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Assessment of soil spatial variability for linear infrastructure using
cone penetration tests

TOM DE GAST�, PHILIP J. VARDON† and MICHAEL A. HICKS�

Soil spatial variability has a significant impact on the reliability of geotechnical structures. In particular,
the horizontal variability is important for linear infrastructure, which has only limited vertical height
and width, but extensive length. Due to depositional and geological processes, the variability is often
substantially different in the vertical and lateral directions. This variability can be characterised by a
spatial correlation length, or scale of fluctuation, which is a measure of how significantly soil properties
are correlated in space. An analysis of the reliability of such a measure has been undertaken using
synthetic data, leading to a design chart which quantifies the statistical uncertainty in the scale of
fluctuation for specific site investigation designs, which can be an important input for probabilistic
analyses of the structure response. Moreover, practical guidance for site investigation design is proposed
which can reduce the statistical uncertainty. The method has been applied to a real site investigation
comprising a row of 29 closely spaced cone penetration tests (CPTs), within a larger site investigation of
100 CPTs, and applied to a simple design calculation for a long embankment to illustrate the impact
on slope stability assessment. The site investigation data are made available to add to the limited
amount of detailed data in this field.

KEYWORDS: embankments; site investigation; statistical analysis

INTRODUCTION
Soil variability is a major issue in geotechnical engineering
(Honjo, 2011); it typically causes uncertainty in the
interpretation of site investigations and has important, but
different, implications for different geotechnical structures.
The influence of spatial variability has been studied, by way
of the use of theoretical and numerical models, in relation to
shallow, strip and pile foundations (Jaksa et al., 2005;
Suchomel & Masín, 2010; Naghibi et al., 2016), retaining
walls (Sert et al., 2016), liquefaction of hydraulic sand fills
(Wong, 2004; Hicks & Onisiphorou, 2005; Popescu et al.,
2005) and slope stability (Griffiths & Fenton, 1997; Hicks &
Samy, 2002; Hicks & Spencer, 2010; Li et al., 2016). It has
been shown, especially for embankments (Spencer & Hicks,
2007; Hicks & Spencer, 2010; Hicks et al., 2014; Hicks & Li,
2018), that the spatial variability of material properties, the
problem geometry and the combination of the two are
significant factors influencing the stability of slopes and the
failure mode. The impact of the spatial variability in the
vertical and horizontal directions has been investigated by
Hicks & Spencer (2010), Li et al. (2015) and Varkey et al.
(2018), who showed that, for embankments, the horizontal
spatial variability has a significant influence on the type of
failure mechanism.
The theoretical quantification of the spatial variability of

soils has been extensively reviewed by Vanmarcke (1977),

Campanella et al. (1987) and Wickremesinghe & Campanella
(1993). As a measure of the distance over which data are
significantly correlated, the scale of fluctuation (SoF) can
be estimated using a range of techniques; in particular, by
using an auto-correlation function, Fourier analysis or a
variogram function. These techniques require a substantial
amount of data, such as obtained by cone penetration tests
(CPTs). While CPTs do not directly measure soil properties,
their measurements are known to be correlated to them. For
example, the tip resistance is known to be correlated to the
undrained shear strength by way of a linear transformation
including the effect of increase in confining pressure
(Robertson et al., 1986). Moreover, as the spatial variability
is due to geological deposition processes, it is generally
assumed that all soil parameters would have the same
spatial variability (e.g. Kawa & Puła, 2020). Therefore, by
utilising the spatial variability of the CPT measurements, an
estimate of the spatial variability of the soil properties
can be made without having to transform the measurement
data. However, relatively few data for determining the SoF,
especially in the horizontal plane, are available. Some notable
attempts in the quantification of the horizontal SoF
from CPTs are Jaksa et al. (1999), Lloret-Cabot et al.
(2014), Ching et al. (2018) and Fenton et al. (2018). In
particular, Ching et al. (2018) utilise limited vertical CPTs to
estimate the SoF, and show that to obtain a good estimate of
the horizontal SoF, the CPT spacing, depth and SoF must be
considered.
It has been previously observed that, by taking account of

spatial variation and the location of measurement data,
the uncertainty in the response of a structure is reduced
(e.g. Jaksa et al., 2005; Lloret-Cabot et al., 2012; Li et al.,
2016), and given more available information – that is, more
CPTs – the better is the estimation of the SoF (Lloret-Cabot
et al., 2014). However, the decrease in uncertainty in the
estimated SoF as the number of CPTs, or amount of data per
CPT, increases has not yet been quantified. A challenge in
the calculation of reliable horizontal scales of fluctuation is
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that, unlike using CPTs in the vertical direction, there are no
standard methods of geotechnical investigation giving high
spatial resolution in the horizontal plane. Clearly, the
required spacing of collected data is important and it strongly
influences the cost of a site investigation.

The origin of spatial variability is often attributed to
geological processes occurring in the deposition of soil layers
(Phoon &Kulhawy, 1999). Given that there may be many pro-
cesses involved in the transport and deposition of sediments, it
may be hypothesised that there may be multiple, separate,
scales of fluctuation (e.g. Vanmarcke, 1983). For example, a
large-scale variation may occur due to seasonal changes in the
deposition, whereas a small-scale variation may be due to
local hydrodynamic processes – for example, eddy currents.

Here, the auto-correlation method is used to investigate the
assessment of the SoF in a specific direction – that is, making
it particularly suitable for, but not limited to, assessing the
SoF for linear infrastructure. This method has been shown to
give results comparable to other methods (de Gast, 2020).
Computer-generated data, with a known SoF, have been used
to investigate the impact of having differing amounts of site
investigation data, and the statistical uncertainty in the
back-figured SoF has been quantified. A design chart and
underlying equation have then been proposed to estimate the
uncertainty arising from different testing schemes. A row of
29 closely spaced CPTs, from within a larger field test of 100
CPTs, from a regional dyke in the Netherlands, has been
analysed and the resulting data used to validate the proposed
approach. This field test has been used to demonstrate the
consequences of collecting different amounts of data during
site investigations. A simplified dyke analysis has been
undertaken using the detected variability from the field test
to demonstrate the impact of the uncertainty on the predicted
dyke response.

