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ABSTRACT: This paper presents a verification of a state-of-the-art joint input-state estimation algorithm 
using data obtained from in situ experiments on a footbridge. A dynamic model of the footbridge is based on 
a detailed finite element model that is calibrated using a set of experimental modal characteristics. The joint 
input-state estimation algorithm is used for the identification of two impact, harmonic, and swept sine forces 
applied to the bridge deck. In addition to these forces, unknown stochastic forces, such as wind loads, are acting 
on the structure. These forces, as well as measurement errors, give rise to uncertainty in the estimated forces 
and system states. Quantification of the uncertainty requires determination of the power spectral density of 
the unknown stochastic excitation, which is identified from the structural response under ambient loading. The 
verification involves comparing the estimated forces with the actual, measured forces. Although a good overall 
agreement is obtained between the estimated and measured forces, modeling errors prohibit a proper distinction 
between multiple forces applied to the structure for the case of harmonic and swept sine excitation.

1 INTRODUCTION

Knowledge of the dynamic loads acting on a struc-
ture and its dynamic response is important for many
engineering applications. The dynamic loads are cru-
cial in the design process. Monitoring of these allows
comparing the design loads to the actual solicitation
of the structure. The response of the structure, which
for example consists of strains or accelerations, can
be used to check if serviceability limit states are ex-
ceeded, or to monitor the condition of the structure. In
many cases, the forces applied to the structure cannot
be directly measured. In addition, the response cannot
be measured at all physical locations, due to practical
and economical considerations. If the forces and/or
the response cannot be directly obtained from mea-
surements, system inversion techniques can be used
for estimating the unmeasured quantities, hereby us-
ing a limited set of response measurements and a dy-
namic model of the structure.

Many force identification algorithms have been
proposed in the literature (Liu and Shepard 2005,
Parloo et al. 2003, Klinkov and Fritzen 2007, Nord-
ström and Nordberg 2002, Bernal and Ussia 2015).
Additionally, several state estimation algorithms have
been proposed for linear as well as non-linear sys-
tems (Hernandez and Bernal 2008, Hernandez 2011).
A common approach in state estimation consists of
modeling the system input as zero mean Gaussian
white noise and applying a Bayesian framework for
state estimation (Ching and Beck 2007, Papadimitriou
et al. 2011). In order to overcome the assumption of
white noise system input, which is often violated in
practical applications, filtering methods in the pres-
ence of unknown inputs have been developed. The al-
gorithms are often referred to as joint input-state esti-
mation algorithms and combine both input and state
estimation, e.g. (Klinkov and Fritzen 2006, Hsieh
2010, Lourens et al. 2012, Eftekhar Azam et al. 2015).
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Gillijns and De Moor (2007) have proposed an algo-
rithm where the input estimation is performed prior
to the state estimation step. This algorithm was intro-
duced in structural dynamics by Lourens et al. (2012)
and further extended in (Maes et al. 2016), for cases
where accelerations are measured in the presence of
unknown stochastic excitation. The algorithm can be
used for force identification (Maes et al. 2016) and the
estimation of the structural response at unmeasured
locations, a.k.a. virtual sensing (Lourens et al. 2012).

Verification of the force identification techniques
proposed in the literature is, to date, mostly based
on numerical simulations, where (idealized) measure-
ment errors are incorporated by adding white noise
to the simulated response signals, or to laboratory ex-
periments. This paper presents a full-scale verification
of the joint input-state estimation algorithm proposed
in (Maes et al. 2016) using data obtained from an in
situ experiment on a footbridge. The algorithm is used
to identify the impact, harmonic, and swept sine exci-
tations applied to the bridge deck. The verification is
performed by comparison of the estimated forces to
the actual, measured forces.

The outline of the paper is as follows. Section 2
gives the extension of the joint input-state estimation
algorithm. Section 3 discusses the setup of the exper-
iments on the footbridge. Section 4 shows the deriva-
tion of a state-space model representing the dynamic
behavior of the structure, starting from a detailed fi-
nite element model. Section 5 presents the selection
of data for force identification. Section 6 discusses the
results of the force identification. Finally, section 7
presents conclusions.

2 MATHEMATICAL FORMULATION

This section gives a brief summary of the joint input-
state estimation algorithm introduced in (Maes et al.
2016).

