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Glossary 
Term Definition Relevance to Transport Policy 

Active Inference 

A framework in neuroscience and 
cognitive science that describes 
perception, learning, and decision-
making as a process of minimizing 
surprise and uncertainty. 

Provides a dynamic perspective on how 
individuals perceive and interact with 
transport systems, shaping their travel 
behaviour and preferences. 

Affordance 
The potential for action that an 
environment or object provides. 

The choice set from which actions are 
selected. 

Agglomerative 
Clustering 

A hierarchical clustering method that 
starts with individual data points and 
progressively merges them into 
clusters. 

Useful for analyzing and grouping 
similar spatial units like H3 hexagons. 

Bayesian Inference 

A method of statistical inference that 
updates the probability of a prior 
hypothesis as more evidence becomes 
available. 

Used in active inference models to 
describe how individuals update their 
understanding of the world by 
purposeful sampling through action. 

Broad Prosperity 

A policy evaluation framework that goes 
beyond traditional economic indicators 
to include social and environmental 
well-being. 

Encourages a more holistic approach to 
transport policy, considering its impact 
on various aspects of quality of life. 

Characteristic State 

The attractor states in the reciprocal 
relationship between the resident and 
the environment. Analogous to 
needs/desires and preferences.  

Individual preferences bias actions 
towards certain lifestyles: a frequent 
public transport traveller is more likely 
to live closer to a train station than a 
frequent car driver. 

Circle Loss 

A type of loss function used in machine 
learning, particularly for metric learning 
tasks. 

It can be applied in urban 
representation learning to improve the 
quality of learned representations 
compared to triplet loss. 

Cognitive Security 

The protection of mental processes and 
the ability to construct one's niche 
independently from external 
manipulation or interference. 

Relevant in developing niche 
constructing living digital twins. 

Constrained 
Maximum Entropy 
Principle 

A principle in statistical mechanics and 
information theory that states a system 
will maximize its entropy while satisfying 
given constraints. 

Applies to location-based accessibility, 
considering both the attractiveness of 
locations and the constraints of the 
transport system. 

Convolution Neural 
Network (CNN) 

A type of deep learning network 
commonly used for analyzing visual 
imagery. 

Used in processing street-view or 
satellite images for urban analysis and 
transport planning. See also spatial 
convolutions in our novel Ring 
Aggregation methodology. 

Cost-Benefit 
Analysis (CBA) 

An economic evaluation method that 
compares the costs and benefits of a 
project or policy in monetary terms. 

Widely used in transport planning to 
assess the economic viability of 
infrastructure projects and policies, 
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Relying on valuation as seen in the static 
approach to liveability. 

helping decision-makers determine if 
the benefits outweigh the costs.  

DGGS (Discrete 
Global Grid System) 

A spatial reference system that uses 
hierarchical tessellation of cells to 
represent the Earth's surface. 

Provides a framework for representing 
and analyzing spatial data in transport 
planning, enabling efficient 
computation and visualization. 

Dynamic Approach 
(to Liveability) 

An approach that views liveability as an 
ongoing, adaptive process between 
residents and their environment. 

Encourages transport planners to 
consider the evolving relationship 
between transport systems and urban 
liveability. 

Ecological 
Psychology 

A psychological approach that 
emphasizes the study of behavior in the 
context of the environment. 

Offers a perspective on how individuals 
perceive and interact with their 
transport environment, influencing their 
travel choices and behavior. Rather 
than objectively evaluate the choice set 
at every decision moment, one wishes 
for external events to occur proactively. 

Enactivism 

A theory in cognitive science that views 
cognition as a dynamic interaction 
between an acting organism and its 
environment.  

Challenges traditional views of 
transport behaviour by highlighting the 
role of embodied experience and 
interaction with the environment in 
shaping travel choices. 

Expected free 
energy 

Information-theoretic quantity, which 
expresses the potential of an action to 
cause expected/unsurprising future 
observations. 

It can be decomposed into pragmatic 
and epistemic values. Pragmatic value 
is better known as utility, and epistemic 
value is like option value. 

Free Energy 
Principle 

A physical principle which postulates 
that biological systems minimize their 
free energy to maintain their order and 
survive. 

Provides a theoretical foundation for 
understanding the dynamic relationship 
between individuals and their 
environment, explaining how they adapt 
and make decisions to minimize 
uncertainty. 

Generative Model 

A type of statistical model that can 
generate new data instances through 
sampling. 

In transport, these models can simulate 
and predict travel behaviour, enabling 
scenario planning and policy 
evaluation. 

H3 Geospatial Index 
Uber developed a hierarchical 
hexagonal geospatial indexing system. 

Useful for efficient spatial analysis and 
representation of transport-related data 
at various (nested) scales. 

Hedonic Pricing 

A method for estimating the value of 
environmental amenities or 
disamenities based on their impact on 
property prices. 

It can be used to assess the economic 
value of transport infrastructure and its 
impact on liveability and quality of life. 

Homo Economicus 
vs. Homo Narrans 

Contrasting views of human behaviour, 
where Homo Economicus is a rational, 
utility-maximizing agent, while Homo 
Narrans constructs meaning through 
narratives and experiences. 

Highlights the limitations of traditional 
economic models in transport planning 
and emphasizes the importance of 
considering the subjective and narrative 
aspects of travel behaviour. 
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Indicator 

A measurable variable which is used to 
represent or quantify a concept or 
phenomenon. 

In transport policy, indicators are used 
to assess and monitor various aspects 
of the transport system, such as 
accessibility, safety, or liveability.  

Information Gain 

The reduction in uncertainty or entropy 
is achieved by acquiring new 
information. 

In active inference, it guides the 
selection of actions that are expected 
to resolve the most uncertainty. See 
also option value. 

Leefbaarometer 

The Dutch government commissioned 
an instrument to measure and monitor 
liveability across the country. 

A practical example of how liveability is 
operationalised in transport policy 
evaluation in the Netherlands. 

Living Digital Twin 

A dynamic, data-driven representation 
of a physical system that can simulate 
and predict its behaviour. 

It can be used to model and optimize 
transport systems in real time, 
improving decision-making and policy 
implementation. 

Location-based 
Accessibility 

A measure of the ease with which 
activities or opportunities can be 
reached from a given location. 

Central to transport planning, helping 
evaluate the effectiveness of transport 
systems in connecting people to 
destinations. 

Markov Blanket 

In probability theory, the set of variables 
that shield a variable from the influence 
of other variables in a Bayesian network. 

In active inference, it separates internal 
and external states, enabling the 
system to maintain its integrity and 
interact with the transport environment. 

Mental 
Representation 

Internal symbols or connections that 
correspond to external reality.  

Influences how individuals perceive and 
interact, affecting their travel decisions. 

Multi-modal 
Learning 

Machine learning techniques that can 
process and relate information from 
multiple types of input or "modalities". 

Enables the integration of diverse data 
sources (e.g., images, text, sensor data) 
in transport analysis and planning. 

Multi-Criteria 
Analysis 

A decision-making tool that evaluates 
multiple, often conflicting, criteria to 
support decision-making. 

It can be used in transport policy to 
weigh different objectives, such as 
accessibility, liveability, and safety 
when evaluating infrastructure projects. 

Needs/Desires 
Drivers of behaviour. Analogous to 
characteristic states and preferences. 

In transport policy, fulfilling needs and 
desires is utility maximisation.  

Niche 
The reciprocal relationship between 
resident and environment, in its totality. 

The personalised choice set with which 
travellers go out into the world. 
Perceiving only those affordances with 
which they are familiar and habituated. 

Niche Construction 

The process by which organisms modify 
their environment to meet their 
characteristics states. 

In transport, it highlights how 
individuals and communities shape 
their transport environment through 
their choices and behaviours. See 
residential self-selection. 

Operationalisation 

The process of defining abstract 
concepts in terms of observable, 
measurable variables. 

Essential for translating theoretical 
concepts of liveability and accessibility 
into practical metrics for transport 
policy evaluation. 
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Option Value 

There is value in having multiple options 
regardless of the content of those 
options. 

In transport networks, having multiple 
similar destinations and redundant 
network links improves the chance that 
the needs/desires of a traveller can be 
satisfied. 

Percept 
A latent representation of an external 
thing in the world.  

The product of perception. 
Operationalised using neural networks. 

Predictive 
Processing 

A theory in cognitive science suggests 
that the brain constantly generates and 
updates predictions about sensory 
input. 

It provides a framework for 
understanding how individuals 
anticipate and respond to changes in 
their transport environment, which 
influence their travel behaviour and 
decision-making. 

Renormalising 
Generative Model 

A type of generative model that can 
handle multiple scales or levels of 
abstraction. 

Useful for modelling complex transport 
systems that involve interactions 
across different spatial and temporal 
scales. Aligns with the H3 DGGS. 

Representation 
Learning 

A machine learning approach that aims 
to learn meaningful and useful 
representations of data, often in a 
lower-dimensional space. 

Used in urban representation learning 
to create compact and informative 
representations of urban environments 
from high-dimensional data, supporting 
transport planning. 

Ring Aggregation 

A method for aggregating spatial data 
based on concentric rings around a 
central point. 

It can be applied to analyze the impact 
of transport infrastructure on 
surrounding areas at various distances. 

Self-supervised 
Learning 

A machine learning paradigm. The 
model learns the inherent structure of 
the data without specifying the desired 
target but with discrete labels, like 
spatial units in a DGGS. 

Enables the learning of useful 
representations from unlabeled urban 
data, reducing the need for manual 
annotation and facilitating data-driven 
approaches to transport planning. 

Spatial 
Convolutions 

A type of mathematical operation used 
in image processing and deep learning 
to extract features from local 
neighbourhoods in images or spatial 
data. 

Applied in urban representation 
learning to capture spatial relationships 
and patterns in urban data, enabling the 
learning of context-aware 
representations for transport analysis. 

Static Approach (to 
Liveability) 

An approach that views liveability as a 
measurable outcome at a specific point 
in time. 

Commonly used in current transport 
policy evaluation but may miss the 
dynamic aspects of urban systems. 

Triplet Network 

A type of neural network architecture 
used in metric learning, which learns 
from triplets of examples. Minimising 
the difference between anchor and 
positive, maximising the difference 
between anchor and negative. 

It can be used to learn similarities 
between different spatial units. 

Urban 
Representation 
Learning 

The application of machine learning 
techniques to create compact, 
meaningful representations of urban 
environments. 

Enables the automation of liveability 
assessment and supports data-driven 
approaches to transport planning and 
policy evaluation. 
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Utilitarianism 

A philosophical approach that evaluates 
actions based on their overall utility or 
happiness for the greatest number of 
people. 

Often used in transport policy 
evaluation, but its limitations in 
addressing equity and distributional 
concerns have led to the exploration of 
alternative frameworks like broad 
prosperity. 

Valuation 

The process of assigning a value or 
worth to something. It is often used in 
economics and policy evaluation.  

In the context of liveability, it refers to 
how residents perceive and value 
different aspects of their living 
environment, including transport 
infrastructure and services. The more 
needs are satisfied, the better. 

Variational Free 
Energy 

A quantity in the Free Energy Principle 
that measures the difference between 
an organism's internal model and its 
sensory inputs. 

In transport modelling, it can represent 
the discrepancy between an individual's 
expectations and actual experiences of 
the transport system, driving adaptive 
behaviour. 
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Preface 
This thesis is the result of the Master Transport Infrastructure and Logistics, a period in which I 
learned not only about transportation but about infrastructure in its broadest sense—more than 
static physical artefacts but animated by a dynamic process. Liveability is ultimately the study 
of such an animating force, whether that of residents, cities, or countries. 

Making digital twins with hexagons allows me to combine two games played throughout life, 
Maxis's SimCity and Sid Meier's Civilization series. At some point, simulation is insufficient to 
describe the real world. Ironically, this has led to the study of even more simulations. 

Several courses in the master's program (policy track) provided the foundation to consider the 
dynamic approach. Most notably, the repeated focus in many courses on the limitations of 
utilitarianism led me to search for alternatives. The active inference institute provided ample 
affordances to pursue one such alternative. 

Today's rapid technological progress means that this thesis is an attempt to keep up. Some 
terminology, like simulating systems' niche construction process, may seem fantastical, but it 
is already being implemented in other contexts, such as business, regenerative agriculture and 
the spatial web. At the same time, there are seemingly a dozen crises, each relating to 
transportation in some way, shape or form. 

I am grateful to my family, friends, and flatmates for their supportive environment and the 
mentorship offered by the supervisors. The level of writing achieved in this thesis would not 
have been possible without the constructive patience of all involved. 

Throughout the writing of this thesis, I used the language applications Grammarly and Claude 
3.5 Sonnet. For all text to which it applies, Claude was first extensively prompted by me using 
drafts of the thesis and then further edited. No new ideas originated from Grammarly or Claude. 
They are simply not good enough yet except for restructuring messy drafts, providing feedback, 
and assisting with Python code.   
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Summary  
Cities worldwide face the dual challenge of increasing density while developing sustainably. 
These pressures strain transportation systems, necessitating optimal performance. In the 
Netherlands, transport policy focuses on three main objectives: accessibility, liveability, and 
safety. This thesis addresses accessibility and liveability. 

Liveability concerns the fit between residents and their living environment. This fit is an 
ecological relationship involving interactions with the built, natural, and social environments. 
The thesis explores two approaches to operationalising this ecological fit: static and dynamic. 
The static approach, exemplified by tools like the Leefbaarometer, views liveability as a 
measurable outcome. It considers the valuation of the environment as a proxy for fit, obtained 
through surveys or hedonic pricing methods. This approach is widely used in current transport 
policy evaluation but is limited in its ability to do ex-ante analysis. 

On the other hand, the dynamic approach views liveability as an ongoing process. It considers 
fit the difference between what a resident expects to observe and experiences. This approach 
uses generative modelling, which involves causal probabilistic relationships. The manner in 
which these generative models are updated is unique, attempting to capture the dynamics of 
the reciprocal relationship between the resident and the living environment. The resident 
embodies the generative model, containing both internal and external states. The generative 
model is definitive of a resident's niche. Construction of the niche is afforded by accessibility.  

 

Objective 

The thesis aims to work towards future operationalisation of the dynamic approach to 
liveability. While full implementation is far beyond the scope, the objective is to understand the 
role of representations in defining and operationalising liveability. In the context of transport 
systems, representations can be understood as simplified and compressed digital twins of 
complicated urban environments. These representations can be used for decision-making in 
infrastructure planning and policy formulation. 

The dynamic approach to liveability relies on the action-perception loop as its generative 
model. This loop means that perception is anticipated, an action in itself. Selecting optimal 
actions is a matter of maximising epistemic and pragmatic value. Writing a thesis is an action; 
hence, we follow the formal decomposition of action selection: 

• Epistemic component: develop a theoretical framework, exploring the action-
perception loop in liveability and the role of representations within this loop. Bridging 
cognitive science and transport modelling enables novel machine learning applications. 
 

• Pragmatic component: automate the operationalisation of liveability by applying urban 
representation learning techniques to the province of South Holland. Our novel 
contribution is the developed mathematical model based on spatial convolutions. The 
study uses various data sources relevant to transport planning, including road 
networks, public transport schedules, aerial and street view images, and points of 
interest. 
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Modelling Study 

Addressing the pragmatic component, we develop a novel urban representation learning 
technique using the H3 hierarchical hexagonal discrete global grid system (DGGS). Neural 
networks are used to extract representations such that each discrete hexagon is assigned a 
coordinate in the metric representation space. Features from different data sources are 
extracted using individual encoder networks. These features are then combined using a late-
fusion network to obtain the final representations. We develop Ring Aggregation, a 
mathematical model to fuse multiple features while accounting for spatial context through 
sampling heuristics and spatial convolutions. The methodology considers insights from the 
dynamic approach to liveability, like landscapes of affordances, analogous to location-based 
accessibility. No operationalisation of the dynamic approach is developed in this study. 
Instead, this study applies the static approach and evaluates urban representations using 
multiple univariate linear regressions with Leefbaarometer scores as targets.  

 

Key Epistemic Observations 

• The action-perception loop is central to the dynamic approach to liveability but absent 
in the static approach. 

• Representations play an instrumental role in the action-perception loop, informing 
action selection. 

 

Key Pragmatic Observations 

• Regarding sampling heuristics used to train the late-fusion network, Euclidean distance 
and location-based accessibility perform similarly, better preserving urban area 
integrity. 

• The configuration of Ring Aggregation significantly impacts urban representation 
quality, showing heterogeneity between Leefbaarometer scores. Socially oriented 
scores can perform just as well with smaller receptive fields and steeper weighted 
average functions like exponential. 

• Different data sources excel in predicting various aspects of liveability, suggesting the 
importance of integrated data approaches in transport policy. 

• Compared to urban2vec and M3G studies, Ring Aggregation outperforms them in 
predicting Leefbaarometer scores across the board.  

 

Looking Forward 

By reframing the roles of indicators, perception and preferences, this thesis concludes that 
static and dynamic approaches to liveability are complementary. Complementarity implies that 
the static approach to liveability can be used to bootstrap the development of the dynamic 
approach. While 'living' digital twins operationalising the dynamic approach do not yet exist, 
this study provides building blocks towards their development. Future directions for research 
and application in transport policy centre on the hypothesis that hierarchical active inference 
models are already transport models, just waiting to be used. 
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1 Introduction  
This thesis addresses the definition and operationalisation of liveability in transportation policy. 
It finds an underdeveloped approach to liveability and addresses it through research into 
literature from cognitive science and conducting a modelling study. The latter of which aims to 
provide technical prerequisites for this underdeveloped approach. Finally, directions for future 
research are made to contextualise liveability into broad prosperity as studied in transport 
policy. 

1.1 Societal Relevance 
Many cities worldwide face challenges in urban development, balancing the need for housing 
with sustainable development (United Nations Department of Economic and Social Affairs, 
2023). Two primary pressures on the transport system have emerged. First, densification 
strategies adopted to address the housing crisis offer benefits for sustainable urban living but 
also increase pressure on existing transportation systems and public spaces. Second, there is 
a push for sustainable modes of travel, aligning with emission reduction targets for 2050 
(Ministerie van Inrastructuur en Waterstaat, 2023). Dense urban environments promote 
environmentally friendly travel modes such as walking, cycling, and public transport, creating a 
synergy between densification and sustainability goals (Gupta et al., 2024). 

Concurrent with these two pressures, transport policy has three significant shifts. 1) A systems 
dynamics approach now recognises cities as complex, self-organising systems. This 
understanding has led to considering multiple leverage points beyond traditional infrastructure 
investments, including land use planning, demographic shift management, and behavioural 
nudging (Huibregtse, 2021; Ministerie van Inrastructuur en Waterstaat, 2023; Reudink et al., 
2023). 2) Simultaneously, interdisciplinary planning has become crucial due to the scarcity of 
public space in dense urban environments. Limited space must accommodate climate 
adaptation measures, areas for social interaction, infrastructure for healthy travel options, 
green spaces for well-being, and solutions for reducing pollution (Snellen & Bastiaanssen, 
2021; Ståhle, 2008). The ongoing energy transition, particularly vehicle electrification, adds 
further complexity to these urban planning challenges. 3) Finally, transport policy planning is 
shifting from a narrow economic focus to a broader understanding of societal well-being (Raad 
voor de leefomgeving en infrastructuur, 2024; Snellen & Bastiaanssen, 2021). Broad prosperity 
expands the scope of policy evaluation beyond monetary valuation, additionally focusing on 
what people are capable of and an equitable distribution of benefits and costs. 

1.2 Liveability in Transport Policy 
Liveability has become a key consideration in Dutch transport policy and is now considered 
alongside traditional objectives such as accessibility and safety (Huibregtse, 2021). Liveability 
is generally defined as the fit between residents and their living environment (Dorst, 2005).  

However, operationalising liveability for policy evaluation presents significant challenges. 
Current approaches to measuring and operationalising liveability often rely on static 
interpretations, viewing it as a measurable outcome rather than a dynamic process. Tools like 
the Leefbaarometer in the Netherlands exemplify the static approach (Mandemakers et al., 
2021).  
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While practical as a measurement tool for policy-making, these static measures may not fully 
capture the complex, reciprocal relationship between residents and their environment. For 
example, since the static approach does not consider causal relationships, it cannot be used 
for ex-ante assessment of interventions, only to be used as a signalling instrument 
(Mandemakers et al., 2021). Furthermore, static models are often estimated for large study 
areas to improve statistical confidence in parameter values. However, this also means that a 
subjective concept like liveability is generalised for an entire population, e.g. all Dutch people.  

Leidelmeijer (2004) recommended further study into liveability as a longitudinal dynamic 
process, emphasising an ecological perspective. This ecological approach views liveability as 
an ongoing interaction between residents and their environment, where both continuously 
influence and shape each other. It also aligns with behavioural geography, which studies how 
individuals perceive, interact with, and adapt to their surroundings over time (Acker & Witlox, 
2008; Barker, 1978). Besides liveability, sustainability also involves an ecological relationship 
with the world (Dorst, 2005). Liveability concerns local spatio-temporal scales, whereas 
sustainability covers the globe, spanning many decades into the future. 

The dynamic approach to liveability, which defines the fit between residents and their 
environment as an ongoing, adaptive process, resonates with transport policy. Central to this 
dynamic perspective, the action-perception loop reflects the continuous interaction between 
residents and their urban surroundings. It posits that individuals react to their environment and 
actively shape it through their choices and behaviours. The concept of niche construction, 
where residents actively modify their surroundings to create suitable living spaces, further 
underscores this relationship's dynamic and reciprocal nature. 

In the context of transport policy, this translates to a shift away from viewing transport systems 
as mere facilitators of movement towards recognizing them as integral components in creating 
liveable urban environments. The accessibility afforded by transport networks, for instance, 
shapes the 'landscape of affordances' that residents navigate, influencing their choices and 
behaviours. The dynamic approach also sheds light on phenomena like residential self-
selection, where individuals gravitate towards neighbourhoods that align with their travel 
preferences, and the flow of ideas within communities facilitated by transport networks that 
enable social interaction and innovation. It encourages a move beyond isolated infrastructure 
projects towards a more holistic understanding of how transport systems can be designed to 
foster and support the dynamic processes that contribute to a high quality of urban life. 

1.3 Research Objective 
The limitations of current static approaches to liveability highlight a significant research gap. 
There is a need for a more dynamic, process-oriented understanding of liveability that can 
account for the continuous interaction between residents and their urban environment. This 
dynamic approach aligns with ecological perspectives in behavioural geography (Aitken & 
Bjorklund, 1988) and recent developments in cognitive science, particularly concerning multi-
scale action-perception loops (M. J. D. Ramstead et al., 2019), which describes the reciprocal 
relationship between actors and their environment, see Figure 1. When actors share the same 
option set of actions, they share a niche. 
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Figure 1: The action-perception loop describes the reciprocal relation between a resident and its living environment. 
The resident acts on the environment by moving within or changing it, and vice versa, perceives the environment, 

creating a (mental) representation thereof. The representation is optimistically biased towards one’s preferences (K. 
Friston et al., 2013). Liveability minimises the difference (maximising fit) between this mental representation and the 

environment, mediated by action and perception.  

In line with the decomposition of action selection in the dynamic approach, we delineate the 
research objective into two components: pragmatic- and epistemic value. Epistemic value is 
taken care of by developing the dynamic approach and contrasting it to the currently dominant 
static one, addressing the gap identified by Leidelmeijer (2004). Pragmatic value, on the other 
hand, relates to modelling considerations. The static approach relies on indicators and 
valuation (surveys), which require resources to collect and process. The dynamic approach to 
liveability addresses the need to gather this data by automating its processing and discarding 
the need for valuation altogether. Instead, the dynamic approach attains fit by introducing 
information engines, which produce work by achieving and maintaining their niche through 
(mental) action. The niche is biased towards its characteristic states, better known as 
preferences, see Figure 1. This thesis aims to study the development of the transmission for 
such an information engine by drawing upon representation learning. The transmission is the 
mapping between high-dimensional data in the urban environment and the compressed 
computer-readable representation of that data, which can then be used in a subsequent 
information engine. Of course, the obtained representations can also be used in the static 
approach; however, one would make different modelling decisions for optimal performance. 
So, the method is to learn representations tailored to the dynamic approach while verifying 
them using a static operationalisation.  

Representations are essential in the action-perception loop as they are used to reason about 
the world and select optimal actions. For transport policy aims, the object to be represented is 
the urban region. Hence, we draw upon the urban representation learning literature. Urban 
representation learning may be used for static and dynamic approaches to liveability, offering a 
versatile tool for analysis. On the other hand, active inference provides a framework specifically 
suited for multi-scale action-perception loops—providing the tools to create models that 
themselves construct models of the world (Ramstead et al., 2024). In consideration of both 
epistemic and pragmatic value, the research objective is as follows: 

 

To understand the role of representations in defining and operationalising liveability. 
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To address the objective, we construct a theoretical framework to define and contrast two 
approaches to liveability. Additionally, we conduct a modelling study to address our limited 
understanding of operationalising the dynamic approach to liveability, focussing on learning 
representations ‘as if’ they would be used as transmission in an information engine. To this end, 
the urban representation learning literature will be outlined, and a novel learning strategy will 
be developed considering the dynamic approach to liveability.  

We identify six research questions. The first two relate to defining liveability, drawing 
extensively on the action-perception loop. This loop is the basis of the ecological relationship 
between residents and their living environment. The ecological relationship makes it possible 
for a fit between them to exist in the first place. The role of representations is subsequently 
aimed at contextualising the operationalisation of fit. The latter four research questions relate 
to the operationalisation of representations. Note that there will be no operationalisation of fit, 
as that requires the information engine. Instead, this thesis tackles the transmission, such that 
urban representation learning is used to map the input data towards a compact representation. 
The latter may be used as input for future work that develops the total assembly comprised of 
transmission and engine (Figure 24). How these urban representations are learned depends on 
several modelling choices: how to account for proximity, local context, and data sources. 
Where proximity and local context attempt to capture the first law of geography, which states 
that similar things are found closer togheter (Tobler, 1970). Proximity tackles this by addressing 
the sampling heuristic used to train the neural networks. While accounting for spatial context 
involves the architecture of the neural network by introducing spatial convolutions. Finally, a 
comparison to two other urban representation learning studies is conducted (Huang et al., 
2021; Z. Wang et al., 2020).  

Identifier Question Methodology 

RQ1 What is the role of the action-perception loop in liveability? Literature 
Review 

RQ2 What is the role of representations in the action-perception loop? Literature 
Review 

RQ3 What is the impact of the chosen proximity measure in the sampling 
heuristic used to calculate similarity loss? 

Modelling 
Study 

RQ4 What is the impact of configuration on aggregating over the local 
spatial context? 

Modelling 
Study 

RQ5 What is the added value of different data sources? Modelling 
Study 

RQ6 What is the impact of learning strategy? Modelling 
Study 

1.4 Thesis Structure 
This thesis examines the role of representations in defining and operationalising liveability, 
progressing from theoretical foundations to empirical applications of urban representation 
learning. 

Chapter 2 establishes the theoretical framework, delineating static and dynamic approaches to 
liveability. It introduces key concepts, including the action-perception loop and niche 
construction, contextualizing these within transport phenomena such as residential self-
selection and idea flow. 
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Chapter 3 outlines the methodological approach, detailing data collection processes, model 
specifications, and experimental design. The chapter focuses on the novel ring aggregation 
method, which utilizes the H3 hexagonal DDGS and spatial convolutions to capture spatial 
relationships in urban environments. 

Chapter 4 presents the results of urban representation learning experiments, addressing each 
research question systematically. It encompasses visualisations of agglomerative clustering 
and graphs showing the predictive accuracy of Leefbaarometer scores. 

Chapter 5 synthesizes the key findings, concisely answering the research questions and 
evaluating the main objective. It assesses the potential of urban representation learning to 
automate and enhance liveability assessment in transport policy contexts. 

Chapter 6 discusses broader implications, examining the potential of hierarchical active 
inference models in transport modelling. It notes the similarity between the H3 hierarchical 
DGGS and the newest generative models. Drawing parallels between message passing in these 
generative models and travel journeys in transport networks. The chapter concludes by 
outlining future research directions, including the development of 'living' digital twins for urban 
environments and addressing the mesoscale sustainability gap. To bridge the ecological 
relationship, from liveability at local spatio-temporal scales towards sustainability at global 
scales. 

The thesis includes three appendices: a condensed version of the research in the format of a 
scientific paper, technical details of the learning strategies, and a dictionary of point-of-interest 
labels used in the study. 
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2 Theoretical framework 
The theoretical framework explores urban liveability, its definition, and operationalisation. It 
draws from urban planning, transportation policy, ecological psychology, and cognitive science 
to provide a comprehensive view of liveability. The framework addresses the ecological 
relationship between residents and their urban environments. 

The framework delineates two distinct approaches to understanding liveability. The static 
approach is based on utilitarianism and conceptualises fit as a matter of valuation and 
satisfaction. It views liveability as a measurable outcome that can be quantified through 
indicators and surveys. In contrast, the dynamic approach is grounded in surprise minimisation 
and views fit as a process of niche construction and achieving optimal grip on the world. This 
approach considers liveability an ongoing, adaptive process between residents and their 
environment.  

By distinguishing and contrasting these two perspectives, the framework provides a 
comprehensive understanding of urban liveability, encompassing traditional measurement-
based methods and emerging dynamic, process-oriented approaches. Furthermore, aligning 
with differences in world views: ‘homo economicus’  versus ‘homo narrans’, where people are 
either rational choice makers or narrative constructors of their lived embodied experience. 

Static liveability is conceptualised through a perspectival measurement of the reciprocal 
relationship between resident and environment. Focusing on the resident's perspective of the 
environment is called liveability, while the reverse is quality of life. A second axis is that of the 
spatiotemporal scale considered. Liveability is local and now, whereas sustainability is global 
and into the future. Both axes of this perspectival measurement have intermediates. 
Environmental quality is a more objective term outside these two perspectives, as it does not 
include subjective perception. No perspective is taken. 

Dynamic liveability emphasises perception as a bidirectional process. The approach is rooted 
in ecological psychology and introduces concepts like niche construction and affordances. The 
niche is viewed as the generative model of the coupled reciprocal system. Unlike the static 
approach, which separates residents and the environment, the dynamic approach considers 
the complete system as one entity of interest.  

The operationalisation of static liveability encompasses three key approaches: perceived, 
indicated, and apparent liveability. These methods typically involve fixed indicators and 
metrics, such as those used in the Leefbaarometer. Recent advancements in urban 
representation learning offer promising avenues to automate this process while also 
approximating human perception, potentially providing more expressive alternatives to 
traditional labour-intensive indicators. 

While the operationalisation of dynamic liveability is still theoretical, active inference models 
show potential for modelling the fit between residents and the environment. These models can 
themselves model, aligning with the dynamic nature of liveability. Representations used in 
static operationalisations can be incorporated into dynamic models, but their role shifts from 
being outcomes to study to being instrumental in the process. Dynamic operationalisation 
focuses on the behaviours emerging from these representations rather than the 
representations themselves. 
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Urban representation learning, the study of mapping high-dimensional urban data such as 
street view images onto lower-dimensional representations, applies to both approaches. Both 
approaches rely on indicators, percepts thereof, and needs/desires. Instead of conventional 
indicators, one can use high-dimensional data, feeding it into a neural network that extracts 
representations/percepts.  

 

 

Table 1: Readers' guide to the theoretical framework.  
 

Static Dynamic 
Definition Perspectival measurement  

(0 Defining Liveability) 
 
Valuation  
(0 Defining Liveability) 
 
Environmental Quality  
(0 Defining Liveability) 
 
Quality of Life 
(0 Defining Liveability) 
 
Homo Economicus 
(2.2 Liveability in Transport 
Policy Evaluation) 

Action-perception loop  
(2.4 Ecological Liveability) 
 
Free energy minimisation  
(2.4.2 Formalising the Dynamic Approach) 
 
Niche construction 
(2.4 Ecological liveability) 
 
Affordances  
(2.4 Ecological liveability) 
 
Homo Narrans  
(2.2 Liveability in Transport Policy 
Evaluation)  

Operationalisation Perceived liveability  
(2.3 Operationalising Urban 
Liveability) 
 
Indicated liveability  
(2.3 Operationalising Urban 
Liveability) 
 
Apparent liveability  
(2.3 Operationalising Urban 
Liveability) 
 
Leefbaarometer  
(2.3 Operationalising Urban 
Liveability) 
 
Urban representation learning  
(2.8 Urban Representation 
Learning) 
  

Active inference models  
(2.4.2 Formalising the Dynamic Approach) 
 
Instrumental role of representations  
(2.5 Mental Representations) 
 
Perception as action  
(2.5.3 The Role of Representations in 
Action-Perception Loops) 
 
Urban representation learning  
(2.8 Urban Representation Learning)  
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2.1 Defining Liveability 
Liveability is a complex and multi-dimensional concept encompassing various aspects of urban 
life. It is often used interchangeably with terms like quality of life, well-being, environmental 
quality, and health, leading to ambiguity in its definition. The primary difficulty in defining urban 
liveability lies in the entangled nature of these concepts, each studied by distinct disciplines. 
For instance, environmental scientists simulate the propagation of sound and pollution across 
urban regions, while health researchers examine outcomes from lifestyle choices such as 
active mode use or the presence of healthy eating options. Sociologists study general life 
satisfaction to understand individual components' contribution to one's life, often termed 
quality of life. Lastly, urban planners focus on the living environment and how it fits the needs 
and desires of those residing there. Quality of life and liveability are commonly used 
interchangeably (Tan et al., 2024). Both these terms aim to capture the extent to which an 
environment meets the needs of its residents. As De Haan et al. (2014) put it, “Fulfilling human 
needs, and fulfilling more of them, increases the quality of life.” 

