->correct()" << endl;
 turbulence->correct();
 }
 #include "CSandEqn.H"
 }
 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << " ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }
 Info<< "End\n" << endl;

 return 0;
 }
 // *** //

B.2. CSandEqn.H
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation

 \\/ M anipulation |

 Application

 interFoamPeter

 Description

 Transport equation for sand.

 Author: Cees van Rhee & Peter Dobbe

 ---/

 Info << "Running CSandEqn.H" << endl;

 dimensionedScalar zero("zero", dimless, 0);

 dimensionedScalar one("one", dimless, 1.0);

102

 dimensionedScalar factor("factor", dimless, 1.0/18.0);

 volScalarField muws_mixture = mixture.muws();

 Info << "muws in CSandEqn. Min(muws) = " << min(muws_mixture).value() << " Max(muws) = " <<

max(muws_mixture).value() << endl;

 wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture));

 wsvol *= (one - csand);

 Info << "wsvol in CSandEqn. Min(wsvol) = " << min(wsvol).value() << " Max(wsvol) = " <<

max(wsvol).value() << endl;

 Us = U + wsvol;

 surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();

 fvScalarMatrix csandEqn

 (

 fvm::ddt(csand)

 + fvm::div(phised, csand)

);

 csandEqn.solve();

 Info << "Alpha in CSandEqn. Min(csand) = " << min(csand).value() << " Max(csand) = " <<

max(csand).value() << endl;

 Info << "csand-cmax in CSandEqn. Min(csand-cmax) = " << min(csand-cmax).value() << " Max(csand-

cmax) = " << max(csand-cmax).value() << endl;

 Info << "mag(csand-cmax) in CSandEqn. Min(mag(csand-cmax)) = " << min(mag(csand-cmax)).value() <<

" Max(mag(csand-cmax)) = " << max(mag(csand-cmax)).value() << endl;

 // *** //

B.3. CSandEqn.H – alternative for simulation 3
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation

 \\/ M anipulation |

 Application

 interFoamPeter

 Description

 Transport equation for sand.

 Author: Cees van Rhee & Peter Dobbe

 ---/

 Info << "Running CSandEqn.H" << endl;

 dimensionedScalar zero("zero", dimless, 0);

 dimensionedScalar one("one", dimless, 1.0);

 dimensionedScalar factor("factor", dimless, 1.0/18.0);

 volScalarField muws_mixture = mixture.muws();

 Info << "muws in CSandEqn. Min(muws) = " << min(muws_mixture).value() << " Max(muws) = " <<

max(muws_mixture).value() << endl;

 wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture));

 wsvol *= (one - csand) * sqr(one - (csand/cmax));

 Info << "wsvol in CSandEqn. Min(wsvol) = " << min(wsvol).value() << " Max(wsvol) = " <<

max(wsvol).value() << endl;

 Us = U + wsvol;

 surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();

 fvScalarMatrix csandEqn
 (

103

 fvm::ddt(csand)
 + fvm::div(phised, csand)

);

 csandEqn.solve();

 Info << "Alpha in CSandEqn. Min(csand) = " << min(csand).value() << " Max(csand) = " <<
max(csand).value() << endl;

 Info << "csand-cmax in CSandEqn. Min(csand-cmax) = " << min(csand-cmax).value() << " Max(csand-
cmax) = " << max(csand-cmax).value() << endl;

 Info << "mag(csand-cmax) in CSandEqn. Min(mag(csand-cmax)) = " << min(mag(csand-cmax)).value() <<
" Max(mag(csand-cmax)) = " << max(mag(csand-cmax)).value() << endl;

 // *** //

B.4. createFields.H
 #include "createRDeltaT.H"

 Info<< "Reading field csand\n" << endl;

 volScalarField csand

 (

 IOobject

 (

 "csand",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 // Read wsvol field initialized in 0 folder

 Info<< "Reading field wsvol\n" << endl;

 volVectorField wsvol

 (

 IOobject

 (

 "wsvol",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 // Read Us field initialized in 0 folder

 Info<< "Reading field Us\n" << endl;

 volVectorField Us

 (

 IOobject

 (

 "Us",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 Info<< "Reading field p_rgh\n" << endl;

 volScalarField p_rgh

 (

 IOobject

 (

 "p_rgh",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 Info<< "Reading field U\n" << endl;

 volVectorField U

104

 (

 IOobject

 (

 "U",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

 #include "createPhi.H"

 Info<< "Reading transportProperties\n" << endl;

 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

 Info << mixture << endl;

 IOdictionary transportProperties

 (

 IOobject

 (

 "transportProperties",

 runTime.constant(),

 mesh,

 IOobject::MUST_READ,

 IOobject::NO_WRITE

)

);

 dimensionedScalar Diam

 (

 transportProperties.lookup("Diam")

);

 dimensionedScalar rhow

 (

 transportProperties.lookup("rhow")

);
 dimensionedScalar rhos
 (
 transportProperties.lookup("rhos")
);
 dimensionedScalar cfine
 (
 transportProperties.lookup("cfine")
);
 dimensionedScalar cmax
 (
 transportProperties.lookup("cmax")
);
 //dimensionedVector gz("gz", dimLength/sqr(dimTime), vector(0, -9.81,0));

 dimensionedScalar rhoc("rhoc",cfine*rhos + (1-cfine)*rhow);

 volScalarField& alpha1(mixture.alpha1());
 volScalarField& alpha2(mixture.alpha2());

 const dimensionedScalar& rho1 = mixture.rho1();
 const dimensionedScalar& rho2 = mixture.rho2();

 // Need to store rho for ddt(rho, U)
 volScalarField rho
 (
 IOobject
 (
 "rho",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT
),
 alpha1*rho1 + alpha2*rho2
);
 rho.oldTime();

 // Mass flux
 surfaceScalarField rhoPhi
 (
 IOobject
 (
 "rhoPhi",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 fvc::interpolate(rho)*phi
);

105

 // Construct incompressible turbulence model
 autoPtr<incompressible::turbulenceModel> turbulence
 (
 incompressible::turbulenceModel::New(U, phi, mixture)
);

 #include "readGravitationalAcceleration.H"
 #include "readhRef.H"
 #include "gh.H"

 volScalarField p
 (
 IOobject
 (
 "p",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 p_rgh + rho*gh
);

 label pRefCell = 0;
 scalar pRefValue = 0.0;
 setRefCell
 (
 p,
 p_rgh,
 pimple.dict(),
 pRefCell,
 pRefValue
);

 if (p_rgh.needReference())
 {
 p += dimensionedScalar
 (
 "p",
 p.dimensions(),
 pRefValue - getRefCellValue(p, pRefCell)
);
 p_rgh = p - rho*gh;
 }

 mesh.setFluxRequired(p_rgh.name());
 mesh.setFluxRequired(alpha1.name());

 #include "createMRF.H"

106

Appendix C. Source code - viscosity models

C.1. Talmon.H
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 Class

 Foam::viscosityModels::Talmon

 Description

 Talmon non-Newtonian viscosity model.

 SourceFiles

 Talmon.H

 ---/

 #ifndef Talmon_H

 #define Talmon_H

 #include "viscosityModel.H"

 #include "dimensionedScalar.H"

 #include "volFields.H"

 // * //

 namespace Foam

 {

 namespace viscosityModels

 {

 /*---*\

 Class Talmon Declaration

 ---/

 class Talmon

 :

 public viscosityModel

 {

 // Private data

 dictionary TalmonCoeffs_;

 dimensionedScalar coef_;

 dimensionedScalar cmax_;

 dimensionedScalar alpha0_;

 dimensionedScalar tau0_;

 dimensionedScalar nu0_;

 dimensionedScalar numax_;

 word phasename_;

 dimensionedScalar maxlabda;

 dimensionedScalar minlabda;

 const volScalarField& alpha_;

 volScalarField nu_;

 volScalarField nuws_;

 volScalarField labda_;

 // Private Member Functions

 //- Calculate and return the laminar viscosity

 tmp<volScalarField> calcNu() const;

 tmp<volScalarField> calcNuws() const;

 tmp<volScalarField> calcLabda() const;

107

 protected:

 public:

 //- Runtime type information

 TypeName("Talmon");