THEORETICAL BACKGROUND
The properties of soil are spatially variable, but are

generally related to the properties of nearby material – that
is, they are spatially correlated. The most usual correlation
measure is the auto-correlation length, θ, also referred to as
the SoF. It is the integral of the auto-correlation function,
and approximates the distance over which material properties
are significantly correlated. θ has been defined by Vanmarcke
et al. (1986) as

θ ¼ 2
ð1
0
ρðτÞdτ ð1Þ

where ρ(τ) is the auto-correlation function or structure and τ
is the distance separating two points, otherwise known as the
lag distance. Hence, θ is the area under the auto-correlation
function over the range �∞� τ�∞, and, while it can be
different in any direction, owing to depositional processes it
is commonly considered to be unique in the vertical and
horizontal directions.

Note that other techniques can also be used to describe the
spatial correlation of data. For example, in the mining
industry spatial auto-correlations are commonly described
by semi-variograms, which are constructed using the squared
differences in the property of interest at different lag lengths.
According to Baecher & Christian (2003), the semi-
variogram requires a less restrictive statistical assumption
on stationarity (i.e. the requirement of a constant mean and
standard deviation) than the auto-correlation function.
However, its use in spatial interpolation and engineering
can be more difficult, as the range, sill and nugget need to be
identified. Therefore, the auto-correlation approach is used in
this paper.

The method used to determine the experimental θ
(e.g. Lloret-Cabot et al., 2014) compares a theoretical
auto-correlation function ρ(τ), for an estimated value of
θ, with an experimentally determined auto-correlation
function ρ̂ τð Þ. The error in approximating the experi-
mental auto-correlation function by a theoretical function
is given by

ErðρÞ ¼
X
i

ρðτiÞ � ρ̂ðτiÞ½ �2 ð2Þ

where Er(ρ) is the error in the approximation and is defined
as the sum of the squared differences between the values of
the two functions at the lag distances considered – that is,
corresponding to the distances between the discrete data
points. The experimental θ is the value of θ that minimises
Er(ρ).

Theoretical auto-correlation function
The theoretical auto-correlation function (or correlation

structure) can take various forms, as illustrated by Table 1,
which lists some common auto-correlation models. The
model which best fits the data should be selected, and
herein the Markov model has been used.

Experimental auto-correlation function
The experimental auto-correlation function is the auto-

correlation function derived from discrete (e.g. measurement)
data, and can be obtained from the experimental covariance
function γ̂ τð Þ as

ρ̂ τð Þ ¼ γ̂ τð Þ
γ̂ 0ð Þ ð3Þ

The experimental covariance function was presented by
Vanmarcke (1983) for equally spaced data as

γ̂ τð Þ ¼ 1
k � l

Xk�l

j¼1

ðyj � μ̂Þ y jþl � μ̂
� � ð4Þ

which can be, as in variance estimation, adapted as an
unbiased estimator

γ̂ τð Þ ¼ 1
k � l þ 1

Xk�l

j¼1

ðyj � μ̂Þ y jþl � μ̂
� � ð5Þ

or adapted for unequally spaced data as

γ̂ τð Þ ¼ 1
t� 1

Xt

j¼1

ðyj � μ̂Þ y jþΔj � μ̂
� � ð6Þ

where μ̂ is the estimated mean (or trend) of the dataset; j is a
counter representing the index of the first of a data pair at lag

Table 1. Common theoretical auto-correlation models (Fenton, 1999)

Correlation
model

Formula

Gaussian ρ(τ)¼ e�π(|τ|/θ)2

Triangular ρ τð Þ ¼ 1� τj j=θ if τj j � θ
0 if τj j . θ

�

Spherical ρ τð Þ ¼ 1� ð1�5jτj=θÞ þ jτj=θð Þ3 if τj j � θ
0 if τj j . θ

�

Markov ρ(τ)¼ e�2|τ|/θ
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distance τ; l¼ 1, 2, …, k is a counter representing the index
spacing of pairs of data with k being the total number of
observations; Δj represents the index spacing of a specific
pair of observations for a non-uniformly distributed dataset;
and t is the number of pairs at lag distance τ. Note that, for
the estimator given by equation (3), it is desirable that the
data are equally spaced (Fenton & Griffiths, 2008) at any
spacing τ, to ensure results of higher quality. However, this
may reduce the number of lag distances considered, and may
be unrealistic with measured data as it is not common to have
equally (and closely) spaced data. Therefore, equation (6) is
suggested to account for non-equidistant spacing. It is also
possible to group data into ‘bins’ to increase the number of
pairs, although the resolution will then be affected.

Multiple θ correlation structures
Theoretical auto-correlation functions can be combined

to better represent the experimental auto-correlation. For
example, a single composite auto-correlation function can be
constructed using different scales of fluctuation, as in Fig. 1
(Vanmarcke, 1983), and even by combining different auto-
correlation models. In Vanmarcke (1983), an equivalent
equation to equation (1) is used to determine an average
θ, θavg – that is

θavg ¼ 2
ð1
0
ρcom τð Þdτ ð7Þ

where ρcom is the composite auto-correlation function
constructed as the weighted average of the component
auto-correlation functions

ρcom τð Þ ¼ c1ρ1 τð Þ þ c2ρ2 τð Þ þ � � � þ ciρi τð Þ ð8Þ
where

0 � ci � 1 and
X
i

ci ¼ 1 ð9Þ

Integration of equation (8) leads toð1
0
ρcom τð Þdτ ¼ c1

ð1
0
ρ1 τð Þdτ þ c2

ð1
0
ρ2 τð Þdτ þ � � �

þ ci

ð1
0
ρi τð Þdτ

ð10Þ

and substitution of equation (10) into equation (7) gives

θavg ¼ c1θ1 þ c2θ2 þ � � � þ ciθi ð11Þ
The composite auto-correlation function that most closely

fits the experimental auto-correlation function is, as before,
found by minimising the error

Er ρcomð Þ ¼
X
i

ρcom τið Þ � ρ̂ τið Þ½ �2 ð12Þ

Once again, the error is only calculated for the lag distances
used in the experimental correlation function, as defined by
the distances between the discrete data points.
In theory, any number of components can be used in a

composite auto-correlation function, although the number
of unknowns that need to be determined is twice the number
of components, and the computational effort increases
significantly with each additional component. Therefore,
the examples here are limited to one- or two-component
models. The proposed algorithm to determine two scales of
fluctuation from CPT data (e.g. cone tip resistance) is based
on finding the combination of θ1 and θ2 that gives the
minimum error between the theoretical and experimental
auto-correlation functions, and is summarised as follows.