Leidelmeijer (2004) provides a succinct demarcation of terminology, starting with the 
foundational definition that liveability is the fit between a resident and their living environment. 
This fit should be understood as occurring within a dynamic, coupled process between the 
environment and residents, meaning that urban liveability should be seen as a process rather 
than an outcome. In line with (Veenhoven, 2000), this fit is understood through an ecological 
approach, with Veenhoven stating, "liveability is the fit of the environment on the adaptive 
capabilities of a lifeform". Measuring this entangled nature in practice is challenging because 
all variables are intertwined in this dynamic reciprocal process; the environment impacts the 
resident, and vice versa. Figure 2 illustrates this concept using a Venn diagram highlighting the 
entangled process. By focusing on specific components within this conceptual model, 
definitions currently operationalised are derived: when focusing on the environment, it is 
termed liveability; when focusing on the residents, it is termed quality of life. Sustainability and 
liveability are related but distinct in their scales. Both concern meeting needs (De Haan et al., 
2014). However, where sustainability concerns a much larger spatiotemporal vista than 
liveability, the latter is reserved for local neighbourhood-scale relations between residents and 
their daily local environment—the here and now. Sustainability may resemble the ecological 
relationship between cities and the world over the years or even decades, concerning the needs 
of collectives rather than individuals.  
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Figure 2: Perspectives on human-environment fit viewed as a Venn diagram. From (Leidelmeijer, 2004). 

Operationalising the reciprocal relationship between residents and the environment statically 
through perspectival measurement is not the only available approach. Aitken & Bjorklund 
(1988) aimed to make the transactional perspective in behavioural geography accessible, 
which starkly contrasts the act of dividing the reciprocal relationship into measurable 
components for subsequent study.  

The static approach views residents' inner world as static and measurable outcomes given their 
environment. In contrast, the dynamic approach considers the reciprocal relationship between 
residents and their environment as the system of interest. Snipping this reciprocal relationship 
in half characterises a static interpretation of urban liveability, whereas the literature 
emphasises the validity of the dynamic approach, illustrating the discrepancy between theory 
and practice. 

Indeed, as (Leidelmeijer, 2004) notes, the transactional view of behavior-environment relations 
may be the most compelling approach to conceptualising urban liveability and deserves further 
study. This view is concurrent with the ecological perspective, which considers the world made 
of interconnected dynamic systems. The relationship between these systems and the unfolding 
process interests the analyst. Therefore, the definition of liveability used in Dutch literature—
the fit between environment and resident—should be understood from an ecological, 
transactional perspective (Figure 3). However, Operationalising this definition requires 
measurement, meaning that the analyst must take a perspective, either focusing on the human 
or the environment, thus modelling quality of life or urban liveability, respectively. 

 

Figure 3: Fit as the product of interaction in an ecological relationship. From (Dorst, 2005). 



22 
 

Consequently, current operationalisations of urban liveability do not model the interaction of 
liveability in its ecological sense. While the fit between resident and environment is dynamic, a 
perspectival measurement of this process is taken. Practical considerations have led to 
alternative definitions. For instance, Valk & Musterd (1998) posit that "liveability is the valuation 
by the individual of their living environment", and Dorst (2005) summarises current practice as a 
summation of valuations for various aspects, in line with what Pacione (2003) refers to as the 
simplest model of life satisfaction. Leidelmeijer (2004) outlined current operationalisations 
within this limited definition of urban liveability by presenting Figure 4, where liveability is 
represented by chosen indicators/valuations and caused by various determinants, often 
environmental attributes. Section 2.3 will outline how different operationalisations build off the 
definition in Figure 4. Indeed, current operationalisations are only made possible by defining 
urban liveability as a measurable outcome represented by indicators and caused by 
determinants. In modern practice, the independent variables are indicators of proximity to 
schools, and the dependent ones are valuations/satisfactions. 

 

Figure 4: Operationalising urban liveability as a static outcome. From (Leidelmeijer, 2004). 

The bi-directional dynamic between policymakers and researchers greatly influences the 
definition and operationalisations, as noted by (Valk & Musterd, 1998). Policymakers focus on 
actionable liveability measures, while researchers aim to capture the concept as accurately as 
possible. This bi-directional nature can be seen in many studies that often begin by listing 
various actionable aspects to be considered, thereby locking themselves into the static 
approach to liveability. The uniformity with which urban liveability is understood as the study of 
adding more variables means that the variety of effects is well-indexed and studied. 
Unfortunately, the validity of the impact of these effects is contestable, as current framings do 
not capture liveability in its ecological essence. Instead, causality in the model specification is 
assumed by taking a perspectival measurement of the process from the perspective of humans 
towards the environment—valuation. 

Causality presents a difficult problem in the study of urban liveability, largely due to the 
dependence of operationalisations on residents' valuation of the environment. Other life 
circumstances, which may relate more to quality of life, can lead to a low opinion of one's living 
environment (Leidelmeijer, 2004; Veenhoven, 2000). Circumstances related to quality of life 
may be related to employment or personal relationships.  
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Furthermore, models of urban liveability typically assume a structurally causal model. That is, 
theory informs the analyst of the direction of effects, estimating interpretable and meaningful 
coefficients. Therefore, the Leefbaarometer (Mandemakers et al., 2021), the state-of-the-art 
operationalisation, explicitly notes the inherent lack of causal predictive power. It serves 
merely as a measure indicating what liveability may be and is intended as a signalling 
instrument for further studies.  

2.2 Liveability in Transport Policy Evaluation 
Around the transition to the 21st century, there was a concerted effort to understand urban 
liveability for planning purposes of the built environment. Particularly of interest was the 
relationship between liveability and sustainability. It is possible to design a liveable, 
unsustainable city and vice versa (Dorst, 2005). In transportation policy specifically, the 
relationship between liveability and sustainability was virtually nonexistent (Wolsink, 1998). 
More recently, however, sustainability has become integrated as a component of liveability 
within transport policy evaluation (Huibregtse, 2021). This perspective posits that liveability is 
just one policy outcome, along with safety and accessibility. With the shift in policy objectives 
towards liveability and sustainability, unified under broad prosperity, indicators have taken a 
central role. Multi-criteria analysis is proposed as a suitable evaluation methodology to weigh 
the importance of various indicators (de Abreu e Silva et al., 2023). Multi-criteria analysis is a 
methodology that aims to structure trade-offs transparently; however, it is limited to the scope 
of individual studies as weighting cannot be transferred (Annema et al., 2015). 

Broad prosperity is a policy evaluation framework that aims beyond narrow prosperity, the latter 
constrained to the national domestic product. The Dutch government commissioned the 
development to address the narrow scope of economic indicators (Raad voor de leefomgeving 
en infrastructuur, 2024). Moving beyond narrow prosperity is aligned with the observation that 
developed countries find material prosperity insufficient for a high quality of life (Pacione, 
1990). Narrow prosperity requires monetisation of effects, such as travel time and pollution. 
However, monetisation is limited in capturing the various effects relevant to modern policy 
evaluation, for example, being ill-suited to account for environmental concerns (Annema & 
Koopmans, 2015). 

Additionally, experience-related aspects of transportation are hard to account for (monetise) 
under narrow prosperity, such as the quality of trips or places (Anciaes & Jones, 2020). Instead, 
broad prosperity comprises a large set of indicators, including social and environmental ones, 
in addition to economic performance. Performance on indicators should be satisfied equitably 
across the population rather than adhering to utilitarianism, which leads to aggregate 
improvement at the expense of increased inequality (de Boer et al., 2023). Broad prosperity as 
applied to transport policy is similar to the policy formulation outlined by the (Huibregtse, 
2021). Broad prosperity, however, has slightly more aspects, such as splitting liveability into 
health and the living environment.  

Liveability has become a cornerstone of modern transport policy in the Netherlands. Liveability 
is a boundary condition that should be satisfied, along with safety, while maximising 
accessibility. It is up to policymakers to weigh these three objectives (Huibregtse, 2021). 
Furthermore, it is important to note that indicators come in two forms: output and outcome. 
Output indicators relate to measurable things, like the number of vehicle kilometres driven or 
the percentage of modal share. Outcome indicators operationalise policy objectives, such that 
they measure the effects of interventions. Output indicators are meant to be used only for 
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measurement and indicative purposes. Policy appraisal requires causal relationships; hence, 
outcome indicators are required. Outcome indicators require more research due to the need 
for an established causal relationship between measurements and effects on policy objectives.  

As (Huibregtse, 2021) outlines, liveability relates to the impacts of the mobility system on the 
living environment via pollutants (noise/sound) or barrier formation. Accessibility refers to the 
extent to which residents can reach their desired destinations; it is only a means to an end. 
Safety is the third component of the modern policy framework, along with liveability and 
accessibility. It concerns not only traffic safety but also that caused by externalities such as the 
shipping of dangerous substances. Alternative perspectives on transport policy goals have 
been formulated by (Litman, 2011), outlining sustainability as an overarching goal, within which 
liveability is a subset. Four goals are defined: economic, social, environmental and good 
governance/planning. Each set of goals has several objectives and associated indicators. The 
sustainability goals outlined and their associated indicators may be understood as an outcome 
indicator as described by (Huibregtse, 2021), as there is justification for the supportive nature 
of these indicators towards sustainability. Per capita GDP, traffic noise levels, and smart 
growth development are exemplary indicators.  

The difference between static and dynamic views on liveability may provide deeper insight into 
the reliance on indicators. Quantifying the performance of the transport system using 
indicators is implicitly a static approach. While this argument may be more straightforward for 
liveability, accessibility and safety can also be framed from a static vs dynamic perspective. 
Accessibility allows residents to construct their fit with the environment dynamically. It is only 
possible to figure out what niche one should occupy by exploring the broader habitat. That is, if 
it is easy to travel across the country, one might more easily figure out which parts thereof one 
would like to visit again or relocate to for living or work. Liveability is defined as the fit between 
resident and environment, ultimately a dynamic interpretation of action perception, and is 
directly linked to accessibility through the ability to construct such fit. Safety may be framed, in 
turn, as the ability to maintain that fit. Accidents significantly impede the dynamic process; one 
cannot attain fit if one does not exist anymore or if one's capabilities are reduced via injuries.  

Agency, related to capabilities as studied in the broad prosperity framework (Snellen & 
Bastiaanssen, 2021) and distributive justice (Pereira et al., 2017), is essential in the dynamic 
approach (Aitken & Bjorklund, 1988). As discussed in the chapter on ecological liveability, the 
action potential may be that which is perceived in action perception loops. The action in the 
action-perception loop between residents and the environment is reflected in accessibility; 
more accurately, accessibility is the action potential. Option value, as studied in transport 
planning (K. T. Geurs et al., 2006), comes to mind. Choices can only be made if there are 
options in the first place; hence, there is value to be gained by having a variety of travel modes 
and routes at one's disposal.  

Within the dynamic approach to liveability, there is great interest in the difference between 
habitual and purposeful change. In transport policy contexts, habitual change relates to 
everyday travel behaviour, such as driving to work. Habitual behaviour occurs in times of 
stability, where there is no need to change. On the other hand, purposeful behaviour becomes 
necessary in times of change, often taking the form of life events studied in residential choice 
locations (Fatmi et al., 2017). There is a broad literature on the relationship between life events 
and travel behaviour change, which has become a major policy lever. For example, life events 
are unique opportunities to promote car sharing, which can be exploited in the (re)-
development of neighbourhoods (de Gruijter, 2019). 
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Land use plays an important role in the transport system. The movement of passengers and 
goods is only required due to origins, destinations and intermediate resistances. Accessibility is 
best viewed through the lens of activities distributed across space and time (K. T. Geurs & van 
Wee, 2004). Alternative lenses are utility, person based and location-based. Without getting 
into the details of different forms of accessibility, all have in common the proximity of 
destinations to origins in some way, shape or form. In the broad prosperity framework, 
accessibility encompasses capabilities beyond hard infrastructure. There may be a highway, 
but if one does not own a car, then the road is not of much use. Capabilities can, however, be 
extended far beyond obvious examples and account for those with disabilities or difficulty using 
digital services (Durand, 2019). Previous work has studied the role of affordances (capabilities) 
in pedestrian route finding (Vandenbroucke et al., 2013). 

Lastly, circling back to broad prosperity with the active, dynamic perspective. A limitation of 
narrow prosperity and its associated operationalisation using cost-benefit analysis is the static 
nature of the analysis. The value of attributes in the environment is measured and valid as long 
as these stay relatively constant (Banister & Hickman, 2013). However, this is not the case 
during times of deep uncertainty, and cost-benefit analysis may lose its predictive power. 
Scenario-based planning has been proposed as an alternative (Banister, 2008). This 
methodology aligns with the dynamic view of action perception since one projects potential 
futures to take action rather than forecast them, leaving room to change policies as the world 
unfolds. Schwanen (2020) has approached the shift from static to dynamic approaches from a 
different angle, focusing on the transition from homo economicus to homo narrans and the 
continued re-enactment of the former in transport research. Later, it will become clear how this 
transition may be facilitated by moving from static to dynamic approaches to action perception 
and liveability. The dynamic approach to liveability, operationalised using active inference, 
perfectly describes homo narrans (Bouizegarene et al., 2024). An intuitive distinction between 
the static and dynamic conception of action perception is the role of preferences, where as 
static approaches assume full optimism towards achieving ones perferences (K. Friston et al., 
2013), dynamic approaches to action perception construct a narrative understanding of the 
world biased towards preferences. It is preferences which characterise the niche of the 
organism, such that it will act in order to satisfy this biased world view with suitable 
observations. 

2.3 Operationalising Urban Liveability 
Current operationalisations view urban liveability from a static perspective, invoking the 
existence of static dependent and independent variables to be measured and related to each 
other, as illustrated in Figure 4. To understand this approach, starting with a brief history of 
views on operationalising urban liveability and focusing on practices in the Netherlands is 
helpful. Valk & Musterd (1998) initiated the static approach by interpreting the fit between 
resident and environment as the valuation thereof, concentrating on satisfaction with life in 
relation to the living environment. Veenhoven (2000) noted that researchers had been slow to 
acknowledge the unavoidability of valuation as a measure of well-being. Furthermore, he 
posited that there are two operationalisations: apparent and perceived. According to 
Veenhoven, apparent liveability can only be measured through outcomes such as a healthy 
lifespan at the end of life. On the other hand, perceived liveability is to be studied throughout 
life and is measured using the valuation of a resident's living environment. 
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2.3.1 Well-Being across Resolutions, Domains and Time 
Pacione (1990) proposed a modelling framework for well-being which incorporates both 
objective (environmental quality) and subjective indicators (urban liveability). He emphasized 
that subjectivity is about the behaviour-related function of interaction with the environment 
(fit). Figure 5 illustrates the need for objective and subjective indicators measured at different 
granularities and spatial scales. As is common in the static view of liveability, one can 
differentiate by attributes of the resident, such as class and age, as these can be measured in 
neighbourhood composition or survey respondents.  

 

 

Figure 5: A five-dimensional model for quality of life research. From (Pacione, 1990). 

Miller et al. (2013) addressed the problem of geographic scale, presenting a transport planning-
focused operationalisation of liveability. After developing a comprehensive set of indicators 
relevant to liveability from a transportation perspective, local scales are considered by 
incorporating stakeholder perspectives in the multi-criteria analysis, which is a means to 
improve participation (Haezendonck, 2007). Lastly, Miller emphasised the geospatial nature of 
the transportation system's impact on liveability, providing a three-piece argument based on 
land use, space-time (congestion during rush hour), and spatial segregation of demographics. 
Additionally, externalities such as pollution or congestion are correlated across space, so 
spatial proximity explains a lot of variance. The resolution of analysis is therefore found to be 
relevant to expressing impacts on liveability. 

2.3.2 Current Practise 
Dorst (2005) outlined three operationalisations focusing on the role of indicators and residents' 
valuation of the living environment: perceived liveability, indicated liveability, and apparent 
liveability. Perceived liveability relies solely on residents' valuations, which may be stated or 
revealed. Stated preferences are acquired through surveys or interviews, while revealed 
preferences are patterns found in residents' collective behaviour, for example, travel behaviour 
or house prices. Indicated liveability, on the other hand, relies on a normative judgment by the 
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analyst to determine what would likely make for a more liveable urban environment. Many 
operationalisations rely on this form in practice due to the ease of development. However, 
simplifying the burden of operationalisation on the analyst's side may have a significantly 
reduced validity, given the degree to which literature seems to indicate the role of perception or 
subjectivity.  

Lastly, apparent liveability 'emerges' from the interaction between indicators and valuation, as 
proposed in Figure 6. For example, it can be done by estimating a regression model between 
house prices and indicators. The Leefbaarometer is an example of apparent liveability; it 
combines indicators and valuation through hedonic pricing and surveys (Mandemakers et al., 
2021).  

 

Figure 6: Three forms of operationalisation are used in current practice. Figure from (Dorst, 2005). 

2.3.3 Three Facets of Subjectivity 
Liveability is inherently subjective. Which environment promotes the greatest fit differs per 
individual and throughout their life. Operationalising the fit involves characterising the 
environment and its residents. Figure 7 provides a comprehensive overview of the fit of the 
resident environment, including characteristics of the resident, the environment, and their 
intersection. 

Describing the environment involves indicators assigned to a spatial unit in an urban region. For 
example, large municipalities in the Netherlands have a liveability schema like 
‘leefbaarheidscirkel’ in The Hague or ‘wijkprofiel’ in Rotterdam. Each neighbourhood is scored 
on various aspects, such as the availability of amenities and the number of robberies.  
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More generally, the environment is concerned with the built and natural environment and its 
resources, as presented in Figure 7. Residents' characteristics relate to their needs/desires, 
which exist to be satisfied. Lifestyles, culture, health, and personal characteristics describe 
needs/desires. They can also be used to provide practical segmentation into population 
clusters. For example, people of similar age brackets will have similar needs/desires in other 
aspects. Lastly, the perception of the environment separates liveability from environmental 
quality, which is deemed objective (Leidelmeijer, 2004). Additionally, perception relates to 
whether residents value quality of life and liveability. 

 

 

Figure 7: Overview of relevant aspects from literature as they relate to quality of life and liveability. From 
(Leidelmeijer, 2004). 

 

Consolidating these three components into Figure 8 immediately clarifies where fit takes place. 
The conceptual model shows fit as a bidirectional relationship between percepts, the outcome 
of perception, and needs/desires. We will address the three components in reverse order, 
starting with needs/desires, perception, and indicators. It is this order that operationalisations 
seem to take when justifying the choice of indicators describing the living environment. 
Residents care about and value them, and they are perceived in daily life through experience.  
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Figure 8: Conceptual model of the static approach to liveability. 

Facet of subjectivity 1: needs & desires 

Needs relate to basic requirements such as food and shelter. Desires to culturally embedded 
and personally relevant wishes (Veenhoven, 2000). The conceptual model in Figure 8 illustrates 
that needs and desires should be explicitly connected to indicators when crafting an 
operationalisation. Researchers often select indicators based on the broader literature. For 
example, Higgs et al. (2019)  included a "daily living score" (measuring access to essential 
amenities) as an indicator of neighbourhood walkability, aligning with research from Marmot et 
al. (2010), which emphasises the importance of daily physical activity for health and lifespan. 
The need or desire in this example is health and lifespan, and since it is a form of indicated 
liveability, the analyst assumes that residents will assign a valuation. The importance of linking 
needs to indicators echoes the findings of many studies that refer to Maslow's hierarchy 
(Maslow, 1943). By drawing upon an established framework for defining needs and desires, 
analysts can more quickly define indicators without defining or studying needs and desires 
themselves. 

Additionally, according to Veenhoven (2000), needs are measured through mood, whereas 
desires are measured through valuation. The argument is that needs are based on satisfaction, 
whereas desires are based on a wish. As such, the latter is quantified as the difference between 
the wish and the perception of the world. Needs are functional, contrasting wishes, which can 
be detrimental (Veenhoven, 2000). Finally, not every population segment will have similar 
needs and desires, nor will these be stable across an individual's lifespan. Hence, the overview 
in Figure 7 is relevant by noting the diversity of human attributes, going beyond just personal 
characteristics and encompassing lifestyle, culture, and health. 

However, it is essential to note that liveability is a perspectival measurement from the 
perspective of the human towards the environment, as shown in Figure 2. Quality of life goes 
the other way. Hence, the static approach to liveability (with perspectival measurement) 
considers environmental aspects segmented by human aspects. The human characteristics 
are not the object of interest but a lens through which the measurement can be delineated into 
smaller population clusters. Aspects at the intersection of humans and the environment are 
more difficult to capture due to their complexity, e.g. social networks or health care and tend to 
involve subjective indicators. 
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Facet of subjectivity 2: perception 

The perception of the environment makes liveability distinct from environmental quality, which 
is deemed objective (Leidelmeijer, 2004). When talking about different aspects of the 
environment, liveability tends to concern itself with the perception thereof by residents. When 
perception is not explicitly included in operationalisations, such as with indicated liveability, it 
is left implicit. That is, analysts assume that what their chosen indicators point to is perceived 
unambiguously.  

The implicitness of perception may be of great value and justified for two reasons relating to 
population sampling. First, all other effects attributable to quality of life are cancelled so that 
every valuation points only to the presented indicators. Additionally, indicators are understood 
similarly due to, for example, having a similar culture. It is impossible to know if the analyst and 
respondent are talking about the same latent factor, the percept to which the indicator points. 

The perspectival measurement involved in the static approach means that one measures either 
quality of life or liveability depending on the directionality. It is not easy to ascertain to what 
extent a valuation should be assigned to environmental characteristics or personal 
circumstances. As Veenhoven (2004) points out, the elated mood of the resident during the 
survey may be related to other parts of life besides the living environment, such as employment 
or social relationships. 

However, as Leidelmeijer (2004) notes, not all aspects of the environment are perceivable. For 
example, residents cannot detect soil, water, or air pollution, but it still harms their health. 
Therefore, the valuation of these environmental characteristics is up to policymakers, who 
often set limits to concentrations of pollutants to prevent accumulation. 

On the other hand, some studies go as far as to exclude objective environmental attributes 
altogether, focusing entirely on residents' valuation of the environment (Oviedo et al., 2022). 
This approach aligns with perceived liveability as defined by Dorst. Perceived liveability does 
not exclusively imply valuation/satisfaction of the living environment on the whole but should 
include delineation into indicators (Veenhoven, 2000). 

In practice, there are no studies which make perception explicit. Instead, indicators or 
valuation are directly used. To highlight this implicit nature in current static operationalisations, 
Figure 9 depicts perception with a dashed box. 

 

Figure 9: Conceptual model of the static approach to liveability, focussing on the implicit nature of perception in 
current operationalisations. 
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Facet of subjectivity 3: indicators 

Having a combination of subjective and objective indicators is good practice. As Pacione (2003) 
states, 'we must consider both the city on the ground and the city in the mind'. Other authors 
attest to this view (Leidelmeijer, 2004; Mandemakers et al., 2021).  

As crafted by analysts, indicators represent the perceivable aspects of the world that relate to 
needs/desires. Dorst (2005) describes our ecological relationship with the built, natural, and 
social environments, each involving reciprocal interactions across several spheres. The 
analyst's task is to capture these elements with which residents have an ecological 
relationship, forming the indicators in indicated or apparent models of static liveability. 

A prime example of this approach is the Leefbaarometer (Mandemakers et al., 2021). This state-
of-the-art operationalisation defines five aspects of liveability: Safety, Social Cohesion, 
Housing Stock, Amenities, and Physical Environment. Each of these aspects is measured using 
a combination of objective and subjective indicators, providing a comprehensive assessment 
of urban liveability. See the following list to get a feel for the kinds of indicators comprising 
aspects. 

• Safety: Measured using objective indicators like the number of violent crimes, 
vandalism incidents, and public disturbances, as well as subjective indicators such as 
survey results on the experience of safety and nuisance. 

• Social Cohesion: Operationalized through subjective indicators like survey results on 
the experience of social cohesion and objective indicators such as the diversity of life 
stages in a neighbourhood and the population turnover rate. 

• Housing Stock: Includes objective indicators like the vacancy rate of homes, the share 
of homes with a building height greater than 30 meters within 300 meters, the average 
size of homes, and the share of monumental homes and overcrowding.  

• Amenities: Encompasses objective indicators like the distance to various services 
(schools, hospitals, cultural institutions, jobs), transportation stops, and job 
accessibility. The distance to amenities is often weighted using logarithmic functions to 
account for the diminishing relevance of amenities due to distance. 

• Physical Environment: Includes objective indicators such as greenery and water, the 
risk of flooding and earthquakes, noise pollution levels, the amount of non-ionizing 
radiation, and how hot it feels on a hot summer day. 

2.3.4 Automation of Perception 
The resource-intensive nature of collecting indicators for comprehensive models has spurred 
the development of automated approaches. Remote sensing using aerial imagery has been 
employed to predict Leefbaarometer scores (Levering, Marcos, Van Vliet, et al., 2023). This 
approach shows promise in predicting aspects related to physical characteristics and housing 
stock, though it performs less well for features recognisable by proxy, particularly amenities. 
Other research has explored the contribution of various geospatial data to Leefbaarometer 
scores using inverse classification (Peeters, 2022), aiming to identify which actionable 
neighbourhood attributes most impact these scores. While advanced statistical modelling 
offers potential for longitudinal and explainable evaluation of liveability at high resolution, it is 
crucial to remember that the Leefbaarometer is a measurement model, not a causal one. It is 
intended as a signalling instrument to notify decision-makers of a need for further study, not as 
a predictive tool for liveability (Mandemakers et al., 2021).  
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Beyond data processing, deep learning models also serve to more closely approximate human 
perception (Dubey et al., 2016). Unlike the crafted indicators of analysts, people perceive their 
environment through images (Fan et al., 2023; Porzi et al., 2015; F. Zhang et al., 2018), smells 
(Jana, 2021), sounds (Gontier, 2021), heat (Hass et al., 2021), and (embodied) movement. 
Recent advances have focused on using street-view images to describe environmental qualities 
such as safety, beauty, wealth, and liveliness (Zhang et al., 2018). Others have included street-
view images to operationalise the utility people experience in house relocation (van 
Cranenburgh & Garrido-Valenzuela, 2023). Reflecting on the conceptual model in these deep 
learning approaches simulates perception as a one-way process, treating it as an outcome 
(Figure 10). They consider the original data as an indicator and the resulting embeddings as 
perceptions. While this makes perception more explicit than implicit approaches, it still 
represents a static view of liveability and action perception. We will explore this argument 
further in the next section on ecological liveability. 

A nuanced implication of using neural networks to approximate perception is the role of 
ambiguity. The conceptual models outlined so far all have a one-to-one mapping of indicators 
towards their associated percepts and needs/desires. However, introducing something that 
explicates perception means that the mapping between indicators and perceptions may not be 
one-to-one anymore. Indicators in this setting are high-dimensional rather than limited to 
traditionally understood indicators. So, there may be mischaracterisations between data and 
embeddings. For example, when a cat is classified as a dog. The loss of one-to-one mappings is 
due to the encoder's shared weights amongst different indicators.  

 

 

 

 

 

Figure 10: Conceptual model of the static approach to liveability focussing on the potential of neural networks to 
make perception explicit.  
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2.3.5 Process versus Content 
Most efforts in operationalising liveability focus on content - the inventory of indicators and 
their associated valuations - rather than process, which involves how these indicators are 
selected and valuations determined. Ideally, indicators should align with needs and desires, 
but this link is typically drawn from literature rather than participatory methods. Analysts often 
presuppose the connection between needs/desires and indicators before attempting to 
incorporate perceptions. 

This approach means that all operationalisations, not just indicated liveability, involve assumed 
relationships between indicators and needs/desires. These assumptions are implicit in 
indicators and valuations - what we ask about satisfaction inherently assumes its importance. 
Moreover, the methods for gathering valuations come from stated and revealed preference 
studies, which, while suitable for econometric analysis in narrow prosperity, may not fully 
capture the subjectivity central to liveability, as opposed to objective, rational economic 
choices. 

Alternatively, the dynamic approach to liveability is process-oriented, as outlined in the next 
section. How indicators and their associated needs/desires are selected is made explicit in the 
generative model and the additional neural network, engine and transmission, respectively. The 
configuration of those parts should be informed by methods such as participatory value 
evaluation (Dekker et al., 2019; Mouter et al., 2021) to capture deontic values (de Boer et al., 
2023). 

2.4 Ecological Liveability  
Ecological liveability represents an ecological perspective in understanding the relationship 
between residents and their environment. This section explores literature from various fields 
that share the idea that liveability is a dynamic process rather than a static outcome. 
Historically rooted in ecological psychology, these concepts are more familiar to architects 
than transport planners. Architects and urbanists have long focused on a sense of place 
(Appleyard, 1987), demonstrating a deep understanding of ecological psychology. The core of 
these ideas is that the city makes the places, not vice versa (Hillier, 2004). Places are moments, 
interactions with the physical urban environment. 

Ecologically, niches (places) exist within habitats (cities). It does not make sense for a physical 
habitat to emerge from reciprocal relations unless one subscribes to idealism. Though neo-
materialism nuances this problem (Rahmjoo & Albarracin, 2023). The directionality between 
habitat and niche is crucial for understanding the dynamic nature of liveability. As defined 
earlier, liveability relates to the fit between the resident and the living environment. However, 
how this fit is conceptualized can be static or dynamic. While previous chapters focused on 
static operationalizations, this section fully acknowledges the dynamic approach. This 
approach assumes perception as an action rather than an outcome, aligning with ecological 
psychology, transactionalism, and enactivism. 

A recurring theme throughout this thesis has been the shift towards optimising well-being in 
policy evaluation through liveability and quality of life. This section will demonstrate how well-
being, related to liveability and quality of life, can be operationalised through indicators and 
valuation and by crafting embodied dynamic models (Smith et al., 2022). 
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2.4.1 Behavioural Transport Geography 
Behavioural geography covers many theories on the relationship between residents and their 
environment. Ecological psychology is of great value in behavioural geography due to its unique 
perspective on this relationship. Within transportation policy, ecological psychology provides 
theoretical backing for the link between travel behaviour and spatial, socio-economic, and 
personal characteristics (Acker & Witlox, 2008). A prime example is residential self-selection, 
which explains much of the variance in modelling the relationship between the built 
environment and travel behaviour (Kroesen, 2019; Van Wee, 2009). This concept highlights that 
people often live in areas that match their preferred travel modes rather than the environment 
influencing their behaviour. People who prefer to take the train and use active modes are more 
likely to live in cities. Vice versa, those who prefer to take the car tend to move to the suburbs to 
resolve the dissonance between preferred and actual travel behaviour (De Vos et al., 2012). The 
municipality of The Hague studied attitudes towards mobility, finding that clusters of attitudes 
align with the availability of infrastructure; those who like cars live in areas with low availability 
of public transport and vice versa (Coffeng, 2018). In sum, the characteristics of the 
environment do not influence behaviour insofar as people have already moved to areas that 
match them, resolving their travel behaviour dissonance. 

Ecological psychology emerged as a response to the limitations of behaviourism, which 
focuses solely on the relationship between stimuli and behaviour (Moore, 2011). It recognises 
that behaviour is influenced not just by stimuli but also by desires and expectations, a wish for 
something in the world (Segundo-Ortin & Raja, 2024). In ecological psychology, perception and 
response are inextricably linked, with decision-makers perceiving options for actions or 
affordances (Rietveld & Kiverstein, 2014). Indeed, top-down action, selected from a set of 
affordances, precedes bottom-up input, the mixing of which forms perception. This non-trivial 
description of perception, beyond bottom-up processing, requires attention and will, therefore, 
be the focus of the remainder of this section, as well as that on mental representations. 

2.4.2 Formalising the Dynamic Approach 
The free energy principle and its corollary, the theory of active inference, provide a framework 
for operationalising action-perception loops across scales (M. J. D. Ramstead et al., 2019). This 
principle describes how self-organising systems stay far from thermodynamic equilibrium, 
explaining what stuff should do if it does not want to dissipate (K. Friston et al., 2014). Applied 
to living systems, it introduces the concept of characteristic states, or niches, which maintain 
the system's distinct existence (Bruineberg et al., 2018). Things emerge when stuff maintains 
characteristic states—a pullback attractor, as studied in dynamical systems (think whirlwind). 
The free energy principle provides the mathematics of 'things' or particles. A subset of these 
cognitive particles can select actions from a set of affordances. Another subset has temporal 
thickness provided by hierarchical structure (K. Friston et al., 2023). To understand temporal 
thickness, think about the pointers in a clock; the outside moves faster than the inside. The 
larger the radius, the more thickness. Those things without active states are like rocks. Those 
things with temporal thickness have a hierarchical structure and can account for longer spatio-
temporal scales (sustainability). 

An intuitive description of this dynamic process, which constructs and maintains niches, is to 
consider a room filled with soap bubbles—idealised particular things. Only those bubbles that 
have nestled themselves into a niche will stick around. Here, a niche is a timely balance 
between external and internal bubbles such that their pressures cancel each other out. The 
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remainder of the bubbles which fail to satisfy this synchronicity will pop. Importantly, the 
surfaces never touch each other but only interact to push air currents, which apply pressure if 
concentrated. Sparse coupling entails that internal and external bubbles are never in direct 
contact but are always mediated by the bubble's surface of interest.  

