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Abstract—The challenge of reconstructing the Doppler spec-
trum of a precipitation-like event observed by a fast-scanning
weather radar is addressed. A novel method is proposed where
the echo sequence in time is assumed to be a complex Gaussian
process with a known covariance structure. It is a two-step
approach where the first step is the estimation of the hyper-
parameters of the covariance function with a maximum likeli-
hood approach, and the second step is the reconstruction of the
spectrum directly in the time or spectral domain. The proposed
approach is applied to simulated data for hyper-parameter
estimation performance analysis and real radar data for the
complete Doppler spectrum reconstruction.

Index Terms—Bayesian Inference, Weather Doppler Radar

I. INTRODUCTION

Modern airports deploy fast-scanning phased array radars
to detect and track point-like targets such as drones and
birds. These radars have phased array architecture in elevation
(which allows them to scan the elevation instantaneously
electronically) and mechanical scan in azimuth. For point-
like targets, a faster update of the complete field of view is
necessary, and hence, the radars scan very fast in azimuth. As
there is a growing interest in updating these radars for severe
weather detection, some new features, such as estimating
the intensity of precipitation and retrieving the 3D wind
field, need to be added. The abovementioned applications
require Doppler processing of the echo samples received
from meteorological targets. As the Doppler spectra for
such meteorological objects are continuous and extended,
the required time on target is usually larger than what is
required for point-like targets. Therefore, the fast scanning
nature of such radars limits the capability to detect weather
targets accurately. The usage of typical weather radars and
the traditional techniques to retrieve information from the
Doppler spectrum are discussed further.

Doppler weather radars are used primarily to estimate
the motion parameters of precipitation-like events with the
help of the Doppler spectrum. The motion parameters (also

This work was supported by the ‘European Regional Development Fund
(ERDF) via the Kansen voor West II program’ under the project ‘Airport
Technology Lab’.

known as the Doppler moments) that are retrieved from
the weather radar observations are the total power (zeroth
moment), the mean Doppler velocity (first moment), and the
Doppler spectrum width (square root of the second central
moment). The total power indicates the intensity of the targets
in space, the mean Doppler velocity indicates the mean radial
velocities of the hydrometeors, and the Doppler spectrum
width indicates the velocity dispersion caused by turbulence
and other statistical effects (these effects cause broadening of
the Doppler spectrum).

Traditional moment estimators require long records of the
echo samples to accurately estimate the Doppler moments
[1], [2]. However, the moment estimation is often biased due
to many factors, such as non-stationarity conditions of the
atmosphere and fast radar scans. Furthermore, the traditional
non-parametric moment estimators cannot process the echo
samples incoherently from multiple radar scans.

Given the short records of the echo samples in time and
retrieved moments, the traditional approaches do not attempt
to reconstruct the full stochastic Doppler spectrum with local
variations across the Doppler frequencies, which could help
study the microphysics of such events. The inability of ex-
isting weather radar Doppler processing chains to reconstruct
the local Doppler spectrum comes from the fact that only
the Doppler moments are usually stored for further use rather
than the echo samples due to memory limitations.

Due to the abovementioned limitations, a desired signal
processing chain should have the following features for fast
scanning radars:

1) Accurate estimation of Doppler moments with a short
observation period, randomly stored echo samples, and
samples collected over multiple scans of a fast scanning
radar.

2) Reconstruct the Doppler spectrum local variations with
the help of a few echo samples.

In this paper, we propose a novel signal processing pipeline
that has several features such as accurate moment estimation
with a few echo samples in time, the ability to process
the echo samples that are not necessarily coherent (usually

979-8-3503-2304-7/23/$31.00 ©2023 IEEE 909

20
23

 IE
EE

 C
on

fe
re

nc
e 

on
 A

nt
en

na
 M

ea
su

re
m

en
ts

 a
nd

 A
pp

lic
at

io
ns

 (C
A

M
A

) |
 9

79
-8

-3
50

3-
23

04
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
A

M
A

57
52

2.
20

23
.1

03
52

68
3

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2024 at 10:01:07 UTC from IEEE Xplore.  Restrictions apply. 



realized in a very fast scanning radar with the stationarity
assumption of the atmosphere assumed for a short period)
and reconstruct the high-resolution local stochastic signal and
its spectrum directly using a few echo samples. Therefore,
by introducing the proposed processing chain, a few echo
samples can be stored from regions of interest in space for
later investigations.