(a) Detrend the data with respect to depth.
(b) Calculate the experimental auto-correlation function

using equations (3) and (6).
(c) Calculate c1, c2, θ1 and θ2 using the following algorithm.

(i) Loop through 0, c1� 1 in small steps
• Using equation (9), c2 = 1� c1
(ii) Loop through 0, θ1� θmax in small steps (θmax

is the maximum θ investigated)
(iii) Loop through 0, θ2�∞ in small steps

(note that a practical approach to approxi-
mating ∞ is needed, e. g. ∞� 5D)
• Calculate the composite auto-correlation
function using equation (8) for each
experimental lag distance

• Calculate the error using equation (12)
• End loop (iii)

• End loop (ii)
• End loop (i)

(d ) Select the combination of c1, c2, θ1, θ2 with the smallest
error.

1050 15 20 25 30 35 40 45 50
Lag, τ

0

0·2

0·4

0·6

0·8

1·0

ρ 
(τ

)

c1 ρ1 based on c1 = 0·75, θ1 = 1

c2 ρ2 based on c2 = 0·25, θ2 = 15

ρ composite

ρ based on θavg

Fig. 1. Auto-correlations functions based on a combination of two theoretical scales of fluctuation and on a corresponding average scale of
fluctuation (after Vanmarcke, 1983)
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The step size for the algorithm can be selected based on
computational effort and the required resolution of the
resulting composite θ. However, step sizes of 0·01 for c1 and
c2, and 0·01 m for θ1 and θ2, are recommended as providing
sufficient resolution for most practical cases, and it is
reasonable for the maximum θ1 investigated – namely,
θmax – to be selected as the domain length, D. A zero
correlation length means that the data points are spatially
uncorrelated and an infinite correlation length means that
they are fully correlated – in other words, constant.

Figure 1 shows an example of combining two auto-
correlation functions with different weights and different θ,
as well as the auto-correlation function with a single average
θ determined using equation (11).

INVESTIGATION USING SYNTHETIC DATA
An investigation using synthetic data was carried out to

investigate the efficacy of the method and to quantify
the uncertainties. One-dimensional (1D) strings of data
(datasets), analogous to CPT profiles, were generated using
Cholosky decomposition (Alabert, 1987; Davis, 1987;
van den Eijnden & Hicks, 2017), which meant that the θ
was known a priori. The data strings, referred to below
as synthetic CPTs, were generated using a Markov auto-
correlation function and the following properties: domain
length, D¼ 50, mean, μ¼ 0, standard deviation, σ¼ 1 and
θ¼ 5 (note that all θ have units of length).

Figure 2(a) shows that, as the lag length increases, the
individual experimental auto-correlation functions (thin
solid lines) oscillate, due to less available data – that is,
fewer pairs. In order to improve the estimate of the
auto-correlation function it is helpful to average multiple
experimental auto-correlation functions – for example,
multiple CPT measurements. The thick dashed line in
Fig. 2(a) shows the average of the five experimental
auto-correlation functions, which reduces the oscillation
and matches better the input theoretical auto-correlation
function (thick solid line), especially at shorter lag lengths.
This further improves with more data, as shown by the thick
dashed line in Fig. 2(b), where the average of 100 exper-
imental auto-correlation functions is used. The (absolute)
error, Er, calculated using equation (2) with the input
theoretical auto-correlation function, reduces from around

8·0 (with one data string or CPT) to 2·0 (five CPTs) to 0·1
(100 CPTs). Importantly, oscillations are also delayed until
larger lag lengths, implying that more data would be needed
for larger scales of fluctuation relative to the length of the
domain.
The same process was undertaken for data generated using

two scales of fluctuation. Once again, the synthetic CPTs
were generated based on a mean of 0 and a standard devi-
ation of 1 (μ¼ 0, σ¼ 1), but now with an auto-correlation
function built from two Markov auto-correlation models
with scales of fluctuation of θ1¼ 1 and θ2¼ 15 and two
respective weighting coefficients of c1¼ 0·75 and c2¼ 0·25,
giving θavg¼ 4·5. One hundred datasets were generated using
these input parameters and the 100 resulting experimental
auto-correlation functions were averaged. Fig. 3 shows the
result of analysing 100 datasets and compares it to the result
based on a single auto-correlation function. (Note that
the best single auto-correlation function is not the same as
using θavg.) The double θ model has a much better fit to
the experimental auto-correlation function than the single
θ model, as confirmed by the respective errors of Er¼ 0·07
and Er¼ 0·23.
It is noted that using 100 datasets may not be reasonable in

practice, and that, while using multiple scales of fluctuation
the solution is more flexible, it is likely that more data would
be needed than for identifying a single θ. However, it is also
reasonable to assume that, for larger scales of fluctuation
relative to the domain size, more data are also needed to
calculate the scales of fluctuation accurately. These aspects
are investigated in the following section.