Furthermore, the internal dynamics of the bubble have characteristic states such that it will 
gradually wiggle towards a setting in which it does not collide with external bubbles without 
timely internal compensation. A pullback attractor of internal bubbles fulfils the role of 
preferences, so the bubble of interest will act accordingly; if it does not, it dies. The wiggle is 
more formally known as Langevin dynamics, which describes a deterministic path with 
stochastic noise. The free energy principle boils down to the observation that whatever is left 
out there in the world to be observed should probably follow this principle; otherwise, it would 
have dissipated (bubble pops). In turn, the free energy principle is somewhat deflationary, like a 
tautology, as Friston acknowledges (K. Friston, 2018). 

Active inference applies the free energy principle by describing what these systems do. Where 
the free energy principle is a principle, active inference describes its dynamics, and Bayesian 
mechanics elaborates on its mechanics (M. J. D. Ramstead et al., 2023). The essence of all 
these descriptions is Lagrangian equations, which operationalise the concept of paths of least 
action; the most likely evolution of states throughout time is the one that deviates the least 
from an optimal path, as deviation requires action. It is subsequently a computational problem 
to approximate this optimal path, as it is not analytically derivable for real-world problems.  

While a comprehensive technical treatment of either the dynamics or mechanics is beyond this 
thesis's scope, it is useful to delineate some key concepts to understand the concept of niche. 
Active inference posits decision-makers as being conditionally independent of their 
environment by introducing a Markov blanket, Figure 11. This Markov blanket separates internal 
and external states, with the dynamically coupled system aiming to balance these states by 
employing active and sensory states, Figure 12. More accurately, the relationship is sparsely 
coupled. Such that internal states do not affect external states directly and vice versa. 

The minimisation of differences between internal and external states is mediated by action and 
perception, represented by active and sensory states. A key component of active inference is 
partial observability: decision-makers never have access to the 'true' world, only their 
observations (and actions). They constantly attempt to infer the causes of their observations, 
which are the hidden states of their world model. Furthermore, self-evidencing is when the 
cause of observation is one’s action. This inference of latent causes from observations makes 
active inference a Bayesian approach to perception, Figure 13. 

Predicting observations, known as predictive processing (Clark, 2013), leads to efficiencies as 
only divergences between top-down predictions and bottom-up observations must be 
processed. This constant flux of errors continuously updates the world model throughout life, 
unlike neural networks, which rely on backpropagation (Millidge et al., 2022).   

Active inference can be framed as a study of generative models. These models are joint 
probability distributions that contain active states in addition to observations in the case of 
enactive models. The generative model of inferring hidden states from observations, as 
illustrated in Figure 13, is as follows: 

𝑃(𝑠, 𝑜) = 𝑃(𝑠)𝑃(𝑜|𝑠) 
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Marginalisation of this generative model allows for the calculation of individual probabilities, 
e.g. the probability of an observation: 

𝑃(𝑜) = ∑ 𝑃(𝑠, 𝑜)

𝑠

 

Bayesian updating is how the generative models are improved by incorporating new 
observations/evidence. Posterior distributions result from such an update. An example is 
presented below. A marginalisation term is added in the numerator to ensure a total probability 
over states of 1:  

𝑃(𝑠|𝑜) =
𝑃(𝑜|𝑠) ∗ 𝑃(𝑠)

𝑃(𝑜)
= 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
 

 
Figure 11: Illustration of a Markov 

blanket in a Bayesian network. 
Circles contain probability 

distributions and arrows, which 
are their interdependencies. One 

can write the probability of A 
given its parents. The dotted line 

denotes the blanket. From 
Wikipedia. 

 

Figure 12: reciprocal relationship between 
agent and environment. Markov blanket 
returns through sensory- & active states. 
Sparse coupling via blanket ensures the 

agent is distinct but ecologically coupled to 
the environment. From (Sims & Pezzulo, 

2021). 

 

Figure 13: Causal relationship 
between hidden states and 

observations. 

 

Action in generative models is incorporated by adding policies to the generative model. Policies 
are sequences of action that apply to the hidden states. Observations depend on hidden states 
and policies, whereas hidden states depend on policies, and policies are independent of the 
others.  

𝑃(𝑜, 𝑠, 𝜋) = 𝑃(𝑜|𝑠, 𝜋)𝑃(𝑠|𝜋)𝑃(𝜋) 

A more complete formalism of such generative models can be found in Figure 14. Hidden states 
progress, while observations are inferred through hidden states, and action applies to hidden 
states at the transitions between time steps. At this point, it is worthwhile to reintroduce the 
bubble metaphor; internal bubbles push against the main surface until external ones push 
them back again. The internal states palpate the blanket in expectation of colliding with an 
external bubble/state. The divergence, anything but equal pressure of bubbles, is propagated 
throughout the model’s parameters for updates. While these models run on computers and 
cannot die if they fail to predict well enough, alternative directions propose the need for mortal 
computation (Ororbia & Friston, 2023). 
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Figure 14: Generative model for discrete (categorical—Cat) states. From (K. J. Friston et al., 2017). 

 

In contrast to the static perspective of liveability, which considers fit between resident and 
environment to be a valuation, the dynamic approach posits that fit occurs through perception. 
Panel A in Figure 15 illustrates how the static approach locates fit between percepts and 
needs/desires. In contrast, the dynamic approach proposes that fit occurs between indicators 
and percepts—observations and hidden states. Panel B illustrates how neural networks can 
map high-dimensional data to lower-dimensional hidden states (image to a few numbers). 
Individual images are indicators; their representations are hidden states. Moreover, panel C 
unrolls the dynamic approach presented in A out over time.  

In line with active inference, policies impact the world model and tend to align with needs and 
desires. Policy selection is based on expected free energy (G). It is calculated by imagining 
actions and their resultant observations using an approximate generative world model: the 
variational density Q. Only affordances (choice set) can become sampled policies. Expected 
free energy is a combination of information gain and pragmatic value: 

𝐺(𝜋) = 𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 + 𝑃𝑟𝑎𝑔𝑚𝑎𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 

The discrepancy between the world model and observations represents the fit between the 
resident and the environment. More formally, this discrepancy is variational free energy—
minimising it implies perceiving observations such that the percepts align themselves to be as 
simple (low complexity) and accurate as possible, like Occams razor: 

𝐹(𝑄, 𝑜) = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
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Figure 15: The place of fit between environment and resident defines the difference between a static or dynamic 
interpretation of action perception. Figure A shows two models; the top right illustrates the static approach, and the 

bottom the dynamic. Figure B builds upon the dynamic approach, showing an active inference implementation where 
a neural network is inserted into the bidirectional relationship—the neural network is akin to the transmission in an 

engine. Figure C expands upon A by adding temporal depth. The initialisation, t = 0, is left out for visualisation 
purposes.  
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2.4.3 Affording Action Selection 
The role of affordances is central to the dynamic approach to liveability. In ecological 
psychology, perception is only possible through action. Gibson (1986) developed the notion of 
affordances: "The affordances of the environment are what it offers the animal, what it provides 
or furnishes, either for good or ill." Similarly, in active inference, action plays a role in 
perception, with Parr et al. (2022) referring to this as palpation: hearing is listening, and seeing 
is looking. Rather than perceiving raw sensory data in a bottom-up manner, the dynamic 
approach implies that the potential for action itself is sensed.  

Activities studied in transport planning and places studied by urbanists can be unified under 
affordances. The function of cities is thus constructed through interaction distributed across its 
landscape, taking the term 'landscapes of affordances' proposed by Rietveld & Kiverstein 
(2014) quite literally. This interpretation is enabled by considering accessibility to activities 
afforded by the transportation network, where higher access to other areas is akin to hills in a 
landscape. See Figure 16 and Figure 17 for visualisation of location-based accessibility 
(building density and travel time) where warmer colours are at higher elevations. Just like one 
can walk up a hill to see far into valleys—one can go to a central train station or highway 
entrance to access many destinations. 

 
Figure 16: Location-based accessibility for cycling in 

the province of South Holland. 

 
Figure 17: Location-based accessibility for driving by 

car in the province of South Holland. 

In addition to the landscape of affordances, there are also fields of affordance (Bruineberg & 
Rietveld, 2014). As White & Miller (2024) put it: “the landscape of affordances applies to those 
affordances that make up an agent’s ecological niche, available to us through our socio-cultural 
practises. It is broad, encompassing all of the theoretically available affordances in my local 
environment. Right now, my affordance landscape is the city of Brighton, or rather, Brighton 
understood on the spatio-temporal scale of its particular stable patterns of shared, public, 
affordance.” Unlike landscapes, fields are unique to the individual and change as they interact 
with the world. It relates to those affordances that become relevant in the moment and are 
guided by attention, where attention is not much more than precision weighting in active 
inference, i.e., higher precision on policies that influence hidden states (Clark, 2013).  

The demarcation between fields and landscapes of affordances enables smart ambient 
environments. See White & Miller (2024) for a synthesis thereof with active inference. Such 
smart ambient environments tune not affordances themselves, like infrastructure or objects, 
but the fields of affordance, the process which guides the perception of affordance. In turn, 
these ambient environments may improve allostatic control—the ability to take suitable actions 
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in expectation of the future—which leads to a better grip on the environment. The grip on one's 
environment is a central concept in active inference; it is the purpose of taking actions and a 
description of how capable those actions are of influencing the environment as required by 
needs/desires. If one has a low grip and continues to do so, then mood may lower (Bruineberg & 
Rietveld, 2014).   

Practically, ambient smart environments open or close the field of affordances, such as 
nudging agents to explore or exploit more. Exploration may be helpful when the choice set is 
larger than considered, e.g. habitual car drivers who could use public transport (given that 
these options have similar utility). Exploitation, on the other hand, requires narrowing the field 
of affordances. What is paid attention to should be constricted, enabling focus on a narrow task 
of interest. As Bruineberg and Rietveld discuss, OCD is an extreme example of this narrowing, 
as singular affordances stand far beyond the rest of the field.  

2.4.4 Niche Construction  
Niches and habitats build on affordances by demarcating physical and lived environments. 
Revisiting the active inference formalism of partitioning into states, Figure 12, internal states 
aim to approximate external states, becoming a mirror image inferred through observations. 
The causal mapping inference process is optimised by minimising free energy, which is the 
continuous fitting process. Since external states are inferred through observation, the physical 
environment, as studied in liveability, does not exist per se. Rather, the fit is between the 
resident and the niche (Bruineberg, Rietveld, et al., 2018). The physical urban environment, the 
city, may be understood as the habitat, while the places lived in are niches. The city creates a 
place through the unfolding of perception, in which action is the engine guided by affordances 
within the niche. Importantly, residents live in places or niches rather than physical 
environments or habitats. The niche contains cues to action (affordances), and these 
affordances are perceived rather than raw sensory bottom-up input. Residents may change the 
physical environment (habitat) to construct a shared niche or place, a process known as niche 
construction. Niche construction allows analysts to reframe the static interpretation of (urban) 
liveability as a dynamic process. Building upon cultural, cognitive, and affective niche 
construction, Constant et al. (2022) define it: "Niche construction is the process through which 
organisms create and maintain cause-effect models of their niche as guides for fitness 
influencing behaviour." 

In urban settings, niche construction takes concrete form in infrastructure and dwellings. While 
this process is largely formalised in developed countries, developing countries illustrate that 
niches will be constructed in any way possible, as seen in favelas (Downey, 2016). Lives in 
favelas are distinct from those in formalised neighbourhoods, often yielding much lower 
standards of living due to disease and stress. This intense stratification of urban regions leads 
to disparate distributions of stress. Nagatsu et al. (2023) aptly state, "Cities are cognitive, 
technological, and cultural niches that have enabled unforeseen amounts of innovation, 
economic development, and technological evolution. In many respects, cities should be 
perceived as a pinnacle of niche construction, and cities can be fruitfully understood as 
ecosystems of ideas." 

Applying niche construction to urban settings, such as cycling in cities, reveals interesting 
dynamics. Nagatsu et al. (2023) identify four model assumptions for reasoning about niche 
construction: 1) humans inhabit niches which provide affordances, 2) affordances enable and 
constrain behaviours which also spread through social networks, 3) afforded behavioural 
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patterns reinforce learned behaviours, and 4) affordances may be intentionally refined and 
altered. These assumptions lead to potential feedback loops: improved cycling infrastructure 
creates affordances promoting the uptake of cycling behaviour, behaviours are copied and 
spread, users improve their cycling and navigational skills, increasing use in the future, and new 
niches may be constructed as cycling uptake increases among the population. Empirical 
results support niche construction in terms of city cycling behaviour (Kaaronen & Rietveld, 
2021; Kaaronen & Strelkovskii, 2020). 

2.4.5 Niche Construction and Transportation Policy 
Modern transportation policy, with indicators focussing on accessibility, liveability, and safety 
(Huibregtse, 2021), has slightly different interpretations under the dynamic approach to 
liveability, which explicitly concerns niche construction. Accessibility, in this context, is more 
than an indicator. Instead, accessibility relates to the landscape of affordances based on 
location-based accessibility, which accounts for the attractiveness or opportunities a location 
affords. This concept of affordances is central to niche construction; the choice set is the one 
that affords the action necessary to construct a niche. Accessibility is, in turn, mechanised in 
the dynamic approach to liveability. Furthermore, option value, as it relates to the benefit of 
having redundant affordances in one's living environment (K. T. Geurs et al., 2006), becomes 
explicit through the maximisation of information gain as the dynamic approach considers both 
pragmatic and epistemic value. 

One example of niche construction is residential self-selection. Residential self-selection is the 
phenomenon in which travel behaviour is explained away through either geographic 
characteristics or personal travel preferences. Controlling for personal travel preferences leads 
to a zero loading on geographic characteristics in the structural equation model. Hence, 
residents who prefer certain travel affordances will have moved their house to a niche satisfying 
these. Self-selection is one of the three ways to maximise fit in the dynamic approach to 
liveability. 1) A resident can change the mapping of indicators to percepts, seeing the world 
differently. 2) They can act to change the world, for example, by buying a car. 3) Or they can 
move towards another urban region or neighbourhood.  

As described under the broad prosperity framework, capabilities are a relevant policy 
consideration, as physical infrastructure by itself is useless if it cannot be used (Snellen & 
Bastiaanssen, 2021). Affordances are practically equivalent to capabilities. Equipped with the 
necessary capabilities, residents can actively explore and shape their urban environments, 
constructing niches that maximise fit. These niches extend beyond the physical characteristics 
of the living environment, encompassing social connections and exchanging ideas (Constant et 
al., 2022). As Pentland (2020) describes, this' idea flow' fuels economic growth and innovation, 
flowing most freely across 'social bridges' that connect disparate social clusters. Lucas 
Spierenburg et al. (2023) have developed a method to quantify social segregation in urban areas 
using three indicators: intensity separation and scale. First, using demographic variables 
assigned to each neighbourhood, agglomerative clustering is applied to create clusters of 
similar demographic composition. Then, indicators are calculated for these larger clusters of 
the urban region. Intensity and separation relate to the spatial distribution of groups across 
regions, whereas scale relates to the size of the segregated regions. Accessibility with walking 
as modalities gives the final exposure of each cluster.  

Active inference models provide a framework for understanding and optimising this idea flow 
within communities (Albarracin et al., 2022; Catal et al., 2024). Social cohesion becomes an 
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integral part of niche construction rather than an indicator to measure. Each interaction, 
whether with neighbours or visitors, contributes to this ongoing process of niche construction. 
Urban downtowns become the place for exchanging ideas, fueled by the daily influx of 
commuters from diverse backgrounds. 

Cultural narratives may shape future transportation systems. Active inference models run on 
narratives (Bouizegarene et al., 2024). Dissemination of narratives, or the segregated manner 
thereof, has implications regarding resilience against hybrid warfare (Waltzman, 2017). The role 
of digital communication in niche construction warrants careful consideration. As described by 
the concept of triple access planning, digital communications are just as essential to transport 
planning as infrastructure and accessibility since they address the problem of moving 
somewhere else to perform an activity (Rye et al., 2024). Reiman (1995) underscores the need 
to balance connectivity with concerns about privacy and surveillance, avoiding the creation of a 
digital panopticon. The term panopticon is derived from the Alcratez prison, in which a single 
centralised observation tower looks at the entire prison. It describes people adjusting their 
behaviour with the knowledge that surveillance is everywhere, even if the guard is not looking at 
that moment. 

2.5 Mental Representations 
The Free Energy Principle (FEP) serves as a scale-free operationalisation of the action-
perception loop, providing a unifying framework for understanding the fit between residents and 
their environment across different scales. This principle posits that systems aim to minimize 
free energy, equivalent to maximising model evidence—the probability of observations given 
the model (Parr et al., 2022). Dynamic systems modelled under the FEP perform inference over 
beliefs, maintaining internal models that are continuously updated through interaction with the 
environment (M. J. D. Ramstead et al., 2024). This process is framed as Bayesian inference, 
where systems maintain and update internal models based on their experiences. These internal 
representations, or parameters of the mathematical model, encode beliefs about states and 
are adjusted to guide future actions, reflecting an optimistically biased goal-directed behaviour 
in the action-perception loop. Within this framework, organisms (in our case, the resident) 
embody their niche. That is, the niche is the generative model comprised of internal and 
external states, which are given blanket states and are constantly updated.  

Furthermore, the organism, being embodied and enactive, is its niche. That is, residents are 
places within spaces, creating places through niche construction. Where parameters encoding 
internal states track external states. The niche is formed through the joint generative density of 
internal, external, and blanket states, which are dynamically updated by following gradients of 
free energy (M. J. D. Ramstead et al., 2024). The FEP framework also provides insights into goal-
directed behaviour and teleology, as systems minimizing expected free energy exhibit 
sophisticated goal-directedness. This goal-oriented understanding extends across various 
scales and complexities (Beni & Friston, 2024). 

Figure 18 illustrates the circular causality between action and perception in active inference. 
Panel A shows how preferences shape prior percepts, which, when combined with indicators 
(evidence), become recognized posterior percepts. Panel B introduces the concept of policies 
(action sequences) and observations, demonstrating how top-down priors (actions) interact 
with bottom-up sensory information. Panel C presents a more detailed POMDP scheme, 
showing how action policies (π) are selected based on expected free energy (G) and how they 
influence state transitions over time. 
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The recognition density, representing the organism's 'best guess' about the causes of its 
sensations, emerges as a posterior belief after the interaction of top-down priors (actions) and 
bottom-up sensory information (M. J. D. Ramstead et al., 2020). This process highlights the 
enactive nature of perception in active inference, where the organism actively shapes its 
sensory inputs through action. 

 

Figure 18:  Schematic representation of active inference. Panels A & B are our work. Panel C is from (K. J. Friston et 
al., 2017). (A) shows preferences (needs & desires) optimistically influencing the unfolding world model, which 

generates perceptions. These perceptions then adjust the model. (B) introduces policies (action sequences) and 
observations, demonstrating top-down policy priors interacting with bottom-up sensory information. (C) illustrates a 
partially observable Markov decision process (POMDP) scheme, where policies (π) are selected based on expected 

free energy (G) and influence state transitions over time.  

2.5.1 The Debate on Mental Representations in Philosophy of Mind 
In the philosophy of mind, mental representations have long been a subject of intense debate, 
centred around two fundamental criteria: their capacity to describe the external world and their 
instrumental role in reasoning and action.  

Representationalism posits that cognition fundamentally involves internal models, which can 
be either symbolic or encoded in neural networks. These models are seen as organized internal 
states, separate from the external world, that strive to mirror the structure of the environment 
and accurately describe it (Sims & Pezzulo, 2021). Proponents of this view argue that these 
internal representations are crucial for reasoning, decision-making, and action (Engel et al., 
2016). They contend that the brain builds and manipulates these representations to make 
sense of the world and guide behaviour. 

On the other side of the debate, non-representational views challenge the necessity of detailed 
internal models for cognition. Among these, enactivism has emerged as a prominent theory, 
emphasizing the direct coupling between an organism and its environment. Enactivists argue 
that cognition arises from this dynamic interplay rather than from internal models. They view 
internal states as less distinct from the environment, rejecting the need for them to mirror the 
world's structure. Instead, they focus on sensorimotor contingencies and the direct perception 
of affordances, highlighting the role of embodied action and interaction with the environment in 
shaping cognition. 
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The enactivist perspective suggests that the external world itself serves as the best model, 
negating the need for detailed internal representations (Bruineberg et al., 2018). This view aligns 
with theories of extended cognition, which propose that cognitive processes extend beyond the 
boundaries of the brain to include the body and environment (Constant et al., 2022). From this 
standpoint, cognition is seen as an ongoing, dynamic process of interaction with the world 
rather than a series of computations performed on internal representations. 

As the debate between representationalism and non-representationalism has unfolded, new 
frameworks have emerged that seek to bridge the gap between these seemingly opposing 
views. Active inference, in particular, offers a potential reconciliation by incorporating elements 
of both representational and enactive approaches. This framework maintains the concept of 
internal models but frames them as dynamic, action-oriented control systems that guide 
adaptive behaviour. Active inference provides a formal understanding of how action and 
perception are intertwined, capturing both representational and non-representational 
processes (Constant et al., 2021). 

Active inference suggests that cognition can involve rich, reconstructive internal models while 
also accommodating more direct, embodied interactions with the environment. This nuanced 
perspective acknowledges the role of representations in certain cognitive processes while 
recognizing the importance of immediate environmental coupling in others. This ongoing 
debate in the philosophy of mind mirrors broader discussions about the nature of cognition 
itself. As researchers continue to explore the complexities of mental processes, the distinction 
between representational and non-representational approaches becomes less of a theoretical 
exercise and more of a practical consideration in modelling cognitive systems, such as those 
required to simulate the dynamic approach to liveability. Exemplifying the practical application 
of this debate is the difference between static and dynamic approaches to urban livability. A 
purely representational view might focus on discrete choice models (van Cranenburgh & 
Garrido-Valenzuela, 2023), while a non-representational approach would emphasise the 
immediate, embodied experiences of urban spaces by using virtual or augmented reality to 
study the interaction between, for example, cars and pedestrians.  
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2.5.2 Representation Wars: Enacting an Armistice 
Over the past three decades, the philosophy of mind has been marked by the "representation 
wars", with ongoing debates between representationalist and dynamicist positions. 
Representationalists argue that cognitive processes involve rich, reconstructive internal 
models, while dynamicists view cognition as arising from direct interactions with the 
environment without the need for detailed internal representations (Constant et al., 2021). 
Recent developments in active inference propose a way to reconcile these perspectives by 
showing that a niche's generative model can encompass both representational and non-
representational processes. The usage of niche is critical; we are not talking about an isolated 
brain in a jar but an embodied enactive organism as described by theories of extended 
cognition (Constant et al., 2022). Active inference posits that the brain engages in a form of 
inference, using generative models to predict sensory inputs and guide actions. This process 
involves optimising beliefs about hidden states—the causes of observations—through 
embodied action. Representational pathways involve the manipulation of beliefs about hidden 
states, which is essential for tasks requiring detailed internal models. In contrast, dynamic 
pathways rely on direct sensorimotor contingencies and the immediate coupling of perception 
and action, which are characteristic of enactivist views. 

In the representational pathway, detailed internal models of the world are updated and 
maintained. These models are represented by the generative model P(o,s,π) and the 
approximate posterior Q(s,π). The generative model encodes the agent's beliefs about how 
sensory observations are generated, while the approximate posterior represents the agent's 
best guess about hidden states and policies given sensory data. 

 

Figure 19: Representational pathways in active inference. The left side shows the mathematical formulation of the 
generative model, empirical priors, and likelihood factors. The right side illustrates the graphical model of how states, 

observations, and policies. From (Constant et al., 2021). 

The dynamic pathway in active inference represents a more direct, embodied approach to 
cognition. Instead of relying on detailed internal models, this pathway leverages deontic value - 
a direct mapping from policies (action sequences) to expected observations. The dynamic 
pathway allows for fast, frugal decision-making based on learned associations between actions 
and their typical outcomes in the environment. Habitual action-perception loops can be 
particularly useful for well-learned behaviours or in situations requiring rapid responses. 
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Figure 20: Dynamic pathways in active inference. This figure introduces the concept of deontic value P(o_τ|π) = Ω, 
which represents a direct mapping from policies to observations. From (Constant et al., 2021). 

By incorporating representational and dynamic pathways, active inference provides a 
framework that accounts for a wide range of cognitive processes, from deliberative planning to 
intuitive, embodied actions. This dual-pathway approach offers a potential resolution to the 
"representation wars," acknowledging the value of both internal models and direct 
sensorimotor couplings in cognition. Further similarities may be drawn between system one 
and two thinking as proposed by Kahneman (2011), where system one is like the dynamic 
pathway, whereas system two is more like the representational pathway. 

2.5.3 The Role of Representations in Action-Perception Loops 
The action-perception loop is fundamental to understanding cognition, where action and 
perception are interdependent rather than sequential processes. Furthermore, this means that 
representations arise where there is no direct interaction with the environment; internal states 
are, therefore, representations while still fully subscribing to an enactive view of cognition 
aligned with the action-perception loop and ecological psychology (Bruineberg et al., 2018). 
This view challenges traditional models of cognition by emphasizing action-oriented 
perspectives, a pragmatic turn (Engel et al., 2016). Perception is not a static outcome but a 
biased dynamic process involving palpations, looking to see, listening to hear, etcetera (Parr et 
al., 2022).  

Self-evidencing is a concept where organisms act to gather evidence for their existence. It 
involves actively shaping the environment to align with internal predictions, extending the self-
evidencing concept to encompass niche construction (Constant et al., 2018). Context plays a 
crucial role in interpreting sensory information, with hidden states in generative models 
providing the necessary context for inference. The brain's task is to infer these hidden states 
from sensory data and prior knowledge, maintaining organization within the environment 
(Bruineberg et al., 2018). Context unfolds as residents go out in the world, and the context is 
about the flow of narratives of observations. Not discrete choice moments. 

  



47 
 

2.5.4 Integrating Predictive Processing and Enactivism 
Predictive processing is a core conceptual pillar in active inference. The combined interaction 
of top-down predictions and bottom-up errors enables dynamic rather than static approaches 
to modelling cognition and liveability. Pezzulo et al. (2024) address the differences between 
static and dynamic approaches as seen in generative artificial intelligence, noting that 
embodiment and predictive processing, as provided for by enactivism, are distinct from current 
deep learning approaches. Figure 21 shows how each layer in predictive processing aims to 
predict its downstream neighbour such that error is calculated locally rather than globally and 
subsequently back-propagated. 

 

Figure 21: Conceptual overview of deep learning using backpropagation and error dynamics using predictive coding 
(network). From (Millidge et al., 2022). 

From a predictive processing perspective, Hutto & Hipólito 
(2021) argue that perception is neither radically enactive 
nor purely representational but a hybrid of both. Predictive 
processing suggests that perception involves active 
hypothesis testing, where sensory input is continuously 
compared against predictions generated by internal 
models. This process incorporates both top-down and 
bottom-up information flows, blending elements of 
enactive interaction with representational structures. 
However, the persistence of perceptual illusions, like the 
Müller-Lyer illusion, challenges purely predictive models, 
suggesting that basic perception is habitual and non-
inferential, while higher-order perceptual judgments are 
inferential (Hutto & Hipólito, 2021). Basically, some visual 
perception components have parameters that cannot be 
inferred but are fixed, like the dynamic pathway in 
representation wars.  
Hence, it could be argued that representations studied in neural networks are distinct from 
those studied in the philosophy of mind. In connectionism, network weights are 
representations. In enactivism, mental representations are used to parameterise the action 
selection process. However, these representations are not always needed; some parts of 
action perception are non-inferential. All this seems straightforward until one takes note that 
input-output—deontic pathways—are like trained neural networks. Therefore, the 
representations in neural networks are not so much behaviourist as they are enactive. The 
difference found in the demarcation between training and inference is that neural networks 
using back propagation do not learn during inference. In contrast, predictive processing models 
learn throughout and during operation. 

Figure 22: Müller-Lyer Illusion 
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2.5.5 Practical Considerations 
Challenges in dealing with high-dimensional data within generative models include managing 
computational complexity and ensuring efficient learning and inference. Active data selection, 
evaluated through the metric of information gain, is a crucial concept here. Information gain 
can be decomposed into ambiguity and predictive uncertainty, guiding the selection of the 
most informative data points to improve model accuracy (Parr et al., 2024). 

Deep neural networks, particularly those aiming to simulate the recognition density, offer a 
powerful tool for handling high-dimensional data. These networks can efficiently process 
complex sensory inputs, learning intricate mappings between input data and internal 
representations (Mazzaglia et al., 2022). Different methodologies can be used to train these 
deep neural networks. Figure 23 below mostly involves the reconstruction of the original data, 
as illustrated by the hourglass shape of the red and blue neural networks. Alternatively, one 
could tune these representations to a task. In general, tuning neural networks with a task in 
mind leads to strong performance on that task, for example, by predicting Leefbaarometer 
scores (Levering et al., 2023).  

Furthermore, one can use contrastive methods, which compare timesteps or data points within 
each step with each other (Mazzaglia et al., 2021). Similarity loss tunes the neural network to 
capture how these data points are different. The space between the points, as it were. 
However, this requires a sampling heuristic, which may be difficult to get hold of in practice. 

 

Figure 23: The free energy principle for perception and action: a deep learning perspective. Left: reconstruction of 
input data using an auto-encoder. Panel a: task-oriented representation. Panel b: state-consistent representations. 

Panel c: memory-equipped model.  Panel d: hierarchical structure. From (Mazzaglia et al., 2022). 

However, there is a trade-off between learning from raw data and using pre-processed metric 
representations. While raw data can capture more information, pre-processed representations 
are computationally efficient and valuable when the ambiguity of the mapping is low. Pre-
learned metric representations (learnt by artificial neural networks) can simplify generative 
models by serving as prior knowledge, speeding up learning, and improving generalisation. This 
approach also supports transfer learning between different tasks or domains, making it a 
practical strategy in complex urban environments.  



49 
 

2.6 Conclusions Part One of Theoretical Framework 
The first part of the theoretical framework covered the definition and operationalisation of 
liveability, revealing the concept's complexity due to its relation to terms such as well-being, 
environmental quality, quality of life, and sustainability. Two main approaches to understanding 
liveability have emerged: static and dynamic. Both approaches consider liveability as the fit 
between the resident and the living environment, but they differ in how they conceptualize and 
measure this fit. 

The static approach, currently dominant in practice, relies on indicators and valuation to 
operationalise liveability. It takes a perspectival measurement of the resident-environment 
relationship, focusing either on the environment from the resident's perspective (liveability) or 
on the resident from the environment's perspective (quality of life). This approach has been 
formulated over the years to serve as a measurement instrument for policymakers, exemplified 
by operationalisations like the Leefbaarometer in the Netherlands. 

In contrast, the dynamic approach, grounded in ecological psychology, views residents and the 
environment as a single, dynamically coupled system. This approach introduces concepts like 
niche construction, where residents actively shape their environment to construct suitable 
living spaces. In this view, accessibility is reframed as a landscape of affordances distributed 
across space and time, and social phenomena like social cohesion are seen as forms of 
cultural niche construction. 

At this point, the first two research questions can be answered, and they aim to bridge the gap 
between the role of representations and liveability. The first question addresses the link 
between liveability and the action-perception loop, and the second question is the link between 
the action-perception loop and representations.  

An answer to the first question is that the action-perception loop defines the dynamic 
approach. The dynamic approach involves actively palpating the outside environment with the 
expectation of certain observations. These are expressed and parameterised by probability 
distributions and paths of least action, solving Lagrangian equations. Furthermore, the fit 
between resident and their living environment is found between percepts of indicators and their 
needs/desires. Hence, perception is a proxy for fit, an ongoing dynamic process mediated by 
internally driven characteristic states. 

On the other hand, the static approach to liveability places fit to occur between percepts of 
indicators and needs/desires. Fit is now a matter of valuation. Where perceived indicators, 
percepts, are weighted against their ability to satisfy needs/desires. There is no action-
perception loop within the resident environment relationship.  

An answer to the second question is that representations play an instrumental role in the 
action-perception loop. The dynamic approach to liveability is the action-perception loop, a 
process. Representations in the dynamic approach are outcomes that facilitate the process, 
not outcomes that stand by themselves. A generative model of the action-perception loop 
needs to have some parameters that encode the beliefs about internal and external states. The 
updates of those parameters are outcomes of dynamically selected actions and their 
forthcoming percepts. The static approach to liveability does not rely on the action-perception 
loop, and as such, any representation used to approximate perception is an outcome of a one-
directional measurement. In turn, that percept is weighted off against needs/desires for 
valuation.  
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In line with the concept of natura naturans and natura naturata, the dynamic and static 
approaches are complementary, so they can be used to inform modelling decisions of each 
other. In this thesis, that means that the static approach, as operationalised using the 
Leefbaarometer, can be used to inform how to model the dynamic approach in the future. Since 
operationalising the dynamic approach as a whole is out of scope, the focus is on just the 
neural network, which maps high-dimensional indicators towards lower-dimensional percepts. 
Such a neural network is like a transmission to the information engine; the total assembly 
performs useful work by selecting, constructing, and maintaining its niche.  

There are three key modelling considerations from the first part of the theoretical framework. 1) 
A higher spatial resolution is preferred since transportation impacts liveability strongly, and 
transport phenomena covariate across space such that more detail considerably improves 
performance (Miller et al., 2013b). 2) Various data sources have shown good performance in 
automating the creation of percepts using neural networks. Though mainly aerial- and street-
view images perform the best. 3) Contrastive loss can be challenging to implement due to the 
need for heuristics. Luckily, transport planning has studied relevant heuristics for decades. 
Location-based accessibility aligns with affordances and the constrained maximum entropy 
principle (dual to the free energy principle), making it suited to use as a heuristic in contrastive 
sampling.  