II. TRADITIONAL MOMENT ESTIMATORS

The traditional Doppler moment estimators for weather
radars are categorized into non-parametric and parametric
approaches.

A. Non-parametric Moment Estimators

The non-parametric approaches are categorized into Dis-
crete Fourier Transform (DFT) and Auto-Covariance (ACV)
based techniques. The performance analysis of the non-
parametric methods can be found in [1], [3]–[5]. The DFT-
based technique uses the power spectrum of the echo samples
to obtain the moments. The ACV-based technique (also called
the Pulse Pair estimators or PP) uses ACV with the desired
number of sample lags. The different versions of the PP
estimator have been studied in [6], [7], [2, Ch. 6, p. 136-138].
The advantage of such non-parametric methods is that they do
not consider any specific shape of the Doppler spectrum and
are computationally very efficient. The disadvantage of the
DFT-based method is that it is usually biased because of the
limited observation period. The PP methods are usually less
biased for the first moment of Doppler but are biased for the
second moment. The different versions of the PP perform bet-
ter in different intervals of the spectrum widths. To adequately
use a suitable PP version, some prior information regarding
the range of the spectrum width needs to be known. This
paper focuses on fast-scanning radar observations without
prior information, so we do not consider the non-parametric
approaches.

B. Parametric Moment Estimators

The parametric moment estimators assume a specific struc-
ture of the power spectral density (PSD) or the ACV matrix.
The PSD-based techniques [8], [9] are usually more accurate
than the non-parametric approaches. However, they require
a long observation time to estimate the Doppler spectrum
width accurately. The ACV-based parametric approaches are
the most accurate because they consider all sample lags for
the signal and are unaffected by the spectral leakage typically
observed in PSD-based techniques. In the signal processing
chain proposed in this paper, a parametric moment estimator
uses a parametric structure of the ACV matrix.

III. RATIONALE BEHIND THE APPROACH, A BAYESIAN
PERSPECTIVE

As this paper proposes an estimation of the Doppler mo-
ments and the reconstruction of the Doppler spectrum with
a few echo samples stored in time, a new perspective is
put forward. A Bayesian approach has been followed. The

complex weather radar echoes are received from an ensemble
of many raindrops in a certain volume in space [1], [2,
Ch. 4, eq.(4.1), p. 67], the sequence of echo samples can
be considered a complex Gaussian process (CGP) with zero
mean, covariance function C and pseudo-covariance P . The
PSD of the same process can be determined by taking the
Fourier transform (FT) of the covariance. We consider the
stationarity condition of the rainy events for a short period;
therefore, we can assume that the covariance is a function
of only the time difference between the echo samples and
not the absolute time instances C(tp, tq) = C(tp − tq). We
consider a parametric form of the covariance function with
parameters denoted as Θ. From a Bayesian perspective, the
model is assumed for the time domain sequence itself (as a
CGP); the parameters of its covariance are usually referred to
as hyper-parameters. The CGP of the echo samples in time
can be expressed as the following [10].

z(t) ∼ CGP(0, C (Θ) , P (Θ)) (1)

The covariance and pseudo-covariance are given as:

C(tp, tq) = E[z(tp)z∗(tq)] (2)

P (tp, tq) = E[z(tp)z(tq)] (3)

In some special cases, such as typical weather radar echoes,
the Gaussian process is circularly symmetric, meaning that the
pseudo-covariance is 0. The complex covariance function can
be written as:

C =Crr+Cii+j(Cir−Cri), (4)

where Crr, and Cii are the covariances of the real and
imaginary parts only. The covariances Cri, and Cir are
the cross-covariances of the real and imaginary parts, and
j =

√
−1. For a proper complex Gaussian process, the

following identities hold:

Crr=Cii (5)

Cir=CT
ri=−Cri (6)

The complex covariance function can be expressed in a
matrix form with only real entries as follows:

C
R
=

[
Crr Cri

−Cri Cii

]
(7)

This real valued covariance matrix formulation of (7) is ad-
vantageous when dealing with complex valued observations.
The complex valued observations can be stacked-up as one
column vector with real and imaginary parts.

zr,i=
[
ℜ(zT), ℑ(zT)

]T
(8)

Gaussian process regression has two steps. Firstly, the
hyper-parameters are estimated by maximizing the marginal
log-likelihood. The second step is sampling from a posterior
distribution. These steps are explained in detail in the follow-
ing sub-sections.
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A. Hyper-parameter Estimation (Training the CGP)

Modeling the signal sequence as a circular CGP gives us the
advantage of using the well-defined marginal log-likelihood to
estimate the hyper-parameters Θ. The log-likelihood is given
by (derived from the probability density function of [10, eq.
(13)]:

log (p(z|Θ)) = −zH(C+ σ2
nIN)−1z (9)

− log |C+ σ2
nIN| −N log (π) ,

(10)

where H is the Hermitian operator, || is the determinant
operator, and σ2

nIN is the covariance matrix of a zero mean
white Gaussian noise (N is the number of data points). The
hyper-parameters can be estimated by maximum likelihood
estimation. It is worth noting that in (9) the covariance matrix
used is the complex one (4) and the observations are also
directly the complex observations z.

Θ̂ = max
Θ

log(p(z|Θ)). (11)

B. Posterior in Time Domain

After obtaining the estimates of the Doppler moments, the
posterior can be obtained both in time and frequency domains
directly using the time domain observations. The posterior
outputs are jointly proper with the training data (observed
data). The mean and covariance of the posterior outputs are
given below.

m̂r,i (t
∗)=CT(t,t∗)CCN

−1(t, t)zr,i, (12)

Ĉ(t∗,t∗) = C(t∗,t∗)−C(t,t∗)
T
CCN

−1 (t, t)C(t,t∗),
(13)

where t are the time instances of the observations and t∗

are the desired time instances for the posterior. The observa-
tions z have the same dimension as t. The lower case letters
in bold represent vectors, whereas the bold upper case letters
represent matrices. The ˆ superscript refers to an estimated/
posterior quantity. The covariance with the subscript CN refers
to the covariance of the data with added covariance of a white
Gaussian noise sequence.

CCN= CR+σ2
nI2N (14)

C. Posterior in Frequency Domain

The frequency domain posterior can be sampled directly
from a Gaussian process having the following mean and
covariance [11] (because the time domain signal and the
spectrum functions are jointly proper):

m̂∗
F(r,i)=CtF(t, f)

T
CCN

−1(t, t)zr,i (15)

Ĉ(f , f)=CFF(f , f)−CtF(t, f)
T
CCN

−1 (t, t)CtF(t, f),
(16)

where f are the desired frequency points where the posterior
needs to be sampled. In (15) and (16), there are two extra
covariance matrices used along with CCN. The covariance

matrix CFF is nothing but the covariance of the local spec-
trum CF (f) [11] and is the FT of the covariance matrix in
the time domain C.

CFF=

(
CFrr 0
0 CFrr

)
(17)

The entries of the CFrr are given by:

CFrr(fp, fq) =
1

2
FT (C(τ))(ρ)|

ρ=
fp+fq

2

(18)

The cross-dagonal terms are 0 because the Fourier transform
of the time covariance is a real-valued function. The formu-
lation of this covariance matrix is the same as given in [11]
but without consideration of the window function. The cross-
covariance between the local spectrum and the time series can
be expressed as:

CtF=

(
CtFrr CtFri

−CtFri CtFrr

)
(19)

The entries of CtFrr , and CtFri are:

CtFrr(t, f) = FT (C(τ))(f) cos (2πft) (20)

CtFri(t, f) = −FT (C(τ))(f) sin(2πft) (21)

The covariance functions of typical weather like Doppler time
sequences are explained in the following section.

