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Abstract 
In the field of mining and dredging engineering, oftentimes slurries are involved in transport. 

Understanding the behaviour of these slurries in a flow is important as the energy and water 

consumption need to be determined. The slurries have an interesting rheology due to the presence 

of clay. The rheological parameters cause the flow to be non-Newtonian. Further, the presence of 

coarse solids (sand particles) in these slurries also influences the rheological parameters. Through 

Computational Fluid Dynamics (CFD) simulations, these aspects can be predicted. 

Previous work in non-Newtonian CFD with coarse solids made use of a free surface flow through a 

rigid-lid approach (van Rhee, 2017). A shortcoming of this is that the flow needs to be uniform and 

the flowdepth needs to be known beforehand. In the mining and dredging fields, this is not the case 

and a different approach is required. 

This report will focus on multiphase CFD simulations. One of the fluids will be a non-Newtonian 

model including sand particles, and the other fluid will just be air. The sand particles will be subjected 

to transport, segregation, and settling behaviour. 

OpenFOAM is the weapon of choice, but as it stands it does not have a solver that’s capable of 

including sand particles. The interFoam solver is chosen as a starting point and it’s code is adjusted. 

A Bingham Plastic transport model is implemented, including sand particles. A sand transport 

equation is also implemented. 

Using the adjusted interFoam solver, two sets of simulations are ran. A first set of simulations is 

performed using a 2D mesh for an open channel. The first simulation utilizes a Bingham Plastic fluid 

without any sand particles included. The resulting velocity profile is compared to the analytical 

solution and is found to agree well. The second open channel simulation includes sand particles. The 

results show a sand bed forming as well as the sand concentration to be roughly constant throughout 

the plug flow. This is compared to experimental work and concluded effects is captured well from a 

qualitative perspective. 

The second set of simulations is performed using a 3D mesh for a pipe section. These results were 

not as satisfying as the results for the 2D open channel. Unfortunately, all 3D pipe simulations either 

showed the pipe to fully fill up with the Bingham Plastic fluid, or the solver crashed at some point. 

Many attempts have been made at this, and no conclusive reason has been pointed out as the cause 

for this.  

It’s recommended to continue research in this direction with the main focus being the simulation 

stability.
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1. Introduction 

1.1. Problem domain 
In mining engineering, waste materials left over after separation processes are often referred to as 

mine tailings. The tailing is a fluid generally consisting of water, mud and sand. These mixtures are 

deposited into large basins bounded by dams. The behaviour and properties of these mixtures 

determines the process of deposition.  

In dredging engineering similar fluid mixtures are used in land reclamation. It is essential that the 

fractions remain mixed while they are deposited. Segregation of the particles could be decremental 

to the bearing capacity of the land. 

In both engineering fields the commonality is that these slurries have a high solids content. These 

solids in turn influence the rheology and flow behaviour. Due to the presence of clay, the rheological 

parameters cause the flow to become non-Newtonian. Further, the sand particles present in the 

mixture also influence the rheological properties. 

Any fluid generates shear stresses when flowing or deforming. This shear stress in turn has its effects 

on the settling of suspended particles like sand. Segregation of these particles leads to an 

inhomogeneous concentration of solids in the mixture. This in turn leads to inhomogeneous 

rheological properties which affects the flow field parameters (Hanssen, 2016), (Slatter, 2011). 

Different analytical, numerical and empirical models have been developed to predict non-Newtonian 

flow behaviour and particle segregation (Spelay, 2007), (van Rhee, 2017).  

Simulating slurry flows in these two engineering fields, with these behaviours, would require 

software that takes into account all the factors. The work performed by (van Rhee, 2017) pertained 

to the adaptation of Computational Fluid Dynamics (CFD) package OpenFOAM to simulate the 

settling of particles under shear and the influence on the rheological properties. One of the 

recommendations put forward in this work was to add a free mixture surface to simulate settling 

behaviour in open pipes and open channel flows. This thesis intends to follow this recommendation 

and that recommendation can be considered the starting point of this thesis. 

Having that adaptation to OpenFOAM in place would allow for simulations with the combination of 

non-Newtonian behaviour, the influence of suspended and segregating sand particles on the 

rheology, and a free mixture surface. 

1.2. Objective and problem definition 
The objective of this thesis is to continue the work on the development of OpenFOAM. The research 

problem can be defined as follows: “How to incorporate non-Newtonian properties and sand particle 

segregation in combination with a free mixture surface using OpenFOAM?”. 

1.3. The approach of the research 
This thesis contains of two parts. Firstly, a literature study was been performed to have a high level 

understanding on the problem domain and related questions, this is Part 1: Analysis and Literature 

Research. This includes research into non-Newtonian models, particle segregation models and flow 

theory as those are factors at play in the problem domain. 
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Secondly, Part 2: Implementation and simulations goes into the implementation and simulation in 

OpenFOAM. Firstly, an adaptation to Open FOAM will be implemented, after which this adaptation of 

the code is used in various simulations. The results of these simulations will be compared against 

(empirical) results found in literature. 

1.4. Thesis structure 
The structure of this report lines up with the approach as described in section 1.3.  

Within Part 1, chapter 2 explores the factors and theory at play in the problem domain and chapter 3 

gives an overview of previous research in the area. This includes non-Newtonian models and particle 

segregation models. 

In Part 2, chapter 5 presents the adjustments made to OpenFOAM. This includes customization of a 

solver, using custom viscosity models, and sand settling models. Next, simulations are performed and 

validated against existing experimental work in chapter 6. Finally, chapter 7 concludes this report by 

presenting conclusions and recommendations for future work. 
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Part 1: Analysis and Literature 
Research 
As a starting point, this part provides a general overview of the fundamental theory of slurry 

transport and tailings. The factors and theory at play in the problem domain are explored. Further, 

experimental research in this field will be reviewed. 
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2. Literature & theory 

2.1. Rheology 
Rheology is a field of study that examines deformation and stresses of fluids under flowing 

conditions. In order to accurately predict the flowing behaviour it is essential to understand the 

relation between these factors. The relation between shear stress and shear rate can be shown in 

rheogram. The gradient of this relation is what’s called the viscosity, and is a measure of the 

stickiness of the fluid. For example, honey is quite sticky and has a high viscosity whereas water has a 

low viscosity and is quite runny. 

2.1.1. Rheological models 

For all fluids, a mathematical function or rheological model can be defined. A distinction can be made 

between Newtonian fluids and non-Newtonian fluids. For Newtonian fluids, this model is defined as 

follows:  

 𝜏 = 𝜇𝛾̇ (2.1) 

Where 𝜏 = shear stress, 𝜇 = dynamic viscosity and 𝛾̇ = shear rate. This Newtonian model has a 

constant 𝜇 and thus its rheogram is simply a sloped straight line from through the origin. 

Non-Newtonian rheological models however often have three physical differences. These are: yield 

stress, nonlinearity between stress and shear, and time-dependency. 

2.1.1.1. Yield stress 

If a material has a yield stress it means it will not flow or irreversibly deform as long as the stress 

remains under a certain threshold. For stresses that stay below the yield-stress, the material behaves 

elastically. This also means it will recover all applied strain once the stress is removed (Van De Ree, 

2015), (Boger, Scales, & Sofra, 2006). For forces that exceed the yield stress, the fluid will show 

viscous behaviour. 

The Bingham rheological model is the model that fits this behaviour. It has a yield stress followed by 

a linear relation between shear rate and viscosity. This relation is given following Equation (2.2). The 

elastic behaviour can be described following Equation (2.3). 

 𝜏 = 𝜏𝑦 + 𝜇𝐵𝛾̇ (2.2) 

 𝜏 < 𝜏𝑦 → 𝛾̇ = 0 (2.3) 

Where 𝜏𝑦 = the yield stress, and 𝜇𝐵 = the plastic viscosity. 

2.1.1.2. Nonlinearity 

Another way a non-Newtonian material can deviate from Newtonian behaviour is if a material shows 

a nonlinear relation between shear rate and stress. A model often used to describe this relation is the 

Herschel Bulkley model. This is presented as follows: 

 𝜏 = 𝜏𝑦 + 𝐾𝛾̇
𝑛 (2.4) 

𝐾 is often referred to as the consistency index and 𝑛 is the flow index. Different kinds of behaviour 

may occur depending on the value for 𝑛. If 0 ≤ 𝑛 < 1, the fluid behaves in a pseudoplastic or shear 
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thinning manner. This means the fluid gets thinner (viscosity decreases) as the shear rate increases. 

Alternatively, if 𝑛 > 1, the fluid behaves in a dilatant or thickening manner (viscosity increases) as 

the shear rate increases. 

This nonlinear behaviour can also occur in materials that don’t have a yield stress. We then end up 

with the Ostwald-De Waele power law model, described mathematically as follows: 

 𝜏 = 𝜇𝛾̇𝑛 (2.5) 

Then, once again, depending on the value for 𝑛, different kinds of behaviour (pseudoplastic or 

dilatant) may occur.  

2.1.1.3. Time-dependency 

Then lastly, there’s also the class of materials that show time-dependent behaviour. An example 

could be that under a constant shear rate, the viscosity changes over time. An increasing viscosity 

under shear is called thixotropic behaviour, whereas a decreasing viscosity under shear is called 

rheopectic behaviour. This is also where the terms remoulded and unremoulded come into play. The 

remoulded state is relevant for flowing fluids, whereas unremoulded is relevant for depositions of 

the fluids in basins and reclamation areas.  

2.1.2. Apparent viscosity 

One should note that the plastic viscosity (Bingham), and consistency index (Herschel) are not the 

true viscosity. This viscosity is the tangent on the rheogram. However, for materials with a yield 

stress, or materials that show thinning or thickening behaviour, a different viscosity can also be 

defined. This is called the apparent viscosity and it is defined as the slope of a line from the origin to 

a certain shear stress on the flow curve in the rheogram. Equation (2.6) shows this relation. 

 𝜇𝑎 =
𝜏

𝛾̇ 
 

(2.6) 
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Figure 2.1: Rheograms for shear stress (a) and apparent viscosity (b) showing different fluid types (Newtonian and Bingham 
included). 𝜏𝑦 (and 𝜏𝐵  for Bingham) represents the yield stress, 𝛾̇ is the strain rate, and  𝜂𝑎  is the apparent viscosity 𝜇𝑎as 

shown in Equation (2.6). Source: (Talmon, 2016) 

2.1.3. Dynamic and kinematic viscosity 

Besides a definition for viscosity, we can also define viscosity relative to the density. This is called the 

kinematic viscosity. In OpenFOAM, solvers and material models all calculate using a kinematic 

viscosity. So, all inputs that we define should be relative to the density. The kinematic viscosity is 

defined as follows: 

 𝜈 =
𝜇

𝜌
 

(2.7) 

2.2. Sand influence on viscosity and yield stress 
Due to the presence of sand, the behaviour of the mixture changes in two ways: 1) it increases 

internal friction, and 2) it introduces non-cohesive particles (Talmon, Hanssen, Winterwerp, Sitoni, & 

van Rhee, 2016). The influence of the presence of the particles on both the plastic viscosity and yield 

stress are defined as follows: 

 𝜇𝑝 = 𝜇𝑝,𝑐𝑓𝑒
𝛽𝜆 (2.8) 

 𝜏𝑦 = 𝜏𝑦,𝑐𝑓𝑒
𝛽𝜆 (2.9) 

Where 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓 are rheological parameters of the carrier fluid alone, without particles (hence 

the cf subscript). 𝛽 is a constant, which has been set at a value of 0.27 in (van Rhee, 2017) and 

(Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016). 

It should be noted that we define a slightly different nomenclature for the parameters 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓  

than in (van Rhee, 2017). The definition of the parameters is not different, though. 𝜇𝑝,𝑐 and 𝜏𝑦,𝑝 in 

(van Rhee, 2017) is the same as 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓 in this report, respectively. 
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Further, the linear concentration 𝜆 is defined: 

 
𝜆 =

1

(
𝑐𝑚𝑎𝑥 
𝑐𝑠

)

1
3
− 1

 
(2.10) 

In which 𝑐𝑚𝑎𝑥 is a maximum sand concentration. In (van Rhee, 2017) and (Talmon, Hanssen, 

Winterwerp, Sitoni, & van Rhee, 2016) set to 0.6. 

2.3. Sand particles settling 
As sand particles have a positive submerged weight in water, we expect them to settle towards the 

bottom. We should therefore review the theory on the particle settling velocity. This is relevant here 

because as particles settle, they create a non-uniform (non-homogeneous) field of the particle 

density. In turn this will also lead to non-uniform rheological parameters of the fluid mixture. We 

need that to be able to compute the viscosity as was shown in section 2.2. 

2.3.1. Newtonian carrier fluid 

In Newtonian fluids, the Stokes formula describes the forces on submerged particles. It is derived 

from the force balance on a particle between the (submerged) weight and the upward force the fluid 

exerts on the particle. Equation (2.11) shows this relation. 

 1

6
𝜋𝑑3 (𝜌𝑠 − 𝜌𝑐𝑓)𝑔 =

1

8
𝐶𝐷𝜋𝑑

2𝑤0
2𝜌𝑐𝑓 

(2.11) 

The left hand side represents the force due to gravity on the submerged weight. And the right hand 

side represents the drag force on a sphere moving through a fluid. 𝑑 is the diameter of the particle, 

𝜌𝑠 and 𝜌𝑐𝑓 are the densities of the settling particles and fluid respectively, 𝑔 is the gravitational 

acceleration, 𝐶𝐷 is a drag coefficient, and 𝑤0 is the settling velocity. If we rewrite for 𝑤0 we arrive at 

equation (2.12). 

 

𝑤0 = √
4

3

(𝜌𝑠 − 𝜌𝑐𝑓)

𝜌𝑐𝑓

𝑔𝑑

𝐶𝐷
     

(2.12) 

The drag coefficient depends on the regime of the flow and is a function of the particle Reynolds 

number: 

 
𝑅𝑒𝑝 =

𝜌𝑐𝑓𝑤0𝑑

𝜇𝑐𝑓
 

(2.13) 

Where 𝜇𝑐𝑓 is the viscosity of the surrounding (carrier) fluid. 

Now, for the laminar flow regime, the relation between the drag coefficient 𝐶𝐷 and particle Reynolds 

number 𝑅𝑒𝑝 is defined as follows: 

 
𝐶𝐷 =

24

𝑅𝑒𝑝
 

(2.14) 

Both equation (2.13) and equation (2.14) can be substituted into equation (2.12). This will yield 

equation (2.15) which gives a definition for the resulting settling velocity on the particle, 𝑤𝑠,0. 
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𝑤𝑠,0 =

1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓
 

(2.15) 

2.3.2. Hindered settling 

The derivation shown in section 2.3.1 only holds for a low concentration of particles submerged in a 

fluid. To be more exact, the derived equations only hold for a single particle. Then, one might ask, 

what particles in higher concentrations? When many particles settle in the same area, those will 

hinder each other. The physical processes at play here have already been listed by (Winterwerp & 

van Kesteren, 2004): 

1. Return flow and wake formation. A settling particle generates a return flow and wake. 

Particles in the wake will be subject to increased settling velocities. Particles caught in the 

return flow will see a lower settling velocity. 

2. Dynamic or flow effects causing velocity gradients 

3. Particle-particle collisions causing additional stresses 

4. Particle-particle interaction through electrical charge 

5. Einstein effect causing an increase in apparent viscosity due to an increased strain rate 

6. Buoyancy effect due to increased density of the mixture 

7. Cloud formation. Particles in the wake of another particle will settle faster and catch up, thus 

forming a (settling) cloud of particles. 

According to (Van De Ree, 2015) the main contributions for hindered settling come from 1, 5, 6 for 

Newtonian fluids. According to (Talmon, van Kesteren, Sittoni, & Hedblom, 2013), for non-Newtonian 

fluids or mixtures, processes 2 and 5 are important (also mentioned by (Van De Ree, 2015)). 

(Dankers & Winterwerp, 2007) provides formulations for the buoyancy effect and return flow effect 

factors in terms of the particle concentration 𝑐𝑠, shown by equations (2.16) and (2.17) respectively. 

(van Es, 2017) also refers to the same formulations. 

 (1 − 𝑐𝑠)  (2.16) 

 
(1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

 
(2.17) 

The hindered settling effects for buoyancy and return flow can be applied to the unhindered settling 

velocity 𝑤𝑠,0 (equation (2.15)). This gives equation (2.18). 

 
𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

𝑤𝑠,0 
(2.18) 

2.3.3. Non-Newtonian carrier fluid 

In a static (not flowing) non-Newtonian fluid that has a yield stress, particles will not settle as long as 

the gravitational force (corrected for buoyancy) is lower than the force induced by the yield stress. 

The force balance on a single particle is defined as follows: 

 
𝑎𝑓𝑜𝑟𝑚

1

6
𝜋(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑

3 > 𝜏𝑦𝛽𝑓𝑜𝑟𝑚𝜋𝑑
2 

(2.19) 
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Here, the left hand side of the equation symbolizes the force on the submerged particle and the right 

hand side symbolizes the upward force caused by the yield stress. 𝑎𝑓𝑜𝑟𝑚 and 𝛽𝑓𝑜𝑟𝑚 are parameters 

that describe the shape of a particle. According to (Chhabra, 2007) for static situations (no flow, thus 

also no shear), this reduces to the following criterion for settling: 

 𝜏𝑦 ≤ 𝑎𝑐𝑟(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑 (2.20) 

Where 𝑎𝑐𝑟 is an empirical parameter ranging from 0.048 to 0.2 (van Es, 2017) and (Chhabra, 2007). 

However, in a non-static situation (flowing and shearing fluid), the force balance is different. The 

particles are co-rotating with the shearing of the fluid. (Talmon & Huisman, 2005) goes into the 

details of this co-rotation and presents equation (2.21): 

 
𝑤𝑠,0 = 𝑎

1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓
 

(2.21) 

Where 𝑎 is an empirical parameter. (Winterwerp & van Kesteren, 2004) has stated that for spherical 

particles, 𝑎 = 1. Equation (2.21) looks to be quite similar to equation (2.15) except for this empirical 

parameter 𝑎. 

Equation (2.21) can easily be substituted into equation (2.18) following (van Es, 2017). This yields 

equation (2.22). 

 
𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2

𝑎
1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓
 

(2.22) 

This once again only holds if the shear stress is bigger than the yield stress. Otherwise, shear settling 

will not occur. This is summarized in this requirement:  

 𝐼𝑓 𝜏 < 𝜏𝑦, 𝑡ℎ𝑒𝑛 𝑤𝑠 = 0 (2.23) 

2.4. Open channel flow 
Tailings deposits flowing over a beach are often modelled as open channel flows. It’s main 

characteristics: gravity-based driving force on an angled channel. Further, these channel flows have a 

free water surface as opposed to closed channel or pipe flow.  

2.4.1. Froude number 

The Froude number can be used to quantify whether the flow is sub-critical or super-critical. The is a 

dimensionless parameter and for open channel flows this number is commonly calculated (Spelay, 

2007). The definition of the Froude number shown in equation (2.24). 

 𝐹𝑟 =
𝑢

√𝑔𝐿
 

(2.24) 

Where 𝐹𝑟 is the Froude number, 𝑢 is a characteristic flow velocity like the average velocity in a 

channel.  𝐿 is a characteristic length scale like flowdepth or hydraulic radius.  
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The flow is considered sub-critical if the Froude number is lower than 1. If it is higher than 1, it is 

considered super-critical, if it is equal to 1 it is critical. A hydraulic jump might occur whenever a flow 

switches over from sub- to super-critical.  

It should be noted that (2.24) is the Froude number for Newtonian fluids. The application of the 

Froude number for non-Newtonian fluids remains uncertain (Spelay, 2007). 

2.4.2. Reynolds number 

The flow regime can be turbulent or laminar depending on the Reynolds number. If a flow is laminar, 

the streamlines in the flow are parallel to each other. For Newtonian fluids, the Reynolds number is 

defined as follows: 

 
𝑅𝑒 =

𝜌𝑢𝐿

𝜇
 

(2.25) 

Where 𝜌 is the density, 𝑢 is the flow velocity, 𝐿 is a characteristic length and 𝜇 is the kinematic 

viscosity. 

For non-Newtonian fluids, the Reynolds number is more ambiguous (Haldenwang, Slatter, & 

Chhabra, 2010), (Van De Ree, 2015). Most definitions in literature are based on the friction factor 

(Van De Ree, 2015). The dimensionless shear stress is expressed using the fanning friction factor: 

 𝑓 =
𝜏𝑏
1
2
𝜌𝑣2

 
(2.26) 

For Newtonian flow, in the laminar flow regime, the friction factor-Reynolds number is defined as 

follows: 

 
𝑓 =

16

𝑅𝑒
 

(2.27) 

Then, equations (2.26) and (2.27) can be combined; this gives us the definition for the non-

Newtonian Reynolds number 𝑅𝑒𝑛𝑁: 

 
𝑅𝑒𝑛𝑁 =

8𝜌𝑣2

𝜏𝑏
  

(2.28) 

Where 𝜏𝑏 is the bed or bottom shear stress. 

2.4.3. Fully developed, steady, uniform flow 

The open-channel flow from this point forward is considered fully developed, steady and uniform. 

Realistically, the characteristics of non-Newtonian tailings lead to laminar flow behaviour (Van De 

Ree, 2015). When looking at tailings beach flows, there are end-effects in the transition from channel 

to sheet flow. Basically, we are (only) looking at a flow down an inclined plane. The theory in this 

section only looks at the fully developed, steady and uniform flow behaviour. Furthermore, an 

infinite width allows us to disregard edge effects. 

2.4.3.1. Bingham Plastic 

Bingham Plastic fluids have a yield stress. We know that the calculation of the shear stress in a 

Bingham Plastic is calculated according to equation (2.2). Further, we know that for a shear stress 
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𝜏 < 𝜏𝑦, the fluid will not shear. The velocity profile of a non-Newtonian fluid with non-zero yield 

stress will show plug flow behaviour near the free surface. This plug represents an unsheared layer. 

This section will show the associated formulas. 

The shear stress distribution of a fluid in an open-channel flow is defined as follows: 

 𝜏 = 𝜌𝑔𝑦𝑠𝑖𝑛𝜃 (2.29) 

Where 𝜃 is the slope of the channel, 𝜌 is the density of the fluid, and 𝑦 is the coordinate along the 

flowdepth. 

This leads to the calculation of the bed shear stress 𝜏𝑏 by substituting flowdepth ℎ0 for 𝑦 following 

equation (2.30). 

 𝜏𝑏 = 𝜌𝑔ℎ0𝑠𝑖𝑛𝜃 (2.30) 

The plug height ℎ𝑝 is constructed following from 𝜏 = 𝜏𝑦 at 𝑦 = ℎ𝑝: 

 𝜏𝑦 = 𝜌𝑔ℎ𝑝 𝑠𝑖𝑛 𝜃 (2.31) 

This can be reduced by combining equations (2.30) and (2.31), effectively creating a function of 

channel depth, yield stress and bed shear stress: 

 ℎ𝑝 =
𝜏𝑦

𝜏𝑏
ℎ0 

(2.32) 

The height of the plug shearing layer between the and the inclined plane (ℎ𝑠) can be defined as: 

 ℎ𝑠 = ℎ0 − ℎ𝑝 = ℎ0 −
𝜏𝑦

𝜏𝑏
ℎ 

(2.33) 

2.4.3.2. Velocity profile 

An interesting flow feature to look at for flow down an inclined plane is the velocity profile along the 

flowdepth. An analytical solution for the velocities at different depths has been derived by (De Kee, 

Chhabra, Powley, & Roy, 1990). This solution holds for a flow with a free water surface and a no-slip 

condition on the bottom. 

A more simplified version of the same solution has been given by (Haldenwang, Kotzé, & Chhabra, 

2012).  

Adjusting the nomenclature to align with earlier mentioned variables, we end up with equation 

(2.34) for the velocity 𝑉𝑥,𝑠ℎ𝑒𝑎𝑟 in the shearing layer (ℎ𝑝 ≤  𝑦 ≤ ℎ0): 

 

𝑉𝑥,𝑠ℎ𝑒𝑎𝑟 = (
𝑛

𝑛 + 1
)(

𝐾

𝜌𝑔𝑠𝑖𝑛𝜃
)(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛

(

 
 
1 − (

𝜏
𝜏𝑦
− 1

𝜏𝑏
𝜏𝑦
− 1

)

𝑛+1
𝑛

)

 
 

 

(2.34) 

And the velocity 𝑉𝑥,𝑝𝑙𝑢𝑔 of the plug (0 ≤ 𝑦 ≤ ℎ𝑝): 
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𝑉𝑥,𝑝𝑙𝑢𝑔 =

𝑛𝐾

(𝑛 + 1)𝜌𝑔𝑠𝑖𝑛𝜃
(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛

 
(2.35) 

It should be noted that equations (2.34) and (2.35) include cases for power-law fluids (𝜏𝑦 = 0, 0 ≤

𝑛 ≤ 1 𝑜𝑟 𝑛 > 1), Bingham Plastic fluids (𝑛 = 1,𝐾 = 𝜇𝐵 , 𝜏𝑦 ≠ 0), and Newtonian fluids (𝑛 = 1, 𝜏𝑦 =

0).   

The equation for the average velocity 𝑉𝑥,𝑎𝑣𝑔 has been given by (Haldenwang, Kotzé, & Chhabra, 

2012): 

 
𝑉𝑥,𝑎𝑣𝑔 =

𝑛𝐾

(2𝑛 + 1)𝜌𝑔𝑠𝑖𝑛𝜃
(
𝜏𝑏
𝐾
)

𝑛+1
𝑛
(1 −

𝜏𝑦

𝜏𝑏
)

𝑛+1
𝑛
(1 + (

𝑛

𝑛 + 1
)
𝜏𝑦

𝜏𝑏
  ) 

(2.36) 

And a more simplified version by (Van De Ree, 2015) applicable to Bingham Plastic fluids specifically, 

provided the flowdepth ℎ0 is known: 

 
𝑉𝑥,𝑎𝑣𝑔 = (

1

3
𝜏𝑏 −

1

2
𝜏𝑦 +

1

6

𝜏𝑦
2

𝜏𝑏
2)
ℎ0
𝜇𝐵
  

(2.37) 
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3. Survey on previous research 
This chapter will give an overview of relevant previous research in the field of tailings and slurry flow. 

Experimental research has been done with regards to velocity profile development and 

concentration profiles of sand-mud mixtures. More recent research focusses on numerical modelling 

and simulation of these flows.  

Reviewing this previous research will allow for comparison of the performed simulations in 

OpenFOAM. In light of that, the results found by others could serve as a basis for validation. 

3.1. Spelay (2007) 
(Spelay, 2007) performed experiments with sand-mud mixtures in a half open pipe. The pipe had a 

diameter 𝐷 = 156.7mm. The mixtures used were four different Bingham Plastics with properties 

quite typical for the mine tailing or oil sands industry. With the experimental setup used, the flow 

rate and flume angle were varied. At 14.8m from the flume inlet a traversing gamma ray 

densitometer was placed to measure the sand concentration in the mixture at that location.  

Further, the flume was fitted with two depth gauges located 7.5 and 13.3 m from the flume inlet. 

These were used to measure the flowdepth of the slurry. The depth gauges are described as “height 

measurement” points 1 and 2 in Figure 3.1. 

 

Figure 3.1: Saskatchewan Research Council’s 156.7 mm flume circuit used in the experimental program (Spelay, 2007) 

One class of mixtures used in the experiment was identified as thickened tailings slurries. This is a 

sand, clay & water mixture and the composition was 15.4:15.1:69.5 (sand:clay:water v/v). This 

resulted in a bulk density 𝜌𝑚𝑖𝑥 = 1510 kg/m3, calculated according to equation (3.1). Due to the high 

clay fraction, these slurries had quite high yield stress between 30 and 50 Pa. Due to this high yield 

stress, the thickened tailings mixture flowed in the laminar regime. The carrier fluid alone, without 

the sand particles added, had a yield stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s and 

density 𝜌𝑐𝑓 = 1303 kg/m3. The density of the sand particles was 𝜌𝑠 = 2650 kg/m3.  

 𝜌𝑚𝑖𝑥 = 0.154 𝜌𝑠 + (1 − 0.154)𝜌𝑐𝑓 (3.1) 

 

(Spelay, 2007) performed multiple measurements regarding the flow in the flume circuit. These 

measurements included a concentration profile measurement and velocity profile measurements. 

Section 3.1.1 and 3.1.2 present these. 
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3.1.1. Concentration profile measurements 

Concentration profile measurements have been obtained. For the thickened tailings slurry 

mentioned in section 3.1, Table 3.1 lists the measurement data on the sand and solids concentration. 

𝒚/𝑫 𝑪𝒔𝒐𝒍𝒊𝒅𝒔 (v/v) 𝑪𝒔𝒂𝒏𝒅 (v/v) 

0.95 - - - - - - - - 

0.90 - - - - - - - - 

0.85 - - - - - - - - 

0.80 - - - - - - - - 

0.75 - - - - - - - - 

0.70 - - - - - - - - 

0.65 - - - 0.247 - - - 0.083 

0.60 - - 0.277 0.263 - - 0.120 0.104 

0.55 - 0.272 0.280 0.262 - 0.114 0.124 0.101 

0.50 0.272 0.270 0.280 0.261 0.114 0.112 0.124 0.101 

0.45 0.275 0.267 0.287 0.253 0.117 0.108 0.132 0.091 

0.40 0.276 0.273 0.287 0.252 0.119 0.115 0.132 0.089 

0.35 0.273 0.276 0.285 0.256 0.115 0.118 0.129 0.094 

0.30 0.270 0.263 0.281 0.250 0.111 0.103 0.125 0.087 

0.25 0.272 0.267 0.281 0.253 0.114 0.108 0.125 0.091 

0.20 0.258 0.252 0.271 0.252 0.097 0.089 0.112 0.090 

0.15 0.256 0.255 0.267 0.255 0.095 0.093 0.108 0.093 

0.10 0.277 0.296 0.316 0.284 0.120 0.143 0.168 0.129 

0.05 0.332 0.360 0.400 0.333 0.187 0.221 0.270 0.189 

𝒉 (m) 0.0861 0.0968 0.1039 0.1077 0.0861 0.0968 0.1039 0.1077 

𝜽 (°) 5.4 4.5 4 4.5 5.4 4.5 4 4.5 

𝑸 (L/s) 5 5 5 2.5 5 5 5 2.5 
Table 3.1: Solids and sand concentration (𝐶𝑠𝑜𝑙𝑖𝑑𝑠 and 𝐶𝑠𝑎𝑛𝑑 respectively) profile measurements for a model thickened 
tailings slurry in the 156.7 mm flume; 𝜌𝑚𝑖𝑥  = 1510 kg/m3. ℎ represents the flowdepth at the measurement point, 𝜃 the 
inclination of the flume and 𝑄 the inlet flow rate, Table D.24 in (Spelay, 2007).  