In sum, constructing the dynamic approach to liveability requires both a transmission and an 
engine, see Figure 24. Part one of the theoretical framework explains the engine while noting 
that representations are instrumental to its functioning (percepts). However, the acquisition of 
representations has not yet been addressed. Part two of the theoretical framework will, 
therefore, address the transmission of this broader modelling framework such that the 
methodology and results chapters can develop the transmission in further detail. The 
transmission involves extracting features from data which serve as indicators. Subsequently, 
these indicators, which themselves are representations, should be combined to align with 
maximum entropy, as the selection of actions from affordances applies constraints. 

 

 

 

 

Figure 24: Information engine with transmission.Total assembly. 
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2.7 Representation Learning 
The field of representation learning focuses on processing high-dimensional data into lower-
dimensional representations. A specialized subfield, metric learning, introduces a metric 
distance by which objects are separated and distinguishable from each other in a vector space. 
Common metric distances include Euclidean, Manhattan, cosine angle, and dot product. For 
simplicity, we will refer to both representation learning and metric learning as representation 
learning and use the term "embeddings" for representations. Embeddings have three practical 
properties. 1) As vectors, they allow standard operations like addition, averaging, and 
multiplication. 2) Embeddings can be used in various machine learning settings, including non-
deep learning algorithms. 3) Dimensionality reduction preserves the largest variation within the 
dataset, allowing for compact representations. There are linear and non-linear reduction 
techniques. Both have in common that it is possible to decompose high-dimensional data into 
fewer dimensions while retaining as much variation within the data as possible. For example, a 
linear technique, principle component analysis (PCA), learns a new coordinate system within 
the data, shifting and rotating the axis to give each data point a new coordinate. 

The creation of embeddings relies on deep neural networks' ability to compress information. 
These networks map data to a latent vector space (manifold), representing data points with 
metric distances corresponding to their semantic similarity. Semantic similarity is context-
dependent, measuring how close objects are to each other given all other objects in the 
dataset. The mapping function can be expressed as: 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑟 = 𝐷𝑎𝑡𝑎𝑅 ∗ 𝑓(𝜑) 

Where r is the lower dimension of the embedding, R is the higher dimension of the original data, 
and f(φ) is a neural network parameterised by network weights φ. 

Neural networks used for this purpose are typically funnel-shaped (encoders), with fewer 
parameters at the output than the input. The embedding is extracted from the middle layer 
when data is fed through the network. Key considerations in developing deep neural networks 
for representation learning include: 

• Data type (e.g., images, text) 
• Learning strategy (self-supervised learning is common in metric learning) 
• Neural network architecture 
• Loss function (depends on the learning strategy) 

This study focuses on self-supervised learning strategies, as they allow for learning 
representations useful for various downstream tasks without requiring target values to serve as 
ground truth. Recent findings suggest that different architectures using similar data tend to 
converge on similar representations (Huh et al., 2024). The loss functions used in self-
supervised learning are typically either reconstruction-based (aiming to recreate the original 
input) or contrastive (sampling data points heuristically to learn similarities and differences). 
The upcoming section on urban representation learning will detail the specific types of data, 
neural network architectures, and loss functions used to represent urban regions. This two-
stage process of learning representations and then applying them for verification is standard 
practice in metric learning studies (J. Wang & Biljecki, 2022). 
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2.8 Urban Representation Learning 
In line with the focus on self-supervised learning strategies, this section focuses on urban 
representation learning studies that involve a two-step process. One of embedding creation 
and a subsequent task. Alternatively, if end-to-end learning is applied, the target data of the 
task of interest is included in the training of the neural networks from which embeddings are 
extracted. 

Self-supervised urban representation learning draws upon two inductive priors. First, cities and 
their geospatially located data can be regionalised into smaller discrete spatial units, such as 
administrative units or evenly distributed geometric shapes like squares or hexagons. These 
spatial units provide the necessary classes and labels for self-supervised learning approaches. 
Second, the first law of geography states that things closer are more similar than things farther 
away (Tobler, 1970), guiding the training process to enforce semantic similarity of embeddings 
based on spatial proximity. It is essential to note that the first law of geography is to be 
interpreted loosely. The argumentation for this loose interpretation is that this inductive prior 
aims to ensure that the metric similarities of embeddings are aligned with geographic 
similarities of the urban region. The definition and operationalisation of a geographic similarity 
encompasses everything studied in geography and network science (graphs). Not just fly like a 
crow distance. Alternatively, it could be flows of, for example, vehicles, cargo, pedestrians, 
cyclists, ideas (Alex Pentland & Pentland, 2020), telecommunication data, water, pollutants, 
and cultures/narratives. 

Three modelling decisions shape urban representation learning: the choice of spatial unit, data 
sources, and learning strategy. These decisions overlap significantly. For example, the chosen 
spatial unit constrains the set of applicable learning strategies, with uniformly tiled spatial units 
affording different methodologies compared to irregularly shaped ones. 

The choice of discrete spatial units is primarily influenced by data availability. Many studies rely 
on administrative units, as most data is gathered at this level, ranging from countries to postal 
codes. Alternatively, geospatial operations like the Voronoi methodology are used in networked 
systems such as telecommunications (Almaatouq et al., 2016). Discrete global grid systems 
(DGGS) offer another approach (Kmoch, Matsibora, et al., 2022), using simple, tileable shapes 
to cover the Earth's surface. Each bit of global surface has a designated identifier, allowing for 
rapid calculations compared to conventional geospatial operations based on geometries. The 
H3 geospatial index developed by Uber has become a standard in geospatial machine learning, 
being taken up in several Python libraries, including SRAI (Gramacki et al., 2023). Its hexagonal 
format offers benefits over square indexing, including uniform distance between edge and 
centroid and better shape retention across latitudes (Kmoch, Vasilyev, et al., 2022). 

Furthermore, H3 is hierarchical, in line with the nested nature of active inference models. 
Parent and child units are subsequently above or below a certain resolution. Hierarchical 
processing is highly promising as it aligns with the nature of geographic processes (Bejan & 
Lorente, 2010). Figure 26 provides an overview of four relevant regionalisation methodologies to 
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create discrete spatial units, while Figure 25 illustrates different resolutions of the H3 
geospatial index. Note the nested structure such that higher resolutions fit within lower ones. 

 

Figure 25: Visualisation of resolution in the H3 geospatial index system. Higher resolutions have a finer tiling. 

 

 

Figure 26: Four relevant regionalisation methodologies to create discrete spatial units. H3 hexagons, S2 squares, 
Voronoi, administrative borders. 
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Data sources in urban representation learning aim to approximate the urban region as a 
representational object in metric space. The data chosen should be varied over space 
sufficiently for the neural network to learn differentiating regions. Street view images have 
proven rich in information, correlating with various urban metrics (Fan et al., 2023; Huang et al., 
2021; Z. Wang et al., 2020). Aerial and satellite imagery, while less common in urban 
representation learning (Jean et al., 2018), could draw on extensive experience from remote 
sensing. Points of interest (PoI) data and road network representations further enrich urban 
models, often synergizing with image-based data (Huang et al., 2021; Z. Wang et al., 2020). 
Some studies use hierarchical graphs for road networks (Hu et al., 2023; Wu et al., 2020), while 
others learn to assign features related to land use (Hu et al., 2021) or represent road types in 
spatial units (Leśniara & Szymański, 2022). Specialized data sources like building footprints (Li 
et al., 2023) and transit feed specifications (Gramacki, 2021) offer the potential for more 
nuanced representations. 

The learning strategy encompasses both the loss function and neural network architecture. It 
involves embedding individual data sources and combining them. These operations may not 
always rely on neural networks, as elementary operations like sum, multiplication, and 
concatenation are often sufficient. Loss functions are typically reconstruction-based (e.g., 
mean squared error) or similarity-based, like triplet loss (Hoffer & Ailon, 2015) or circle loss (Y. 
Sun et al., 2020). Neural network architectures range from multi-layer perceptrons to 
convolutional networks and transformers, with some incorporating U-nets or auto-encoders. 
Graph neural networks are well-studied for operating on graph-structured data (Kipf & Welling, 
2017). Applied to transport networks, these have shown promising results in inductively 
predicting the economic performance of metro stations’ catchment areas (Xiao et al., 2021). 
The finding is that richer link information, such as passenger flows, performs better than 
distance information. 

Addressing spatial context is consistent in urban representation learning, often referencing the 
first law of geography. Spatial context may be accounted for in two ways. First, sampling 
heuristics address spatial context through sampling similar and dissimilar regions. Second, 
neural networks with inductive bias, such as convolutional neural networks, have an inductive 
bias that is applicable to urban settings (Liang et al., 2022). The addition of graphs expands the 
range of options for modelling, particularly useful for transportation networks (Huang et al., 
2021; Xiao et al., 2021). In terms of sampling, current research often uses Euclidean distance 
(Huang et al., 2021) or passenger volumes to sample similar and dissimilar spatial units (Huang 
et al., 2021; Luo et al., 2022; F. Sun et al., 2023; Xiao et al., 2021). Passenger volumes, often 
proxied by taxi trips, are generally viewed as better indicators of similarity than Euclidean 
distance. However, no study has explicitly considered accessibility as a measure of similarity in 
relation to the first law of geography.  
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2.9 Accessibility 
Accessibility, previously discussed in relation to liveability, is now approached from a modelling 
perspective. It describes the distribution of activities across space and the travel resistances 
separating them. Within transportation policy, accessibility is a core topic as it relates directly 
to the transportation network's ability to meet residents' mobility needs. 

In the field of urban representation learning, researchers use various measures to understand 
the similarity between different urban areas. Commonly, these include simple metrics like 
Euclidean distance or data on passenger flows. However, despite its importance in 
transportation policy, accessibility has not yet been used as a measure of similarity in urban 
representation learning.  

Accessibility modelling involves several trade-offs and can be understood through various 
approaches. A fundamental distinction exists between aggregate and disaggregate 
approaches. Aggregate models consider zones within the transport network and align with 
macro-simulations of traffic networks. Disaggregate models, on the other hand, focus on 
individual travellers or population segments, often demarcated by socio-demographic 
characteristics such as gender or age. Another significant modelling decision is whether to 
employ decision theory, using a utility measure to quantify the willingness to use infrastructure 
as a measure of accessibility. While some methods do not explicitly use choice models, they 
may implicitly do so by estimating different parameters for segments of populations. 

Geurs & van Wee (2004) define four types of accessibility. Infrastructure-based accessibility 
considers the characteristics of the transportation network, such as travel time (reliability), 
speeds, and congestion. While this approach provides a rich overview of network conditions, it 
does not specify how activities are distributed across time and space. Person-based 
accessibility, a disaggregate approach, evaluates travel patterns across time and space by 
modelling individual travel trajectories. This method is particularly useful for considering 
temporal edge cases, such as the often reduced public transport frequencies during off-peak 
hours. However, it faces practical challenges related to computational power and data 
availability. 

The log sum approach, commonly used by transportation engineers, is particularly powerful 
(Hansen, 1972). It can calculate the consumer surplus of a transport policy intervention, 
making it suitable for monetary evaluation (van Wee, 2016). This approach is based on the 
concept of expected utility, assuming that people are (boundedly) rational choice-makers with 
varying preferences for different travel attributes. It involves summing all of the alternatives in 
the choice set, like travel modes or destinations. While it provides rich insights, the log sum 
approach requires extensive data on both travel resistances and traveller preferences. 
Furthermore, it may best be understood as the first three steps in the four-step transport 
model, including trip generation, trip distribution and modal selection. Only the fourth step, the 
assignment of flows across the network, is left out (Mink, 2023).   
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Figure 27: four-step transport model. Step 1: trip generation at every zone. Step 2: distribution from every zone to all 
others. Step 3: modal split decision of trip between zones. Step 4: assignment of trip potential throughout the 

transport network. From (Mink, 2023) 

Location-based accessibility, favoured by geographers, captures the interaction between 
transport and activities across urban regions without considering individual traveller 
characteristics. It uses resistance curves to model how the likelihood of taking a trip diminishes 
with increasing travel costs. Geurs (2018) notes that power law functions often empirically fit 
these curves best while noting that exponential functions are more popular in practice due to 
theoretical roots in maximum entropy (Reggiani et al., 2011). This approach can be adapted for 
different population segments or travel modes and has been found to yield similar outcomes to 
the log sum approach when equally segmented. The definition of activities is a crucial 
modelling decision in accessibility studies, as they are the reason for travelling. Common 
approaches include counting jobs and shopping opportunities, inventorying desired services (K. 
Geurs & van Wee, 2023), or using building density as a proxy for activity intensity. For the latter, 
Harbers (2022) has developed automated indicators using ratios like the Floor Space Index (FSI) 
and Ground Space Index (GSI). Both consider parcel sizes in relation to the summed floor space 
across levels.  

Interestingly, location-based accessibility has potential ties to active inference interpretations 
of perception. It aligns with the maximum entropy principle, which states that the most likely 
distribution of activities is the one with the least strong conviction of specific values. Wilson 
(1971) proposed the classic gravity model, which is derived from the entropy-maximising 
framework. While not apparent at first glance, the constrained maximum entropy and free 
energy principles explain the same phenomena (M. J. D. Ramstead et al., 2023)— maximising 
entropy given constraints or minimising free energy given a generative model. A second duality 
is the perspective shift between internal and external states. Most notably, this duality means 
that self-organisation (life) occurs because the world is dissipative, as increased order in small 
pockets allows for more disorder everywhere else.  

In the context of perception as a dynamic process, bottom-up errors force an open mind while 
top-down priors apply constraints. The interaction between these processes forms the act of 
perception. When modelling urban regions, using location-based accessibility to guide the self-
supervised learning of representations may offer valuable insights. To illustrate, we can 
simulate the location-based accessibility of schools in Delft, Figure 29. When constrained to 
prefer only two randomly sampled schools, Figure 30, we see a completely different landscape 
of affordances compared to an unconstrained scenario, Figure 31. It demonstrates that while 
accessibility provides the affordance for travelling, the resulting landscape is subjective, 
shaped by prior preferences. In essence, accessibility offers a way to model not just the 
objective structure of infrastructure but also how it is perceived and used by residents with 
different preferences. This view is aligned with the capabilities approach in broad prosperity.  
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Figure 28: Number of schools per spatial unit for Delft.  

 
Figure 29: Location-based accessibility for schools 

using walking infrastructure in Delft.  

 
Figure 30: The constrained set of schools per spatial 

unit in Delft.  

 
Figure 31: Location-based accessibility for a 

constrained set of schools using walking infrastructure 
in Delft.  

2.10  Encoding views of urban data 
In urban representation learning, individual data types are often referred to as 'views', each 
representing a distinct perspective of the urban system. Combining different views is known as 
multi-view learning. Recent open-source efforts, such as those by (Gramacki et al., 2023), aim 
to provide comprehensive toolboxes for creating representations of these individual views. The 
process of encoding individual views follows a four-step procedure: First, data is downloaded 
and stored with geospatial coordinates. Second, this data is assigned to corresponding spatial 
units based on spatial overlap. Third, an encoder neural network is trained on the discretized 
data. Finally, the data is fed through the encoder network again to extract representations.  

The representation of POI data has its roots in word embedding techniques, particularly 
word2vec (Mikolov et al., 2013). This approach creates a dictionary where each word—POI—is 
assigned an embedding, with metric representations indicating similarity to others. Word2vec 
uses two main approaches to account for context: skip-gram and continuous bag of words 
(CBOW). Recent alternatives include GloVe (Pennington et al., 2014) and larger language 
transformer models. Building on word2vec, Woźniak and Szymański (2021) developed hex2vec, 
a convolutional-like approach using H3 hexagons. Donghi and Morvan (2023) further improved 
this with Geovex, which uses a convolutional auto-encoder and incorporates hexagonal 
convolutions and a Poisson distribution to learn the presence and absence of POI labels. Some 
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studies, like Hexaconv, have also developed convolutional neural networks for hexagonal 
gridded data (Hoogeboom et al., 2018; Zhao et al., 2021). 

Image encoders can be broadly categorized into two groups: those creating embeddings and 
those assigning classes of objects through segmentation. The former often relies on 
established convolutional neural network architectures like ResNet and AlexNet, typically 
trained on large datasets like ImageNet (He et al., 2015; Krizhevsky et al., 2017; Russakovsky et 
al., 2015). While these networks aim to classify objects, it is possible to extract metric 
representations from their penultimate layers. Image segmentation approaches, on the other 
hand, preprocess images into more interpretable formats. (Fan et al., 2023) used this method 
to represent urban regions by counting objects in different classes, while (Gong et al., 2018) 
identified 'street canyons' by mapping the presence of sky, trees, and buildings. 

The SRAI Python package (Gramacki et al., 2023) incorporates several specialized encoders for 
H3 hexagons. One such encoder deals with the generalized transit feed specification, using an 
auto-encoder to compress various attributes of public transport timetables (Gramacki et al., 
2021). By focusing on stops assignable to hexagons, the analysis captures the total number of 
stops made within that hexagon (summed across stops if multiple are present), number of 
directions (routes), and frequency of vehicles leaving per hour (6:00-22:00). Another, 
highway2vec, encodes road network characteristics, accounting for network links that may 
intersect multiple spatial units (Leśniara & Szymański, 2022).   

 

Figure 32: Schematic of an auto-encoder emphasising the embedding in the middle. From (Leśniara & Szymański, 
2022). 

Graph structures, which explicitly contain relationality, can be encoded using either shallow or 
deep approaches. Shallow encoders like DeepWalk (Perozzi et al., 2014) and node2vec (Grover 
& Leskovec, 2016) use random walks to contextualise neighbourhoods. While computationally 
expensive for large graphs, they are straightforward and can capture structural similarity. Deep 
graph encoders share aggregation weights across local neighbourhoods, employing techniques 
like convolutions (Kipf & Welling, 2017) or attention mechanisms (Veličković et al., 2018). 
Recent research has focused on improving the efficiency of these encoders to handle million-
node graphs, with examples like GraphSage applying sampling techniques (Hamilton et al., 
2018). 
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2.11 Learning Across Multiple Views 
Learning representations from multiple data modalities, or views, is a significant obstacle in 
urban representation learning and deep learning in general. Multi-modality offers several 
advantages: representations become richer by combining correlations from different sources, 
each modality captures unique distributions, and the impact of noise may be reduced as 
correlations between modalities are preserved. However, these benefits have drawbacks, 
primarily the difficulty in engineering techniques to fuse views effectively and the need for 
larger, more resource-intensive models. At the heart of this challenge lies a broader technical 
discussion in metric representation learning: should encoder networks be fine-tuned to task-
specific objectives? This debate has led to the development of various strategies, broadly 
categorised into data-centric fusion and learnt fusion approaches. 

The data-centric fusion approach, exemplified by relative representations, offers a 
computationally efficient alternative to fine-tuning. Norelli et al. (2023) argue for leaving 
encoders to extract features without fine-tuning, proposing a data-centric method to align 
outputs of frozen pre-trained multi-modal encoder networks. Relative representations, 
introduced by (Moschella et al., 2023), embody this philosophy. They were developed as an 
alternative to resource-intensive models like CLIP (Contrastive Language-Image Pretraining), 
which require industrial-scale computing and data to train (Radford et al., 2021). Relative 
representations work by leveraging the fact that different modalities often describe similar 
classes of objects. They require only a set of absolute representations (raw output from an 
encoder network) and class labels. A similarity metric is then used to sample and compare 
representations across classes, resulting in a scaled set of vectors for all data points. This 
method can even combine encoder/decoder networks of different architectures. However, 
relative representations have limitations: they depend heavily on the encoder networks' training 
distribution, lose distance information between points, and can become computationally 
expensive for large datasets with many classes. Preliminary experimentation in the current 
study found that different data sources do not overlap enough in urban settings for relative 
representations to work. 

On the other hand, learned fusion approaches involve training an additional network to 
combine representations from different views and spatial units. While simple vector operations 
like addition and averaging can be used for fusion, as demonstrated by (Raczycki, 2021) with 
hexagonal spatial units and concentric rings, most urban representation learning methods 
implement some form of neural network for fusion (Chan & Ren, 2023; Kim & Yoon, 2022, 2022; 
Li et al., 2023; Liang et al., 2022; Luo et al., 2022; Xiang, 2020). The main reason is that simple 
vector operations cannot account for correlations across views within individual regions (F. Sun 
et al., 2023). Instead, the references above propose various approaches to fuse multi-view data 
using attention networks (Vaswani et al., 2017). Attention is commonly used as it is highly 
versatile and flexible in capturing correlations, yet it is computationally expensive and needs a 
large dataset to achieve good training results. Graphs are readily employed in fusion network 
architectures for urban data as they are agnostic to the type of spatial unit. However, this may 
also make these studies harder to interpret due to the reliance on mathematical formalisms 
over intuitive architectures. Many of these methods employ multi-stage fusion, where within-
region correlations across views are accounted for before addressing between-region 
correlations (Chan & Ren, 2023; Kim & Yoon, 2022; Li et al., 2023; F. Sun et al., 2023). The 
temporal component may also be represented, such that passenger flows used to steer the 
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self-supervised learning approach account, e.g. morning and evening commute (Kim & Yoon, 
2022).  

All multi-view fusion methods in the urban representation learning literature employ a 
reconstruction loss to compress the high-dimensional data. However, recent work shows that 
reconstruction and perception differ, indicating that representations learned using 
reconstruction loss are unsuited for perception (Balestriero & LeCun, 2024). That is, features 
learnt using reconstruction loss while explaining much variance in the data perform poorly on 
image recognition. Moreover, liveability requires perception rather than pure compression 
persé; after all, one is perceiving indicators with needs & desires in mind. 

 
Figure 33: Illustration of concentric k-rings around a 

central H3 hexagon. From (Raczycki, 2021). 

 
Figure 34: Triplet networks for contrastive loss. From 

(Ghojogh et al., 2022a). 

An alternative to reconstruction loss is those based on similarity, such as triplet (Hoffer & Ailon, 
2015) or circle loss (Y. Sun et al., 2020). Urban representation studies applying similarity loss 
opt for fine-tuning approaches, sequentially adding information from different views through 
loss functions (Huang et al., 2021; Z. Wang et al., 2020). The basis of similarity learning is the 
reliance on triplets, which is done heuristically and hence up to the modeller (Garrido et al., 
2024). Unfortunately, little consideration is given to these heuristics in the urban representation 
literature. Commonly used measures are Euclidian distance and passenger flows (taxi trips). In 
the sequential similarity loss approach, encoder networks are tuned to consider correlations 
with other data modalities, resulting in features that account for multiple modalities. The 
resultant urban embedding of a spatial unit from a previous step is used in subsequent ones as 
initialisation. Calculating similarity loss is done by gathering triplets of data points, sampled 
using heuristics. The difference in metric distance (not spatial distance) is fed into the loss 
calculation such that the positive distance is minimised and the negative distance maximised. 
Circle loss improves on triplet loss by weighting these two metric distances differently 
depending on their relative size. 

𝑇𝑟𝑖𝑝𝑙𝑒𝑡 𝐿𝑜𝑠𝑠(𝑎, 𝑝, 𝑛)  =  𝑚𝑎𝑥(0, Δ_p) −  Δ_n +  𝑚𝑎𝑟𝑔𝑖𝑛) 

𝐶𝑖𝑟𝑐𝑙𝑒 𝐿𝑜𝑠𝑠(𝑎, 𝑝, 𝑛)  =  𝑙𝑜𝑔(1 +  𝑠𝑢𝑚(𝑒𝑥𝑝(𝛾(𝛼_𝑝 −  𝛥_𝑝)))  +  𝑠𝑢𝑚(𝑒𝑥𝑝(𝛾(𝛥_𝑛 −  𝛼_𝑛)))) 

where γ is a scale factor, α_p and α_n are to be calculated parameters for positive and negative 
pairs, and Δ_p and Δ_n are the similarity scores for positive and negative pairs, respectively.  



61 
 

2.12 Conclusions Part Two of Literature Review 
The second part of the literature review provided an overview of metric learning prerequisites, 
leading to an outline of multi-view urban representation learning. Several modelling steps were 
identified, including selecting a spatial unit type, data sources, and learning strategy. Multiple 
approaches for learning representations across views were examined, ranging from simple 
vector operations to learning fusion networks or fine-tuning single-view encoder networks with 
information from other views. 

It was determined that reconstruction loss should be avoided for urban representations aimed 
at perception, as required for liveability assessments. Conceptual links between accessibility 
and the free energy principle were observed, supporting a dynamic approach to liveability from 
a transport modelling perspective—active inference, a description of the dynamics as seen in 
the free energy principle, might be like a transport model based on accessibility.   

A comprehensive list of modelling choices that underpin this thesis's methodology is presented 
below. This list aims to provide the ingredients needed to design the transmission for future 
work, incorporating it into an engine. Like the first three steps in the 4-step transport model, in 
which assignment is left for the dynamics of active inference.  

Hexagons are the most suitable spatial unit due to their isotropy (almost round shape), 
improving the validity of accessibility measures (catchment area). Furthermore, the H3 
geospatial index is hierarchical, making it future-proof for active inference modelling. 

Spatial convolutions incorporate the first law of geography, which states that similar entities 
are closer together. The Leefbaarometer relies on different spatial operations involving 
weighted functions. Spatial convolutions can accommodate weighted averages when adjusted. 

Location-based accessibility aligns with the constrained maximum entropy principle, making it 
suitable for models built using the free energy principle. Additionally, as found in conclusion 
part one, location-based accessibility aligns with the notion of affordances as studied in active 
inference and the free energy principle.  

Of the available self-supervised training losses used in urban representation learning, circle 
loss was deemed preferable. Triplet loss is less likely to converge than circle loss. 
Reconstruction loss was found unsuitable for perception tasks. 

Learnt fusion networks are preferred over sequential training of lookup tables. Late fusion is 
particularly applicable for future dynamic operationalisations of liveability. Late fusion involves 
encoding individual views of urban data before fusing them. Early fusion, on the other hand, 
immediately combines raw data. Two reasons underpin this finding. First, deep learning in 
combination with generative models is only practised with individual (fusion) networks, not 
sequentially. Second, late fusion is justified given the role of perception; mapping indicators to 
percepts in generative modelling must not be included but may be outsourced to neural 
networks if the ambiguity of the mapping between indicators and percepts is low. As such, 
indicators can be representations. Ambiguity relates to the likelihood mapping between 
indicators and percepts; mapping can be one-to-one or many-to-many. High ambiguity in the 
to-be-modelled phenomenon necessitates active data sampling to maximise information gain 
as found in the decomposition of expected free energy. 

The road network, points of interest, street view images, aerial images, and public transport 
data are suitable data sources for representations of urban regions.  
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3 Methods 
This chapter outlines the developed methodology to create urban representations using metric 
representation learning. We present a novel learning strategy for urban representations based 
on spatial convolutions and implement the work of other authors for comparison. The 
comparative works are known in the literature as Urban2Vec and M3G (Huang et al., 2021; Z. 
Wang et al., 2020).  

The methodology is structured to start with an overview of the study area and its 
regionalisation, the data collection and preparation, the two learning strategies, and the setup 
of the experiments conducted.  

The two conclusions of the theoretical framework contain choices underpinning learning 
strategy one. Each of the findings is incorporated into the preparation of the study area, the 
choice of data sources, and the entire development of the learning strategy.  

Two study areas and their associated regionalisation are shared universally within this thesis, 
consistent for both learning strategies. However, a slight difference is that learning strategy one 
draws upon the buffered set of spatial units since it involves spatial convolutions requiring 
padding.  

This study chooses the hexagon (H3) since it is high in isotropy, hierarchically structured, and 
has many established encoder models packaged in the SRAI Python library (Gramacki et al., 

2023). Both learning strategies use a subset of spatial units selected for the presence of 
Leefbaarometer scores. The Leefbaarometer uses a square geospatial indexing system. Hence, 
direct intersection gives skewed results. A spatial unit is selected based on the surface overlap, 
conditional on this overlap being at least a hectare to preserve the 100x100m resolution of 
Leefbaarometer scores. 

Additionally, the values of the Leefbaarometer are copied onto the hexagonal spatial units using 
a weighted sum based on the overlap on the surface. There is a significant difference in the 
granularity at different H3 resolutions. Where a variation in Leefbaarometer scores at resolution 
10, on the left Figure 35, is much more pronounced than that at resolution 9, on the right Figure 
36. Warmer colours have higher scores than cooler colours, which have lower scores.  
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Figure 35: Aggregate Leefbaarometer score spatially 

joined with H3 resolution 10. 

 
Figure 36: Aggregate Leefbaarometer score spatially 

joined with H3 resolution 9. 

Additionally, learning strategy one uses spatial convolutions and requires additional padding of 
spatial units. A buffered set of spatial units is created and to be assigned data, as will be 
elaborated in section two. The buffer is five rings of hexagons for H3 resolution 9 and fifteen for 
resolution 10. See Figure 37 and Figure 38. 

 
Figure 37: Regionalisation at H3 resolution 9 for spatial 

units with Leefbaarometer scores. 

 
Figure 38: Regionalisation at H3 resolution 9 for spatial 

units buffering residential areas. 

3.1 Data Collection 
Data collection can be differentiated into two classes: intra-unit and inter-unit. Intra-unit data 
relates to data points with spatial locations, such as images or points of interest. Inter-unit data 
relates to the relationship between spatial units, such as distance or accessibility.  

3.1.1 Intra-unit 
The intra-unit process requires the collection of data points with their associated geospatial 
location for indexing into the corresponding spatial unit based on their coordinates. All data 
points have coordinates and spatial units cover a surface of coordinates. It is then a matter of 
assigning data points to their spatial unit based on their overlapping coordinates. For example, 
if a point of interest is within the polygon of a spatial unit, it is assigned to the spatial unit. In the 
case of linear geometries like roads or rivers, an intersection is used where it is sufficient for any 
linear geometry to intersect with a polygon of the spatial unit. If a line intersects with multiple 
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spatial units, that data point's characteristics are assigned to all spatial units with which it 
intersects. 

The different data sources—views—are the road network, general transit feed specification, 
points of interest, street view and aerial images. The road network is obtained from 
OpenStreetMap and relates to the car network. The general transit feed specification can be 
retrieved from its website, gtfs.org. Points of interest are obtained from OpenStreetMap with the 
Geofabrik downloader and its associated filter; for more details, see geofabrik.de. Street view 
images were retrieved from Google Street View using the methodology from (Garrido-
Valenzuela et al., 2023). Valenzuela et al. assign panoids, 360-degree panorama views, of 
images to each H3 spatial unit, which are split into four sections of 90 degrees using the driving 
direction as reference such that the centre of each image is either the front, back or side of the 
vehicle. Aerial images are obtained from pdok.nl, an open dataset provided by the Dutch 
government. Publieke Dienstverlening Op de Kaart (PDOK) provides an Application 
Programming Interface (API), which can be called in a Python script. Furthermore, since images 
must fit into an image encoder, the size of these images is 224 by 224 pixels. As such, the 
hexagonal spatial units were given a square bounding box whose' coordinates, along with the 
image resolution, were queried to the API.   

3.1.2 Inter-unit 
Inter-unit data covers relationships between spatial units, like Euclidean distance and transport 
network resistances. We incorporate these resistances through location-based accessibility, 
combining travel times and building density as a stand-in for destination attractiveness. 

To calculate Euclidean distance, one considers the distance between centroids of spatial units. 
Since these distances are relatively short, there is no need for distance measures that account 
for the earth's curvature, such as Haversine. 

Calculating location-based accessibility requires travel times between spatial units and each 
unit's attractiveness. Whereas the number of jobs or shops is often used to quantify the 
attractiveness of spatial units, building densities are a suitable alternative. The RUDIFUN 
dataset contains indicators of building densities for the entire Netherlands. From these 
indicators, the floor space index (FSI) is well suited as it captures the floor space ratio to 
building footprint, including parking lots and other land use on the parcel. FSI scores are 
assigned to hexagons using a weighted sum based on the spatial overlap, just like applied when 
intersecting the Leefbaarometer scores in the preparation of the study area (Figure 40). 

The location-based accessibility of a spatial unit is calculated by summing the factors of 
attractiveness and travel resistance of all other spatial units. Each spatial unit is once treated 
as origin (subscript i), at which point all other units are destinations (subscript j). Travel 
resistance is calculated using an impedance function that relies on a distance decay rate to 
penalise longer travel times, reducing the likelihood of trips between distant spatial units. See 
Figure 39. 

𝐴𝑖 = ∑ 𝐹𝑆𝐼𝑗 ∗ 𝑓(𝑇𝑖𝑗)

𝑗

 

In this study, we use an exponential decay rate applied to travel time in seconds with a cutoff of 
one hour (3600 seconds). The decay rate was made up in this study, though it is possible to use 
empirical values segmented for segments of a population for maximum accuracy. 
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𝑓(𝑇𝑖𝑗) = 𝑒−𝛽∗𝑇𝑖𝑗 = 𝑒−0.001∗𝑇𝑖𝑗  

 
Figure 39: Distance decay function for travel 

resistances to be used in location-based 
accessibility. 

 
Figure 40: Plot of building density operationalised using 

floor space index (FSI). 

In sum, location-based accessibility and Euclidean distance are calculated similarly, sharing 
the first step. After this, Euclidean distance is a simple calculation between centroids. 
Moreover, location-based accessibility continues with the remainder of the steps as outlined 
below. 