 // Constructors

 //- Construct from components

 Talmon

 (

 const word& name,

 const dictionary& viscosityProperties,

 const volVectorField& U,

 const surfaceScalarField& phi

);

 //- Destructor
 ~Talmon()
 {}

 // Member Functions

 //- Return the laminar viscosity
 tmp<volScalarField> nu() const
 {
 return nu_;
 }

 //- Return the laminar viscosity
 tmp<volScalarField> nuws() const
 {
 return nuws_;
 }

 //- Return the linear concentration labda
 tmp<volScalarField> labda() const
 {
 return labda_;
 }

 //- Return the laminar viscosity for patch
 tmp<scalarField> nu(const label patchi) const
 {
 return nu_.boundaryField()[patchi];
 }

 //- Correct the laminar viscosity
 void correct()
 {
 nu_ = calcNu();
 nuws_ = calcNuws();
 }

 //- Read transportProperties dictionary
 bool read(const dictionary& viscosityProperties);
 };

 // * //

 } // End namespace viscosityModels
 } // End namespace Foam

 // * //

 #endif

 // *** //

C.2. Talmon.C
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

108

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 ---/

 #include "Talmon.H"

 #include "addToRunTimeSelectionTable.H"

 #include "surfaceFields.H"

 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

 namespace Foam

 {

 namespace viscosityModels

 {

 defineTypeNameAndDebug(Talmon, 1);

 addToRunTimeSelectionTable

 (

 viscosityModel,

 Talmon,

 dictionary

);

 }

 }

 // * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcNu() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 //dimensionedScalar one3("onethird", dimless, 1.0/3.0);

 dimensionedScalar klein("klein", dimless, 1e-5);

 tmp<volScalarField> sr(strainRate());

 Info << phasename_ << " in calcNu. ("<<phasename_<<") Min("<<phasename_<<") = " << min(alpha_).valu

e() << " Max("<<phasename_<<") = " << max(alpha_).value() << endl;

 Info << phasename_<<"-cmax_ in calcNu. Min("<<phasename_<<"-cmax_) = " << min(alpha_-

cmax_).value() << " Max("<<phasename_<<"-cmax_) = " << max(alpha_-cmax_).value() << endl;

 Info << "mag("<<phasename_<<"-cmax_) in calcNu. Min(mag("<<phasename_<<"-

cmax_)) = " << min(mag(alpha_-cmax_)).value() << " Max(mag("<<phasename_<<"-

cmax_)) = " << max(mag(alpha_-cmax_)).value() << endl;

 Info << ""<<phasename_<<"+klein in calcNu. Min("<<phasename_<<"+klein) = " << min(alpha_+klein).va

lue() << " Max("<<phasename_<<"+klein) = " << max(alpha_+klein).value() << endl;

 Info << "cmax_/("<<phasename_<<"+klein) in calcNu. Min(cmax_/("<<phasename_<<"+klein)) = " << min(

cmax_/(alpha_+klein)).value() << " Max(cmax_/("<<phasename_<<"+klein)) = " << max(cmax_/(alpha_+klein))

.value() << endl;

 volScalarField labda_= calcLabda();

 Info << "Labda in calcNu. Min(labda) = " << min(labda_).value() << " Max(labda) = " << max(labda_).

value() << endl;

 Info << "Minimum strainrate(): " << min(sr()) << endl;

 volScalarField capped_exponent = min(exp(alpha0_*labda_), dimensionedScalar ("ROOTVGREAT", dimless,

 ROOTVGREAT));

 if (max(exp(alpha0_*labda_)).value() >= dimensionedScalar ("ROOTVGREAT", dimless, ROOTVGREAT).value

())

 {

 Info << "Warning, maximum of exponent: >= " << dimensionedScalar ("ROOTVGREAT", dimless, ROOTVG

REAT) << " : " << max(exp(alpha0_*labda_)).value() << endl;

 }

 return

 (

 min(

 numax_,

 nu0_*capped_exponent + (tau0_*capped_exponent*(one-exp(-coef_*sr())))

 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL)))

)

);

 }

109

 Foam::tmp<Foam::volScalarField>

 Foam::viscosityModels::Talmon::calcNuws() const

 {

 dimensionedScalar one("one", dimless, 1.0);

 // dimensionedScalar one3("onethird", dimless, 1.0/3.0);

 // dimensionedScalar klein("klein", dimless, 1e-5);

 tmp<volScalarField> sr(strainRate());

 Info<< " Berekening van eta voor valsnelheid " << endl;

 return
 (
 min(
 numax_,
 nu0_ + (tau0_*(one-exp(-coef_*sr())))

 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL)))
)
);
 }

 Foam::tmp<Foam::volScalarField>
 Foam::viscosityModels::Talmon::calcLabda() const
 {
 dimensionedScalar one("one", dimless, 1.0);
 dimensionedScalar one3("onethird", dimless, 1.0/3.0);
 dimensionedScalar klein("klein", dimless, 1e-5);

 if (min(alpha_+klein).value() <= 0)
 {
 Info << "Warning: min(alpha_+klein) <= 0: " << min(alpha_+klein).value() << endl;
 }

 if (max(alpha_+klein).value() >= cmax_.value())
 {
 Info << "Warning: max(alpha_+klein). >= "<< cmax_.value() << " : " << max(alpha_+klein).value(
) << endl;

 }

 volScalarField labda_return = (one / (pow(cmax_/(alpha_+klein),one3)-one));

 if (max(labda_return).value() > maxlabda.value())
 {
 Info << "Warning: max(labda_return)= " << max(labda_return).value() << endl;
 }

 if (min(labda_return).value() < minlabda.value())
 {
 Info << "Warning: min(labda_return)= " << min(labda_return).value() << endl;
 }
 return min(labda_return,maxlabda);
 }

 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

 Foam::viscosityModels::Talmon::Talmon
 (
 const word& name,
 const dictionary& viscosityProperties,
 const volVectorField& U,
 const surfaceScalarField& phi
)
 :
 viscosityModel(name, viscosityProperties, U, phi),

 TalmonCoeffs_(viscosityProperties.subDict(typeName + "Coeffs")),
 // k_("k", dimViscosity, TalmonCoeffs_),
 coef_("coef", dimTime, TalmonCoeffs_),
 cmax_("cmax", dimless, TalmonCoeffs_),
 alpha0_("alpha0", dimless, TalmonCoeffs_),
 tau0_("tau0", dimViscosity/dimTime, TalmonCoeffs_),
 nu0_("nu0", dimViscosity, TalmonCoeffs_),
 numax_("numax", dimViscosity, TalmonCoeffs_),
 phasename_(TalmonCoeffs_.lookup("Phasename")),
 maxlabda("maxlabda", dimless, log(std::numeric_limits<double>::max())/alpha0_.value()),
 minlabda("minlabda", dimless, log(std::numeric_limits<double>::min())/alpha0_.value()),

 alpha_(

 U_.mesh().lookupObject<volScalarField>(phasename_)

),
 nu_
 (
 IOobject
 (

110

 name,
 U_.time().timeName(),
 U_.db(),
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 calcNu()
),
 nuws_
 (
 IOobject
 (
 name,
 U_.time().timeName(),
 U_.db(),
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 calcNuws()
),
 labda_
 (
 IOobject
 (
 name,
 U_.time().timeName(),
 U_.db(),
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 calcLabda()
)

 {
 Info<< " Defining CVR Talmon model " << endl;
 }

 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

 bool Foam::viscosityModels::Talmon::read
 (
 const dictionary& viscosityProperties
)
 {

 viscosityModel::read(viscosityProperties);
 Info<< " Defining CVR Talmon model " << endl;
 TalmonCoeffs_ = viscosityProperties.subDict(typeName + "Coeffs");

 TalmonCoeffs_.lookup("coef") >> coef_;
 TalmonCoeffs_.lookup("cmax") >> cmax_;
 TalmonCoeffs_.lookup("alpha0") >> alpha0_;
 //TalmonCoeffs_.lookup("n") >> n_;
 TalmonCoeffs_.lookup("tau0") >> tau0_;
 TalmonCoeffs_.lookup("nu0") >> nu0_;
 TalmonCoeffs_.lookup("numax") >> numax_;
 TalmonCoeffs_.lookup("Phasename") >> phasename_;

 return true;
 }

 // *** //

C.3. CVRNewtonian.H
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

111

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 Class

 Foam::viscosityModels::CVRNewtonian

 Description

 An incompressible CVRNewtonian viscosity model.