Quantification of uncertainty
As the error is larger with fewer data, any predicted θ will

have a likely error or statistical uncertainty associated with it.
To investigate this uncertainty, a comprehensive numerical
investigation has been undertaken, where different variables
were investigated: (a) number of datasets combined;
(b) number of data points used per dataset; (c) value of θ.
The number of datasets is analogous with the number of
CPT locations if investigating the vertical scale of fluctu-
ation, θv, or is proportional to the depth range tested if
investigating the horizontal scale of fluctuation, θh. The
number of data points used per dataset may be proportional

1·0

0·5

0

–0·5

–1·0 0 10 20 30

(a) (b)

Theoretical auto-correlation
Averaged auto-correlation
Individual auto-correlation

Theoretical auto-correlation
Averaged auto-correlation
Individual auto-correlation

40 50

Lag, τ

1·0

0·5

0

–0·5

–1·0 0 10 20 30 40 50

Lag, τ

ρ 
(τ

)

ρ 
(τ

)

Fig. 2. Individual (thin solid line) and averaged (thick dashed line) experimental auto-correlation functions: (a) based on five individual functions;
(b) based on 100 individual functions
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to the layer depth if investigating θv, or is analogous with the
number of CPT locations if investigating θh. The results are
presented in Figs 4–7, with most axes being in log scale to
enable a good oversight of the results; they are also
summarised in Fig. 8 using a linear scale. The results have
been obtained using numerically generated datasets, based
on a Markov auto-correlation structure with a single θ, μ¼ 0
and σ¼ 1.
To investigate the influence of the number of datasets,

between one and 100 combined datasets were considered.
The length of each dataset was 50 units, the distance between
the data points in each dataset was 0·5, and θ¼ 5.
In Fig. 4, each dot is an estimate of θ (relative to the input

θ), and the result of an analysis with the number of datasets
given on the x-axis (i.e. the number of CPT profiles). The
datasets that are input into the analysis to generate each dot
are randomly selected and therefore represent a possible
interpretation of a site investigation. For each number of
datasets considered, 100 estimates of θ have been made using
the single θ method. As expected, there is a distribution of
dots with a higher proportion clustered around the theoreti-
cal value of θ, indicated by the solid line. The dashed line is
the average of the 100 estimations, and the dotted line is the
coefficient of variation, CoV¼ σ/u (where σ is the standard
deviation and μ is the mean) of the estimations of θ. As
expected, if more datasets are used, the CoV reduces, and
therefore the result is more likely to be accurate. In this
example, when considering only one dataset there is a 9·6%

chance of the estimated θ being within 20% of the real θ,
whereas there is a 33·1% chance of being within 20% when
five datasets are used, rising to 70·0% with 100 datasets. In
practice, this increase in accuracy would be offset by the
additional expense of collecting the extra data and results in
an increase in computational effort for the analysis. Fig. 4
also shows that using a limited amount of data is more likely
to result in an overestimate of θ; this is because the theoretical
auto-correlation is always positive and the distribution does
not therefore have negative outliers.
The number of data points per dataset has also been

investigated, once again for θ¼ 5. This was done by again
using a distance of 0·5 between data points, and considering
the overall domain length to change with the number of data
points. For each number of data points considered, 100
estimates of θ, each using 40 datasets, have been produced.
Again, as expected, by increasing the number of points the
estimation of θ improved (see Fig. 5). Considering only five
data points per dataset there is a 27·9% chance of being
within 20% of the real θ, whereas with ten data points there is
a 33·5% chance of being within 20%, rising to 71·9% with
100 data points.
Using a fixed domain size (length) of 50 and the same

number of data points, the ability to detect different values of
θ was then investigated. Each estimate of θ was based on 40
datasets and 100 points per dataset. Again, 100 estimates
were made. The generated data had an input θ varying
between θ=5 and θ=500. Fig. 6 shows how the estimated θ

1050 15 20 25 30 35 40 45 50
–0·2

0

0·2

0·4

0·6

0·8

1·0

Calculated single SOF: θ = 2·07, Er = 0·23 

Calculated double SOF: c1 = 0·76,  θ1 = 1·0, c2 = 0·24,  θ2 = 14·45, Er = 0·07

Experimental auto-correlation
Best estimate, single θ 
Best estimate, double θ 

Lag, τ

ρ 
(τ

)

Fig. 3. Experimental auto-correlation function formed by averaging data from 100 realisations generated using two scales of fluctuation, θ1 = 1
and θ2 = 15, with respective weighting coefficients of c1 = 0·75 and c2 = 0·25, compared with derived single and double theoretical auto-correlation
functions

100 101 102

Number of datasets used for estimation

10–1

100

101

0

0·5

1·0

1·5

C
oV

θ e
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e 
/θ
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pu

t

Fig. 4. Accuracy of θ estimation as a function of the number of datasets. θ is normalised to the theoretical value. Each dot is a single estimate
based on the number of datasets; the solid line is the theoretical result; the dashed line is the mean result from 100 estimates; and the dotted line is
the CoV of the θ estimates
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changes when the input θ is varied between 0·1 times the
domain length (θ=5) and 10 times the domain length
(θ=500). Considering an input θ of only 0·1 times the
domain length there is a 44·2% chance of the estimated θ
being within 20% of the real θ, whereas for an input θ equal
to the domain length there is a 33·3% chance of it being
within 20%, decreasing to 26·04% when it is 10 times the
domain length. However, Fig. 6 shows that estimating scales
of fluctuation is possible, even when the real θ is 5 times
larger than the domain length.

As θ increases relative to the domain size, the CoV of the
estimated θ also increases, although the CoV increases at a
much lower rate when θ is larger than the domain size. In
Fig. 6, the CoV increases from 0·05 to 0·2 when θ is smaller
than the domain size, whereas, for θ larger than the domain
size, the CoV varies in the range of 0·2–0·35.

Unequally spaced data
In reality, it may be difficult to obtain equally spaced data,

especially for estimating θh. By using equation (6) rather than
equation (5) the auto-correlation function can be obtained.
Fig. 7 illustrates the estimation of θ obtained from non-
uniform sampling. In this case, the non-uniform sampling

regime is based on the site investigation reported later in the
paper; that is, with data points at six intervals of 2·5 (length
units), followed by 16 intervals of 1·25, and ending with six
intervals of 2·5, totalling 29 points generated at non-uniform
spacings over a total distance of 50. Once again, 100
estimates of θ were made, with each estimate based on 40
datasets.
Comparing Figs 6 and 7, there is little difference between

the results based on uniformly distributed data and those
based on unequally spaced data.