1. Each spatial unit is the catchment area of its centroid. 
2. For each travel mode, walking, cycling, and driving: 

a. Using OpenStreetMap networks for walking, cycling, and driving, network nodes 
are assigned to hexagon centroids based on closest coordinates. A K-D Tree is 
used to partition space into a searchable tree, improving computational 
efficiency. 

b. A single-source Dijkstra algorithm is used in a loop over all regions to create an 
origin-destination matrix of travel times. Compared to a doubly nested-for-loop, 
single-source dijkstra builds a reusable computation graph for all destinations, 
saving hours. 

c. Calculate location-based accessibility by applying the impedance function with 
decay rate and attractiveness. 

3. Combine accessibilities for walking, cycling, and driving with equal weight, taking their 
average. 

3.2 Learning Strategies 
This thesis explores two learning strategies for creating urban representations. The former is 
developed in this thesis, whereas the latter is an adapted version of earlier work. 

The first strategy, which we propose as a novel approach, relies on spatial convolutions. For 
each spatial unit, spatial convolutions aggregate information about their neighbourhood with 
the optionality to apply (learnable) transformations within the aggregation process. Spatial 
convolutions are like conventional geographic information system operations in that a feature 
is calculated given a distance towards other features. For example, the buffer zone around a 
transport corridor moving hazardous materials. In particular, the developed methodology 
draws inspiration from graph convolutional neural networks (no sliding window) but eliminates 
the need for explicit graph construction. Instead, it utilises the neighbourhood indexing 
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provided by the H3 geospatial index, offering a more streamlined approach to capturing spatial 
relationships. The commonality here is that graph convolutional neural networks calculate the 
features of a central node using increments of hops throughout the graph. The features of each 
adjacent ring of nodes are transformed using a neural network and subsequently aggregated 
using an average or maximum thereof. Unlike graphs, hexagonal spatial units do not rely on 
incremental hops but can directly query rings around a centre since all spatial unit and their 
relationships are indexed. Hence, the name ring aggregation. 

The second strategy is adapted from existing work, specifically Urban2vec and M3G (Z. Wang et 
al., 2020; Huang et al., 2021). Minor adjustments to the work of Huang and Wang et al. are 
necessary due to the difference in study area, altered choice of spatial units and data 
limitations. While it is impractical to copy the approach, capturing the generalities for 
comparison is feasible. Adjustments involve exchanging the San Francisco Bay Area for the 
province of South Holland, replacing neighbourhoods structured as nodes in a graph with H3 
hexagons for the spatial unit, aerial images instead of street view images, and a different 
dictionary of point of interest labels used. These adjustments ensure that both learning 
strategies depend on the same H3 regionalisation and data for comparison. 

3.2.1 Strategy one – Ring Aggregation  
The first learning strategy developed in this thesis builds upon the ring aggregation methodology 
introduced by Raczycki (2021). Ring aggregation is like spatial convolutions due to the isotropic 
nature of the H3 geospatial index. For any randomly picked hexagon, the rings around it are 
uniform in distance and number (Figure 42), unlike graphs, which rely on adjacency matrixes. 
The isotropy allows for innovation in spatial convolutions by combining the work of Raczycki 
and graph convolutional neural networks. Whereas convolutions work by recursively applying 
transformation and aggregation per ring, working from the furthest ring towards the centre—ring 
aggregation calculates a transformed aggregation per ring and subsequently applies a 
secondary transformed aggregation across those rings.  

This innovation allows for weighted averages across the rings and transformations 
operationalised using learnable neural network weights. At its core, this learning strategy is a 
late-fusion approach. It combines multiple views' representations so that each spatial unit is 
left with a single final representation. The fusion relies on a two-step process: first, take the 
average embedding per ring. Second, a weighted average across rings is applied to get the final 
central representation. 

The mathematical formulation of our ring aggregation strategy is as follows: denote the 
concatenated representation per hexagon as Ri, the mean of a ring as Mk, its weight as Wk, and 
the resultant central aggregated embedding as S (averaged over K rings), then the central 
aggregated embedding is expressed as a sum over transformed weighted average of 
transformed ring means across rings: 

𝑆 =  ∑ 𝑊𝑘 ∗ 𝑓𝜃(𝑀𝑘) 

𝐾

𝑘=0

 

The average per ring equals the inverse of the number of hexagons in that ring and the sum over 
transformed concatenated representations of spatial units within that ring: 
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𝑀𝑘 =  
1

𝐼
∗ ∑ 𝑓𝜑(𝑅𝑖)

𝐼

𝑖=1

 

Combined, this gives an expression with two learnable neural networks. Both networks map 
one representation to another, reducing the dimensionality at each step. The networks are 
parameterised by weights theta for across rings and phi for within:  

𝑆 =  ∑ 𝑊𝑘 ∗ 𝑓𝜃(
∑ 𝑓𝜑(𝑅𝑖)𝐼

𝑖=1

𝐼
)    

𝐾

𝑘=0

 

The contribution across rings is defined according to four different weighting schemes: natural 
exponent, logarithm, linear, and flat: 

𝑊𝑘 = 𝑒−𝑘,    𝑊𝑘 = 1/ log2(𝑘 + 2) ,     𝑊𝑘 = 1 −
1

𝐾
,     𝑊𝑘 =

1

𝐾
 

While Raczycki (2021) employed the exponent, linear, and flat weightings, this study 
additionally includes a logarithmic weighted average. This addition aligns with the calculation 
of the physical living environment as operationalised by the Leefbaarometer. 

 
Figure 41: Weighted average types impact of each k-ring 
up until five rings. Blue exponential, green linear, orange 

logarithm, red flat.  

 
Figure 42: Illustration of concentric k-rings around a 

central H3 hexagon. From (Raczycki, 2021). 

During preliminary experimentation, several observations were made. The dimensionality of 
hidden layers relative to input and output and the number of layers within each step had a 
limited impact on the model's performance. However, normalising the input data proved to be 
crucial. We also observed that using ReLU as an activation function in intermediate layers led to 
excessive sparsity.  

A batch normalisation layer is added to address these issues, efficiently normalising data 
across modalities. This batch normalisation applies to the first layer, thus normalising the 
concatenated views per batch. Acceptable performance is achieved using a batch size of 256 
and a learning rate of 0.0001 using the Adam Optimiser, which has no learning rate scheduler. 
Furthermore, ReLU was replaced with GeLU (Rectified error Linear Unit/Gaussian Error Linear 
Unit), as it prevents excessive sparsity of the representations, which impacts downstream 
performance on predicting the Leefbaarometer score negatively.  
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Figure 43: Learnable ring aggregation fusion network. Note that the number of input embeddings increases linearly 
with additional rings by a factor of six. Input dimensionality is reduced in two steps into a considerably smaller output 

dimensionality. Weights are shared for each step, denoted by theta and phi. 

Next, a variety of encoders create embeddings. All encoders are trained or finetuned on their 
respective data covering the buffered study area; see Figure 38. Only street view images do not 
enjoy finetuning; instead, they use the pre-trained version of ConvNeXt based on ImageNet, 
while aerial images will be tested with and without a finetune—see next section on learning 
strategy two for details. Before being concatenated, the image embeddings are reduced in 
dimensionality to 100 to ensure roughly equal size for all embeddings.  

 

 

 

 



69 
 

Table 2: Encoder networks used to create indicators. 

Data Encoder Network Training Data 
Public transport 
stop characteristics 

GTFS2vec (Gramacki et al., 2021) Buffered study area 

Road network 
characteristics 

Highway2vec (Leśniara & Szymański, 
2022) 

Buffered study area 

Aerial images ConvNeXt Large (Liu et al., 2022) Imagenet pre-train w/ optional 
finetune on buffered study area 

Street-view images ConvNeXt Large Imagenet pre-train 
Points of interest Geovex (Donghi & Morvan, 2023) 

Hex2vec (Woźniak & Szymański, 2021) 
Buffered study area 

 

All embeddings are then concatenated (placed next to each other) and fed into the learnable 
fusion network. The learnable fusion network is trained using circle loss, with a gamma of 250 
and m of 0.15. The triplets for training are sampled based on a measure of proximity. Given any 
anchor neighbourhood, a positive neighbourhood is in the top 2% - either lower than 2% of all 
pairs for Euclidean distance or better than 98% for location-based accessibility. A triplet 
contains three items, each fully aggregating the local spatial context. When sampling over five 
rings at resolution 9, there are 93 concatenated embeddings as input: 

𝑁_ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 3 ∗ (1 + 6𝐾) = 3 ∗ (1 + 6 ∗ 5) = 93 

 

 

 

Figure 44: Static approach to liveability with indicators, percepts and needs/desires. Learning strategy one applies 
late fusion, such that concatenated embeddings of single views are the indicators. The percepts are a transformed 

aggregation of indicators. See experiments for linear regression with Leefbaarometer scores. 
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Figure 45: Complete overview of learning strategy one: a two-part process of encoding individual views and 
subsequent fusion. 
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3.2.2 Strategy Two – Sequential Similarity Loss  
Learning strategy two addresses the challenge of learning across views by sequentially training 
encoders on the product of the previous step. The strategy consists of three distinct steps, each 
considering a different data modality and employing a unique sampling methodology to obtain 
triplets for the circle loss. The first step focuses on aerial image processing and employs a 
novel sampling methodology. The second step integrates point-of-interest data and uses 
traditional word2vec sampling. The third step refines spatial unit embeddings by considering a 
measure of proximity where sampling is done using weighted random walks.  

1.  Aerial images with 2-step ring sampling 

The first step finetunes a pre-trained ConvNeXt large encoder as provided in Pytorch. Aerial 
images assigned to each hexagon are used to finetune the encoder and infer embeddings. 
Circle loss is used as similarity loss with a gamma of 250 and m of 0.25. The learning rate is set 
to 0.00001 with a weight decay of 0.0001 using the Adam optimiser. The sampling of triplets is 
done using our developed 2-step ring sampling procedure. 2-step ring sampling is a 
computationally efficient way to sample triplets as it does not require the retrieval of large 
neighbourhoods. A neighbourhood is all hexagons in the vicinity of another one. Specifically, we 
use the get_neighbours_at_distance function from the SRAI package to sample any k-ring and 
only those rings which are needed. 

The sampling procedure involves two steps: 

1. Sample a ring integer: positive for green (where constraints have the upper hand) or 
negative for red (where diffusion is strongest). For H3 resolution 9, our 2-step sampling 
method includes two hexagons in each ring. In contrast, at resolution 10, this increases 
to 4 hexagons per ring, corresponding to approximately 250 and 500 meters from the 
centroid of the central hexagon. 

2. Unroll this ring of spatial units and sample another integer to select the spatial unit ID. 
The aerial images associated with the selected spatial unit IDs are then fed into the 
ConvNeXt encoder model for finetuning. 

The 2-step ring sampling approach attempts to mimic the formulation of generalised free 
energy as developed by (Koudahl et al., 2023). Generalised free energy is a synthetically 
engineered objective function. It can be decomposed into variational free energy and negative 
mutual information. The former relates to achieving an objective, whereas the latter introduces 
an epistemic component maximising the entropy of observations. Applied to sampling spatial 
units, it may take the form of a tight distribution overlapped by a flat one. The former captures 
the achievement of an objective, whereas the latter considers the broader context. To make this 
dual functionality discrete, we consider the points of overlap between the distributions. Where 
the tighter distribution is dominant is where positive instances of the triplet should be sampled. 
Moreover, where the flatter distribution is dominant is where negative instances of the triplet 
should be sampled. Hence, the distances are 250 and 500 meters.  

Compared to Hex2vec, 2-step ring sampling only considers the local context for both positive 
and negative samples. Contrary to hex2vec, which attempts to mimic negative sampling as 
done in skip-gram, which considers the entire corpus of data, in this case, all other hexagons in 
the study area. Hex2vec requires the wasteful retrieval of millions of spatial unit IDs. 
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Figure 46: 2-step ring sampling derived from generalised free energy. Variational free energy, green. Negative mutual 
information, red. 

 

 

 

 

 

 

Figure 47: Comparison of the local neighbourhood in terms of anchor (centre), positive, negative and neural areas. 
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2. Point of interest labels with negative sampling from corpus frequencies 

The second step incorporates point of interest (POI) data, employing skip-gram sampling with 
negative sampling from the corpus. Two shallow embedding models are used—one for POI data 
and another for spatial units. The dimensionality of both is 200, necessitating the application of 
principal component analysis to the embeddings of step one, which are dim 2048 as retrieved 
from ConvNeXt. Shallow embedding models are essentially dictionaries or look-up tables of 
weights. The spatial unit embedding model is initialised using the final weights of step one. 

The anchor of triplets sampled is sampled from the spatial unit embedding model. On the other 
hand, positive and negative values are sampled from the POI embedding model. The 
dimensionality of the spatial unit embedding and POI embeddings are the same. Positive 
sampling queries within the same spatial unit as the anchor any POI. Negative sampling follows 
a power law distribution, with a power of 0.75, based on POI label frequencies calculated 
across all occurrences in the dataset.  

A learning rate of 0.000001 and early stopping prevent catastrophic forgetting of previous steps. 

3. A measure of proximity with weighted random walk 

The final step has a single shallow embedding network, initialised with step two's final spatial 
unit embeddings. This network is trained using triplets sampled from random walks, which can 
be based on Euclidean distance or location-based accessibility. The random walk traverses a 
directed graph where edges represent increments of distance or accessibility of taking a car.  

The adjacency matrix is calculated for all adjacent hexagons within five rings using a 
methodology similar to that used in learning strategy one. For any anchor, the origin of a walk 
and all spatial units traversed within that walk may be sampled as positive in the triplet. All 
remaining spatial units in the study area are the negative set from which to sample.  

A learning rate of 0.000001 and early stopping prevent catastrophic forgetting of previous steps. 

Overview 

In sum, learning strategy two, as illustrated in Figure 48, is a sequential three-step process for 
creating urban representations. It begins with data collection and filtering into H3 hexagonal 
geospatial units. In Step 1, a triplet network using a ConvNeXT encoder is finetuned on aerial 
images, employing 2-step ring sampling for triplet sampling. Step 2 uses embeddings from the 
trained ConvNeXT model as anchors, alongside point of interest (POI) data, to train two shallow 
embedding models—one for spatial units and another for a POI label dictionary. The final third 
step, spatial unit embeddings, continues with the spatial unit embeddings of step two. Triplets 
are sampled through random walks based on location-based accessibility or Euclidean 
distance. All three steps use circle loss for training. The process incorporates data from aerial 
images, POI labels, the street network, and building density to produce the final embeddings. 
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Figure 48: Complete overview of learning strategy two. Sequential three-step process. The first step is just a 
ConvNeXt model. The second step has a shallow embedding for both the POI dictionary and spatial units. The third 
only has a shallow embedding for spatial units. Note that results from previous steps are used in the circle loss of 

subsequent ones. 

3.3 Experiments 
The experiments aim to demonstrate the ability of the two learning strategies to act as 
transmission in a future information engine. The neural networks that create the urban 
embeddings are assessed using the static approach to liveability. However, instead of valuing 
the urban representations (percepts), they are compared to a form of apparent liveability: the 
Leefbaarometer score. Hence, experiments do not aim to show which configurations of urban 
representation methodology are most accurate as a measure of static liveability but those that 
show promise to be used in dynamic liveability in future work as evaluated on a static 
operationalisation.  

Experimentation is conducted through quantitative analysis, applying the representations to 
two downstream tasks. First, the quality of urban representations is assessed through 
visualisations of agglomerative clustering. Agglomerative clustering is hierarchical, aligning well 
with the hierarchical structure of the H3 geospatial index. Second, the performance of urban 
representations is assessed through their predictive accuracy on the Leefbaarometer scores. 
We use the R-squared value of linear regression to assess accuracy with an underlying 
assumption of linearity. Assumed linearity also applies to the generous use of principal 
component analysis to ensure equal dimensionality (30) before applying regression.   
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RQ4 concerns the sampling heuristic used to train the neural network weights. Both learning 
strategies one and two rely on this sampling heuristic. The sampling heuristic influences which 
spatial units should be more or less similar, guiding the gradient descent process of the neural 
network used to infer representations. 

RQ4 involves configuring the implemented spatial convolution. Only learning strategy one 
incorporates spatial convolutions. Larger receptive fields with more k-rings can account for 
more data in the urban region. However, there will be a trade-off given the fixed number of 
weights in the representations. Additionally, the type of weighted average used to aggregate 
across the mean representations of rings is evaluated. The Leefbaarometer similarly involves 
weighted averages in the construction of its indicators.  

RQ5 evaluates the inclusion of different data modalities in the multi-view fusion process. It only 
applies to learning strategy one since learning strategy two has a fixed order of sequentially 
incorporating data modalities. Aggregation networks are trained using all data modalities, and 
testing is done by filling the remaining data sources with zeros. Learning strategies one and two 
are compared using aerial images and points of interest. 

RQ6  involves creating and evaluating representations for all three sequential steps, including 
two versions for the third step, as studied in research question one. 

As a bonus, all experiments cover both H3 resolutions 9 and 10. Preliminary experiments show 
that resolution is the highest leverage modelling decision. Experiments for resolution 10 do not 
cover street-view images or location-based accessibility. 

Identifier Question Methodology 

RQ3 

What is the impact of the chosen 
proximity measure in the sampling 
heuristic used to calculate similarity 
loss? 

Evaluate the triplet sampling heuristic of the 
fusion network: learned ring aggregation using 
Euclidean distance vs. location-based 
accessibility.  

RQ4 
What is the impact of configuration 
on aggregating over the local spatial 
context? 

Evaluate the spatial convolution: different 
numbers of k-rings and weighted average 
types for both learned and simple ring 
aggregation.  

RQ5 What is the added value of different 
data sources? 

Compare the performance of models trained 
with various combinations of data sources.  

RQ6 What is the impact of learning 
strategy? 

Compare learning strategies one and two 
using aerial images and points of interest.  

  



76 
 

4 Results 
This chapter covers a qualitative assessment of embeddings from individual views before 
addressing the research questions one by one. The underlying philosophy of the results section 
is that any difference not visible by rough graphs is irrelevant. After all, urban embeddings are 
not a precise measure of anything by themselves; they merely indicate differences between 
spatial units. 

4.1 Individual Views 
Before addressing the individual views, it is worthwhile to emphasise the drastic impact of H3 
resolution. An agglomerative plot in ten clusters for the finetuned ConvNeXt model trained on 
aerial images using two-step ring sampling is shown in Figure 49. 

 

Figure 49: Comparison of embeddings from aerial images using a fine-tuned ConvNeXt model for the Rotterdam 
region. Top image H3  resolution 9, bottom H3 resolution 10. Colours are only distinctive of clusters within each plot. 

Next is an overview of all individual views. Two point-of-interest encoders, Hex2vec and 
Geovex, are included to understand better how these differ in practice. Aerial images (Figure 
50): Clustering shows good isolation of farmland (blue), grassland (green), greenhouses (red), 
dunes (yellow) and different types of urbanisation (orange and purple). Street view embeddings 
(Figure 53): Mirror the findings from aerial images. GTFS embeddings (Figure 51): Most 
pronounced in urban areas with strands connecting these. Highway2vec embeddings (Figure 
54): Can differentiate highways (purple), country roads (red), urban arterials (blue) and local 
streets (grey). POI embeddings: Geovex (Figure 52) learns smoother representations, whereas 
Hex2vec (Figure 55) learns more granularly. 
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Figure 50: aerial images (pre-trained ConvNeXt 
model, no finetune). H3 res 9. 

 

Figure 51: General transit feed specification 
embeddings. H3 res 9. 

 

Figure 52: POI embeddings using Geovex. H3 res 9. 

 

Figure 53: Street view embeddings, average per 
spatial unit. H3 res 9. 

 

Figure 54: highway2vec embeddings. H3 res 9. 

 

Figure 55: POI embeddings using Hex2vec. H3 res 9. 
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4.2 RQ3 measure of Proximity 
Research question three addresses the importance of sampling heuristics in our proposed 
learnt aggregation network. The neural network, which aggregates over local context, is trained 
using triplets sampled based on the measure of proximity. For a complete comparison, we use 
all five data modalities (street view images, aerial images, points of interest, road network 
characteristics, and general transit feed specification). Furthermore, a logarithmic weighted 
average across five k-rings is used to configure the aggregation network. Due to memory 
constraints related to the size of the adjacency matrix for location-based accessibility, only H3 
resolution 9 is evaluated here. 

The cluster plot of embeddings created using location-based accessibility shows that the larger 
urban areas of The Hague (light blue) and Rotterdam (red) are kept together. When using 
Euclidean distance, these urban areas are broken apart (Figure 56 & Figure 57). 

Quantitative results indicate that the Leefbaarometer's predictive ability differs little. However, 
using H3 resolution 10 instead of 9 greatly improved performance (Figure 58). 

 

 

 

Figure 56: Agglomerative plot with all views and 10 clusters for location-based accessibility at H3 res 9. 
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Figure 57: Agglomerative plot with all views and 10 clusters for Euclidean distance at H3 res 9. 

 

Figure 58: Comparison of explained variance between embeddings and Leefbaarometer scores. The best 
configurations for each are without using fine-tuned aerial images.  
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4.3 RQ4 Configuration of Ring Aggregation 
Our proposed learning strategy applies ring aggregation in both a simple and learnt setting. The 
learnt model has trainable neural network weights for both within and across rings. 
Additionally, pooling is applied after each neural network, a mean within the ring and a 
weighted average across them. In simple ring aggregation, this means calculating the mean 
within the ring and then the weighted average without trainable neural network weights. 

The impact of proximity, relevant to the learnt aggregation, has already been discussed in RQ3. 
Leaving two dials to configure the ring aggregation model: the number of rings to aggregate 
across and the weighted average used to pool across rings. While there are only two dials to 
configure ring aggregation, there are around twenty combinations. Hence, to get an overview of 
the results, we only select the best configuration, keeping the input data sources constant and 
using all data sources concatenated together. 

Table 3 shows that a larger number of rings to aggregate across (k-rings) tends to perform better 
than fewer rings. A notable exception is social cohesion, which is actually best predicted using 
a lower k. Additionally, the best-performing k seems lower than the maximum of 15 for several 
Leefbaarometer scores. In terms of weighted average, most prefer exponential weighting, 
whereas the physical environment scores best using a logarithm. 

Table 3: Best and worst configurations to predict Leefbaarometer scores. H3 resolution 10 and simple aggregation. 

Target Best k Best Weighting Best R² Worst k Worst Weighting Worst R² 
Liveability 5 exponential_e 0.35 1 linear 0.18 
Amenities 15 flat 0.85 1 flat 0.62 
Physical 
Environment 15 logarithm 0.40 1 flat 0.14 
Social Cohesion 5 exponential_e 0.60 15 flat 0.45 
Safety 10 linear 0.54 1 linear 0.39 
Housing Stock 5 exponential_e 0.39 1 linear 0.25 

 

Embeddings that score best seem to have larger clusters rather than smaller scattered clusters 
throughout; the number of k-rings to aggregate across likely plays a role. Additionally, there 
seems to be little difference between types of weighted averages for higher values of k, whereas 
at lower scales, this does have a great impact. For example, linear weighting assigns greater 
value to the centre than more distant ones and has pronounced clusters, whereas flat 
weighting has scattered clusters, see figures in the right column. 
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Figure 59: Liveability k=5 exponential weighting. Best. 

 

Figure 60: Amenities k=15 flat weighting. Best. 

 

Figure 61: Physical environment k=15 logarithm. Best. 

 

Figure 62: Liveability  k=1 linear weighting. Worst. 

 

Figure 63: Amenities k=1 flat weighting. Worst. 

 

Figure 64: Physical environment k=1 flat weighting. 
Worst.
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4.3.1 Simple aggregation at resolution 9 
Selecting the best-performing data type from all run experiments, it becomes clear that simple 
aggregation does not seem to be affected much by the number of rings beyond 3, after which r-
squared scores start to flatten off. However, there is still significant variation between the types 
of weighted averages. Mostly, the 'flatter' types of averaging, like flat and logarithm, tend to 
improve performance with higher values of k. Additionally, when selecting the best type of 
weighted average, little difference can be spotted (Figure 65 & Figure 66).  

 

Figure 65: Predictive accuracy of Leefbaarometer score for different values of k-ring aggregated over. H3 resolution 9 
simple aggregation. 

 

Figure 66: Predictive accuracy of Leefbaarometer scores for different types of weighted averages. H3 resolution 9 
simple aggregation. 
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4.3.2 Learnt aggregation at resolution 9 
Using Euclidean distance as a measure of proximity in the training of the learnt aggregation 
network appears to have little impact on the number of k-rings. Only amenities seem affected 
by lower values for k, whereas the performance of the other scores tends to flatten off quickly 
beyond about two k-rings. As for the type of weighted average, there seems to be little 
difference, with each type outperforming others slightly on specific Leefbaarometer scores 
(Figure 67 & Figure 68). 

 

Figure 67: Predictive accuracy of Leefbaarometer score for different values of k-ring aggregated over. H3 resolution 9 
learnt aggregation. 

 

Figure 68: Predictive accuracy of Leefbaarometer scores for different types of weighted averages. H3 resolution 9 
learnt aggregation. 
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4.3.3 Simple aggregation at resolution 10 
Simple aggregation at H3 resolution 10 indicates a clear impact on the number of k-rings. 
Amenities seem to flatten off around ten K-rings while the physical environment keeps 
improving with more rings. The remainder of the scores seem to top out around a k of four, after 
which they diminish more or less strongly depending on the type of weighted average. 
Particularly, flat and logarithm weighting does not lose performance as they increase in value of 
k, whereas the greatest peak of performance around four is by exponential and linear weighting. 
The figures show a clear difference between flatter and more aggressive weighting for 
Leefbaarometer scores in terms of housing stock, safety, and social cohesion, in addition to the 
overall liveability score. On the whole, when selecting the best-performing experiment, it seems 
that linear weighting performs best (Figure 69 & Figure 70). 

 

Figure 69: Predictive accuracy of Leefbaarometer score for different values of k-ring aggregated over. H3 resolution 
10 simple aggregation. 
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Figure 70: Predictive accuracy of Leefbaarometer scores for different types of weighted averages. H3 resolution 10  
simple aggregation. 
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4.3.4 Learnt aggregation at resolution 10 
Using Euclidean distance as a measure of proximity to train the aggregation network leads to 
different results at H3 resolution 10 compared to 9. Where previously predictive performance 
flattened off quickly, in the first quarter of the plot (note res 9 to 10 is about three-fold in k-rings 
for equal distance), at resolution 10, performance diminishes at larger values of k for several 
types of weighted average. Whereas there was a clear pattern of flatter (flat, logarithm) versus 
steeper types of average (exponential, linear) at resolution 9, this is not the case here. Instead, 
it seems to depend greatly on the specific Leefbaarometer score at hand. For example, 
performance on social cohesion stays relatively constant using exponential weighting, whereas 
the other weightings do not come close. Safety, on the other hand, performs better with linear 
weighting. On the whole, exponential weighting performs best for social cohesion and housing 
stock, whereas amenities and physical environment seem not to do so. The other three 
weighted averages perform roughly equally (Figure 71 & Figure 72). 

 

Figure 71: Predictive accuracy of Leefbaarometer score for different values of k-ring aggregated over. H3 resolution 
10 learnt aggregation. 
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Figure 72: Predictive accuracy of Leefbaarometer scores for different types of weighted averages. H3 resolution 10  
learnt aggregation. 

  



88 
 

4.4 RQ5 Data Sources 
Looking at the results for simple aggregation, images and points of interest are highly 
informative, showing high predictive performance across the board. Within the images, there is 
great variation: embeddings from aerial images obtained using a fine-tuned encoder by far 
outperform all other modalities on liveability, social cohesion, housing stock and safety while 
underperforming on physical environment and amenities. Embeddings from street view and 
aerial images obtained without finetuning have a well-balanced performance on 
Leefbaarometer scores compared to others. The point of interest encoders both do well, 
trading off liveability and the physical environment. Finally, road network and GTFS embeddings 
do well in amenities, safety, and social cohesion and somewhat on housing stock, but they fall 
short on physical environment and liveability. Learnt aggregation performs worse across the 
board, particularly affecting aerial image embeddings (Figure 73 & Figure 74). 

 

Figure 73: Performance on Leefbaarometer scores for different data sources. H3 resolution 9 simple aggregation. 
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Figure 74: Performance on Leefbaarometer for different data sources using learnt aggregation (Euclidean distance as 
a measure of proximity). H3 resolution 9 learnt aggregation. 

Considering the synergy of data sources when using all of them, it is clear that hex2vec seems 
to outperform Geovex at H3 resolution 9, and finetuning image encoding models does not 
matter much. However, there seems to be no real difference for the learnt aggregation for pre-
trained or finetuned models, nor for Hex2vec or Geovex (Figure 75 & Figure 76).  
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Figure 75: Comparison of predictive performance on Leefbaarometer scores using a combination of all views. H3 
resolution 9 simple aggregation. 

 

 

Figure 76: Comparison of predictive performance on Leefbaarometer scores using a combination of all views. H3 
resolution 9 learnt aggregation. 
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4.5 RQ6 Learning Strategy Two 
Learning strategy two involves three steps, each building upon the embeddings of spatial units 
from the previous ones. In turn, the predictive performance is expected to improve with every 
step. The greatest improvements are made in amenities, social cohesion and safety. Euclidean 
distance and accessibility as measures of proximity seem to perform roughly equally. The 
increase in resolution does seem to improve predictive performance in terms of amenities, 
social cohesion and safety; however, this is not the case for the physical environment (Figure 77 
& Figure 78). Inspection of cluster plots shows that embeddings become more refined from 
steps one to two, forming cohesive islands. Step three shows drastic changes by focusing 
purely on proximity. Comparing Euclidean to accessibility shows that the seaside is clustered 
with the Hague and Zoetermeer with the 'Groene Hart' when accounting for accessibility. 

 

Figure 77: Learning strategy two - sequential integration of data sources comparison at H3 resolution 9. 

 

Figure 78: Learning strategy two - sequential integration of data sources comparison at H3 resolution 10. 
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Figure 79: Resolution 9 - step 1 - aerial images. 

 

Figure 80: Resolution 9 - step 2 - Point of Interest. 

 

Figure 81: Resolution 9 - step 3 - Euclidean. 

 

Figure 82: Resolution 10 - step 1 - aerial images. 

 

Figure 83: Resolution 10 - step 2 - Point of Interest. 

 

Figure 84: Resolution 9 - step 3 - Location Based 
Accessibility 
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5 Conclusion 
This thesis set out to understand the role of representations in defining and operationalising 
liveability. The research objective is tackled by developing a theoretical framework and a 
modelling study that builds upon it. A 2x2 matrix captures the resultant theoretical framework 
by delineating the operationalisation and definition of liveability for the static and dynamic 
approaches. Static liveability is the current state of the art (Leefbaarometer), whereas dynamic 
liveability draws upon the active inference literature.  

The modelling study subsequently attempts to bridge these two approaches, bootstrapping the 
development of dynamic operationalisations. The dynamic approach involves information 
engines which construct and maintain niches. Urban representation learning is applied to craft 
and experiment on the configuration of a transmission for such an engine. In this study, 
empirical urban representations are compared to Leefbaarometer scores. Of which there are 
five: Safety, Social Cohesion, Housing Stock, Amenities, and Physical Environment. 

Safety is measured using objective indicators like crime rates and subjective indicators such as 
perceived safety. Social Cohesion considers factors like demographic diversity and community 
engagement. Housing Stock evaluates aspects such as vacancy rates and building 
characteristics. Amenities assess the proximity to various services and job accessibility. 
Physical Environment includes indicators like green space, environmental risks, and urban 
heat. 

The research questions tackle the research objective in two steps, first addressing the 
definition and then the operationalisation. Since the definition influences the 
operationalisation, the report is similarly structured. First, the definition is understood by 
covering the relationship between liveability and representations split into two questions:  
The role of the action-perception loop in liveability and the role representations play in the 
action-perception loop. Second, operationalisation builds upon the definition outlined in the 
theoretical framework and concerns the development of a transmission using urban 
representation learning. Four research questions address the development and configuration 
of the transmission. A new learning strategy is developed, taking full advantage of hexagonal 
spatial units (H3). Learning strategy one fuses different data modalities and approximates 
spatial convolutions. 

Identifier Question Methodology 

RQ1 What is the role of the action-perception loop in liveability? Literature 
Review 

RQ2 What is the role of representations in the action-perception loop? Literature 
Review 

RQ3 What is the impact of the chosen proximity measure in the sampling 
heuristic used to calculate similarity loss? 

Modelling 
Study 

RQ4 What is the impact of configuration on aggregating over the local 
spatial context? 

Modelling 
Study 

RQ5 What is the added value of different data sources? Modelling 
Study 

RQ6 What is the impact of learning strategy? Modelling 
Study 
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5.1 What is the role of the action-perception loop in liveability? 
The action-perception loop plays a distinct role in static and dynamic approaches to liveability, 
as illustrated in the conceptual model. The conceptual model in Figure 85 highlights the key 
difference in how these approaches conceptualise the fit between residents and their 
environment. Overall, the action-perception loop only applies to the dynamic approach of 
liveability. The static approach to liveability is a linear measurement of outcomes rather than an 
iterative looping process. The two approaches ultimately reflect how we view decision-making, 
driven by rational choice or the construction of narratives.  

In the static approach, liveability is viewed as an outcome of a linear process. Indicators are 
mapped to percepts, which then interact with needs and desires. Perception in this view is 
aligned with passive observation, a bottom-up construction process of stimuli into percepts. 
The fit between environment and resident occurs between perception and needs/desires. It 
suggests that liveability is a static outcome resulting from the valuation of how well subjective 
percepts of the environment meet the residents' needs/desires.  