IV. COVARIANCE MODELS FOR WEATHER ECHOES

The signal model with the Doppler moments as parameters
are referred from [1]. Using the same signal model, and by
using (2), it can be shown that the covariance function has
the following expression:

CCN (tp, tq) =R exp
(
−8π2T 2σ2

v(tp − tq)
2
/λ
)

(22)

× exp

(
j
4πT

λ
µv (tp − tq)

)
+σ2

nδ(tp − tq),

where v is the radial velocity, R is the total power of the
signal PSD, µv and σv are the mean Doppler velocity and
the Doppler spectrum width, λ is the central wavelength,
T is the pulse repetition time of the radar. For simplicity,
we use normalized frequency quantities (normalized with
the maximum unambiguous frequency) instead of velocities
for the parameters and denote the normalized parameters
with a subscript n. Therefore, using µfn = 2µvT/λ, and
σfn = 2σvT/λ , the covariance can be rewritten as:

CCN (tp, tq) = R exp
(
−2π2σ2

fn(tp − tq)
2
)

(23)

× exp (j2πµfn (tp − tq))

+ σ2
nδ(tp − tq).
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The model of the CFrr therefore can be given by the FT of
the covariance function.

CFrr(f) =
R

2
√

2πσ2
fn

exp

(
− (µfn − f)

2

2σ2
fn

)
(24)

The covariance CtF can therefore be expressed in closed
forms based on 20, and 21. In practice, for radar applications,
obtaining an estimate of noise variance is possible experimen-
tally. Moreover, in estimation problems, the power/ amplitude
is often considered a nuisance parameter. An estimate of R
can be obtained by taking the average power of the signal
in time domain. Therefore, in this paper, we assume that the
power R and the noise variance σ2

n are known quantities.

V. PERFORMANCE OF HYPER-PARAMETER ESTIMATION

The signal model of [1] is used to simulate the weather
echoes in time with various normalized spectrum widths and
a fixed normalized mean Doppler µfn = 0 (the number of
echo samples N = 32). The samples in time are coherent to
make a fair comparison with the non-parametric techniques.
A Monte-Carlo simulation is performed for each spectral
width at a fixed noise level with 12 dB input SNR [12].
The hyper-parameters (Doppler moments) are computed by
maximizing the log-likelihood (9). The optimization is per-
formed using the active-set and the Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithms [13].
This method is preferred for its shorter computation time.
The bias and standard deviation of both moment estimates
with 1024 Monte-Carlo runs are shown in Fig. 1 with two
other non-parametric techniques (DFT and PP). It can be
observed that the bias and standard deviations obtained by
the proposed approach (GP) are better than DFT and PP for
(σfn < 0.2 ). However, especially for very high spectrum
widths (σfn > 0.2 ), PP has a lower bias. The DFT approach
has lower standard deviation for (σfn > 0.2 ) than other
approaches due to its considerable bias.

VI. APPLICATION TO REAL RADAR DATA

The Doppler spectrum reconstruction is performed with
data collected from a rain event on May 9, 2023 from the
X-band FMCW MESEWI radar (from the horizontal polar-
ization “HH” channel) at the Delft University of Technology,
Netherlands. The radar parameters are shown in Table I. The
sampled intermediate frequency data is processed as follows.
After DC compensation, range processing is carried out by
a FFT in fast time domain. The mean is subtracted from
each slow time sequence to remove the effect of the clutter.
The Doppler processing is carried out in each range-azimuth
cell. However, in this paper, we show the reconstruction
of the Doppler spectrum at one resolution cell that had a
range of 1.27 km from the radar and at an azimuth of 277◦

in a clockwise direction from the geographical north. The
elevation at which this data was acquired was 30◦.