 SourceFiles

 CVRNewtonian.H

 ---/

 #ifndef CVRNewtonian_H

 #define CVRNewtonian_H

 #include "viscosityModel.H"

 #include "dimensionedScalar.H"

 #include "volFields.H"

 // * //

 namespace Foam

 {

 namespace viscosityModels

 {

 /*---*\

 Class CVRNewtonian Declaration

 ---/

 class CVRNewtonian

 :

 public viscosityModel

 {

 // Private data

 dimensionedScalar nu0_;

 volScalarField nu_;

 public:

 //- Runtime type information

 TypeName("CVRNewtonian");

 // Constructors

 //- Construct from components

 CVRNewtonian

 (

 const word& name,

 const dictionary& viscosityProperties,

 const volVectorField& U,

 const surfaceScalarField& phi

);

 //- Destructor

 ~CVRNewtonian()

 {}

 // Member Functions

 //- Return the laminar viscosity

 tmp<volScalarField> nu() const

 {

 return nu_;

 }

 tmp<volScalarField> nuws() const

 {

 return nu_;

 }

 //- Return the laminar viscosity for patch

 tmp<scalarField> nu(const label patchi) const
 {
 return nu_.boundaryField()[patchi];
 }

 //- Correct the laminar viscosity (not appropriate, viscosity constant)
 void correct()
 {}

112

 //- Read transportProperties dictionary
 bool read(const dictionary& viscosityProperties);
 };

 // * //

 } // End namespace viscosityModels
 } // End namespace Foam

 // * //

 #endif

 // *** //

C.4. CVRNewtonian.C
 /*---*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation

 \\/ M anipulation |

 License

 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

 ---/

 #include "CVRNewtonian.H"

 #include "addToRunTimeSelectionTable.H"

 #include "surfaceFields.H"

 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

 namespace Foam

 {

 namespace viscosityModels

 {

 defineTypeNameAndDebug(CVRNewtonian, 0);

 addToRunTimeSelectionTable(viscosityModel, CVRNewtonian, dictionary);

 }

 }

 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

 Foam::viscosityModels::CVRNewtonian::CVRNewtonian

 (

 const word& name,

 const dictionary& viscosityProperties,

 const volVectorField& U,

 const surfaceScalarField& phi

)

 :

 viscosityModel(name, viscosityProperties, U, phi),

 nu0_("nu", dimViscosity, viscosityProperties_),

 nu_

 (

 IOobject

 (

 name,

 U_.time().timeName(),

 U_.db(),

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 U_.mesh(),

 nu0_

)

 {}

 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

113

 bool Foam::viscosityModels::CVRNewtonian::read

 (

 const dictionary& viscosityProperties

)

 {

 viscosityModel::read(viscosityProperties);

 viscosityProperties_.lookup("nu") >> nu0_;

 nu_ = nu0_;

 return true;

 }

 // *** //

114

Appendix D. Simulation case files

D.1. Simulation 1

D.1.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 bottom

 {

 type zeroGradient;

 }

 leftwall

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.2. File 0/csand
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0;

 }

 leftwall

 {

115

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 bottom

 {

 type zeroGradient;

 }

 atmosphere

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.3. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 atmosphere

 {

 type totalPressure;

 p0 uniform 0;

 }

 ".*"

 {

 type fixedFluxPressure;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.4. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.004;

116

 }

 bottom

 {

 type noSlip;

 }

 leftwall

 {

 type noSlip;

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.5. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.004;

 }

 leftwall

 {

 type noSlip;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 value uniform (0 0 0);

 }

 bottom

 {

 type noSlip;// fixedValue;

 // value uniform (0 0 0);

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.6. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

117

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 leftwall

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 bottom

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 atmosphere

 {

 type fixedValue; //pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.1.7. File constant/g
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0.4898 -9.80 0);

 // *** //

D.1.8. File constant/transportProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

118

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06;

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 cfine cfine [0 0 0 0 0 0 0] 0.151;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.008006; //0.008; //0.035

 nu0 [0 2 -1 0 0 0 0] 0.00016012; // 0.0000179;

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1249;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.008006; //0.008; //0.035

 nu0 [0 2 -1 0 0 0 0] 0.00016012; // 0.0000179;

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.1.9. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

D.1.10. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

119

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (0 0 0)

 (20 0 0)

 (20 0.3 0)

 (0 0.3 0)

 (0 0 0.1)

 (20 0 0.1)

 (20 0.3 0.1)

 (0 0.3 0.1)

 (-1 0 0)

 (-1 0.3 0)

 (-1 0 0.1)

 (-1 0.3 0.1)

);

 blocks

 (

 hex (0 1 2 3 4 5 6 7) (120 80 1) simpleGrading (3 5 1)

 hex (8 0 3 9 10 4 7 11) (120 80 1) simpleGrading (1 5 1)

);

 boundary

 (

 leftwall

 {

 type patch;

 faces

 (

 (8 10 11 9)

);

 }

 inlet

 {

 type patch;

 faces

 (

 (0 4 10 8)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (1 2 6 5)

);

 }

 bottom

 {

 type wall;

 faces

 (

 (1 5 4 0)

);

 }

 atmosphere

 {

 type wall;

 faces

 (

 (2 3 7 6)

 (3 9 11 7)

);

 }

 front

 {

 type empty;

 faces

 (

 (4 5 6 7)

 (10 4 7 11)

120

);

 }

 back

 {

 type empty;

 faces

 (

 (0 3 2 1)

 (0 8 9 3)

);

 }
);
 mergePatchPairs();
 // *** //

D.1.11. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 2000;

 deltaT 0.01;

 writeControl adjustableRunTime;

 writeInterval 1;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 6;

 writeCompression uncompressed;

 timeFormat general;

 timePrecision 6;

 runTimeModifiable yes;

 adjustTimeStep yes;

 maxCo 1;

 maxAlphaCo 1;

 maxDeltaT 1;

 functions

 {

 #includeFunc singleGraph

 }

 // *** //

D.1.12. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

121

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 6;

 method simple;

 simpleCoeffs

 {

 n (6 1 1);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (2 2 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.1.13. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

122

 // *** //

D.1.14. File system/fvSolution
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "(U).*"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

123

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

 }

 relaxationFactors

 {

 equations

 {

 ".*" 1;
 }
 }
 // *** //

D.1.15. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.25 0 0) (15 0.05 0.1);

 fieldValues

 (

 volScalarFieldValue alpha.water 1

);

 }

);

 // *** //

D.1.16. File system/singlegraph
 /*--------------------------------*- C++ -*----------------------------------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Web: www.OpenFOAM.org

 \\/ M anipulation |

 Description

 Writes graph data for specified fields along a line, specified by start

 and end points.

 ---/

 start (19.5 0 0.05);

 end (19.5 0.3 0.05);

 fields (U alpha.water);

 // Sampling and I/O settings

 #includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

 // Override settings here, e.g.

 // setConfig { type midPoint; }

 // Must be last entry

 #includeEtc "caseDicts/postProcessing/graphs/graph.cfg"

124

 // *** //

D.2. Simulation 2 and 3

D.2.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 bottom

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 value uniform 0;

 }

 leftwall

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.2.2. File 0/csand
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0.12;

125

 }

 leftwall

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 bottom

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.2.3. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 atmosphere

 {

 type totalPressure;

 p0 uniform 0;

 }

 ".*"

 {

 type fixedFluxPressure;

 value uniform 0;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.2.4. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

126

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.004;

 }

 bottom

 {

 type noSlip;

 }

 leftwall

 {

 type noSlip;

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.2.5. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.004;

 }

 leftwall

 {

 type noSlip;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 value uniform (0 0 0);

 }

 bottom

 {

 type noSlip;

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

127

 // *** //

D.2.6. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 leftwall

 {

 type zeroGradient;

 }

 outlet

 {

 type zeroGradient;

 }

 bottom

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 atmosphere

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.2.7. File constant/g
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0.4898 -9.80 0);

 // *** //

D.2.8. File constant/transportProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

128

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06;