The dynamic approach presents an interactive model. Indicators interact with percepts biased 
towards the characteristic state of the niche embodied by the resident, where characteristic 
states are described by the needs/desires. The location of fit implies that it is an iterative, 
continuous process of palpating those indicators which align with the biased percepts. In turn, 
percepts interact amongst themselves as they mirror the dynamics of the environment, and 
they are only occasionally informed of these dynamics by measurement of indicators. The 
bidirectional arrow contains the top-down generative (←) and bottom-up recognition densities 
(→) that define active inference. Niche construction is the process of configuring the generative 
density to reduce the divergence between it and the recognition density. Needs/desires bias the 
niche construction process towards characteristic states—characterising the niche.  

The relevance of niche construction to transport policy is found in residential self-selection and 
idea flow. Residential self-selection is the phenomenon in which travel behaviour is explained 
away through either geographic characteristics or personal travel preferences. Controlling for 
personal travel preferences leads to a zero loading on geographic characteristics in the 
structural equation model. Hence, residents who prefer certain travel affordances will have 
moved their house to a niche satisfying these. On the other hand, idea flow relates to social 
niche construction as studied in extended active inference. Belief sharing and synchronisation 
is the object of interest and process to model.  



95 
 

 

Figure 85: Conceptual differences between the static and dynamic approach to liveability. 

5.2 What is the role of representations in the action-perception loop? 
Representations are instrumental in the action-perception loop. From an active inference 
perspective, they parameterise the internal states of the generative model and are continuously 
updated to reflect interaction with external states given the blanket. 

As the name suggests, the generative model generates impressions on the blanket from within. 
It palpates indicators for their expected values. The system will move when these indicators are 
active states, such as actuators or muscles. In turn, movement is itself an observation to be 
made—self-evidencing. Representations are only instrumental in informing the selection of 
optimal actions, leading to new observations. Therefore, perception is an action, as 
observations are purposefully palpated based on pragmatic and epistemic values.  

The demarcation between static and dynamic approaches to liveability becomes even more 
crisp when considering the role of representations. Static liveability considers representations 
to be fixed outcomes and more or less objectively representative of the environment, as 
required for rational choice. Dynamic liveability takes a pragmatic turn and aligns itself with an 
enactive view in which representations are merely instrumental in selecting optimal actions. 
Representations enable action selection beyond mere habituated reflexes, the latter 
sometimes confused to be definitive of enactivism. The combination of habitual reflex and 
contemplative reason through representations defines enactivism and the dynamic approach.   

5.3 What is the impact of the chosen proximity measure in the 
sampling heuristic used to calculate similarity loss? 

Two measures of proximity are evaluated: location-based accessibility and Euclidean distance. 
Empirical results indicate little difference in predictive accuracy on Leefbaarometer scores 
between these two. However, agglomerative clustering revealed that location-based 
accessibility tends to keep larger urban areas intact, such as The Hague and Rotterdam.  
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It additionally captures highway-adjacent suburbs. Euclidean distance breaks them apart and 
appears to focus on the physical environment, as evidenced by the higher accuracy of this 
Leefbaarometer score. Higher H3 resolutions improve predictive performance more than the 
measure of proximity, indicating the importance of spatial granularity in urban representations. 

5.4 What is the impact of configuration on aggregating over the local 
spatial context? 

The configuration of ring aggregation significantly impacts the quality of urban representations. 
A larger context or receptive field generally performs better, with some exceptions, such as 
social cohesion. Exponential weighting is preferred for most Leefbaarometer scores, while 
physical environment scores are best when using logarithmic weighting. At H3 resolution 9, 
simple aggregation is minimally affected by rings beyond 3, while learned aggregation shows 
little impact from the number of k-rings except for amenities. At H3 resolution 10, there is a 
clear impact of k-rings, with different Leefbaarometer scores peaking at different k values. The 
type of weighted average (flat, logarithmic, exponential, linear) has varying impacts depending 
on the specific Leefbaarometer score and resolution. Flatter weighting (flat, logarithm) peaks 
later, while steeper weighting (exponential, linear) earlier. Indicators targeting the resident side 
of the fit between resident and environment, see Figure 7, tend to perform better with steeper 
weightings (social cohesion, safety, liveability, housing stock), whereas indicators 
approximating the physical environment do better with flatter weightings (physical 
environment, amenities).  

5.5 What is the added value of different data sources? 
Images (aerial and street view) and points of interest are highly informative, showing high 
predictive performance across Leefbaarometer scores. Finetuned aerial images outperform 
other modalities for liveability, social cohesion, housing stock, and safety but underperform for 
the physical environment and amenities. Street view and non-finetuned aerial images show 
well-balanced performance across Leefbaarometer scores. Point-of-interest encoders perform 
well, trading between liveability and physical environment scores (Geovex, Hex2vec). Road 
network and GTFS embeddings excel in predicting amenities, safety, and social cohesion but 
lag in the physical environment and liveability predictions. When using all data sources, those 
with Hex2vec outperform combinations with Geovex at H3 resolution 9, while finetuning image 
models has little impact on performance. 

5.6 What is the impact of learning strategy? 
Learning strategy two involves a sequential three-step process based on similarity loss, 
showing stepwise improvements in social cohesion and safety accuracy. In step three, where 
the sampling heuristic is based on proximity, Euclidean distance and accessibility perform 
similarly. Higher resolution (H3 resolution 10) improves performance for amenities, social 
cohesion, and safety, but not for the physical environment. Furthermore, our proposed learning 
strategy one with ring aggregation outperforms learning strategy two, particularly at higher 
resolutions. Cluster plots show embeddings become more refined from steps one to two, 
forming cohesive islands, while step three shows drastic changes by focusing purely on 
proximity.   
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6 Discussion 
This thesis set out to understand the role of representations in defining and operationalising 
liveability. The research objective was tackled by developing a theoretical framework and a 
modelling study. A 2x2 matrix captures the resultant theoretical framework by delineating the 
operationalisation and definition of liveability for the static and dynamic approaches. Static 
liveability is the current state of the art (Leefbaarometer), whereas dynamic liveability draws 
upon the active inference literature. 

The modelling study attempted to bridge these two approaches, bootstrapping the 
development of dynamic operationalisations. The dynamic approach involves information 
engines which produce work by constructing and maintaining niches. Urban representation 
learning was applied to craft and experiment on the configuration of a transmission for such an 
engine. In this study, empirical urban representations are compared to Leefbaarometer scores. 

The discussion focuses on delineating these two approaches in further detail, highlighting how 
their complementarity is an incredible advantage when operationalising the dynamic approach 
to liveability. The obstacle to operationalising the dynamic approach lies in developing the 
correct transmission and identifying the associated characteristic states. Respectively, it 
involves identifying the correct set of indicators, mapping them to percepts and meeting the 
suitable needs/desires of the corresponding niche. 

Working towards these future research directions requires an in-depth understanding of the 
intersection between transport modelling and active inference—drawing extensively upon the 
chosen H3 geospatial index and potential sampling procedures. The hexagonal spatial index 
used in this thesis aligns with renormalising generative models poised to become a mainstream 
approach to generative AI.  

6.1 Rethinking Liveability: Static and Dynamic Approaches 
The concept of liveability in transport policy extends far beyond traditional metrics of travel time 
and congestion. It encompasses the broader impact of transport infrastructure on urban life, 
including its influence on social interactions, economic opportunities, and environmental 
quality. For instance, the design of public transport networks not only affects commute times 
but also shapes urban form, influences land use patterns, and impacts social equity. The static 
approach to liveability, as exemplified by tools like the Leefbaarometer, has been instrumental 
in quantifying these impacts. It allows transport planners to assess how infrastructure projects 
might affect various outcome indicators (Huibregtse, 2021). However, this approach has 
limitations in capturing the dynamic nature of urban systems. Consider, for example, the 
introduction of a new light rail system. While static models might predict trend-wise changes in 
accessibility, they may not fully account for long-term shifts in residential patterns, business 
locations, or evolving travel behaviours that emerge as residents adapt to and interact with the 
new infrastructure. As such, the dynamic approach to liveability may align with the sustainable 
mobility paradigm, which focuses on scenario-based planning (Banister, 2008). 

At first, this thesis started with the intuition that liveability is more than collecting ever larger 
volumes of indicators. Such a practice tends to balloon as adding one more indicator becomes 
relatively insignificant. Maintaining dozens of indicators becomes expensive as many labour 
hours must be dedicated to keeping up to date with theory, data collection and validation.  
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More importantly, the way transport policy evaluation looks at the world reflects those 
represented by the evaluation methodology. Residents do not live in a world of indicators.  

Nor do travellers live in a world of rational choice, one fully mapped into distinct objects, each 
bestowed with a fixed set of attributes to evaluate. Policy evaluation is the study of scaling 
behaviour. Therefore, looking for a description of behaviour that also accounts for mental 
processes makes sense (Dietrich & List, 2016). Narrative is yet another explanation for the 
driving force behind behaviour (Bouizegarene et al., 2024), as has been described in transport 
policy, referring to it as homo narrans (Schwanen, 2020). 

The ecological approach to liveability aligns with the recommendation by Leidelmeijer to take 
the ecological understanding of liveability seriously when developing its operationalisation. The 
dynamic approach to liveability is an attempt to combine disenchantment with current practice 
hyperfocused on indicators while fully embracing an ecological interpretation of liveability. The 
key differentiator between the static and dynamic approaches is the notion of niche 
construction, which precludes passive rational choice with a fully observed world. The niche 
describes the coupled reciprocal generative model between external and internal states 
conditional on blanket states. Internal states parameterised by representations can only be 
informed by that which is perceived through palpation of the external world.  

Fortunately, it was possible to consolidate the dynamic nature while retaining indicators in the 
developed conceptual models. Indicators in the dynamic view are not just measurement 
outcomes presented on a silver platter but anticipated outcomes for which the resident has 
made preparations. For any observation on the blanket to inform internal states using the 
recognition density, there has to be a prior expectation, a generative density. Indicators, as 
used by modellers, point towards something out in the world that is of interest. It is 
subsequently a matter of subjectivity how the individual perceives this indicator, biased by their 
characteristic states better known as needs/desires.  

Since indicators point towards something in the world, they may also be obtained by processing 
high-dimensional data using neural networks. Thus, not only is it possible to use neural 
networks to map indicators to percepts, but indicators themselves can also be created by 
neural networks. Representational indicators are justified when mapping data to 
representations is unambiguous, one-to-one rather than many-to-many. The underlying 
rationale is that low ambiguity does not require active data sampling; optimising for both 
pragmatic and information value is useless if there is no ambiguity to resolve using that 
information. Parr et al. (2024) demonstrated this by adding a cost term to sampling; at some 
point, the gain in information is insufficient to warrant the sampling action, and the process 
stops.  

6.2 The Role of Representations in Liveability 
Underlying the difference between the static and dynamic approaches to liveability is a 
fundamental concern for the role of representations. This concern is not limited to liveability 
but extends to artificial intelligence in general. Pezzulo et al. (2024) discuss the development of 
generative artificial intelligence, contrasting what may be understood as the static and dynamic 
approaches. Pezullo et al. conclude that the dynamic approach (active inference) experiences 
the results of its actions as feedback, in contrast to the static approach (e.g. ChatGPT), which 
only learns from what is in the training set. The dynamic approach actively samples actions that 
provide epistemic affordances to get feedback on uncertain parts of the world. The benefit of 
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active sampling based on affordances is a reduction in data and computational requirements 
and a grounded understanding of the world rather than one inferred from second-hand sources 
of experience.  

As the name suggests, the (active inference) generative model generates impressions on the 
blanket from within. Impressions are generated by sampling from the joint probability 
distribution, which defines the generative model. Applied to liveability, it palpates indicators for 
their expected values. The system will move when these indicators are active states, such as 
actuators or muscles. In turn, movement is itself an observation to be made. It is to see the 
world move and the environment pass by as one walks through it. Observing the results of one's 
action is called self-evidencing, such that the concept of a self is isolated from all that is not 
self through palpation.  

Representations are instrumental in the action-perception loop. From an active inference 
perspective, they parameterise the internal states of the generative model and are continuously 
updated to reflect interaction with external states given the blanket (M. J. D. Ramstead et al., 
2024). Specifically, internal states are statistical moments of probability distributions like the 
mean and variance. Representations are only instrumental in informing the selection of optimal 
actions, which generate impressions on the blanket, the divergence between impression and 
sensory stimuli leading to a recognition of what is. Therefore, perception is an action, as 
observations are purposefully palpated based on pragmatic and epistemic values and selected 
using an approximate generative model fitted to (historical) data by maximising accuracy and 
minimising complexity—looking to the past and the future simultaneously or as Albarracin, et 
al. (2023) frame it, retention and protention. 

6.3 Urban Representation Learning: Insights and Challenges 
Urban representation learning aims to capture urban environments’ complex, multifaceted 
nature in a compact, machine-readable format. Our study leveraged various data sources and a 
novel learning strategy to create urban representations that could predict Leefbaarometer 
scores. This approach provided insights into the static measure of liveability and laid the 
groundwork for more dynamic, process-oriented models of urban systems. 

The urban representation learning study yielded several key insights: 

• Weighted averages play a crucial role in predicting Leefbaarometer scores, with 
exponential functions best-describing liveability, social cohesion, and safety. 

• The optimal number of rings for aggregation varies across different aspects of liveability. 
• Point of interest embeddings showed unexpected strength in predicting Leefbaarometer 

scores across all categories. 
• Learnt aggregation underperformed compared to simple aggregation, likely due to the 

nature of the Leefbaarometer's methodology and the bottleneck effect. 
• The public transport network should be included in the calculation of accessibility. 

Moreover, more attention should be paid to preparing the network graph.  
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Predicting Leefbaarometer Scores 

Overall, the R-squared scores for several Leefbaarometer scores were rather low. This can be 
explained by considering the indicators used to craft these scores. For the physical 
environment, we did not account for disaster risk, wind turbines, heat stress or pollution. We 
did not account for isolation quality, foundation quality, ownership or rental, overcrowding or 
the demographics of housing stock. Finally, the overall liveability, which combines the five 
Leefbaarometer scores using valuation, was also remarkably unexplained by urban 
embeddings. The variance introduced by valuation is not found in the embeddings. However, 
the 2-step ring sampling methodology, in combination with aerial images using H3 resolution 
10, performed all right. Nevertheless, it took much effort, so it may be safe to say that 
engineering the embedding process of environmental characteristics will not give high 
predictive accuracy on apparent liveability as operationalised using the Leerbaarometer. 

The role of weighted averages in predicting Leefbaarometer scores provides new insights. At 
first, it was unclear whether an exponential function would best describe liveability, social 
cohesion, and safety. The physical environment, however, lined up with expectations, 
performing best using a logarithm, as described in the report detailing the development of the 
Leefbaarometer (Mandemakers et al., 2021). The optimal number of rings (distance) to 
aggregate over is not always the maximum one can afford. Maximising the number of rings is 
only worthwhile for amenities and the physical environment. The other scores performed better 
with smaller receptive fields. Results also indicate that the weighted average and optimal 
receptive field are coupled. Flatter functions do better with larger receptive fields, whereas 
steeper functions (like exponential) do better with smaller ones. The Leefbaarometer scores, 
which perform better with steeper functions, also tend to involve subjective indicators or 
liveability valuation. Of all the six scores, the more subjective ones align with steeper functions. 
As such, it may be worthwhile to study the impact of weighted averages in future work. At least 
for the static approach to liveability. 

The impact of different data sources was lower than expected. All data sources were reduced in 
dimensionality to equal size using principal component analysis. Despite this, image data was 
expected to have variance to spare such that even after reduction, its embeddings would 
perform better. However, this did not seem to be the case. Instead, it was the point of interest 
embeddings which exceeded expectations—performing relatively well across all 
Leefbaarometer scores.  

Amenities, in particular, seem insensitive to the type of data used to create embeddings. For 
other data sources, there are significant gains in using one source over another. Even fine-
tuned aerial images do not perform best on all fronts while far exceeding expectations in 
predicting housing stock and liveability. Surprisingly, when using all data sources, hex2vec 
slightly outperforms Geovex on all scores except liveability.  

Learnt aggregation performs much worse than simple aggregation, likely due to the nature of 
the Leefbaarometer, which aligns with simple aggregation methodology. The Leefbaarometer 
does not consider the spatial context to the same extent as our learned ring aggregation model, 
which relies on sampling heuristics. The Leefbaarometer only applies spatial convolutions and 
decontextualises variables to create a model suitable for all of the Netherlands. While spatial 
context matters in residents’ perception, the Leefbaarometer does not account for it to the 
same extent.  
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Additionally, preliminary experiments showed that it is possible to compress origin-destination 
matrices filled with travel times. It seems learnt aggregation creates embeddings similarly, 
much like step three of learning strategy two. It captures the relative position of spatial units in 
some subspaces of the urban representations. The relative position does not need geospatial 
coordinates but can be higher dimensional to capture, for example, travel times. 

Of all modelling decisions, simply increasing the dimensionality shows the greatest return in 
predictive accuracy. Only when exceeding a few hundred dimensions will performance start to 
suffer due to the ratio of spatial units to dimensionality. Nevertheless, this thesis would have 
much higher results if the dimensionality used in the linear regression was not 30 but a multiple 
of it, such as 100 or even 250.  

Over-Squashing 

In learnt aggregation, we assign an equal number of parameters to each k-ring. As the number 
of spatial units increases linearly by a factor of six for every increase in rings, this might lead to 
over-squashing, similar to what is seen in graph convolutional neural networks. Oversquashing 
occurs when too much information is crammed into too few weights, particularly in message 
passing over longer contexts (Alon & Yahav, 2021).  

Future work may explore fixing the number of parameters per ring rather than sharing these. 
Many advanced AI models apply similar reasoning; data representations are progressively 
quantised further away in time or space (Dettmers et al., 2021). For example, fewer resources 
are allocated to events forecasted far into the future or far away, as is done by Tesla Autopilot. 

A way to tackle the problem of bottlenecks is to concatenate representations rather than 
aggregate them, preserving all of the information before feeding them into a very wide neural 
network. The initial implementation of ring aggregation followed this approach and performed 
reasonably well. Nevertheless, it is hard to experiment with this setup as the number of 
parameters changes drastically depending on the number of k-rings evaluated. Additionally, 
performance did not change much when the number of weights was alternating. Therefore, it 
may be tentatively stated that the generous application of concatenation is not a good way to 
address the bottleneck problem.   

To avoid concatenating the results of spatial units, one could rely on multiple statistical 
moments to maintain a fixed number of parameters using a neural network for within-ring 
aggregation. Rather than relying on a single statistical moment within each ring—aggregating 
using the mean—it may be more effective to consider the first two or three statistical moments. 
The distribution of representations per ring is then described using the mean, variance, and 
skewness. 

Accessibility 

The lack of public transport modes (bus, tram, train, metro) significantly affects our urban 
representations. Large parts of Rotterdam and The Hague are more integrated with their 
respective cities, but our learnt aggregation representations do not reflect this.  

Travel times for walking are not representative of reality, especially near Gorinchem, see Figure 
86. In learning strategy one, we sample triplets using location-based accessibility, with the top 
two per cent being positive and the rest being negative, averaged across walking, cycling, and 
driving networks. The abnormally high levels of accessibility in this region lead to biased results 
in the bottom right corner of the study area. However, since it is on the edge of the map and 
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isolated from the other cities, it was deemed ok not to investigate the cause for this error during 
the limited time allotted for the thesis. It is likely related to travel time calculation. 

 

Figure 86: Calculated accessibility for the proximity measure used in learning strategy one. Note the abnormally high 
accessibility in the bottom right-hand corner (only a large town and countryside). 

The results of learning strategy two showed that when using location-based accessibility, 
Zoetermeer was clustered with the ‘Groene Hart’, a more rural part of South Holland, Figure 84. 
This finding is in line with Zoetermeer's policy vision (Gemeente Zoetermeer, 2017), which notes 
the lack of connections with Rotterdam. Zoetermeer was originally a satellite suburb of The 
Hague and is, therefore, not as well connected to the remainder of the Randstad as it could be.  

6.4 Implications for Transport Policy  
The dynamic approach to liveability developed in this thesis has significant implications for 
transport policy and urban planning. It aligns with emerging concepts in governance and policy-
making while presenting challenges for practical implementation.  

The dynamic approach aligns with the concept of 'uitnodigend bestuur' (inviting governance) in 
transport policy (Buuren, 2018). By attempting to model complex interactions within urban 
systems, it may be possible to develop more adaptable and participatory policies. Inviting 
governance differs from more traditional top-down planning approaches by explicitly 
considering ‘twee benigheid’. This concept suggests that governance should not only fulfil its 
pragmatic duties, like upholding laws and administrative processes but also maintain 
openness towards new perspectives—a form of epistemic foraging. In this view, the amorphous 
complex system embodied by governance, inhabiting its niche, forages the world comprised of 
residents as a whole. 

This shift from traditional top-down planning approaches is particularly significant when 
considering the underlying mechanisms of active inference. The predictive processing 
framework operationalises the dynamics of message passing in active inference. Predictive 
processing introduces additional dynamics that need to be considered in policy-making. 
Predictive processing is explicitly a two-way, considering both top-down and bottom-up 
processing. These dynamics of error propagation have already been studied for organisations 
by Khezri (2022), who refers to it as ‘governing continuous transformation’, a concept applied to 
the Dutch case by Braams (2023).  
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The dynamic approach also relates to the concept of ‘homo narrans’ in transport policy 
(Schwanen, 2020). This view considers residents as narrative beings who construct meaning 
through stories and experiences, contrasting with the ‘homo economicus’ model of purely 
rational economic actors. ‘Living’ digital twins rely on the same narrative structuring. Active 
inference describes a narrative machine, whereas discrete choice models describe a rational 
machine. It is worth noting that this narrative-based approach aligns with how some 
policymakers already use cost-benefit analysis (CBA). Many view CBA as a tool to account for 
relevant factors rather than relying solely on monetary results (Mouter, 2017). The elements 
included in a CBA often indicate what is considered necessary in decision-making. Therefore, 
incorporating narratives more directly into modelling frameworks might align with political 
practice. 

6.5 Future Directions: Towards Living Digital Twins 
Complex systems modelling and searching for alternative intelligence collide with studying 
living digital twins. That is, modelling the niche construction of existing complex systems by 
deploying living digital twins. Such digital twins involve generative models as proposed under 
the active inference framework. Hipolito & Khanduja (2024) and Albarracin et al. (2024) propose 
tackling wicked problems like sustainability using digital twins of complex dynamical systems. 
Hipolito and Khanduja start by noting the limitations of reductionism, splitting the world into 
many variables (indicators) to be measured and related to each other. At the same time, 
Albarracin et al. approach the problem by proposing bounds on resources as target states.  

On the other hand, there is the search for alternative intelligences; in the work “Technological 
Approach to Mind Everywhere: An Experimentally Grounded Framework for Understanding 
Diverse Bodies and Minds”, Levin (2022) synthesis recent results in biology and applications of 
active inference, reframing the notion of multi-scale action-perception loops. Fields & Levin 
(2022) generalise behaviour to illustrate how intelligence is the navigation of some (abstract) 
search space, whether the journey of a resident using the transport network of a city or 
morphospace. Morphospace contains all physical bodies, explaining why the limb of a 
salamander grows back until exactly where it should stop. Somehow, cells and the body all 
have niches they want to inhabit. Its cumulative effect leads to the construction of a body until 
it is satisfactory. 

There is a distinction between things that live, explicitly performing inference over their 
generative model and those that only follow free energy gradients to optimise their dynamics. 
As such, it is not the correct question whether living digital twins involve syncing their niche 
construction to actual living or inference-performing systems. Instead, all that matters for 
applying the active inference system to operationalise niche construction is whether these 
systems perform gradient descent over free energy, leaving the notion of living as a useful 
explanatory fiction rather than a statement about the true nature of the world (M. J. D. 
Ramstead et al., 2024). It does, however, evoke a more fundamental question. How and to what 
extent do spatio-temporal scales, as in multi-scale action-perception loops, influence each 
other? It is the study of the relationship between these niche construction systems, or things in 
the free energy principle, which will determine if it is sufficient to model the niche construction 
process of entire cities as a proxy for the liveability of its nested residents. 

The action-perception loop is central to the dynamic approach. The action-perception loop 
describes the reciprocal relationship between residents and their living environment. Moreover, 
the interaction between residents and the environment is only one of many at a particular 
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scale. Lower scales would involve the internal dynamics of the resident or environment. On the 
other hand, higher scales abstract the entire relationship away, such that the internal dynamics 
of an entire urban region are of interest. Using complex systems modelling, operationalised 
with active inference, to occupy the niche construction process of existent things could be 
viewed as discovering alternative intelligence. That is, living digital twins should only work if 
something else shares a proximate niche. Otherwise, one starts a new niche that has not 
existed before. However, solely occupying non-interfering niches may be sufficient for 
infrastructure engineering purposes. The definition of non-interfering niches is left to be studied 
later. Let alone that of positive or negative interference, memes and anti-memes. 

There are no real-world implementations of urban living digital twins. The mechanism that these 
twins take advantage of is niche construction. However, to perform niche construction, one 
needs something with a transmission and needs/desires to get it going. The acquisition of these 
two components is a major obstacle in deploying living digital twins. First, the transmission is 
only really required for real-world systems since toy examples do not need neural networks. 
Instead, toy examples can work with indicators directly, which leaves needs/desires as the 
most challenging obstacle. The characteristic state of a niche aligns with the system's 
transmission; that is, the characteristic state cannot be identified without knowing which 
indicators and (initialised) likelihood mapping are available. A further complication is the 
addition of hierarchical models, which are well-suited for transportation modelling. Addressing 
these three obstacles will be the focus of the remainder of this chapter. 

The dynamic approach to urban systems and transport policy offers a different perspective 
compared to traditional static methods. It invites the modeller to revisit the concept of seeing 
like a state (Scott, 1998), applied to active inference by Avel Guénin—Carlut (2022). Seeing like 
a state asks the modeller to consider what is measured (indicators) and its impact on 
development. More specifically, we would consider seeing the transport system. To temporarily 
believe that complex systems are niche-constructing things allows for the creation and 
engagement of a ‘living’ digital twin. To take the work of M. J. D. Ramstead et al. (2024) a step 
further, entertaining the useful explanatory fiction that minimises free energy across a set of 
parameters is as if making actual inferences.  

A significant policy objective afforded by considering the transport system a niche constructor 
would be its simplification. Active inference formalises the calculation of variational free 
energy, a measure of divergence between expected and actual observations, which is 
composed of maximising predictive accuracy while minimising model complexity. When made 
explicit, it will invite modellers to simplify the transport system in addition to fitting the available 
data as accurately as possible. That is, the digital twin of the transport system attempts to be 
low complexity. When implemented, the transport system’s digital twin acts, self-evidencing 
for its world model. Thus, a digital twin that tries to become simpler may do so by making the 
actual transport system simpler through yet-to-be-defined avenues. However, a significant 
knowledge gap exists regarding whether and how this coupling occurs.  
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In total, we distinguish three primary approaches to living digital twins, each with its strengths 
and challenges: 

1. Modelling individual residents: This agent-based approach provides granular insights 
into individual behaviour and decision-making. However, it is computationally intensive 
and requires high-fidelity digital twins to approximate real-world dynamics accurately.  

2. Treating spatial units as agents: This approach aligns with the methodology developed 
in the current thesis, particularly due to local aggregation, which was developed in 
learning strategy one. Each hexagonal unit is modelled as an agent with needs and 
desires, observing and acting on its local environment. Agglomeration effects between 
spatial units increase cognitive lightcones, how far into space and time a decision 
maker can consider (Levin, 2019).  

 

Figure 87: Computational boundary of self. From (Levin, 2019). 

3. Rather than simulate the agglomeration of spatial units into a hierarchical organisation, 
it makes more sense to start with one, considering the entire urban region as a single 
generative model. It treats the city as a living, adapting entity. Different layers in the 
hierarchy correspond to different spatio-temporal scales. Since liveability concerns 
local scales of the action-perception loop and sustainability covers global scales, 
hierarchical active inference models may potentially address the mesoscale 
sustainability gap identified by Johnson et al. (2023). 

6.5.1 Active Inference Models are Transport Models 
In line with the third approach to model living digital twins, as outlined in the previous section, 
we now entertain the hypothesis that hierarchical generative models are implicitly transport 
models. The total assembly of such a model requires a transmission and engine. In line with 
current transport modelling practice, the 4-step transport model covers the generation, 
distribution, travel mode choice and assignment of travel volumes across the network. The first 
three steps up until travel mode choice are equivalent to location-based accessibility. The 
fourth step subsequently takes accessibility for the different travel modes per spatial unit and 
assigns the volume of journeys across the transportation network links.  
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This hypothesis arises from the observation that both active inference and transport systems 
fundamentally deal with the movement of representations, whether that be a vector as used in 
neural networks or the number of cars as used in transport modelling. Furthermore, modellers 
always have to define the boundary of the system which is being modelled. Hence, the notion of 
a Markov blanket separating internal and external states comes very naturally. It is only a matter 
of defining and operationalising this blanket's sensory and active states, which becomes 
problematic due to the vast knowledge gaps. 

We propose implementing a hierarchical active inference model using the H3 geospatial index 
to test this hypothesis. Hexagonal spatial units of the highest manageable resolution are in 
contact with the world, serving as the interface between the model and reality. At the same 
time, the lowest resolution hexagons are first in line to receive messages loaded with 
preferences (needs/desires), the configuration of which should likely be aligned with broad 
prosperity indicators. 

Active inference models may be understood as a sandwich with two pieces of bread that act 
and a filling which does bidirectional message passing. The bread in this model would be the 
highest and lowest resolution layers. More formally, it is a sandwich of screens (M. J. Ramstead 
et al., 2023). See also Figure 92. Each layer or screen is a landscape of affordances, from which 
actions are selected top-down and prepared using bottom-up feedback. The dynamics of 
attention are, however, more nuanced and based on the field of affordances, which is 
constrained to all which was relevant only recently. Thus, attention flows literally and does not 
jump around from one end of the landscape to another.  

To understand the flow of attention and its analogy to transport modelling, we note that the 
hierarchical structure mirrors the small-world nature of self-organising Bayesian systems. 
Consider going up in the hierarchy, such as taking a highway onramp or accessing a train. Going 
down vice versa, e.g. moving from an arterial to a local street. Short trips do not need to go up 
and over, instead taking a shortcut as indicated by the grey lines in the side view of Figure 88.  

Circling to homo narrans as it relates to transport policy offers a compelling contextualisation. 
A narrative is the flow of beliefs up and down throughout the hierarchical network. A travel 
journey as studied in person-based accessibility (K. T. Geurs & van Wee, 2004) becomes itself 
the object of interest in the paths-based formulation of Bayesian mechanics, where such 
journeys of attention are modelled as a whole, albeit probabilistically (M. J. D. Ramstead et al., 
2023). 

Internal network dynamics often follow power-law distributions (Goekoop & de Kleijn, 2023), as 
seen in accessibility (Geurs, 2018). Furthermore, hierarchical Bayesian control systems may 
collapse during long exposure to stressful events, leading to functional disintegration (Goekoop 
& De Kleijn, 2021). The 15-minute city concept and re-/friendshoring of supply chains can be 
seen as a means to lower stress on the system. Dynamic transport models could, therefore, 
offer novel techniques to address resilience from a transport engineering perspective and a 
policy one through sustainability, as resilience is one component of sustainability (Albarracin et 
al., 2024). The inclusion of hierarchy makes this proposed approach distinct from previous 
efforts to simulate traffic systems using generative models (Wong & Farooq, 2019). 
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Figure 88: Small world network and internal dynamics of hierarchical Bayesian control system. From (Goekoop & De 
Kleijn, 2021). 

The implementation of such a hierarchical generative model can draw upon recent work by K. 
Friston et al. (2024), who developed a renormalising generative model with discrete states 
(Figure 89). The key point of relevance is that both the H3 geospatial index and renormalising 
generative models have parent-child relationships between resolution layers, such that one has 
to go up and over to visit a child from another parent. The group or block in the dashed red box 
represents the children of the blue circle above it. Each spatial unit (hexagon) will learn unique 
weights towards its parent and children, the D matrix. If these weights were not unique, then the 
model is homologous to (deep) convolutional neural networks—as was studied in this thesis. 

 

Figure 89: Illustration of a renormalising generative model capable of mapping pixels to actions. From (K. Friston et 
al., 2024) 
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6.5.2 Total Assembly 
Operationalising the dynamic approach to liveability requires the construction of an assembly 
comprised of transmission and engine. The previous section on transport modelling argued that 
the transmission captures the first three steps of the 4-step transport model. The engine fulfils 
the final step, which is assignment. This section details the total assembly, explaining the 
purpose and interaction of each component. Subsequent sections on transmission and engine 
provide detailed descriptions of their configuration and training. 

First, the dynamic approach to liveability considers perception itself an action. The fit between 
residents and the environment is placed at perception, between indicators and percepts. The 
influence of needs/desires is subsequently one of bias, a bias applied to percepts to align with 
the characteristic states of the niche. The purpose of the transmission is, therefore, to be in 
contact with the world dynamically. Meanwhile, the engine traverses the landscape of 
affordances provided by the transmission.  

Several steps are overlooked in this treatment of the assembly. First, the transmission will be 
much more detailed than studied in this thesis, requiring a unique workflow per hierarchical 
layer (H3 resolution). Second, the engine requiring action selection is far beyond the scope of 
this thesis. See also (Browne et al., 2012; K. Friston et al., 2021; Koudahl et al., 2023). 