The values for Csand in Table 3.1 that are presented in bold and italics have been plotted against the 

non-dimensional 𝑦/𝐷 in Figure 3.2. This shows a profile of the sand concentration along the depth of 

the flow. It can be seen that near the bottom, close to the pipe wall, a bed with a higher sand 

concentration forms. Just above that, there is a zone with a dip in the sand concentration. 
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Figure 3.2: Sand concentration measurement profile 𝐶𝑠𝑎𝑛𝑑 against non-dimensional 𝑦/𝐷 for 𝜃 = 4.5° and 𝑄 = 5 L/s 

3.1.2. Velocity profile measurements 

(Spelay, 2007) also performed velocity profile measurements. Local velocities were measured at 

different points in the flume using a XY traversing pitot-static tube. Figure 3.3 shows the positions of 

these measurement points. Table 3.2 shows both the exactly (non-dimensional) locations of the 

measurement points as well as the results of these velocity measurements for the thickened tailings 

slurry mentioned in in section 3.1. 

 

Figure 3.3: Flume two-dimensional mixture velocity profile measurement positions in the 156.7mm flume (corresponding to 
Table 3.2 in this report and Table D.32 in (Spelay, 2007). Gravity works in negative y-direction. Source: Figure D.1 in (Spelay, 
2007). 

Point x/R y/R v/V v/V v/V v/V 

1 0.11 0.89 1.75 2.37 2.37 2.41 

2 0.12 0.54 1.80 2.29 2.24 2.94 

3 0.34 0.66 1.71 2.35 2.19 2.45 

0

0.1

0.2

0.3

0.4

0.5

0.6
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y/
D
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4 0.46 0.88 1.72 2.41 2.27 2.96 

5 0.11 0.19 0.82 1.70 1.40 1.96 

6 0.31 0.25 0.89 1.76 1.53 2.27 

7 0.50 0.35 1.00 1.71 1.67 2.04 

8 0.65 0.50 0.98 1.84 1.77 1.51 

9 0.75 0.69 1.17 1.78 1.80 0.59 

10 0.81 0.89 1.11 1.87 1.85 1.21 

11 0.11 1.11 -- 2.33 2.38 2.95 

12 -- -- -- -- -- -- 

13 0.34 1.34 -- -- -- 2.11 

14 0.46 1.12 -- 2.30 2.37 3.09 

15 -- -- -- -- -- -- 

16 -- -- -- -- -- -- 

17 -- -- -- -- -- -- 

18 -- -- -- -- -- -- 

19 0.75 1.31 -- -- 1.87 1.54 

20 0.81 1.11 -- 2.02 1.92 2.39 

𝑸 (L/s) 5 5 5 2.5 

𝜽 (°) 5.4 4.5 4 4.5 

𝒉 (m) 0.0873 0.0970 0.1048 0.1077 

𝑽 (m/s) 0.46 0.40 0.36 0.18 
Table 3.2: Mixture velocity profile measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥  = 1510 
kg/m3. Table D.32 in (Spelay, 2007) 

3.1.3. Frictional loss measurements 

Frictional loss measurements were also performed. This data also includes measurements for 

flowdepths h1 and h2, at different locations in the flume. These were performed using Vernier caliper 

gages, located 7.5m (location 1) and 13.3m (location 2) from the flume inlet. These measurements 

can later be used to compare to. 

𝑸 (m3/s) 𝑻 (°C) 𝜽 (°) 𝒉𝟏 (m) 𝒉𝟐 (m) 𝑽 (m/s) 𝝉𝒘 (Pa) 𝑹𝒆𝒁𝒉𝒂𝒏𝒈 𝒇 

0.00497 21.6 4.00 0.0909 0.0993 0.41 41.0 55 0.3275 

0.00498 22.4 4.50 0.0849 0.0931 0.44 44.7 48 0.3027 

0.00510 26.6 5.41 0.0805 0.0834 0.50 54.6 59 0.2892 

0.00253 25.0 4.50 0.0998 0.1054 0.19 49.7 8 1.8379 
Table 3.3: Frictional loss measurements for a model Thickened Tailings slurry in the 156.7mm flume; 𝜌𝑚𝑖𝑥  = 1510 kg/m3. 
Table D.17 in (Spelay, 2007) 

3.1.4. Different inlet 

(Spelay, 2007) tested with two different inlet conditions. These were only tested in the sand-water 

tests and not in the tests with the thickened tailings. With the original inlet condition, the mixture 

was transferred from the feed line to the flume through a flexible rubber hose which was orientated 

parallel (in-line) to the flume. With this setup there is a serious risk of blocking the channel system 

due to sand being deposited at the inlet of the flume.  

A new inlet condition was created so that the slurry was transferred from the feed line to the flume 

through a flexible rubber hose which was orientated perpendicular to the flume. The purpose of 

these modifications was to prevent this sand deposition close to inlet. However, these experiments 

were not performed using the thickened tailings. 
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3.2. Hansen (2016) 
In the work by (Hanssen, 2016), non-Newtonian settling slurries have been implemented in Delft3D, 

a numerical modelling package developed by Deltares. This work goes into the very specifics of the 

1DV numerical model Delft3D-Slurry.  

Three rheological models were used that were based on the shear stress 𝜏 as follows: 

 𝜏 = 𝜏𝑦 + 𝜇𝛾̇
𝑛  (3.2) 

The different models differ in the formulation of yield stress 𝜏𝑦, viscosity 𝜇 and flow index 𝑛. The 

definitions of these three models were following Winterwerp & Kranenburg, Jacobs & Van Kesteren, 

and Thomas.  

On first look, these definitions don’t match earlier theory encountered in section 2.2. However, upon 

further inspection, also in (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016), it is found that 

the models are in fact matching with the earlier theory. The difference comes from the definition of 

the yield stress and viscosity of the carrier fluid. In equation (2.8) and (2.9) this is encapsulated into 1 

parameter for both, 𝜇𝑝 and 𝜏𝑦. 

(Hanssen, 2016) and (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) show the more 

fundamental origin of these parameters. They include for instance: water content 𝑊, plasticity index 

𝑃𝐼, and empirical parameters 𝐾𝑦, 𝐵𝑦, 𝐾𝜇, 𝐵𝜇, 𝛽. For completeness, the rheological models are shown 

below. 

Equations (3.3) and (3.4) show the first model following Winterwerp and Kranenburg. It should be 

noted that for this model, the flow index 𝑛: 0 <  𝑛 ≤ 1. 

 

𝜏𝑦 = 𝐴𝑦 (
𝜙𝑐𝑙

1 − 𝜙𝑠𝑎𝑠𝑖
)

2
3−𝑛𝑓

𝑒𝛽𝜆, 

(3.3) 

 

 𝜇 = [𝜇𝑤 + 𝐴𝜇 (
𝜙𝑐𝑙

1 − 𝜙𝑠𝑎𝑠𝑖
)

2(𝑎+1)
3

[
1

𝛾̇
]

(𝑎+1)(3−𝑛𝑓)
3

] 𝑒𝛽𝜆 

(3.4) 

Equations (3.5) and (3.6) show the second model following (Jacobs, Le hir, Van Kesteren, & Cann, 

2011). This follows a Bingham model, so flow index 𝑛 = 1. 

 
𝜏𝑦 = 𝐾𝑦 (

𝑊

𝑃𝐼
)
𝐵𝑦

𝑒𝛽𝜆 
(3.5) 

 
𝜇 = 𝜇𝑤 [1 + 𝐾𝜇 (

𝑊

𝑃𝐼
)
𝐵𝜇

] 𝑒𝛽𝜆 
(3.6) 

Equation (3.7) and (3.8) show the third model following (Thomas, 1999). This also follows a Bingham 

model, so flow index 𝑛 = 1. 

 
𝜏𝑦 = 𝐶𝑦 (

𝜙𝑓𝑖𝑛𝑒𝑠

𝜙𝑤𝑎𝑡𝑒𝑟 + 𝜙𝑓𝑖𝑛𝑒𝑠
)

𝑝

[1 −
𝜙𝑠𝑎

𝑘𝑦𝑖𝑒𝑙𝑑𝜙𝑠𝑎,𝑚𝑎𝑥
]

−2.5

 
(3.7) 
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𝜇 = 𝑒

𝐷
𝜙𝑓𝑖𝑛𝑒𝑠
𝜙𝑤𝑎𝑡𝑒𝑟 [1 −

𝜙𝑠𝑎
𝐾𝑣𝑖𝑠𝑐𝜙𝑠𝑎,𝑚𝑎𝑥 

]

−2.5

 
(3.8) 

It can be noted that the first 2 models (equations (3.3), (3.4), (3.5), and (3.6)) contain the term 𝑒𝛽𝜆, in 

which 𝛽 is an empirical value set to 0.27. The linear concentration 𝜆 is defined as in equation (2.10).  

The other terms in these equations can be collapsed into 2 carrier fluid parameters 𝜇𝑝,𝑐𝑓 and 𝜏𝑦,𝑐𝑓, as 

has been done by (van Rhee, 2017). This can be useful if the carrier fluid parameters are known. 

(Hanssen, 2016) concluded Delft3D’s 1DV model is capable of capturing the rheological and sand 

settling processes for laminar slurry mixtures. They fall in line with the theoretical predictions. 

Further, plug-flow behaviour and sand bed formation was reproduced. Further, flow velocity was 

reversely proportional to sand bed concentration, also as expected. 

3.2.1. Regularization of the flow curve 

For materials that have a yield stress 𝜏𝑦 calculating the apparent viscosity is a challenge at low shear 

rates. The apparent viscosity is very high for low shear rates 𝛾̇. Following equation (2.6), the apparent 

viscosity will become impossible for a shear rate equal to 0. This occurs if shear stresses are smaller 

than the yield stress. This happens in the plug zone of the flow. 

(Hanssen, 2016) has made a modification has been made following (Papanastasiou, 1987). The 

proposed model for this is an exponential regularization like so: 

  𝜏 = 𝜏𝑦(1 − 𝑒
−𝑚𝛾̇) + 𝜇𝛾̇ (3.9) 

The same formulation was also found in (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016), 

and it is stated that equation (3.9) creates a finite viscosity at low shear rates. The constant 𝑚 should 

be chosen in such a way that the numerical solution approaches the analytical solution. In (Talmon, 

Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) it is stated that this holds for high values of 𝑚. A 

value of 𝑚 = 5000 has been chosen.  

For a sensitivity analysis on this parameter I turn to (Hanssen, 2016). It is shown that parameter 𝑚 

has significant influence on the steepness of the flow curve for low shear rates as well as the velocity 

profile of flowing fluids with a yield stress. From a comparison with the analytical solution it is shown 

that 𝑚 = 5000 is required to minimize numerical mutation. 

3.3. Van Rhee (2017) 
(van Rhee, 2017) investigated OpenFOAM’s capability to simulate non-Newtonian fluids and coarse 

solid mixture flow. An adaptation of the already existing icoFoam application has been created. Non-

Newtonian models were already available in icoFoam, but the influence of coarse particles on the 

rheology hadn’t been implemented before. 

The influence of the particles on the plastic viscosity and yield stress has been implemented 

following to (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016). Equations (2.8), (2.9) and 

(2.10) were followed. It should be noted here that the source code showed regularization as shown 

in equation (3.9) has been incorporated too. The simulation case files showed that the regularization 

parameter 𝑚 has been set to 50. The source code can be seen in Appendix A. 
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Further, the settling velocity of the particles have also been implemented following (Talmon, 

Hanssen, Winterwerp, Sitoni, & van Rhee, 2016) which can be seen in equation (2.15).  

Lastly, a transport equation for the sand fraction has been implemented using the drift flux 

approach. This will ensure that the particles can 1) settle with reference to the carrier fluid and 2) get 

dragged along with the carrier fluid as the mixture flows through the domain. Equations (3.10) and 

(3.11) show this for a given control volume: 

 𝜕𝑐𝑠
𝜕𝑡
+ 𝛻. (𝑈𝑠𝑐𝑠) = 0 

(3.10) 

 𝑈𝑠 = 𝑈 +𝑤𝑠 (3.11) 

Here, 𝑐𝑠 is the sand fraction, 𝑈𝑠 is the sand particle velocity, 𝑤𝑠 is the settling velocity and ∇ is the 

divergence operator. 

In the work by (van Rhee, 2017), only the buoyancy effect (equation (2.16)) has been implemented 

following equation (3.12). 

 𝑤𝑠 = (1 − 𝑐𝑠)𝑤𝑠,0 (3.12) 

Where 𝑤𝑠,0 is the unhindered settling velocity, 𝑤𝑠 is the hindered settling velocity and (1 − 𝑐𝑠) 

represents the hindered settling effect in due to buoyancy. 

The source code files accompanying (van Rhee, 2017) also showed traces of code following equation 

(2.22), having both the buoyancy and return flow effects implemented. However, these lines of code 

had been commented out, so I don’t believe this has actually been used. Appendix A.2 shows this 

code being commented out. 

(van Rhee, 2017) concluded the implementation still showed quite okay agreement between 

numerical computations and experimental findings in (Spelay, 2007). One should note that in the 

paper, on equation 7, a power 2 operator on the particle diameter (𝑑2) is missing, though this has 

been implemented correctly. 

(van Rhee, 2017) validated the implementation in 2 parts. Part 1 was performed using 2D open-

channel (section 3.3.1), and part 2 was performed using a 3D open pipe (section 3.3.2). 

3.3.1. 2D open-channel 

The first part of the validation was a comparison against the analytic solution of a 2D open-channel 

flow with a fixed flowdepth. In a sense this could be considered a 2D closed-channel flow with a top 

lid that allows for full slip. It should be noted here that no sand particles are added to the simulation 

just yet. 

A simulation using a Bingham Plastic viscosity model has been performed. The analytical solution was 

formulated using the pressure gradient taken from the numerical solution. 

The following parameters were applied: flowdepth ℎ0 = 0.1 m, average velocity 𝑢̅ = 0.4 m/s, yield 

stress 𝜏𝑦 = 10 Pa, plastic viscosity 𝜇𝑝 = 0.0214 Pa.s, channel length 𝐿 = 20 m. The velocity in x 

direction 𝑈𝑥  has been extracted at 𝑥 = 15m from the inlet zone. Figure 3.4 shows these velocity as 

calculated by the simulation and the velocity following the analytical solution. 
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Figure 3.4: Velocity 𝑈𝑥  for both the numerical and analytical solution for the 2D channel flow at x=15. Source: (van Rhee, 
2017) 

3.3.2. 3D open pipe 

The second part of the validation was a comparison against experiments performed by (Spelay, 2007) 

in a 3D open pipe flow with a fixed flowdepth. In a sense this could be considered a 3D half round 

closed-pipe flow with a top lid that allows for full slip. 

The flowdepth was chosen in such a way that it matched with the flowdepth found in the 

experiments from (Spelay, 2007). A simulation using a Bingham Plastic viscosity model has been 

performed. The sand concentration profile has been compared to the profile found in the 

experiments. 

The following parameters were applied: flowdepth ℎ0 = 0.0968 m, inlet discharge 𝑄 = 5 L/s, yield 

stress of the carrier fluid 𝜏𝑦,𝑐𝑓 = 47.3 Pa, plastic viscosity of the carrier fluid 𝜇𝑝,𝑐𝑓 = 0.0214 Pa.s, 

inflow concentration of sand 𝑐𝑠 = 0.12, sand particle diameter 𝑑 = 188 micron, pipe length 𝐿 = 15 m, 

pipe diameter 𝐷 = 0.1567 m. 

Figure 3.5 shows the extracted sand concentration 𝑐𝑠 and flow velocity in the z-direction along the 

length of the pipe 𝑈𝑧 at 𝑧 = 15 m from the inlet zone. The sand concentration has been compared to 

the sand concentration as found by (Spelay, 2007). Figure 3.6 and Figure 3.7, respectively, show the 

sand concentration along the vertical symmetry plane after 300 seconds of simulation and at the xy-

plane at 𝑧 = 15 m. 
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Figure 3.5: Velocity profile and sand concentration at 𝑧 = 15 m at different times from the start of the simulation. Sand 
concentration has been compared to results found by (Spelay, 2007). Source: (van Rhee, 2017) 

 

Figure 3.6: Sand concentration along vertical symmetry plane in 3D pipe. Source: (van Rhee, 2017) 

 

Figure 3.7: Sand concentration at 𝑧 = 15 m from the inlet zone. Source: (van Rhee, 2017) 

Sand settles at the bottom of the pipe and this forms a sand bed. (van Rhee, 2017) concludes the 

concentration profile of the sand is similar to the experiments, noting that the dip in sand 

concentration just above the bed in the shearing layer is found to be smaller in the simulations; the 
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experiments showed a larger dip in sand concentration in the shearing layer. The final conclusion is 

that icoFoam is capable to capture solids settling processes. However, to truly mimic open pipe and 

open channel flows, a free mixture surface is required. 
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4. Summary 
In Part 1 of this study, an overview of relevant theory and literature has been presented. We have 

seen different rheological models and implementation techniques in CFD packages OpenFOAM and 

Delft3D. 

Different aspects have been compiled: the foundational modelling of rheological models (section 

2.1), the influence (suspended) particles have (section 2.2), and particle settling behaviour (section 

2.3). Further, specifically for open channel flow with a non-Newtonian fluid, an analytical solution for 

the velocity profile (section 2.4.3.2)and equations for the shear stress distribution (section 2.4.3.1) 

have been presented. 

(Hanssen, 2016) has shown how for low strain rates the apparent viscosity can’t be calculated. This 

poses a problem in the plug flow region when dealing with non-Newtonian fluids. A solution for this 

has been presented following (Papanastasiou, 1987) in section 3.2.1. 

(Spelay, 2007) has performed experiments with a mixture of non-Newtonian fluid and solids in a half 

open pipe. Measurements for sand concentration profiles as well as velocity profiles are performed. 

(van Rhee, 2017) used these measurements for validation of the adaptation of icoFoam. 

(van Rhee, 2017) has implemented capability to simulate non-Newtonian fluids with coarse solids  

mixture flow. This has done by adapting the icoFoam solver in OpenFOAM. Simulations have been 

performed with a Bingham Plastic fluid model excluding and including solids. The relevant theory for 

the influence of the solids on the viscosity and yield stress of the mixture have been presented in 

section 2.2 (van Rhee, 2017) concludes icoFoam is capable to capture solids settling processes. 

However, to truly mimic open pipe and open channel flows, a free mixture surface is required. The 

results themselves can be interesting for comparison for the work presented in this study. 
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Part 2: Implementation and 
simulations 
Following up on the literature study that has been performed in Part 1 of this report, Part 2 zooms in 

on the practical side of things. The goal is to be able to run simulations in OpenFOAM using a non-

Newtonian fluid with sand transport, segregation, and settling. To be able to do this, first an analysis 

of OpenFOAM is performed, then the adaptation is implemented, and finally simulations are ran and 

compared to previously presented results. 
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5. OpenFOAM & implementation 
This chapter will give an introduction to OpenFOAM, the weapon of choice for this research. Further, 

this chapter will show what adjustments have been made to fulfil the requirements set by the 

research objective.  

5.1. Intro to Computational Fluid Dynamics 
For simple flow problems, explicit analytical solutions have been formulated. But for more complex 

problems, more complex geometries, more complex fluid behaviours, these don’t exist. That’s where 

computational fluid dynamics (CFD) comes into play. 

CFD software is used for approximating Partial Differential Equations (PDEs) numerically in for 

example flow problems. These equations come from the Navier-Stokes equations, and the equations 

for mass and energy conservation. Space is discretized to small control volumes, and time is 

discretized into small timesteps. Using that principle the flow can be numerically approximated. For 

each of the control volumes the equations can be solved. Calculations are performed of the 

interaction of the fluid with the boundary conditions that are set.  

5.2. Introduction to OpenFOAM 
OpenFOAM is a library written in C++. It is a library build of many different components:  

applications, utilities and tools. For this research, OpenFOAM 5.0 (foundation variant) is used (Build: 

5.x-68e8507efb72). FOAM is a shorthand for Field Operations and Manipulation. It can be used for 

flow problems, finite element problems and financial computations. Figure 5.1 graphically shows the 

structure of the components. 

 

Figure 5.1: Overview of OpenFOAM components. Source: cfd.direct 

Each simulation case in OpenFOAM gets its own folder in which a certain structure must be adhered 

to. 3 main folders are required: 0, constant, and system. The 0 folder contains separate files for 

each of the values one is interested in, for example: pressure, velocity, volume fraction, etc. These 

have to be initialized with an initial value on the internal domain. Further, the boundary conditions 

have to prescribed as well. Constant values, both in space and time, are to be put in the constant 

folder. Examples are: the mesh geometry, viscosity, external force fields like gravity, and possibly 

turbulence model settings. The system folder contains all information pertaining to the discretization 

options, solver options like the time step and maximum courant number, differential schemes, 

residual control, and algorithm choice. This folder structure is shown graphically in Figure 5.2. 
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Figure 5.2: Case folder structure. Source: cfd.direct 

5.3. Challenge with OpenFOAM 
OpenFOAM doesn’t have a graphical user interface like some other CFD software packages have. 

Also, some parts of OpenFOAM’s code aren’t as well-documented as one might hope. At best, the 

documentation is spread out over multiple places: coding guides, user manuals, in the source code, 

or online forums. 

This is a challenge for when a simulation fails for some reason. If proper documentation is lacking, 

figuring out why something fails easily results in a trial and error process. With that I mean that 

simulation case files must be configured, the simulation must be ran, and then visual inspection can 

commence using postprocessing tools like ParaView. If anything fails during that process, it’s back to 

square one. 

5.4. Solver requirements 
To satisfy the research objective, it’s important to understand what existing solvers are capable of. 

OpenFOAM consists of a number readily-available solvers; but not all requirements are currently 

built into OpenFOAM’s solvers. A starting point can be chosen in such a way that most requirements 

are already fulfilled, or such that development efforts are minimized. A capability matrix of existing 

solvers can be found on openfoam.com1.  

The requirements needed to simulate tailing slurries can be formulated as follows: gravitational 

forces have to be taken into account; a free mixture surface should be trackable; non-Newtonian 

viscosity models are to be used; particle segregation and transport model are to be supported, and 

the influence of particles on the viscosity should be taken into account.  

Luckily, the source code as used by (van Rhee, 2017) has been made available to me and this should 

save time in the development phase. Also, to follow along the recommendations put forward by (van 

 
1 https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-
solvers.html#sec-applications-solvers-capability-matrix 

https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-solvers.html#sec-applications-solvers-capability-matrix
https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-applications-solvers.html#sec-applications-solvers-capability-matrix
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Rhee, 2017), OpenFOAM’s interFoam seems the logical choice. It is a solver for 2 incompressible 

fluids using the VOF method. It will allow for the tracking of an interface, which is needed to allow for 

a true free mixture surface. According to OpenFOAM’s capability matrix, interFoam is the only multi-

phase solver. It should be noted that many solvers are still missing from this matrix. To take an 

example, multiphaseEulerFoam is missing. That solver also includes compressible fluids and heat 

transfer, both of which are unnecessary for our research. 

As it stands, interFoam offers support for non-Newtonian models (e.g.: Power Law, Herschel-

Bulkley), but none include the influence of sand particles, so this is a part that will need to be 

implemented. Further, it doesn’t have additional transports equations for sand. To allow for sand 

settling, segregation, and transport, an additional transport equation will have to be added. 

5.5. interFoam 
interFoam is an incompressible, 2 phase solver in OpenFOAM with VOF method. Like the VOF 

method described in section 5.5.2, interFoam utilizes VOF averaging for properties like density, 

viscosity and velocity. So, only one momentum equation is solved. 

5.5.1. Governing equations 

The fundamental governing equations are the Navier Stokes equations for an incompressible, viscous 

fluid. From this, the momentum equation is shown in equation (5.1): 

 𝜕𝑈

𝜕𝑡
+ 𝛻. (𝑈𝑈) − 𝛻.

𝜇

𝜌
𝛻𝑈 − 𝑔 −

𝐹𝑠
𝜌
= −

1

𝜌
𝛻𝑝 

(5.1) 

Where 𝑈 is the flow velocity, 𝑡 is time, 𝑝 is the pressure, 𝜇 is the viscosity, 𝑔 is the acceleration due 

to gravity, 𝜌 is the density of the fluid and 𝐹𝑠 is the surface tension, which is not considered an 

important aspect for this research. 

The continuity equation in the differential form states: 

 𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑈) = 0 

(5.2) 

If incompressible flow may be assumed, which interFoam does, this reduces to: 

 𝛻. 𝑈 = 0 (5.3) 

The density for the 2 phases, 𝜌, is defined through the VOF method: 

 𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼) (5.4) 

Further, the equation for the volume fraction 𝛼 has to be solved: 

 𝜕𝛼

𝜕𝑡
+ 𝛻 ∙ (𝛼𝑈) + 𝛻 ∙ (𝒖𝒄𝛼(1 − 𝛼) = 0 

(5.5) 

Where 𝒖𝒄 is the artificial normal compression velocity of the interface. This is done in interFoam to 

prevent interface dispersion (Afshar, 2010). 
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5.5.2. Volume of Fluid method in multiphase flow 

One of the fundamentals of multiphase flow is the interface capturing. This essentially comes down 

to calculating where the interface between the different phases lies. If interface capturing methods 

are omitted entirely, numerical diffusion will occur, and non-physical results are bound to arise 

(Peeters, 2016). 

A well-known example of an interface capturing method is the Volume of Fluid (VOF) method. This is 

a method in which each of the control volumes (CV) in the grid get assigned a volume fraction 𝛼. The 

following condition is set: 

 0 ≤ 𝛼 ≤ 1 (5.6) 

In this, the values 𝛼 = 1 and 𝛼 = 0 correspond to the CV only containing 1 single phase. If 𝛼 takes a 

value lower than 1 and higher than 0, the CV is partially filled with both fluids, and the interface 

between the fluids lies within that CV. 

This holds for two fluid systems, but also for multiple (𝑛) fluid systems. In that case, a fluid fraction is 

defined for all fluids. Equation (5.7) shows the fluid fraction for the m-th fluid for each CV: 

 0 ≤ 𝑎𝑚 ≤ 1 (5.7) 

And the sum of all 𝑛 fractions in each CV should be equal to one: 

 
∑ 𝛼𝑚 = 1

𝑛

𝑚=1

 
(5.8) 

Using the volume fractions, for each CV, the physical properties are calculated as a weighted 

averages. In a system with 2 fluids, typically only 1 fluid fraction (𝛼) is defined. For example, the 

density 𝜌 and viscosity 𝜇 are then averaged for each CV following equations (5.9) and (5.10): 

 𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼) (5.9) 

 𝜇 = 𝜇1𝛼 + 𝜇2(1 − 𝛼) (5.10) 

The spatial derivative of the value for 𝛼 can be used to compute the orientation of the interface if 

that’s needed. An example of this is the Least Squares Volume of Fluid Interface Reconstruction 

Algorithm (LVIRA). We will not go into that here, (Peeters, 2016) explains a lot more about it. 

5.5.3. Pressure momentum coupling 

The equation for momentum contains a term for pressure; however, there is no equation for 

pressure. So when solving the momentum and continuity equations, a guessed value for pressure is 

initially used. Using the guessed value for pressure, a velocity can be computed but it will most likely 

not satisfy the continuity equation. This is called the pressure momentum coupling and multiple 

pressure correction methods have been developed.  

Some examples of methods are: PISO, SIMPLE and PIMPLE (PISO-SIMPLE). The difference between 

these three lies in the correction equations and the number of correctors, and whether they are 

inner or outer correctors. (Peeters, 2016) noted SIMPLE has been designed with steady-state flow 

problems in mind (Patankar, 1980). The nature of the flow problems in this thesis are transient start-
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up behaviour and bed formation are both time dependent. OpenFOAM has multiple solvers 

(including interFoam) which can operate all three methods. 

The PISO algorithm uses multiple prediction and correction steps to solve the pressure momentum 

coupling. (Issa, 1986) developed this method and explains the inner workings. In OpenFOAM, the 

settings to drive the PISO algorithm are nCorrectors and additionally settings for non-orthogonal 

correction can also be set. nCorrectors is set to 2 throughout this thesis. 

We are not planning on using the PIMPLE algorithm, the solver operates the PIMPLE method in PISO 

mode by not applying any field or equation relaxation. 

5.5.4. Discretization / differential schemes 

Each of the governing equations should be discretized. For spatial discretization this should be 

following the mesh or grid definition. In OpenFOAM, this is controlled by user-defined differential 

schemes. These schemes describe and instruct how interpolation should be performed. This is for 

instance needed when calculating a cell face flux based on a value that’s stored on cell centres. 

For time discretization, the Euler implicit temporal scheme (first order accurate) is used. Equation 

(5.11) shows the Euler scheme for scalar 𝜙. 

 𝜕𝜙

𝜕𝑡
=
𝜙 − 𝜙0

∆𝑡
 

(5.11) 

Where 𝜙 is the scalar at the current time step and 𝜙0 is the value of the same scalar at the previous 

time step. 

The spatial discretization schemes used to interpolate values from cell-centres to their respective 

faces must also be defined. (Jasak, 1996) shows a Central Differencing scheme in equation (5.12). 

This interpolation assumes linear variation of value 𝜙 between nodes P and N. 

 

Figure 5.3: Cell centre to face interpolation for nodes P and N. Source: (Jasak, 1996) 

 𝜙𝑓 = 𝑓𝑥𝜙𝑃 + (1 − 𝑓𝑥)𝜙𝑁 (5.12) 

Where 𝜙𝑃 and 𝜙𝑁 are the values of scalar 𝜙 at node P and node N respectively, 𝑓𝑥 represents the 

ratio of the distances 𝑓𝑁 and 𝑃𝑁: 
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𝑓𝑥 =

𝑓𝑁

𝑃𝑁
 

(5.13) 

In OpenFOAM, this interpolation method can be used by setting Gauss linear in the fvSchemes 

dictionary.  