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.037870; //=47.3/1249

 nu0 [0 2 -1 0 0 0 0] 1.71337e-5; // =0.0214/1249

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1249;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.037870; //=47.3/1249

 nu0 [0 2 -1 0 0 0 0] 1.71337e-5; // =0.0214/1249

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.2.9. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

129

D.2.10. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (0 0 0)

 (20 0 0)

 (20 0.3 0)

 (0 0.3 0)

 (0 0 0.1)

 (20 0 0.1)

 (20 0.3 0.1)

 (0 0.3 0.1)

 (-1 0 0)

 (-1 0.3 0)

 (-1 0 0.1)

 (-1 0.3 0.1)

);

 blocks

 (

 hex (0 1 2 3 4 5 6 7) (120 80 1) simpleGrading (3 5 1)

 hex (8 0 3 9 10 4 7 11) (120 80 1) simpleGrading (1 5 1)

);

 boundary

 (

 leftwall

 {

 type patch;

 faces

 (

 (8 10 11 9)

);

 }

 inlet

 {

 type patch;

 faces

 (

 (0 4 10 8)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (1 2 6 5)

);

 }

 bottom

 {

 type wall;

 faces

 (

 (1 5 4 0)

);

 }

 atmosphere

 {

 type wall;

 faces

 (

 (2 3 7 6)

 (3 9 11 7)

);

 }

 front

 {

130

 type empty;

 faces

 (

 (4 5 6 7)

 (10 4 7 11)

);

 }

 back

 {

 type empty;

 faces

 (

 (0 3 2 1)

 (0 8 9 3)
);
 }
);

 mergePatchPairs();

 // *** //

D.2.11. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 1200;

 deltaT 0.01;

 writeControl adjustableRunTime;

 writeInterval 5;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 8;

 writeCompression uncompressed;

 timeFormat general;

 timePrecision 8;

 runTimeModifiable yes;

 adjustTimeStep yes;

 maxCo 1;

 maxAlphaCo 1;

 maxDeltaT 1;

 functions

 {

 #includeFunc singleGraph

 writeFields

 {

 type writeObjects;

 functionObjectLibs ("libutilityFunctionObjects.so");

 objects

 (

131

 rho

);

 writeControl outputTime;

 writeInterval 5;

 }

 }

 // *** //

D.2.12. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 6;

 method simple;

 simpleCoeffs

 {

 n (6 1 1);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (2 2 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.2.13. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

132

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

 // *** //

D.2.14. File system/fvSolution
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

133

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "(U).*"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

 }

 relaxationFactors

 {

 equations

 {

 ".*" 1;
 }
 }
 // *** //

D.2.15. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.25 0 0) (15 0.05 0.1);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

 // *** //

134

D.2.16. File system/singlegraph
 /*--------------------------------*- C++ -*----------------------------------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Web: www.OpenFOAM.org

 \\/ M anipulation |

 Description

 Writes graph data for specified fields along a line, specified by start

 and end points.

 ---/

 start (15 0 0.05);

 end (15 0.3 0.05);

 fields (U alpha.water csand);

 // Sampling and I/O settings

 #includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

 // Override settings here, e.g.

 // setConfig { type midPoint; }

 // Must be last entry

 #includeEtc "caseDicts/postProcessing/graphs/graph.cfg"

 // *** //

D.3. Simulation 4

D.3.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 leftWall

 {

 type zeroGradient;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.2. File 0/csand – Simulation 4a
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

135

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0;

 }

 leftWall

 {

 type zeroGradient;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.3. File 0/csand – Simulation 4b and 4c
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0.12;

 }

 leftWall

 {

 type zeroGradient;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

136

 {

 type empty;

 }

 }

 // *** //

D.3.4. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 outlet

 {

 type prghTotalPressure;

 p0 uniform 0;

 }

 ".*"

 {

 type fixedFluxPressure;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.5. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type pressureInletOutletVelocity;

 phi phi;

 value uniform (0 0 0);

 }

 pipeWall

137

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.6. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type pressureInletOutletVelocity;

 phi phi;

 value uniform (0 0 0);

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.7. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

138

 type fixedValue;

 value uniform (0 0 0);

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.3.8. File constant/g
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.76646 0.92320);

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.3.9. File constant/transportProperties – Simulation 4a and 4b
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06; //188

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

139

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.0363008; //=47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1303;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.0363008; //=47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-05; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.3.10. File constant/transportProperties – Simulation 4c
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06; //188

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.0313245; //=47.3/1510

 nu0 [0 2 -1 0 0 0 0] 1.4172185e-05; // =0.0214/1510

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1510;

 TalmonCoeffs

140

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.0313245; //=47.3/1510

 nu0 [0 2 -1 0 0 0 0] 1.4172185e-05; // =0.0214/1510

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.3.11. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

D.3.12. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (-0.0261166666666667 0.0805 0) // 0

 (0.0261166666666667 0.0805 0) // 1

 (-0.0261166666666667 0.0522333333333333 0) // 2

 (0.0261166666666667 0.0522333333333333 0) // 3

 (-0.055401816305966 0.022948183694034 0) // 4

 (0.055401816305966 0.022948183694034 0) // 5

 (0.0783204954019061 0.0805 0) // 6

 (-0.0783204954019061 0.0805 0) // 7

 (-0.0261166666666667 0.108766666666667 0) // 8

 (0.0261166666666667 0.108766666666667 0) // 9

 (0.055401816305966 0.133751816305966 0) // 10

 (-0.055401816305966 0.133751816305966 0) // 11

 (-0.0261166666666667 0.0805 15) // 12

 (0.0261166666666667 0.0805 15) // 13

 (-0.0261166666666667 0.0522333333333333 15) // 14

 (0.0261166666666667 0.0522333333333333 15) // 15

 (-0.055401816305966 0.022948183694034 15) // 16

 (0.055401816305966 0.022948183694034 15) // 17

 (0.0783204954019061 0.0805 15) // 18

141

 (-0.0783204954019061 0.0805 15) // 19

 (-0.0261166666666667 0.108766666666667 15) // 20

 (0.0261166666666667 0.108766666666667 15) // 21

 (0.055401816305966 0.133751816305966 15) // 22

 (-0.055401816305966 0.133751816305966 15) // 23

 (-0.0261166666666667 0.0805 -2) // 24

 (0.0261166666666667 0.0805 -2) // 25

 (-0.0261166666666667 0.0522333333333333 -2) // 26

 (0.0261166666666667 0.0522333333333333 -2) // 27

 (-0.055401816305966 0.022948183694034 -2) // 28

 (0.055401816305966 0.022948183694034 -2) // 29

 (0.0783204954019061 0.0805 -2) // 30

 (-0.0783204954019061 0.0805 -2) // 31

 (-0.0261166666666667 0.108766666666667 -2) // 32

 (0.0261166666666667 0.108766666666667 -2) // 33

 (0.055401816305966 0.133751816305966 -2) // 34

 (-0.055401816305966 0.133751816305966 -2) // 35

);

 edges

 (

 arc 7 4 (-0.0730410843293006 0.05 0) //

 arc 4 5 (0 0 0) //

 arc 5 6 (0.0730410843293006 0.05 0) //

 arc 6 10 (0.0730410843293006 0.1067 0) //

 arc 10 11 (0 0.1567 0) //

 arc 11 7 (-0.0730410843293006 0.1067 0) //

 arc 19 16 (-0.0730410843293006 0.05 15) //

 arc 16 17 (0 0 15) //

 arc 17 18 (0.0730410843293006 0.05 15) //

 arc 18 22 (0.0730410843293006 0.1067 15) //

 arc 22 23 (0 0.1567 15) //

 arc 23 19 (-0.0730410843293006 0.1067 15) //

 arc 31 28 (-0.0730410843293006 0.05 -2) //

 arc 28 29 (0 0 -2) //

 arc 29 30 (0.0730410843293006 0.05 -2) //

 arc 30 34 (0.0730410843293006 0.1067 -2) //

 arc 34 35 (0 0.1567 -2) //

 arc 35 31 (-0.0730410843293006 0.1067 -2) //

);

 blocks

 (

 //main pipe

 hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1)

 hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1)

 hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1)

 hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1)

 hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1)

 hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1)

 hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1)

 hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1)