Consider the following discrete-time combined
deterministic-stochastic state-space description of a
system:

x[k+1] = Ax[k] + Bp[k] + w[k] (1)

d[k] = Gx[k] + Jp[k] + v[k] (2)

wherex[k] ∈ R
ns is the state vector,d[k] ∈ R

nd is the
output vector, assumed to be measured, andp[k] ∈R

np

is the unknown input vector, withns the number of
system states,nd the number of outputs, andnp the
number of inputs. The system matricesA, B, G, and
J are assumed known. Throughout the derivation of
the algorithm, it is assumed that the sensor network
meets the conditions for instantaneous system inver-
sion derived in (Maes et al. 2015).

The process noise vectorw[k] ∈ R
ns and measure-

ment noise vectorv[k] ∈ R
nd both account for un-

known excitation sources and modeling errors. The

measurement noise vectorv[k] also accounts for mea-
surement errors. The noise processesw[k] andv[k] are
assumed to be zero mean and white, with known co-
variance matricesQ, R, andS, defined by:

E
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)
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with R > 0,

[
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]

≥ 0, andδ[k] = 1 for k = 0 and

0 otherwise.E{·} is the expectation operator.
Finally, it is assumed that an unbiased estimate
x̂[0|−1] of the initial state is available, with error co-
variance matrixPx[0|−1] (i.e. E

{

x[0] − x̂[0|−1]

}

= 0,
Px[0|−1] = E

{

(x[0] − x̂[0|−1])(x[0] − x̂[0|−1])
T
}

). The es-
timate x̂[0|−1] is assumed independent on the noise
processesw[k] andv[k] for all k.

The joint input-state estimation algorithm consists
of a three-step recursive filter:

p̂[k|k] = M[k]

(

d[k] −Gx̂[k|k−1]

)

(4)

x̂[k|k] = x̂[k|k−1] + K[k]

(

d[k] − Gx̂[k|k−1] − Jp̂[k|k]

)

(5)

x̂[k+1|k] = Ax̂[k|k] + Bp̂[k|k] (6)

The first step in equation (4), referred to as the “in-
put estimation step”, yields a filtered estimate of the
unknown input vectorp[k], given the measured output
d[k] up to time stepk. The second step in equation (5),
referred to as the “measurement update”, yields a fil-
tered estimate of the state vectorx[k]. The third step in
equation (6), referred to as the “time update”, yields
a one step ahead prediction of the state vectorx[k+1].
The gain matricesM[k] ∈ R

np×nd and K[k] ∈ R
ns×nd

are determined such that both the input estimatesp̂[k|k]

and the state estimateŝx[k|k] are minimum variance
and unbiased (MVU) (Gillijns & De Moor 2007),
i.e. the uncertainty on the force and state estimates is
minimized, and the error on the estimated forcesp̂[k|k]

and stateŝx[k|k] does not depend on the actual forces
p[k]. The gain matrices depend on the noise covariance
matricesQ, R, andS, on the forces to be estimated,
as well as on the sensor configuration.

In the equations above, the system is assumed to be
time-invariant. The algorithm can, however, be read-
ily extended to time-variant systems by replacing the
system matricesA, B, G, andJ, with the system ma-
tricesA[k], B[k], G[k], andJ[k], that depend on the time
stepk.

3 MEASUREMENT SETUP

The structure under consideration in this paper is a
footbridge, located in Ninove (Belgium). The two-
span cable-stayed steel bridge, shown in figure 1, has
a main and secondary span of 36 m and 22.5 m, re-
spectively.



Figure 2: Sensor configuration (white circle: GMS-18 unit, black circle: uniaxial accelerometer, gray circle: opticaldisplacement
sensor, white square: instrumented hammer, gray square: load cell).

Figure 1: The footbridge in Ninove, Belgium.