(Jasak, 1996) also shows a scheme for Upwind Differencing. This is given following equation (5.14). 

 
𝜙𝑓 = {

𝜙𝑓 = 𝜙𝑃  𝑓𝑜𝑟 𝐹 ≥ 0

𝜙𝑓 = 𝜙𝑁  𝑓𝑜𝑟 𝐹 < 0
 

(5.14) 

In which the value for 𝜙𝑓 is determined by the direction of the flow. 

For the divergence terms, a combination of Gauss linear, Gauss linearUpwind, and Gauss 

vanLeer is used. Again, each of the schemes used for the simulations performed later are shown in 

Appendix D. 

Non-orthogonality in the mesh is handled in the corrected scheme for the Laplacian schemes only; 

they are computed using Gauss linear corrected; the snGradScheme is also set to corrected. 

5.5.5. Matrix solvers 

The equations that are solved are reduced to the linear algebraic problem in equation (5.15). 

 𝐴𝑥 = 𝑏 (5.15) 

The algorithms used to solve these are a combination of smoothSolver, GAMG, and PCGGAMG. Each of 

these solvers has different methods for solving the equations. Each has settings for residual control 

and (relative) tolerances. For all simulations we’ve ran, these settings are also included in Appendix 

D. 

5.5.6. MULES correction on 𝛼 

For the volume fraction 𝛼, additional corrections can be made. For each timestep, a number of sub-

cycles can be performed to calculate 𝛼. This can be put in place to increase stability when the solver 

is operating at larger Courant numbers, (Peeters, 2016), (Damián, 2013). This sub-cycling is provided 

by the MULES algorithm. Further, this method has been put in place to maintain boundedness of the 

phase fraction 𝛼. That is then independent of the underlying numerical schemes and it is mesh 

independent. This in turn leads to a more free choice in schemes for, for example, convection 

(divSchemes)2. Following the advice in the same reference, the discretization schemes are chosen. 

Two parameters to drive MULES have to be defined: nAlphaCorr and nAlphaSubcycles. These are 

set to 1 and 5 respectively.  Further, there’s an nLimiterIter which is set to 3. 

5.5.7. Courant-Friedrichs-Lewy condition 

The Courant Friedrichs Lewy (CFL) limit is a stability criterion that needs to be satisfied. It’s a measure 

of stability for simulations of flows based on a maximum time step ∆𝑡, (Courant, Friedrichs, & Lewy, 

 
2 https://www.openfoam.com/documentation/tutorial-guide/tutorialse8.php#dx14-75004 

https://www.openfoam.com/documentation/tutorial-guide/tutorialse8.php#dx14-75004
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1928), (Peeters, 2016). Equation (5.16) presents the formulation for the well-known (dimensionless) 

Courant number 𝐶𝑜 in 3 spatial dimensions.  

 
𝐶𝑜 = ∆𝑡∑

𝑢𝑖
∆𝑥𝑖

3

𝑖=1
≤ 𝐶𝑜𝑚𝑎𝑥 

(5.16) 

Where 𝑢𝑖 represents the velocity in direction 𝑖, and ∆𝑥𝑖 is the cell size in the same direction. A typical 

maximum value used is 𝐶𝑜𝑚𝑎𝑥 = 1. For explicit solvers, this is a hard limit (Peeters, 2016).  

The criterion can also be used in the reverse manner, where the (next) timestep is computed from 

the maximum (user specified) value for the Courant number, 𝐶𝑜𝑚𝑎𝑥. The interFoam solver can 

compute the timesteps from the CFL limit dynamically. This criterion is defined as follows: 

 

∆𝑡𝑚𝑎𝑥 ≤ 𝑚𝑖𝑛 {∆𝑡𝑢,𝑚𝑎𝑥,
𝐶𝑜𝑚𝑎𝑥

∑
𝑢𝑖
∆𝑥𝑖

3
𝑖=1

} 

(5.17) 

Where ∆𝑡𝑚𝑎𝑥 is the maximum timestep based on the CFL limit, and ∆𝑡𝑢,𝑚𝑎𝑥 is the maximum user 

defined timestep. 

5.6. Code adjustments 
The interFoam solver will need to be adjusted such that it cope with a mixture of a non-Newtonian 

fluid and sand particles. We will need to implement equations for the sand transport and settling. 

Section 5.6.1 and 5.6.2 show the changes that are performed on the solver, and section 5.6.3 will 

present the changes needed to allow for non-Newtonian materials. 

5.6.1. Solver adjustments 

First up is the solver code for interFoam itself. This section describes the adjustments made to allow 

for sand transport and segregation in the interFoam solver. 

5.6.1.1. Sand transport 

The adjustments required to add the sand transport equation to the solver is highlighted in this 

section. The actual source code for the solver can be found in Appendix B. Large parts of the code 

were provided by Cees van Rhee as these were also used in his work (van Rhee, 2017). 

The sand transport equation has been implemented following the drift flux method as described by 

(van Rhee, 2017). Equations (3.10) and (3.11) show that. In code, this looks as follows: 

     Us = U + wsvol; 

  

     surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();    

  

     fvScalarMatrix csandEqn 

     ( 

           fvm::ddt(csand) 

         + fvm::div(phised, csand) 

     ); 

     csandEqn.solve(); 

U represents the velocity field of the fluid mixture. Us symbolizes the velocity field of the sand 

particles and wsvol is the settling velocity of the sand parties. 
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phised symbolizes the flux of the sand particles between the cells of the mesh. It is a 

surfaceScalarfield because the flux is a scalar. The “surface“ part of that means that it’s stored 

on the surface of the cells in the mesh. 

The velocity field U and Us are stored at the centre of each cell (vol keyword in volVectorField), 

but the flux between cells is the value on the faces. So to get the flux of the sand, we need to 

interpolate to the cell faces. The fvc::interpolate() method returns the interpolated velocity on 

the cell faces. 

mesh.Sf() gives back the cell face area vectors. & is the operator for the scalar product. So the scalar 

product of the interpolated velocity on the cell faces and the cell face vectors gives the flux.  

Further, following equation (3.10) is calculated and solved on lines 5-10 of the above code.  

As far as the transport equation goes, that’s all that’s needed. 

5.6.1.2. Settling velocity 

In the code that calculates the transport of sand (section 5.6.1.1), the settling velocity of sand is used. 

The (hindered) settling velocity is implemented following equation (3.12) and includes the buoyancy 

effect and equation (2.15) that gives the unhindered settling velocity. In code, this looks as follows. 

Table 5.1 presents how the nomenclature of equation (3.12) and (2.15) translates into the code 

below. 

     dimensionedScalar one("one", dimless, 1.0); 

  

     dimensionedScalar factor("factor", dimless, 1.0/18.0); 

  

     volScalarField muws_mixture = mixture.muws(); 

  

     wsvol  = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture)); 

  

     wsvol *= (one - csand); 

Code variable in above code Variable in equation (3.12) and (2.15) 
mixture.muws() 𝜇𝑐𝑓 

rhos 𝜌𝑠 

rho 𝜌𝑐𝑓 

g 𝑔 

sqr(Diam) 𝑑2 
csand 𝑐𝑠 
wsvol 𝑤𝑠 

Table 5.1: Code and equation variable mapping for settling velocity 

mixture.muws() returns the viscosity of the mixture without the influence of sand particles  

𝜇𝑐𝑓; section 5.6.3 elaborates more on this. 

5.6.2. More solver adjustments: sand particle influence on mixture density 

So far, the influence of the presence of sand particles is not taken into account in the calculation of 

the total mixture density. 

Simulation 1, 2, 3 and 4 have been performed without this influence: the density of the sand is not 

taken into account in the calculation of the mixture density. As has been concluded in simulation 4, 

this is exactly the suspected cause of the pipe filling up completely instead of partially. 
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Simulation 5 will therefore take the density of the sand particles into account when calculating the 

mixture density. This will then be used to override the density value for later use in the momentum 

equation. The other adjustment required is that the settling velocity of the sand particles, following 

equation (2.15), is calculated based on the density of the carrier fluid (without the sand particles). 

As can be seen in section 5.6.1.2, the initial implementation of the settling velocity equation would 

not be sufficient; it used a variable called rho which now represents the density of the entire mixture 

including particles. Instead, we should define a new variable for the density of the carrier fluid only. 

We call this rho_cf. 

The following adjustment has been made in the code for the sand transport file. On line 3 we can see 

the calculation for the density of the carrier fluid only, line 4 shows this is being used to calculate 

settling velocity, and line 5 and 6 show the new mixture density is being calculated. 

     // Calculate carrier fluid density rho_cf for later use in calculating sand  

        particle settling velocity 

 

     rho_cf = alpha1*rho1 + alpha2*rho2; 

 

    … // code omitted here for ease of reading 

 

 

     wsvol = factor * (((rhos-rho_cf)*sqr(Diam)*g) / (muws_mixture)); 

 

    … // code omitted here for ease of reading 

 

 

    // Calculate rho_ws (density with sand particles included) 

     rho_ws = (1 - csand)*rho_cf + csand*rhos; 

     

     // Overwrite the value for rho with the newly calculated rho_ws 

    rho = rho_ws 

5.6.3. Non-Newtonian material model 

In C++, abstract classes (sometimes also called interfaces) can be used to dictate each concrete 

inheriting class must have some (overriding) implementation of the virtual functions in the abstract 

class.  

The abstract viscosityModel class provided by OpenFOAM has a virtual function that should return 

the apparent (kinematic) viscosity. This dictates that every descendant of this class must have a 

function that returns the apparent viscosity. This is the apparent (kinematic) viscosity as described in 

section 2.1.2 / equation (2.6).  

5.6.3.1. Bingham Plastic 

To be able to calculate the settling velocity based on the viscosity of only the carrier fluid (sand 

particles omitted), we’ve extended the abstract viscosityModel class to also have a virtual function 

that returns the field for viscosity without sand particles, nuws(). 

         //- Return the laminar viscosity 

         virtual tmp<volScalarField> nu() const = 0; 

  

          //- Return the viscosity for settling velocity 

         virtual tmp<volScalarField> nuws() const = 0; 

This function now must have the name calcNuws() and it returns a volScalarField object. This is 

the apparent kinematic viscosity without the influence of the sand particles (𝜈𝑎). “ws” here 

represents “without sand”. 
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It follows equation (2.2), (2.6), (2.7) and (3.9). Combining these equations yields equation (5.18) for 

the apparent kinematic viscosity 𝜈𝑎 without the influence of sand particles. 

 
𝜈𝑎 =

𝜏𝑦,𝜌(1 − 𝑒
−𝑚𝛾̇) + 𝜇𝑏,𝜌𝛾̇

𝛾̇
 

(5.18) 

Where 𝜏𝑦,𝜌 is the yield strength of the fluid divided by the density of the carrier fluid, 𝜇𝑏,𝜌 is the 

plastic viscosity divided by the density of the carrier fluid. 

In code, this is implemented as follows. A mechanism is implemented to prevent dividing by 0, which 

could happen with mixture that have a non-zero yield stress, in the plug of the flow. This is done 

capping the strain rate at VSMALL, a very small value in OpenFOAM. Its value is 1e-300. 

 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcNuws() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

    

     tmp<volScalarField> sr(strainRate()); 

  

     return 

     ( 

         min( 

             numax_, 

             nu0_ +  ( tau0_*( one-exp(-coef_*sr()) ) ) 

             /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL))) 

         ) 

     ); 

 } 

The name Talmon is chosen for the class, because (van Rhee, 2017) used the same name. It’s based 

on (Talmon, Hanssen, Winterwerp, Sitoni, & van Rhee, 2016), I believe. 

The class also has a function called calcNu() to calculate the apparent kinematic viscosity including 

the influence of sand 𝜈𝑎,𝑠 following equation (2.2), (2.6), (2.7), (2.8), (2.9), and (3.9) yielding: 

 
𝜈𝑎,𝑠 =

𝜏𝑦,𝜌(1 − 𝑒
−𝑚𝛾̇)𝑒𝛽𝜆 + 𝜇𝑏,𝜌𝑒

𝛽𝜆𝛾̇

𝛾̇
 

(5.19) 

In code, this is implemented as follows: 

 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcNu() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

     dimensionedScalar one3("onethird", dimless, 1.0/3.0); 

     dimensionedScalar klein("klein", dimless, 1e-5); 

     tmp<volScalarField> sr(strainRate());   

     volScalarField labda_= one / (pow(cmax_/(alpha_+klein),one3)-one);  

     Info<< " Max waarde van alpha_ in calcNu" << max(alpha_) << endl; 

     Info<< " Min waarde van alpha_ " << min(alpha_) << endl; 

     Info<< " Berekening van labda " << max(labda_) << endl; 

     return(  

         min(_, 

             nu0_*exp(alpha0_*labda_) +  

             (tau0_*exp(alpha0_*labda_) * (one-exp(-coef_*sr())) )   /  

             (max(sr(),dimensionedScalar("VSMALL", dimless/dimTime, VSMALL))) 

          )); 

 } 

5.6.3.2. Capped exponents and 𝜆 

It was quickly found that the exponents 𝑒𝛽𝜆 runs to infinity for 𝑐𝑠 close to 𝑐𝑚𝑎𝑥. For varying values of 

𝑐𝑠 (csand) the value of 𝜆 (labda) can be plotted, this is shown in Figure 5.4. The value for 𝑐𝑚𝑎𝑥 in this 

plot is set at 0.6. 
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Figure 5.4: Linear sand concentration 𝜆 (labda, on the y-axis) for varying 𝑐𝑠 (csand, on the x-axis), 𝑐𝑚𝑎𝑥 = 0.6 

We see that for 𝑐𝑠 values really close to 𝑐𝑚𝑎𝑥 (0.6 in Figure 5.4), 𝜆 becomes really large; for 𝑐𝑠 =

𝑐𝑚𝑎𝑥, 𝜆 tends to infinity. This is a problem as soon as it is multiplied by 𝛽 and the exponent 𝑒𝛽𝜆 is 

computed. Therefore, an adaptation to this has been proposed to make sure this exponent stays 

below a very large value in OpenFOAM. This large value is called ROOTVGREAT, and it’s value is 1e150. 

 𝑚𝑎𝑥 (𝑒𝛽𝜆, 𝑅𝑂𝑂𝑇𝑉𝐺𝑅𝐸𝐴𝑇) (5.20) 

Further, the value for 𝜆 is also capped to a maximum. Recall equation (2.10), the suggested 

adaptation looks like this: 

 

𝜆 = 𝑚𝑖𝑛

(

 
 1

(
𝑐𝑚𝑎𝑥 

𝑐𝑠 + 10
−5)

1
3
− 1

, 𝜆𝑚𝑎𝑥

)

 
 

 

(5.21) 

In which 𝜆𝑚𝑎𝑥 is the maximum theoretical value at which the exponent 𝑒𝛽𝜆 should not exceed the 

literal maximum value in OpenFOAM (std::numeric_limits<double>::max()). This is calculated as 

follows: 

 𝜆𝑚𝑎𝑥 = 𝑙𝑜𝑔 (
𝑚𝑎𝑥𝑂𝑝𝑒𝑛𝐹𝑂𝐴𝑀

𝛽
) 

(5.22) 

Similarly, this maximizing of these values has also been added before the division by the strain rate 𝛾̇ 

happens; the strain rate is capped so it’s always larger than a minimum small value, VSMALL: 1e-150. 

This last part was already part of the implementation as described in section 5.6.3.1. 

 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcNu() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

  

     tmp<volScalarField> sr(strainRate()); 

  

     volScalarField labda_= calcLabda(); 
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     volScalarField capped_exponent = min(exp(alpha0_*labda_), dimensionedScalar ("ROOTVGREAT", dimless, 

ROOTVGREAT)); 

  

     return 

     (  

         min( 

             numax_, 

             nu0_*capped_exponent + (tau0_*capped_exponent*(one-exp(-coef_*sr())) ) 

                 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL))) 

         ) 

     ); 

 } 

Following equation (5.21), the function calcLabda() is implemented as follows: 

 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcLabda() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

     dimensionedScalar one3("onethird", dimless, 1.0/3.0); 

     dimensionedScalar klein("klein", dimless, 1e-5); 

      

     volScalarField labda_return = (one / (pow(cmax_/(alpha_+klein),one3)-one)); 

  

     return min(labda_return,maxlabda); 

 } 

Following equation (5.22), the function for 𝜆𝑚𝑎𝑥 (maxlabda) is calculated once as follows in the 

constructor function of the Talmon object. It’s placed inside the constructor function since it’s only 

required to calculate this once. 

 maxlabda("maxlabda", dimless, log(std::numeric_limits<double>::max()) 

     /alpha0_.value()), 

A couple of calls to the Info function (for logging purposes) have been omitted from the above, but 

are shown in Appendix C.1. 
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6. Simulation and validation 
A number of simulations have been executed using different grids, boundary conditions and material 

properties. Each of the subsections in this chapter goes into detail about what has been done exactly. 

All of the simulation case input files (geometry definitions, material properties, boundary conditions, 

and solver settings) can be found in Appendix D.  

6.1. Simulation 1 
First up is a rather simple simulation using the Bingham Plastic rheological model. The goal of this 

simulation is to recreate a simulation case comparable to the work by (van Rhee, 2017). We do this 

so we can compare results. Validation is done against the analytical solution for the velocity of flow 

down an inclined plane as presented in section 2.4.3.2. 

So the goal of this simulation is to see whether the adapted interFoam solver is capable of recreating 

a 2D open channel flow using a Bingham Plastic fluid model. Most parameters are set to the same 

values as used by (van Rhee, 2017). For this first simulation we will not add any sand particles to the 

simulation. 

6.1.1. Geometry 

The geometry is rather simple: a 2D rectangular (open) channel with length 𝐿 = 21m (x-direction), 

height ℎ = 0.3m (y-direction), width 𝑏 = 0.1m (z-direction). Two blocks have been defined, block 1 is 

there to facilitate inflow in the positive y-direction, and block 2 through which the fluid will flow and 

eventually exit the simulation domain.  

Block 1 has dimensions 1m x 0.3m x 0.1m. It is divided into 120 x 80 x 1 cells with a simpleGrading 3, 

5, 1. Block 2 has dimensions 20m x 0.3m x 0.1m. It is divided also into 120 x 80 x 1 cells with a 

simpleGrading 3, 5, 1. This grading will make the cells gradually smaller in the defined direction to 

allow for more details to be captured. The mesh is generated using standard the blockMesh utility3 

offered by OpenFOAM. Figure 6.1 and Figure 6.2 show the mesh as it’s generated using these 

parameters. 

 

Figure 6.1: Geometry and mesh for simulation 1. Block 1 on the left hand side, block 2 on the right hand side. Note: x-axis 
scaled by factor 0.05 

 
3 https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-
generation-with-the-blockmesh-utility 
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Figure 6.2: Detail of block 1, the inlet zone, for simulation 1. Note: x-axis scaled by factor 0.05 

5 patches are defined on the grid. The inlet patch is defined in block 1, on the bottom. The outlet 

is the entire right hand side edge on block 2. The atmosphere is the entire top edge. On the left hand 

side edge of block 1 a wall is defined (leftwall). And the bottom patch is the bottom edge on block 

2. Both front and back faces are empty. As such there are two non-empty solution directions: x and y. 

The z-direction is empty. 

6.1.2. Boundary conditions 

On each of the 5 patches, for each of the variables we’ve defined boundary condition types and 

values. These are shown in Table 6.1. For csand, Us, and wsvol the inlet boundary condition need to 

be set such that no sand enters the domains. Omitted from this table are the boundary conditions for 

Us and wsvol. They are just set such that no sand enters the domain and for completeness these files 

are shown in appendix D.1. 

 alpha.water U p_rgh csand 

inlet fixedValue 
uniform 1 

flowRateInletVelocity 
constant 0.004 

fixedFluxPressure fixedValue 
uniform 0 

leftwall zeroGradient noSlip fixedFluxPressure zeroGradient 
outlet zeroGradient inletOutlet  

value: uniform (0 0 0) 
fixedFluxPressure zeroGradient 

bottom zeroGradient noSlip fixedFluxPressure zeroGradient 
atmosphere inletOutlet 

inletValue 0 
pressureInletOutletVelocity 
value: uniform (0 0 0) 

totalPressure 
reference p0: 
uniform 0 

zeroGradient 

Table 6.1: Boundary condition types used in simulation 1 

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 4 l/s enters the domain in the positive 

y-direction (upwards) at 𝑡 = 0 sec. For reference, the inlet velocity as used by (van Rhee, 2017) 𝑈 = 

0.4m/s. The inlet area for our grid is 𝐴 = 0.1 x 0.1 (width x height of the inlet). 𝑄 = 𝑈𝐴, thus 𝑄 = 4 

l/s. 
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6.1.3. Driving force 

The only driving force for the flow will be a gravitational force. This is defined using a vector 𝑔 

(magnitude and direction). A file for this is present in the constant directory. Since we are interested 

in flow along an inclined slope, and actually angling the mesh (in blockMesh) can become somewhat 

indecipherable, it is easier to put the gravitational force vector under an angle and keep the mesh 

simpler. Components 𝑔𝑥 and 𝑔𝑦 are defined using vector decomposition using angle 𝜃. The z-

direction is empty, so 𝑔𝑧 is just 0. Table 6.2 shows the angle used and the decomposition. 

𝒈 (m/s2) 9.81 

𝜽 (°) 2.86 

𝒈𝒙 (m/s2) 0.4898 

𝒈𝒚 (m/s2) -9.80 

𝒈𝒛 (m/s2) 0 
Table 6.2: Gravitational force vector decomposition for simulation 1 

6.1.4. Material properties and solver parameters 

The material properties in OpenFOAM are put into the tranportProperties dictionary. A 2 phase 

flow is simulated, so 2 materials are defined. 

The first material is air. It’s just a Newtonian model with 𝜈 = 1.48e-5 and density 𝜌 has been set to 1 

kg/m3. Throughout this entire research these same value have been used. 

For the second material, a Bingham Plastic viscosity model has been chosen. The yield stress 𝜏𝑦 has 

been set at 10 Pa and plastic viscosity 𝜇𝑝 at 0.2 Pa.s. These values are set to the same as was used in 

the 2D channel flow without sand particles in (van Rhee, 2017).  

For the interFoam solver, those input parameters first need to be divided by density 𝜌 before being 

set in the tranportProperties dictionary. Table 6.3 shows these. 

transportModel Talmon 

rho [kg/m3] 1249 

coef m [-] 50 

cmax [-] 0.6 

alpha0 [-] 0.27 

tau0 [m2/s2] 0.008006 

nu0 [m2/s] 0.00016012 

numax [m2/s] 1000e-2 
Table 6.3: Material properties in the tranportProperties dictionary for simulation 1 

It should be noted here that (van Rhee, 2017) used different transport parameters. In the icoFoam 

solver, density is not relevant or taken into account.  

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes 

dictionary we can configure the matrix solvers and set the discretization schemes, respectively. 

Again, also these files can be found in appendix D.1. 

The simulation in this section used the implementation as described in section 5.6.3.2. 
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6.1.5. Result 

The simulation is ran until 𝑡 = 2000s. Then, using ParaView, we can extract multiple plots. The 

resulting volume fraction 𝛼 can be graphically shown across the domain. Figure 6.3 shows that at 𝑡 = 

2000s. 

 

Figure 6.3: Volume fraction alpha.water at t = 2000 for simulation 1. Note: x-axis scaled by factor 0.05 

At 𝑥 = 19.5m, the volume fraction alpha.water profile and horizontal flow velocity (Ux) profile have 

been captured. This is shown in Figure 6.4. 

 

Figure 6.4: Volume fraction alpha.water at x = 19.5m for simulation 1 
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Figure 6.5: Horizontal flow velocity Ux profile at x = 19.5m for simulation 1 

The flowdepth ℎ0 seems to stabilize at 0.044m. Both a plug zone and shearing layer can be seen. In 

the plug the velocity is constant. In the shearing layer, the velocity is reduced layer by layer until it 

reaches zero velocity at the no-slip bottom of the domain. 

In Figure 6.4 we can also see that the velocity along the top of the domain tends to 0 m/s. This is not 

what we would have expected, because we were trying to simulate a box without any lid on the top. 

It should have just been an open top with slipping flow. In hindsight, this seems to have been an 

issue with the boundary condition on that patch. Looking into the documentation, it’s not evident 

what went wrong here. We did not specify anything for the tangentialVelocity keyword, which 

should have result in allowing slipping tangential flow on that patch. It’s apparent that it didn’t. This 

was only noticed after all simulations have been executed. Otherwise, we would have found a 

solution for this sooner. 

6.1.6. Validation 

The results of the simulation have been compared against the previously found analytical solution for 

the velocity. Figure 6.6 shows the results of the numerical simulation data for horizontal velocity 

𝑈𝑥,𝑠𝑖𝑚, the analytical velocity profile 𝑈𝑥, which has been constructed following equations (2.34) and 

(2.35), shear stress 𝜏 has been constructed following (2.29) and the yield stress 𝜏𝑦 is shown at 10 Pa. 



45 

 

Figure 6.6: Velocity profile from analytical solution and simulation 1 results at x=15m,  

We see that at the depth where the shear stress and yield stress intersect, the plug flow zone ends. 

The velocity that’s calculated in the simulation matches quite closely with the analytical solution. 

If we compare with earlier results from (van Rhee, 2017), we do see a deviation. Remember Figure 

3.4 where we saw that the plug velocity is found to be roughly 0.45 m/s, much lower than the plug 

velocity found in the simulation: 1.18 m/s. Simultaneously, we can also see that continuity is upheld, 

because simultaneously the flowdepth ℎ0 found in the simulation is 0.044m, whereas this was fixed 

at 0.1m for (van Rhee, 2017). The shape of the velocity profiles shows the characteristics of the flow 

are the same: plug flow on top of a shearing layer and no slip at the bed. 

6.1.7. Conclusions 

The results found match the analytical solution for the velocity profile of a Bingham Plastic well. The 

velocity in the plug seems to be overestimated a little bit by the simulation. From the looks of it, this 

is a rather small difference and is not deemed significant. 

6.2. Simulation 2 
The goal of this next simulation is to see whether we can add a sand fraction to the Bingham Plastic 

and evaluate its flow properties. Next, we should see that sand is settling towards the bottom of the 

domain. Further, I expect to see a lower sand concentration in the shearing layer than in the plug 

zone. The plug zone is where the yield stress is preventing shear and also preventing settling of the 

sand particles.  

Sand settling and transport has been implemented following the code described in section 5.6.1. 

To get a feel for the order of magnitude of the bed sand concentration and sand concentration 

profile along the flowdepth, results are compared to findings by (van Rhee, 2017) and (Spelay, 2007).  
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6.2.1. Geometry 

The geometry of the simulation domain is the same as used in simulation 1, details are noted down 

in section 6.1.1. 

6.2.2. Boundary conditions 

Table 6.4 shows the boundary condition types as used in simulation 2. The conditions for 

alpha.water, U, and p_rgh were all kept the same as in simulation 1. Hence these are excluded from 

the table. Appendix D.2 shows the full simulation case files. 

There are two notable differences compared to simulation 1: csand at the inlet is now set to uniform 

0.12. So we are now actually adding sand particles. This 0.12 is chosen because (van Rhee, 2017) 

used the same value in the pipe flow simulation. 

And the second difference is the Us inlet flowRateInletVelocity is set to constant 0.004 so that it will 

get the same inlet velocity as the carrier fluid does. The inflowRate for U was kept the same, 4 l/s. 

Further, in simulation 1, the csand boundary condition on the atmosphere was set to zeroGradient. 

In simulation 2 it was found that when the csand is non-zero, this results in crashes. Hence, this has 

been changed to an inletOutlet condition. This indeed alleviates these crashes. 

 csand Us wsvol 

inlet fixedValue 
uniform 1 

flowRateInletVelocity 
constant 0.004 

fixedValue 
value: uniform (0 0 0) 

leftwall zeroGadient noSlip zeroGradient 
outlet zeroGradient inletOutlet  

value: uniform (0 0 0) 
zeroGradient 

bottom zeroGradient noSlip fixedValue 
value: uniform (0 0 0) 

atmosphere inletOulet 
inletValue 0 

pressureInletOutletVelocity 
value: uniform (0 0 0) 

fixedValue 
value: uniform (0 0 0) 

Table 6.4: Boundary condition types used in simulation 2 

6.2.3. Driving force 

The only driving force for the flow will be a gravitational force. Again, the gravitational force vector is 

angled to allow for this. The same angle of 2.86° is used as in simulation 1. 

6.2.4. Material properties and solver parameters 

Again, this simulation utilizes two phases so there are two sets of material properties. The first 

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).  

For the second phase, a Bingham Plastic viscosity model has been chosen. Yield stress 𝜏𝑦 = 47.3 Pa 

and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. These material properties are set to the same as the 3D half-

pipe flow in (van Rhee, 2017). 

Again, for the interFoam solver, those material parameters first need to be divided by density 𝜌 

before being set in the tranportProperties dictionary. Table 6.5 shows the parameters as used in 

the tranportProperties dictionary. 



47 

transportModel Talmon 

rho [kg/m3] 1249 

coef m [-] 50 

cmax [-] 0.6 

alpha0 [-] 0.27 

tau0 [m2/s2] 0.037870 

nu0 [m2/s] 1.71337e-5 

numax [m2/s] 1000e-2 
Table 6.5: Material properties in the tranportProperties dictionary for simulation 2 

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes 

dictionary we can configure the matrix solvers and set the discretization schemes, respectively. 

Again, also these files can be found in appendix D.2. 

The simulation in this section used the implementation as described in section 5.6.3.2. 

6.2.5. Result 

The volume fraction alpha.water can be graphically shown across the domain. Figure 6.7 and Figure 

6.8 show this at 𝑡 = 600s and 𝑡 = 1200s, respectively. A red colour represents the Bingham fluid 

(alpha.water=1), and blue is air (alpha.water=0). On the interface between the two fluids, values 

between 0 and 1 for alpha.water are shown in a beige/orange color.  