 //inlet

 hex (28 26 24 31 4 2 0 7) (10 5 40) simpleGrading (3 1 1)

 hex (29 27 26 28 5 3 2 4) (10 10 40) simpleGrading (3 1 1)

 hex (30 25 27 29 6 1 3 5) (10 5 40) simpleGrading (3 1 1)

 hex (34 33 25 30 10 9 1 6) (10 5 40) simpleGrading (3 1 1)

 hex (35 32 33 34 11 8 9 10) (10 10 40) simpleGrading (3 1 1)

 hex (31 24 32 35 7 0 8 11) (10 5 40) simpleGrading (3 1 1)

 hex (24 26 27 25 0 2 3 1) (5 10 40) simpleGrading (1 1 1)

 hex (32 24 25 33 8 0 1 9) (5 10 40) simpleGrading (1 1 1)

);

 boundary
 (
 inlet
 {
 type patch;
 faces
 (
 (29 5 4 28)
);
 }
 outlet
 {
 type patch;
 faces
 (
 (12 14 15 13)
 (13 21 20 12)
 (16 14 12 19)
 (17 15 14 16)
 (18 13 15 17)
 (22 21 13 18)
 (23 20 21 22)
 (19 12 20 23)

142

);
 }
 pipeWall
 {
 type wall;
 faces
 (
 (11 7 19 23)
 (7 4 16 19)
 (4 5 17 16)
 (5 6 18 17)
 (6 10 22 18)
 (35 31 7 11)
 (31 28 4 7)
 (29 30 6 5)
 (30 34 10 6)
 (34 35 11 10)
 (10 11 23 22)
);
 }
 leftWall
 {
 type wall;
 faces
 (
 (24 25 27 26)
 (24 26 28 31)
 (26 27 29 28)
 (27 25 30 29)
 (24 32 33 25)
 (30 25 33 34)
 (24 31 35 32)
 (34 33 32 35)
);
 }
);

 mergePatchPairs();

 // *** //

D.3.13. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 1000;

 deltaT 0.01;

 writeControl adjustableRunTime;

 writeInterval 1;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 8;

 writeCompression uncompressed;

 timeFormat general;

 timePrecision 8;

143

 runTimeModifiable no;

 adjustTimeStep no;

 maxCo 1;

 maxAlphaCo 1;

 maxDeltaT 1;

 functions

 {

 writeFields

 {

 type writeObjects;

 functionObjectLibs ("libutilityFunctionObjects.so");

 objects

 (

 nu

 nuws

 rho

);

 writeControl outputTime;

 writeInterval 1;

 }

 interfaceHeight1

 {

 type interfaceHeight;

 libs ("libfieldFunctionObjects.so");

 alpha alpha.water;

 locations ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15));

 }

 }

 // *** //

D.3.14. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 5;

 method simple;

 simpleCoeffs

 {

 n (1 1 5);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (1 1 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.3.15. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

144

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

 // *** //

D.3.16. File system/fvSolution
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

145

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "(U).*"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

 }

 relaxationFactors

 {

 equations

 {

 ".*" 1;
 }
 }

 // *** //

D.3.17. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

146

 location "system";

 object setFieldsDict;

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.07835 0 0) (0.07835 0.07835 15);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

 // *** //

D.4. Simulation 5

D.4.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 leftWall

 {

 type zeroGradient;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.2. File 0/csand
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

147

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0.154;

 type codedFixedValue;

 value uniform 0;

 // Name of generated boundary condition

 redirectType rampedFixedValue;

 code

 #{

 const scalar t = this->db().time().value();

 operator==(min(0.154, 0.154/100*t));

 #};

 }

 leftWall

 {

 type zeroGradient;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.3. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedFluxPressure;

 }

 outlet

 {

 type prghPressure;

 p uniform 0;

 }

 leftWall

 {

 type zeroGradient;

 }

 pipeWall

 {

148

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.4. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.5. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

149

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.6. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 leftWall

 {

 type noSlip;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.4.7. File constant/g – Simulation 5a
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

150

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.76646 0.92320);

 // 6.4 deg (0 -9.74886 1.09351)

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.4.8. File constant/g – Simulation 5b
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.74886 1.09351);

 // 6.4 deg (0 -9.74886 1.09351)

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.4.9. File constant/g – Simulation 5c
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.72829 1.26348);

 // 7.4 deg (0 -9.72829 1.26348)

 // 6.4 deg (0 -9.74886 1.09351)

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.4.10. File constant/transportProperties – Simulation 5a
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

151

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06; //188

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151; // this is not getting used

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1303;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.4.11. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

D.4.12. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

152

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (-0.0261166666666667 0.0805 0) // 0

 (0.0261166666666667 0.0805 0) // 1

 (-0.0261166666666667 0.0522333333333333 0) // 2

 (0.0261166666666667 0.0522333333333333 0) // 3

 (-0.055401816305966 0.022948183694034 0) // 4

 (0.055401816305966 0.022948183694034 0) // 5

 (0.0783204954019061 0.0805 0) // 6

 (-0.0783204954019061 0.0805 0) // 7

 (-0.0261166666666667 0.108766666666667 0) // 8

 (0.0261166666666667 0.108766666666667 0) // 9

 (0.055401816305966 0.133751816305966 0) // 10

 (-0.055401816305966 0.133751816305966 0) // 11

 (-0.0261166666666667 0.0805 15) // 12

 (0.0261166666666667 0.0805 15) // 13

 (-0.0261166666666667 0.0522333333333333 15) // 14

 (0.0261166666666667 0.0522333333333333 15) // 15

 (-0.055401816305966 0.022948183694034 15) // 16

 (0.055401816305966 0.022948183694034 15) // 17

 (0.0783204954019061 0.0805 15) // 18

 (-0.0783204954019061 0.0805 15) // 19

 (-0.0261166666666667 0.108766666666667 15) // 20

 (0.0261166666666667 0.108766666666667 15) // 21

 (0.055401816305966 0.133751816305966 15) // 22

 (-0.055401816305966 0.133751816305966 15) // 23

);

 edges

 (

 arc 7 4 (-0.0730410843293006 0.05 0) //

 arc 4 5 (0 0 0) //

 arc 5 6 (0.0730410843293006 0.05 0) //

 arc 6 10 (0.0730410843293006 0.1067 0) //

 arc 10 11 (0 0.1567 0) //

 arc 11 7 (-0.0730410843293006 0.1067 0) //

 arc 19 16 (-0.0730410843293006 0.05 15) //

 arc 16 17 (0 0 15) //

 arc 17 18 (0.0730410843293006 0.05 15) //

 arc 18 22 (0.0730410843293006 0.1067 15) //

 arc 22 23 (0 0.1567 15) //

 arc 23 19 (-0.0730410843293006 0.1067 15) //

);

 blocks

 (

 hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1)

 hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1)

 hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1)

 hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1)

 hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1)

 hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1)

 hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1)

 hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1)

);

 boundary

 (

 inlet

 {

 type patch;

 faces

 (

 (0 1 3 2)

 (0 2 4 7)

 (2 3 5 4)

 (3 1 6 5)

);

 }

 leftWall

 {

153

 type patch;

 faces

 (

 (0 8 9 1)

 (6 1 9 10)

 (0 7 11 8)

 (10 9 8 11)

);

 }

 outlet

 {
 type patch;
 faces
 (
 (12 14 15 13)
 (13 21 20 12)
 (16 14 12 19)
 (17 15 14 16)
 (18 13 15 17)
 (22 21 13 18)
 (23 20 21 22)
 (19 12 20 23)
);
 }
 pipeWall
 {
 type wall;
 faces
 (
 (11 7 19 23)
 (7 4 16 19)
 (4 5 17 16)
 (5 6 18 17)
 (6 10 22 18)
 (10 11 23 22)
);
 }
);

 mergePatchPairs();

 // *** //

D.4.13. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 600;

 deltaT 0.005;

 writeControl adjustableRunTime; // adjustableRunTime // timeStep

 writeInterval 1;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 8;

 writeCompression uncompressed;

 timeFormat general;

154

 timePrecision 8;

 runTimeModifiable no;

 adjustTimeStep no;

 maxCo 0.5;

 maxAlphaCo 0.5;

 maxDeltaT 0.5;

 functions

 {

 writeFields

 {

 type writeObjects;

 functionObjectLibs ("libutilityFunctionObjects.so");

 objects

 (

 nu

 nuws

 rho

 rho_cf

);

 writeControl outputTime;

 writeInterval 1;