Generalising the uncertainty quantification
In order to generalise the estimation of the uncertainty

in a calculated θ in a single direction, several values of θ
relative to domain size (0·1 to 10·0) and of θ relative to
distance between data points (10 to 200), for different
numbers of datasets and points per dataset, have
been investigated using the same approach as in Figs 4–7.
For example, Figs 8(a)–8(f) show, as a series of broken
lines, contours of the calculated CoV of θ, expressed as
a function of θ, the number of data points, size of
domain, spacing of data points and number of datasets
(e.g. CPTs).
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Fig. 5. Accuracy of θ estimation as a function of the number of points in the dataset (the separation distance of the points is constant, and therefore
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By using a minimum error approach on the CoV values
obtained, an estimate for the CoV of θ (i.e. the statistical
uncertainty) was fitted to the data

CoV ¼ 1�1�W � X � Y þ Z ð13Þ
In equation (13), W is a factor accounting for the

magnitude of θ relative to the domain size D. It has most
influence when θ is smaller than D, and is given by

W ¼ tan�1 5θ
D

� �
ð14Þ

X is a factor that considers the number of independent
datasets nf, that is

X ¼ 1ffiffiffiffiffi
nf

p ð15Þ

where nf equals the number of CPTs for estimating θ in the
vertical direction or number of rows of data for estimating θ
in the horizontal direction; nf has a maximum allowable
value of nfmax, which is estimated using

nfmax ¼
Dp

θp
; Dp . θp

1; Dp � θp

8><
>: ð16Þ

where Dp is the domain length in the direction perpendicular
to the direction of investigation – that is, the horizontal
domain length when considering the vertical scale of fluc-
tuation, or the vertical domain length when considering the
horizontal scale of fluctuation – and θp is the θ in the
direction perpendicular to the direction of investigation. This
maximum allowable value accounts for the lack of indepen-
dence between datasets which are very close to each other.

Y is a factor that accounts for an increase in CoV as the
spacing between the data points (in) increases relative to θ

Y ¼ 1þ in
θ

� �
ð17Þ

and Z is a factor with most influence when θ is larger thanD,
accounting for the reduction of accuracy in the estimate of θ
as the number of experimental covariance functions (γ̂ τð Þ)
reduces significantly as τ becomes closer to D

Z ¼ θ
5nfD

ð18Þ

Hence, equation (13) incorporates four factors that affect
the estimate of CoV: (a) a factor for θ,D – if the domain
length is large relative to θ, CoV is reduced; (b) a factor for
the number of (independent) datasets – as the number of
datasets increases, CoV decreases. The maximum number of
independent datasets (nfmax) can be estimated by considering
the size of the perpendicular θ (i.e. θp) relative to the
perpendicular domain (Dp). For example, considering the
estimation of θh, if θp¼ θv¼ 0·25 withDp¼Dv¼ 4 then nfmax
for the calculation of θh is 16, and even if more than 16
datasets are available nf cannot exceed 16; (c) a factor for the
spacing of data – if the interval between data points is large
compared to θ, CoV increases; (d ) a factor for θ.D – if the
domain is short relative to θ, CoV increases. Note that, in all
cases, the CoV decreases with an increase in the number of
datasets.

The estimated CoVs are plotted in Figs 8(a)–8(f) as solid
lines. A good fit between the calculated CoVs (using
synthetic data) and estimated CoVs (using equation (13)) is
found.

To estimate the CoV for either the vertical or horizontal θ
using standard (vertical) CPT data, equation (13) can be

used. It should be noted that, for estimating θv, there are
generally many points per CPT, although often relatively few
CPTs, so the estimations in the top left corners of the graphs
in Fig. 8 are representative. For estimating θh there are
generally fewer data points per dataset, although each depth
interval for the group of CPTs can be considered as a
different dataset. Hence, there can be a large number of
datasets comprising relatively few data points, so that the
estimation in the bottom right corner of the graphs is
applicable. This assessment of the uncertainty is based on
the Markov auto-correlation model and experimental auto-
correlation function. It is expected that the predicted
uncertainty would be generally applicable using similar
auto-correlation models (such as those shown in Table 1),
although a precise calibration could be undertaken.

Design chart
The CoV estimation from equation (13) has been sum-

marised in the design chart shown in Fig. 9. This chart can be
used in practice to estimate the uncertainty in calculated
values of θ in a single direction. Hence, it is ideally suited, but
not limited, to linear infrastructure. θmust first be calculated
(or estimated, if used prior to a site investigation), and then
information on the size of the dataset is used. As an example,
a series of ten vertical CPTs (with a vertical data interval of
0·01 m) and avertical domain of 5 m is considered. They are
arranged in a single line and horizontally spaced at 2·5 m
intervals, making a horizontal domain length of 22·5 m; the
estimate of θv is 0·25 m and θh is estimated to be 5 m.
Considering the CoVof θv, the first part of the figure gives a
value of 0·29 and the second part of the figure gives a value
below 0·005; adding these numbers together gives 0·295. The
nf here is defined by nfmax as 22·5/5¼ 4·5 and the estimated
CoVof θv is then 0·14 m. Considering θh, the first part of the
figure gives a value of 1·4 and the second part gives a value
below 0·02; adding these numbers together gives 1·42. Once
again nf is defined by nfmax, which is equal to 5/0·25¼ 20,
and this gives an estimated CoV of θh of 0·32.

Double scales of fluctuation
Figure 10 presents an investigation into the estimation of a

double θ. A series of synthetic CPTs based on a double θ
model (based on θ1 = 5, c1¼ 0·75 and θ2 = 25, c2¼ 0·25) was
generated and analysed. Using equation (11), θavg¼ 10. An
investigation synonymous with the estimation of θh values
using eight vertical CPTs was carried out. Three different site
investigation scenarios were tested: (a) where the spacing
between the CPTs was 0·5; (b) where the spacing between the
CPTs was 14·5; and (c) where four groups of two CPTs were
used, in which the spacing within the groups was 0·5 and
between the groups was 14·5. The number of datasets was
investigated, corresponding to the number of independent
sets of horizontal data, with each dataset comprising a single
reading from each CPT. The step size used for c1 and c2 in
the algorithm was 0·01, as was the step size for θ1 and θ2.
Figures 10(a) and 10(b) show that when using a small

equal spacing between the CPTs, the means of both θ values
and the average θ (θavg) were reasonably well estimated. The
mean of θ1 was slightly underestimated, with a reasonably
low CoV, whereas the mean of θ2 was more underestimated,
with a significantly higher (approximately double) CoV. This
is due to the short domain (3·5) in comparison to the larger θ
(25). Even for the smaller θ (5), the domain is shorter than
the detected value. θavg has a reasonably high CoV, indicating
that the overall error can be high.
Using the larger equal spacing, Figs 10(c) and 10(d) show