Three different types of excitation have been con-
sidered in the experiments: (1) ambient excitation,
mainly consisting of wind loads, (2) excitation by
hammer impacts, and (3) excitation by pneumatic ac-
tuators developed by the Acoustics and Vibration Re-
search Group of the Vrije Universiteit Brussel (Deck-
ers et al. 2008). Figure 2 shows the sensor config-
uration. The acceleration response of the footbridge
has been recorded in three orthogonal directions at
12 locations on the bridge deck, using 12 wireless
GeoSIG GMS-18 units. In addition, a National Instru-
ments (NI) data acquisition system has been used to
record (1) the vertical acceleration at nodes 27 and
48, obtained from PCB 393B04 uniaxial accelerome-
ters, (2) the vertical displacement of the bridge deck
at nodes 27 and 40, obtained from AWLG 008M opti-
cal displacement sensors, (3) the impact loads applied
vertically at nodes 27 and 48 using PCB 086D50 in-
strumented hammers (mass 5.5 kg), and (4) the ten-
sion forces applied vertically by the pneumatic actu-
ators using a PCB 222B load cell and a BD 5 load
cell.

A sampling frequency of 200 Hz and 1000 Hz is
used for the GMS-18 units and the NI system, re-
spectively. The GMS-18 acceleration data and the
measurement data obtained from the NI system are
synchronized by maximizing the correlation between
the acceleration obtained from the GMS-18 unit at
node 48 and the acceleration at node 48 obtained from
the cabled uniaxial accelerometer. The measured re-
sponse and force signals used in the analysis are all
digitally lowpass filtered by means of an eighth-order
Chebyshev type I lowpass filter with a cut-off fre-
quency of 16 Hz, in both the forward and the reverse
direction to remove all phase distortion, and then re-
sampled at 40 Hz. Next, the acceleration signals ob-
tained from the NI system and the GMS-18 units are
additionally digitally highpass filtered by means of a
fifth order Butterworth filter with a cut-off frequency

of 0.5 Hz and 0.1 Hz, respectively, in both the for-
ward and the reverse direction. The aim of the filter
is to remove the low frequency components from the
signals that are contaminated by measurement noise.
Finally, a detrend operation is applied to all acceler-
ation signals to remove the (physically meaningless)
DC component. The measured displacement signals
are relative to the displacement at the start of the ex-
periment.

4 SYSTEM MODEL

The force identification is based on a state-space de-
scription of the system, given by equations (1) and (2).
The system model used in the present analysis is
based on a detailed finite element (FE) model of the
structure, that is built using the FE program AN-
SYS. The FE model is calibrated using a set of ex-
perimental modal parameters that have been obtained
through operational modal analysis (OMA) (Peeters
& De Roeck 1999, Reynders & De Roeck 2008). In
total 18 modes of the bridge deck have been identified
in the frequency range from 0 Hz to 20 Hz. Table 1
gives the natural frequencies, the modal damping ra-
tios, and a description of the mode shapes correspond-
ing to the identified modes. Comparison of the ex-
perimental modal parameters with the modal param-
eters obtained from the initial FE model shows some
discrepancies. A model calibration is therefore per-
formed. The calibration parameters considered in this
analysis are (1) the stiffnesses of the neoprene bear-
ings, (2) the Young’s modulus of the bridge deck, (3)
the Young’s modulus of the pylons, and (4) the effec-
tive Young’s modulus of the cables. The natural fre-
quencies and mode shapes corresponding to 14 iden-
tified modes are used as the observed quantities in the
calibration procedure, i.e. modes 1 – 5, 7 – 9, 11 – 13,
and 15 – 17, listed in table 1. The remaining modes,
i.e. modes 6, 10, 14, and 18, are used for cross valida-
tion of the model after calibration.

Figure 3 shows modes 1, 3, and 7 obtained from the
calibrated FE model. Table 1 shows the modal char-
acteristics obtained from the FE model after calibra-
tion and a comparison to the corresponding observed
quantities. The relative error on the natural frequency
εj for modej is defined asεj = (fj − f̃j)/f̃j, where
fj is the undamped natural frequency corresponding



to modej, obtained from the FE model, and̃fj is the
corresponding value obtained from the system iden-
tification. In general very high MAC-values (MAC
≥ 0.89) are obtained, both for the modes included in
the model calibration and the modes used for cross
validation. This indicates a good overall agreement
between the identified dynamic behavior of the foot-
bridge and the one predicted by model.