 }

 interfaceHeight1

 {

 type interfaceHeight;

 libs ("libfieldFunctionObjects.so");

 alpha alpha.water;

 locations ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15));

 }

 }

 // *** //

D.4.14. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 5;

 method simple;

 simpleCoeffs

 {

 n (1 1 5);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (1 1 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.4.15. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

155

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

 // *** //

D.4.16. File system/fvSolution – Simulation 5a and 5b
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

156

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "U"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 2;

 //nOuterCorrectors 2;

 nNonOrthogonalCorrectors 0;

 }

 relaxationFactors

 {

 equations

 {

 ".*" 1;

 }
 }

 // *** //

D.4.17. File system/fvSolution – Simulation 5c
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

157

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "U"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 2;

 nOuterCorrectors 2;

 nNonOrthogonalCorrectors 0;

 }

 relaxationFactors

 {

 equations

 {

 ".*" 1;

158

 }
 }

 // *** //

D.4.18. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.07835 0 0) (0.07835 0.07835 15);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

 // *** //

D.5. Simulation 6

D.5.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 leftWall

 {

 type fixedValue;

 value uniform 0;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type zeroGradient;

159

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.2. File 0/csand
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0;

 }

 leftWall

 {

 type fixedValue;

 value uniform 0;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.3. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 leftWall

 {

 type prghTotalPressure;

 p0 uniform 0;

 }

160

 ".*"

 {

 type fixedFluxPressure;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.4. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.5. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

161

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.6. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 leftWall

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.5.7. File constant/g
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

162

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.76646 0.92320);

 // 6.4 deg (0 -9.74886 1.09351)

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.5.8. File constant/transportProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06; //188

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151; // this is not getting used

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1303;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

163

D.5.9. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

D.5.10. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (-0.0261166666666667 0.0805 0) // 0

 (0.0261166666666667 0.0805 0) // 1

 (-0.0261166666666667 0.0522333333333333 0) // 2

 (0.0261166666666667 0.0522333333333333 0) // 3

 (-0.055401816305966 0.022948183694034 0) // 4

 (0.055401816305966 0.022948183694034 0) // 5

 (0.0783204954019061 0.0805 0) // 6

 (-0.0783204954019061 0.0805 0) // 7

 (-0.0261166666666667 0.108766666666667 0) // 8

 (0.0261166666666667 0.108766666666667 0) // 9

 (0.055401816305966 0.133751816305966 0) // 10

 (-0.055401816305966 0.133751816305966 0) // 11

 (-0.0261166666666667 0.0805 15) // 12

 (0.0261166666666667 0.0805 15) // 13

 (-0.0261166666666667 0.0522333333333333 15) // 14

 (0.0261166666666667 0.0522333333333333 15) // 15

 (-0.055401816305966 0.022948183694034 15) // 16

 (0.055401816305966 0.022948183694034 15) // 17

 (0.0783204954019061 0.0805 15) // 18

 (-0.0783204954019061 0.0805 15) // 19

 (-0.0261166666666667 0.108766666666667 15) // 20

 (0.0261166666666667 0.108766666666667 15) // 21

 (0.055401816305966 0.133751816305966 15) // 22

 (-0.055401816305966 0.133751816305966 15) // 23

);

 edges

 (

 arc 7 4 (-0.0730410843293006 0.05 0) //

 arc 4 5 (0 0 0) //

 arc 5 6 (0.0730410843293006 0.05 0) //

 arc 6 10 (0.0730410843293006 0.1067 0) //

 arc 10 11 (0 0.1567 0) //

 arc 11 7 (-0.0730410843293006 0.1067 0) //

 arc 19 16 (-0.0730410843293006 0.05 15) //

 arc 16 17 (0 0 15) //

 arc 17 18 (0.0730410843293006 0.05 15) //

 arc 18 22 (0.0730410843293006 0.1067 15) //

 arc 22 23 (0 0.1567 15) //

 arc 23 19 (-0.0730410843293006 0.1067 15) //

);

164

 blocks

 (

 hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1)

 hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1)

 hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1)

 hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1)

 hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1)

 hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1)

 hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1)

 hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1)

);

 boundary

 (

 inlet

 {

 type patch;

 faces

 (

 (0 1 3 2)

 (0 2 4 7)

 (2 3 5 4)

 (3 1 6 5)

);

 }

 leftWall

 {

 type patch;

 faces

 (

 (0 8 9 1)

 (6 1 9 10)

 (0 7 11 8)

 (10 9 8 11)

);

 }

 outlet

 {
 type patch;
 faces
 (
 (12 14 15 13)
 (13 21 20 12)
 (16 14 12 19)
 (17 15 14 16)
 (18 13 15 17)
 (22 21 13 18)
 (23 20 21 22)
 (19 12 20 23)
);
 }
 pipeWall
 {
 type wall;
 faces
 (
 (11 7 19 23)
 (7 4 16 19)
 (4 5 17 16)
 (5 6 18 17)
 (6 10 22 18)
 (10 11 23 22)
);
 }
);

 mergePatchPairs();

 // *** //

D.5.11. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

165

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 300;

 deltaT 0.005;

 writeControl timeStep; // adjustableRunTime // timeStep

 writeInterval 1;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 8;

 writeCompression uncompressed;

 timeFormat general;

 timePrecision 8;

 runTimeModifiable no;

 adjustTimeStep no;

 maxCo 0.5;

 maxAlphaCo 0.5;

 maxDeltaT 0.5;

 functions

 {

 writeFields

 {

 type writeObjects;

 functionObjectLibs ("libutilityFunctionObjects.so");

 objects

 (

 nu

 nuws

 rho

 rho_cf

);

 writeControl outputTime;

 writeInterval 1;

 }

 interfaceHeight1

 {

 type interfaceHeight;

 libs ("libfieldFunctionObjects.so");

 alpha alpha.water;

 locations ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15));

 }

 }

 // *** //

D.5.12. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 5;

 method simple;

166

 simpleCoeffs

 {

 n (1 1 5);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (1 1 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.5.13. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

 // *** //

D.5.14. File system/fvSolution
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

167

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother GaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner

 {

 preconditioner GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

 }

 tolerance 1e-5;

 relTol 0;

 maxIter 50;

 }

 p_rgh

 {

 solver GAMG;

 tolerance 5e-9;

 relTol 0.01;

 smoother GaussSeidel;

 maxIter 50;

 };

 p_rghFinal

 {

 $p_rgh;

 tolerance 5e-9;

 relTol 0;

 }

 "U"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 nSweeps 1;

 tolerance 1e-6;

 relTol 0.1;

 };

 }

 PIMPLE

 {

 momentumPredictor no;

 nCorrectors 5;

 nNonOrthogonalCorrectors 0;

 }

168

 relaxationFactors

 {

 equations

 {

 ".*" 1;
 }
 }

 // *** //

D.5.15. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.07835 0 0) (0.07835 0.07835 15);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

 // *** //

D.6. Simulation 7

D.6.1. File 0/alpha.water
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alpha.water;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 1;

 }

 leftWall

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

169

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.2. File 0/csand
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object csand;

 }

 // * //

 dimensions [0 0 0 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform 0.154;

 }

 leftWall

 {

 type zeroGradient;

 }

 atmosphere

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

 outlet

 {

 type zeroGradient;

 }

 pipeWall

 {

 type zeroGradient;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.3. File 0/p_rgh
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

170

 object p_rgh;

 }

 // * //

 dimensions [1 -1 -2 0 0 0 0];

 boundaryField

 {

 atmosphere

 {

 type prghPressure;

 p uniform 0;

 }

 ".*"

 {

 type fixedFluxPressure;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.4. File 0/U
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type noSlip;

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.5. File 0/Us
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

171

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object Us;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type flowRateInletVelocity;

 volumetricFlowRate constant 0.005;

 }

 leftWall

 {

 type noSlip;

 }

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0);

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.6. File 0/wsvol
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object wsvol;

 }

 // * //

 dimensions [0 1 -1 0 0 0 0];

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 leftWall

 {

 type zeroGradient;

 }

 atmosphere

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 outlet

 {

 type zeroGradient;

172

 }

 pipeWall

 {

 type noSlip;

 }

 defaultFaces

 {

 type empty;