 

Figure 6.7: Volume fraction alpha.water for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05 

 

Figure 6.8: Volume fraction alpha.water for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05 

 

Similarly, the sand concentration csand can be visualized. Figure 6.9 and Figure 6.10 show this at 𝑡 = 

600s and 𝑡 = 1200s, respectively. 
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Figure 6.9: Sand fraction csand for simulation 2 at t = 600s. Note: x-axis scaled by factor 0.05 

 

Figure 6.10: Sand fraction csand for simulation 2 at t = 1200s. Note: x-axis scaled by factor 0.05 

Additionally, the profile along the flow depth for csand is extracted from the domain along the line 𝑥 

= 15m. This is shown in Figure 6.11. It can be seen that a sand bed is forming on the bottom. Further, 

in the shearing layer, the sand concentration is slightly lower than in the plug zone above it. Also 

noticeable is the lower sand concentration at the bottom vs the sand concentration directly 1 node 

above it (at 𝑦 = 0.00303m). There’s a notable drop seen, or in other words, directly at the bottom of 

the domain (at 𝑦 = 0m) the sand concentration is noticeably higher. To this point I don’t know what 

causes this. This dip can also be seen more prominently in Figure 6.12. 
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Figure 6.11: Sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m 

As a reference, the results found in (Spelay, 2007) have also been plotted in Figure 6.12. It can be 

seen that the shear zone sand concentration dip is slightly smaller compared to what (Spelay, 2007) 

saw. (van Rhee, 2017) noted similar results. 

 

Figure 6.12: Data from (Spelay, 2007) and sand fraction csand for simulation 2 at t = 600s and t = 1200s at x = 15m 

The velocity profile has also been extracted at x = 15m; this is shown in Figure 6.13. It can be seen 

that at the bottom of the channel stagnation occurs. This is the sand bed that has come to a halt due 

to increasing viscosity in the bed as well as the no-slip boundary condition on the bottom. 
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Figure 6.13: Velocity profile at x = 15m for simulation 2 at t = 600s and t = 1200s 

In Figure 6.13 we can see that the velocity along the top of the domain tends to 0 m/s. Similar to our 

results in simulation 1 (section 6.1.5), this is not what we would have expected, because we were 

trying to simulate a box without any lid on the top. We again suspect this is due to the missing 

tangentialVelocity keyword on the boundary condition for velocity U on the atmosphere patch. 

This was only noticed after all simulations have been executed. Otherwise, we would have found a 

solution for this sooner. 

6.2.6. Conclusions 

Since (Spelay, 2007) performed experiments in a half open pipe, and this simulation was performed 

on a 2D open channel geometry, we cannot conclude whether the differences in the sand 

concentration profile is significant or whether it is even a problem. The same deduction can be made 

of comparing our results to (van Rhee, 2017). Those simulations with sand particles in the mixture 

have been performed in a half-pipe, not a 2D channel.  

What can be concluded is that the principles of sand particles settling and a sand bed forming in a 

non-Newtonian fluid flow are captured using the adapted interFoam solver.  

6.3. Simulation 3 
In this simulation, I’d like to use a different hindered settling velocity model. We do this to see if this 

will get us even better agreement with the results found by (Spelay, 2007). 

6.3.1. Case set up 

The geometry of the simulation domain is the same as used in simulation 1 and 2, details are noted 

down in section 6.1.1. The boundary conditions of this simulation are the same as used in simulation 

2 (see section 6.2.2). The only driving force for the flow will be a gravitational force. Again, the 

gravitational force vector is angled to allow for this. The same angle of 2.86° is used as in simulation 1 
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and 2. We also use the exact same Bingham Plastic viscosity model and parameters as in simulation 2 

(see section 6.2.4). 

The simulation in this section used the implementation as described in section 5.6.3.2. 

6.3.2. Solver settings 

The only difference for this specific simulation is the following. We changed the implementation for 

the settling velocity to now also include the return flow effect for hindered settling following 

equation (2.18). This equation is repeated here for ease of reading: 

 
𝑤𝑠 = (1 − 𝑐𝑠) (1 −

𝑐𝑠
𝑐𝑠,𝑚𝑎𝑥

)

2
1

18

(𝜌𝑠 − 𝜌𝑐𝑓)𝑔𝑑
2

𝜇𝑐𝑓
 

(6.1) 

The implementation of this equation is rather simple, in the CSandEqn.H file.  

     wsvol  = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture)); 

  

     wsvol *= (one - csand) * sqr(one - (csand/cmax)); 

The full CSandEqn.H file can be found in appendix B.3 and the remainder of the case files (matrix 

solvers, discretization schemes, etc) can be found in appendix D.2. 

6.3.3. Results 

The volume fraction alpha.water can be graphically shown across the domain. Figure 6.14 and 

Figure 6.15 show this at 𝑡 = 600s and 𝑡 = 1200s, respectively. A red colour represents the Bingham 

fluid (alpha.water=1), and blue is air (alpha.water=0). On the interface between the two fluids, 

values between 0 and 1 for alpha.water are shown in a beige/orange color.  

 

Figure 6.14: Volume fraction alpha.water for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05 
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Figure 6.15: Volume fraction alpha.water for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05 

Similarly, the sand concentration csand can be visualized. Figure 6.16 and Figure 6.17 show this at 𝑡 = 

600s and 𝑡 = 1200s, respectively. 

 

Figure 6.16: Sand fraction csand for simulation 3 at t = 600s. Note: x-axis scaled by factor 0.05 

 

Figure 6.17: Sand fraction csand for simulation 3 at t = 1200s. Note: x-axis scaled by factor 0.05 

Additionally, the profile along the flow depth for csand is extracted from the domain along the line 𝑥 

= 15m. This is shown in Figure 6.18. Like in simulation 2, it can be seen that a sand bed is forming on 

the bottom. In the plug of the flow, the sand concentration is more or less constant. In simulation 2 it 

was noted that the sand concentration 1 node (𝑦 = 0.00303m) above the bottom was lower than the 

sand concentration at the bottom (𝑦 = 0m). This can only also seen Figure 6.18 for 𝑡 = 1200s, but not 

at 𝑡 = 600s. 
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Figure 6.18: Sand fraction csand for simulation 3 at t = 600s and t = 1200s at x = 15m 

As a reference, the results found in (Spelay, 2007) and the earlier results from simulation 2 have also 

been plotted in Figure 6.19.  It can be seen that the shear zone sand concentration dip for simulation 

3 is smaller than we’ve seen in simulation 2. With that, it’s also smaller compared to what (Spelay, 

2007) saw. (van Rhee, 2017) noted similar results. What we can quite clearly see is that the sand bed 

that has formed in simulation 2 is a lot higher than the sand bed in simulation 3.  

 

Figure 6.19: Data from (Spelay, 2007) and sand fraction csand for simulation 2 and simulation 3 at t = 1200s at x = 15m 

The velocity profile has also been extracted at 𝑥 = 15m; this is shown in Figure 6.20. In Figure 6.21 we 

can see the velocity profile of simulation 2 and simulation 3, both at 𝑡 = 600s and 𝑡 = 1200s. 
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Figure 6.20: Velocity profile at x = 15m for simulation 3 at t = 600s and t = 1200s 

 

 

Figure 6.21: Velocity profile at x = 15m for simulation 2 and simulation 3 at t = 600s and t = 1200s 

Similar to simulation 2, in simulation 3 it can also be seen that at the bottom of the channel 

stagnation occurs. This is the sand bed that has come to a halt due to increasing viscosity in the bed 

as well as the no-slip boundary condition on the bottom.  

Similar to the results in simulation 1 and 2, we can see that the velocity along the top of the domain 

tends to 0 m/s. This is not what we would have expected, because we were trying to simulate a box 
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without any lid on the top. We again suspect this is due to the missing tangentialVelocity keyword 

on the boundary condition for velocity U on the atmosphere patch. This was only noticed after all 

simulations have been executed. Otherwise, we would have found a solution for this sooner. 

6.3.4. Conclusions 

Simulation 3 has shown very similar results as simulation 2. The biggest difference that can be seen is 

the sand bed being less thick. This was to be expected because of our choice to implement an 

additional hindered settling effect on the sand. Our earlier conclusion that the principles of sand 

particles settling and a sand bed forming in a non-Newtonian fluid flow are captured using the 

adapted interFoam solver is still upheld. 

6.4. Simulation 4 
The goal of this next simulation is to recreate the experiment as it was performed by (Spelay, 2007). 

This means a non-Newtonian flow through a 3D pipe including sand particle transport and shear 

settling. 

(Spelay, 2007) reported sand concentration profiles and water depths for his experiments. At least 

those two should be in good agreement with the results from this experiment. Additionally, the 

velocity profile should obviously have the typical Bingham Plastic profile. 

6.4.1. Geometry 

The geometry and mesh is more complex than it was in simulations 1 and 2: a 3D pipe section is 

used. It has length L = 17m (z-direction), and diameter D = 0.1567m. Similarly to the mesh in 

simulations 1 and 2, the pipe has an inlet zone and a run-off section. The inlet zone has length 2m 

and the run-off section is 15m in length.  

The inlet zone facilitates inflow from the bottom of the pipe upwards in positive y-direction. It should 

be noted that due to the pipe’s curvature, the actual inflow is perpendicular to each of the cells on 

the inlet patch. The inflow is therefore directed towards the centre of the pipe.  

Figure 6.22 and Figure 6.23 show the geometry of the pipe. Please note that the z-axis has been 

scaled by a factor 0.05. On the left hand side we can see a red patch. This is the patch named 

leftWall. The blue patch on the bottom side of the pipe is the inlet patch. The orange patch is the 

pipeWall. And on the right hand side, the grey patch is the outlet of the pipe. 

 

Figure 6.22: Overview of geometry for simulation 4, focus on leftWall. Note: z-axis scaled by factor 0.05 
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Figure 6.23: Overview of geometry for simulation 4, focus on outlet. Note: z-axis scaled by factor 0.05 

Figure 6.24 shows how the mesh of the pipe has been defined. This mesh is uniform along the length 

of the pipe (in the z-direction). From the pipe centre outward, simpleGrading 3,1,1 has been 

applied. 

 

Figure 6.24: Geometry and mesh for simulation 4 

It should be noted that the mesh is not entirely symmetrical. We have defined the bottom-half up to 

the line 𝑦 = 0.0805m. Figure 6.25 has been generated with the command paraFoam -block 

command and visually shows how the blocks have been defined.  

The actual midline, if it were a symmetrical mesh would have been at 𝑦 = 0.07835m. This has been 

done to also facilitate a case where the inflow would be from the left wall of the inlet zone, and not 

the bottom patch. In preparation for this case, an inlet flowdepth of ℎ0 = 0.0805m was created. The 

effects this asymmetry has on the (results of the) simulation is not further examined. 
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Figure 6.25: Blocks defined in mesh for simulation 4. Each colour represents a block 

6.4.2. Boundary conditions and driving force 

 alpha.water csand p_rgh U and Us wsvol 

inlet fixedValue 
uniform 1 

fixedValue 
(see Table 
6.7) 

fixedFluxPressure flowRateInletVelocity 
constant 0.005 

fixedValue 
uniform (0 
0 0) 

leftWall zeroGradient fixedFluxPressure noSlip 
outlet inletOutlet 

inletValue uniform 0 
prghTotalPressure 
reference p0: 
uniform 0 

pressureInletOutletVel
ocity 
value: uniform (0 0 0) 

zeroGradie
nt 

pipeWall zeroGradient noSlip 
Table 6.6: Boundary condition types used in simulation 4 

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the 

inlet patch at 𝑡 = 0s. Further, the only driving force for the flow will be a gravitational force. Since we 

are to recreate the experiments performed by (Spelay, 2007), the same degree inclination will be 

used. The same vector decomposition is applied as in for the previous cases (see section 6.1.2). The 

only difference is the angle 𝜃 and the fact that the vector is now decomposed in the yz-plane (Table 

6.8). The value for csand at the inlet was set to 0.12 for simulation 4b and 4c, and 0 for simulation 4a 

(Table 6.7). The inlet flow rate for Us has been set to the same value as for U so that the sand will get 

the same inlet velocity as the fluid itself does. 

 Simulation 4a Simulation 4b Simulation 4c 

csand at inlet 0 0.12 0.12 
Table 6.7: Sand fraction csand at the inlet patch 

𝒈 (m/s2) 9.81 

𝜽 (°) 5.4 

𝒈𝒙 (m/s2) 0 

𝒈𝒚 (m/s2) -9.76646 

𝒈𝒛 (m/s2) 0.92320 
Table 6.8: Gravitational vector decomposition for simulation 4 
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6.4.3. Material properties and solver parameters 

Again, this simulation utilizes two phases so there are two sets of material properties. The first 

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).  

For the second phase, a Bingham Plastic viscosity model has been chosen. Yield stress 𝜏𝑦 = 47.3 Pa 

and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two parameters are first divided 

by density 𝜌 and then put into the tranportProperties dictionary. Table 6.9 shows these. 

After simulation 4b had been completed, a third simulation was run (4c). Taking a head-start on the 

results of simulation 4b, this was done in an attempt to see if the pipe will not fill up completely if we 

use a higher density for our fluid. In simulations 4b and 4c the only difference is the chosen density 

for 𝜌𝑐𝑓. Simulation 4b used the density of just the carrier fluid (1303 kg/m3) and simulation 4c used 

the density of the mixture (carrier fluid + sand particles: 1510 kg/m3).  

In our simulation, this new density is still assumed to be constant and not influenced by the sand 

concentration field. In reality, the sand particles will influence this density locally. 

It should be noted that the changes on the settling velocity calculations as described in section 5.6.2 

have not been applied at this point. This will probably result in an underestimation of the settling 

velocity as it now just uses an artificially higher fluid density. 

 Simulation 4a Simulation 4b Simulation 4c 

transportModel Talmon Talmon Talmon 

rho [kg/m3] 1303 1303 1510 

coef m [-] 50 50 50 

cmax [-] 0.6 0.6 0.6 

alpha0 [-] 0.27 0.27 0.27 

tau0 [m2/s2] 0.0363008 0.0363008 0.0313245 

nu0 [m2/s] 1.64236e-5 1.64236e-5 1.4172185e-5 

numax [m2/s] 1000e-2 1000e-2 1000e-2 
Table 6.9: Material properties in the tranportProperties dictionary for simulation 4 

In the controlDict dictionary, we can set time step controls. In the fvSolution and fvSchemes 

dictionary we can configure the matrix solvers and set the discretization schemes, respectively. 

Again, these case input files can be found in the appendix: D.3. 

The simulation in this section used the implementation as described in section 5.6.3.2. 

6.4.4. Results 

This section will go into presenting the results of simulation 4. 

6.4.4.1. Figure creation 

For a good understanding, it’s important to explain how the figures in the next section have been 

created. These figures are created using a slice vertically at the midplane of the pipe. In ParaView, 

this is done using a Clip with Clip Type “Plane”. The origin of the plane is at (0,0,0) and the normal is 

directed following (1,0,0). This means we are now looking inside the mixture at the vertical midplane 

of the pipe. 
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A second clip is also applied (on top of the first clip) to make the mixture interface visible. In 

ParaView, this can be done by applying a Clip with Clip Type “Scalar”. We configure it to use 

alpha.water as the scalar, and we set the threshold value to 0.5. This will clip it right on the mixture 

interface and show us where our Bingham fluid is. 

Further, the result is coloured by the velocity in z-direction, Uz. In semi-transparent grey, we can see 

the pipe wall, which is also cordoned off by the axes. 

Figure 6.26 though Figure 6.41 show this for a different time for simulations 4a, 4b and 4c. 

6.4.4.2. Results simulation 4a 

For simulation 4a, we stopped seeing significant shifts in the water depth after about 100s. At 141s, 

we stopped the simulation and moved on to the next simulation, with sand: simulation 4b. 

 

Figure 6.26: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.27: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.28: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4a at t = 141s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

6.4.4.3. Results simulation 4b 

For simulation 4b, we stopped seeing any shifts in the flow between 250s and 500s. We stopped the 

simulation at 825s as we saw the pipe was fully filled up and this didn’t seem to restore. 
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Initially, what we can see is that the fluid flows towards the outlet of the pipe. But as time 

progresses, we can see that the pipe starts to fill more and more. All the while, the velocity at outlet 

patch seems to influence the flow field in the pipe. This is an unexpected result as the outlet of the 

pipe should have been configured such that it allows free outflow (zeroGradient). 

Due to the sand being included, the mixture is now a lot more viscous compared to simulation 4a. It 

seems to be simply so viscous that the resistance against flowing is too high. Especially if we compare 

it to the results found in simulation 4a, where the pipe did not seem to fill up. 

 

Figure 6.29: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.30: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.31: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 150s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.32: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 200s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.33: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 250s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.34: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 500s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.35: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4b at t = 825s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

6.4.4.4. Results simulation 4c 

Simulation 4c has been stopped at 427s, when we noticed that the pipe fully filled up in this 

simulation too. 



62 

 

Figure 6.36: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.37: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.38: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 150s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.39: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 200s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.40: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 250s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.41: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 4c at t = 427s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

At 𝑡 = 250sec, the pipe hasn’t been filled to the top just yet. But the flowdepth is still quite deep. We 

also see the velocity at outlet patch influences the flow field in the pipe. This is an unexpected result 

as the outlet of the pipe should have been configured such that it allows free outflow (zeroGradient). 

When comparing to the results of simulation 4b, we do see that it now takes longer for the entire 

pipe to fill up. This was to be expected as the density of our fluid was set at a higher value. 

The sand concentration field csand is shown in Figure 6.42. 

 

Figure 6.42 csand for simulation 4c at t = 250s. Note: z-axis scaled by factor 0.05 

We can see that the sand particles are all throughout the mixture. At the bottom of the pipe, a bed 

begins to form. 

6.4.5. Conclusions 

In section 6.4 we have simulated with a non-Newtonian flow through a 3D pipe including sand 

particle transport and settling. The results have shown that in those simulations the pipe tends to 

completely fill up with the mixture. The force driving the flow in these simulations has only been the 

gravity exerted on the fluid due to the angle on the pipe. (Spelay, 2007) did not note the pipe would 

fill up to the top in his experiments. In that sense our results differ. 
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The sand particles in the simulations up to thus far have not had any influence on the density of the 

mixture. Thus the density, and by proxy the driving force, can be assumed to have been 

underestimated when comparing to the experiments. It’s not unthinkable that this lack of driving 

force on the flow is the cause of the pipe fully filling up. After all, in reality, the presence of sand 

particles is influencing the viscosity of the mixture, and therefore limiting the flow, but the effect the 

sand particles have on the driving force is not taken into account in the simulation. 

6.5. Simulation 5 
As was concluded in simulation 4, it’s not unthinkable the lack of driving force is causing our pipe to 

be completely filled with the injected mixture. It’s been concluded that due to the sand particles are 

not being taken into account in the mixture density, this leads to an underestimation of the density 

and driving force, which results in the pipe fully filling up.  

The goal of simulation 5 is to see if the added weight of the sand particles can be taken into account 

to prevent the behaviour we saw in simulation 4. In other words: will increasing the driving force 

prevent that tendency of the pipe to fully fill up? 

Many attempts have been made at this. Overall, a lot of the simulations have crashed, many of the 

causes remain unknown. The lack of debugging tooling in OpenFOAM contribute to this very strongly. 

Many other simulations still showed the pipe completely filling up with the mixture as was also found 

in Simulation 4. Besides simulation 5a, 5b, and 5c, many more attempts have been made. Not all 

have been (fully) logged in favour of brevity. 

Nonetheless, this section gives an overview of the setup of some simulations that have been 

performed. 

6.5.1. Geometry 

The geometry used is quite similar to the geometry of the pipe in simulation 4: a 3D pipe section is 

used. For simulation 4, it has a length 𝐿 = 15m (z-direction), and diameter 𝐷 = 0.1567m. So, as far as 

the length and diameter are concerned, this is the same as in simulation 4. 

At 𝑧 = 0 an inlet section has been created. This inlet is parallel to the xy-plane to facilitate inflow in z-

direction. Only a section of the diameter of the pipe has been set as the inlet patch. The top edge of 

this inlet patch is situated at 𝑦 = 0.0805. 

Figure 6.43 and Figure 6.44 show the geometry of the pipe. On the left hand side we can see the inlet 

patch coloured in dark-blue. The red patch is the pipeWall. The light-blue patch is also a wall 

boundary, named leftWall. And on the right hand side, the orange patch is the outlet of the pipe. 
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Figure 6.43: Overview of geometry for simulation 5, focus on leftWall and inlet. Note: z-axis scaled by factor 0.05 

 

Figure 6.44: Overview of geometry for simulation 5, focus on outlet. Note: z-axis scaled by factor 0.05 

Figure 6.45 shows how the mesh of the pipe has been defined. This mesh is uniform along the length 

of the pipe (in the z-direction) and is divided into 40 cells. From the pipe centre outward, 

simpleGrading 3,1,1 has been applied. This is the same as the grid used in simulation 4. Same as in 

simulation 4, the mesh is not entirely symmetrical along the midline. More information on that can 

be found in section 6.4.1. 

 

Figure 6.45: Mesh profile in xy-plane for simulation 5. Inlet shown in darkblue and leftWall in lightblue shown on the left and 
outlet shown in orange on the right 
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6.5.2. Boundary conditions and driving force 

 alpha.water csand p_rgh U Us wsvol 

inlet fixedValue 
uniform 1 

codedFixedValue 
(ramp) 

fixedFluxPress
ure 

flowRateInletVelocity 
constant 0.005 

fixedValue 
uniform (0 
0 0) 

leftWall zeroGradient noSlip 
 

outlet inletOutlet  
(inletValue uniform 0) 

prghPressure  
reference p: 
uniform 0 

pressureInletOutletVelo
city 

zeroGradie
nt 

pipeWall zeroGradient noSlip 
Table 6.10: Boundary condition types used in simulation 5 

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5l/s enters the domain at 𝑡 = 0s. Again, 

the only driving force for the flow is the gravitational force. The inclination angle of the pipe has been 

varied throughout the simulations. The same vector decomposition method is applied as was used in 

the previous simulations. The value for csand at the inlet is ramped up over time, instead of being 

stepped at 𝑡 = 0. From 𝑡 = 0 to 𝑡 = 100s it linearly ramps up from 0 to 0.154. Table 6.11 shows these 

input parameters. 

 Simulation 5a Simulation 5b Simulation 5c 

𝑸 [l/s] 5 5 5 

csand at inlet [-] 0 - 0.154 (linear 
ramp from 𝑡 = 0 
to 𝑡 = 100s) 

0 - 0.154 (linear ramp 
from 𝑡 = 0 to 𝑡 = 100s) 

0 - 0.154 (linear ramp 
from 𝑡 = 0 to 𝑡 = 100s) 

𝜽 [°] 5.4 6.4 7.4 

𝒈 [m/s2] 9.81 9.81 9.81 

𝒈𝒙 [m/s2] 0 0 0 

𝒈𝒚 [m/s2] -9.76646 -9.74886 -9.72829 

𝒈𝒛 [m/s2] 0.92320 1.09351 1.26348 
Table 6.11: Inlet flow rate, sand fraction csand at the inlet and gravitational vector decomposition for simulation 5 

6.5.3. Material properties and solver parameters 

Again, this simulation utilizes two phases so there are two sets of material properties. The first 

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).  

Similar to simulation 4, for the second phase, a Bingham Plastic model has been chosen. Again, yield 

stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two 

parameters are first divided by density 𝜌𝑐𝑓. Table 6.12 shows these. 

 Simulation 5a, 5b and 5c 

transportModel Talmon 

𝝆𝒄𝒇 [kg/m3] 1303 

coef m [-] 50 

cmax [-] 0.6 

alpha0 [-] 0.27 

tau0 [m2/s2] 0.036301 

nu0 [m2/s] 1.64236e-5 

numax [m2/s] 1000e-2 
Table 6.12: Material properties in the tranportProperties dictionary for simulation 5 
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It should be noted at this point that the effective density of the mixture (carried fluid + density of 

sand particles) is calculated and used in the momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥 

instead of the density 𝜌𝑐𝑓. This is done following equation (6.2). 

 𝜌 = 𝑐𝑠𝑎𝑛𝑑 ∗ 𝜌𝑠 + (1 − 𝑐𝑠𝑎𝑛𝑑) ∗ 𝜌𝑐𝑓 (6.2) 

At the inlet, when a fraction of 0.154 for sand particles csand is injected, the density of the combined 

mixture is 1510 kg/m3. 

The simulation in this section used the implementation as described in section 5.6.3.2. 

The full simulation case input files can be found in appendix D.4. 

6.5.4. Results 

Figure 6.46 through Figure 6.59 show the results for simulation 5. These figures have been created in 

the same manner as for simulation 4. This is explained in section 6.4.4.1 and not repeated here. 

6.5.4.1. Results simulation 5a 

For simulation 5a, we let the simulation run all the way until 𝑡 = 600s. We then see the pipe fully 

filled up with the mixture. We also see the velocity at outlet patch influences the flow field in the 

pipe. This was also noted in simulation 4. 

 

Figure 6.46: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.47: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.48: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 123s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.49: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 150s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.50: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 220s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.51: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5a at t = 600s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

6.5.4.2. Results simulation 5b 

To see if we can actually simulate a pipe that’s not filling up, we tilt the gravitational force to a 

greater angle and try it again. This did not seem to help. In simulation 5b, the pipe still fills up all the 

way to the top. We let it run to 221s and that’s when the solver crashed. 
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Figure 6.52: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.53: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.54: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 123s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.55: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 150s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.56: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5b at t = 220s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

6.5.4.3. Results simulation 5c 

To see if the pipe would not fill up if we increase the angle even further. Now, the solver crashes 

after 123s. 

 

Figure 6.57: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 50s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

 

Figure 6.58: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 100s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.59: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 5c at t = 123s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Simulation 5c crashed at t = 123s. We were not able to find the reason why at this point in time 

6.5.5. Conclusions 

In simulation 5, we have simulated a non-Newtonian flow through a 3D pipe including sand particle 

transport and settling. The presence of sand particles in these simulations were taken into account in 

the density of the mixture. The force driving the flow is now also including the sand particles. Still, 

our pipe fully fills up (simulation 5a and 5b). Further, simulation 5b and 5c both crashed.   

6.5.6. Next steps 

At this point in time, we started experimenting more. All resulting simulations have either crashed or 

the solver’s timestep became very small. To provide insight into what was tried, we tried: 

- Turning on the momentumPredictor in PIMPLE 

- Ramping the inlet velocity of the mixture (besides only ramping the sand particle 

concentration) 

- Using a dynamically adjustable timestep 

- Using prghTotalPressure instead of prghPressure on the outlet 

- Using PIMPLE with 250 outerCorrectors (nOuterCorrectors) 

- Relaxing the pressure and velocity fields 

- Rearranging the calculation of csand with the pimple pressure corrector loop 

- Removing the capped exponents calculation (section 5.6.3.2) 

- Reducing tolerances on solvers 

- Using different matrix solvers 

At this point, there are multiple things not going as expected. Either the pipe fills up with the 

mixture, or the simulation crashes, or the solver’s timestep becomes very small. We don’t 

understand what’s causing the velocity to increase right before the outlet of the pipe. And we also 

don’t understand what is causing these crashes. The lack of debugging tools in OpenFOAM is also 

preventing us from diving into the actual issue and pinpointing what’s wrong.  

Cees van Rhee brought forward two ideas: 

1. Use the leftWall patch of simulation 5 and use it to pump in air. The idea here is to see if this 

alleviates the trouble we’ve been seeing with all the pipe simulations. The simulations we ran 

with a 2D open channel (simulation 1 and 2) did not crash. One of the differences is that that 

mesh allowed for an atmosphere to be applied, besides having an outlet section. The pipe 

we’ve been simulating with was a pipe section with only an inlet and an outlet. As a result, 

either the pipe inlet or outlet were chosen as atmosphere and reference pressure. 

Simulation 6 goes into this idea. 

2. We can also change our mesh such that it resembles simulation 1 and 2 a little closer. If we 

do this, we will need to make sure we can apply an atmosphere and reference pressure in 

the vertical direction on top of our pipe. A half pipe would allow for this. To prevent spill-

over if the fluid reaches too high flowdepths, we can extrude the walls of the pipe upwards. 

So, we’d basically be using a half-pipe mesh where the pipe is extruded vertically upwards 

creating a rectangular block on top. This would then be very similar simulation 1 and 2, 

except it’s a 3D instead of 2D simulation and the bottom is round instead of flat. Simulation 7 

goes into this idea. 
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6.6. Simulation 6 
Cees van Rhee brought forward an idea to use the leftWall patch of simulation 5 and use it to pump 

in air. The idea here is to see if this alleviates the trouble we’ve been seeing with all the pipe 

simulations. The simulations we ran with a 2D open channel (simulation 1 and 2) did not crash. One 

of the differences is that that mesh allowed for an atmosphere to be applied, besides having an 

outlet section. The pipe we’ve been simulating with was a pipe section with only an inlet and an 

outlet. As a result, either the pipe inlet or outlet were chosen as atmosphere and reference pressure. 

In simulation 6, we try to pump in additional air just above the fluid inlet. We now basically get 2 

inlets, 1 inlet for the Bingham Plastic and sand mixture, and 1 inlet for the air. 

6.6.1. Geometry 

The geometry and mesh of the simulation domain is the identical to that of simulation 5, details are 

noted down in section 6.4.1. 

6.6.2. Boundary conditions and driving force 

 alpha.water csand p_rgh U Us wsvol 

inlet fixedValue 
uniform 1 

fixedValue 
uniform 0 

fixedFluxPressure flowRateInletVelocity 
constant 0.005 

fixedValue 
uniform 
(0 0 0) 

leftWall fixedValue 
uniform 0 
 

prghTotalPressure  
reference p0: 
uniform 

flowRateInletVelocity 
constant 0.005 
 

fixedValue 
uniform 
(0 0 0) 

outlet zeroGradient fixedFluxPressure zeroGradient 
 

pipeWall zeroGradient fixedFluxPressure noSlip 
Table 6.13: Boundary condition types used in simulation 6 

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the 

inlet patch at 𝑡 = 0s. The only driving force for the flow will be a gravitational force. The value for 

csand at the inlet was set to 0. This is done to make this simulation a little easier. This allows us to 

see if the simulation runs without crashing before we add sand into the equation.  

The only driving force for the flow will be a gravitational force. Table 6.14 shows the angle of 

inclination and the vector decomposition. 