that the means of both θ values and θavg were again
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reasonably well estimated. As before, the mean of θ1 was
slightly underestimated, but now with a high CoV, whereas
the mean of θ2 was slightly overestimated, but with a
relatively low CoV. The high CoV for the smaller θ is
due to the spacing being significantly larger than θ. The
CoV of θavg reduces to a reasonable value after around
40 datasets.
Figures 10(e) and 10(f) show the results using a mixed

spacing system. The means of both θ values and θavg were
again reasonably well estimated. However, in this case, the
CoVs of both θ values are reasonably low, with the CoV of
θavg being the lowest of all the scenarios. Hence, the mixed
spacing system offers a practical solution for when the θ
values are not reasonably well known in advance.
From this analysis and a more extensive investigation into

the effect of using CPT groups, involving a large variation
in the number of groups and spacings between the groups
(de Gast, 2020), it was found that the CoV could also be
estimated with equation (13). In this case, in becomes the
interval between the CPT groups in equation (17), rather
than the interval between data points. Moreover, the domain
(D) should be replaced by the domain length of the groups
(Dg) in equation (14), the number of groups (ng) should be
included in the denominator in equation (17) (i.e. θ� ng) and
the domain (D) should be replaced by the total length of the
domain (Dt) in the denominator in equation (18).

INVESTIGATION USING REAL DATA
The performance of the methodology has been applied

to a real site investigation, conducted for a regional dyke in
the Netherlands called Leendert de Boerspolder. The site
investigation comprised 100 CPTs over an area of 50� 15 m,
and data from this test have been made available (de Gast
et al., 2020). As part of the investigation, 29 CPTs were

conducted along the crest of the dyke over a 50 m reach.
Specifically, six CPTs were taken at 2·5 m intervals, followed
by 16 at 1·25 m intervals, and then another six at 2·5 m
intervals. Fig. 11 shows the cone resistance data from these
CPTs. From these CPTs and an accompanying site investi-
gation, the subsurface was found to consist of a man-made
dyke body (which has been maintained and added to over
	400 years), composed of silts, clays, sands and some rubble.
This lies on top of a peat layer underlain by a clay layer
consisting of two clay types (an organic clay and a silty clay),
followed by another peat layer underlain by a sand layer. To
demonstrate the proposed methodology, the dyke material,
the first peat layer and the clay layer were analysed. Owing
to the deposition history, it is generally assumed that θh is
larger than θv, so the spacing of data in the horizontal plane
was anticipated to be acceptable.
Figures 12 and 13 show the data analyses undertaken for the

peat and clay layers, respectively. In Figs 12(a) and 13(a) the
CPT cone resistance data are presented, as is the mean and
de-trended (i.e. mean of zero) CPT data. The peat has a linear
mean trend that has been removed before analysing the data to
determine θ. In contrast, the clay exhibits a non-linear
(quadratic) trend, probably due to the change in the com-
position of the clay material with depth. A histogram and
probability density function of the de-trended data are shown
in Figs 12(c) and 13(c). The vertical experimental auto-
correlation function and best fit theoretical auto-correlation
function, for both a single and double θ, are shown in
Figs 12(b) and 13(b), with the same information for the
horizontal correlation shown in Figs 12(e) and 13(e). In these
examples, the step size for c1 and c2 was 0·01 and the step size
for θ1 and θ2 was 0·01 m. Details of the identified scales of
fluctuation, along with the calculated errors between the
experimental and theoretical auto-correlation functions, are
presented in Figs 12(d) and 13(d).

0·25

0·5

1

1

22
2

2

33
3

3

44
4

4

5
5

5

6
6

6

7
7

7

88

8
9

9

10–2 10–1 100

10–2 10–1

= CoV1
nf

100

0

1

2

3

4

5

0·
00

25

0·
00

5

0·
01

0·025

0·0
25

0·05

0·05

0·05

0·1 0·1

20

40

60

nf
in

/θ

θ /D

80

100

+

Fig. 9. Estimating CoV for equally spaced vertical and horizontal data, based on the interval between data points, scale of fluctuation, domain
size and number of datasets

ASSESSMENT OF SOIL SPATIALVARIABILITY FOR LINEAR INFRASTRUCTURE 1007

Downloaded by [ TU Delft Library] on [28/10/21]. Copyright © ICE Publishing, all rights reserved.



0

0·5

1·0

1·5

2·0

0

5

10

15

20

25

30

35

806040200 100

0·5 0·5 0·5 0·5 0·5 0·5 0·5

14·5 14·5 14·5 14·5 14·5 14·5 14·5

0·5 14·5 0·5 14·5 0·5 0·514·5

Number of datasets
806040200 100

Number of datasets

806040200 100
Number of datasets

806040200 100
Number of datasets

806040200 100
Number of datasets

806040200 100
Number of datasets

0

5

10

15

20

25

30

35

0

0·5

1·0

1·5

2·0

C
oV

 

CoV θ1

CoV θ2

CoV θavg

CoV θ1

CoV θ2

CoV θavg

5

0

10

15

20

25

30

35

0

0·5

1·0

1·5

2·0

(a) (b)

(c) (d)

(e) (f)

μ

C
oV

 

μ

C
oV

 

μ

μ θ1

μ θ2

μ θavg

μ θ1

μ θ2

μ θavg

μ θ1

μ θ2

μ θavg

CoV θ1

CoV θ2

CoV θavg

Fig. 10. Investigation of the identification of a double θ in the horizontal plane (θ1 = 5, c1 = 0·75 and θ2 = 25, c2 = 0·25) using eight CPTs and
different numbers of datasets (i.e. vertical intervals): (a) means of the identified θs for CPT spacing of 0·5; (b) CoVs of the identified θs for CPT
spacing of 0·5; (c) means of the identified θs for CPT spacing of 14·5; (d) CoVs of the identified θs for CPT spacing of 14·5; (e) means of the
identified θs for alternate CPT spacings of 0·5 and 14·5; (f) CoVs of the identified θs for alternate CPT spacings of 0·5 and 14·5. Horizontal
dashed lines in (a), (c) and (e) are theoretical values

DE GAST, VARDON AND HICKS1008

Downloaded by [ TU Delft Library] on [28/10/21]. Copyright © ICE Publishing, all rights reserved.