The transmission must be able to capture low-dimensional regularities in high-dimensional 
data, either through the construction of indicators using feature extractors where the ambiguity 
of mappings is low or by mapping indicators to percepts where ambiguity is high. Both indicator 
and percept can be representations, as has been the case in this thesis under learning strategy 
one. The fusion network is shown as the neural network block labelled perception and is to be 
updated through a modified variational free energy term (VFE), which optimises for accuracy 
and complexity. Alternatively, the selection of actions from needs/desires is determined by 
expected free energy (EFE). Actions constrain the landscape of affordances, which is as flat as 
possible to allow for option value, as studied in transportation planning (K. T. Geurs et al., 
2006).  

 

Figure 90: Information engine for the dynamic operationalisation of liveability using transport modelling. 

6.5.3 Transmission 
The transmission exists to map high-dimensional data into manageable percepts. It is 
comprised of two components, both capable of accommodating neural networks. Indicators 
benefit from low ambiguity mappings using the first encoder block. On the other hand, the 
likelihood mapping, where the transmission and engine interface should be left to address high 
ambiguity mappings. Otherwise, there would be no epistemic value to capture as part of EFE.  
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On the whole, the transmission should approximate the ring aggregation methodology 
developed as learning strategy one in this thesis. It comprises two steps. The first is learning 
representations for each data modality of the urban region, to be reframed as indicators. The 
second is the combination of these views into percepts and accounting for location-based 
accessibility in doing so, approximating the constrained maximum entropy principle. 

Indicators 

Indicators can be inferred by extracting features from high-dimensional data. Not only is it 
possible to use self-supervised techniques as in this thesis, but If the objective is to create 
interpretable indicators, they could be trained using a supervised loss with an existing indicator 
as a target. An image encoder network like ConvNeXt (Liu et al., 2022) can be trained to extract 
features from aerial images correlated with the Leefbaarometer's housing stock score. While 
our study's performance was limited, previous supervised learning approaches have shown 
success (Levering et al., 2023). 

Alternatively, it is possible to use supervised learning techniques such as classification and 
segmentation to extract features. As such, indicators can automatically be generated from 
street view images to count the number of cars or people (Garrido-Valenzuela et al., 2023). 
Alternatively, the presence of urban canyons can be assessed by considering the frequency and 
intensity of greenery and sky (Gong et al., 2018). 

Fusion into Percepts 

Approximating the likelihood mapping of generative models can be done using a fusion 
network. Likelihood mapping is a matrix which relates observations to representations. The 
mapping should be biased towards affordance landscapes using location-based accessibility. 
All that matters is that the representation fed into the active inference model covers the choice 
set as accurately as possible. In turn, the hierarchical active inference model goes up and over 
to assign travel volumes between spatial units, see Figure 88.   

The calculation of location-based accessibility involves resistances between spatial units and 
the attractiveness thereof. Both of these deserve extensive attention in later work. First, 
resistances between spatial units have been operationalised using travel time in this thesis. 
Alternatively, one could use generalised travel costs or another measure of travel resistance 
that is still to be imagined. Second, attractiveness can be more than just the number of jobs, 
shops or building density. Any form of utility assigned to a spatial unit could be used—for 
example, visual quality (van Cranenburgh & Garrido-Valenzuela, 2023). 

Sampling Heuristics 

The sampling heuristic can be significantly improved to gather positive and negative pairs for 
similarity loss used in the fusion network. The methodology tested in this thesis used both 2-
step ring sampling and weighted random walks to operationalise location-based accessibility. 
2-step ring sampling to finetune the aerial image encoder network (ConvNeXt model). Weighted 
random walks across increments of location-based accessibility in learning strategy two. The 
modelling study performed in this thesis found empirically that the highest predictive accuracy 
for liveability was achieved with finetuned aerial image embeddings. Learning strategy one 
relied on a cutoff value of the top 2 percentile accessible spatial units. The results of learning 
strategy two indicate similar results to those of learning strategy one.  
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Since the transmission is concerned with crafting landscapes of affordances, whatever H3 
resolution of interest, we should fully take advantage of the hexagonal grid to implement 
location-based accessibility in a future-proof manner, fit for introducing novel, more expressive 
forms of travel resistance and attractiveness. To do so, we observe that location-based 
accessibility is concerned with increments of both attractiveness and travel resistance. The 
more increments accumulated across the attractiveness space, the more likely a trip is. While 
the more increments of travel resistance accumulate across space, the less likely a trip is. 
Hence, location-based accessibility is somewhat like a voltage, which drives flows/currents in 
the active inference model as attention flows between the hierarchical layers, top-
down/bottom-up. See also Parvizi-Wayne et al. (2023) for the phenomenology of flow and active 
inference. The transmissions, one for each, prepare a field of affordances for every hierarchical 
layer, and the engine calculates paths between the hierarchical layers.  

We propose to continue off of the 2-step ring sampling methodology by fixing a receptive field. 
However, future work may show that the size of the field itself can be dynamic, too. The field 
spans a set of spatial units, which are doubly assigned to two weighted graphs. One graph has 
increments of attractiveness on its edges, whereas the other has increments of travel 
resistance. Random walks are then performed to obtain the result of 2-step ring sampling in the 
case of a perfectly uniform graph. Random weighted walks for the sampling of negative triplets 
start outside and go inwards. Whereas random weighted walks for the sampling of positive 
triplets start on the inside and go outwards. 

At the end, not shown, the two plots are combined to classify each spatial unit for a given 
centre. Positive and negative sampling occurs, and a threshold is applied to classify the final 
sets to be used in triplet sampling. That means an equally often sampled spatial unit will be left 
neutral. Spatial units in the receptive field of the blue centre are either neutral, to be positively 
sampled or negatively sampled. Different numbers of walks may be sampled for either. After 
the classification, triplet mining makes it possible to obtain the most difficult spatial units in the 
context and improve the fusion network's training process. 

 

Figure 91: hexagonal grid sampling methods for location-based accessibility. Weighted random walks are based on 
attractiveness inside out and travel resistance outside in. 
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Expressivity 

Architectural improvements are expected to improve expressivity when it comes to crafting 
representations. Transportation involves discrete events and objects—for example, the rate of 
travel or pollution throughout space over time. Rate coding has been applied to representation 
learning by implementing the Poisson distribution, which is commonly applied to queuing 
problems. Rate coding has already been used in this thesis using the Geovex encoder for points 
of interest by Donghi & Morvan (2023). Active inference models optimise statistical moments of 
probability distributions, which parameterise states. In turn, it is sensible to consider 
variational autoencoders optimising for the mean and variance of Gaussian distributions. 
Poisson Variational Autoencoders by Vafaii et al. (2024) offer a means to capture discrete 
transport phenomena probabilistically, effectively modelling the intensity of presence or 
absence in urban spaces. 

6.5.4 Engine 
At the intersection of niche construction and transport policy is the notion of information 
engines and their associated transmissions. Active inference models, which build upon the free 
energy principle, retrieve a great deal of physics from thermodynamics and statistical 
mechanics, both the foundations of conventional combustion engines. For now, it should 
suffice to claim that such dynamic models are information engines that perform work in the 
sense that they construct and maintain their niche, given a set of indicators and 
needs/preferences. This thesis attempted to understand the nature of these transmissions: 
neural networks whose purpose is to map high-dimensional data to representations for input to 
an active inference model.  

The construction and maintenance of a niche is abstract but clarified by considering that 
agents which share a set of affordances share a niche. That is, they both have similar 
capabilities for action and, in turn, influence the world the other inhabits and perceives. Such 
information engines take in energy to run the computers and return free energy gradients of a 
relevant niche. The niche, however, has to be retrieved by carefully selecting the indicators and 
needs/desires. This last bit is neither simple nor evident, and much work remains.  

The transmission (indicators) and needs/desires belonging to a niche should be inferred from 
revealed behaviour. Given that we are interested in hierarchical models, the obstacle is to 
reduce the degrees of freedom in the model, leaving only the transmission and needs/desires to 
be configured. To do so, living urban digital twins may benefit from continuing Spinoza’s 
arguments. First, he introduces a single substance from which two perceivable attributes come 
forth: extension and thought, which mirror the duality of the free energy principle with external 
and internal states, respectively. Second, Training hierarchical active inference models of 
urban regions may significantly benefit from the complimentary duality of natura naturata and 
natura naturans. Each layer in the hierarchy contains the outcomes of the dynamic process, 
representations which parameterise beliefs about states. Supervised learning of internal 
representations could be possible by crafting a suitable transmission for each H3 resolution. 
These targets approximate the landscape of affordances for every level as they are trained using 
the newly proposed sampling procedure in Figure 91. We remove the notion of representations 
altogether by putting every level in the hierarchical model in contact with a transmission rather 
than just the bottom. The generative model is then fully dynamic and radically enactivist, with 
no representations, just feedback loops. See also section 2.5.4 on Integrating Predictive 
Processing and Enactivism for background. 
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Hence, representations obtained using static liveability are used to bootstrap the 
operationalisation of the dynamic approach to liveability. Supervised learning may improve our 
ability to find the characteristic states and indicators to approximate a niche of interest. Once 
the characteristic states and indicators are set, a good likelihood mapping is needed to create 
percepts, the second part of the transmission. Then, modelling can resume without inference 
on intervening hierarchical layers but only on the bottom (highest resolution H3). In practice, it 
may require gradually removing supervised internal layers, potentially even partially removing 
them within each layer.  

After the trained model with configured transmission and needs/desires has run for a bit, one 
can extract the representations of the intervening layers and observe them as static 
representations of liveability. With a valuation according to the spatio-temporal scale befitting 
of it. The correspondence of valuations to spatio-temporal scales is expected since nested 
action-perception loops provide top-down constraints and bottom-up sensory data. That is, 
top-down action selection uses affordances, constraining what is perceived using the 
observations. It is the process of turning the generative model into a recognition model, a tale of 
two densities, see (M. J. D. Ramstead et al., 2020). Affordances are the choice set, and 
alternatives within them are evaluated for their attributes (representations) based on their 
pragmatic and epistemic value—where pragmatic value is most proximate to valuation as 
understood in the static approach to liveability. The pragmatic value concerns the 
characteristic state of the niche, preferences and needs/desires.  

 

 

 

Figure 92: Inner screen theory of consciousness applied to active inference. Layers in the hierarchy are screens that 
combine top-down and bottom-up interactions. The highest layer only acts top-down (mental action), setting the 

characteristic states. The bottom layer is the only bottom-up, providing contact with the environment (physical 
action). From (M. J. Ramstead et al., 2023). 
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6.5.5 Final Considerations 
The development of such models presents significant challenges, including data integration 
across multiple sources and modalities, computational requirements, and the need for novel 
validation approaches. Moreover, ethical considerations surrounding privacy, equity, and the 
potential unintended consequences of AI-driven urban planning must be carefully addressed. 

Hijacking a niche requires syncing with it by identifying suitable indicators and needs/desires. In 
hierarchical models, learning the static representations of different hierarchical levels is 
another knowledge gap. Somehow, it is up to transport modellers to capture the 
spatiotemporal characteristics of each hierarchical layer by taking inventory of all relevant 
urban phenomena and collecting data continuously as necessary for the initial inference period 
of the active inference model. Lastly, the correct transmission architecture should be figured 
out to represent this data so that it fits with the other layers.  

Practical 

Generative models have come a long way. The newest developments suit engineering 
applications adopting reactive message passing (Koudahl et al., 2023; van de Laar et al., 2023). 
Reactive message passing is much cheaper since recurrent functions do not have a fixed 
timeline but can arrive anytime. E.g. a discrete-event model used in operations research has 
pre-determined timesteps 1, 2, 3,… but a reactive program does not. The continued 
development of reactive message passing in Eindhoven is highly valuable. Unlike traditional 
neural networks, active inference models provide an explainable framework crucial for 
transparency in decision-making processes (Albarracin, et al., 2023). 

Cognitive Security 

Living digital twinning represents a significant advancement in complex systems modelling 
involving hijacking niche construction processes through artificial entities. This expansion of 
system surfaces towards niche-embodying elements raises questions about cognitive security 
and the potential impacts of interference with these digital constructs. 

The concept of living digital twins extends beyond traditional physical infrastructure, 
encompassing high-dimensional representations of travel impedances and attractiveness. 
Travel impedances may incorporate complex resistances between spatial units that go beyond 
mere travel time or generalized cost, potentially involving high-dimensional metrics. Similarly, 
attractiveness might be conceptualized in a 1000-dimensional metric space rather than relying 
solely on conventional measures like job numbers or building density. This sophisticated 
approach to modelling accessibility enables a more nuanced understanding of how individuals 
interact with their environment. 

Such advanced modelling capabilities facilitate the parametric design of infrastructure and 
built environments, albeit with inherent biases towards stakeholder-defined characteristic 
states. The automation inherent in this approach necessitates a critical examination of its 
objectives and search space navigation. The distribution of affordances—derived from these 
complex accessibility measures—across spatial, temporal, and demographic dimensions may 
significantly influence resultant behaviours. 

For instance, the classic example of transport justice—where a low-hanging viaduct prevents 
bus access to a beach, disproportionately affecting low-income residents—illustrates how 
physical constraints can serve as initial modelling parameters for affordances.  
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However, the ability to engineer affordances in high-dimensional spaces introduces a form of 
nudging far more subtle than explicit physical barriers. This nuanced approach to behavioural 
influence raises concerns about privacy. Perception is action such that to tamper with the 
landscape/field of affordances is to remove privacy before any action has occurred yet.  

Municipalities in the Netherlands (VNG) have voiced concerns with this type of autonomous 
digital twin (Vereniging van Nederlandse Gemeenten, 2024). VNG recommends the study of 
frameworks and guidelines in the development of such models to understand what values and 
oversight are involved. Hipólito & Podosky (2024) propose a comprehensive overview of value 
and control in artificial intelligence. Indeed, autonomous living digital twins may take actions 
nobody understands, for which no one is held accountable. If perception itself is an action, 
then the entire model and its data stream should be continuously monitored for accountability.  

On the upside, however, there may be the potential to create a new kind of polder in a more 
abstract space of affordances/capabilities in which niches are synced to and nudged towards 
global optima. In this case, the global optima is set by larger information processing hierarchies 
such as an urban region, entire country or supranational network, as proposed by the spatial 
web using ecosystems of intelligence (K. J. Friston et al., 2022).  

Polder may be a suitable and hopeful reference since it is a practice of pumping free energy 
gradients to improve liveability; however, the practice may be extractive with considerable 
externalities. Niches are more than the relationship of residents with their urban environment. 
Niches are ubiquitous as they describe the reciprocal relationship between any sense maker 
and their environment. It is unknown what occurs when artificial things mess with the niche 
construction process of existent things by hijacking their niche, potentially without consent. At 
this point, the development of cognitive security comes into play, which is the study of niche 
construction and the defence from interference by third parties. It takes inventory of ways 
people and intelligent systems can be nudged towards specific belief systems or brought to be 
unbalanced (Waltzman, 2017). Practical recommendations for (niche constructing) digital 
twins involve unified data infrastructure, professionalisation of this upcoming field, and 
securing sensor systems, as the latter is the most vulnerable to interference (Cordes, 2024).  

Distributive Justice 

The broad prosperity framework explicitly calls for distributive justice (de Boer et al., 2023; 
Raad voor de leefomgeving en infrastructuur, 2024; Snellen & Bastiaanssen, 2021). Distributive 
justice from a broad prosperity perspective starts with a critique of utilitarianism, which 
underpins current static approaches based on valuation. Aggregate satisfaction improvement 
in a population without accounting for the distribution of improvement leads to a winner-take-
all effect. In the past, for example, infrastructure investments have mostly gone towards the 
Randstad instead of the provinces due to higher returns on investment.  

In the dynamic approach to liveability, where valuation has been replaced by perception as a 
means of fit, these concerns do not apply anymore. Instead, distributive justice becomes an 
issue of defining work. The work produced by niche-constructing information engines has to be 
quantified. The trouble here is that work is the expenditure of useful energy, but usefulness is 
subjective. Any concentration of capital and power will be able to ammas computational 
resources and sensory/actuator capabilities. Therefore, the dynamic approach to liveability 
does not inherently address the distributive justice component of broad prosperity; instead, it 
shuffles it around to whoever owns and configures the means of niche construction. 
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6.6 Synthesis and Future Prospects 
This discussion has explored the complementarity of static and dynamic approaches to 
liveability, highlighting the potential of living digital twins in urban and transport systems 
modelling. The journey from urban representation learning to the conceptualisation of 
hierarchical active inference models as transport models reveals a promising path forward in 
operationalising liveability dynamically. 

Key contributions include: 

• The development of a theoretical framework bridging and contrasting the static and 
dynamic approaches to liveability. 

• Empirical insights from urban representation learning, informing future dynamic 
operationalisations. 

• The proposal of hierarchical active inference models as a novel approach to transport 
modelling. 

Future work should focus on addressing the challenges in implementing living digital twins, 
particularly in developing appropriate transmissions, identifying needs/desires, and 
constructing hierarchical models suited for transportation modelling. Integrating these 
concepts with existing transport policy frameworks, such as broad prosperity, presents 
opportunities and ethical considerations that warrant careful examination. As with liveability, 
theory and practice influence each other, and one can cause lock-in of the other. The potential 
for living digital twins to offer new insights into urban dynamics, resilience, and sustainability 
remains a compelling direction for future research and policy development. 
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7 Appendix A: Scientific Research Paper 
Learning Urban Representations to Operationalise Liveability 
Bert Berkers  

Abstract  
Urban liveability is crucial in transport policy evaluation, but its operationalisation remains labour-
intensive. This study introduces a novel urban representation learning method to automate liveability 
assessment, leveraging spatial convolutions on the H3 discrete global grid system (DGGS). Our approach 
uses deep neural networks and diverse data sources, including aerial and street view images, road 
network and public transport characteristics, and points of interest, to predict Leefbaarometer scores, a 
Dutch liveability assessment tool. We employ a late-fusion strategy, training the fusion network with 
circle loss and sampling triplets using Euclidean distance and accessibility heuristics. The introduced 
ring aggregation method outperforms existing approaches like urban2vec across all Leefbaarometer 
scores, with notable improvements in R-squared scores for amenities (0.85 vs 0.64), social cohesion (0.6 
vs 0.43), and overall liveability (0.35 vs 0.27). Sensitivity analysis reveals that different Leefbaarometer 
scores perform optimally at varying receptive fields, and data source selection significantly impacts 
predictive performance. This research contributes to more efficient, automated liveability assessment 
methods, paving the way for dynamic, process-oriented models in urban planning and policy evaluation.

7.1 Introduction 
Liveability has emerged as a crucial factor in 
Dutch transport policy evaluation, now 
considered alongside traditional objectives 
such as accessibility and safety (Huibregtse, 
2021). Defined as the fit between residents and 
their living environment (Dorst, 2005), liveability 
presents significant challenges in its 
operationalisation for policy evaluation. 

Collecting and processing indicators that 
characterise the environment is labour-
intensive. Moreover, selecting relevant 
indicators requires strong theoretical backing to 
ensure that the measured aspects of the 
environment are indeed related to liveability. 
This complexity is further compounded by the 
need to obtain valuations of these indicators, 
although the automation of valuation falls 
outside the scope of the present study and is 
left to the recommendations. 

The Leefbaarometer (Mandemakers et al., 2021) 
is the state-of-the-art operationalisation of 
liveability in the Netherlands. While valuable, 
the increasing pressure on urban transportation 
systems, driven by densification and the need 
for sustainable development (Gupta et al., 
2024), necessitates more efficient and effective 
policy evaluation methods. 

This research addresses this need by exploring 
the potential of urban representation learning to 
automate the operationalisation of liveability. 
We introduce ring aggregation, a novel urban 
representation learning method based on 
spatial convolutions using the H3 hexagonal 
DGGS. Our approach leverages deep neural 
networks and diverse data sources to learn 
compressed representations of urban 
environments and predict Leefbaarometer 
scores. 

Research objective:  

To automate the operationalisation of liveability. 

Research questions:  

1) How can urban representation learning be 
leveraged to automate the operationalisation of 
liveability? 

2) What configuration of the proposed ring 
aggregation method most effectively predicts 
Leefbaarometer scores? 

Through sensitivity analysis, we investigate the 
impact of various modelling decisions, including 
the choice of sampling heuristics, the 
configuration of spatial convolutions, and the 
selection of data sources. We also compare our 
method to existing approaches in the field. 
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By automating the creation and perception of 
indicators, we contribute to more efficient and 
data-driven policy evaluation. Furthermore, this 
research lays the groundwork for future 
explorations into dynamic, process-oriented 
models that could offer a more comprehensive 
understanding of liveability in urban 
environments. 

The remainder of this paper is structured as 
follows: Section 2 presents the theoretical 
framework, introducing key concepts in 
liveability and urban representation learning. 
Section 3 details our methodology, including the 
novel ring aggregation method and our 
approach to multi-modal data fusion. Section 4 
describes the application, including the study 
area, data sources and training procedure. 
Section 5 presents our results, analysing the 
impact of various modelling decisions and 
comparing our method to existing approaches. 
Finally, Section 6 discusses the implications of 
our findings and provides directions for future 
research. 

7.2 Theoretical framework 
Liveability is a complex and multi-dimensional 
concept encompassing various aspects of 
urban life. It is often used interchangeably with 
terms like quality of life, well-being, 
environmental quality, and health, leading to 
ambiguity in its definition. Quality of life and 
liveability are commonly used interchangeably 
(Tan et al., 2024). Both these terms aim to 
capture the extent to which an environment 
meets the needs of its residents. As De Haan et 
al. (2014) put it, "Fulfilling human needs, and 
fulfilling more of them, increases the quality of 
life". 

Leidelmeijer (2004) provides a succinct 
demarcation of terminology, starting with the 
foundational definition that liveability is the fit 
between a resident and their living environment. 
Taking a perspectival measurement from this 
reciprocal system yields liveability or quality of 
life, as shown in Figure 93. Sustainability and 
liveability are related but distinct in their scales. 
Both concern meeting needs (De Haan et al., 
2014).  

 

However, sustainability concerns a much larger 
spatiotemporal vista than liveability. The latter is 
reserved for local neighbourhood-scale 
relations between residents and their daily local 
environment—the here and now. 

 

Figure 93: Reciprocal relationship between 
human/resident and environment. Perspectival 

measurement. From (Leidelmeijer, 2004). 

Dorst (2005) outlined three operationalisations 
focusing on the role of indicators and residents' 
valuation of the living environment: perceived 
liveability, indicated liveability, and apparent 
liveability. 1) Perceived liveability relies solely on 
residents' valuations, which may be stated or 
revealed. Stated preferences are acquired 
through surveys or interviews, while revealed 
preferences are patterns found in residents' 
collective behaviour, for example, travel 
behaviour or house prices. 2) Indicated 
liveability, on the other hand, relies on a 
normative judgment by the analyst to determine 
what would likely make for a more liveable 
urban environment. Many operationalisations 
rely on this form in practice due to the ease of 
development. 3) Lastly, apparent liveability 
'emerges' from the interaction between 
indicators and valuation. For example, it can be 
done by estimating a regression model between 
house prices and indicators. The 
Leefbaarometer by Mandemakers et al. (2021) is 
an example of apparent liveability; it combines 
indicators bundled into aspects and valuation 
through hedonic pricing and surveys on 
satisfaction with their living environment. The 
included aspects are safety, social cohesion, 
physical environment, housing stock, and 
amenities. 
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7.2.1 Conceptual Model 
Liveability is inherently subjective. Which 
environment is conducive to fit differs per 
individual and throughout their life (Veenhoven, 
2000). We propose the conceptual model in 
Figure 94, with three facets of subjectivity. First, 
indicators describe the environment. Having a 
combination of subjective and objective 
indicators is good practice. As Pacione (2003) 
states, 'we must consider both the city on the 
ground and the city in the mind'. The 
leefbaarometer uses survey results for 
subjective indicators, such as the feeling of 
safety. Second, the perception of the 
environment distinguishes liveability from 
environmental quality, which is deemed 
objective (Leidelmeijer, 2004). Last, to 
characterise the resident in the resident 
environment fit, needs/desires exist to be 
satisfied. Needs relate to basic requirements 
such as food and shelter. Desires to culturally 
embedded and personally relevant wishes 
(Veenhoven, 2000) 

However, the three approaches to 
operationalise liveability proposed by Dorst 
(2005) do not make perception explicit; instead, 
they solely rely on indicators and their valuation, 
see Figure 94. Admittedly, the implicitness of 
perception is valid for similar contexts and 
populations where all would understand 
indicators the same.  

 

 

 

 

 

Figure 94: Conceptual model of operationalising 
liveability with valuation as a proxy for fit. Percepts 

are implicit, assuming uniformity across the 
population. 

The resource-intensive nature of collecting 
indicators for comprehensive models has 
spurred the development of automated 
approaches. Aerial imagery, in combination with 
remote sensing, has been employed to predict 
Leefbaarometer scores (Levering, Marcos, Van 
Vliet, et al., 2023). This approach shows 
promise in predicting aspects related to 
physical characteristics and housing stock, 
though it performs less well for features 
recognisable by proxy, particularly amenities.  

Beyond data processing, deep learning models 
also serve to more closely approximate human 
perception (Dubey et al., 2016). Recent 
advances have focused on using street-view 
images to represent the urban environment (Fan 
et al., 2023; Huang et al., 2021; Xiao et al., 2021; 
M. Zhang et al., 2020). Others used street-view 
images to operationalise the utility people 
experience in house relocation where utility is 
valuation, a proxy for the resident environment 
fit (van Cranenburgh & Garrido-Valenzuela, 
2023). 

Our proposed conceptual model builds upon 
existing frameworks by explicitly incorporating 
the role of perception in liveability assessment 
(Figure 95). By introducing neural networks to 
map indicators to percepts, we acknowledge 
the subjective nature of how urban 
environments are experienced. However, this 
model assumes a degree of uniformity in 
perception across the population and 
needs/desires, which may not always hold in 
diverse urban contexts. Future work could 
explore incorporating individual or group-level 
variations in perceptual processes. 

 

 

Figure 95: Conceptual model of operationalising 
liveability introducing neural networks to map 

indicators to percepts. 
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7.2.2 Learning Urban Representations 
The field of urban representation learning 
employs machine learning techniques to 
generate compressed, computer-readable 
representations of complex urban 
environments. Urban representation learning is 
the study of mapping high-dimensional urban 
data into lower-dimensional embeddings while 
preserving the essential spatial and semantic 
correlations within the data. Examples of high-
dimensional data used previously are street 
view images (Z. Wang et al., 2020), aerial 
imagery (Levering et al., 2023), points of interest 
(Donghi & Morvan, 2023; Woźniak & Szymański, 
2021), the road network (Leśniara & Szymański, 
2022) and the public transport network 
(Gramacki et al., 2021).  

The first step in applying urban representation 
learning is selecting an appropriate spatial unit. 
Examples are administrative units like 
neighbourhoods or a discrete global grid system 
(DGGS). The H3 DGGS by Uber, with its 
hexagonal format and hierarchical structure, 
has gained popularity due to its ability to 
capture spatial relationships effectively. 
Furthermore, several studies use graphs to 
structure their data, as these can effectively 
keep track of relationships between spatial 
units to capture distances or travel volumes 
(Huang et al., 2021; Kim & Yoon, 2022; Xiao et 
al., 2021; M. Zhang et al., 2020). Graphs are also 
suitable for random-walk-based methods like 
node2vec (Grover & Leskovec, 2016) or graph 
convolutions (Kipf & Welling, 2017) and graph 
attention (Veličković et al., 2018). 

The second choice is between supervised or 
self-supervised learning. The former is used in 
end-to-end applications when the task of 
interest is known. On the other hand, self-
supervised learning is applied when a multi-step 
process is desired: representation of data and a 
subsequent downstream application. 
Supervised learning requires a labelled dataset 
with targets defined by the task, whereas self-
supervised learning only requires labels 
distinguishing points within the data, hence the 
need for discrete spatial units. 

Multi-modal learning enables the integration of 
information from diverse data sources, leading 
to more comprehensive representations which 

account for correlations between data sources 
and spatial units. However, it also poses 
challenges in effectively fusing different 
modalities. Various fusion strategies have been 
developed to address this challenge, including 
data-centric (Moschella et al., 2023), learned 
fusion approaches (F. Sun et al., 2023), and 
simple vector operations on representations like 
taking their mean (Raczycki, 2021). There is 
early and late fusion. Early fusion combines 
data sources immediately, whereas late fusion 
extracts features for each before combining 
them. 

7.3 Methods 
Building upon our conceptual model of 
liveability, which emphasises the role of 
indicators, perception, and needs/desires, we 
propose a novel urban representation learning 
methodology. This approach aims to automate 
the creation and perception of indicators 
through deep learning techniques. Our method 
applies late fusion. First, features that act as 
indicators derived from various data sources are 
created, and then, these are fused using the ring 
aggregation network to capture the spatial 
context of urban environments. This approach 
allows us to bridge the gap between traditional 
liveability assessment methods and the 
potential of urban representation learning. It 
builds upon the conceptual models developed 
in the theoretical framework by operationalising 
the automatisation of perception. As shown in 
Figure 4, the modelling pipeline expands on the 
conceptual model in Figure 95. 

 

 

 

Figure 96: Conceptual overview of the modelling 
pipeline. Data flows from left to right until applied in a 

linear regression with Leefbaarometer scores. 
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7.3.1 Ring Aggregation 
Our study introduces a novel urban 
representation learning methodology using H3 
hexagonal spatial units called "ring 
aggregation." This method is inspired by the 
work of Raczycki (2021) and introduces 
learnable weights by mirroring graph 
convolutional neural networks but eliminates 
the need for explicit graph construction by 
utilising the neighbourhood indexing provided by 
the H3 geospatial index. 

 

The advantage of ring aggregation lies in its 
ability to capture local context through spatial 
convolutions. Unlike traditional graph-based 
methods that rely on potentially irregular 
adjacency matrices, the H3 geospatial index 
provides a regular isotropic structure. This 
isotropy means that for any randomly selected 
hexagon, the surrounding rings are uniform in 
distance and number, allowing for a more 
consistent and interpretable aggregation of 
spatial information. 

 

While traditional convolutions in image 
processing typically apply a learnable kernel to 
a regular grid, our ring aggregation method 
adapts this concept to the hexagonal structure 
of the H3 index. The primary differences are 
threefold. 1) Hexagonal grid: Instead of a square 
grid, we work with hexagonal cells, which 
provide better isotropy and more uniform 
neighbour relations. 2) Varying receptive field: 
Our method allows for easy adjustment of the 
number of rings considered, effectively 
changing the receptive field of the convolution. 
3) Two-step aggregation: Unlike standard 
convolutions that apply a single transformation, 
ring aggregation performs two separate 
transformations—one within each ring and 
another across rings. In the second step, 
weighted averages can be applied to capture 
different spatial relationships (Figure 98). 

 

Figure 97: Spatial convolutions as developed by 
(Raczycki, 2021). A receptive field. 

The two steps are as follows. First, for each 
spatial unit (hexagon), we aggregate (average) 
transformed concatenated embeddings from its 
neighbouring concentric rings (k-rings). Second, 
we apply another transformation to the 
aggregated result of each ring and then apply a 
weighted average across the rings to obtain the 
final embedding for the central spatial unit. The 
transformations before the aggregation process 
can be removed, removing the neural networks 
and making it a simple aggregation. 
Alternatively, when transformations are 
included, it is a learned aggregation. 

 

 

 

Figure 98: Learned ring aggregation fusion network. 
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7.3.2 Mathematical Formalism 
The mathematical formulation of our ring 
aggregation strategy is as follows: denote the 
concatenated representation per hexagon as Ri, 
the mean of a ring as Mk, its weight as Wk, and 
the resultant central aggregated embedding as 
S (averaged over K rings), then the central 
embedding is expressed as a weighted sum 
across k-rings. Each k has a transformed 
average embedding per k-ring:  

𝑆 =  ∑ 𝑊𝑘 ∗ 𝑓𝜃(𝑀𝑘) 

𝐾

𝑘=0

 

The average per ring equals the inverse of the 
number of hexagons in that ring and the sum 
over transformed concatenated representations 
of spatial units within that ring: 

𝑀𝑘 =  
1

𝐼
∗ ∑ 𝑓𝜑(𝑅𝑖)

𝐼

𝑖=1

 

Combined, this gives an expression with two 
learnable neural networks. Both networks map 
one representation to another, reducing the 
dimensionality at each step. The networks are 
parameterised by weights theta for across rings 
and phi for within. In total, this gives:  

𝑆 =  ∑ 𝑊𝑘 ∗ 𝑓𝜃(
∑ 𝑓𝜑(𝑅𝑖)

𝐼
𝑖=1

𝐼
)    

𝐾

𝑘=0

 

7.3.3 Weighting Schemes 
The contribution across rings is defined 
according to four different weighting schemes: 
natural exponent, logarithm, linear, and flat: 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑊𝑘 = 𝑒−𝑘 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑊𝑘 =
1

log2(𝑘 + 2)
 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑊𝑘 = 1 −
1

𝐾
 

𝐹𝑙𝑎𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑊𝑘 =
1

𝐾
 

While Raczycki (2021) employed the exponent, 
linear, and flat weightings, this study 
additionally includes a logarithmic weighted 
average. This addition aligns with the 
calculation of the physical living environment as 
operationalised by the Leefbaarometer. 