A reduced-order discrete-time state-space model
is constructed from the modal characteristics of the
structure. The model includes all bending modes of
the bridge deck with a natural frequency that falls
within the frequency range 0 Hz to 20 Hz, i.e. the
18 modes listed in table 1. For each mode, the mass
normalized mode shape of the FE model is used. The
natural frequency and modal damping ratio are taken
as the experimentally identified values. A zero order
hold assumption is applied on the input vectorp[k] in
the time discretization. The reader is referred to (Maes
et al. 2016) for the expression of the system matrices
A, B, G, andJ.

5 SELECTION OF DATA FOR FORCE
IDENTIFICATION

The sensor configuration for force identification is to
be determined such that (1) the conditions for instan-
taneous system inversion (Maes et al. 2015) are met,
and (2) the uncertainty on the force estimates intro-
duced by measurement noise and wind loads is (suffi-
ciently) small.

5.1 Invertibility conditions

The invertibility of a linear system model in gen-
eral depends on three conditions. Firstly, the dynamic
forces and/or corresponding states must be identifi-
able from the data. Secondly, the system inversion al-
gorithm must be stable, such that small perturbations
in the data do not give rise to unbounded errors on
the identified forces and the system states. Thirdly,
the estimates must be uniquely defined by the data.
The general conditions for system inversion were re-
cently translated into a number of requirements on the
sensor network, i.e., sensor types, sensor locations,
and number of sensors, for the specific case of linear
modally reduced order models (Maes et al. 2015). The
invertibility conditions, derived assuming no noise,
are necessary but not sufficient for guaranteeing that
the forces and system states can be identified in the
presence of noise.

In this study, the aim is to estimate vertical forces at
nodes 27 and 48 (see figure 2), denoted by p27z and
p48z. A selection of data is made from the complete
data set, including all response measurements on the
bridge deck as listed in section 3. The displacements
are denoted by d27z and d40z, the accelerations ob-
tained from the NI system by a27ni and a48ni. The

accelerations obtained from the GMS-18 units are de-
noted by ajζ , wherej refers to the node number in the
measurement grid, andζ denotes the measurement di-
rection (y or z).

Using the techniques proposed in (Maes et al.
2015), a minimum subset of output data is deter-
mined, which allows for the estimation of the forces.
In this case, at least two (np) accelerations and two
(np) displacements are required to ensure a coupling
between the estimated forces and the measured accel-
eration and displacement data, respectively, through
two (np) modes. The two displacements, d27z and
d40z, have to be included in the data vector in or-
der to obtain a stable system inverse with a unique
solution. Additional accelerations are required for in-
stantaneous system inversion. In the following, the
data used for joint input-state estimation consists of
two collocated acceleration measurements a27ni and
a48ni and two displacement measurements d27z and
d40z. For this data set, all invertibility conditions are
met, and these will still hold when more measure-
ments are added. The reader is referred to (Maes et al.
2015) for detailed information on the design of the
sensor network.

5.2 Quantification of uncertainty

The uncertainty on the force estimates obtained from
joint input-state estimation, introduced by wind exci-
tation and measurement noise, is assessed by means
of the uncertainty quantification approach introduced
in (Maes et al. 2016). Quantification of the uncer-
tainty requires the power spectral density (PSD) of
the unknown stochastic excitation, that has been ob-
tained from the response of the structure under ambi-
ent loading. The noise covariance matricesQ, R, and
S used for joint input-state estimation are based on
the PSD of the unknown stochastic excitation and the
noise characteristics of the sensors.

Table 2 compares the estimated force error variance
for two data sets: set 1 is the minimum set including
two collocated accelerations and two displacements
(4 sensors) that was introduced in section 5.1; set 2 in-
cludes all response measurements on the bridge deck
(40 sensors). The error variance is obtained consider-
ing the estimation errors in the frequency range from
0.2 to 16 Hz. The error variance for data set 2 is only
slightly lower than the error variance for the minimum
data set 1. In this case, using an extensive data set only
produces minor benefits.