In the peat layer, a negligible difference is observed when a
double vertical or horizontal θ is introduced, as indicated by
the identical error. In the clay layer, for both the vertical and
horizontal directions, using a double θ reduces the error
significantly. In all soil layers (including those not shown),
where a double θ is observed in the horizontal direction the
main component of θh is the smaller of the two scales (i.e. θ1).
Note that due to the erratic behaviour of the experimental

auto-correlation function at large lag lengths (due to fewer data
being included in the function), the function is cut off at a limit

before the errors are calculated. When determining the extent
of the auto-correlation function to be considered, a visual
inspection is used. The criterion used to determine the limit
is how closely the function resembles the auto-correlation
function, with particular attention to its monotonic reduction
to zero. Suggested limits, based on the proximity of the
auto-correlation function to zero or the domain size, have been
proposed in the literature by, for example, Uzielli et al. (2005)
and Lumb (1975). In Figs 12(b), 12(e) and 13(b), 13(e) the
extent of the data used is indicated by the solid thick line.
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In the analysis of this site, it can be concluded that θh is
larger than θv for all layers, and is therefore in agreement with
the view that geological processes (in sediments) cause a
horizontal auto-correlation that is larger than the vertical
auto-correlation. There has been mention of the possibility of
a double θ by Vanmarcke et al. (1986) although neither the
identification nor the use of a double θ is evident in the
literature. A double θ can have different explanations: (a) it is
caused by geological processes that operate on different
scales; (b) it is caused by a weak spatial auto-correlation of
the material properties and/or a large amount of noise; or
(c) it is the product of the removal of a wrong trend. The
double correlation model has more fitting parameters and is
therefore likely to achieve a better fit to data. However, to
prevent over-fitting, the preference is the use of a single
correlation model, unless an explanation for the origin of a
double correlation can be provided and the two correlation
lengths are significantly different. Introducing a double θ into
an analysis may change the computed response of some
geotechnical structures, although the extent to which the
response is influenced by a double θ is likely to depend on the
type of structure involved.

To investigate the impact of the amount of data used, the
(single) vertical and horizontal scales of fluctuation were
determined from different sampling densities, using the full
domain length – that is 50 m. Three sample densities were
considered: (a) density A – 21 CPTs at 2·5 m spacing;
(b) density B – 11 CPTs at 5 m spacing; and (c) density C –
six CPTs at 10 m spacing, with the CPTs used in the analyses
indicated in Fig. 11.
In general, Table 2 shows that the CoVs of θ (calculated

from equation (13)) increase in both the vertical and
horizontal directions as the spacing increases; this is due to
fewer data being available to determine θ. However, for the
dyke material, there is no reduction in the CoVof θv between
CPT density A and CPT density B, and only a slight increase
in the CoVs of θv for the clay and peat layers. This is due to
the lack of independence of adjacent CPTs. As the CPTs are
spaced at a distance of less than θh, they are not considered
independent measurements, and this limits the benefit of
increasing the amount of data.
The CoVs of θh are larger in all cases than the CoVs of θv,

and change more significantly as a function of sampling
density. The two most influential factors here are the
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Table 2. Summary of single θ determined with different amounts of data

Material CPT density A CPT density B CPT density C

Vertical Horizontal Vertical Horizontal Vertical Horizontal

θv: m CoV θh: m CoV θv: m CoV θh: m CoV θv: m CoV θh: m CoV

Dyke material 0·30 0·17 7·0 0·27 0·28 0·17 7·0 0·34 0·31 0·24 10·0* 0·54
Peat 0·41 0·15 3·0 0·21 0·32 0·16 4·0 0·29 0·31 0·23 10·0* 0·53
Clay 0·61 0·19 5·0 0·26 0·69 0·25 7·0 0·42 0·88 0·37 10·0* 0·73

*No scale detected, therefore CPT spacing used.
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intervals between the readings (the CPT spacing) and the
domain length (equations (14) and (17)). It is also seen that
the widest estimated distributions of θ values (from CPT
density C) contain the more narrow distributions (from CPT
density A and CPT density B), giving confidence in the
method of estimating the CoV.

Note on using real data
When real CPT data are used, the following points should

be considered: (a) the trend (or mean for stationary data)
must be carefully estimated and removed; (b) properties can
change in space – in other words, the data are not stationary,
due to underlying physical processes and non-statistical
uncertainty; (c) the transformation model from CPT data
to material property values contains error.
Errors in de-trending will influence the calculated exper-

imental auto-correlation function. When de-trending, one
should be careful not to over de-trend the data; that is, the
removal of a trend should be explained by a physical process
– for example, a change in material type, gradual change of
the material composition, increasing effective stress and
loading history of the material. In this process, the data, after
de-trending, are assumed to be stationary. A method to test
for stationarity of soil layers was suggested by Phoon et al.
(2004) – namely, the modified Bartlett test, where groups of
data are separated and the calculated variances are compared
for stationarity.
There are uncertainties involved with transforming from

tip resistance to undrained shear strength. Ching et al. (2016)
investigated the transformation uncertainty at different sites
and concluded that the transformation uncertainty, while
spatially variable, can generally be taken as a single value for
a specific site or layer as the scale of fluctuation is typically
large in comparison to the geotechnical structure. Based on a
database of CPTs it was estimated to be some tens of metres.
Although any error in the transformation will cause a shift in
the property values, this will have a limited influence on the
estimated spatial correlation due to the de-trending of data.