 }

 }

 // *** //

D.6.7. File constant/g
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 -9.76646 0.92320);

 // 6.4 deg (0 -9.74886 1.09351)

 // 5.4 deg (0 -9.76646 0.92320)

 // 5.0 deg (0 -9.77267 0.85499)

 // 4.5 deg (0 -9.77976 0.76968)

 // 2.86deg (0 -9.79778 0.48948)

 // *** //

D.6.8. File constant/transportProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * //

 Diam Diam [0 1 0 0 0 0 0] 188e-06; //188

 rhos rhos [1 -3 0 0 0 0 0] 2650;

 rhow rhow [1 -3 0 0 0 0 0] 1000;

 cfine cfine [0 0 0 0 0 0 0] 0.151; // this is not getting used

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 phases (water air);

 water

173

 {

 transportModel Talmon;

 nu [0 2 -1 0 0 0 0] 1e-02;

 rho [1 -3 0 0 0 0 0] 1303;

 TalmonCoeffs

 {

 Phasename csand;

 coef [0 0 1 0 0 0 0] 50;

 cmax cmax [0 0 0 0 0 0 0] 0.6;

 alpha0 [0 0 0 0 0 0 0] 0.27;

 tau0 [0 2 -2 0 0 0 0] 0.036301; // =47.3/1303

 nu0 [0 2 -1 0 0 0 0] 1.64236e-5; // =0.0214/1303

 numax [0 2 -1 0 0 0 0] 1000e-2;

 }

 }

 air

 {

 transportModel CVRNewtonian;

 nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho [1 -3 0 0 0 0 0] 1;

 }

 sigma [1 0 -2 0 0 0 0] 0.07;

 // *** //

D.6.9. File constant/turbulenceProperties
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * //

 simulationType laminar;

 // *** //

D.6.10. File system/blockMeshDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * //

 convertToMeters 1;

 vertices

 (

 (-0.0261166666666667 0.07835 0) // 0

 (0.0261166666666667 0.07835 0) // 1

 (-0.0261166666666667 0.0522333333333333 0) // 2

 (0.0261166666666667 0.0522333333333333 0) // 3

 (-0.055401816305966 0.022948183694034 0) // 4

 (0.055401816305966 0.022948183694034 0) // 5

 (0.07835 0.07835 0) // 6

 (-0.07835 0.07835 0) // 7

 (-0.0261166666666667 0.1567 0) // 8

 (0.0261166666666667 0.1567 0) // 9

 (0.07835 0.1567 0) // 10

 (-0.07835 0.1567 0) // 11

174

 (-0.0261166666666667 0.07835 15) // 12

 (0.0261166666666667 0.07835 15) // 13

 (-0.0261166666666667 0.0522333333333333 15) // 14

 (0.0261166666666667 0.0522333333333333 15) // 15

 (-0.055401816305966 0.022948183694034 15) // 16

 (0.055401816305966 0.022948183694034 15) // 17

 (0.07835 0.07835 15) // 18

 (-0.07835 0.07835 15) // 19

 (-0.0261166666666667 0.1567 15) // 20

 (0.0261166666666667 0.1567 15) // 21

 (0.07835 0.1567 15) // 22

 (-0.07835 0.1567 15) // 23

);

 edges

 (

 arc 7 4 (-0.0730410843293006 0.05 0) //

 arc 4 5 (0 0 0) //

 arc 5 6 (0.0730410843293006 0.05 0) //

 arc 19 16 (-0.0730410843293006 0.05 15) //

 arc 16 17 (0 0 15) //

 arc 17 18 (0.0730410843293006 0.05 15) //

);

 blocks

 (

 hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1)

 hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1)

 hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1)

 hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1)

 hex (10 9 1 6 22 21 13 18) (10 10 40) simpleGrading (3 1 1)

 hex (7 0 8 11 19 12 20 23) (10 10 40) simpleGrading (3 1 1)

 hex (8 0 1 9 20 12 13 21) (10 10 40) simpleGrading (1 1 1)

);

 boundary

 (

 inlet

 {

 type patch;

 faces

 (

 (0 1 3 2)

 (0 2 4 7)

 (2 3 5 4)

 (3 1 6 5)

);

 }

 leftWall

 {

 type patch;

 faces

 (

 (0 8 9 1)

 (6 1 9 10)

 (0 7 11 8)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (12 14 15 13)

 (12 14 16 19)

 (14 15 17 16)

 (15 13 18 17)

 (12 20 21 13)
 (18 13 21 22)
 (12 19 23 20)
);
 }
 pipeWall
 {
 type wall;
 faces
 (
 (11 7 19 23)
 (7 4 16 19)
 (4 5 17 16)
 (5 6 18 17)
 (6 10 22 18)
);
 }
 atmosphere
 {
 type wall;
 faces

175

 (
 (8 11 23 20)
 (9 8 20 21)
 (10 9 21 22)
);
 }
);

 mergePatchPairs();

 // *** //

D.6.11. File system/controlDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * //

 application interFoamPeter;

 startFrom startTime;

 startTime 0;

 stopAt endTime;

 endTime 600;

 deltaT 0.01;

 writeControl timeStep; // adjustableRunTime // timeStep

 writeInterval 1;

 purgeWrite 0;

 writeFormat ascii;

 writePrecision 8;

 writeCompression uncompressed;

 timeFormat general;

 timePrecision 8;

 runTimeModifiable yes;

 adjustTimeStep yes;

 maxCo 1;

 maxAlphaCo 1;

 maxDeltaT 1;

 functions

 {

 writeFields

 {

 type writeObjects;

 functionObjectLibs ("libutilityFunctionObjects.so");

 objects

 (

 nu

 nuws

 rho

 rho_cf

);

 writeControl outputTime;

 writeInterval 1;

 }

 interfaceHeight1

 {

 type interfaceHeight;

 libs ("libfieldFunctionObjects.so");

176

 alpha alpha.water;

 locations ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15));

 }

 }

 // *** //

D.6.12. File system/decomposeparDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

 }

 // * //

 numberOfSubdomains 5;

 method simple;

 simpleCoeffs

 {

 n (1 1 5);

 delta 0.001;

 }

 hierarchicalCoeffs

 {

 n (1 1 1);

 delta 0.001;

 order xyz;

 }

 manualCoeffs

 {

 dataFile "";

 }

 distributed no;

 roots ();

 // *** //

D.6.13. File system/fvSchemes
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * //

 ddtSchemes

 {

 default Euler;

 }

 gradSchemes

 {

 default Gauss linear;

 }

 divSchemes

 {

 default none;

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

177

 div(phirb,alpha) Gauss linear;

 div((interpolate(Us)&S),csand) Gauss upwind;

 "div\(phi,(k|omega)\)" Gauss upwind;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }

 laplacianSchemes

 {

 default Gauss linear corrected;

 }

 interpolationSchemes

 {

 default linear;

 }

 snGradSchemes

 {

 default corrected;

 }

 // *** //

D.6.14. File system/fvSolution
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 4.1 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * //

 solvers

 {

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 5;

 cAlpha 1.2;

 MULESCorr yes;

 nLimiterIter 3;

 solver smoothSolver;

 smoother GaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 csand

 {

 solver GAMG;

 tolerance 1e-6;

 relTol 0.1;

 smoother symGaussSeidel;

 }

 csandFinal

 {

 $csand;

 tolerance 5e-9;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-5;

 relTol 0;

 //preconditioner

 //{

 // preconditioner GAMG;

 // tolerance 1e-5;

 // relTol 0;

 // smoother GaussSeidel;

 //}

 //tolerance 1e-5;

 //relTol 0;

178

 //maxIter 50;

 }

 p_rgh

 {

 //solver GAMG;

 //tolerance 5e-9;

 //relTol 0.01;

 //smoother GaussSeidel;

 //maxIter 50;

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0.05;

 }

 p_rghFinal

 {

 $p_rgh;

 relTol 0;

 }

 U

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-6;

 relTol 0;

 }

 UFinal

 {

 $U;

 tolerance 5e-7;

 relTol 0;

 }

 }

 PIMPLE

 {

 momentumPredictor yes;
 nCorrectors 3;
 nNonOrthogonalCorrectors 0;
 nOuterCorrectors 50;

 residualControl
 {
 p_rgh
 {
 relTol 0;
 tolerance 1e-7;
 }
 U
 {
 relTol 0;
 tolerance 1e-6;
 }
 }
 }

 relaxationFactors
 {
 equations
 {
 ".*" 1;
 }
 fields
 {
 ".*" 1;
 }
 }

 // *** //

D.6.15. File system/setFieldsDict
 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 5 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

179

 }

 // * //

 defaultFieldValues

 (

 volScalarFieldValue alpha.water 0

);

 regions

 (

 boxToCell

 {

 box (-0.07835 0 0) (0.07835 0.07835 15);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

 // *** //

180

Appendix E. Tips
E.1.1. parallelReconstructPar

Through bash scripting, it’s actually possible to run a reconstructPar command in parallel. This

particular script was found online and has been written by K. Wardle and later improved by H.