6 RESULTS FORCE IDENTIFICATION

This section presents the results of the joint input-
state estimation for the identification of impact, har-
monic, and swept sine excitation applied to the bridge
deck. The forces are estimated using the minimum
data set consisting of two displacements and two ac-
celerations introduced in section 5. The noise covari-
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Figure 3: Mode shape mode 1 (left), mode 3 (middle), and mode 7(right) obtained from the calibrated FE model (top: side view,
bottom: top view). The measurement locations are indicatedby red dots.

j f̃j [Hz] ξ̃j [%] jfem fj [Hz] εj [%] MAC [-] Description

1 2.93 1.16 2 3.07 4.70 1.00 1st lateral bending main span
2 2.97 0.39 1 2.87 -3.64 1.00 1st vertical bending main span
3 3.81 0.77 3 3.73 -2.11 0.99 1st combined lateral bending
4 5.79 1.04 4 5.50 -4.98 0.89 1st lateral bending secondary span
5 6.00 0.52 5 5.81 -3.09 0.98 1st vertical bending secondary span
6† 7.06 0.20 7 7.07 0.08 0.94 1st torsional main span
7 7.27 1.26 6 6.84 -5.95 0.96 2nd lateral bending main span
8 8.02 0.56 8 7.62 -5.00 0.99 2nd vertical bending main span
9 9.83 0.73 11 9.97 1.38 0.94 2nd combined lateral bending
10† 11.06 1.28 12 10.80 -2.39 0.96 1st torsional secondary span
11 11.44 2.09 13 11.60 1.38 0.94 2nd torsional main span
12 12.57 1.40 14 12.92 2.72 0.97 3rd combined lateral bending
13 13.59 0.41 15 13.07 -3.85 0.98 3rd vertical bending main span
14† 14.08 0.47 16 14.07 -0.12 0.93 3rd lateral bending main span
15 14.72 0.34 17 14.18 -3.68 0.98 2nd vertical bending secondary span
16 16.20 0.94 19 16.84 3.98 0.97 4th lateral bending main span
17 17.55 1.33 21 18.71 6.61 0.90 2nd torsional secondary span
18† 18.63 0.68 20 17.86 -4.17 0.93 4th vertical bending main span

Table 1: Comparison between the experimentally identified modal characteristics and the modal characteristics calculated from the
calibrated FE model (j: No. identified mode,̃fj : identified undamped natural frequency,ξ̃j : identified modal damping ratio,jfem: No.
corresponding mode calibrated FE model,fj: undamped natural frequency FE model,εj: relative errorfj w.r.t. f̃j, MAC: MAC-
value). The identified modes indicated with a dagger are not included in the calibration, but used for cross validation.

Table 2: Estimate of the steady-state force error variance (fre-
quency range 0.2 to 16 Hz) for two different sets of sensors.
p̃i[k|k] represents the error on the time history of the vertical force
at nodei.

set 1 set 2

Sensors d27z, d40z,
a27ni, a48ni

d27z, d40z,
a27ni, a48ni, ajζ

Var(p̃27[k|k]) [N2] 4.39 2.89
Var(p̃48[k|k]) [N2] 6.86 6.58
Total variance [N2] 11.25 9.47

ance matricesQ, R, andS used in the force identifi-
cation are identical to those computed in section 5.2.
The initial state estimate vectorx[0|−1] and its error
covariance matrixP[0|−1] are both assumed zero.

Figure 4 shows the results of the identification for
a sequence of hammer impacts applied at nodes 27
and 48. A fairly good estimate of both forces is seen
from both the time history and the frequency con-
tent. Three time intervals can be distinguished in fig-
ures 4b and 4e for a single hammer impact applied
to the bridge deck; (1) the impact, (2) free vibra-
tion, and (3) ambient vibration. During the impact,
the broadband hammer force excites the entire fre-
quency range considered. The errors introduced by
ambient forces (i.e. unknown stochastic forces) are
small, since the hammer impact is far more impor-

tant than the ambient loading. During the free vibra-
tion phase, the structure vibrates at its natural fre-
quencies and modeling errors manifest in errors on
the estimated force time history that generally decay
exponentially over time. It is seen from figures 4a
and 4d that this free vibration phase, characterized by
force amplitudes that clearly decay exponentially over
time, takes 30 to 40 seconds, depending on the am-
plitude of the hammer impact applied. After the free
vibration phase, the measured response is predomi-
nantly due to ambient loads. The ambient vibration
phase is, for example, seen in figures 4b and 4e for
t < 104 s. During this phase, the uncertainty on the
estimated forces stems from ambient excitation and
measurement errors. As expected, the force levels ob-
served during this phase (i.e. the force error levels)
are small and in line with the estimated error statistics
obtained from the uncertainty quantification approach
in section 5.2 (see table 2:σp̃27 =