The radar scan speed was one rotation per minute 1 rpm.
We have 512 echo samples from each resolution cell for
Doppler processing. To simulate a condition where only a few

TABLE I
MESEWI RADAR PARAMETERS

Parameter Value
Center Frequency (fc) (Hz) 9.4× 109

Bandwidth (BW ) (Hz) 50× 106

PRI (T ) 813.2µs
Beamwidth in Azimuth (dϕ) 2.5◦

Elevation Angle (ψ) 30◦

ADC Sampling fs (Hz) 4.92× 106

samples are available, we randomly choose samples from this
sequence as measurements to be used for the reconstruction.
However, the proposed approach can also be used when only a
few samples from a very fast scanning radar (from a single or
several scans) are used (considering the stationarity condition
of the atmosphere for a short period). We choose a few
random samples for this research to show that the proposed
approach can reconstruct the Doppler spectrum of extended
weather targets with only a few incoherent measurements.

The posterior mean, several realizations of the posterior
with two standard deviation bounds for the time domain
signal, is shown in Fig. 2. In the figures, “GT” stands for
the ground truth, which incorporates all the 512 samples in
the sequence. Of these measurements, only a few (less than
7%) are used for the reconstruction.

The mean posterior of the power spectrum is shown along
with the ground truth power spectrum and the DFT power
spectrum of only the available samples in Fig. 3.

In the time domain reconstruction, it can be observed that
the mean posterior converges to the available observations.
The mean posterior has a similar trend to the ground truth
sequence. Similarly, In the frequency domain reconstructions,
including the power spectrum, the mean posterior has a
similar trend as the ground truth spectrum. The posterior two
standard deviation bounds adequately capture the signal in
both the time and frequency domain. A performance metric
for the quality of the posterior reconstruction with SNR, the
spectral width, and the number of available measurements
should be developed further(which is not considered in this
paper).

VII. CONCLUSIONS

A novel two-step approach has been proposed in this
paper for Doppler spectrum reconstruction for precipitation-
like extended targets. The proposed approach is based on the
principles of complex Gaussian processes. The first step in
the two-step approach is to estimate the hyper-parameters
of the covariance function of the complex Gaussian process.
The analogy of the hyper-parameter estimation of a Gaus-
sian process with traditional Doppler moments estimation is
justified. The performance analysis of the hyper-parameter
estimation is presented, and it is shown that the bias and
variance of the proposed approach are lower than the existing
non-parametric Doppler moment estimators (DFT and PP) for
a broad range of Doppler spectrum widths. The second step
is reconstructing the signal and the signal spectrum with the
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(a) (b)

(c) (d)
Fig. 1. Performance of the hyper-parameter estimation for with respect to σfn at µfn = 0. (a) Biases in the estimates of the Mean Doppler Frequency
normalized µ̂fn, (b) Doppler frequency width normalized σ̂fn. (c) Standard deviation of the estimates of the Mean Doppler Frequency normalized µ̂fn, (d)
the Doppler Spectrum Width normalized σ̂fn.

help of only a few observations in time. A typical application
of such a scenario is realized in the case of fast scanning
weather radars where the the total observation time is very
low. As Gaussian process regression is a Bayesian approach,
it accounts for its uncertainty. Therefore, instead of only a
unique reconstruction, it provides several different realizations
of the reconstruction. The Doppler spectrum reconstruction
is applied to the real radar data obtained from the MESEWI
radar at Delft University. A large record of echo samples was
stored, and a few of those (less than 7%) were used for the
reconstruction, and the reconstruction was compared with the
original signal. It is shown that the reconstruction of the signal
and the spectrum have the same trends as the original one.

Although a circularly symmetric covariance function as-
sumption for the weather echoes is appropriate, more inves-
tigation is needed for different types of weather conditions.
Furthermore, more studies should be performed to develop
appropriate metrics to assess the performance of the posterior
estimates of the signal and the spectrum for both stationary
and non-stationary weather echoes.
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