𝒈 (m/s2) 9.81 

𝜽 (°) 5.4 

𝒈𝒙 (m/s2) 0 

𝒈𝒚 (m/s2) -9.76646 

𝒈𝒛 (m/s2) 0.92320 
Table 6.14: Gravitational vector decomposition for simulation 6 

6.6.3. Material properties and solver parameters 

Again, this simulation utilizes two phases so there are two sets of material properties. The first 

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).  

The second phase is the Bingham Plastic viscosity model that has been used before as well. Again, 

yield stress 𝜏𝑦 = 47.3 Pa and plastic viscosity 𝜇𝑝 = 0.0214 Pa.s. In the implementation, those two 

parameters are first divided by density 𝜌𝑐𝑓. Table 6.15 shows all material parameters used.  
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It should be noted at this point that the effective density of the mixture (carried fluid + density of 

sand particles) is calculated and used in the momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥 

instead of the density 𝜌𝑐𝑓. At the inlet, when a fraction of 0.154 for sand particles csand is injected, 

the density of the combined mixture is 1510 kg/m3. 

 Simulation 6 

transportModel Talmon 

𝝆𝒄𝒇 [kg/m3] 1303 

coef m [-] 50 

cmax [-] 0.6 

alpha0 [-] 0.27 

tau0 [m2/s2] 0.036301 

nu0 [m2/s] 1.64236e-5 

numax [m2/s] 1000e-2 
Table 6.15: Material properties in the tranportProperties dictionary for simulation 6 

The simulation in this section used the implementation as described in section 5.6.3.2. 

The full simulation case input files can be found in appendix D.5. 

6.6.4. Results 

Figure 6.60 through Figure 6.65 show the results for simulation 6. These figures have been created in 

the same manner as for simulation 4 and 5. This is explained in section 6.4.4.1 and not repeated 

here. 

We can see that the flow starts out as expected. However, between 16 and 17 seconds, the solver 

starts running into very high values for the Courant number. We can see this in figure Figure 6.66. We 

can also see in Figure 6.64 (t = 17s) that the velocities have suddenly increased in some places when 

comparing to the velocities at 16s (Figure 6.63). After 𝑡 = 17.475s, the simulation crashes completely. 

 

Figure 6.60: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 5s. In semi-transparent grey we can 
see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.61: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 10s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.62: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 15s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.63: Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 16s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.64 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 
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Figure 6.65 Velocity in z-direction, Uz, for the Bingham Plastic fluid in simulation 6 at t = 17.3s. In semi-transparent grey we 
can see the pipe wall. Note: z-axis scaled by factor 0.05 

 

Figure 6.66: graph showing the solver runs into high courant numbers in simulation 6. Only the last 1000 iterations are 
shown. At around iteration 780 we can see the courant number increase. Iteration index is shown on the x-axis. The left y-
axis shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum 
courant number 

6.6.5. Conclusions 

We’ve seen the simulation run into huge courant numbers after a while and the results are no longer 

physical.  

Applying a dynamic timestep would not have solved this, as in that case the solver would just keep 

reducing the timestep it takes until it meets the CFL criterion. I suspect it would have never (within 

reason) recovered from this. 

It’s still not understood what actually causes this to happen. At this point, I’d rather move over to 

give the second idea (section 6.5.6) a shot. 

6.7. Simulation 7 
The previously simulations failing leads us to believe that the problem might be an incompatibility of 

boundary conditions. The pipe geometry used in simulations 4 and 5 was a fully enclosed pipe 
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section. It could be that the conditions for atmospheric pressure and inflow/outflow are just not 

equipped to be placed on either the outlet or inlet of the pipe section. 

Therefore, we devise a new grid for a new simulation. Much like the 2D open channel case, the grid 

used in this simulation will just have a flat lid. The grid of the pipe used in simulations 4 and 5 is 

extruded upwards to essentially create a half-pipe with a rectangular block on top of it. This will 

allow us to set an atmospheric boundary conditions from the top of the grid, like has been done in 

simulation 1 and 2 

6.7.1. Geometry 

The geometry is a little more complex than for previous simulations. This time, we have 2 blocks. 

Block 1 is a half-pipe with the height equal set to the radius of the pipe. Block 2 is a rectangular block 

and is placed on top of the half-pipe. 

The total domain has a length 𝐿 = 15m (z-direction) and the half-pipe diameter 𝐷 = 0.1567m. The 

rectangular block has a height equal to the radius of the pipe. Thus, the total height is of the domain 

is equal to the pipe diameter. The inlet is placed at 𝑧 = 0 in the xy-plane (normal in z-direction). 

Figure 6.67 shows an overview of the geometry focussed on the inlet end of the pipe. In dark-blue we 

see the inlet patch, in light-blue a wall patch called leftWall, orange resembles the pipeWall and the 

red patch shows the atmosphere patch. In Figure 6.68 we can see the outlet side of the pipe, and in 

beige colour we see the outlet patch. 

 

Figure 6.67: Overview of geometry for simulation 7, focus on inlet side of pipe. Note: z-axis scaled by factor 0.05 
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Figure 6.68: Overview of geometry for simulation 7, focus on outlet side of pipe. Note: z-axis scaled by factor 0.05 

The mesh profile is uniform along the length of the pipe (z-direction) and in the z-direction it’s been 

divided in 40 cells. This is shown in Figure 6.70. Grading has been applied in the xy-plane from the 

centre outward to the pipe wall at simpleGrading 3, 1, 1. This can be seen in Figure 6.69. 

 

Figure 6.69: Mesh profile in xy-plane for simulation 7. Focus on inlet side of pipe on the left, and on the right hand side focus 
on the outlet side 

 

Figure 6.70: Overview of grid along z-axis for simulation 7 discretized into 40 cells along z-axis. Note: z-axis scaled by factor 
0.05 
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6.7.2. Boundary conditions 

The following boundary condition types have been defined. 

 alpha.water csand p_rgh U Us wsvol 

inlet fixedValue 
uniform 1 

fixedValu
e 
uniform 
0.154 

fixedFluxPressure flowRateInletVelocity 
constant 0.005 

fixedValue 
uniform (0 0 
0) 

leftWall zeroGradient 
 

fixedFluxPressure noSlip noSlip zeroGradien
t 
 

outlet zeroGradient fixedFluxPressure inletOutlet  
inletValue: (0 0 0) 

zeroGradien
t 

pipeWall zeroGradient fixedFluxPressure noSlip noSlip noSlip 
atmophere inletOutlet  

(inletValue uniform 0) 
prghPressure  
reference p: 
uniform 0 

pressureInletOutletVeloc
ity 
value: uniform (0 0 0) 

fixedValue 
uniform (0 0 
0) 

Table 6.16: Boundary condition types in simulation 7 

Initially, the entire domain is at rest. At the inlet, a flow of 𝑄 = 5 l/s enters the domain through the 

inlet patch at 𝑡 = 0s. The inlet flow rate for Us has been set to the same so that it will get the same 

inlet velocity as the fluid itself does. The value for csand at the inlet was set to 0.154. 

6.7.3. Driving force 

The only driving force for the flow will be a gravitational force. As with previous simulations, actually 

angling the mesh through blockMesh can result in an indecipherable mesh, it is easier to put the 

gravitational force vector under an angle and keep the mesh simpler. Components 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧 are 

defined using vector decomposition using angle 𝜃. Table 6.17 shows the angle used and the 

decomposition. 

𝒈 (m/s2) 9.81 

𝜽 (°) 5.4 

𝒈𝒙 (m/s2) 0 

𝒈𝒚 (m/s2) -9.76646 

𝒈𝒛 (m/s2) 0.92320 
Table 6.17: Gravitational force vector decomposition for simulation 7 

6.7.4. Material properties and solver parameters 

Again, this simulation utilizes two phases so there are two sets of material properties. The first 

phase, air, is configured following the same settings as for simulation 1 (see section 6.1.4).  

For the second phase, a Bingham Plastic viscosity model has been chosen. The yield stress of the 

carrier fluid 𝜏𝑦,𝑐𝑓 has been set to 47.3 Pa and plastic viscosity of the carrier fluid 𝜇𝑝,𝑐𝑓 at 0.0214 Pa.s. 

In the implementation in interFoam, those input parameters need to first divided by density 𝜌 

before being set. Table 6.18 shows the parameters as used in the tranportProperties dictionary. 
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 Simulation 7 

transportModel Talmon 

rho [kg/m3] 1303 

coef m [-] 50 

cmax [-] 0.6 

alpha0 [-] 0.27 

tau0 [m2/s2] 0.036301 

nu0 [m2/s] 1.64236e-5 

numax [m2/s] 1000e-2 
Table 6.18: Material properties in the tranportProperties dictionary for simulation 7 

It should be noted at this point that the effective density of the mixture is calculated and used in the 

momentum equation for the mixture. This is density 𝜌𝑚𝑖𝑥 instead of the density 𝜌𝑐𝑓. This is done 

following equation (6.2). At the inlet, a fraction of 0.154 for sand particles csand is injected. This 

means the density of the combined mixture is 1510 kg/m3 following equation (3.1). 

The full simulation case files are to be found in appendix D.6. 

6.7.5. Results 

The result of simulation 7 is not satisfactory. It was seen that the timesteps become very small. This 

is shown in Figure 6.71. We will dive into why we think this happens in section 6.7.6. 

 

Figure 6.71: Graph showing small timesteps for simulation 7a. 

6.7.6. Removing underdetermined cells 

When we run a checkMesh command on our blockMesh, we actually see that the mesh is evaluated 

OK. However, it’s been discovered that we can also run a more elaborate check following the 

checkMesh -allTopology -allGeometry command. When we run this, we actually see 1 of the 

checks fail. The below section shows a part of the result of the more elaborate check. We can see 

that it’s found 28 cells that are underdetermined. 

 ... 

    Cell determinant (wellposedness) : minimum: 0.00050217519 average: 0.019025868 

  ***Cells with small determinant (< 0.001) found, number of cells: 28 
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   <<Writing 28 under-determined cells to set underdeterminedCells 

... 

We can try to make these cells more determined, or we can remove them from our grid. As a first try, 

I’ve removed the cells from my grid. OpenFOAM has some built-in tools that allows us to remove 

these cells. 

The snippet of code below removes all underdeterminedCells from a grid. When we run the 

simulation, it runs well, and doesn’t suffer from running into very small timesteps. 

 foamJob -s checkMesh -allTopology -allGeometry 

 foamJob -s setSet -constant 

 cellSet temp new cellToCell underdeterminedCells any 

 cellSet temp invert 

 cellSet temp subset 

 foamJob -s subsetMesh temp 

After only a few timesteps, it still crashes, but the logs show us it crashes right when it tries to 

calculate the viscosity in our material model. I know why this is and it’s already been solved before. 

This was solved in section 5.6.3.2 before. 

6.7.7. Fixed material model 

We’ve enabled the piece of code that’s been described in section 5.6.3.2 and re-ran the simulation. 

What we can now see is that the fluid mixture just seems to leak out of our domain. This happens 

near our inlet and it’s quite likely this is happening because we blatantly removed some cells from 

our domain. Figure 6.72 shows the velocity in y-direction at 𝑡 ≅  14.6s. We can see that some cells 

have been removed from the domain, and at that point in the grid we also see higher velocities. 

 

Figure 6.72: Vertical velocity Uy in simulation 7 after roughly 14.6s, focus on inlet zone. Note: z-axis is scaled by factor 0.05. 

6.7.8. Fix underdetermined cells 

It’s obvious that our attempt at removing the underdetermined cells did not help. To overcome the 

trouble, we can also change our grid so that no cells are underdetermined cell to begin with. First, 

let’s plot these cells so we can see where they are located in the grid. We need to know this in order 

to figure out how to change our grid. 
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The regular checkMesh command offered by OpenFOAM doesn’t report cell underdetermined-ness. 

We need to call checkMesh with additional parameters. We can do so as follows, and this will save 

any problematic cells in Sets. These Sets can be plotted in ParaView. 

 checkMesh -allGeometry -allTopology 

This command resulted in the following result: 

   ... 

     Cell determinant (wellposedness) : minimum: 0.00050217519 average: 0.019025868 

  ***Cells with small determinant (< 0.001) found, number of cells: 28 

   <<Writing 28 under-determined cells to set underdeterminedCells 

  ... 

In Figure 6.73, we can see the 28 underdetermined cells being highlighted in grey colour with a blue 

wireframe outline. These cells are located at the top corners of the pipe profile and close to the 

bottom edge of the pipe. 

 

Figure 6.73: grid overview showing underdetermined cells in grey with blue wireframe. General pipe shape outline is shown 
in semi-transparency. Note: z-axis is scaled by factor 0.05. 

The fact that these underdetermined cells are located on the outer edges of the pipe tells me the 

grading of the cell mesh is resulting in this underdetermined-ness. The cell grading has made cells 

closer to the pipe wall thinner compared to the centre of the pipe. We could reduce this grading 

effect, or we can increase the amount of cells we use to discretize our grid along the z-axis, both will 

result in a lower aspect ratio on the cells. Having a lower aspect ratio will increase the determinant 

on each cell. 

To make sure no detail near the wall of the pipe is lost, it’s better to decrease the general cell-size in 

the z-direction. In previous instances, our grid was discretized into 40 cells along the z-axis. In this 

instance, we have discretized it in 60 cells. The pipe grid profile in the xy-plane has remained 

unchanged. Figure 6.74 shows the old grid, and Figure 6.75 shows our new grid. With this new grid, 

the elaborate checkMesh -allGeometry -allTopology shows all checks are OK. 
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Figure 6.74: overview of grid along z-axis, discretized into 40 cells along z-axis. Highlighted in red are the underdetermined. 
cells. Note: z-axis is scaled by factor 0.05. 

 

Figure 6.75: overview of grid along z-axis, discretized into 60 cells along z-axis. Note: z-axis is scaled by factor 0.05. 

When running the simulation with this new grid, it unfortunately still doesn’t perform as expected. 

After a few iterations, the timestep again becomes very small and the simulation doesn’t progress 

anymore. Figure 6.76 shows this. A reason why this happens has not been found thus far.  

Interestingly enough, the maximum courant number exceeds the maximum courant number after 

just a few iterations. An explanation for this has not been found. 

 

Figure 6.76: graph showing the solver continues to take smaller time steps as iterations progress (x-axis). The left y-axis 
shows the simulation time. On the x-axis we see the amount of iterations, and the right y-axis shows the maximum courant 
number 
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6.7.9. Conclusions 

After looking at the results of the initial simulation 7, we thought the underdetermined cells in our 

grid were causing small timesteps. As it turns out, that didn’t matter much for the outcome. After 

changing our grid to get rid of the underdetermined cells, the result was the same. In both cases, the 

simulation started taking too small timesteps and stopped progressing. 
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7. Conclusions & recommendations 
This chapter will present the conclusions based on the findings of this study. Further, it intends to 

pose recommendations towards further research based on educated guesses of what might have 

gone wrong in our research, and topics that might be an interesting exploration in the field in 

general. 

7.1. Conclusions 
Thus far, this work has not proved it possible to compare the simulation results to actual 

experimental work as most simulations crashed or showed unphysical results. The simulations ran 

with the pipe geometry have all failed in that sense. 

However, not all is lost, for the earlier simulations (1, 2, and 3) we could actually compare the 

qualitative effects of sand particles settling and a general sand density profile over the flowdepth. 

These profiles seemed to match pretty well with experimental work performed by (Spelay, 2007). So 

it seems fair to say the adaptation of interFoam has been successful and the solver is capable of 

simulating settling processes of solid particles in a non-Newtonian free mixture surface flow. 

7.2. Recommendations based on this research 
The recommendations in this section are mostly aimed at findings a solution to overcome the trouble 

found in simulation 5, 6 and 7. In those specific simulations, the density of the sand particle field is 

taken into account for the density of the mixture and thus as a driving force for the fluid flow. As we 

have seen, each of the attempts has failed and not yielded a usable result. Unfortunately, the scope 

and time constraint of this research was not sufficient enough to find a solution. 

7.2.1. Allow for slip 

In our 2D open channel simulations (simulation 1, 2, and 3) we found that the velocity tends to 0 

along the top edge of the domain. Along that edge, we wanted to have a slipping boundary. On this 

boundary we had used a pressureInletOutletVelocity we believed allows for slipping in the 

tangential direction.  

The documentation4 and the source code5 are not definitive or explicit, but the 

pressureInletOutletVelocity boundary condition type seems to set the tangentialVelocity to 

be (0 0 0) in the constructor, if the keyword tangentialVelocity is omitted. In the configuration for 

both simulations, this keyword was indeed not added. It should be noted here that the 

documentation also makes mention of a value keyword, whereas this is not associated with this 

boundary condition as found in the source code. 

While researching the source code, a boundary condition called 

pressureInletOutletParSlipVelocity was also encountered. According to the description, this 

type of condition always applies a slip condition tangentially. This seems to be the better option. 

 
4 https://www.openfoam.com/documentation/guides/latest/doc/guide-bcs-outlet-pressure-inlet-outlet.html 
5 https://github.com/OpenFOAM/OpenFOAM-
5.x/blob/master/src/finiteVolume/fields/fvPatchFields/derived/pressureInletOutletVelocity/pressureInletOutle
tVelocityFvPatchVectorField.H 
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7.2.2. Simulation stability 

It would be wise to investigate simulation stability. As we have seen, many of the simulations have 

been concluded with an unsatisfactory result. The simulations have crashed many times. A reason for 

this has not been found. The recommendation is to investigate further why this is happening. A first 

attempt could be to run the simulation without sand added to the mixture, and in a second step add 

sand to the mixture again. If this is the only factor that’s changed, then this should tell us something 

about the influence sand has on the stability of the algorithm.  

When we were doing simulations without the sand particle density field in the mixture density, 

stability was not as much of an issue as it was in later simulations. In each of the timesteps, the 

density of the mixture is altered in preparation for the remaining calculations. It could be that the 

placement of the density alteration could influence the stability. If this is the case, then it could be 

that the density alteration has an effect on things like (cell-face) fluxes, surface tension calculations, 

and in a more general sense the momentum balance equations. 

Further, it is imaginable the boundary conditions applied to the sand field could also be having an 

influence on the stability of the simulation. 

It's also recommended to run the same (or similar) simulations simply using a (now available) newer 

version of OpenFOAM. This work was performed using OpenFOAM 5.0 (foundation), and since the 

start of this work, versions 6 through 10 have been released. It’s possible that newer versions of 

OpenFOAM contain updates that solve (some of the noted) simulation stability issues. 

Between different simulation sets in this work, we switch from a 2D rectangular open channel to a 

3D pipe. The simulations using a 2D rectangular open channel in this work did not show stability 

issues, while the 3D pipe did. Looking at it from a complexity perspective, our last recommendation 

regarding the simulation stability issues is to simulate a 3D rectangular open channel. A simulation 

with such a geometry can be used to learn if the stability issues find their origin in the switch from a 

2D geometry to a 3D geometry, or if that’s related to the round 3D pipe geometry. 

7.2.3. Underdetermined cells and grid coarseness 

In our last simulation, simulation 7, it’s been discovered that the grid we’ve initially configured 

contained underdetermined cells. An alternative, slightly finer mesh has been proposed and used for 

a re-try. For completeness, it would be recommended to check the grids used in simulation 1 through 

6 to see if those grids had any underdetermined cells.  

In hindsight, the grid used for the simulations with the pipe (4-7) was a lot coarser than the grid used 

in simulation 1 and 2. Looking back on the simulation performed by (van Rhee, 2017), the half-pipe 

grid was a lot finer meshed. The grids used in this research could be revised to be finer meshed in an 

attempt to see if that will help with simulation progression and to see if that would have an influence 

on the pipe filling up as seen in simulation 4 and 5. 

7.2.4. Pipe inclination 

Taking a step back, it was never conclusively discovered why in simulation 4 the entire pipe filled up 

with the mixture. We’ve tried setting the pipe inclination angle to a higher value, but this resulted in 

crashing simulation. The experimental work performed by (Spelay, 2007) has shown the pipe doesn’t 

fill up at all, so somewhere the simulation must be showing unphysical results. 
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Based on the yield stress and for a given geometry, it is possible to calculate a theoretical critical 

angle for yield stress flow. The force balance should result in a minimum inclination. 

7.3. Recommendations for future work in non-Newtonian CFD 
This next section intends to describe recommendations for future work in non-Newtonian CFD. The 

recommendations are based on findings in this research and relate to different types of material 

models, different geometries, and a different way to model the sand particles in the mixture. 

7.3.1. Time dependent fluid 

Section 2.1.1 showed there are different classes of non-Newtonian rheological fluid models. One 

class that has not been investigated is fluids that show time-dependent behaviour. These can either 

be thixotropic (thickening over time) or rheopectic (thinning over time). It’s not unthinkable that in 

basins and reclamation areas, fluids come to a standstill at some point in time or position in the 

basin. At this point, the fluid stops shearing and this could influence the viscosity (unremoulded) and 

it’s tendency to start flowing again under a certain force. 

As seen in the simulations performed in this work, a plug zone forms. Besides a potential standstill of 

the fluid in a basin, in this plug zone the fluid also stops shearing.  

In future work it could be interesting to implement a time dependent viscosity model to simulate this 

behaviour. Obviously, it’s crucial to find a worthy verification case in search of a proper 

implementation. 

7.3.2. Different geometries 

The simulation that have been performed in this research pertained to two shapes: a 2D sloped 

channel and a 3D straight pipe section. Rather simple geometries have been chosen to better 

facilitate comparing results to empirical results. 

However, in the field of dredging engineering, pipe geometries are not necessarily just straight 

forward. The pipes could have many twists, turns and bends. It could be interesting to see if a 

simulation with a twisty pipe shows realistic results in terms of, for example, sand bed build up in 

those bends. 

Similarly, it can also be interesting to simulate river sand bed sedimentation with comparable 

material models as used in this research. In that case a choice could be made to just simulate a 

water-sand mixture, so the whole non-Newtonian aspect of the carrier fluid would be omitted. 

Although for this type of problem, a 3-phase simulation would potentially allow for more realistic 

simulation. The 3 phases could be air, water, and sand+mud. The only reason air would be 

incorporated in such a simulation would be to allow for a free water surface. It could be debated 

whether that’s really an interesting to look at in a first simulation for sand sedimentation research in 

rivers. 

7.3.3. Beach slope prediction 

As the problem domain is focused on waste materials (tailings) in mining engineering, it’s interesting 

to run a full-fledged, full-scale simulation on a basin-like domain. These basins are bounded by dams 

and are considered quite large. Parallelly, it’s just as interesting for the dredging engineering field to 

run a full-scale simulation. 
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In this research, the behaviour of the fluids was simulated in either a rectangular (2D) domain or a 

circular pipe-section (3D). It’s interesting to see how the implementation would hold up in a problem 

domain that’s a little wider than that; a little closer to the scope of the problems out in the field that 

is. This would entail building a simulation domain that’s equal (or close to) some real life scenarios. 

Doing research in this direction could help find answers on questions like:  

- how does the beach slope develop over time? Knowing this helps in predicting requirements 

for additional or raising embankment. 

- how much sand is deposited anywhere throughout the domain? (inhomogeneous 

concentration and bed height) 

- how strong or stiff is the deposited bed? 

On top of the above, the simulation could also be used to investigate mud lobe forming and 

channelization at the mixture’s surface. 

7.3.4. Uniform particle size vs size distribution 

To be able to use these simulations as a prediction method for real life scenarios, the simulation 

should preferably be executed using parameters that are the same, or as close as can be to the real 

thing.  

In this research, a uniform sand particle size was used to model the sand particles that are part of the 

fluid mixture. In reality, it’s much more likely that the sand particle size in the considered fluid is non-

uniform. Each of the particles has its own (hindered) settling velocity and the differently sized 

particles have different influences on the (local) viscosity of the fluid. This can influence the 

rheological conditions of the fluid and in term can influence most (if not all) other parameters of the 

flow. Further, in reality this size distribution can also vary across the domain considered, leading to 

an additional layer of complexity in the analysis.  

In potential future research, this implementation could be done using a multiphase approach. The 

implementation could allow for 2 (or 𝑛 for that matter) phases of sand. Each phase would represent 

a different subset of particle sizes in the sand particle distribution. Each of these phases would have 

to get their own settling velocity.  

Combining the phases to compute a total sand fraction allows for calculating influence on the local 

viscosity. Section 2.2 shows there to be no relation between particle size and the influence on the 

viscosity, though at this point I’m unaware of the conditions for which that holds true. 

In turn, the effect on the density of the mixture could be calculated by combining the sand phases 

using a fraction method. After all, the current implementation already combines the (total) sand 

density into the mixture density. Researching an adapted model for the hindered settling would be 

advisable.  
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Appendices 
Appendix A. Source code – van Rhee (2017) 

A.1. CVRinterFoam.C 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

  

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 Application 

     CVRinterFoam 

  

 Description 

     Solver for 2 incompressible, isothermal immiscible fluids using a VOF 

     (volume of fluid) phase-fraction based interface capturing approach. 

  

     The momentum and other fluid properties are of the "mixture" and a single 

     momentum equation is solved. 

  

     Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected. 

  

     For a two-fluid approach see twoPhaseEulerFoam. 

  

 \*---------------------------------------------------------------------------*/ 

  

 #include "fvCFD.H" 

 #include "CMULES.H" 

 #include "EulerDdtScheme.H" 

 #include "localEulerDdtScheme.H" 

 #include "CrankNicolsonDdtScheme.H" 

 #include "subCycle.H" 

 #include "immiscibleIncompressibleTwoPhaseMixture.H" 

 #include "turbulentTransportModel.H" 

 #include "pimpleControl.H" 

 #include "fvOptions.H" 

 #include "CorrectPhi.H" 

 #include "fvcSmooth.H" 

  

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 int main(int argc, char *argv[]) 

 { 

     #include "postProcess.H" 

     #include "setRootCase.H" 

     #include "createTime.H" 

     #include "createMesh.H" 

     #include "createControl.H" 

     #include "createTimeControls.H" 

     #include "createRDeltaT.H" 

     #include "initContinuityErrs.H" 

     #include "createFields.H" 

     #include "createFvOptions.H" 

     #include "correctPhi2.H" 

  

     turbulence->validate(); 

  

     if (!LTS) 

     { 

         #include "readTimeControls.H" 

         #include "CourantNo.H" 

         #include "setInitialDeltaT.H" 

     } 
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     // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

     Info<< "\nStarting time loop\n" << endl; 

  

     while (runTime.run()) 

     { 

         #include "readTimeControls.H" 

  

         if (LTS) 

         { 

             #include "setRDeltaT.H" 

         } 

         else 

         { 

             #include "CourantNo.H" 

             #include "alphaCourantNo.H" 

             #include "setDeltaT.H" 

         } 

  

         runTime++; 

  

         Info<< "Time = " << runTime.timeName() << nl << endl; 

  
         // --- Pressure-velocity PIMPLE corrector loop 
         while (pimple.loop()) 
         { 
             #include "alphaControls.H" 
             #include "alphaEqnSubCycle.H" 
  
             mixture.correct(); 
  
             #include "UEqn.H" 
  
             // --- Pressure corrector loop 
             while (pimple.correct()) 
             { 
                 #include "pEqn.H" 
             } 
  
             if (pimple.turbCorr()) 
             { 
                 turbulence->correct(); 
             } 
             #include "csandEqn.H" 
         } 
  
         runTime.write(); 
  
         Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
             << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
             << nl << endl; 
     } 
  
     Info<< "End\n" << endl; 
  
     return 0; 
 } 
  
 // ************************************************************************* // 

A.2. CSandEqn.H 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

  

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 Application 

     CVRnonNewtonianIcoFoam 
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     AlphaEqn.C     -file met transport equation for alpha 

  

 Description 

     Transient solver for incompressible, laminar flow of non-Newtonian fluids. 