Example analysis of dyke stability
To examine the influence of the CPT sampling regime on a

geotechnical structure, an example dyke stability assessment
has been examined. An idealised slope was analysed using
the semi-analytical method proposed by Vanmarcke (1977),
as previously elaborated by Li et al. (2015). This method
has recently been extended by Varkey et al. (2019) to improve
the match with more general, albeit computationally more
expensive, methods, but here the original version of the
model has been used for simplicity. The method takes
account of the additional stability provided by the ends of
a three-dimensional (3D) rotational (cylindrical) failure
mechanism.
The example has been chosen only to illustrate the effects

of the scale of fluctuation obtained from different sampling
strategies. For a more comprehensive analysis of the slope
reliability based on the measurement data presented herein,
other uncertainties, such as the transformation uncertainty,
geometric uncertainty and model uncertainty would have to
be included; see for example Phoon & Kulhawy (1999) and
van den Eijnden & Hicks (2019).
A brief summary of the method is given as follows. The

mean and standard deviation of the 3D factor of safety (F3D,μ
and F3D,σ, respectively), are calculated as

F3D;μ ¼ F2D;μ 1þ d
b

� �
ð19Þ

F3D;σ ¼ F2D;μΓ Lað ÞΓ bð ÞCoV ð20Þ
where F2D,μ is the mean two-dimensional (2D) factor of
safety calculated by any appropriate method and CoV is the
coefficient of variation of the point statistics of shear
strength. d is the effective width of the failure surface,
calculated as

d ¼ 2A=La ð21Þ
where La is the length of the cross-sectional failure arc, A is
the cross-sectional area of the sliding mass cylinder and b is
the length of the failure surface along the dyke, which was
proposed by Vanmarcke (1977) to be

b ¼
F2D;μ

F2D;μ � 1
; b . θh

θh; b � θh

8<
: ð22Þ

In equation (20), Γ(La) and Γ(b) are reduction factors
accounting for local averaging, calculated as

Γ Lað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
θh=La

p
; La . θe

1; La � θe

�
ð23Þ

Γ bð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
θh=b

p
; b . θh

1; b � θh

�
ð24Þ

where θe is the equivalent θ along the failure surface,
obtained by using a weighted average of the vertical and
horizontal scales of fluctuation (Li et al., 2015).
The example 45° slope was 5 m high and had no

foundation layer. The following material properties were
used: unit weight, γ¼ 20 kN/m3; mean undrained shear
strength, su¼ 26 kPa; and CoV¼ 0·3. The mean 2D factor
of safety of the slope was calculated using Taylor’s (1937)
method to be F2D,μ¼ 1·60, and the following properties of
the failure surface were calculated: d¼ 3·83 m, b¼ 10·2 m,
La¼ 12 m and A¼ 23 m2. The scales of fluctuation were
taken from the peat layer of the field test, shown in Table 2,
and the impact of the different sampling densities was
examined. The CoVs of θv and θh were estimated based on
the method presented above – that is, Fig. 9 or equation (13).
To illustrate the effect of the uncertainty in θ, the five

percentile factor of safety (95% confidence) was calculated
for the different scenarios and this information is given in
Table 3. These have been based on the mean calculated θv
and θh ± one standard deviation. For comparison, using the
same mean factor of safety calculated by equation (19) – that
is 2·2 – and the CoV of the undrained shear strength, the
five percentile factor of safety of the slope is 1·11 when
only the point statistics are considered (i.e. neglecting the
influence of θ).
When accounting for the spatial nature of the variability,

the five percentile factor of safety is much higher (around 2)
in all cases. It is highest when the CoVs of θ are the smallest,
given that the mean θ values were similar in all cases. CPT
density A and CPT density B give similar results because the

Table 3. Five percentile factors of safety determined with different
CPT densities

Scenario F3D,5%

θv� σ, θh� σ θv, θh θvþ σ, θhþ σ

CPT density A 2·10 2·08 2·06
CPT density B 2·10 2·07 2·04
CPT density C 2·07 1·99 1·92
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closest vertical CPTs could not be considered independent.
CPT density C gives lower results, as larger θh values are
predicted (i.e. as no scale could be detected, the CPT spacing
was used as the default), which disproportionately increases
the reduction factors (equations (23) and (24)).

While the potential advantage in the five percentile factor
of safety is, in this example, only around 5% by including the
uncertainty in θ, this may be sufficient to reduce or avoid
costly dyke upgrades, easily making the additional site
investigation cost effective.

CONCLUSION
The reliability of cone penetration testing for calculating

the scale of fluctuation of soils in both the vertical and
horizontal directions has been comprehensively tested. Using
synthetically generated data, it has been shown that it is
important to have enough information to make a reliable
estimate of the scale of fluctuation. It is also important to
consider the likely scales of fluctuation that may occur and
the density of the sampling. Based on an extensive investi-
gation of synthetic data, a method has been proposed for
guiding the design of CPT campaigns for calculating the
scale of fluctuation and, in a significant step forward, for
estimating the statistical uncertainty in that calculated value.
This allows the uncertainty in the calculated scales of
fluctuation to be included in comprehensive probabilistic
analyses of structure response. Newly collected real data have
been used to demonstrate the approach and the results have
been used for a simple slope stability problem as an example,
demonstrating the significance of considering scales of
fluctuation and their uncertainty due to site investigation
design.
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NOTATION
A area
b length of the failure surface
ci weights for weighted average
D domain length
Dp perpendicular domain length
d effective width of the failure surface

Er(x) error as a function of x
F2D,μ mean safety factor of a two-dimensional (2D) section

F3D,5% five percentile of the three-dimensional (3D) factor of
safety

F3D,μ mean of the 3D factor of safety
F3D,σ standard deviation of the 3D factor of safety

i, j, k, l, t counters
in interval between data points
La length of the cross-sectional failure arc
nf number of independent datasets

nfmax maximum number of independent datasets
su undrained shear strength

W, X, Y, Z parameters of equation (13)
γ unit weight

γ̂ τð Þ experimental covariance function
Γ( ) reduction factor
Δj index difference
θ scale of fluctuation (auto-correlation length)

θavg average scale of fluctuation
θe equivalent scale of fluctuation

θestimate estimated scale of fluctuation
θh horizontal scale of fluctuation
θi component of the scale of fluctuation

θinput input scale of fluctuation
θmax maximum scale of fluctuation
θp perpendicular scale of fluctuation
θv vertical scale of fluctuation
μ mean
μ̂ estimated mean (or trend)

ρ(τ) auto-correlation function
ρ̂ðτÞ experimental auto-correlation function
ρcom composite auto-correlation function

σ standard deviation
τ lag distance
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