7.4 Application 
This chapter details the practical application of 
our novel urban representation learning 
methodology to assess liveability in the province 
of South Holland, Netherlands. We begin by 
describing our study area and the process of 
integrating Leefbaarometer scores with our 
spatial units. We then outline the diverse data 
sources employed and their preprocessing 
steps. The core of our application—the model 
architecture and training process—is then 
explained, including our innovative late-stage 
fusion approach using ring aggregation. We 
conclude by discussing our evaluation metrics 
and providing a comprehensive overview of how 
we operationalise and assess urban liveability 
through advanced machine-learning 
techniques. 

7.4.1 Study Area and Leefbaarometer 
Scores 

The province of South Holland in the 
Netherlands was selected as the study area for 
this research. Diverse urban landscapes, dense 
development, and a complex transportation 
network characterise this region. The selection 
of this study area allows for the prediction of 
Leefbaarometer scores across different spatial 
contexts. Spatial units in the province were 
filtered for the presence of Leefbaarometer 
scores and subsequently buffered to prepare 
padded rings for ring aggregation (Figure 99). 

 

Figure 99: Buffered selection of spatial units. 

Leefbaarometer scores were spatially joined 
with the hexagonal spatial units. The scores 
encompass five aspects: safety, social 
cohesion, physical environment, housing stock, 
and amenities, as well as the final liveability 
score. As the Leefbaarometer scores are 
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provided in a grid of 100x100m cells, the spatial 
join with hexagonal units was based on 
overlapping surface area. Every H3 hexagon with 
at least a hectare of overlap with 
Leefbaarometer squares was assigned the six 
scores, weighted by the overlap of all matching 
squares. In Figure 7, spatial units with higher 
liveability scores are shown in red, while lower 
scores are depicted in blue (Figure 100). 

 

Figure 100: Spatially joined Leefbaarometer scores: a 
snippet of The Hague Westland region within the 

province of South Holland. 

7.4.2 Data Sources and Preprocessing 
The data sources employed in this study 
encompass a range of modalities, each 
providing a unique perspective on the urban 
environment. These include: 

Road network data was obtained from 
OpenStreetMap, representing the car network 
and capturing proximity to highways and the 
potential exposure to the externalities of the 
transport system, like pollution of different 
areas within the region. 

General Transit Feed Specification (GTFS) data 
retrieved from gtfs.org provides information 
about public transport schedules and routes, 
enabling the incorporation of public transport 
characteristics into urban representations. 

Points of Interest (POI) data from 
OpenStreetMap offer insights into the 
distribution of amenities, parks and services 
across the region. 

Street view images retrieved from Google Street 
View capture streetscapes' visual appearance 
and characteristics. Indexing of images follows 
the methodology developed by Garrido-
Valenzuela et al. (2023) 

Aerial images obtained from pdok.nl, an open 
dataset provided by the Dutch government, 
offer a bird's-eye view of the urban landscape 
and its physical characteristics. Each image has 
a 224 by 224 pixels resolution, which is required 
for image encoder neural networks.  

7.4.3 Model Architecture and Training 
Process 

Our model architecture consists of several 
components: feature extraction from data 
sources, late-fusion ring aggregation, and linear 
regression for valuation (Figure 101). This 
section will cover the loss function used to 
finetune the feature extractor for aerial images 
and the ring aggregation network. Subsequently, 
feature extraction and late-fusion using ring 
aggregation are outlined. 

 

Figure 101: Modelling pipeline. 

Loss Function 

The loss function used to train the fusion 
network and finetune the image encoder 
network is a form of similarity loss. In particular, 
circle loss is applied since it is more likely to 
converge to optimal solutions than other forms 
of similarity loss (Y. Sun et al., 2020). Circle loss 
requires the sampling of triplets according to a 
heuristic. The fusion network and finetune have 
different heuristics, which will be detailed in the 
upcoming two sections.  

Similarity loss takes duplicate neural networks, 
one for each sampled data point in the triplet 
(Figure 102). Representations of each data point 
are compared so that the difference between 
anchor and positive is minimised, whereas that 
between anchor and negative is maximised.  
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The calculated loss is then back-propagated 
through the duplicate neural network for the 
next batch of data. 

 

Figure 102: Triplet network. From (Ghojogh et al., 
2022b). 

Circle loss learns, as the name suggests, a 
circular decision boundary. It achieves this by 
weighing the deltas for positive and negative 
pairs based on the distance. In doing so, it 
corrects for exceeding imbalances in deltas, 
preventing minimising one at the expense of 
another.  

𝐶𝑖𝑟𝑐𝑙𝑒 𝐿𝑜𝑠𝑠(𝑎, 𝑝, 𝑛) =  𝑙𝑜𝑔(1 +

 𝑠𝑢𝑚(𝑒𝑥𝑝(𝛾(𝛼_𝑝 −  𝛥_𝑝)))  +

 𝑠𝑢𝑚(𝑒𝑥𝑝(𝛾(𝛥_𝑛 −  𝛼_𝑛))))  

Feature Extraction 

We use various encoders to create embeddings 
from our data sources (Table 4). All encoders, 
except for street view images, are trained or 
finetuned on data covering the buffered study 
area (Figure 99).  

Table 4: Encoder networks used to create 
representations 

Data Encoder Network 
Public transport stop 
characteristics 

GTFS2vec (Gramacki 
et al., 2021) 

Road network 
characteristics 

Highway2vec 
(Leśniara & 
Szymański, 2022) 

Aerial images ConvNeXt Large (Liu 
et al., 2022) 

Street-view images ConvNeXt Large 
Points of interest Geovex (Donghi & 

Morvan, 2023) 
Hex2vec (Woźniak & 
Szymański, 2021) 

 

Embeddings for all the data sources, except 
street view and aerial images, are obtained 
using a Python package called spatial 
representations for artificial intelligence (SRAI). 
Hence, the learning rates, batch sizes, and 
dimensionalities are all left to the default 
settings (Gramacki et al., 2023). The choice for 
these encoder networks is motivated by their 
availability in the Python package and suitability 
for the H3 hexagonal spatial index. 

Street view images are fed into a large ConvNeXt 
model pre-trained using the ImageNet dataset 
(Russakovsky et al., 2015). 

An image encoder is finetuned on aerial images. 
For this, we developed a novel sampling 
methodology based on location-based 
accessibility. Location-based accessibility 
applies the constrained maximum entropy 
principle (Hansen, 1972). It describes a dual 
process of obtaining the flattest possible 
probability distribution (entropy maximisation) 
while constraining it where applicable. In this 
context, constraints are applied closest to the 
centrally sampled hexagon. Further away from 
the centre, the flattening process gains the 
upper hand. Positive samples in the triplet 
relate to constraints, and negatives to maximum 
entropy—approximating negative mutual 
information. 

 

 

Figure 103: Two-step ring sampling used to finetune 
aerial image encoder network. 
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Concatenation 

Next, the features of individual data sources are 
concatenated into a single embedding. During 
preliminary experimentation, we found that the 
relative dimensionality of embeddings from 
different data types matters greatly for final 
performance. Before concatenation, all 
extracted features that act as indicators should 
be sized roughly equally. Hence, we reduce the 
dimensionality of encoded images to 100 before 
concatenating using principal component 
analysis. 

Late-Stage Fusion with Ring Aggregation 

Our late-stage fusion approach utilises a 
learnable fusion network to integrate multi-
modal urban embeddings, capturing spatial 
relationships through ring aggregation. This 
method builds upon the H3 hexagonal grid 
system, allowing for efficient representation of 
spatial context. 

Central to our approach is considering inter-unit 
relationships, which form the basis for our 
sampling heuristic. We incorporate two primary 
measures of spatial relationship: Euclidean 
distance and location-based accessibility. 

Euclidean distance is calculated between the 
centroids of spatial units. Given the relatively 
short distances within our study area, we do not 
account for the earth's curvature in these 
calculations. This simple metric provides a 
baseline measure of proximity between units. 

Location-based accessibility, on the other hand, 
offers a more nuanced view of spatial 
relationships by combining travel times with a 
measure of destination attractiveness. We use 
OpenStreetMap walking, cycling and driving 
networks for travel times, linking spatial unit 
centroids to nodes in these respective networks 
for calculation using single source Dijkstra. For 
attractiveness, we use building density, 
specifically the Floor Space Index (FSI) from the 
RUDIFUN dataset (Harbers et al., 2022). The FSI 
captures the ratio of floor space to building 
footprint, including associated land uses like 
parking lots. More stories and less open space 
lead to higher FSI scores. We assign FSI scores 
to our hexagonal units using a weighted sum 
based on spatial overlap, mirroring our 
approach for Leefbaarometer scores. 

The accessibility of each spatial unit is 
calculated: 

𝐴𝑖 = ∑ 𝐹𝑆𝐼𝑗 ∗ 𝑓(𝑇𝑖𝑗)

𝑗

 

Where Ai is the accessibility of unit i, FSIj is the 
Floor Space Index of unit j, and f(Tij) is an 
impedance function based on travel time. We 
employ an exponential decay function for f(Tij): 

𝑓(𝑇𝑖𝑗) = 𝑒−𝛽∗𝑇𝑖𝑗 = 𝑒−0.001∗𝑇𝑖𝑗 

This function applies a decay rate to travel 
times, with a one-hour cutoff (3600 seconds). 
While we use a fixed β value of 0.001 in this 
study, future work could refine this by using 
empirically derived values for different 
population segments. 

These inter-unit relationships inform our 
sampling heuristic for training the fusion 
network. We process triplets of 
neighbourhoods; each triplet contains 93 
concatenated embeddings corresponding to the 
number of spatial units fitting into a receptive 
field of five rings. We select a positive sample 
from the top 2% closest neighbourhoods for any 
given anchor neighbourhood, using either 
Euclidean distance (lowest 2%) or location-
based accessibility (highest 98%) as the 
similarity measure. The negative sample is 
randomly selected from the remaining 
neighbourhoods. 

The Ring Aggregation Neural Network 
architecture is comprised of three modules: the 
WithinRingNN, the BetweenRingNN, and the 
overarching RingAggregationNN, see Figure 98. 
The input to the network is a set of 
concatenated embeddings representing 
different data modalities for each spatial unit 
within the receptive field. A batch normalisation 
layer is incorporated at the network's input to 
address the challenges of normalising data 
across different modalities, ensuring consistent 
scaling across diverse data types.  

The WithinRingNN processes embeddings 
within each ring, consisting of a batch 
normalisation layer and two fully connected 
layers with a final hidden dimension 96. The 
BetweenRingNN processes the aggregated 
embeddings from each ring, which also consist 
of two fully connected layers, ultimately 
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producing an output with a dimensionality of 30, 
matching the smallest input embedding data 
type dimension.  

In both the WithinRingNN and BetweenRingNN, 
the common ReLU activation function is 
replaced with GeLU (Gaussian Error Linear 
Unit). This choice is motivated by GeLU's ability 
to prevent excessive sparsity in the learned 
representations, which proved crucial for 
improving the downstream performance in 
predicting Leefbaarometer scores. It seems that 
one should either go really dense or sparse.  

The RingAggregationNN integrates these 
components in a forward pass that applies the 
WithinRingNN to all embeddings in each ring, 
pools the transformed embeddings within each 
ring, applies the BetweenRingNN to the pooled 
embeddings, calculates weights based on a 
chosen scheme (exponential, logarithmic, 
linear, or flat), and produces the final 
embedding through a weighted sum of the 
transformed ring embeddings.  

The fusion network is trained using circle loss. 
The hyperparameters gamma and m are set to 
250 and 0.15, respectively, as optimised by Sun 
et al. (2020). Utilising the Adam optimiser 
(Kingma & Ba, 2014), experiments 
demonstrated acceptable performance with a 
batch size of 256 and a learning rate of 0.0001.  

7.4.4 Evaluation Metrics 
We use a simple linear regression model to 
evaluate the performance of urban embeddings. 
Embeddings are used as the independent 
variable, and each liveability score is used as a 
dependent variable. Before doing so, the 
dimensionality of embeddings is reduced to 30 
to ensure equal conditions. Preliminary 
experimentation showed that dimensionality 
strongly impacts the accuracy of the linear 
regression. The valuation measure is the R-
squared score, which describes the explained 
variance.  

Alternatively, Kendal tau could have been used 
since leefbaarometer scores are ordinal, as 
done by Levering et al. (2023). Instead, we 
assume that the relationship between 
Leefbaarometer scores and embeddings is 
linear, as dimensionality reduction is applied 

throughout this thesis using principal 
component analysis.  

Experimentation of different data type 
combinations is done by training the ring 
aggregation model on all data sources. Then, 
the inference was performed on a zero-filled 
concatenated embedding. Therefore, the input 
of ring aggregation is mainly filled with zeros 
when comparing data sources. 

Agglomerative clustering is used to compare 
results visually. Agglomerative clustering is 
hierarchical, aligning it with the hierarchical 
configuration of the H3 DGGS. 

7.5 Results 
This section presents the findings of our urban 
representation learning methodology, which is 
evaluated for its performance in predicting 
Leefbaarometer scores. Our results are 
structured around four key areas: sampling 
heuristics, the configuration of spatial 
convolutions (number of k-rings and weighting 
schemes), the influence of different data 
sources, and a comparison with existing studies 
in the field. 

7.5.1 Sampling Heuristic 
The choice of sampling heuristic determines 
which spatial units are selected as positives and 
negatives for a given anchor in our ring 
aggregation method. We compared two 
approaches: location-based accessibility and 
Euclidean distance.  

Results indicate that the sampling heuristic has 
little impact on the predictive ability of the 
Leefbaarometer scores. Only the physical 
environment is affected, scoring better using 
Euclidean distance. 

Table 5: Results, impact of sampling heuristic. 
Comparing location-based accessibility and 
Euclidean distance. 

Score Accessibility  Euclidean  
Liveability 0.24 0.24 
Amenities 0.71 0.71 
Physical 
Environment 0.25 0.29 
Social 
Cohesion 0.41 0.41 
Safety 0.46 0.47 
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The cluster plot for location-based accessibility 
(Figure 12) reveals that larger urban areas, such 
as The Hague (light blue) and Rotterdam (red), 
are kept together in coherent clusters. Location-
based accessibility captures functional 
relationships between areas, reflecting travel 
patterns and urban connectivity. In contrast, 
clusters for embeddings created using 
Euclidean distance (Figure 13) tend to break 
apart these larger urban areas.  

 

 

 

Figure 104: Ten agglomerative clusters for 
embeddings obtained using location-based 

accessibility. 

 

 

 

 

Figure 105: Ten agglomerative clusters for 
embeddings obtained using Euclidean distance. 

7.5.2 Number of K-rings and Weighted 
Average 

The configuration of the ring aggregation 
method, including the number of k-rings and 
weighting scheme, affects the quality of urban 
representations. Tables 4 and 5 present the 
best-performing configurations for simple and 
learnt aggregation. 

For simple aggregation, linear weighting 
consistently performs best across all 
Leefbaarometer scores. The optimal number of 
k-rings varies; k=5 for liveability, physical 
environment, and safety; k=3 for amenities; and 
k=1 for social cohesion and housing stock. 
Different aspects of liveability operate at 
different spatial scales. 

Table 6: Best-performing embeddings for simple 
aggregation. 

Score K 
Weight 
Type 

R² 

Liveability 5 linear 0.25 
Amenities 3 linear 0.74 
Physical 
Environment 

5 linear 0.32 

Social 
Cohesion 

1 linear 0.46 

Safety 5 linear 0.47 
Housing Stock 1 linear 0.29 

 

Learnt aggregation shows more variety in 
optimal configurations than simple aggregation. 
Notably, flatter weighting functions (logarithmic 
and flat) perform better for several scores, 
including liveability, amenities, physical 
environment, and safety. Social cohesion, 
however, benefits from the steeper linear 
weighting. The optimal number of k-rings for 
learnt aggregation is generally higher, with k=5 
for most scores and k=3 for social cohesion. 

Table 7: Best performing embeddings for learnt 
aggregation. 

Score K Weight 
Type 

R² 

Liveability 5 logarithm 0.26 
Amenities 5 logarithm 0.72 
Physical 
Environment 

5 flat 0.29 

Social 
Cohesion 

3 linear 0.43 

Safety 5 flat 0.46 
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Comparing the two methods, simple 
aggregation slightly outperforms learnt 
aggregation for most scores, except for 
liveability, where learnt aggregation shows a 
marginal improvement (R² of 0.26 vs 0.25). The 
performance difference is most noticeable for 
social cohesion (R² of 0.46 for simple vs 0.43 for 
learnt) and physical environment (R² of 0.32 for 
simple vs 0.29 for learnt). 

The preference for flatter functions in learnt 
aggregation, contrasted with the consistent 
performance of the steeper linear function in 
simple aggregation, suggests that the learning 
process may identify relationships that benefit 
from a consideration of near and far contexts. 

7.5.3 Data Sources 
Data source analysis shows that images and 
points of interest have high predictive 
performance across Leefbaarometer scores. 
Finetuned aerial images outperform other 
modalities for liveability (0.34), social cohesion 
(0.48), housing stock (0.37), and safety (0.52) 
but underperform for physical environment and 
amenities. Street view and non-finetuned aerial 
images show balanced performance. Point-of-
interest encoders perform well, with trade-offs 

between liveability and physical environment 
predictions. Road network and GTFS 
embeddings excel in predicting amenities, 
safety, and social cohesion but score lower on 
physical environment and liveability. Simple 
aggregation outperforms learned aggregation for 
all data sources, with the difference most 
pronounced for aerial image embeddings. 

7.5.4 Comparison to Other Studies 
Comparison with other studies shows 
incremental improvements across three steps: 
street-view images, addition of POI data, and 
incorporation of proximity measures. 
Urban2Vec Wang et al. (2020) implement the 
first two steps, while Huang et al. (2021) add the 
third. Predictive accuracy improves with each 
step, with the largest gains in amenities, social 
cohesion, and safety scores. Euclidean distance 
and accessibility as proximity measures 
perform similarly. The ring aggregation method 
developed in this study outperforms the 
compared approaches across all 
Leefbaarometer scores, with notable 
improvements in amenities (0.85 vs 0.64), social 
cohesion (0.6 vs 0.43), and overall liveability 
(0.35 vs 0.27).

Table 8: Impact of data sources on the predictive accuracy of Leefbaarometer scores. Simple ring aggregation / learnt 
ring aggregation using Euclidean distance. 

Score GeoVex Hex2Vec 
Aerial  

(finetuned) 
Aerial  

(pre-trained) 
Road 

Network GTFS 
Street 
View 

Liveability 0.24/0.24 0.17/0.16 0.34/0.11 0.23/0.098 0.12/0.12 0.16/0.11 0.22/0.1 

Amenities 0.73/0.73 0.74/0.7 0.68/0.47 0.64/0.5 0.63/0.63 0.69/0.7 0.72/0.58 

Physical 
Environment 0.29/0.27 0.35/0.32 0.27/0.11 0.3/0.12 0.2/0.2 0.08/0.08 0.26/0.067 

Social Cohesion 0.42/0.42 0.45/0.44 0.48/0.24 0.45/0.28 0.33/0.33 0.36/0.38 0.42/0.29 

Safety 0.46/0.45 0.49/0.48 0.52/0.35 0.45/0.31 0.34/0.34 0.42/0.44 0.47/0.35 

Housing Stock 0.26/0.27 0.25/0.24 0.37/0.18 0.29/0.17 0.19/0.19 0.21/0.23 0.25/0.19 
Table 9: Comparison to other studies. 

Leefbaarometer 
Score Step 1 Step 2 

Step 3 
(Euclidean) 

Step 3 
(Accessibility) 

Ring 
Aggregation  

Liveability 0.2 0.21 0.24 0.27 0.35 
Amenities 0.41 0.46 0.64 0.62 0.85 
Physical 
Environment 0.19 0.21 0.28 0.29 0.4 
Social 
Cohesion 0.35 0.41 0.43 0.43 0.6 
Safety 0.3 0.34 0.43 0.43 0.54 
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7.6 Conclusion  
This study has successfully demonstrated the 
potential of urban representation learning to 
automate the operationalisation of liveability, 
addressing the challenges of resource-intensive 
and time-consuming traditional methods. Our 
novel ring aggregation method leverages spatial 
convolutions on the H3 hexagonal DGGS. By 
utilising deep neural networks and diverse data 
sources—including aerial and street view 
images, road network characteristics, public 
transport data, and points of interest—we have 
created a method capable of capturing the 
multifaceted nature of urban environments and 
their liveability. 

Our sensitivity analysis revealed insights into 
the optimal configuration of the ring aggregation 
method, demonstrating that different aspects of 
liveability operate most effectively at varying 
sizes of receptive fields. This finding 
underscores the complex spatial dynamics of 
liveability and the importance of multi-scale 
approaches in urban analysis. Furthermore, our 
results highlight the significant impact of data 
source selection on predictive performance, 
with finetuned aerial images outperforming 
other modalities for several liveability aspects. 
These insights emphasise the importance of 
carefully considering and combining diverse 
data sources in urban representation learning to 
capture the full spectrum of liveability scores. 

The ring aggregation method developed in this 
study has shown substantial improvements 
over existing urban representation learning 
approaches across all Leefbaarometer scores, 
with notable advancements in predicting 
amenities, social cohesion, and overall 
liveability. These results validate our approach's 
effectiveness and demonstrate its potential to 
enhance our understanding and assessment of 
urban liveability. By automating the creation and 
perception of indicators, this research 
contributes to more efficient and data-driven 
policy evaluation in urban planning, providing 
valuable tools for policymakers and planners to 
quickly and accurately assess liveability across 
different urban contexts. 

7.7 Recommendations 
While our study has made strides in advancing 
the field of urban representation learning and its 
application to liveability assessment, it has also 
revealed areas for further exploration and 
improvement. Building on our findings and 
acknowledging the current limitations of our 
approach, we propose two main directions for 
future work.  

First, the model architecture could be improved. 
While effective, our current ring aggregation 
method may be limited in capturing highly 
localised or ring-specific features due to using a 
single shared neural network for all within and 
across ring transformations. Learned ring 
aggregation performed worse than simple 
aggregation, which may be explained by the 
bottleneck effect (Alon & Yahav, 2021). More 
complex architectures may be necessary to 
mitigate this effect and capture fine-grained 
spatial information, such as convolutional 
networks designed explicitly for hexagonal grids 
(Donghi & Morvan, 2023; Hoogeboom et al., 
2018). Future research could explore fusion 
networks with diverse data sources, 
incorporating additional modalities such as text 
data, sound measurements, demographics, 
building characteristics, and 3D or pollution 
(volumetric) data to create richer urban 
representations.  

Miller et al. (2013b) have developed an 
operationalisation of liveability focussed on 
transportation, noting that spatial resolution—
granularity—significantly impacts performance. 
Granularity aligns with the number of spatial 
units (H3 hexagons), as described in their work 
on granular computing by Wilke & Portmann 
(2016).  

The H3 DGGS is hierarchically structured. 
Future work can take advantage of this structure 
by considering the following two points. 1) 
Designing urban representation learning 
methodology incorporating travel trajectories to 
learn hierarchical embeddings (Chen et al., 
2023; Hu et al., 2023). 2) Hierarchical dynamic 
generative modelling, operationalised using 
renormalising generative models (K. Friston et 
al., 2024).  
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Furthermore, granular computing may capture 
the reciprocal (hierarchical) relationship which 
defines liveability. See Figure 106 for all possible 
states bridging the relationship between two 
granules. Figure 107 shows a sampling of this 
total set, either two or three times. Adding a 
third (d) gives the model hierarchical layers or 
temporal depth—like looking towards the 
vanishing point in a room with dark walls and 
low white ceilings, Q floats in the middle of that 
room, coming up from the paper towards the 
viewer. Temporal depth allows for the 
operationalisation of sustainability in addition to 
liveability. Hence, a temporally deep 
environment-resident relationship can be 
operationalised in granular geometry. See Figure 
93: Reciprocal relationship between 
human/resident and environment. Perspectival 
measurement. 

 

Figure 106: A construction heuristic for the granular 
line connection of two granular points. From (Wilke & 

Portmann, 2016). 

 

Figure 107: Heuristic line connection a-c of two 
points, d of three points. From (Wilke & Portmann, 

2016). 

The second direction for future work involves 
reconceptualising the assessment of liveability 
itself. While our current approach has shown 
promise in automating the operationalisation of 
liveability, it is based on the Leefbaarometer, 
which has inherent limitations as a 
measurement model rather than a causal one 
(Mandemakers et al., 2021). The main one is 
that it should not be used to forecast the effect 
of interventions in the urban environment on 
liveability. To move beyond these limitations, we 
suggest framing the resident-environment 
relationship as transactional (Aitken & 
Bjorklund, 1988), viewing liveability as a 
dynamic process rather than a static outcome. 
This perspective aligns with previous 
recommendations from Leidelmeijer (2004) for a 
dynamic approach to liveability studies and 
could be operationalised using generative 
models (M. J. D. Ramstead et al., 2019). Such an 
approach would allow for the incorporation of 
individual variations in perception and 
needs/desires, moving away from the 
assumption of uniformity implicit in current 
liveability measures and potentially offering a 
more comprehensive and nuanced 
understanding of urban liveability. 
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Appendix B: Technical Details  
The implementation of our two learning strategies revealed several nuances that became 
apparent only during the execution phase. These include unexpected training durations for 
certain models and potential overtraining concerns, particularly in the case of learning strategy 
two. 

Activation Function Learning Strategy One 
After preliminary testing, it was decided to exchange ReLU for GeLU since the latter has a 
smoother transition near 0, meaning there is less sparsity in the embeddings. For dense 
representations, sparsity is not beneficial. Since there are few layers where activation is 
applied, this leads to pronounced dead spots in the embeddings. 

 

Figure 108: Comparison of activation functions. ReLU versus GELU. Rectified Linear Unit and Gaussian Error Linear 
Unit.  

Computational Details Learning Strategy Two 

Step 1: Finetuning ConvNeXt Model 
The first step involved finetuning a large ConvNeXt model with approximately 200 million 
parameters. At H3 resolution 10, convergence of circle loss at gamma ~250 was achieved in 
two epochs using 240,000 images. At resolution 9 the training required twelve epochs. This 
difference in convergence time makes sense, given the ratio of hexagons increasing by a factor 
of 6 at each k-ring. The formula for the number of hexagons per ring is 1+k*6, explaining the 
similar total compute required for a given loss across resolutions. 

Step 2: Skip-gram-like Models 
The second step involved training two skip-gram-like models: one for spatial unit embeddings 
and another for POI indices. This process is akin to creating two lookup tables of embeddings 
using torch.nn.Embedding(), took approximately four hours to run. Despite the models 
containing around 13 million parameters (with embeddings of dimension 1536 for each spatial 
unit and POI index), the computation was relatively quick due to the small size of the input data 
set. The main bottleneck was memory speed rather than computational power, leading us to 
use CPU instead of GPU to minimise data transfers over PCI. 
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Training Curves and Considerations 
Our training runs consistently followed tightly distributed logistic curves. Early stopping is 
implemented to avoid catastrophic forgetting of results from previous steps. If continued, 
embeddings collapse into fully fitting the current step and become unusable. 

 

Figure 109: Every training run of steps 2 and 3 follows a tightly distributed logistic curve. It is necessary to break off 
training halfway through this curve to prevent training from previous steps. Training loss shown is that of step 3 as 

learned for H3 resolution 9. 

Finetuning encoder networks is considerably more expensive than training a smaller fusion 
network on concatenated views of several smaller pre-trained encoders. For example, tuning 
ConvNeXt large on an RTX 3090 took about ten hours compared to just minutes for the fusion 
network. 

 

Figure 110: Circle loss (log scale) of finetuning two ConvNeXt models. One for H3 resolution 9 and another for H3 
resolution 10. Resolution 9 has about six times less hexagons than 10. Hence, the difference in the number of epochs 
is thirteen versus two. Ten thousand steps of 16 hexagons/images per batch is about 5 hours of finetuning time on an 

Rtx 3090. 
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Appendix C: Point of Interest Dictionary 
Both learning strategies one and two have some form of point of interest data. The GEOFABRIK 
filter provided in the SRAI Python package was used and then filtered for values present in the 
study area. The following list is an overview of keys used in step two of learning strategy two. In 
practice, there are some differences between H3 resolutions, but they are not very important 
for demonstration purposes (about ten POI keys difference).  

aerialway=magic_carpet building=office leisure=slipway 
aerialway=platter building=outbuilding leisure=sports_centre 
aerialway=rope_tow building=parking leisure=stadium 
aerialway=zip_line building=pavilion leisure=swimming_pool 
aeroway=aerodrome building=public leisure=water_park 
aeroway=apron building=residential man_made=lighthouse 
aeroway=helipad building=retail man_made=pier 
amenity=arts_centre building=roof man_made=surveillance 
amenity=atm building=ruins man_made=tower 
amenity=bank building=school man_made=wastewater_plant 
amenity=bar building=semidetached_house man_made=water_tower 
amenity=bench building=service man_made=water_well 
amenity=bicycle_parking building=shed man_made=water_works 
amenity=bicycle_rental building=silo man_made=watermill 
amenity=biergarten building=sports_centre man_made=windmill 
amenity=bus_station building=stable natural=beach 
amenity=cafe building=static_caravan natural=heath 
amenity=car_rental building=storage_tank natural=peak 
amenity=car_sharing building=supermarket natural=spring 
amenity=car_wash building=temple natural=tree 
amenity=cinema building=terrace natural=water 
amenity=clinic building=toilets natural=wetland 
amenity=college building=train_station natural=wood 
amenity=community_centre building=transformer_tower office=diplomatic 
amenity=courthouse building=transportation public_transport=stop_position 
amenity=dentist building=university railway=halt 
amenity=doctors building=warehouse railway=level_crossing 
amenity=drinking_water building=yes railway=light_rail 
amenity=fast_food emergency=fire_hydrant railway=miniature 
amenity=ferry_terminal emergency=phone railway=monorail 
amenity=fire_station foot=designated railway=narrow_gauge 
amenity=food_court highway=bridleway railway=rail 
amenity=fountain highway=bus_stop railway=station 
amenity=fuel highway=busway railway=subway 
amenity=grave_yard highway=crossing railway=tram 
amenity=hospital highway=cycleway railway=tram_stop 
amenity=kindergarten highway=emergency_access_point shop=alcohol 
amenity=library highway=footway shop=bakery 
amenity=marketplace highway=living_street shop=beauty 
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amenity=nightclub highway=mini_roundabout shop=beverages 
amenity=nursing_home highway=motorway shop=bicycle 
amenity=parking highway=motorway_junction shop=books 
amenity=pharmacy highway=motorway_link shop=butcher 
amenity=place_of_worship highway=path shop=car 
amenity=police highway=pedestrian shop=car_repair 
amenity=post_box highway=primary shop=chemist 
amenity=post_office highway=primary_link shop=clothes 
amenity=prison highway=residential shop=computer 
amenity=pub highway=road shop=convenience 
amenity=public_building highway=secondary shop=department_store 
amenity=recycling highway=secondary_link shop=doityourself 
amenity=restaurant highway=service shop=dry_cleaning 
amenity=school highway=services shop=florist 
amenity=shelter highway=speed_camera shop=furniture 
amenity=taxi highway=steps shop=garden_centre 
amenity=telephone highway=stop shop=general 
amenity=theatre highway=street_lamp shop=gift 
amenity=toilets highway=tertiary shop=greengrocer 
amenity=townhall highway=tertiary_link shop=hairdresser 
amenity=university highway=track shop=hardware 
amenity=vending_machine highway=traffic_signals shop=jewelry 
amenity=veterinary highway=trunk shop=kiosk 
amenity=waste_basket highway=trunk_link shop=laundry 
boundary=national_park highway=turning_circle shop=mall 
building=allotment_house highway=unclassified shop=mobile_phone 
building=apartments historic=archaeological_site shop=newsagent 
building=barn historic=castle shop=optician 
building=boathouse historic=fort shop=outdoor 
building=bungalow historic=memorial shop=shoes 
building=bunker historic=monument shop=sports 
building=cabin historic=ruins shop=stationery 
building=carport historic=wayside_shrine shop=supermarket 
building=chapel horse=designated shop=toys 
building=church landuse=allotments shop=travel_agency 
building=civic landuse=cemetery shop=video 
building=college landuse=commercial sport=swimming 
building=commercial landuse=farmland sport=tennis 
building=construction landuse=farmyard tourism=artwork 
building=cowshed landuse=forest tourism=attraction 
building=detached landuse=grass tourism=camp_site 
building=dormitory landuse=industrial tourism=caravan_site 
building=farm landuse=meadow tourism=chalet 
building=farm_auxiliary landuse=military tourism=guest_house 
building=fire_station landuse=orchard tourism=hostel 
building=garage landuse=quarry tourism=hotel 
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building=garages landuse=recreation_ground tourism=information 
building=ger landuse=reservoir tourism=motel 
building=government landuse=residential tourism=museum 
building=grandstand landuse=retail tourism=picnic_site 
building=greenhouse landuse=scrub tourism=theme_park 
building=hangar landuse=vineyard tourism=viewpoint 
building=hospital leisure=common tourism=zoo 
building=hotel leisure=dog_park waterway=canal 
building=house leisure=golf_course waterway=dam 
building=houseboat leisure=ice_rink waterway=dock 
building=hut leisure=marina waterway=drain 
building=industrial leisure=nature_reserve waterway=lock_gate 
building=kindergarten leisure=park waterway=river 
building=kiosk leisure=playground waterway=stream 
building=mosque leisure=recreation_ground waterway=waterfall 

  waterway=weir 
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