  

 \*---------------------------------------------------------------------------*/ 

  

               Info << " Calculation Sand transport " << endl; 

   

               dimensionedScalar zero("zero", dimless, 0); 

               dimensionedScalar one("one", dimless, 1.0); 

               dimensionedScalar factor("factor", dimless, 1.0/18.0); 

  

        //       Info<< "rhoc = " << rhoc << endl; 

  

        //       volVectorField wsvol(U*zero); 

                

        //       volScalarField alpham(alpha); 

                

         //      alpham+=cfine; 

  

         //      Info<< "max alpham = " << max(alpham) << endl; 

  

               wsvol = factor * (rhos-rho)*sqr(Diam) / (mixture.muws())*gz; 

  

               wsvol *= (one -csand); 

  

            //   ws1 = Wsettle.ws(); 

  

         //      if (Method=="TalmonHuisman")  

         //      { 

        //          wsvol*=(one -alpham)* sqr(one - alpha/cmax);   // hindered settling 

             //     Info<< "Method settling velocity = " << Method << endl;  

         //      } 

        //       else  // volgens Spilay 

           //    { 

             //     wsvol*=(one -alpha); 

            //   } 

                

              // Driftflux ten opzichte van bulk velocity 

  

              Us = U + wsvol; 

  

          //   volScalarField visco(fluid.nu()); 

  

          //   surfaceScalarField viscface = fvc::interpolate(visco); 

  

          //   surfaceVectorField ws = factor * (rhos-

rhow)*g*sqr(Diam) / (viscface*rhow)*eenheidsvector;  

              

            // Us = fvc::interpolate(U); 

             

            // Us+=ws; 

  

           //     Info<< "min abs(viscface) = " << min(viscface) << endl; 

           //     Info<< "min abs(ws) = " << min(ws.component(1)) << endl; 

            //    Info<< "max abs(wsvol) = " << max(mag(wsvol)) << endl; 

             //   Info<< "max max Us .y = " << max(Us.component(1)) << endl; 

  

             //= fvc::interpolate(U)+ws; 

  

             surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf(); 

             

         //    surfaceScalarField phised = fvc::flux(Us1); 

  

             fvScalarMatrix csandEqn 

         ( 

             fvm::ddt(csand) 

           + fvm::div(phised, csand) 

            

         ); 

          csandEqn.solve(); 

  

 // ************************************************************************* // 

A.3. createFields.H 
 IOdictionary transportProperties 

     ( 

         IOobject 

         ( 

             "transportProperties", 

             runTime.constant(), 

             mesh, 

             IOobject::MUST_READ, 

             IOobject::NO_WRITE 

         ) 
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     ); 

      

    dictionary& subDict = transportProperties.subDict("TalmonCoeffs"); 

      

    dimensionedScalar cmax 

    ( 

      subDict.lookup("cmax") 

      

    );  

      

   // subDict = transportProperties.subDict("SettlingVelocityMethod"); 

   // word Method 

   // ( 

  

   //  subDict.lookup("Method") 

   // ); 

  

   // Info<< "Selecting " << Method << " as settling velocity method\n" << endl; 

     

 dimensionedScalar Diam 

     ( 

         transportProperties.lookup("Diam") 

     );  

 dimensionedScalar rhow 

     ( 

         transportProperties.lookup("rhow") 

     );  

 dimensionedScalar rhos 

     ( 

         transportProperties.lookup("rhos") 

     );  

  

 Info<< "Reading field p_rgh\n" << endl; 

 volScalarField p_rgh 

 ( 

     IOobject 

     ( 

         "p_rgh", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

     ), 

     mesh 

 ); 

  

 Info<< "Reading field U\n" << endl; 

 volVectorField U 

 ( 

     IOobject 

     ( 

         "U", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

     ), 

     mesh 

 ); 

 Info<< "Reading field Us\n" << endl; 

 volVectorField Us 

 ( 

 IOobject 

         ( 

         "Us", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

         ), 

         mesh 

  

 ); 

  

 volVectorField wsvol 

 ( 

 IOobject 

         ( 

         "wsvol", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

         ), 

         mesh 

  

 ); 
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 volScalarField csand 

 ( 
     IOobject 
     ( 
         "csand", 
         runTime.timeName(), 
         mesh, 
         IOobject::MUST_READ, 
         IOobject::AUTO_WRITE 
     ), 
     mesh 
 ); 
  
 #include "createPhi.H" 
  
 Info<< "Reading transportProperties\n" << endl; 
 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi); 
  
 volScalarField& alpha1(mixture.alpha1()); 
 volScalarField& alpha2(mixture.alpha2()); 
  
 const dimensionedScalar& rho1 = mixture.rho1(); 
 const dimensionedScalar& rho2 = mixture.rho2(); 
  
  
 // Need to store rho for ddt(rho, U) 
 volScalarField rho 
 ( 
     IOobject 
     ( 
         "rho", 
         runTime.timeName(), 
         mesh, 
         IOobject::READ_IF_PRESENT 
     ), 
     alpha1*rho1 + alpha2*rho2 
 ); 
 rho.oldTime(); 
  
  
 // Mass flux 
 surfaceScalarField rhoPhi 
 ( 
     IOobject 
     ( 
         "rhoPhi", 
         runTime.timeName(), 
         mesh, 
         IOobject::NO_READ, 
         IOobject::NO_WRITE 
     ), 
     fvc::interpolate(rho)*phi 
 ); 
  
 // Construct incompressible turbulence model 
 autoPtr<incompressible::turbulenceModel> turbulence 
 ( 
     incompressible::turbulenceModel::New(U, phi, mixture) 
 ); 
  
 #include "readGravitationalAcceleration.H" 
 #include "readhRef.H" 
 #include "gh.H" 
  
 volScalarField p 
 ( 
     IOobject 
     ( 
         "p", 
         runTime.timeName(), 
         mesh, 
         IOobject::NO_READ, 
         IOobject::AUTO_WRITE 
     ), 
     p_rgh + rho*gh 
 ); 
  
 label pRefCell = 0; 
 scalar pRefValue = 0.0; 
 setRefCell 
 ( 
     p, 
     p_rgh, 
     pimple.dict(), 
     pRefCell, 
     pRefValue 
 ); 
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 if (p_rgh.needReference()) 
 { 
     p += dimensionedScalar 
     ( 
         "p", 
         p.dimensions(), 
         pRefValue - getRefCellValue(p, pRefCell) 
     ); 
     p_rgh = p - rho*gh; 
 } 
  
 mesh.setFluxRequired(p_rgh.name()); 
 mesh.setFluxRequired(alpha1.name()); 
  
 dimensionedVector gz("gz", dimLength/sqr(dimTime), vector(0, -9.81,0));  
  
 // MULES flux from previous time-step 
 surfaceScalarField alphaPhi 
 ( 
     IOobject 
     ( 
         "alphaPhi", 
         runTime.timeName(), 
         mesh, 
         IOobject::READ_IF_PRESENT, 
         IOobject::AUTO_WRITE 
     ), 
     phi*fvc::interpolate(alpha1) 
 ); 
  
 // MULES Correction 
 tmp<surfaceScalarField> talphaPhiCorr0; 
 #include "createMRF.H" 
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Appendix B. Source code - solver 

B.1. interFoamPeter.C 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2017 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

   

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

   

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

   

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

   

 Application 

     interFoam 

   

 Description 

     Solver for 2 incompressible, isothermal immiscible fluids using a VOF 

     (volume of fluid) phase-fraction based interface capturing approach. 

   

     The momentum and other fluid properties are of the "mixture" and a single 

     momentum equation is solved. 

   

     Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected. 

   

     For a two-fluid approach see twoPhaseEulerFoam. 

   

     Author: Cees van Rhee & Peter Dobbe 

   

 \*---------------------------------------------------------------------------*/ 

   

 #include "fvCFD.H" 

 #include "CMULES.H" 

 #include "EulerDdtScheme.H" 

 #include "localEulerDdtScheme.H" 

 #include "CrankNicolsonDdtScheme.H" 

 #include "subCycle.H" 

 #include "immiscibleIncompressibleTwoPhaseMixture.H" 

 #include "turbulentTransportModel.H" 

 #include "pimpleControl.H" 

 #include "fvOptions.H" 

 #include "CorrectPhi.H" 

 #include "fvcSmooth.H" 

   

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

   

 int main(int argc, char *argv[]) 

 { 

     #include "postProcess.H" 

   

     #include "setRootCase.H" 

     #include "createTime.H" 

     #include "createMesh.H" 

     #include "createControl.H" 

     #include "createTimeControls.H" 

     #include "initContinuityErrs.H" 

     #include "createFields.H" 

     #include "createAlphaFluxes.H" 

     #include "createFvOptions.H" 

     #include "correctPhi2.H" // to prevent capital sensitive issues 

   

     turbulence->validate(); 

   

     if (!LTS) 

     { 

         #include "readTimeControls.H" 

         #include "CourantNo.H" 

         #include "setInitialDeltaT.H" 

     } 

   

     // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
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     Info<< "\nStarting time loop\n" << endl; 

   

     while (runTime.run()) 

     { 

         Info << "running readTimeControls.H" <<endl; 

         #include "readTimeControls.H" 

   

         if (LTS) 

         { 

             #include "setRDeltaT.H" 

         } 

         else 

         { 

             #include "CourantNo.H" 

             #include "alphaCourantNo.H" 

             #include "setDeltaT.H" 

         } 

   
         runTime++; 
         Info<< "Time = " << runTime.timeName() << nl << endl; 
   
         // --- Pressure-velocity PIMPLE corrector loop 
         while (pimple.loop()) 
         { 
             #include "alphaControls.H" 
              
             #include "alphaEqnSubCycle.H" 
              
             mixture.correct(); 
             #include "UEqn.H" 
   
             // --- Pressure corrector loop 
             while (pimple.correct()) 
             { 
                 Info << "Running pimple.correct()" << endl; 
                 #include "pEqn.H" 
             } 
   
             if (pimple.turbCorr()) 
             { 
                 Info << "Running turbulence->correct()" << endl; 
                 turbulence->correct(); 
             } 
             #include "CSandEqn.H" 
         } 
         runTime.write(); 
   
         Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
             << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
             << nl << endl; 
     } 
     Info<< "End\n" << endl; 
   
     return 0; 
 } 
 // ************************************************************************* // 

  

B.2. CSandEqn.H 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

   

   

   

 Application 

     interFoamPeter 

   

 Description 

     Transport equation for sand. 

   

     Author: Cees van Rhee & Peter Dobbe 

   

 \*---------------------------------------------------------------------------*/ 

   

     Info << "Running CSandEqn.H" << endl; 

              

     dimensionedScalar zero("zero", dimless, 0); 

   

     dimensionedScalar one("one", dimless, 1.0); 
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     dimensionedScalar factor("factor", dimless, 1.0/18.0); 

   

     volScalarField muws_mixture = mixture.muws(); 

     Info << "muws in CSandEqn.  Min(muws) = " << min(muws_mixture).value() << " Max(muws) = " << 

max(muws_mixture).value() << endl; 

   

     wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture)); 

   

     wsvol *= (one - csand); 

      

     Info << "wsvol in CSandEqn.  Min(wsvol) = " << min(wsvol).value() << " Max(wsvol) = " << 

max(wsvol).value() << endl; 

   

     Us = U + wsvol; 

   

     surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();   

   

     fvScalarMatrix csandEqn 

     ( 

         fvm::ddt(csand) 

         + fvm::div(phised, csand) 

          

     ); 

   

     csandEqn.solve(); 

   

     Info << "Alpha in CSandEqn.  Min(csand) = " << min(csand).value() << " Max(csand) = " << 

max(csand).value() << endl; 

   

     Info << "csand-cmax in CSandEqn.  Min(csand-cmax) = " << min(csand-cmax).value() << " Max(csand-

cmax) = " << max(csand-cmax).value() << endl; 

   

     Info << "mag(csand-cmax) in CSandEqn.  Min(mag(csand-cmax)) = " << min(mag(csand-cmax)).value() << 

" Max(mag(csand-cmax)) = " << max(mag(csand-cmax)).value() << endl; 

   

              

   

 // ************************************************************************* // 

B.3. CSandEqn.H – alternative for simulation 3 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

   

   

   

 Application 

     interFoamPeter 

   

 Description 

     Transport equation for sand. 

   

     Author: Cees van Rhee & Peter Dobbe 

   

 \*---------------------------------------------------------------------------*/ 

   

     Info << "Running CSandEqn.H" << endl; 

              

     dimensionedScalar zero("zero", dimless, 0); 

   

     dimensionedScalar one("one", dimless, 1.0); 

   

     dimensionedScalar factor("factor", dimless, 1.0/18.0); 

   

     volScalarField muws_mixture = mixture.muws(); 

     Info << "muws in CSandEqn.  Min(muws) = " << min(muws_mixture).value() << " Max(muws) = " << 

max(muws_mixture).value() << endl; 

   

     wsvol = factor * (((rhos-rho)*sqr(Diam)*g) / (muws_mixture)); 

   

     wsvol *= (one - csand) * sqr(one - (csand/cmax)); 

      

     Info << "wsvol in CSandEqn.  Min(wsvol) = " << min(wsvol).value() << " Max(wsvol) = " << 

max(wsvol).value() << endl; 

   

     Us = U + wsvol; 

   

     surfaceScalarField phised = fvc::interpolate(Us) & mesh.Sf();   

   
     fvScalarMatrix csandEqn 
     ( 
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         fvm::ddt(csand) 
         + fvm::div(phised, csand) 
          
     ); 
   
     csandEqn.solve(); 
   
     Info << "Alpha in CSandEqn.  Min(csand) = " << min(csand).value() << " Max(csand) = " << 
max(csand).value() << endl; 

   
     Info << "csand-cmax in CSandEqn.  Min(csand-cmax) = " << min(csand-cmax).value() << " Max(csand-
cmax) = " << max(csand-cmax).value() << endl; 

   
     Info << "mag(csand-cmax) in CSandEqn.  Min(mag(csand-cmax)) = " << min(mag(csand-cmax)).value() << 
" Max(mag(csand-cmax)) = " << max(mag(csand-cmax)).value() << endl; 

   
              
   
 // ************************************************************************* // 

 

B.4. createFields.H 
 #include "createRDeltaT.H" 

   

     Info<< "Reading field csand\n" << endl; 

     volScalarField csand 

     ( 

         IOobject 

         ( 

             "csand", 

             runTime.timeName(), 

             mesh, 

             IOobject::MUST_READ, 

             IOobject::AUTO_WRITE 

         ), 

         mesh 

     ); 

   

     // Read wsvol field initialized in 0 folder 

     Info<< "Reading field wsvol\n" << endl; 

     volVectorField wsvol 

     ( 

         IOobject 

         ( 

             "wsvol", 

             runTime.timeName(), 

             mesh, 

             IOobject::MUST_READ, 

             IOobject::AUTO_WRITE 

         ), 

         mesh 

     ); 

   

     // Read Us field initialized in 0 folder 

     Info<< "Reading field Us\n" << endl; 

     volVectorField Us 

     ( 

         IOobject 

         ( 

             "Us", 

             runTime.timeName(), 

             mesh, 

             IOobject::MUST_READ, 

             IOobject::AUTO_WRITE 

         ), 

         mesh 

     ); 

   

 Info<< "Reading field p_rgh\n" << endl; 

 volScalarField p_rgh 

 ( 

     IOobject 

     ( 

         "p_rgh", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

     ), 

     mesh 

 ); 

   

 Info<< "Reading field U\n" << endl; 

 volVectorField U 
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 ( 

     IOobject 

     ( 

         "U", 

         runTime.timeName(), 

         mesh, 

         IOobject::MUST_READ, 

         IOobject::AUTO_WRITE 

     ), 

     mesh 

 ); 

   

 #include "createPhi.H" 

   

 Info<< "Reading transportProperties\n" << endl; 

 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi); 

      

       Info << mixture << endl; 

    IOdictionary transportProperties 

     ( 

         IOobject 

         ( 

             "transportProperties", 

             runTime.constant(), 

             mesh, 

             IOobject::MUST_READ, 

             IOobject::NO_WRITE 

         ) 

     ); 

   

     dimensionedScalar Diam 

     ( 

         transportProperties.lookup("Diam") 

     ); 

     dimensionedScalar rhow 

     ( 

         transportProperties.lookup("rhow") 

     );  
     dimensionedScalar rhos 
     ( 
         transportProperties.lookup("rhos") 
     );  
     dimensionedScalar cfine 
     ( 
         transportProperties.lookup("cfine") 
     );  
     dimensionedScalar cmax 
     ( 
         transportProperties.lookup("cmax") 
     );  
     //dimensionedVector gz("gz", dimLength/sqr(dimTime), vector(0, -9.81,0));  
   
 dimensionedScalar rhoc("rhoc",cfine*rhos + (1-cfine)*rhow);     
   
 volScalarField& alpha1(mixture.alpha1()); 
 volScalarField& alpha2(mixture.alpha2()); 
   
 const dimensionedScalar& rho1 = mixture.rho1(); 
 const dimensionedScalar& rho2 = mixture.rho2(); 
   
   
 // Need to store rho for ddt(rho, U) 
 volScalarField rho 
 ( 
     IOobject 
     ( 
         "rho", 
         runTime.timeName(), 
         mesh, 
         IOobject::READ_IF_PRESENT 
     ), 
     alpha1*rho1 + alpha2*rho2 
 ); 
 rho.oldTime(); 
   
 // Mass flux 
 surfaceScalarField rhoPhi 
 ( 
     IOobject 
     ( 
         "rhoPhi", 
         runTime.timeName(), 
         mesh, 
         IOobject::NO_READ, 
         IOobject::NO_WRITE 
     ), 
     fvc::interpolate(rho)*phi 
 ); 
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 // Construct incompressible turbulence model 
 autoPtr<incompressible::turbulenceModel> turbulence 
 ( 
     incompressible::turbulenceModel::New(U, phi, mixture) 
 ); 
   
 #include "readGravitationalAcceleration.H" 
 #include "readhRef.H" 
 #include "gh.H" 
   
 volScalarField p 
 ( 
     IOobject 
     ( 
         "p", 
         runTime.timeName(), 
         mesh, 
         IOobject::NO_READ, 
         IOobject::AUTO_WRITE 
     ), 
     p_rgh + rho*gh 
 ); 
   
 label pRefCell = 0; 
 scalar pRefValue = 0.0; 
 setRefCell 
 ( 
     p, 
     p_rgh, 
     pimple.dict(), 
     pRefCell, 
     pRefValue 
 ); 
   
 if (p_rgh.needReference()) 
 { 
     p += dimensionedScalar 
     ( 
         "p", 
         p.dimensions(), 
         pRefValue - getRefCellValue(p, pRefCell) 
     ); 
     p_rgh = p - rho*gh; 
 } 
   
 mesh.setFluxRequired(p_rgh.name()); 
 mesh.setFluxRequired(alpha1.name()); 
   
 #include "createMRF.H" 
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Appendix C. Source code - viscosity models 

C.1. Talmon.H 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

  

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 Class 

     Foam::viscosityModels::Talmon 

  

 Description 

      Talmon non-Newtonian viscosity model. 

  

 SourceFiles 

     Talmon.H 

  

 \*---------------------------------------------------------------------------*/ 

  

 #ifndef Talmon_H 

 #define Talmon_H 

  

 #include "viscosityModel.H" 

 #include "dimensionedScalar.H" 

 #include "volFields.H" 

  

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 namespace Foam 

 { 

 namespace viscosityModels 

 { 

  

 /*---------------------------------------------------------------------------*\ 

                            Class Talmon Declaration 

 \*---------------------------------------------------------------------------*/ 

  

 class Talmon 

 : 

     public viscosityModel 

 { 

     // Private data 

  

         dictionary TalmonCoeffs_; 

  

         dimensionedScalar coef_; 

         dimensionedScalar cmax_; 

         dimensionedScalar alpha0_; 

         dimensionedScalar tau0_; 

         dimensionedScalar nu0_; 

         dimensionedScalar numax_; 

         word phasename_; 

         dimensionedScalar maxlabda; 

         dimensionedScalar minlabda; 

  

         const volScalarField& alpha_; 

         volScalarField nu_; 

         volScalarField nuws_; 

         volScalarField labda_; 

         

  

     // Private Member Functions 

  

         //- Calculate and return the laminar viscosity 

         tmp<volScalarField> calcNu() const; 

         tmp<volScalarField> calcNuws() const; 

         tmp<volScalarField> calcLabda() const; 
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 protected: 

  

 public: 

  

     //- Runtime type information 

     TypeName("Talmon"); 

  

     // Constructors 

  

         //- Construct from components 

         Talmon 

         ( 

             const word& name, 

             const dictionary& viscosityProperties, 

             const volVectorField& U, 

             const surfaceScalarField& phi 

         ); 
  
     //- Destructor 
     ~Talmon() 
     {} 
  
     // Member Functions 
  
         //- Return the laminar viscosity 
         tmp<volScalarField> nu() const 
         { 
             return nu_; 
         } 
  
          //- Return the laminar viscosity 
         tmp<volScalarField> nuws() const 
         { 
             return nuws_; 
         } 
          
         //- Return the linear concentration labda 
         tmp<volScalarField> labda() const 
         { 
             return labda_; 
         } 
  
         //- Return the laminar viscosity for patch 
         tmp<scalarField> nu(const label patchi) const 
         { 
             return nu_.boundaryField()[patchi]; 
         } 
  
         //- Correct the laminar viscosity 
         void correct() 
         { 
             nu_ = calcNu(); 
             nuws_ = calcNuws(); 
         } 
  
         //- Read transportProperties dictionary 
         bool read(const dictionary& viscosityProperties); 
 }; 
  
 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
  
 } // End namespace viscosityModels 
 } // End namespace Foam 
  
 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
  
 #endif 
  
 // ************************************************************************* // 
  

  

C.2. Talmon.C 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2015 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 
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     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

  

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 \*---------------------------------------------------------------------------*/ 

  

 #include "Talmon.H" 

 #include "addToRunTimeSelectionTable.H" 

 #include "surfaceFields.H" 

  

 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 

  

 namespace Foam 

 { 

     namespace viscosityModels 

     { 

         defineTypeNameAndDebug(Talmon, 1); 

  

         addToRunTimeSelectionTable 

         ( 

             viscosityModel, 

             Talmon, 

             dictionary 

         ); 

     } 

 } 

  

 // * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 

  

 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcNu() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

     //dimensionedScalar one3("onethird", dimless, 1.0/3.0); 

     dimensionedScalar klein("klein", dimless, 1e-5); 

  

     tmp<volScalarField> sr(strainRate()); 

  

     Info << phasename_ << " in calcNu. ("<<phasename_<<") Min("<<phasename_<<") = " << min(alpha_).valu

e() << " Max("<<phasename_<<") = " << max(alpha_).value() << endl; 

          

     Info << phasename_<<"-cmax_ in calcNu.  Min("<<phasename_<<"-cmax_) = " << min(alpha_-

cmax_).value() << " Max("<<phasename_<<"-cmax_) = " << max(alpha_-cmax_).value() << endl; 

  

     Info << "mag("<<phasename_<<"-cmax_) in calcNu.  Min(mag("<<phasename_<<"-

cmax_)) = " << min(mag(alpha_-cmax_)).value() << " Max(mag("<<phasename_<<"-

cmax_)) = " << max(mag(alpha_-cmax_)).value() << endl; 

  

     Info << ""<<phasename_<<"+klein in calcNu.  Min("<<phasename_<<"+klein) = " << min(alpha_+klein).va

lue() << " Max("<<phasename_<<"+klein) = " << max(alpha_+klein).value() << endl; 

  

     Info << "cmax_/("<<phasename_<<"+klein) in calcNu.  Min(cmax_/("<<phasename_<<"+klein)) = " << min(

cmax_/(alpha_+klein)).value() << " Max(cmax_/("<<phasename_<<"+klein)) = " << max(cmax_/(alpha_+klein))

.value() << endl; 

  

     volScalarField labda_= calcLabda(); 

  

     Info << "Labda in calcNu. Min(labda) = " << min(labda_).value() << " Max(labda) = " << max(labda_).

value() << endl; 

          

     Info << "Minimum strainrate(): " << min(sr()) << endl; 

      

     volScalarField capped_exponent = min(exp(alpha0_*labda_), dimensionedScalar ("ROOTVGREAT", dimless,

 ROOTVGREAT)); 

  

     if (max(exp(alpha0_*labda_)).value() >= dimensionedScalar ("ROOTVGREAT", dimless, ROOTVGREAT).value

()) 

     { 

         Info << "Warning, maximum of exponent: >= " << dimensionedScalar ("ROOTVGREAT", dimless, ROOTVG

REAT) << " : " << max(exp(alpha0_*labda_)).value() << endl; 

     } 

     return 

     (  

         min( 

             numax_, 

             nu0_*capped_exponent + (tau0_*capped_exponent*(one-exp(-coef_*sr())) ) 

                 /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL))) 

         ) 

     ); 

 } 
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 Foam::tmp<Foam::volScalarField> 

 Foam::viscosityModels::Talmon::calcNuws() const 

 { 

     dimensionedScalar one("one", dimless, 1.0); 

   //  dimensionedScalar one3("onethird", dimless, 1.0/3.0); 

   //  dimensionedScalar klein("klein", dimless, 1e-5); 

    

     tmp<volScalarField> sr(strainRate()); 

      

     Info<< " Berekening van eta voor valsnelheid " << endl; 

      
     return 
     ( 
         min( 
             numax_, 
             nu0_ +  ( tau0_*(one-exp(-coef_*sr())) ) 
  
             /(max(sr(), dimensionedScalar ("VSMALL", dimless/dimTime, VSMALL))) 
         ) 
     ); 
 } 
  
 Foam::tmp<Foam::volScalarField> 
 Foam::viscosityModels::Talmon::calcLabda() const 
 { 
     dimensionedScalar one("one", dimless, 1.0); 
     dimensionedScalar one3("onethird", dimless, 1.0/3.0); 
     dimensionedScalar klein("klein", dimless, 1e-5); 
      
     if (min(alpha_+klein).value() <= 0) 
     { 
         Info << "Warning: min(alpha_+klein) <= 0: " << min(alpha_+klein).value() << endl; 
     } 
  
     if (max(alpha_+klein).value() >= cmax_.value()) 
     { 
         Info << "Warning: max(alpha_+klein). >= "<< cmax_.value() << " : "  << max(alpha_+klein).value(
) << endl; 

     } 
      
     volScalarField labda_return = (one / (pow(cmax_/(alpha_+klein),one3)-one)); 
  
     if (max(labda_return).value() > maxlabda.value()) 
     { 
         Info << "Warning: max(labda_return)= " << max(labda_return).value() << endl; 
     } 
  
     if (min(labda_return).value() < minlabda.value()) 
     { 
         Info << "Warning: min(labda_return)= " << min(labda_return).value() << endl; 
     } 
     return min(labda_return,maxlabda); 
 } 
  
 

 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
  
 Foam::viscosityModels::Talmon::Talmon 
 ( 
     const word& name, 
     const dictionary& viscosityProperties, 
     const volVectorField& U, 
     const surfaceScalarField& phi 
 ) 
 : 
     viscosityModel(name, viscosityProperties, U, phi), 
      
     TalmonCoeffs_(viscosityProperties.subDict(typeName + "Coeffs")), 
    // k_("k", dimViscosity, TalmonCoeffs_), 
     coef_("coef", dimTime, TalmonCoeffs_), 
     cmax_("cmax", dimless, TalmonCoeffs_), 
     alpha0_("alpha0", dimless, TalmonCoeffs_), 
     tau0_("tau0", dimViscosity/dimTime, TalmonCoeffs_), 
     nu0_("nu0", dimViscosity, TalmonCoeffs_), 
     numax_("numax", dimViscosity, TalmonCoeffs_), 
     phasename_(TalmonCoeffs_.lookup("Phasename")), 
     maxlabda("maxlabda", dimless, log(std::numeric_limits<double>::max())/alpha0_.value()), 
     minlabda("minlabda", dimless, log(std::numeric_limits<double>::min())/alpha0_.value()), 
  
     alpha_(  
    
        U_.mesh().lookupObject<volScalarField>(phasename_) 
    
     ), 
     nu_ 
     ( 
         IOobject 
         ( 
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             name, 
             U_.time().timeName(), 
             U_.db(), 
             IOobject::NO_READ, 
             IOobject::AUTO_WRITE 
         ), 
         calcNu() 
     ), 
     nuws_ 
     ( 
         IOobject 
         ( 
             name, 
             U_.time().timeName(), 
             U_.db(), 
             IOobject::NO_READ, 
             IOobject::AUTO_WRITE 
         ), 
         calcNuws() 
     ), 
     labda_ 
     ( 
         IOobject 
         ( 
             name, 
             U_.time().timeName(), 
             U_.db(), 
             IOobject::NO_READ, 
             IOobject::AUTO_WRITE 
         ), 
         calcLabda() 
     ) 
  
 {   
     Info<< " Defining CVR Talmon model " << endl; 
 } 
  
 

 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * * // 
  
 bool Foam::viscosityModels::Talmon::read 
 ( 
     const dictionary& viscosityProperties 
 ) 
 { 
      
     viscosityModel::read(viscosityProperties); 
     Info<< " Defining CVR Talmon model " << endl; 
     TalmonCoeffs_ = viscosityProperties.subDict(typeName + "Coeffs"); 
  
     TalmonCoeffs_.lookup("coef") >> coef_; 
     TalmonCoeffs_.lookup("cmax") >> cmax_; 
     TalmonCoeffs_.lookup("alpha0") >> alpha0_; 
     //TalmonCoeffs_.lookup("n") >> n_; 
     TalmonCoeffs_.lookup("tau0") >> tau0_; 
     TalmonCoeffs_.lookup("nu0") >> nu0_; 
     TalmonCoeffs_.lookup("numax") >> numax_; 
     TalmonCoeffs_.lookup("Phasename") >> phasename_; 
  
     return true; 
 } 
  
 // ************************************************************************* // 
  

C.3. CVRNewtonian.H 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2015 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 
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     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 Class 

     Foam::viscosityModels::CVRNewtonian 

  

 Description 

     An incompressible CVRNewtonian viscosity model. 

  

 SourceFiles 

     CVRNewtonian.H 

  

 \*---------------------------------------------------------------------------*/ 

  

 #ifndef CVRNewtonian_H 

 #define CVRNewtonian_H 

  

 #include "viscosityModel.H" 

 #include "dimensionedScalar.H" 

 #include "volFields.H" 

  

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 namespace Foam 

 { 

 namespace viscosityModels 

 { 

  

 /*---------------------------------------------------------------------------*\ 

                            Class CVRNewtonian Declaration 

 \*---------------------------------------------------------------------------*/ 

  

 class CVRNewtonian 

 : 

     public viscosityModel 

 { 

     // Private data 

  

         dimensionedScalar nu0_; 

  

         volScalarField nu_; 

  

  

 public: 

  

     //- Runtime type information 

     TypeName("CVRNewtonian"); 

  

  

     // Constructors 

  

         //- Construct from components 

         CVRNewtonian 

         ( 

             const word& name, 

             const dictionary& viscosityProperties, 

             const volVectorField& U, 

             const surfaceScalarField& phi 

         ); 

  

  

     //- Destructor 

     ~CVRNewtonian() 

     {} 

  

  

     // Member Functions 

  

         //- Return the laminar viscosity 

         tmp<volScalarField> nu() const 

         { 

             return nu_; 

         } 

         tmp<volScalarField> nuws() const 

         { 

             return nu_; 

         } 

  

         //- Return the laminar viscosity for patch 

         tmp<scalarField> nu(const label patchi) const 
         { 
             return nu_.boundaryField()[patchi]; 
         } 
  
         //- Correct the laminar viscosity (not appropriate, viscosity constant) 
         void correct() 
         {} 
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         //- Read transportProperties dictionary 
         bool read(const dictionary& viscosityProperties); 
 }; 
  
  
 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
  
 } // End namespace viscosityModels 
 } // End namespace Foam 
  
 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
  
 #endif 
  
 // ************************************************************************* // 

C.4. CVRNewtonian.C 
 /*---------------------------------------------------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Copyright (C) 2011-2015 OpenFOAM Foundation 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 License 

     This file is part of OpenFOAM. 

  

     OpenFOAM is free software: you can redistribute it and/or modify it 

     under the terms of the GNU General Public License as published by 

     the Free Software Foundation, either version 3 of the License, or 

     (at your option) any later version. 

  

     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

     for more details. 