√
4.39 N2 = 2.10 N,

σp̃48 =
√
6.86 N2 = 2.62 N). It is concluded that the

errors introduced by the ambient excitation and the
measurement errors are small compared to the peak
values generated by the impact forces. From the time
history of the forces in figures 4b and 4e, it is also
seen that, in this case of broadband excitation, the al-
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Figure 4: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency spectrum
(right) of the impact forces applied at node 27 ((a) – (c)) andnode 48 ((d) – (f)), sensor set 1. The measured force signals are shown
in black, the identified force signals are shown in gray.

gorithm is able to properly distinguish between the
two forces.

Figure 5 shows the results for the identification
procedure for two harmonic forces, applied at nodes
27 and 48. The dominant excitation frequency of the
force applied at node 27 is 8 Hz, whereas the domi-
nant excitation frequency of the force applied at node
48 is 6 Hz. In this case where the excitation is dom-
inated by a limited number of frequencies, model-
ing errors occurring at the excitation frequencies pro-
hibit a proper distinction between the two indepen-
dent forces. The identified force at node 48 clearly
contains an important harmonic component at 8 Hz,
which is less pronounced in the measured force sig-
nal.

Figure 6 shows the results of the identification pro-
cedure for two swept sine forces, applied at nodes
27 and 48. The excitation frequency of the force
applied at node 27 rises from 0.5 Hz to 10 Hz in
285 s, whereas for node 48, the excitation frequency
rises from 0.375 Hz to 7.5 Hz in the same time pe-
riod. The excitation frequency of the forces applied
at nodes 27 and 48 is increased in steps of 1 mHz
and 0.75 mHz every 30 ms, respectively. Two cycles
of 285 s are considered. The response of the struc-
ture depends on the rate at which the frequency in-
creases, i.e. 1/30 Hz/s for the force applied at node
27 and 1/40 Hz/s for the force applied at node 48.
For each frequency step, the response of the struc-
ture evolves from harmonic vibration at the previ-
ous excitation frequencies to harmonic vibration at
the current excitation frequencies. When the exci-
tation frequency is slowly increased, the response
achieves steady-state before the excitation frequency
is changed again, whereas if the excitation frequency
is rapidly increased, the response is mainly dominated
by transient phenomena. In the transition phase, the
structure primarily vibrates at its natural frequencies
and the errors are comparable to those observed in the

free vibration phase following impact excitation. In
addition, modeling errors at the excitation frequency
result in errors on the estimated stationary forces. As
in the case of harmonic excitation, modeling errors
prohibit a proper distinction between the two forces,
resulting in large errors on the estimated forces for
some frequencies.

7 CONCLUSIONS

This paper presents a verification of a joint input-state
estimation algorithm, using data obtained from in situ
experiments on a footbridge. The joint input-state es-
timation algorithm is used for the identification of im-
pact, harmonic, and swept sine forces applied to the
bridge deck. A dynamic model of the structure has
been composed using a detailed finite element model
of the structure, which was calibrated using a set of
experimental modal characteristics. The uncertainty
introduced by wind loads and measurement noise is
quantified based on the power spectral density of the
ambient forces, which is identified from the response
of the structure under ambient loading. Verification
of the results is carried out by comparing the esti-
mated forces with the actual measured forces. For the
case of broadband impact loading, the forces obtained
from joint input-state estimation are in good agree-
ment with the true, measured forces. Although good
overall agreement is also observed between the esti-
mated and measured forces for harmonic and swept
sine loads, modeling errors in this case are found to
prohibit a proper distinction between the multiple in-
dependent forces.
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Figure 5: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency spectrum
(right) of the harmonic forces applied at node 27 ((a) – (c)) and node 48 ((d) – (f)), sensor set 1. The measured force signals are shown
in black, the identified force signals are shown in gray.
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Figure 6: Time history (left), detail of the time history (middle), and averaged amplitude of the narrow band frequency spectrum (right)
of the swept sine forces applied at node 27 ((a) – (c)) and node48 ((d) – (f)), sensor set 1. The measured force signals are shown in
black, the identified force signals are shown in gray.
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