Stadler, W. Bateman and A. Shafiee.

From a command line or bash script, it can be called as follows. Note that logging the result to a

separate file (> logParallelReconstructPar) is optional.

 bash parallelReconstructPar.sh -n 5 > logParallelReconstructPar;

And this is the parallelReconstructPar.sh bash script:

 #!/bin/bash

 echo "

 K. Wardle 6/22/09, modified by H. Stadler Dec. 2013, minor fix Will Bateman Sep 2014, minor fix

A. Shafiee Jul. 2017.

 bash script to run reconstructPar in pseudo-parallel mode

 by breaking time directories into multiple ranges

 "

 USAGE="

 USAGE: $0 -n <NP> -f fields -o <OUTPUTFILE>

 -f (fields) is optional, fields given in the form T,U,p; option is passed on to reconstructPar

 -t (times) is optional, times given in the form tstart,tstop

 -o (output) is optional

 "

 #TODO: add flag to trigger deletion of original processorX directories after successful reconstruction

 # At first check whether any flag is set at all, if not exit with error message

 if [$# == 0]; then

 echo "$USAGE"

 exit 1

 fi

 #Use getopts to pass the flags to variables

 while getopts "f:n:o:t:" opt; do

 case $opt in

 f) if [-n $OPTARG]; then

 FIELDS=$(echo $OPTARG | sed 's/,/ /g')

 fi

 ;;

 n) if [-n $OPTARG]; then

 NJOBS=$OPTARG

 fi

 ;;

 o) if [-n $OPTARG]; then

 OUTPUTFILE=$OPTARG

 fi

 ;;

 t) if [-n $OPTARG]; then

 TLOW=$(echo $OPTARG | cut -d ',' -f1)

 THIGH=$(echo $OPTARG | cut -d ',' -f2)

 fi

 ;;

 \?)

 echo "$USAGE" >&2

 exit 1

 ;;

 :)

 echo "Option -$OPTARG requires an argument." >&2

 exit 1

 ;;

 esac

 done

 # check whether the number of jobs has been passed over, if not exit with error message

 if [[-z $NJOBS]]

 then

 echo "

 the flag -n <NP> is required!

 "

 echo "$USAGE"

 exit 1

 fi

 APPNAME="reconstructPar"

181

 echo "running $APPNAME in pseudo-parallel mode on $NJOBS processors"

 #count the number of time directories

 NSTEPS=$(($(ls -d processor0/[0-9]*/ | wc -l)-1))

 NINITAL=$(ls -d [0-9]*/ | wc -l) ##count time directories in case root dir, this will include 0

 P=p

 #find min and max time

 TMIN=$(ls processor0 -1v | sed '/constant/d' | sort -g | sed -n 2$P) # modified to omit constant and

first time directory

 #TMIN=`ls processor0 | sort -nr | tail -1`

 TMAX=$(ls processor0 -1v | sed '/constant/d' | sort -gr | head -1) # modified to omit constant

directory

 #TMAX=`ls processor0 | sort -nr | head -1`

 #Adjust min and max time according to the parameters passed over

 if [-n "$TLOW"]

 then

 TMIN=$(ls processor0 -1v | sed '/constant/d' | sort -g | sed -n 1$P) # now allow the first

directory

 NLOW=2

 NHIGH=$NSTEPS

 # At first check whether the times are given are within the times in the directory

 if [$(echo "$TLOW > $TMAX" | bc) == 1]; then

 echo "

 TSTART ($TLOW) > TMAX ($TMAX)

 Adjust times to be reconstructed!

 "

 echo "$USAGE"

 exit 1

 fi

 if [$(echo "$THIGH < $TMIN" | bc) == 1]; then

 echo "

 TSTOP ($THIGH) < TMIN ($TMIN)

 Adjust times to be reconstructed!

 "

 echo "$USAGE"

 exit 1

 fi

 # Then set Min-Time
 until [$(echo "$TMIN >= $TLOW" | bc) == 1]; do
 TMIN=$(ls processor0 -1v | sort -g | sed -n $NLOW$P)
 NSTART=$(($NLOW))
 let NLOW=NLOW+1
 done

 # And then set Max-Time
 until [$(echo "$TMAX <= $THIGH" | bc) == 1]; do
 TMAX=$(ls processor0 -1v | sort -g | sed -n $NHIGH$P)
 let NHIGH=NHIGH-1
 done

 # Finally adjust the number of directories to be reconstructed
 NSTEPS=$(($NHIGH-$NLOW+3))

 else
 NSTART=2
 fi

 echo "reconstructing $NSTEPS time directories"

 NCHUNK=$(($NSTEPS/$NJOBS))
 NREST=$(($NSTEPS%$NJOBS))
 TSTART=$TMIN

 echo "making temp dir"
 TEMPDIR="temp.parReconstructPar"
 mkdir $TEMPDIR

 PIDS=""
 for i in $(seq $NJOBS)
 do
 if [$NREST -ge 1]
 then
 NSTOP=$(($NSTART+$NCHUNK))
 let NREST=$NREST-1
 else
 NSTOP=$(($NSTART+$NCHUNK-1))
 fi
 TSTOP=$(ls processor0 -1v | sort -g | sed -n $NSTOP$P)

 if [$i == $NJOBS]
 then
 TSTOP=$TMAX
 fi

182

 if [$NSTOP -ge $NSTART]
 then
 echo "Starting Job $i - reconstructing time = $TSTART through $TSTOP"
 if [-n "$FIELDS"]
 then
 $($APPNAME -fields "($FIELDS)" -newTimes -time $TSTART:$TSTOP > $TEMPDIR/output-$TSTOP &)
 echo "Job started with PID $(pgrep -n -x $APPNAME)"
 PIDS="$PIDS $(pgrep -n -x $APPNAME)" # get the PID of the latest (-n) job exactly matching (-x)
$APPNAME

 else
 $($APPNAME -newTimes -time $TSTART:$TSTOP > $TEMPDIR/output-$TSTOP &)
 echo "Job started with PID $(pgrep -n -x $APPNAME)"
 PIDS="$PIDS $(pgrep -n -x $APPNAME)"
 fi
 fi
 let NSTART=$NSTOP+1
 TSTART=$(ls processor0 -1v | sort -g | sed -n $NSTART$P)
 done

 #sleep until jobs finish
 #if number of jobs > NJOBS, hold loop until job finishes
 NMORE_OLD=$(echo 0)
 until [$(ps -p $PIDS | wc -l) -eq 1]; # check for PIDS instead of $APPNAME because other instances
might also be running

 do
 sleep 10
 NNOW=$(ls -d [0-9]*/ | wc -l) ##count time directories in case root dir, this will include 0
 NMORE=$(echo $NSTEPS-$NNOW+$NINITAL | bc) ##calculate number left to reconstruct and subtract 0 dir
 if [$NMORE != $NMORE_OLD]
 then
 echo "$NMORE directories remaining..."
 fi
 NMORE_OLD=$NMORE
 done

 #combine and cleanup
 if [-n "$OUTPUTFILE"]
 then
 #check if output file already exists
 if [-e "$OUTPUTFILE"]
 then
 echo "output file $OUTPUTFILE exists, moving to $OUTPUTFILE.bak"
 mv $OUTPUTFILE $OUTPUTFILE.bak
 fi

 echo "cleaning up temp files"
 for i in $(ls $TEMPDIR)
 do
 cat $TEMPDIR/$i >> $OUTPUTFILE
 done
 fi

 rm -rf $TEMPDIR

 echo "finished"