  

     You should have received a copy of the GNU General Public License 

     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

 \*---------------------------------------------------------------------------*/ 

  

 #include "CVRNewtonian.H" 

 #include "addToRunTimeSelectionTable.H" 

 #include "surfaceFields.H" 

  

 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 

  

 namespace Foam 

 { 

 namespace viscosityModels 

 { 

     defineTypeNameAndDebug(CVRNewtonian, 0); 

     addToRunTimeSelectionTable(viscosityModel, CVRNewtonian, dictionary); 

 } 

 } 

  

 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 

  

 Foam::viscosityModels::CVRNewtonian::CVRNewtonian 

 ( 

     const word& name, 

     const dictionary& viscosityProperties, 

     const volVectorField& U, 

     const surfaceScalarField& phi 

 ) 

 : 

     viscosityModel(name, viscosityProperties, U, phi), 

     nu0_("nu", dimViscosity, viscosityProperties_), 

     nu_ 

     ( 

         IOobject 

         ( 

             name, 

             U_.time().timeName(), 

             U_.db(), 

             IOobject::NO_READ, 

             IOobject::NO_WRITE 

         ), 

         U_.mesh(), 

         nu0_ 

     ) 

 {} 

  

  

 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * * // 
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 bool Foam::viscosityModels::CVRNewtonian::read 

 ( 

     const dictionary& viscosityProperties 

 ) 

 { 

     viscosityModel::read(viscosityProperties); 

  

     viscosityProperties_.lookup("nu") >> nu0_; 

     nu_ = nu0_; 

  

     return true; 

 } 

  

  

 // ************************************************************************* // 
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Appendix D. Simulation case files 

D.1. Simulation 1 

D.1.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     bottom 

     { 

         type            zeroGradient; 

     } 

     leftwall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

         value           uniform 0; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

 // ************************************************************************* // 

D.1.2. File 0/csand 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0; 

     } 

     leftwall 

     { 
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         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     bottom 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

 // ************************************************************************* // 

D.1.3. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     atmosphere 

     { 

         type            totalPressure; 

         p0              uniform 0; 

     } 

     ".*" 

     { 

         type            fixedFluxPressure; 

         value           uniform 0; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

 // ************************************************************************* // 

D.1.4. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.004; 
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     } 

     bottom 

     { 

         type            noSlip; 

     } 

     leftwall 

     { 

         type            noSlip; 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

 // ************************************************************************* // 

D.1.5. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.004; 

     } 

     leftwall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

         value           uniform (0 0 0); 

     } 

     bottom 

     { 

         type            noSlip;// fixedValue; 

        // value           uniform (0 0 0); 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

 // ************************************************************************* // 

D.1.6. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
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 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftwall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     bottom 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     atmosphere 

     { 

         type            fixedValue; //pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.1.7. File constant/g 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0.4898 -9.80 0); 

  

 // ************************************************************************* // 

D.1.8. File constant/transportProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 
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     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06; 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 nu              [0 2 -1 0 0 0 0]  1.48e-05; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

         Phasename csand; 

          

         coef [0 0 1 0 0 0 0]     50; 

         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

         tau0 [0 2 -2 0 0 0 0]   0.008006; //0.008; //0.035 

         nu0 [0 2 -1 0 0 0 0]  0.00016012; // 0.0000179; 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0]  1e-02; 

         rho             [1 -3 0 0 0 0 0] 1249; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                  

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.008006; //0.008; //0.035 

          nu0 [0 2 -1 0 0 0 0]  0.00016012; // 0.0000179; 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

  

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0]  1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 

D.1.9. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 

D.1.10. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 
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 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

    (0 0 0) 

    (20 0 0) 

    (20 0.3 0) 

    (0 0.3 0) 

    (0 0 0.1) 

    (20 0 0.1) 

    (20 0.3 0.1) 

    (0 0.3 0.1) 

    (-1 0 0) 

    (-1 0.3 0) 

    (-1 0 0.1) 

    (-1 0.3 0.1) 

 ); 

 blocks 

 ( 

     hex (0 1 2 3 4 5 6 7) (120 80 1) simpleGrading (3 5 1) 

     hex (8 0 3 9 10 4 7 11) (120 80 1) simpleGrading (1 5 1) 

      

 ); 

 boundary 

 ( 

     leftwall 

     { 

         type patch; 

         faces 

         ( 

             (8 10 11 9) 

         ); 

     }  

     inlet 

     { 

         type patch; 

         faces 

         ( 

             (0 4 10 8)  

         ); 

     } 

     outlet 

     { 

         type patch; 

         faces 

         ( 

             (1 2 6 5) 

          ); 

     } 

     bottom 

     { 

         type wall; 

         faces 

         ( 

             (1 5 4 0)  

         ); 

     } 

     atmosphere 

     { 

         type wall; 

         faces 

         ( 

             (2 3 7 6) 

             (3 9 11 7) 

         ); 

     } 

     front  

     { 

         type empty; 

         faces 

         ( 

             (4 5 6 7) 

             (10 4 7 11) 
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         ); 

     } 

     back 

     { 

         type empty; 

         faces 

         ( 

             (0 3 2 1) 

             (0 8 9 3) 

         ); 

     } 
 ); 
 mergePatchPairs(); 
 // ************************************************************************* // 

D.1.11. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         2000; 

  

 deltaT          0.01; 

  

 writeControl    adjustableRunTime; 

  

 writeInterval   1; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  6; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 

  

 timePrecision   6; 

  

 runTimeModifiable yes; 

  

 adjustTimeStep  yes; 

  

 maxCo           1; 

 maxAlphaCo      1; 

 maxDeltaT       1; 

  

 functions 

 { 

     #includeFunc  singleGraph 

 } 

 // ************************************************************************* // 

D.1.12. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 
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 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 6; 

  

 method          simple; 

  

 simpleCoeffs 

 { 

     n               (6 1 1); 

     delta           0.001; 

 } 

  

 hierarchicalCoeffs 

 { 

     n               (2 2 1); 

     delta           0.001; 

     order           xyz; 

 } 

  

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

 // ************************************************************************* // 

D.1.13. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

 gradSchemes 

 { 

     default         Gauss linear; 

 } 

 divSchemes 

 { 

     default             none; 

  

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

 interpolationSchemes 

 { 

     default         linear; 

 } 

 snGradSchemes 

 { 

     default         corrected; 

 } 
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 // ************************************************************************* // 

D.1.14. File system/fvSolution 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 

         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

      

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

         smoother         GaussSeidel; 

         maxIter          50; 

     }; 

  

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "(U).*" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 
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         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     2; 

     nNonOrthogonalCorrectors 0; 

 } 

  

 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 
     } 
 } 
 // ************************************************************************* // 

D.1.15. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      setFieldsDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.25 0 0) (15 0.05 0.1); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 1 

         ); 

     } 

 ); 

 // ************************************************************************* // 

D.1.16. File system/singlegraph 
 /*--------------------------------*- C++ -*----------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Web:      www.OpenFOAM.org 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 Description 

     Writes graph data for specified fields along a line, specified by start 

     and end points. 

  

 \*---------------------------------------------------------------------------*/ 

  

 start   (19.5 0 0.05); 

 end     (19.5 0.3 0.05); 

 fields  (U alpha.water); 

  

  

 // Sampling and I/O settings 

 #includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg" 

  

 // Override settings here, e.g. 

 // setConfig { type midPoint; } 

  

 // Must be last entry 

 #includeEtc "caseDicts/postProcessing/graphs/graph.cfg" 
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 // ************************************************************************* // 

D.2. Simulation 2 and 3 

D.2.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     bottom 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

         value           uniform 0; 

     } 

     leftwall 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

         value           uniform 0; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.2.2. File 0/csand 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0.12; 
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     } 

     leftwall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     bottom 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

         value           uniform 0; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.2.3. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     atmosphere 

     { 

         type            totalPressure; 

         p0              uniform 0; 

     } 

     ".*" 

     { 

         type            fixedFluxPressure; 

         value           uniform 0; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.2.4. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 
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 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.004; 

     } 

     bottom 

     { 

         type            noSlip; 

     } 

     leftwall 

     { 

         type            noSlip; 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

  

 // ************************************************************************* // 

D.2.5. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.004; 

     } 

     leftwall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

         value           uniform (0 0 0); 

     } 

     bottom 

     { 

         type            noSlip; 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 
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 // ************************************************************************* // 

D.2.6. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftwall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     bottom 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     atmosphere 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.2.7. File constant/g 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0.4898 -9.80 0); 

  

 // ************************************************************************* // 

D.2.8. File constant/transportProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 
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 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06; 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

         Phasename csand; 

      coef [0 0 1 0 0 0 0]     50; 

         cmax      cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0    [0 0 0 0 0 0 0]     0.27; 

      tau0       [0 2 -2 0 0 0 0]   0.037870; //=47.3/1249 

      nu0        [0 2 -1 0 0 0 0]  1.71337e-5; // =0.0214/1249 

         numax     [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0]  1e-02; 

         rho             [1 -3 0 0 0 0 0] 1249; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.037870; //=47.3/1249 

                 nu0 [0 2 -1 0 0 0 0]  1.71337e-5; // =0.0214/1249 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0]  1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 

D.2.9. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 
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D.2.10. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

    (0 0 0) 

    (20 0 0) 

    (20 0.3 0) 

    (0 0.3 0) 

    (0 0 0.1) 

    (20 0 0.1) 

    (20 0.3 0.1) 

    (0 0.3 0.1) 

    (-1 0 0) 

    (-1 0.3 0) 

    (-1 0 0.1) 

    (-1 0.3 0.1) 

 ); 

  

 blocks 

 ( 

     hex (0 1 2 3 4 5 6 7) (120 80 1) simpleGrading (3 5 1) 

     hex (8 0 3 9 10 4 7 11) (120 80 1) simpleGrading (1 5 1) 

      

 ); 

  

 boundary 

 ( 

     leftwall 

     { 

         type patch; 

         faces 

         ( 

             (8 10 11 9) 

         ); 

     }  

     inlet 

     { 

         type patch; 

         faces 

         ( 

             (0 4 10 8) 

         ); 

     } 

     outlet 

     { 

         type patch; 

         faces 

         ( 

             (1 2 6 5) 

         ); 

     } 

     bottom 

     { 

         type wall; 

         faces 

         ( 

             (1 5 4 0) 

         ); 

     } 

     atmosphere 

     { 

         type wall; 

         faces 

         ( 

             (2 3 7 6) 

             (3 9 11 7) 

         ); 

     } 

     front  

     { 
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         type empty; 

         faces 

         ( 

             (4 5 6 7) 

             (10 4 7 11) 

         ); 

     } 

     back 

     { 

         type empty; 

         faces 

         ( 

             (0 3 2 1) 

             (0 8 9 3) 
         ); 
     } 
 ); 
  
 mergePatchPairs(); 
  
 // ************************************************************************* // 

D.2.11. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         1200; 

  

 deltaT          0.01; 

  

 writeControl    adjustableRunTime; 

  

 writeInterval   5; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  8; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 

  

 timePrecision   8; 

  

 runTimeModifiable yes; 

  

 adjustTimeStep  yes; 

  

 maxCo           1; 

 maxAlphaCo      1; 

 maxDeltaT       1; 

  

 functions 

 { 

     #includeFunc  singleGraph     

    

     writeFields 

     { 

         type writeObjects; 

         functionObjectLibs ("libutilityFunctionObjects.so"); 

         objects 

         ( 
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             rho 

         ); 

         writeControl outputTime; 

         writeInterval 5; 

     }   

 } 

  

 // ************************************************************************* // 

D.2.12. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 6; 

  

 method          simple; 

  

 simpleCoeffs 

 { 

     n               (6 1 1); 

     delta           0.001; 

 } 

  

 hierarchicalCoeffs 

 { 

     n               (2 2 1); 

     delta           0.001; 

     order           xyz; 

 } 

  

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

  

 // ************************************************************************* // 

D.2.13. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

  

 gradSchemes 

 { 

     default         Gauss linear; 

 } 
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 divSchemes 

 { 

     default             none; 

  

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

  

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

  

 interpolationSchemes 

 { 

     default         linear; 

 } 

  

 snGradSchemes 

 { 

     default         corrected; 

 } 

  

 // ************************************************************************* // 

D.2.14. File system/fvSolution 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 
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         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

      

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

         smoother         GaussSeidel; 

         maxIter          50; 

     }; 

  

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "(U).*" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 

         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     2; 

     nNonOrthogonalCorrectors 0; 

 } 

  

 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 
     } 
 } 
 // ************************************************************************* // 

D.2.15. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      setFieldsDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.25 0 0) (15 0.05 0.1); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 0 

         ); 

     } 

 ); 

  

  

 // ************************************************************************* // 
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D.2.16. File system/singlegraph 
 /*--------------------------------*- C++ -*----------------------------------*\ 

   =========                 | 

   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

    \\    /   O peration     | 

     \\  /    A nd           | Web:      www.OpenFOAM.org 

      \\/     M anipulation  | 

 ------------------------------------------------------------------------------- 

 Description 

     Writes graph data for specified fields along a line, specified by start 

     and end points. 

  

 \*---------------------------------------------------------------------------*/ 

  

 start   (15 0 0.05); 

 end     (15 0.3 0.05); 

 fields  (U alpha.water csand); 

  

  

 // Sampling and I/O settings 

 #includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg" 

  

 // Override settings here, e.g. 

 // setConfig { type midPoint; } 

  

 // Must be last entry 

 #includeEtc "caseDicts/postProcessing/graphs/graph.cfg" 

  

 // ************************************************************************* // 

D.3. Simulation 4 

D.3.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.2. File 0/csand – Simulation 4a 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 



135 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.3. File 0/csand – Simulation 4b and 4c 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0.12; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 
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     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.4. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     outlet 

     { 

         type            prghTotalPressure; 

         p0              uniform 0; 

     } 

     ".*" 

     { 

         type            fixedFluxPressure; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.5. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            pressureInletOutletVelocity; 

         phi             phi; 

         value           uniform (0 0 0); 

     } 

     pipeWall 
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     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.6. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            pressureInletOutletVelocity; 

         phi             phi; 

         value           uniform (0 0 0); 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }   

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.7. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 
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         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.3.8. File constant/g 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.76646 0.92320); 

  

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

  

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.3.9. File constant/transportProperties – Simulation 4a and 4b 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06;    //188 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

        Phasename csand; 

  coef [0 0 1 0 0 0 0]     50; 
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         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

  tau0 [0 2 -2 0 0 0 0]   0.0363008; //=47.3/1303 

  nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0] 1e-02; 

         rho             [1 -3 0 0 0 0 0] 1303; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.0363008; //=47.3/1303 

                 nu0 [0 2 -1 0 0 0 0]  1.64236e-05; // =0.0214/1303 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

  

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0] 1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 

D.3.10. File constant/transportProperties – Simulation 4c 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06;    //188 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

        Phasename csand; 

  coef [0 0 1 0 0 0 0]     50; 

         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

  tau0 [0 2 -2 0 0 0 0]   0.0313245; //=47.3/1510 

  nu0 [0 2 -1 0 0 0 0]  1.4172185e-05; // =0.0214/1510 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0] 1e-02; 

         rho             [1 -3 0 0 0 0 0] 1510; 

    

         TalmonCoeffs 
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         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.0313245; //=47.3/1510 

                 nu0 [0 2 -1 0 0 0 0]  1.4172185e-05; // =0.0214/1510 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         }        

 } 

  

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0] 1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 

D.3.11. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 

D.3.12. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

     (-0.0261166666666667 0.0805 0)  // 0 

     (0.0261166666666667 0.0805 0)  // 1 

     (-0.0261166666666667 0.0522333333333333 0)  // 2 

     (0.0261166666666667 0.0522333333333333 0)  // 3 

     (-0.055401816305966 0.022948183694034 0)  // 4 

     (0.055401816305966 0.022948183694034 0)  // 5 

     (0.0783204954019061 0.0805 0)  // 6 

     (-0.0783204954019061 0.0805 0)  // 7 

     (-0.0261166666666667 0.108766666666667 0)  // 8 

     (0.0261166666666667 0.108766666666667 0)  // 9 

     (0.055401816305966 0.133751816305966 0)  // 10 

     (-0.055401816305966 0.133751816305966 0)  // 11 

     (-0.0261166666666667 0.0805 15)  // 12 

     (0.0261166666666667 0.0805 15)  // 13 

     (-0.0261166666666667 0.0522333333333333 15)  // 14 

     (0.0261166666666667 0.0522333333333333 15)  // 15 

     (-0.055401816305966 0.022948183694034 15)  // 16 

     (0.055401816305966 0.022948183694034 15)  // 17 

     (0.0783204954019061 0.0805 15)  // 18 
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     (-0.0783204954019061 0.0805 15)  // 19 

     (-0.0261166666666667 0.108766666666667 15)  // 20 

     (0.0261166666666667 0.108766666666667 15)  // 21 

     (0.055401816305966 0.133751816305966 15)  // 22 

     (-0.055401816305966 0.133751816305966 15)  // 23 

     (-0.0261166666666667 0.0805 -2)  // 24 

     (0.0261166666666667 0.0805 -2)  // 25 

     (-0.0261166666666667 0.0522333333333333 -2)  // 26 

     (0.0261166666666667 0.0522333333333333 -2)  // 27 

     (-0.055401816305966 0.022948183694034 -2)  // 28 

     (0.055401816305966 0.022948183694034 -2)  // 29 

     (0.0783204954019061 0.0805 -2)  // 30 

     (-0.0783204954019061 0.0805 -2)  // 31 

     (-0.0261166666666667 0.108766666666667 -2)  // 32 

     (0.0261166666666667 0.108766666666667 -2)  // 33 

     (0.055401816305966 0.133751816305966 -2)  // 34 

     (-0.055401816305966 0.133751816305966 -2)  // 35 

 ); 

  

 edges 

 ( 

     arc 7 4 (-0.0730410843293006 0.05 0)  //  

     arc 4 5 (0 0 0)  //  

     arc 5 6 (0.0730410843293006 0.05 0)  //  

     arc 6 10 (0.0730410843293006 0.1067 0)  //  

     arc 10 11 (0 0.1567 0)  //  

     arc 11 7 (-0.0730410843293006 0.1067 0)  //  

     arc 19 16 (-0.0730410843293006 0.05 15)  //  

     arc 16 17 (0 0 15)  //  

     arc 17 18 (0.0730410843293006 0.05 15)  //  

     arc 18 22 (0.0730410843293006 0.1067 15)  //  

     arc 22 23 (0 0.1567 15)  //  

     arc 23 19 (-0.0730410843293006 0.1067 15)  //  

     arc 31 28 (-0.0730410843293006 0.05 -2)  //  

     arc 28 29 (0 0 -2)  //  

     arc 29 30 (0.0730410843293006 0.05 -2)  //  

     arc 30 34 (0.0730410843293006 0.1067 -2)  //  

     arc 34 35 (0 0.1567 -2)  //  

     arc 35 31 (-0.0730410843293006 0.1067 -2)  //  

 ); 

  

 blocks 

 ( 

     //main pipe 

     hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1) 

     hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1) 

     hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1) 

     hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1) 

     hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1) 

     hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1) 

     hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1) 

     hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1) 

     //inlet           

     

     hex (28 26 24 31 4 2 0 7) (10 5 40) simpleGrading (3 1 1) 

     hex (29 27 26 28 5 3 2 4) (10 10 40) simpleGrading (3 1 1) 

     hex (30 25 27 29 6 1 3 5) (10 5 40) simpleGrading (3 1 1) 

     hex (34 33 25 30 10 9 1 6) (10 5 40) simpleGrading (3 1 1) 

     hex (35 32 33 34 11 8 9 10) (10 10 40) simpleGrading (3 1 1) 

     hex (31 24 32 35 7 0 8 11) (10 5 40) simpleGrading (3 1 1) 

     hex (24 26 27 25 0 2 3 1) (5 10 40) simpleGrading (1 1 1) 

     hex (32 24 25 33 8 0 1 9) (5 10 40) simpleGrading (1 1 1) 
  
 ); 
  
 boundary 
 (    
     inlet 
     { 
         type patch; 
         faces 
         ( 
             (29 5 4 28) 
         ); 
     } 
     outlet 
     { 
         type patch; 
         faces 
         ( 
             (12 14 15 13) 
             (13 21 20 12) 
             (16 14 12 19) 
             (17 15 14 16) 
             (18 13 15 17) 
             (22 21 13 18) 
             (23 20 21 22) 
             (19 12 20 23) 
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         ); 
     } 
     pipeWall 
     { 
         type wall; 
         faces 
         ( 
             (11 7 19 23) 
             (7 4 16 19) 
             (4 5 17 16) 
             (5 6 18 17) 
             (6 10 22 18) 
             (35 31 7 11) 
             (31 28 4 7) 
             (29 30 6 5) 
             (30 34 10 6) 
             (34 35 11 10) 
             (10 11 23 22) 
         ); 
     } 
     leftWall 
     { 
         type wall; 
         faces 
         ( 
             (24 25 27 26) 
             (24 26 28 31) 
             (26 27 29 28) 
             (27 25 30 29) 
             (24 32 33 25) 
             (30 25 33 34) 
             (24 31 35 32) 
             (34 33 32 35) 
         ); 
     } 
 ); 
  
 mergePatchPairs(); 
  
 // ************************************************************************* // 

D.3.13. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         1000; 

  

 deltaT          0.01; 

  

 writeControl    adjustableRunTime; 

  

 writeInterval   1; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  8; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 

  

 timePrecision   8; 
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 runTimeModifiable no; 

  

 adjustTimeStep no; 

  

 maxCo           1; 

 maxAlphaCo      1; 

 maxDeltaT       1; 

  

 functions 

 { 

     writeFields 

     { 

         type writeObjects; 

         functionObjectLibs ("libutilityFunctionObjects.so"); 

         objects 

         ( 

             nu 

             nuws 

             rho 

         ); 

         writeControl outputTime; 

         writeInterval 1; 

     } 

     interfaceHeight1 

     { 

         type           interfaceHeight; 

         libs           ("libfieldFunctionObjects.so"); 

         alpha          alpha.water; 

         locations      ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15)); 

     } 

 } 

 // ************************************************************************* // 

D.3.14. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 5; 

  

 method          simple; 

  

 simpleCoeffs 

 { 

     n               (1 1 5); 

     delta           0.001; 

 } 

  

 hierarchicalCoeffs 

 { 

     n               (1 1 1); 

     delta           0.001; 

     order           xyz; 

 } 

  

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

  

 // ************************************************************************* // 

D.3.15. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 
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 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

  

 gradSchemes 

 { 

     default         Gauss linear; 

 } 

  

 divSchemes 

 { 

     default             none; 

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

  

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

  

 interpolationSchemes 

 { 

     default         linear; 

 } 

  

 snGradSchemes 

 { 

     default         corrected; 

 } 

  

 // ************************************************************************* // 

D.3.16. File system/fvSolution 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 
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     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 

         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

  

         smoother         GaussSeidel; 

  

  

  

         maxIter          50; 

     }; 

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "(U).*" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 

         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     2; 

     nNonOrthogonalCorrectors 0; 

 } 

  

 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 
     } 
 } 
  
 // ************************************************************************* // 

D.3.17. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 
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     location    "system"; 

     object      setFieldsDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.07835 0 0) (0.07835 0.07835 15); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 0 

         ); 

     } 

 ); 

  

 // ************************************************************************* // 

D.4. Simulation 5 

D.4.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.2. File 0/csand 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 
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     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0.154; 

         type            codedFixedValue; 

         value           uniform 0; 

  

         // Name of generated boundary condition 

         redirectType    rampedFixedValue; 

  

         code 

         #{ 

             const scalar t = this->db().time().value(); 

             operator==(min(0.154, 0.154/100*t)); 

         #}; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.3. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedFluxPressure; 

     } 

     outlet 

     { 

         type            prghPressure; 

         p               uniform 0; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 
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         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.4. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }             

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.5. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 
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     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }   

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.6. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.4.7. File constant/g – Simulation 5a 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 
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 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.76646 0.92320); 

  

 // 6.4 deg (0 -9.74886 1.09351) 

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.4.8. File constant/g – Simulation 5b 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.74886 1.09351); 

  

 // 6.4 deg (0 -9.74886 1.09351) 

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.4.9. File constant/g – Simulation 5c 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.72829 1.26348); 

  

 // 7.4 deg (0 -9.72829 1.26348) 

 // 6.4 deg (0 -9.74886 1.09351) 

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.4.10. File constant/transportProperties – Simulation 5a 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 
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     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06;    //188 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; // this is not getting used 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

         Phasename csand; 

  coef [0 0 1 0 0 0 0]     50; 

         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

  tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

  nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0] 1e-02; 

         rho             [1 -3 0 0 0 0 0] 1303; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

                 nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

  

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0] 1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 

D.4.11. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 

D.4.12. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 
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 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

 (-0.0261166666666667 0.0805 0)  // 0 

 (0.0261166666666667 0.0805 0)  // 1 

 (-0.0261166666666667 0.0522333333333333 0)  // 2 

 (0.0261166666666667 0.0522333333333333 0)  // 3 

 (-0.055401816305966 0.022948183694034 0)  // 4 

 (0.055401816305966 0.022948183694034 0)  // 5 

 (0.0783204954019061 0.0805 0)  // 6 

 (-0.0783204954019061 0.0805 0)  // 7 

 (-0.0261166666666667 0.108766666666667 0)  // 8 

 (0.0261166666666667 0.108766666666667 0)  // 9 

 (0.055401816305966 0.133751816305966 0)  // 10 

 (-0.055401816305966 0.133751816305966 0)  // 11 

 (-0.0261166666666667 0.0805 15)  // 12 

 (0.0261166666666667 0.0805 15)  // 13 

 (-0.0261166666666667 0.0522333333333333 15)  // 14 

 (0.0261166666666667 0.0522333333333333 15)  // 15 

 (-0.055401816305966 0.022948183694034 15)  // 16 

 (0.055401816305966 0.022948183694034 15)  // 17 

 (0.0783204954019061 0.0805 15)  // 18 

 (-0.0783204954019061 0.0805 15)  // 19 

 (-0.0261166666666667 0.108766666666667 15)  // 20 

 (0.0261166666666667 0.108766666666667 15)  // 21 

 (0.055401816305966 0.133751816305966 15)  // 22 

 (-0.055401816305966 0.133751816305966 15)  // 23 

 ); 

  

 edges 

 ( 

     arc 7 4 (-0.0730410843293006 0.05 0)  //  

     arc 4 5 (0 0 0)  //  

     arc 5 6 (0.0730410843293006 0.05 0)  //  

     arc 6 10 (0.0730410843293006 0.1067 0)  //  

     arc 10 11 (0 0.1567 0)  //  

     arc 11 7 (-0.0730410843293006 0.1067 0)  //  

     arc 19 16 (-0.0730410843293006 0.05 15)  //  

     arc 16 17 (0 0 15)  //  

     arc 17 18 (0.0730410843293006 0.05 15)  //  

     arc 18 22 (0.0730410843293006 0.1067 15)  //  

     arc 22 23 (0 0.1567 15)  //  

     arc 23 19 (-0.0730410843293006 0.1067 15)  //  

 ); 

  

 blocks 

 ( 

     hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1) 

     hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1) 

     hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1) 

     hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1) 

     hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1) 

     hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1) 

     hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1) 

     hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1) 

 ); 

  

 boundary 

 ( 

     inlet 

     { 

         type patch; 

         faces 

         ( 

             (0 1 3 2) 

             (0 2 4 7) 

             (2 3 5 4) 

             (3 1 6 5) 

         ); 

     } 

     leftWall 

     { 
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         type patch; 

         faces 

         ( 

             (0 8 9 1) 

             (6 1 9 10) 

             (0 7 11 8) 

             (10 9 8 11) 

         ); 

     } 

     outlet 

     { 
         type patch; 
         faces 
         ( 
             (12 14 15 13) 
             (13 21 20 12) 
             (16 14 12 19) 
             (17 15 14 16) 
             (18 13 15 17) 
             (22 21 13 18) 
             (23 20 21 22) 
             (19 12 20 23) 
         ); 
     } 
     pipeWall 
     { 
         type wall; 
         faces 
         ( 
             (11 7 19 23) 
             (7 4 16 19) 
             (4 5 17 16) 
             (5 6 18 17) 
             (6 10 22 18) 
             (10 11 23 22) 
         ); 
     } 
 ); 
  
 mergePatchPairs(); 
  
 // ************************************************************************* // 

D.4.13. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         600; 

  

 deltaT          0.005; 

  

 writeControl    adjustableRunTime; // adjustableRunTime  // timeStep 

  

 writeInterval   1; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  8; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 
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 timePrecision   8; 

  

 runTimeModifiable no; 

  

 adjustTimeStep no; 

  

 maxCo           0.5; 

 maxAlphaCo      0.5; 

 maxDeltaT       0.5; 

  

 functions 

 { 

     writeFields 

     { 

         type writeObjects; 

         functionObjectLibs ("libutilityFunctionObjects.so"); 

         objects 

         ( 

             nu 

             nuws 

             rho 

             rho_cf 

         ); 

         writeControl outputTime; 

         writeInterval 1; 

     } 

     interfaceHeight1 

     { 

         type           interfaceHeight; 

         libs           ("libfieldFunctionObjects.so"); 

         alpha          alpha.water; 

         locations      ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15)); 

     } 

 } 

  

 // ************************************************************************* // 

D.4.14. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 5; 

  

 method          simple; 

  

 simpleCoeffs 

 { 

     n               (1 1 5); 

     delta           0.001; 

 } 

 hierarchicalCoeffs 

 { 

     n               (1 1 1); 

     delta           0.001; 

     order           xyz; 

 } 

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

 // ************************************************************************* // 

D.4.15. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 
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 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

  

 gradSchemes 

 { 

     default         Gauss linear; 

 } 

  

 divSchemes 

 { 

     default             none; 

  

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

  

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

  

 interpolationSchemes 

 { 

     default         linear; 

 } 

  

 snGradSchemes 

 { 

     default         corrected; 

 } 

  

 // ************************************************************************* // 

D.4.16. File system/fvSolution – Simulation 5a and 5b 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 
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         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 

         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

  

         smoother         GaussSeidel; 

  

         maxIter          50; 

     }; 

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "U" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 

         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     2; 

     //nOuterCorrectors 2; 

     nNonOrthogonalCorrectors 0; 

 } 

  

 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 

     } 
 } 
  
 // ************************************************************************* // 

D.4.17. File system/fvSolution – Simulation 5c 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 
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     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 

         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

  

         smoother         GaussSeidel; 

  

         maxIter          50; 

     }; 

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "U" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 

         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     2; 

     nOuterCorrectors 2; 

     nNonOrthogonalCorrectors 0; 

 } 

  

 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 
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     } 
 } 
  
 // ************************************************************************* // 

D.4.18. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      setFieldsDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.07835 0 0) (0.07835 0.07835 15); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 0 

         ); 

     } 

 ); 

  

  

 // ************************************************************************* // 

D.5. Simulation 6 

D.5.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     leftWall 

     { 

         type            fixedValue; 

         value           uniform 0; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 
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     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.2. File 0/csand 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0; 

     } 

     leftWall 

     { 

         type            fixedValue; 

         value           uniform 0; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.3. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     leftWall 

     { 

         type            prghTotalPressure; 

         p0              uniform 0; 

     } 
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     ".*" 

     { 

         type            fixedFluxPressure; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.4. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }             

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.5. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 
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         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.6. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftWall 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.5.7. File constant/g 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 
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     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.76646 0.92320); 

  

 // 6.4 deg (0 -9.74886 1.09351) 

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.5.8. File constant/transportProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06;    //188 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; // this is not getting used 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

         Phasename csand; 

  coef [0 0 1 0 0 0 0]     50; 

         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

  tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

  nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0] 1e-02; 

         rho             [1 -3 0 0 0 0 0] 1303; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

                 nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0] 1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

 // ************************************************************************* // 
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D.5.9. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 

D.5.10. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

     (-0.0261166666666667 0.0805 0)  // 0 

     (0.0261166666666667 0.0805 0)  // 1 

     (-0.0261166666666667 0.0522333333333333 0)  // 2 

     (0.0261166666666667 0.0522333333333333 0)  // 3 

     (-0.055401816305966 0.022948183694034 0)  // 4 

     (0.055401816305966 0.022948183694034 0)  // 5 

     (0.0783204954019061 0.0805 0)  // 6 

     (-0.0783204954019061 0.0805 0)  // 7 

     (-0.0261166666666667 0.108766666666667 0)  // 8 

     (0.0261166666666667 0.108766666666667 0)  // 9 

     (0.055401816305966 0.133751816305966 0)  // 10 

     (-0.055401816305966 0.133751816305966 0)  // 11 

     (-0.0261166666666667 0.0805 15)  // 12 

     (0.0261166666666667 0.0805 15)  // 13 

     (-0.0261166666666667 0.0522333333333333 15)  // 14 

     (0.0261166666666667 0.0522333333333333 15)  // 15 

     (-0.055401816305966 0.022948183694034 15)  // 16 

     (0.055401816305966 0.022948183694034 15)  // 17 

     (0.0783204954019061 0.0805 15)  // 18 

     (-0.0783204954019061 0.0805 15)  // 19 

     (-0.0261166666666667 0.108766666666667 15)  // 20 

     (0.0261166666666667 0.108766666666667 15)  // 21 

     (0.055401816305966 0.133751816305966 15)  // 22 

     (-0.055401816305966 0.133751816305966 15)  // 23 

 ); 

  

 edges 

 ( 

     arc 7 4 (-0.0730410843293006 0.05 0)  //  

     arc 4 5 (0 0 0)  //  

     arc 5 6 (0.0730410843293006 0.05 0)  //  

     arc 6 10 (0.0730410843293006 0.1067 0)  //  

     arc 10 11 (0 0.1567 0)  //  

     arc 11 7 (-0.0730410843293006 0.1067 0)  //  

     arc 19 16 (-0.0730410843293006 0.05 15)  //  

     arc 16 17 (0 0 15)  //  

     arc 17 18 (0.0730410843293006 0.05 15)  //  

     arc 18 22 (0.0730410843293006 0.1067 15)  //  

     arc 22 23 (0 0.1567 15)  //  

     arc 23 19 (-0.0730410843293006 0.1067 15)  //  

 ); 
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 blocks 

 ( 

     hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1) 

     hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1) 

     hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1) 

     hex (10 9 1 6 22 21 13 18) (10 5 40) simpleGrading (3 1 1) 

     hex (11 8 9 10 23 20 21 22) (10 10 40) simpleGrading (3 1 1) 

     hex (7 0 8 11 19 12 20 23) (10 5 40) simpleGrading (3 1 1) 

     hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1) 

     hex (8 0 1 9 20 12 13 21) (5 10 40) simpleGrading (1 1 1) 

 ); 

  

 boundary 

 ( 

     inlet 

     { 

         type patch; 

         faces 

         ( 

             (0 1 3 2) 

             (0 2 4 7) 

             (2 3 5 4) 

             (3 1 6 5) 

         ); 

     } 

     leftWall 

     { 

         type patch; 

         faces 

         ( 

             (0 8 9 1) 

             (6 1 9 10) 

             (0 7 11 8) 

             (10 9 8 11) 

         ); 

     } 

     outlet 

     { 
         type patch; 
         faces 
         ( 
             (12 14 15 13) 
             (13 21 20 12) 
             (16 14 12 19) 
             (17 15 14 16) 
             (18 13 15 17) 
             (22 21 13 18) 
             (23 20 21 22) 
             (19 12 20 23) 
         ); 
     } 
     pipeWall 
     { 
         type wall; 
         faces 
         ( 
             (11 7 19 23) 
             (7 4 16 19) 
             (4 5 17 16) 
             (5 6 18 17) 
             (6 10 22 18) 
             (10 11 23 22) 
         ); 
     } 
 ); 
  
 mergePatchPairs(); 
  
 // ************************************************************************* // 

D.5.11. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 
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 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         300; 

  

 deltaT          0.005; 

  

 writeControl    timeStep; // adjustableRunTime  // timeStep 

  

 writeInterval   1; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  8; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 

  

 timePrecision   8; 

  

 runTimeModifiable no; 

  

 adjustTimeStep no; 

  

 maxCo           0.5; 

 maxAlphaCo      0.5; 

 maxDeltaT       0.5; 

  

 functions 

 { 

     writeFields 

     { 

         type writeObjects; 

         functionObjectLibs ("libutilityFunctionObjects.so"); 

         objects 

         ( 

             nu 

             nuws 

             rho 

             rho_cf 

         ); 

         writeControl outputTime; 

         writeInterval 1; 

     } 

     interfaceHeight1 

     { 

         type           interfaceHeight; 

         libs           ("libfieldFunctionObjects.so"); 

         alpha          alpha.water; 

         locations      ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15)); 

     } 

 } 

 // ************************************************************************* // 

D.5.12. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 5; 

  

 method          simple; 
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 simpleCoeffs 

 { 

     n               (1 1 5); 

     delta           0.001; 

 } 

 hierarchicalCoeffs 

 { 

     n               (1 1 1); 

     delta           0.001; 

     order           xyz; 

 } 

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

 // ************************************************************************* // 

D.5.13. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

  

 gradSchemes 

 { 

     default         Gauss linear; 

 } 

  

 divSchemes 

 { 

     default             none; 

  

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

 interpolationSchemes 

 { 

     default         linear; 

 } 

 snGradSchemes 

 { 

     default         corrected; 

 } 

  

 // ************************************************************************* // 

D.5.14. File system/fvSolution 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 
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 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        GaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner 

         { 

             preconditioner  GAMG; 

             tolerance       1e-5; 

             relTol          0; 

             smoother        GaussSeidel; 

         } 

         tolerance       1e-5; 

         relTol          0; 

         maxIter         50; 

     } 

     p_rgh 

     { 

         solver           GAMG; 

         tolerance        5e-9; 

         relTol           0.01; 

  

         smoother         GaussSeidel; 

         maxIter          50; 

     }; 

  

     p_rghFinal 

     { 

         $p_rgh; 

         tolerance       5e-9; 

         relTol          0; 

     } 

  

     "U" 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         nSweeps         1; 

         tolerance       1e-6; 

         relTol          0.1; 

     }; 

 } 

  

 PIMPLE 

 { 

     momentumPredictor no; 

     nCorrectors     5; 

     nNonOrthogonalCorrectors 0; 

 } 
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 relaxationFactors 

 { 

     equations 

     { 

         ".*" 1; 
     } 
 } 
  
 // ************************************************************************* // 

D.5.15. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      setFieldsDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.07835 0 0) (0.07835 0.07835 15); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 0 

         ); 

     } 

 ); 

 // ************************************************************************* // 

D.6. Simulation 7 

D.6.1. File 0/alpha.water 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      alpha.water; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 1; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

         value           uniform 0; 



169 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.2. File 0/csand 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 

     object      csand; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 0 0 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform 0.154; 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            inletOutlet; 

         inletValue      uniform 0; 

         value           uniform 0; 

     } 

     outlet 

     { 

         type            zeroGradient; 

     } 

     pipeWall 

     { 

         type            zeroGradient; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.3. File 0/p_rgh 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                     | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volScalarField; 

     location    "0"; 
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     object      p_rgh; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [1 -1 -2 0 0 0 0]; 

  

 boundaryField 

 { 

     atmosphere 

     { 

         type            prghPressure; 

         p               uniform 0; 

     } 

     ".*" 

     { 

         type            fixedFluxPressure; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.4. File 0/U 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      U; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }             

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.5. File 0/Us 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 



171 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      Us; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            flowRateInletVelocity; 

         volumetricFlowRate constant 0.005; 

     } 

     leftWall 

     { 

         type            noSlip; 

     } 

     atmosphere 

     { 

         type            pressureInletOutletVelocity; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            inletOutlet; 

         inletValue      uniform (0 0 0); 

     } 

     pipeWall 

     { 

         type            noSlip; 

     }   

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.6. File 0/wsvol 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       volVectorField; 

     location    "0"; 

     object      wsvol; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -1 0 0 0 0]; 

  

 boundaryField 

 { 

     inlet 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     leftWall 

     { 

         type            zeroGradient; 

     } 

     atmosphere 

     { 

         type            fixedValue; 

         value           uniform (0 0 0); 

     } 

     outlet 

     { 

         type            zeroGradient; 
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     } 

     pipeWall 

     { 

         type            noSlip; 

     } 

     defaultFaces 

     { 

         type            empty; 

     } 

 } 

  

 // ************************************************************************* // 

D.6.7. File constant/g 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       uniformDimensionedVectorField; 

     location    "constant"; 

     object      g; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 dimensions      [0 1 -2 0 0 0 0]; 

 value           (0 -9.76646 0.92320); 

  

 // 6.4 deg (0 -9.74886 1.09351) 

 // 5.4 deg (0 -9.76646 0.92320) 

 // 5.0 deg (0 -9.77267 0.85499) 

 // 4.5 deg (0 -9.77976 0.76968) 

 // 2.86deg (0 -9.79778 0.48948) 

  

 // ************************************************************************* // 

D.6.8. File constant/transportProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      transportProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 Diam              Diam [ 0 1 0 0 0 0 0 ] 188e-06;    //188 

  

 rhos              rhos [ 1 -3 0 0 0 0 0 ] 2650; 

  

 rhow              rhow [ 1 -3 0 0 0 0 0 ] 1000; 

  

 cfine             cfine [ 0 0 0 0 0 0 0 ] 0.151; // this is not getting used 

  

 cmax              cmax [ 0 0 0 0 0 0 0 ] 0.6; 

  

 TalmonCoeffs 

 { 

        Phasename csand; 

  coef [0 0 1 0 0 0 0]     50; 

         cmax       cmax [0 0 0 0 0 0 0]     0.6; 

         alpha0 [0 0 0 0 0 0 0]     0.27; 

  tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

  nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

         numax   [0 2 -1 0 0 0 0]  1000e-2; 

 } 

  

 phases (water air); 

  

 water 



173 

 { 

         transportModel  Talmon; 

         nu              [0 2 -1 0 0 0 0] 1e-02; 

         rho             [1 -3 0 0 0 0 0] 1303; 

    

         TalmonCoeffs 

         { 

                 Phasename csand; 

                 coef [0 0 1 0 0 0 0]     50; 

                 cmax       cmax [0 0 0 0 0 0 0]     0.6; 

                 alpha0 [0 0 0 0 0 0 0]     0.27; 

                 tau0 [0 2 -2 0 0 0 0]   0.036301; // =47.3/1303 

                 nu0 [0 2 -1 0 0 0 0]  1.64236e-5; // =0.0214/1303 

                 numax   [0 2 -1 0 0 0 0]  1000e-2; 

         } 

 } 

  

 air 

 { 

     transportModel  CVRNewtonian; 

     nu              [0 2 -1 0 0 0 0] 1.48e-05; 

     rho             [1 -3 0 0 0 0 0] 1; 

 } 

  

 sigma           [1 0 -2 0 0 0 0] 0.07; 

  

  

 // ************************************************************************* // 

D.6.9. File constant/turbulenceProperties 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "constant"; 

     object      turbulenceProperties; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 simulationType  laminar; 

  

 // ************************************************************************* // 

D.6.10. File system/blockMeshDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     object      blockMeshDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 convertToMeters 1; 

  

 vertices 

 ( 

 (-0.0261166666666667 0.07835 0)  // 0 

 (0.0261166666666667 0.07835 0)  // 1 

 (-0.0261166666666667 0.0522333333333333 0)  // 2 

 (0.0261166666666667 0.0522333333333333 0)  // 3 

 (-0.055401816305966 0.022948183694034 0)  // 4 

 (0.055401816305966 0.022948183694034 0)  // 5 

 (0.07835 0.07835 0)  // 6 

 (-0.07835 0.07835 0)  // 7 

 (-0.0261166666666667 0.1567 0)  // 8 

 (0.0261166666666667 0.1567 0)  // 9 

 (0.07835 0.1567 0)  // 10 

 (-0.07835 0.1567 0)  // 11 
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 (-0.0261166666666667 0.07835 15)  // 12 

 (0.0261166666666667 0.07835 15)  // 13 

 (-0.0261166666666667 0.0522333333333333 15)  // 14 

 (0.0261166666666667 0.0522333333333333 15)  // 15 

 (-0.055401816305966 0.022948183694034 15)  // 16 

 (0.055401816305966 0.022948183694034 15)  // 17 

 (0.07835 0.07835 15)  // 18 

 (-0.07835 0.07835 15)  // 19 

 (-0.0261166666666667 0.1567 15)  // 20 

 (0.0261166666666667 0.1567 15)  // 21 

 (0.07835 0.1567 15)  // 22 

 (-0.07835 0.1567 15)  // 23 

 ); 

  

 edges 

 ( 

     arc 7 4 (-0.0730410843293006 0.05 0)  //  

     arc 4 5 (0 0 0)  //  

     arc 5 6 (0.0730410843293006 0.05 0)  //  

     arc 19 16 (-0.0730410843293006 0.05 15)  //  

     arc 16 17 (0 0 15)  //  

     arc 17 18 (0.0730410843293006 0.05 15)  //  

  

 ); 

 blocks 

 ( 

     hex (0 2 3 1 12 14 15 13) (5 10 40) simpleGrading (1 1 1) 

     hex (4 2 0 7 16 14 12 19) (10 5 40) simpleGrading (3 1 1) 

     hex (5 3 2 4 17 15 14 16) (10 10 40) simpleGrading (3 1 1) 

     hex (6 1 3 5 18 13 15 17) (10 5 40) simpleGrading (3 1 1) 

  

     hex (10 9 1 6 22 21 13 18) (10 10 40) simpleGrading (3 1 1) 

     hex (7 0 8 11 19 12 20 23) (10 10 40) simpleGrading (3 1 1) 

     hex (8 0 1 9 20 12 13 21) (10 10 40) simpleGrading (1 1 1) 

 ); 

 boundary 

 ( 

     inlet 

     { 

         type patch; 

         faces 

         ( 

             (0 1 3 2) 

             (0 2 4 7) 

             (2 3 5 4) 

             (3 1 6 5) 

         ); 

     } 

     leftWall 

     { 

         type patch; 

         faces 

         ( 

             (0 8 9 1) 

             (6 1 9 10) 

             (0 7 11 8) 

         ); 

     } 

     outlet 

     { 

         type patch; 

         faces 

         ( 

             (12 14 15 13) 

             (12 14 16 19) 

             (14 15 17 16) 

             (15 13 18 17) 

             (12 20 21 13) 
             (18 13 21 22) 
             (12 19 23 20) 
         ); 
     } 
     pipeWall 
     { 
         type wall; 
         faces 
         ( 
             (11 7 19 23) 
             (7 4 16 19) 
             (4 5 17 16) 
             (5 6 18 17) 
             (6 10 22 18) 
         ); 
     } 
     atmosphere 
     { 
         type wall; 
         faces 
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         ( 
             (8 11 23 20) 
             (9 8 20 21) 
             (10 9 21 22) 
         ); 
     } 
 ); 
  
 mergePatchPairs(); 
  
 // ************************************************************************* // 

D.6.11. File system/controlDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      controlDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 application     interFoamPeter; 

  

 startFrom       startTime; 

  

 startTime       0; 

  

 stopAt          endTime; 

  

 endTime         600; 

  

 deltaT          0.01; 

  

 writeControl    timeStep; // adjustableRunTime  // timeStep 

  

 writeInterval   1; 

  

 purgeWrite      0; 

  

 writeFormat     ascii; 

  

 writePrecision  8; 

  

 writeCompression uncompressed; 

  

 timeFormat      general; 

  

 timePrecision   8; 

  

 runTimeModifiable yes; 

  

 adjustTimeStep yes; 

  

 maxCo           1; 

 maxAlphaCo      1; 

 maxDeltaT       1; 

  

 functions 

 { 

     writeFields 

     { 

         type writeObjects; 

         functionObjectLibs ("libutilityFunctionObjects.so"); 

         objects 

         ( 

             nu 

             nuws 

             rho 

             rho_cf 

         ); 

         writeControl outputTime; 

         writeInterval 1; 

     } 

     interfaceHeight1 

     { 

         type           interfaceHeight; 

         libs           ("libfieldFunctionObjects.so"); 
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         alpha          alpha.water; 

         locations      ((0 0 0) (0 0 10) (0 0 12.5) (0 0 15)); 

     } 

 } 

 // ************************************************************************* // 

D.6.12. File system/decomposeparDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      decomposeParDict; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 numberOfSubdomains 5; 

  

 method          simple; 

  

 simpleCoeffs 

 { 

     n               (1 1 5); 

     delta           0.001; 

 } 

 hierarchicalCoeffs 

 { 

     n               (1 1 1); 

     delta           0.001; 

     order           xyz; 

 } 

 manualCoeffs 

 { 

     dataFile        ""; 

 } 

  

 distributed     no; 

  

 roots           ( ); 

  

 // ************************************************************************* // 

D.6.13. File system/fvSchemes 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSchemes; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 ddtSchemes 

 { 

     default         Euler; 

 } 

  

 gradSchemes 

 { 

     default         Gauss linear; 

 } 

  

 divSchemes 

 { 

     default             none; 

  

     div(rhoPhi,U)       Gauss linearUpwind grad(U); 

     div(phi,alpha)      Gauss vanLeer; 



177 

     div(phirb,alpha)    Gauss linear; 

     div((interpolate(Us)&S),csand) Gauss upwind; 

     "div\(phi,(k|omega)\)"      Gauss upwind; 

     div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

 } 

  

 laplacianSchemes 

 { 

     default         Gauss linear corrected; 

 } 

  

 interpolationSchemes 

 { 

     default         linear; 

 } 

  

 snGradSchemes 

 { 

     default         corrected; 

 } 

  

 // ************************************************************************* // 

D.6.14. File system/fvSolution 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  4.1                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      fvSolution; 

 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 solvers 

 { 

     "alpha.water.*" 

     { 

         nAlphaCorr      1; 

         nAlphaSubCycles 5; 

         cAlpha          1.2; 

  

         MULESCorr       yes; 

         nLimiterIter    3; 

  

         solver          smoothSolver; 

         smoother        GaussSeidel; 

         tolerance       1e-8; 

         relTol          0; 

     } 

     csand 

     { 

         solver          GAMG; 

         tolerance       1e-6; 

         relTol          0.1; 

         smoother        symGaussSeidel; 

     } 

     csandFinal 

     { 

         $csand; 

         tolerance       5e-9; 

         relTol          0; 

     } 

     "pcorr.*" 

     { 

         solver          PCG; 

         preconditioner  DIC; 

         tolerance       1e-5; 

         relTol          0; 

  

         //preconditioner  

         //{ 

         //    preconditioner  GAMG; 

         //    tolerance       1e-5; 

         //    relTol          0; 

         //    smoother        GaussSeidel; 

         //} 

         //tolerance       1e-5; 

         //relTol          0; 
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         //maxIter         50; 

     } 

     p_rgh 

     { 

         //solver           GAMG; 

         //tolerance        5e-9; 

         //relTol           0.01; 

         //smoother         GaussSeidel; 

         //maxIter          50; 

          

         solver          PCG; 

         preconditioner  DIC; 

         tolerance       1e-07; 

         relTol          0.05; 

     } 

     p_rghFinal 

     { 

         $p_rgh; 

         relTol          0; 

     } 

     U 

     { 

         solver          smoothSolver; 

         smoother        symGaussSeidel; 

         tolerance       1e-6; 

         relTol          0; 

     } 

     UFinal 

     { 

         $U; 

         tolerance       5e-7; 

         relTol          0; 

     } 

 } 

  

 PIMPLE 

 {     

     momentumPredictor           yes; 
     nCorrectors                 3; 
     nNonOrthogonalCorrectors    0; 
     nOuterCorrectors            50; 
  
     residualControl 
     { 
         p_rgh 
         { 
             relTol 0; 
             tolerance 1e-7; 
         } 
         U 
         { 
             relTol 0; 
             tolerance 1e-6; 
         } 
     } 
 } 
  
 relaxationFactors 
 { 
     equations 
     { 
         ".*" 1; 
     } 
     fields 
     { 
         ".*"  1; 
     } 
 } 
  
 // ************************************************************************* // 

D.6.15. File system/setFieldsDict 
 /*--------------------------------*- C++ -*----------------------------------*\ 

 | =========                 |                                                 | 

 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

 |  \\    /   O peration     | Version:  5                                   | 

 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

 |    \\/     M anipulation  |                                                 | 

 \*---------------------------------------------------------------------------*/ 

 FoamFile 

 { 

     version     2.0; 

     format      ascii; 

     class       dictionary; 

     location    "system"; 

     object      setFieldsDict; 
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 } 

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

 defaultFieldValues 

 ( 

     volScalarFieldValue alpha.water 0 

 ); 

  

 regions 

 ( 

     boxToCell 

     { 

         box (-0.07835 0 0) (0.07835 0.07835 15); 

         fieldValues 

         ( 

             volScalarFieldValue alpha.water 0 

         ); 

     } 

 ); 

  

 // ************************************************************************* // 
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Appendix E. Tips 
E.1.1. parallelReconstructPar 

Through bash scripting, it’s actually possible to run a reconstructPar command in parallel. This 

particular script was found online and has been written by K. Wardle and later improved by H. 

Stadler, W. Bateman and A. Shafiee. 

From a command line or bash script, it can be called as follows. Note that logging the result to a 

separate file (> logParallelReconstructPar) is optional.  

 bash parallelReconstructPar.sh -n 5 > logParallelReconstructPar; 

And this is the parallelReconstructPar.sh bash script: 

 #!/bin/bash 

 echo " 

       K. Wardle 6/22/09, modified by H. Stadler Dec. 2013, minor fix Will Bateman Sep 2014, minor fix 

A. Shafiee Jul. 2017. 

       bash script to run reconstructPar in pseudo-parallel mode 

       by breaking time directories into multiple ranges 

      " 

       

 USAGE=" 

       USAGE: $0 -n <NP> -f fields -o <OUTPUTFILE> 

         -f (fields) is optional, fields given in the form T,U,p; option is passed on to reconstructPar 

      -t (times) is optional, times given in the form tstart,tstop 

         -o (output) is optional  

 " 

  

 #TODO: add flag to trigger deletion of original processorX directories after successful reconstruction 

 # At first check whether any flag is set at all, if not exit with error message 

 if [ $# == 0 ]; then 

     echo "$USAGE" 

     exit 1 

 fi 

  

 #Use getopts to pass the flags to variables 

 while getopts "f:n:o:t:" opt; do 

   case $opt in 

     f) if [ -n $OPTARG ]; then 

   FIELDS=$(echo $OPTARG | sed 's/,/ /g') 

   fi 

       ;; 

     n) if [ -n $OPTARG ]; then 

   NJOBS=$OPTARG 

   fi 

       ;; 

     o) if [ -n $OPTARG ]; then 

   OUTPUTFILE=$OPTARG 

        fi 

       ;; 

     t) if [ -n $OPTARG ]; then 

   TLOW=$(echo $OPTARG | cut -d ',' -f1) 

   THIGH=$(echo $OPTARG | cut -d ',' -f2) 

   fi 

       ;; 

     \?) 

       echo "$USAGE" >&2 

       exit 1 

       ;; 

     :) 

       echo "Option -$OPTARG requires an argument." >&2 

       exit 1 

       ;; 

   esac 

 done 

  

 # check whether the number of jobs has been passed over, if not exit with error message 

 if [[ -z $NJOBS ]] 

 then 

     echo " 

       the flag -n <NP> is required! 

        " 

     echo "$USAGE" 

     exit 1 

 fi 

  

 APPNAME="reconstructPar" 
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 echo "running $APPNAME in pseudo-parallel mode on $NJOBS processors" 

  

 #count the number of time directories 

 NSTEPS=$(($(ls -d processor0/[0-9]*/ | wc -l)-1)) 

 NINITAL=$(ls -d [0-9]*/ | wc -l) ##count time directories in case root dir, this will include 0 

  

 P=p 

 #find min and max time 

 TMIN=$(ls processor0 -1v | sed '/constant/d' | sort -g | sed -n 2$P) # modified to omit constant and 

first time directory 

 #TMIN=`ls processor0 | sort -nr | tail -1` 

 TMAX=$(ls processor0 -1v | sed '/constant/d' | sort -gr | head -1) # modified to omit constant 

directory 

 #TMAX=`ls processor0 | sort -nr | head -1` 

  

 #Adjust min and max time according to the parameters passed over 

 if [ -n "$TLOW" ] 

   then 

     TMIN=$(ls processor0 -1v | sed '/constant/d' | sort -g | sed -n 1$P) # now allow the first 

directory 

     NLOW=2 

     NHIGH=$NSTEPS 

     # At first check whether the times are given are within the times in the directory 

     if [ $(echo "$TLOW > $TMAX" | bc) == 1 ]; then 

         echo " 

       TSTART ($TLOW) > TMAX ($TMAX) 

       Adjust times to be reconstructed! 

       " 

         echo "$USAGE" 

         exit 1 

     fi 

     if [ $(echo "$THIGH < $TMIN" | bc) == 1 ]; then 

         echo " 

       TSTOP ($THIGH) < TMIN ($TMIN) 

       Adjust times to be reconstructed! 

       " 

         echo "$USAGE" 

         exit 1 

     fi 
    
     # Then set Min-Time 
     until [ $(echo "$TMIN >= $TLOW" | bc) == 1 ]; do 
       TMIN=$(ls processor0 -1v | sort -g | sed -n $NLOW$P) 
       NSTART=$(($NLOW)) 
       let NLOW=NLOW+1 
     done 
  
     # And then set Max-Time 
     until [ $(echo "$TMAX <= $THIGH" | bc) == 1 ]; do 
       TMAX=$(ls processor0 -1v | sort -g | sed -n $NHIGH$P) 
       let NHIGH=NHIGH-1 
     done 
  
     # Finally adjust the number of directories to be reconstructed 
     NSTEPS=$(($NHIGH-$NLOW+3)) 
  
   else 
     NSTART=2 
 fi 
  
 echo "reconstructing $NSTEPS time directories" 
  
 NCHUNK=$(($NSTEPS/$NJOBS)) 
 NREST=$(($NSTEPS%$NJOBS)) 
 TSTART=$TMIN 
  
 echo "making temp dir" 
 TEMPDIR="temp.parReconstructPar" 
 mkdir $TEMPDIR 
  
 PIDS="" 
 for i in $(seq $NJOBS) 
 do 
   if [ $NREST -ge 1 ] 
     then 
       NSTOP=$(($NSTART+$NCHUNK)) 
       let NREST=$NREST-1 
     else 
       NSTOP=$(($NSTART+$NCHUNK-1)) 
   fi 
   TSTOP=$(ls processor0 -1v | sort -g | sed -n $NSTOP$P) 
  
   if [ $i == $NJOBS ]  
   then 
   TSTOP=$TMAX 
   fi 
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   if [ $NSTOP -ge $NSTART ] 
     then   
     echo "Starting Job $i - reconstructing time = $TSTART through $TSTOP" 
     if [ -n "$FIELDS" ] 
       then 
         $($APPNAME -fields "($FIELDS)" -newTimes -time $TSTART:$TSTOP > $TEMPDIR/output-$TSTOP &) 
   echo "Job started with PID $(pgrep -n -x $APPNAME)" 
   PIDS="$PIDS $(pgrep -n -x $APPNAME)" # get the PID of the latest (-n) job exactly matching (-x) 
$APPNAME 

       else 
         $($APPNAME -newTimes -time $TSTART:$TSTOP > $TEMPDIR/output-$TSTOP &) 
   echo "Job started with PID $(pgrep -n -x $APPNAME)" 
   PIDS="$PIDS $(pgrep -n -x $APPNAME)" 
     fi 
    fi 
   let NSTART=$NSTOP+1 
   TSTART=$(ls processor0 -1v | sort -g | sed -n $NSTART$P) 
 done 
  
 #sleep until jobs finish 
 #if number of jobs > NJOBS, hold loop until job finishes 
 NMORE_OLD=$(echo 0) 
 until [ $(ps -p $PIDS | wc -l) -eq 1 ]; # check for PIDS instead of $APPNAME because other instances 
might also be running  

   do  
     sleep 10 
     NNOW=$(ls -d [0-9]*/ | wc -l) ##count time directories in case root dir, this will include 0 
     NMORE=$(echo $NSTEPS-$NNOW+$NINITAL | bc) ##calculate number left to reconstruct and subtract 0 dir 
     if [ $NMORE != $NMORE_OLD ] 
       then 
       echo "$NMORE directories remaining..." 
     fi 
     NMORE_OLD=$NMORE 
   done 
  
 #combine and cleanup 
 if [ -n "$OUTPUTFILE" ]  
   then 
 #check if output file already exists 
   if [ -e "$OUTPUTFILE" ]  
   then 
     echo "output file $OUTPUTFILE exists, moving to $OUTPUTFILE.bak" 
     mv $OUTPUTFILE $OUTPUTFILE.bak 
   fi 
  
   echo "cleaning up temp files" 
   for i in $(ls $TEMPDIR) 
   do 
     cat $TEMPDIR/$i >> $OUTPUTFILE 
   done 
 fi 
  
 rm -rf $TEMPDIR 
  
 echo "finished" 


